WorldWideScience

Sample records for atp-sensitive potassium channels

  1. Expression of ATP-sensitive potassium channels in human pregnant myometrium

    Directory of Open Access Journals (Sweden)

    Hui Ning

    2011-03-01

    Full Text Available Abstract Background Potassium channels play critical roles in the regulation of cell membrane potential, which is central to the excitability of myometrium. The ATP-sensitive potassium (KATP channel is one of the most abundant potassium channels in myometrium. The objectives of this study were to investigate the protein expression of KATP channel in human myometrium and determine the levels of KATP channel in lower and upper segmental myometrium before and after onset of labour. Methods Both lower segmental (LS and upper segmental (US myometrial biopsies were collected at cesarean section from pregnant women not-in-labour (TNL or in-labour (TL at term. Protein expression level and cellular localization of four KATP channel subunits in US and LS myometrium were determined by Western blot analysis and immunohistochemistry, respectively. The contractile activity of myometrial strip was measured under isometric conditions. Results Four KATP channel subunits, namely Kir6.1, Kir6.2, SUR1 and SUR2B were identified in pregnant myometrium. While found in vascular myocytes, these subunits appear to be preferentially expressed in myometrial myocytes. Diazoxide, a KATP channel opener, inhibited the spontaneous contractility of pregnant myometrium, suggesting that the KATP channels are functional in human pregnant myometrium. Diazoxide was less potent in TL strips than that in TNL strips. Interestingly, expression of SUR1 was greater in TL than TNL tissues, although no differences were found for SUR2B in these two tissues. For both lower and upper segmental myometrium, Kir6.1 and Kir6.2 were less in TL compared with TNL tissues. Conclusions Functional KATP channels are expressed in human pregnant myometrium. Down-regulation of Kir6.1 and Kir6.2 expression in myometrium may contribute to the enhanced uterine contractility associated with the onset of labour.

  2. Increase of ATP-sensitive potassium (KATP channels in the heart of type-1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Chen Zhih-Cherng

    2012-01-01

    Full Text Available Abstract Background An impairment of cardiovascular function in streptozotocin (STZ-diabetic rats has been mentioned within 5 days-to-3 months of induction. ATP-sensitive potassium (KATP channels are expressed on cardiac sarcolemmal membranes. It is highly responsive to metabolic fluctuations and can have effects on cardiac contractility. The present study attempted to clarify the changes of cardiac KATP channels in diabetic disorders. Methods Streptozotocin-induced diabetic rats and neonatal rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr were used to examine the effect of hyperglycemia on cardiac function and the expression of KATP channels. KATP channels expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of KATP channels by Western blot and Northern blot analysis. Results The result shows diazoxide produced a marked reduction of heart rate in control group. Furthermore, the methods of Northern blotting and Western blotting were employed to identify the gene expression of KATP channel. Two subunits of cardiac KATP channel (SUR2A and kir 6.2 were purchased as indicators and showed significantly decreased in both diabetic rats and high glucose treated rat cardiac myocytes. Correction of hyperglycemia by insulin or phlorizin restored the gene expression of cardiac KATP in these diabetic rats. Conclusions Both mRNA and protein expression of cardiac KATP channels are decreased in diabetic rats induced by STZ for 8 weeks. This phenomenon leads to result in desensitization of some KATP channel drugs.

  3. Localization and function of ATP-sensitive potassium channels in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva

    2003-01-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique...

  4. Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive potassium channel

    NARCIS (Netherlands)

    Wilde, A. A.; Escande, D.; Schumacher, C. A.; Thuringer, D.; Mestre, M.; Fiolet, J. W.; Janse, M. J.

    1990-01-01

    We investigated the contribution of opening of the ATP-sensitive K+ channel to extracellular accumulation of K+ during ischemia with the use of glibenclamide, a specific blocker of this K+ channel. To characterize the electrophysiological effects of glibenclamide during metabolic inhibition (by

  5. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system.

    Science.gov (United States)

    Tinker, Andrew; Aziz, Qadeer; Thomas, Alison

    2014-01-01

    ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system. © 2013 The British Pharmacological Society.

  6. β-Oxidation of 5-hydroxydecanoate, a Putative Blocker of Mitochondrial ATP-Sensitive Potassium Channels

    Science.gov (United States)

    Hanley, Peter J; Gopalan, K V; Lareau, Rachel A; Srivastava, D K; von Martin Meltzer; Daut, Jürgen

    2003-01-01

    5-Hydroxydecanoate (5-HD) inhibits ischaemic and pharmacological preconditioning of the heart. Since 5-HD is thought to inhibit specifically the putative mitochondrial ATP-sensitive K+ (KATP) channel, this channel has been inferred to be a mediator of preconditioning. However, it has recently been shown that 5-HD is a substrate for acyl-CoA synthetase, the mitochondrial enzyme which ‘activates’ fatty acids. Here, we tested whether activated 5-HD, 5-hydroxydecanoyl-CoA (5-HD-CoA), is a substrate for medium-chain acyl-CoA dehydrogenase (MCAD), the committed step of the mitochondrial β-oxidation pathway. Using a molecular model, we predicted that the hydroxyl group on the acyl tail of 5-HD-CoA would not sterically hinder the active site of MCAD. Indeed, we found that 5-HD-CoA was a substrate for purified human liver MCAD with a Km of 12.8 ± 0.6 μm and a kcat of 14.1 s−1. For comparison, with decanoyl-CoA (Km∼3 μm) as substrate, kcat was 6.4 s−1. 5-HD-CoA was also a substrate for purified pig kidney MCAD. We next tested whether the reaction product, 5-hydroxydecenoyl-CoA (5-HD-enoyl-CoA), was a substrate for enoyl-CoA hydratase, the second enzyme of the β-oxidation pathway. Similar to decenoyl-CoA, purified 5-HD-enoyl-CoA was also a substrate for the hydratase reaction. In conclusion, we have shown that 5-HD is metabolised at least as far as the third enzyme of the β-oxidation pathway. Our results open the possibility that β-oxidation of 5-HD or metabolic intermediates of 5-HD may be responsible for the inhibitory effects of 5-HD on preconditioning of the heart. PMID:12562916

  7. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels.

    NARCIS (Netherlands)

    Carrasco, A.J.; Dzeja, P.P.; Alekseev, A.E.; Pucar, D.; Zingman, L.V.; Abraham, M.R.; Hodgson, D.M.; Bienengraeber, M.; Puceat, M.; Janssen, E.E.W.; Wieringa, B.; Terzic, A.

    2001-01-01

    Transduction of energetic signals into membrane electrical events governs vital cellular functions, ranging from hormone secretion and cytoprotection to appetite control and hair growth. Central to the regulation of such diverse cellular processes are the metabolism sensing ATP-sensitive K+ (K(ATP))

  8. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Gao, Zhan, E-mail: zhan-gao@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Koganti, Siva Rama Krishna, E-mail: sivaramakrishna.koganti@ttuhc.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Coetzee, William A., E-mail: william.coetzee@nyumc.org [Department of Pediatrics, NYU School of Medicine, New York, NY 10016 (United States); Goldhamer, David J., E-mail: david.goldhamer@uconn.edu [Center for Regenerative Biology, Department of Molecular and Cell Biology, Advanced Technology Laboratory, University of Connecticut, 1392 Storrs Road Unit 4243, Storrs, Connecticut 06269 (United States); Hodgson-Zingman, Denice M., E-mail: denice-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Zingman, Leonid V., E-mail: leonid-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Veterans Affairs, Medical Center, Iowa City, IA 52242 (United States)

    2016-02-26

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal muscle.

  9. Gap-junction coupling and ATP-sensitive potassium channels in human β -cell clusters: Effects on emergent dynamics

    Science.gov (United States)

    Loppini, A.; Pedersen, M. G.; Braun, M.; Filippi, S.

    2017-09-01

    The importance of gap-junction coupling between β cells in pancreatic islets is well established in mouse. Such ultrastructural connections synchronize cellular activity, confine biological heterogeneity, and enhance insulin pulsatility. Dysfunction of coupling has been associated with diabetes and altered β -cell function. However, the role of gap junctions between human β cells is still largely unexplored. By using patch-clamp recordings of β cells from human donors, we previously estimated electrical properties of these channels by mathematical modeling of pairs of human β cells. In this work we revise our estimate by modeling triplet configurations and larger heterogeneous clusters. We find that a coupling conductance in the range 0.005 -0.020 nS/pF can reproduce experiments in almost all the simulated arrangements. We finally explore the consequence of gap-junction coupling of this magnitude between β cells with mutant variants of the ATP-sensitive potassium channels involved in some metabolic disorders and diabetic conditions, translating studies performed on rodents to the human case. Our results are finally discussed from the perspective of therapeutic strategies. In summary, modeling of more realistic clusters with more than two β cells slightly lowers our previous estimate of gap-junction conductance and gives rise to patterns that more closely resemble experimental traces.

  10. Sulfonylurea Receptor 1 Subunits of ATP-Sensitive Potassium Channels and Myocardial Ischemia/Reperfusion Injury

    Science.gov (United States)

    Lefer, David J.; Nichols, Colin G.; Coetzee, William A.

    2009-01-01

    KATP channels are generally cardioprotective under conditions of metabolic impairment, consisting of pore-forming (Kir6.1 and/or Kir6.2) and sulphonylurea-binding, modulatory subunits (SUR1, SUR2A or SUR2B). Cardiovascular KATP channels are generally thought to consist of Kir6.2/SUR2A subunits (in the case of heart muscle) or Kir6.1/SUR2B subunits (smooth muscle), whereas SUR1-containing channels have well-documented roles in pancreatic insulin release. Recent data, however, demonstrated the presence of SUR1 subunits in mouse cardiac tissue (particularly in atria) and a surprising protection from myocardial ischemia/reperfusion in SUR1-null mice. Here we review some of the extra-pancreatic roles assigned to SUR1 subunits and consider whether these might be involved in the sequelae of ischemia/reperfusion. PMID:19577714

  11. A Kir6.2 pore mutation causes inactivation of ATP-sensitive potassium channels by disrupting PIP2-dependent gating.

    Directory of Open Access Journals (Sweden)

    Jeremy D Bushman

    Full Text Available In the absence of intracellular nucleotides, ATP-sensitive potassium (KATP channels exhibit spontaneous activity via a phosphatidylinositol-4,5-bisphosphate (PIP2-dependent gating process. Previous studies show that stability of this activity requires subunit-subunit interactions in the cytoplasmic domain of Kir6.2; selective mutagenesis and disease mutations at the subunit interface result in time-dependent channel inactivation. Here, we report that mutation of the central glycine in the pore-lining second transmembrane segment (TM2 to proline in Kir6.2 causes KATP channel inactivation. Unlike C-type inactivation, a consequence of selectivity filter closure, in many K(+ channels, the rate of inactivation in G156P channels was insensitive to changes in extracellular ion concentrations or ion species fluxing through the pore. Instead, the rate of G156P inactivation decreased with exogenous application of PIP2 and increased when PIP2-channel interaction was inhibited with neomycin or poly-L-lysine. These findings indicate the G156P mutation reduces the ability of PIP2 to stabilize the open state of KATP channels, similar to mutations in the cytoplasmic domain that produce inactivation. Consistent with this notion, when PIP2-dependent open state stability was substantially increased by addition of a second gain-of-function mutation, G156P inactivation was abolished. Importantly, bath application and removal of Mg(2+-free ATP or a nonhydrolyzable analog of ATP, which binds to the cytoplasmic domain of Kir6.2 and causes channel closure, recover G156P channel from inactivation, indicating crosstalk between cytoplasmic and transmembrane domains. The G156P mutation provides mechanistic insight into the structural and functional interactions between the pore and cytoplasmic domains of Kir6.2 during gating.

  12. ATP-sensitive potassium (KATP channel openers diazoxide and nicorandil lower intraocular pressure by activating the Erk1/2 signaling pathway.

    Directory of Open Access Journals (Sweden)

    Uttio Roy Chowdhury

    Full Text Available Elevated intraocular pressure is the most prevalent and only treatable risk factor for glaucoma, a degenerative disease of the optic nerve. While treatment options to slow disease progression are available, all current therapeutic and surgical treatments have unwanted side effects or limited efficacy, resulting in the need to identify new options. Previous reports from our laboratory have established a novel ocular hypotensive effect of ATP-sensitive potassium channel (KATP openers including diazoxide (DZ and nicorandil (NCD. In the current study, we evaluated the role of Erk1/2 signaling pathway in KATP channel opener mediated reduction of intraocular pressure (IOP. Western blot analysis of DZ and NCD treated primary normal trabecular meshwork (NTM cells, human TM (isolated from perfusion cultures of human anterior segments and mouse eyes showed increased phosphorylation of Erk1/2 when compared to vehicle treated controls. DZ and NCD mediated pressure reduction (p0.1. Histologic evaluation of transmission electron micrographs from DZ + U0126 and NCD + U0126 treated eyes revealed no observable morphological changes in the ultrastructure of the conventional outflow pathway. Taken together, the results indicate that the Erk1/2 pathway is necessary for IOP reduction by KATP channel openers DZ and NCD.

  13. Diazoxide Attenuates Postresuscitation Brain Injury in a Rat Model of Asphyxial Cardiac Arrest by Opening Mitochondrial ATP-Sensitive Potassium Channels

    Directory of Open Access Journals (Sweden)

    Haidong Wu

    2016-01-01

    Full Text Available Objective. We investigated whether and how diazoxide can attenuate brain injury after cardiopulmonary resuscitation (CPR by selective opening of mitochondrial ATP-sensitive potassium (mitoKATP channels. Methods. Adult male Sprague-Dawley rats with induced cerebral ischemia (n=10 per group received an intraperitoneal injection of 0.1% dimethyl sulfoxide (1 mL; vehicle group, diazoxide (10 mg/kg; DZ group, or diazoxide (10 mg/kg plus 5-hydroxydecanoate (5 mg/kg; DZ + 5-HD group 30 min after CPR. The control group (sham group, n=5 underwent sham operation, without cardiac arrest. Mitochondrial respiratory control rate (RCR was determined. Brain cell apoptosis was assessed using TUNEL staining. Expression of Bcl-2, Bax, and protein kinase C epsilon (PKCε in the cerebral cortex was determined by Western blotting and immunohistochemistry. Results. The neurological deficit scores (NDS in the vehicle group decreased significantly at 24 h and 48 h after CPR. Diazoxide significantly improved NDS and mitochondrial RCR after CPR at both time points; 5-HD cotreatment abolished these effects. Diazoxide decreased TUNEL-positive cells following CPR, upregulated Bcl-2 and PKCε, downregulated Bax, and increased the Bcl-2/Bax ratio; 5-HD cotreatment reversed these effects. Conclusions. Diazoxide attenuates postresuscitation brain injury, protects mitochondrial function, inhibits brain cell apoptosis, and activates the PKC pathway by opening mitoKATP channels.

  14. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effect of baclofen in mouse forced swimming test.

    Science.gov (United States)

    Nazari, Seyedeh Khadijeh; Nikoui, Vahid; Ostadhadi, Sattar; Chegini, Zahra Hadi; Oryan, Shahrbanoo; Bakhtiarian, Azam

    2016-12-01

    Previous study confirmed that the acute treatment with baclofen by inhibition of the l-arginine-nitric oxide (NO) pathway diminished the immobility behavior in the forced swimming test (FST) of mice. Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (KATP), in the present study we investigated the involvement of KATP channels in antidepressant-like effect of baclofen in the forced swimming test (FST). After assessment of locomotor behavior in the open-field test (OFT), FST was applied for evaluation of the antidepressant-like activity of baclofen in mice. Baclofen at different doses (0.1, 0.3, and 1mg/kg) and fluoxetine (20mg/kg) were administrated by intraperitoneal (ip) route, 30min before the FST or OFT. To clarify the probable involvement of KATP channels, after determination of sub-effective doses of glibenclamide as a KATP channel blocker and cromakalim, as an opener of these channels, they were co-administrated with the sub-effective and effective doses of baclofen, respectively. Baclofen at dose 1mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20mg/kg). Co-administration of gelibenclamide sub-effective dose (1mg/kg) with baclofen (0.1mg/kg) showed a synergistic antidepressant-like effect in the FST. Also, sub-effective dose of cromakalim (0.1mg/kg) inhibited the antidepressant-like effect of baclofen (1mg/kg) in the FST. All aforementioned treatments had not any impact on the locomotor movement of mice in OFT. Our study for the first time revealed that antidepressant-like effect of baclofen on mice is KATP-dependent, and baclofen seems that exert this effect by blocking the KATP channels. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Subclinical Doses of ATP-Sensitive Potassium Channel Modulators Prevent Alterations in Memory and Synaptic Plasticity Induced by Amyloid-β.

    Science.gov (United States)

    Salgado-Puga, Karla; Rodríguez-Colorado, Javier; Prado-Alcalá, Roberto A; Peña-Ortega, Fernando

    2017-01-01

    In addition to coupling cell metabolism and excitability, ATP-sensitive potassium channels (KATP) are involved in neural function and plasticity. Moreover, alterations in KATP activity and expression have been observed in Alzheimer's disease (AD) and during amyloid-β (Aβ)-induced pathology. Thus, we tested whether KATP modulators can influence Aβ-induced deleterious effects on memory, hippocampal network function, and plasticity. We found that treating animals with subclinical doses (those that did not change glycemia) of a KATP blocker (Tolbutamide) or a KATP opener (Diazoxide) differentially restrained Aβ-induced memory deficit, hippocampal network activity inhibition, and long-term synaptic plasticity unbalance (i.e., inhibition of LTP and promotion of LTD). We found that the protective effect of Tolbutamide against Aβ-induced memory deficit was strong and correlated with the reestablishment of synaptic plasticity balance, whereas Diazoxide treatment produced a mild protection against Aβ-induced memory deficit, which was not related to a complete reestablishment of synaptic plasticity balance. Interestingly, treatment with both KATP modulators renders the hippocampus resistant to Aβ-induced inhibition of hippocampal network activity. These findings indicate that KATP are involved in Aβ-induced pathology and they heighten the potential role of KATP modulation as a plausible therapeutic strategy against AD.

  16. ATP-sensitive potassium (KATP) channel openers diazoxide and nicorandil lower intraocular pressure by activating the Erk1/2 signaling pathway

    Science.gov (United States)

    Roy Chowdhury, Uttio; Bahler, Cindy K.; Holman, Bradley H.

    2017-01-01

    Elevated intraocular pressure is the most prevalent and only treatable risk factor for glaucoma, a degenerative disease of the optic nerve. While treatment options to slow disease progression are available, all current therapeutic and surgical treatments have unwanted side effects or limited efficacy, resulting in the need to identify new options. Previous reports from our laboratory have established a novel ocular hypotensive effect of ATP-sensitive potassium channel (KATP) openers including diazoxide (DZ) and nicorandil (NCD). In the current study, we evaluated the role of Erk1/2 signaling pathway in KATP channel opener mediated reduction of intraocular pressure (IOP). Western blot analysis of DZ and NCD treated primary normal trabecular meshwork (NTM) cells, human TM (isolated from perfusion cultures of human anterior segments) and mouse eyes showed increased phosphorylation of Erk1/2 when compared to vehicle treated controls. DZ and NCD mediated pressure reduction (pNCD) was abrogated by U0126 (DZ + U0126: -9.7 ± 11.5%, p = 0.11; NCD + U0126: -0.1 ± 11.5%, p = 1.0). In contrast, U0126 had no effect on latanoprostfree acid-induced pressure reduction (-52.5 ± 6.8%, n = 4, p = 0.001). In mice, DZ and NCD reduced IOP (DZ, 14.9 ± 3.8%, NCD, 16.9 ± 2.5%, n = 10, pNCD + U0126, 0.9 ± 2.2%, n = 10, p>0.1). Histologic evaluation of transmission electron micrographs from DZ + U0126 and NCD + U0126 treated eyes revealed no observable morphological changes in the ultrastructure of the conventional outflow pathway. Taken together, the results indicate that the Erk1/2 pathway is necessary for IOP reduction by KATP channel openers DZ and NCD. PMID:28594895

  17. Activation of ATP-sensitive potassium channels antagonize nociceptive behavior and hyperexcitability of DRG neurons from rats

    Directory of Open Access Journals (Sweden)

    Zhang Hailin

    2011-05-01

    Full Text Available Abstract Background Nociceptive responses to noxious stimuli are initiated at peripheral nociceptor terminals. Ion channels play a vital role in pain signal initiation and conduction. Activation of KATP channels has been implicated in mediating the analgesic effects of agents such as morphine. However, systematic studies regarding the effects of KATP activators on nociception and neuronal excitability are scarce. Results In this study, we describe the antagonistic effects of KATP activators pinacidil and diazoxide on nocifensive behavior induced by bradykinin (BK, thermo and mechanical stimuli, and the bradykinin-induced hyperexcitability of DRG neurons. We also found that KATP activators can moderately activate KATP in DRG neurons. Because the effects of KATP activators can be reversed by the KATP blocker glyburide, direct activation of KATP is most likely the underlying mechanism. Conclusion This systematic study clearly demonstrates that activation of KATP could have significant modulatory effects on the excitability of sensory neurons and thus on sensory behaviors, such as nociception. KATP activators can be evaluated clinically for the treatment of pain symptoms.

  18. Ocular Hypotensive Effects of the ATP-Sensitive Potassium Channel Opener Cromakalim in Human and Murine Experimental Model Systems.

    Directory of Open Access Journals (Sweden)

    Uttio Roy Chowdhury

    Full Text Available Elevated intraocular pressure (IOP is the most prevalent and only treatable risk factor for glaucoma, a leading cause of irreversible blindness worldwide. Unfortunately, all current therapeutics used to treat elevated IOP and glaucoma have significant and sometimes irreversible side effects necessitating the development of novel compounds. We evaluated the IOP lowering ability of the broad spectrum KATP channel opener cromakalim. Cultured human anterior segments when treated with 2 μM cromakalim showed a decrease in pressure (19.33 ± 2.78 mmHg at 0 hours to 13.22 ± 2.64 mmHg at 24 hours; p<0.001 when compared to vehicle treated controls (15.89 ± 5.33 mmHg at 0 h to 15.56 ± 4.88 mmHg at 24 hours; p = 0.89. In wild-type C57BL/6 mice, cromakalim reduced IOP by 18.75 ± 2.22% compared to vehicle treated contralateral eyes (17.01 ± 0.32 mmHg at 0 hours to 13.82 ± 0.37 mmHg at 24 hours; n = 10, p = 0.002. Cromakalim demonstrated an additive effect when used in conjunction with latanoprost free acid, a common ocular hypotensive drug prescribed to patients with elevated IOP. To examine KATP channel subunit specificity, Kir6.2(-/- mice were treated with cromakalim, but unlike wild-type animals, no change in IOP was noted. Histologic analysis of treated and control eyes in cultured human anterior segments and in mice showed similar cell numbers and extracellular matrix integrity within the trabecular meshwork, with no disruptions in the inner and outer walls of Schlemm's canal. Together, these studies suggest that cromakalim is a potent ocular hypotensive agent that lowers IOP via activation of Kir6.2 containing KATP channels, its effect is additive when used in combination with the commonly used glaucoma drug latanoprost, and is not toxic to cells and tissues of the aqueous humor outflow pathway, making it a candidate for future therapeutic development.

  19. Cardioprotective effect of nicorandil, a mitochondrial ATP-sensitive potassium channel opener, prolongs survival in HSPB5 R120G transgenic mice.

    Directory of Open Access Journals (Sweden)

    Atsushi Sanbe

    Full Text Available BACKGROUND: Transgenic (TG mice with overexpression of an arg120gly (R120G missense mutation in HSPB5 display desmin-related cardiomyopathy, which is characterized by formation of aggresomes. It is also known that progressive mitochondrial abnormalities and apoptotic cell death occur in the hearts of R120G TG mice. The role of mitochondrial dysfunction and apoptosis in disease progression, however, remains uncertain. METHODS AND RESULTS: Mitochondrial abnormalities and apoptotic cell death induced by overexpression of HSPB5 R120G were analyzed in neonatal rat cardiomyocytes. Overexpression of mutant HSPB5 led to development of aggresomes with a concomitant reduction in cell viability in the myocytes. Overexpression of mutant HSPB5 induced a reduction in the cytochrome c level in the mitochondrial fraction and a corresponding increase in the cytoplasmic fraction in the myocytes. Down-regulation of BCL2 and up-regulation of BAX were detected in the myocytes expressing the mutant HSPB5. Concomitant with mitochondrial abnormality, the activation of caspase-3 and increased apoptotic cell death was observed. Cell viability was dose-dependently recovered in myocytes overexpressing HSPB5 R120G by treatment with nicorandil a mitochondrial ATP-sensitive potassium channel opener. Nicorandil treatment also inhibited the increase in BAX, the decrease in BCL2, activation of caspase-3 and apoptotic cell death by mutant HSPB5. To confirm the results of the in-vitro study, we analyzed the effect of nicorandil in HSPB5 R120G TG mice. Nicorandil treatment appeared to reduce mitochondrial impairment and apoptotic cell death and prolonged survival in HSPB5 R120G TG mice. CONCLUSIONS: Nicorandil may prolong survival in HSPB5 R120G TG mice by protecting against mitochondrial impairments.

  20. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Heterogeneity of ATP-sensitive K+ Channels in Cardiac Myocytes

    Science.gov (United States)

    Hong, Miyoun; Bao, Li; Kefaloyianni, Eirini; Agullo-Pascual, Esperanza; Chkourko, Halina; Foster, Monique; Taskin, Eylem; Zhandre, Marine; Reid, Dylan A.; Rothenberg, Eli; Delmar, Mario; Coetzee, William A.

    2012-01-01

    Ventricular ATP-sensitive potassium (KATP) channels link intracellular energy metabolism to membrane excitability and contractility. Our recent proteomics experiments identified plakoglobin and plakophilin-2 (PKP2) as putative KATP channel-associated proteins. We investigated whether the association of KATP channel subunits with junctional proteins translates to heterogeneous subcellular distribution within a cardiac myocyte. Co-immunoprecipitation experiments confirmed physical interaction between KATP channels and PKP2 and plakoglobin in rat heart. Immunolocalization experiments demonstrated that KATP channel subunits (Kir6.2 and SUR2A) are expressed at a higher density at the intercalated disk in mouse and rat hearts, where they co-localized with PKP2 and plakoglobin. Super-resolution microscopy demonstrate that KATP channels are clustered within nanometer distances from junctional proteins. The local KATP channel density, recorded in excised inside-out patches, was larger at the cell end when compared with local currents recorded from the cell center. The KATP channel unitary conductance, block by MgATP and activation by MgADP, did not differ between these two locations. Whole cell KATP channel current density (activated by metabolic inhibition) was ∼40% smaller in myocytes from mice haploinsufficient for PKP2. Experiments with excised patches demonstrated that the regional heterogeneity of KATP channels was absent in the PKP2 deficient mice, but the KATP channel unitary conductance and nucleotide sensitivities remained unaltered. Our data demonstrate heterogeneity of KATP channel distribution within a cardiac myocyte. The higher KATP channel density at the intercalated disk implies a possible role at the intercellular junctions during cardiac ischemia. PMID:23066018

  2. ATP Sensitive Potassium Channels in the Skeletal Muscle Function: Involvement of the KCNJ11(Kir6.2) Gene in the Determination of Mechanical Warner Bratzer Shear Force.

    Science.gov (United States)

    Tricarico, Domenico; Selvaggi, Maria; Passantino, Giuseppe; De Palo, Pasquale; Dario, Cataldo; Centoducati, Pasquale; Tateo, Alessandra; Curci, Angela; Maqoud, Fatima; Mele, Antonietta; Camerino, Giulia M; Liantonio, Antonella; Imbrici, Paola; Zizzo, Nicola

    2016-01-01

    The ATP-sensitive K(+)-channels (KATP) are distributed in the tissues coupling metabolism with K(+) ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1), KCNJ11 (Kir6.2), ABCC8 (SUR1), and ABCC9 (SUR2) genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibers is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical, and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.

  3. ATP sensitive potassium channels in the skeletal muscle functions : involvement of the KCNJ11(Kir6.2 gene in the determination of Warner Bratzer shear force

    Directory of Open Access Journals (Sweden)

    Domenico eTricarico

    2016-05-01

    Full Text Available The ATP-sensitive K+-channels (KATP are distributed in the tissues coupling metabolism with K+ ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1, KCNJ11 (Kir6.2, ABCC8 (SUR1 and ABCC9 (SUR2 genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibres is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.

  4. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury.

    Directory of Open Access Journals (Sweden)

    Zhan Gao

    Full Text Available The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB model of heart failure is coupled with a 35-40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of Ca

  5. Central venous hypoxemia is a determinant of human atrial ATP-sensitive potassium channel expression: evidence for a novel hypoxia-inducible factor 1alpha-Forkhead box class O signaling pathway.

    Science.gov (United States)

    Raeis, Véronique; Philip-Couderc, Pierre; Roatti, Angela; Habre, Walid; Sierra, Jorge; Kalangos, Afksendyios; Beghetti, Maurice; Baertschi, Alex J

    2010-05-01

    ATP-sensitive potassium channels couple cell excitability to energy metabolism, thereby providing life-saving protection of stressed cardiomyocytes. The signaling for ATP-sensitive potassium channel expression is still unknown. We tested involvement of biochemical and biophysical parameters and potential transcription factors Forkhead box (FOX) and hypoxia-inducible factor (HIF-1alpha). Right atrial tissues were obtained during surgery from 28 children with heart disease. Expression of K(+)-inward-rectifier subunits Kir6.1/Kir6.2; sulfonyl urea receptors (SURs) SUR1A/B and SUR2A/B; and FOX class O (FOXO) 1, FOXO3, FOXF2, and HIF-1alpha were related to 31 parameters, including personal data, blood chemistry, and echocardiography. Venous hypoxemia (but not other ischemia indicators, such as venous hypercapnia or low glucose) predicts increased Kir6.1 (Phypoxemia (P<0.003). Electrophoretic mobility-shift assays suggest causal links among hypoxia, HIF-1alpha, FOXO1, and Kir6.1. To mimic mild ischemia encountered in some patients, cultured rat atrial myocytes were tested in hypoxia, hypercapnia, or low glucose, with normal conditions serving as the control. Mild hypoxia (24-hour) increases expression of HIF-1alpha, FOXO1, and SUR2A/B/Kir6.1 in culture (P<0.01), whereas hypercapnia and low glucose have no or opposite effects. Gene knockdown of HIF-1alpha or FOXO1 by small-interfering RNAs abolishes hypoxia-induced expression of FOXO1 and SUR2A/B/Kir6.1. These results suggest that low tissue oxygen determines increased expression of the atrial SUR2A/B/Kir6.1 gene via activation of HIF-1alpha-FOXO1. Because increased SUR2A/B/Kir6.1 has known survival benefits, this pathway offers novel therapeutic targets for children with heart disease.

  6. Cardiac ATP-sensitive K+ channel associates with the glycolytic enzyme complex

    Science.gov (United States)

    Hong, Miyoun; Kefaloyianni, Eirini; Bao, Li; Malester, Brian; Delaroche, Diane; Neubert, Thomas A.; Coetzee, William A.

    2011-01-01

    Being gated by high-energy nucleotides, cardiac ATP-sensitive potassium (KATP) channels are exquisitely sensitive to changes in cellular energy metabolism. An emerging view is that proteins associated with the KATP channel provide an additional layer of regulation. Using putative sulfonylurea receptor (SUR) coiled-coil domains as baits in a 2-hybrid screen against a rat cardiac cDNA library, we identified glycolytic enzymes (GAPDH and aldolase A) as putative interacting proteins. Interaction between aldolase and SUR was confirmed using GST pulldown assays and coimmunoprecipitation assays. Mass spectrometry of proteins from KATP channel immunoprecipitates of rat cardiac membranes identified glycolysis as the most enriched biological process. Coimmunoprecipitation assays confirmed interaction for several glycolytic enzymes throughout the glycolytic pathway. Immunocytochemistry colocalized many of these enzymes with KATP channel subunits in rat cardiac myocytes. The catalytic activities of aldolase and pyruvate kinase functionally modulate KATP channels in patch-clamp experiments, whereas d-glucose was without effect. Overall, our data demonstrate close physical association and functional interaction of the glycolytic process (particularly the distal ATP-generating steps) with cardiac KATP channels.—Hong, M., Kefaloyianni, E., Bao, L., Malester, B., Delaroche, D., Neubert, T. A., Coetzee, W. A. Cardiac ATP-sensitive K+ channel associates with the glycolytic enzyme complex. PMID:21482559

  7. Unique Properties of the ATP-Sensitive K+ Channel in the Mouse Ventricular Cardiac Conduction System

    Science.gov (United States)

    Bao, Li; Kefalogianni, Eirini; Lader, Joshua; Hong, Miyoun; Morley, Gregory; Fishman, Glenn I.; Sobie, Eric A.; Coetzee, William A.

    2011-01-01

    Background The specialized cardiac conduction system (CCS) expresses a unique complement of ion channels that confer a specific electrophysiological profile. ATP sensitive potassium (KATP) channels in these myocytes have not been systemically investigated. Methods and Results We recorded KATP channels in isolated CCS myocytes using Cntn2-EGFP reporter mice. The CCS KATP channels were less sensitive to inhibitory cytosolic ATP compared to ventricular channels and more strongly activated by MgADP. They also had a smaller slope conductance. The two types of channels had similar intraburst open and closed times, but the CCS KATP channel had a prolonged interburst closed time. CCS KATP channels were strongly activated by diazoxide and less by levcromakalim, whereas the ventricular KATP channel had a reverse pharmacological profile. CCS myocytes express elevated levels of Kir6.1, but reduced Kir6.2 and SUR2A mRNA compared to ventricular myocytes (SUR1 expression was negligible). SUR2B mRNA expression was higher in CCS myocytes relative to SUR2A. Canine Purkinje fibers expressed higher levels of Kir6.1 and SUR2B protein relative to the ventricle. Numerical simulation predicts a high sensitivity of the Purkinje action potential to changes in ATP:ADP ratio. Cardiac conduction time was prolonged by low-flow ischemia in isolated, perfused mouse hearts, which was prevented by glibenclamide. Conclusions These data imply a differential electrophysiological response (and possible contribution to arrhythmias) of the ventricular CCS to KATP channel opening during periods of ischemia. PMID:21984445

  8. The Methanolic Extract from Murraya koenigii L. Inhibits Glutamate-Induced Pain and Involves ATP-Sensitive K+ Channel as Antinociceptive Mechanism

    Directory of Open Access Journals (Sweden)

    Nushrat Sharmin Ani

    2016-01-01

    Full Text Available Murraya koenigii L. is a perennial shrub, belonging to the family Rutaceae. Traditionally, the leaves of this plant are extensively used in treatment of a wide range of diseases and disorders including pain and inflammation. Although researchers have revealed the antinociceptive effects of this plant’s leaves during past few years, the mechanisms underlying these effects are still unknown. Therefore, the present study evaluated some antinociceptive mechanisms of the methanolic extract of M. koenigii (MEMK leaves along with its antinociceptive potential using several animal models. The antinociceptive effects of MEMK were evaluated using formalin-induced licking and acetic acid-induced writhing tests at the doses of 50, 100, and 200 mg/kg. In addition, we also justified the possible participations of glutamatergic system and ATP-sensitive potassium channels in the observed activities. Our results demonstrated that MEMK significantly (p<0.01 inhibited the pain thresholds induced by formalin and acetic acid in a dose-dependent manner. MEMK also significantly (p<0.01 suppressed glutamate-induced pain. Moreover, pretreatment with glibenclamide (an ATP-sensitive potassium channel blocker at 10 mg/kg significantly (p<0.05 reversed the MEMK-mediated antinociception. These revealed that MEMK might have the potential to interact with glutamatergic system and the ATP-sensitive potassium channels to exhibit its antinociceptive activities. Therefore, our results strongly support the antinociceptive effects of M. koenigii leaves and provide scientific basis of their analgesic uses in the traditional medicine.

  9. Tilisolol hydrochloride dilates coronary arteries through an ATP-sensitive K(+)-channel opening mechanism in dogs.

    Science.gov (United States)

    Liu, Q; Nakae, I; Takahashi, M; Takaoka, A; Kinoshita, M

    1996-03-01

    Tilisolol is a beta-blocking agent with vasodilatory properties that was recently shown to possess a potassium (K+) channel opening activity. We investigated whether tilisolol has vasodilatory effects on coronary circulation in dogs. Mongrel dogs were chronically instrumented for measurements of circumflex coronary artery diameter (CoD) and coronary blood flow (CBF). We compared the effects of tilisolol on dog coronary arteries with those of two beta-blockers, propranolol and arotinolol. Both propranolol (1 mg/kg, intravenously, i.v.) and arotinolol (0.25 mg/kg, i.v.) decreased CoD and increased coronary vascular resistance (CVR). Tilisolol (2 mg/kg, i.v.) decreased CVR but had no significant effect on CoD. To investigate the mechanism of the coronary action of tilisolol, we examined differences in the response to tilisolol in the absence and presence of glibenclamide, an ATP-sensitive K+ channel blocker. Tilisolol (1,2,4, and 8 mg/kg, i.v.) produced a dose-dependent decrease in CVR without glibenclamide, whereas pretreatment with glibenclamide significantly suppressed this effect. Without glibenclamide, tilisolol had no significant effect on CoD at doses of 1-4 mg/kg (i.v.). However, at the higher dose of 8 mg/kg (i.v.), tilisolol significantly increased CoD (1.00 +/- 0.15%, p < 0.01). After pretreatment with glibenclamide, tilisolol (1-8 mg/kg, i.v.) produced a significant decrease in CoD. Therefore, we concluded that tilisolol exerts its vasodilatory effect on the coronary circulation through an ATP-sensitive K+ channel opening mechanism, and that its vasodilatory action is more prominent in coronary resistance vessels than in large coronary arteries.

  10. Phentolamine blocks ATP sensitive potassium channels in cardiac ventricular cells

    NARCIS (Netherlands)

    Wilde, A. A.; Veldkamp, M. W.; van Ginneken, A. C.; Opthof, T.

    1994-01-01

    The alpha adrenoceptor antagonist phentolamine prevents ischaemia related arrhythmias in rat, guinea pig, and cat heart. This effect has been related to the attenuation of ischaemia induced shortening of the action potential and has been ascribed to its alpha adrenoceptor antagonist properties. The

  11. ATP-Sensitive K+ Channel Knockout Induces Cardiac Proteome Remodeling Predictive of Heart Disease Susceptibility

    Science.gov (United States)

    Arrell, D. Kent; Zlatkovic, Jelena; Kane, Garvan C.; Yamada, Satsuki; Terzic, Andre

    2010-01-01

    Forecasting disease susceptibility requires detection of maladaptive signatures prior to onset of overt symptoms. A case-in-point are cardiac ATP-sensitive K+ (KATP) channelopathies, for which the substrate underlying disease vulnerability remains to be identified. Resolving molecular pathobiology, even for single genetic defects, mandates a systems platform to reliably diagnose disease predisposition. High-throughput proteomic analysis was here integrated with network biology to decode consequences of Kir6.2 KATP channel pore deletion. Differential two-dimensional gel electrophoresis reproducibly resolved > 800 protein species from hearts of asymptomatic wild-type and Kir6.2-knockout counterparts. KATP channel ablation remodeled the cardiac proteome, significantly altering 71 protein spots, from which 102 unique identities were assigned following hybrid linear ion trap quadrupole-Orbitrap tandem mass spectrometry. Ontological annotation stratified the KATP channel-dependent protein cohort into a predominant bioenergetic module (63 resolved identities), with additional focused sets representing signaling molecules (6), oxidoreductases (8), chaperones (6), and proteins involved in catabolism (6), cytostructure (8), and transcription and translation (5). Protein interaction mapping, in conjunction with expression level changes, localized a KATP channel-associated subproteome within a nonstochastic scale-free network. Global assessment of the KATP channel deficient environment verified the primary impact on metabolic pathways and revealed overrepresentation of markers associated with cardiovascular disease. Experimental imposition of graded stress precipitated exaggerated structural and functional myocardial defects in the Kir6.2-knockout, decreasing survivorship and validating the forecast of disease susceptibility. Proteomic cartography thus provides an integral view of molecular remodeling in the heart induced by KATP channel deletion, establishing a systems

  12. Activation of the mitochondrial ATP-sensitive K+ channel reduces apoptosis of spleen mononuclear cells induced by hyperlipidemia.

    Science.gov (United States)

    Alberici, Luciane C; Paim, Bruno A; Zecchin, Karina G; Mirandola, Sandra R; Pestana, Cezar R; Castilho, Roger F; Vercesi, Anibal E; Oliveira, Helena C F

    2013-06-14

    We have previously demonstrated that increased rates of superoxide generation by extra-mitochondrial enzymes induce the activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) in the livers of hypertriglyceridemic (HTG) mice. The resulting mild uncoupling mediated by mitoK(ATP) protects mitochondria against oxidative damage. In this study, we investigate whether immune cells from HTG mice also present increased mitoK(ATP) activity and evaluate the influence of this trait on cell redox state and viability. Oxygen consumption (Clark-type electrode), reactive oxygen species production (dihydroethidium and H2-DCF-DA probes) and cell death (annexin V, cytocrome c release and Trypan blue exclusion) were determined in spleen mononuclear cells. HTG mice mononuclear cells displayed increased mitoK(ATP) activity, as evidenced by higher resting respiration rates that were sensitive to mitoK(ATP) antagonists. Whole cell superoxide production and apoptosis rates were increased in HTG cells. Inhibition of mitoK(ATP) further increased the production of reactive oxygen species and apoptosis in these cells. Incubation with HTG serum induced apoptosis more strongly in WT cells than in HTG mononuclear cells. Cytochrome c release into the cytosol and caspase 8 activity were both increased in HTG cells, indicating that cell death signaling starts upstream of the mitochondria but does involve this organelle. Accordingly, a reduced number of blood circulating lymphocytes was found in HTG mice. These results demonstrate that spleen mononuclear cells from hyperlipidemic mice have more active mitoK(ATP) channels, which downregulate mitochondrial superoxide generation. The increased apoptosis rate observed in these cells is exacerbated by closing the mitoK(ATP) channels. Thus, mitoK(ATP) opening acts as a protective mechanism that reduces cell death induced by hyperlipidemia.

  13. POTASSIUM CHANNELS IN HYPOKALEMIC PERIODIC PARALYSIS - A KEY TO THE PATHOGENESIS

    NARCIS (Netherlands)

    LINKS, TP; SMIT, AJ; OOSTERHUIS, HJGH; REITSMA, WD

    1. A possible role for the ATP-sensitive potassium channels in the pathogenesis of hypokalaemic periodic paralysis was investigated. 2. We assessed insulin release and muscle strength after intravenous glucose loading with and without the potassium channel opener pinacidil and the potassium channel

  14. The Methanolic Extract fromMurraya koenigiiL. Inhibits Glutamate-Induced Pain and Involves ATP-Sensitive K+Channel as Antinociceptive Mechanism.

    Science.gov (United States)

    Sharmin Ani, Nushrat; Chakraborty, Sudip; Moniruzzaman, Md

    2016-01-01

    Murraya koenigii L. is a perennial shrub, belonging to the family Rutaceae. Traditionally, the leaves of this plant are extensively used in treatment of a wide range of diseases and disorders including pain and inflammation. Although researchers have revealed the antinociceptive effects of this plant's leaves during past few years, the mechanisms underlying these effects are still unknown. Therefore, the present study evaluated some antinociceptive mechanisms of the methanolic extract of M. koenigii (MEMK) leaves along with its antinociceptive potential using several animal models. The antinociceptive effects of MEMK were evaluated using formalin-induced licking and acetic acid-induced writhing tests at the doses of 50, 100, and 200 mg/kg. In addition, we also justified the possible participations of glutamatergic system and ATP-sensitive potassium channels in the observed activities. Our results demonstrated that MEMK significantly ( p koenigii leaves and provide scientific basis of their analgesic uses in the traditional medicine.

  15. The Methanolic Extract from Murraya koenigii L. Inhibits Glutamate-Induced Pain and Involves ATP-Sensitive K+ Channel as Antinociceptive Mechanism

    Science.gov (United States)

    Sharmin Ani, Nushrat; Chakraborty, Sudip

    2016-01-01

    Murraya koenigii L. is a perennial shrub, belonging to the family Rutaceae. Traditionally, the leaves of this plant are extensively used in treatment of a wide range of diseases and disorders including pain and inflammation. Although researchers have revealed the antinociceptive effects of this plant's leaves during past few years, the mechanisms underlying these effects are still unknown. Therefore, the present study evaluated some antinociceptive mechanisms of the methanolic extract of M. koenigii (MEMK) leaves along with its antinociceptive potential using several animal models. The antinociceptive effects of MEMK were evaluated using formalin-induced licking and acetic acid-induced writhing tests at the doses of 50, 100, and 200 mg/kg. In addition, we also justified the possible participations of glutamatergic system and ATP-sensitive potassium channels in the observed activities. Our results demonstrated that MEMK significantly (p koenigii leaves and provide scientific basis of their analgesic uses in the traditional medicine. PMID:27812367

  16. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  17. ATP-sensitive voltage- and calcium-dependent chloride channels in sarcoplasmic reticulum vesicles from rabbit skeletal muscle.

    Science.gov (United States)

    Kourie, J I

    1997-05-01

    Chloride channels in the sarcoplasmic reticulum (SR) are thought to play an essential role in excitation-contraction (E-C) coupling by balancing charge movement during calcium release and uptake. In this study the nucleotide-sensitivity of Cl- channels in the SR from rabbit skeletal muscle was investigated using the lipid bilayer technique. Two distinct ATP-sensitive Cl- channels that differ in their conductance and kinetic properties and in the mechanism of ATP-induced channel inhibition were observed. The first, a nonfrequent 150 pS channel was inhibited by trans (luminal) ATP, and the second, a common 75 pS small chloride (SCl) channel was inhibited by cis (cytoplasmic) ATP. In the case of the SCl channel the ATP-induced reversible decline in the values of current (maximal current amplitude, Imax and integral current, I') and kinetic parameters (frequency of opening FO, probability of the channel being open PO, mean open TO and closed Tc times) show a nonspecific block of the voltage- and Ca2+-dependent SCl channel. ATP was a more potent blocker from the cytoplasmic side than from the luminal side of the channel. The SCl channel block was not due to Ca2+ chelation by ATP, nor to phosphorylation of the channel protein. The inhibitory action of ATP was mimicked by the nonhydrolyzable analogue adenylylimidodiphosphate (AMP-PNP) in the absence of Mg2+. The inhibitory potency of the adenine nucleotides was charge dependent in the following order ATP4- > ADP3- > > > AMP2-. The data suggest that ATP-induced effects are mediated via an open channel block mechanism. Modulation of the SCl channel by [ATP]cis and [Ca2+]cis indicates that (i) this channel senses the bioenergetic state of the muscle fiber and (ii) it is linked to the ATP-dependent cycling of the Ca2+ between the SR and the sarcoplasm.

  18. Intractable hyperkalemia due to nicorandil induced potassium channel syndrome

    Directory of Open Access Journals (Sweden)

    Vivek Chowdhry

    2015-01-01

    Full Text Available Nicorandil is a commonly used antianginal agent, which has both nitrate-like and ATP-sensitive potassium (K ATP channel activator properties. Activation of potassium channels by nicorandil causes expulsion of potassium ions into the extracellular space leading to membrane hyperpolarization, closure of voltage-gated calcium channels and finally vasodilatation. However, on the other hand, being an activator of K ATP channel, it can expel K + ions out of the cells and can cause hyperkalemia. Here, we report a case of nicorandil induced hyperkalemia unresponsive to medical treatment in a patient with diabetic nephropathy.

  19. Measuring and Evaluating the Role of ATP-Sensitive K+ Channels in Cardiac Muscle

    Science.gov (United States)

    Kefaloyianni, Eirini; Bao, Li; Rindler, Michael J.; Hong, Miyoun; Patel, Tejaskumar; Taskin, Eylem; Coetzee, William A.

    2012-01-01

    Since ion channels move electrical charge during their activity, they have traditionally been studied using electrophysiological approaches. This was sometimes combined with mathematical models, for example with the description of the ionic mechanisms underlying the initiation and propagation of action potentials in the squid giant axon by Hodgkin and Huxley. The methods for studying ion channels also have strong roots in protein chemistry (limited proteolysis, the use of antibodies, etc). The advent of the molecular cloning and the identification of genes coding for specific ion channel subunits in the late 1980’s introduced a multitude of new techniques with which to study ion channels and the field has been rapidly expanding ever since (e.g. antibody development against specific peptide sequences, mutagenesis, the use of gene targeting in animal models, determination of their protein structures) and new methods are still in development. This review focuses on techniques commonly employed to examine ion channel function in a electrophysiological laboratory. The focus is on the KATP channel, but many of the techniques described are also used to study other ion channels. PMID:22245446

  20. The modulation of vascular ATP-sensitive K+ channel function via the phosphatidylinositol 3-kinase-Akt pathway activated by phenylephrine.

    Science.gov (United States)

    Haba, Masanori; Hatakeyama, Noboru; Kinoshita, Hiroyuki; Teramae, Hiroki; Azma, Toshiharu; Hatano, Yoshio; Matsuda, Naoyuki

    2010-08-01

    The present study examined the modulator role of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway activated by the alpha-1 adrenoceptor agonist phenylephrine in ATP-sensitive K(+) channel function in intact vascular smooth muscle. We evaluated the ATP-sensitive K(+) channel function and the activity of the PI3K-Akt pathway in the rat thoracic aorta without endothelium. The PI3K inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) (10(-5) M) augmented relaxation in response to the ATP-sensitive K(+) channel opener levcromakalim (10(-8) to 3 x 10(-6) M) in aortic rings contracted with phenylephrine (3 x 10(-7) M) but not with 9,11-dideoxy-11alpha,9alpha-epoxy-methanoprostaglandin F(2alpha) (U46619; 3 x 10(-8) M), although those agents induced similar contraction. ATP-sensitive K(+) channel currents induced by levcromakalim (10(-6) M) in the presence of phenylephrine (3 x 10(-7) M) were enhanced by the nonselective alpha-adrenoceptor antagonist phentolamine (10(-7) M) and LY294002 (10(-5) M). Levels of the regulatory subunits of PI3K p85-alpha and p55-gamma increased in the membrane fraction from aortas without endothelium treated with phenylephrine (3 x 10(-7) M) but not with U46619 (3 x 10(-8) M). Phenylephrine simultaneously augmented Akt phosphorylation at Ser473 and Thr308. Therefore, activation of the PI3K-Akt pathway seems to play a role in the impairment of ATP-sensitive K(+) channel function in vascular smooth muscle exposed to alpha-1 adrenergic stimuli.

  1. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  2. In Vitro Contractile Response of Rabbit Myometrium to BKCa and KATP Potassium Channel Openers

    Directory of Open Access Journals (Sweden)

    Soňa Fraňová

    2009-01-01

    Full Text Available The aim of the study was to evaluate the participation of ligand-sensitive potassium large conductance calcium-activated channels (BKCa and ATP-sensitive potassium channels in uterine smooth muscle reactivity during different stages of the experimentally induced proliferatory and secretory phase in the sexual cycle in ovariectomised rabbits in vitro. The myometrial reactivity to oxytocin (10-6 mol l-1 was investigated by an in vitro method in female rabbits 14 days after ovariectomy treated with 17β-estradiol - 1 mg/kg/day i.m. for 7 days, or with a combination of progesterone 2 mg/kg/day s.c. for 7 days and 17β-estradiol - 0.2 mg/ kg/day (day 3–7. The strips of myometrial smooth muscle were incubated with a specific opener (NS 1619 and an antagonist (TEA of potassium large conductance calcium-activated channel, or with a specific opener (pinacidil and an antagonist (glybenclamide of ATP-sensitive potassium channels before the administration of oxytocin. NS1619 produced more potent inhibition of the oxytocin-induced contraction during the gestagen dominance (experimental secretory phase than the one observed during the oestrogen dominance (experimental proliferatory phase. TEA antagonized the NS1619 induced inhibition of the myometrial contraction. In the matter of KATP potassium channels, after the administration of pinacidil we observed a similar situation in the changes of myometrial contractility. Pinacidil produced more pronounced inhibition of oxytocin-induced contraction during the secretory phase, and its effect was abolished by the selective inhibitor glybenclamide. Our experimental results indicate that both potassium large conductance calcium-activated channels and ATP-sensitive potassium channels significantly participate in the regulation of myometrial oxytocin-induced contractions and the activity of these channels is probably influenced by the levels of oestrogens and gestagens.

  3. Potassium Channels in Neurofbromatosis-1

    National Research Council Canada - National Science Library

    Chen, Mingkui

    2006-01-01

    .... We were the first to investigate potential mechanisms of cognitive impairment in NF-1 at the molecular level involving potassium channels, and demonstrated a possible mechanism for the learning deficits seen in NF1...

  4. The Antinociceptive Effect of a Tapentadol-Ketorolac Combination in a Mouse Model of Trigeminal Pain is Mediated by Opioid Receptors and ATP-Sensitive K(+) Channels.

    Science.gov (United States)

    Barreras-Espinoza, Israel; Soto-Zambrano, José Alberto; Serafín-Higuera, Nicolás; Zapata-Morales, Ramón; Alonso-Castro, Ángel; Bologna-Molina, Ronell; Granados-Soto, Vinicio; Isiordia-Espinoza, Mario A

    2017-02-01

    Preclinical Research The aim of the present study was to evaluate the antinoceptive interaction between the opioid analgesic, tapentadol, and the NSAID, ketorolac, in the mouse orofacial formalin test. Tapentadol or ketorolac were administered ip 15 min before orofacial formalin injection. The effect of the individual drugs was used to calculate their ED50 values and different proportions (tapentadol-ketorolac in 1:1, 3:1, and 1:3) were assayed in the orofacial test using isobolographic analysis and interaction index to evaluate the interaction between the drugs. The combination showed antinociceptive synergistic and additive effects in the first and second phase of the orofacial formalin test. Naloxone and glibenclamide were used to evaluate the possible mechanisms of action and both partially reversed the antinociception produced by the tapentadol-ketorolac combination. These data suggest that the mixture of tapentadol and ketorolac produces additive or synergistic interactions via opioid receptors and ATP-sensitive K(+) channels in the orofacial formalin-induced nociception model in mice. Drug Dev Res 78 : 63-70, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Gastroprotective effects of thymol on acute and chronic ulcers in rats: The role of prostaglandins, ATP-sensitive K(+) channels, and gastric mucus secretion.

    Science.gov (United States)

    Ribeiro, Ana Roseli S; Diniz, Polyana B F; Pinheiro, Malone S; Albuquerque-Júnior, Ricardo L C; Thomazzi, Sara M

    2016-01-25

    Thymol, a monoterpene phenol derivative of cymene, is found in abundance in the essential oils of Thymus, Origanum, and Lippia species. The present study investigated the gastroprotective actions of thymol (10, 30, and 100 mg/kg, p.o.) in the acute (ethanol- and nonsteroidal anti-inflammatory drug-induced ulcers) and chronic (acetic acid-induced ulcers) ulcer models in rats. Some of the mechanisms underlying to the gastroprotective effect of thymol were investigated in the ethanol-induced ulcer model. Gastric secretion parameters (volume, pH, and total acidity) were also evaluated by the pylorus ligature model, and the mucus in the gastric content was determined. The anti-Helicobacter pylori activity of thymol was performed using the agar-well diffusion method. Thymol (10, 30, and 100 mg/kg) produced dose dependent reduction (P thymol (30 mg/kg) was significantly attenuated (P Thymol (30 and 100 mg/kg) also reduced the ulcer index (P thymol failed to significantly change the gastric secretion parameters. However, after treatment with thymol (30 and 100 mg/kg), there was a significant increase (P Thymol no showed anti-H. pylori activity in vitro. Collectively, the present results provide convincing evidence that thymol displays gastroprotective actions on the acute and chronic ulcer models through mechanisms that involve increased in the amount of mucus, prostaglandins, and ATP-sensitive K(+) channels. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. [Memory and potassium channels].

    Science.gov (United States)

    Solntseva, E I; Bukanova, Iu V; Skrebitskiĭ, V G

    2003-01-01

    The K(+)-channels of the surface membrane play a crucial role in the generation of electrical activity of a neuron. There is a large diversity of the K(+)-channels that depends on a great number (over 200) of genes encoding channels proteins. An evolutionary conservation of channel's proteins is determined. The K(+)-channels were found to have a great importance in the memory processes. It was shown on different model systems that K(+)-current of the surface membrane decreases during the learning. The antagonists of K(+)-channels were found to improve the learning and memory. It was revealed in electrophysiological experiments that K(+)-channels antagonists can either themselves induce a long-term synaptic potentiation or intensify the synaptic potentiation induced by a tetanization. The disfunction of K(+)-channels is believed to be an important link in the mechanisms of memory disturbances. In animal mutants with K(+)-channels disfunction, learning and memory are deficient. In behavioral experiments, the use of K(+)-channels openers make the learning worse. Amnesia caused by cerebral ischemia is explained by strong activity of K(+)-channels which not only inhibits neuronal excitement but also causes neurodegeneration. The question on the K(+)-channels involvement into pathophysiology of Alzheimer's disease is discussed. Neurotoxic peptide beta-amyloid, which is supposed to be involved into mechanisms of Alzheimer's disease, modulates K(+)-channels function. The effect of beta-amyloid depends on the subtype of K(+)-channels: A-channels are inhibited, and KDR-channels, on the contrary, become stronger. The effect of the cognitive enhancers (vinpocetine, piracetam, tacrine, linopirdine) on K(+)-current also depends on the subtype of K(+)-channels. Slow-inactivating K(+)-currents (IDR, IK(Ca), IM) are inhibited in the presence of these drugs, while fast-in-activating K(+)-current (A-current) remains unchanged or even increases.

  7. ATP sensitive K+channel subunits (Kir6.1, Kir6.2) are the candidate mediators regulating ameliorating effects of pulsed magnetic field on aortic contractility in diabetic rats.

    Science.gov (United States)

    Ocal, Isil; Yilmaz, Mehmet B; Kocaturk-Sel, Sabriye; Tufan, Turan; Erkoc, Mehmet A; Comertpay, Gamze; Oksuz, Hale; Barc, Esma D

    2018-02-15

    Diabetes mellitus is a metabolic disease that causes increased morbidity and mortality in developed and developing countries. With recent advancements in technology, alternative treatment methods have begun to be investigated in the world. This study aims to evaluate the effect of pulsed magnetic field (PMF) on vascular complications and contractile activities of aortic rings along with Kir6.1 and Kir6.2 subunit expressions of ATP-sensitive potassium channels (K ATP ) in aortas of controlled-diabetic and non-controlled diabetic rats. Controlled-diabetic and non-controlled diabetic adult male Wistar rats were exposed to PMF for a period of 6 weeks according to the PMF application protocol (1 h/day; intensity: 1.5 mT; consecutive frequency: 1, 10, 20, and 40 Hz). After PMF exposure, body weight and blood glucose levels were measured. Then, thoracic aorta tissue was extracted for relaxation-contraction and Kir6.1 and Kir6.2 expression experiments. Blood plasma glucose levels, body weight, and aortic ring contraction percentage decreased in controlled-diabetic rats but increased in non-controlled diabetic rats. PMF therapy repressed Kir6.1 mRNA expression in non-controlled diabetic rats but not in controlled diabetic rats. Conversely, Kir6.2 mRNA expressions were repressed both in controlled diabetic and non-controlled diabetic rats by PMF. Our findings suggest that the positive therapeutic effects of PMF may act through (K ATP ) subunits and may frequently occur in insulin-free conditions. Bioelectromagnetics. 2018;9999:XX-XX. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. [Topology of the mitochondrial potassium ion channels].

    Science.gov (United States)

    Laskowski, Michał; Kulawiak, Bogusz

    In the inner mitochondrial membrane several potassium channels have been identified whose activation lead to cytoprotection during ischemic event. It was found that activation of mitochondrial large conductance calcium activated potassium channel (mitoBKCa) and ATP regulated potassium channel (mitoKATP) preserves brain and heart muscle cells against ischemia/reperfusion induced damage. However the detailed cytoprotection mechanism remains unclear. Similarly, the molecular structures and protein interactions of the mitochondrial potassium channels are still unknown. In this article, we summarize the current knowledge of the mitoKATP and mitoBKCa channels topology. Different aspects of this topic are discussed like import and assembly of the channel subunits and biophysical properties of mitochondrial compartments. Additionally, the consequences of different topology models on the cytoprotective function of the mitochondrial potassium channels were analyzed.

  9. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  10. Evidence for direct physical association between a K+ channel (Kir6.2) and an ATP-binding cassette protein (SUR1) which affects cellular distribution and kinetic behavior of an ATP-sensitive K+ channel.

    Science.gov (United States)

    Lorenz, E; Alekseev, A E; Krapivinsky, G B; Carrasco, A J; Clapham, D E; Terzic, A

    1998-03-01

    Structurally unique among ion channels, ATP-sensitive K+ (KATP) channels are essential in coupling cellular metabolism with membrane excitability, and their activity can be reconstituted by coexpression of an inwardly rectifying K+ channel, Kir6.2, with an ATP-binding cassette protein, SUR1. To determine if constitutive channel subunits form a physical complex, we developed antibodies to specifically label and immunoprecipitate Kir6.2. From a mixture of Kir6.2 and SUR1 in vitro-translated proteins, and from COS cells transfected with both channel subunits, the Kir6.2-specific antibody coimmunoprecipitated 38- and 140-kDa proteins corresponding to Kir6.2 and SUR1, respectively. Since previous reports suggest that the carboxy-truncated Kir6.2 can form a channel independent of SUR, we deleted 114 nucleotides from the carboxy terminus of the Kir6.2 open reading frame (Kir6.2deltaC37). Kir6.2deltaC37 still coimmunoprecipitated with SUR1, suggesting that the distal carboxy terminus of Kir6.2 is unnecessary for subunit association. Confocal microscopic images of COS cells transfected with Kir6.2 or Kir6.2deltaC37 and labeled with fluorescent antibodies revealed unique honeycomb patterns unlike the diffuse immunostaining observed when cells were cotransfected with Kir6.2-SUR1 or Kir6.2deltaC37-SUR1. Membrane patches excised from COS cells cotransfected with Kir6.2-SUR1 or Kir6.2deltaC37-SUR1 exhibited single-channel activity characteristic of pancreatic KATP channels. Kir6.2deltaC37 alone formed functional channels with single-channel conductance and intraburst kinetic properties similar to those of Kir6.2-SUR1 or Kir6.2deltaC37-SUR1 but with reduced burst duration. This study provides direct evidence that an inwardly rectifying K+ channel and an ATP-binding cassette protein physically associate, which affects the cellular distribution and kinetic behavior of a KATP channel.

  11. The Ketogenic Diet and Potassium Channel Function

    Science.gov (United States)

    2015-11-01

    1 AWARD NUMBER: W81XWH-13-1-0463 TITLE: The Ketogenic Diet and Potassium Channel Function PRINCIPAL INVESTIGATOR: Dr. Geoffrey Murphy...NUMBER The Ketogenic Diet and Potassium Channel Function 5b. GRANT NUMBER W81XWH-13-1-0463 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Geoffrey Murphy...The overall objective of this Discovery Award was to explore the hypothesis the ketogenic diet (KD) regulates neuronal excitability by influencing

  12. ATP-sensitive K/sup +/ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone

    Energy Technology Data Exchange (ETDEWEB)

    de Weille, J.; Schmid-Antomarchi, H.; Fosset, M.; Lazdunski, M.

    1988-02-01

    The action of the hyperglycemia-inducing hormone galanin, a 29-amino acid peptide names from its N-terminal glycine and C-terminal amidated alanine, was studied in rat insulinoma (RINm5F) cells using electrophysiological and /sup 86/Rb/sup +/ flux techniques. Galanin hyperpolarizes and reduces spontaneous electrical activity by activating a population of APT-sensitive K/sup +/ channels with a single-channel conductance of 30 pS (at -60 mV). Galanin-induced hyperpolarization and reduction of spike activity are reversed by the hypoglycemia-inducing sulfonylurea glibenclamine. Glibenclamide blocks the galanin-activated ATP-sensitive K/sup +/ channel. /sup 86/Rb/sup +/ efflux from insulinoma cells is stimulated by galanin in a dose-dependent manner. The half-maximum value of activation is found at 1.6 nM. Galanin-induced /sup 86/Rb/sup +/ efflux is abolished by glibenclamide. The half-maximum value of inhibition is found at 0.3 nM, which is close to the half-maximum value of inhibition of the ATP-dependent K/sup +/ channel reported earlier. /sup 86/Rb/sup +/ efflux studies confirm the electrophysiological demonstration that galanin activates and ATP-dependent K/sup +/ channel.

  13. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth.

    Science.gov (United States)

    Jackson, W F

    2017-01-01

    Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+, and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. VSM cells express multiple isoforms of at least five classes of K+ channels that contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression, and function of large conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells. © 2017 Elsevier Inc. All rights reserved.

  14. A novel potassium channel in photosynthetic cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Manuela Zanetti

    Full Text Available Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+ channel family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.

  15. Sea Anemone Toxins Affecting Potassium Channels

    Science.gov (United States)

    Diochot, Sylvie; Lazdunski, Michel

    The great diversity of K+ channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K+ channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K+ channels. Short (35-37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58-59 amino acids) SAK-II peptides display both enzymatic and K+ channel inhibitory activities. Medium size (42-43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.

  16. Biology of the KCNQ1 Potassium Channel

    Directory of Open Access Journals (Sweden)

    Geoffrey W. Abbott

    2014-01-01

    Full Text Available Ion channels are essential for basic cellular function and for processes including sensory perception and intercellular communication in multicellular organisms. Voltage-gated potassium (Kv channels facilitate dynamic cellular repolarization during an action potential, opening in response to membrane depolarization to facilitate K+ efflux. In both excitable and nonexcitable cells other, constitutively active, K+ channels provide a relatively constant repolarizing force to control membrane potential, ion homeostasis, and secretory processes. Of the forty known human Kv channel pore-forming α subunits that coassemble in various combinations to form the fundamental tetrameric channel pore and voltage sensor module, KCNQ1 is unique. KCNQ1 stands alone in having the capacity to form either channels that are voltage-dependent and require membrane depolarization for activation, or constitutively active channels. In mammals, KCNQ1 regulates processes including gastric acid secretion, thyroid hormone biosynthesis, salt and glucose homeostasis, and cell volume and in some species is required for rhythmic beating of the heart. In this review, the author discusses the unique functional properties, regulation, cell biology, diverse physiological roles, and involvement in human disease states of this chameleonic K+ channel.

  17. Role of renal vascular potassium channels in physiology and pathophysiology

    DEFF Research Database (Denmark)

    Salomonsson, Max; Brasen, Jens Christian; Sorensen, Charlotte Mehlin

    2017-01-01

    ) and endothelial cells (EC). The vascular tone is controlled by Vm via its effect on the opening probability of voltage operated Ca2+ channels (VOCC) in VSMC. When K+ conductance increases Vm becomes more negative and vasodilation follows, while deactivation of K+ channels leads to depolarization...... and vasoconstriction. K+ channels in EC indirectly participate in the control of vascular tone by endothelium derived vasodilation. Therefore, by regulating the tone of renal resistance vessels, K+ channels have a potential role in the control of fluid homeostasis and blood pressure as well as in the protection...... of the renal parenchyma. The main classes of K+ channels (calcium activated (KCa ), inward rectifier (Kir ), voltage activated (Kv ) and ATP sensitive (KATP )) have been found in the renal vessels. In this review, we summarize results available in the literature and our own studies in the field. We compare...

  18. Bioinspired Artificial Sodium and Potassium Ion Channels.

    Science.gov (United States)

    Rodríguez-Vázquez, Nuria; Fuertes, Alberto; Amorín, Manuel; Granja, Juan R

    2016-01-01

    In Nature, all biological systems present a high level of compartmentalization in order to carry out a wide variety of functions in a very specific way. Hence, they need ways to be connected with the environment for communication, homeostasis equilibrium, nutrition, waste elimination, etc. The biological membranes carry out these functions; they consist of physical insulating barriers constituted mainly by phospholipids. These amphipathic molecules spontaneously aggregate in water to form bilayers in which the polar groups are exposed to the aqueous media while the non-polar chains self-organize by aggregating to each other to stay away from the aqueous media. The insulating properties of membranes are due to the formation of a hydrophobic bilayer covered at both sides by the hydrophilic phosphate groups. Thus, lipophilic molecules can permeate the membrane freely, while the small charged or very hydrophilic molecules require the assistance of other membrane components in order to overcome the energetic cost implied in crossing the non-polar region of the bilayer. Most of the large polar species (such as oligosaccharides, polypeptides or nucleic acids) cross into and out of the cell via endocytosis and exocytosis, respectively. Nature has created a series of systems (carriers and pores) in order to control the balance of small hydrophilic molecules and ions. The most important structures to achieve these goals are the ionophoric proteins that include the channel proteins, such as the sodium and potassium channels, and ionic transporters, including the sodium/potassium pumps or calcium/sodium exchangers among others. Inspired by these, scientists have created non-natural synthetic transporting structures to mimic the natural systems. The progress in the last years has been remarkable regarding the efficient transport of Na(+) and K(+) ions, despite the fact that the selectivity and the ON/OFF state of the non-natural systems remain a present and future challenge.

  19. Cloning and expression analysis of potassium channel gene NKT3 ...

    African Journals Online (AJOL)

    Potassium (K+) is the predominant inorganic ion of plant cells. K+ channels in higher plant cells play an important role in regulating the influx and efflux of K+ from cells, and activity of these channels might be involved in plant stress resistance. A completely new K+ channel gene of Nicotiana tabacum was obtained through ...

  20. Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Steffensen, Annette Buur; Grunnet, Morten

    2011-01-01

    Kv7.1 (KCNQ1) channels are regulators of several physiological processes including vasodilatation, repolarization of cardiomyocytes, and control of secretory processes. A number of Kv7.1 pore mutants are sensitive to extracellular potassium. We hypothesized that extracellular potassium also...

  1. Effects of top excision on the potassium accumulation and expression of potassium channel genes in tobacco.

    Science.gov (United States)

    Dai, Xiao Yan; Su, Yi Rong; Wei, Wen Xue; Wu, Jin Shui; Fan, Ye Kuan

    2009-01-01

    The effects of the removal of the shoot apex of tobacco on the relative transcript levels of potassium channel genes, determined by real-time PCR, and on the relationship between the expression of genes encoding potassium channels and potassium concentration, were studied. The results from the study indicated that comparatively more assimilates of photosynthesis were allocated to the apex in control plants than in both decapitated and IAA-treated decapitated plants. By contrast, dry matter in the upper leaves, roots, and stems in both decapitated and IAA-treated plants was significantly increased relative to control plants. The potassium level in whole plants decreased post-decapitation compared with control plants, and so did the potassium concentration in middle and upper leaves, stem, and roots. Expression of NKT1, NtKC1, NTORK1, and NKT2 was inhibited by decapitation in tobacco leaves with a gradual reduction after decapitation, but was induced in roots. The relative expression of NKT1, NTORK1, and NKT2 in tobacco leaves was higher than that in roots, whereas the expression of NtKC1 was higher in roots. The levels of inhibition and induction of NKT1, NtKC1, NTORK1, and NKT2 in leaves and roots, respectively, associated with decapitation were reduced by the application of IAA on the cut surface of the decapitated stem. Further results showed that the level of endogenous auxin IAA in decapitated plants, which dropped in leaves and increased in roots by 140.7% at 14 d compared with the control plant, might be attributed to the change in the expression of potassium channel genes. The results suggest that there is a reciprocal relationship among endogenous auxin IAA, expression of potassium channel genes and potassium accumulation. They further imply that the endogenous IAA probably plays a role in regulating the expression of potassium channel genes, and that variations in expression of these genes affected the accumulation and distribution of potassium in tobacco.

  2. Potassium channel family in giant motor axons of Aglantha digitale.

    Science.gov (United States)

    Meech, R W; Mackie, G O

    1993-03-01

    1. The simplicity of the jellyfish nervous system makes it an ideal preparation to assess the contributions of different ion channels to behavior. In the giant motor axons of the jellyfish Aglantha digitale, low-threshold spikes elicit slow swimming, whereas escape swimming depends on a higher-threshold, overshooting sodium-dependent action potential. At least three kinetically distinct transient potassium channels (fast, intermediate, and slow) are concerned with spike management in this preparation. 2. In situ recording with patch-clamp micropipettes from clusters of potassium channels provides a means of studying their properties in isolation. The three classes of ion channel were identified in ensemble current averages by their kinetics, their response to a conditioning prepulse and their voltage dependence. All three were highly selective for potassium, and the reversal potential of their unitary currents depended on the level of potassium used to fill the patch pipette. 3. A single potassium permeability coefficient (PK) calculated from the Goldman, Hodgkin, Katz "constant field" equation was used to fit unitary current data from all three channels in concentrations of external potassium < or = 500 mM. 4. Data from ensemble tail currents in seawater indicated that the sodium permeability coefficient (PNa) of channels with either intermediate or slow kinetics was < or = 0.015 PK; preliminary data from channels with fast kinetics suggested that they too had a PNa/PK selectivity of approximately 0.01. 5. We propose that spike management in the giant motor axons of Aglantha depends on three members of a family of potassium-selective ion channels that seem likely to be structurally related.

  3. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2013-01-01

    Full Text Available This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, the neuronal NOS inhibitor Nω-propyl-L-arginine hydrochloride, the inducible NOS inhibitor 1400W dihydrochloride, the nitric oxide-sensitive guanylyl cyclase (GC inhibitor ODQ, the NOS and GC inhibitor methylene blue, the phosphoinositide-3 kinase inhibitor wortmannin, the cytochrome p450 epoxygenase inhibitor fluconazole, the voltage-dependent potassium channel inhibitor 4-aminopyridine (4-AP, the calcium-activated potassium channel inhibitor tetraethylammonium (TEA, the inward-rectifying potassium channel inhibitor barium chloride, and the ATP-sensitive potassium channel inhibitor glibenclamide. The effect of ropivacaine on endothelial nitric oxide synthase (eNOS phosphorylation in human umbilical vein endothelial cells was examined by western blotting. Ropivacaine-induced contraction was weaker in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, and methylene blue enhanced ropivacaine-induced contraction, whereas wortmannin, Nω-propyl-L-arginine hydrochloride, 1400W dihydrochloride, and fluconazole had no effect. 4-AP and TEA enhanced ropivacaine-induced contraction; however, barium chloride and glibenclamide had no effect. eNOS phosphorylation was induced by ropivacaine. These results suggest that ropivacaine-induced contraction is attenuated primarily by both endothelial nitric oxide and voltage-dependent potassium channels.

  4. Pore size matters for potassium channel conductance

    Science.gov (United States)

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  5. The KCNQ1 potassium channel: from gene to physiological function

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Grunnet, Morten; Olesen, Søren-Peter

    2005-01-01

    The voltage-gated KCNQ1 (KvLQT1, Kv7.1) potassium channel plays a crucial role in shaping the cardiac action potential as well as in controlling the water and salt homeostasis in several epithelial tissues. KCNQ1 channels in these tissues are tightly regulated by auxiliary proteins and accessory...... factors, capable of modulating the properties of the channel complexes. This paper reviews the current knowledge about the KCNQ1 channel with a major focus on interacting proteins and physiological functions....

  6. Voltage-gated Potassium Channels as Therapeutic Drug Targets

    OpenAIRE

    Wulff, Heike; Castle, Neil A.; Pardo, Luis A.

    2009-01-01

    The human genome contains 40 voltage-gated potassium channels (KV) which are involved in diverse physiological processes ranging from repolarization of neuronal or cardiac action potentials, over regulating calcium signaling and cell volume, to driving cellular proliferation and migration. KV channels offer tremendous opportunities for the development of new drugs for cancer, autoimmune diseases and metabolic, neurological and cardiovascular disorders. This review first discusses pharmacologi...

  7. Overexpression of EagI potassium channels in clinical tumours

    OpenAIRE

    Schliephacke Tessa; Martin Sabine; Rubio María E; Sánchez Araceli; Knötgen Hendrik; Mello de Queiroz Fernanda; Weseloh Rüdiger M; Hemmerlein Bernhard; Jenke Marc; Heinz-Joachim-Radzun,; Stühmer Walter; Pardo Luis A

    2006-01-01

    Abstract Background Certain types of potassium channels (known as Eag1, KCNH1, Kv10.1) are associated with the production of tumours in patients and in animals. We have now studied the expression pattern of the Eag1 channel in a large range of normal and tumour tissues from different collections utilising molecular biological and immunohistochemical techniques. Results The use of reverse transcription real-time PCR and specifically generated monoclonal anti-Eag1 antibodies showed that express...

  8. Toward a consensus model of the HERG potassium channel.

    NARCIS (Netherlands)

    Stary, A.; Wacker, S.J.; Boukharta, L.; Zachariae, U.G.; Karimi-Nejad, Y.; Aqvist, J.; Vriend, G.; Groot, B.L. de

    2010-01-01

    Malfunction of hERG potassium channels, due to inherited mutations or inhibition by drugs, can cause long QT syndrome, which can lead to life-threatening arrhythmias. A three-dimensional structure of hERG is a prerequisite to understand the molecular basis of hERG malfunction. To achieve a consensus

  9. Mechanism of Proarrhythmic Effects of Potassium Channel Blockers

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Ravens, Ursula

    2016-01-01

    Any disturbance of electrical impulse formation in the heart and of impulse conduction or action potential (AP) repolarization can lead to rhythm disorders. Potassium (K(+)) channels play a prominent role in the AP repolarization process. In this review we describe the causes and mechanisms...

  10. Modeling removal of accumulated potassium from T-tubules by inward rectifier potassium channels

    NARCIS (Netherlands)

    Wallinga, W.; Vliek, M.; Wienk, E.D.; Alberink, M.J.; Ypey, D.L.; Ypey, D.L.

    1996-01-01

    The membrane models of Cannon et al. (1993) and Alberink et al. (1995) for mammalian skeletal muscle fibers are based upon Hodgkin-Huxley descriptions of sodium, potassium delayed rectifier and leak conductances and the capacitive current taking into account fast inactivation of sodium channels. Now

  11. TRESK potassium channel in human T lymphoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Miguel, Dénison Selene, E-mail: amurusk@hotmail.com [Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Villa San Sebastian, C.P. 28045 Colima (Mexico); García-Dolores, Fernando, E-mail: garciaddf@yahoo.com [Department of Pathology, Institute of Forensic Sciences, Av. Niños Héroes 130, Col. Doctores, C.P. 06720 Mexico, DF (Mexico); Rosa Flores-Márquez, María, E-mail: mariafo31@yahoo.com.mx [National Medical Center of Occident (CMNO) IMSS, Belisario Dominguez 735, Col. Independencia Oriente, C.P. 44340 Guadalajara, Jalisco (Mexico); Delgado-Enciso, Iván [University of Colima, School of Medicine, Av. Universidad 333, Col. Las Viboras, C.P. 28040 Colima (Mexico); Pottosin, Igor, E-mail: pottosin@ucol.mx [Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Villa San Sebastian, C.P. 28045 Colima (Mexico); Dobrovinskaya, Oxana, E-mail: oxana@ucol.mx [Center for Biomedical Research, University of Colima, Av. 25 de Julio 965, Villa San Sebastian, C.P. 28045 Colima (Mexico)

    2013-05-03

    Highlights: • TRESK (KCNK18) mRNA is present in different T lymphoblastic cell lines. • KCNK18 mRNA was not found in resting peripheral blood lymphocytes. • Clinical samples of T lymphoblastic leukemias and lymphomas were positive for TRESK. • TRESK in T lymphoblasts has dual localization, in plasma membrane and intracellular. -- Abstract: TRESK (TWIK-related spinal cord K{sup +}) channel, encoded by KCNK18 gene, belongs to the double-pore domain K{sup +} channel family and in normal conditions is expressed predominantly in the central nervous system. In our previous patch-clamp study on Jurkat T lymphoblasts we have characterized highly selective K{sup +} channel with pharmacological profile identical to TRESK. In the present work, the presence of KCNK18 mRNA was confirmed in T lymphoblastic cell lines (Jurkat, JCaM, H9) but not in resting peripheral blood lymphocytes of healthy donors. Positive immunostaining for TRESK was demonstrated in lymphoblastic cell lines, in germinal centers of non-tumoral lymph nodes, and in clinical samples of T acute lymphoblastic leukemias/lymphomas. Besides detection in the plasma membrane, intracellular TRESK localization was also revealed. Possible involvement of TRESK channel in lymphocyte proliferation and tumorigenesis is discussed.

  12. Effect of Potassium Channel Modulators on Morphine Withdrawal in Mice

    Directory of Open Access Journals (Sweden)

    Vikas Seth

    2010-01-01

    Full Text Available The present study was conducted to investigate the effect of potassium channel openers and blockers on morphine withdrawal syndrome. Mice were rendered dependent on morphine by subcutaneous injection of morphine; four hours later, withdrawal was induced by using an opioid antagonist, naloxone. Mice were observed for 30 minutes for the withdrawal signs ie, the characteristic jumping, hyperactivity, urination and diarrhea. ATP-dependent potassium (K + ATP channel modulators were injected intraperitoneally (i.p. 30 minutes before the naloxone. It was found that a K + ATP channel opener, minoxidil (12.5–50 mg/kg i.p., suppressed the morphine withdrawal significantly. On the other hand, the K + ATP channel blocker glibenclamide (12.5–50 mg/kg i.p. caused a significant facilitation of the withdrawal. Glibenclamide was also found to abolish the minoxidil's inhibitory effect on morphine withdrawal. The study concludes that K + ATP channels play an important role in the genesis of morphine withdrawal and K + ATP channel openers could be useful in the management of opioid withdrawal. As morphine opens K + ATP channels in neurons, the channel openers possibly act by mimicking the effects of morphine on neuronal K + currents.

  13. Potassium channel openers and improvement of toxic stress: do they have role in the management of inflammatory bowel disease?

    Science.gov (United States)

    Hosseini-Tabatabaei, Azadeh; Abdollahi, Mohammad

    2008-09-01

    Inflammatory bowel disease (IBD) is a progressive condition in gastrointestinal tract, which refers to two idiopathic diseases; ulcerative colitis and Crohn's disease. Although certain etiology of these conditions is not known, it seems that an abnormality in reaction and regulation of the immune system plays an important role in adventure of the disease. According to the investigations, it is likely that oxidative and nitrosative stress have etiologic roles in IBD. Their destructive effects may contribute to the initiation or progression of the disease. Nowadays, the effectiveness of different medicines in the treatment of IBD has been proved, but none of them has shown a desirable result. Potassium channel openers (PCOs) are a class of drugs with various usages in the aspects of cardiovascular diseases and urinary incontinence. Their major mechanism is the opening of ATP-sensitive potassium (K-ATP) channels and contribute to the relaxation of smooth muscles. Nicorandil is a member of PCOs, with a special chemical structure. Recent investigations mention some novel effects and functions for this drug. Nicorandil reveals an anti-apoptosis property not only via a nitric oxide (NO)/cGMP-dependent mechanism, but also through activating mitochondrial K-ATP channels. Nicorandil can also elevate cGMP levels in some tissues, without direct NO generation. Gastroprotective activity via opening of the K channels, free radical scavenging, prostaglandin E2 elevation, decreasing pepsin and acid secretion, and prevention of the detrimental rise in NO has been proposed for nicorandil. According to these protective mechanisms and the role of oxidative/nitrosative stress in the expression of IBD, we herein hypothesize that nicorandil and other PCOs with similar structure can be used in the management of IBD. This approach offers new hope for the successful treatment of IBD. Further investigations on animal models are needed, to place nicorandil and similar drugs alongside IBD

  14. Effects of potassium channel opener on the kinetics of thallium-201 in in-vitro and in-vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Kim, E. J.; Ahn, B. C.; Chae, S. C.; Lee, K. B. [College of Medicine, Kyungpook National Univ., Taegu (Korea, Republic of); Kim, C. K. [Mt. Sinai Medical School, New York (United States)

    1997-07-01

    Potassium channel opener (K-opener) opens membrane ATP-sensitive K{sup +}-channel and induces and increase in potassium efflux from cells. K-openers are powerful smooth muscle relaxants and currently used as antihypertensive, antianginal drugs or bronchodilators in clinic. Pharmacologic potency of newly synthesized K-opener is being evaluated with efflux capacity of preincubated Rb-83 from the isolated aortic vascular tissue preparation. Thallium has similar characteristics to those of rubidium and potassium in vivo. To evaluate the effect of pinacidil (a potent K-opener) on Tl-201 biokinetics, we have performed uptake/washout studies in cultured myocytes, and mice biodistribution study. Primary culture of spontaneous contracting myocytes was undertake from hearts of newborn Sprague-Dawley rat. Different concentration of pinacidil (100nM or 10uM) was co-incubated with Tl-201 in HBSS buffer to evaluate its effect on cellular uptake, or challenged to myocyte preparations pre-incubated with Tl-201 for washout study. Pinacidil was injected into mice simultaneous or 10-min after Tl-201 injection, and organ uptake and whole body retention ratio was measured using gamma counter or dose calibrator. Co-incubation of pinacidil with Tl-201 resulted in a decrease in Tl uptake into myocytes by 1.6 - 2.5 times, and an increase in washout by 1.6 - 3.1 times. Pinacidil injection resulted in mild decrease in blood, heart and liver uptake in mice, bur renal uptake was markedly decreased in a dose dependent manner. These results suggest that the pinacidil Tl-201 kinetics and may potentially affect the interpretation of Tl-201 myocardial imaging.

  15. Altered phenotype of β-cells and other pancreatic cell lineages in patients with diffuse congenital hyperinsulinism in infancy caused by mutations in the ATP-sensitive K-channel

    NARCIS (Netherlands)

    Salisbury, Rachel J.; Han, Bing; Jennings, Rachel E.; Berry, Andrew A.; Stevens, Adam; Mohamed, Zainab; Sugden, Sarah A.; De Krijger, Ronald|info:eu-repo/dai/nl/123933595; Cross, Sarah E.; Johnson, Paul P V; Newbould, Melanie; Cosgrove, Karen E.; Hanley, Karen Piper; Banerjee, Indraneel; Dunne, Mark J.; Hanley, Neil A.

    2015-01-01

    Diffuse congenital hyperinsulinism in infancy (CHI-D) arises from mutations inactivating the KATP channel; however, the phenotype is difficult to explain from electrophysiology alone. Here we studied wider abnormalities in the b-cell and other pancreatic lineages. Islets were disorganized in CHI-D

  16. Hemodynamic profile of SKP-450, a new potassium-channel activator.

    Science.gov (United States)

    Lee, B H; Yoo, S E; Shin, H S

    1998-01-01

    /kg) produced a dose-related decrease in arterial pressure for > or =3 h, with its peak effects reached within 20 min (ED20 value, 0.030 mg/kg) accompanied by tachycardia. These results suggest that SKP-450 is a potent, orally active peripheral vasodilator activating ATP-sensitive potassium channels.

  17. Evidence for the Involvement of Potassium Channel Inhibition in the Antidepressant-Like Effects of Hesperidin in the Tail Suspension Test in Mice.

    Science.gov (United States)

    Donato, Franciele; Borges Filho, Carlos; Giacomeli, Renata; Alvater, Elza Eliza Tenório; Del Fabbro, Lucian; Antunes, Michele da Silva; de Gomes, Marcelo Gomes; Goes, André Tiago Rossito; Souza, Leandro Cattelan; Boeira, Silvana Peterini; Jesse, Cristiano Ricardo

    2015-07-01

    The administration of hesperidin elicits an antidepressant-like effect in mice by a mechanism dependent on an interaction with the L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway, whose stimulation is associated with the activation of potassium (K(+)) channels. Thus, this study investigated the involvement of different types of K(+) channels in the antidepressant-like effect of hesperidin in the mice tail suspension test (TST). The intracerebroventricular administration of tetraethylammonium (TEA, a nonspecific blocker of K(+) channels), glibenclamide (an ATP-sensitive K(+) channel blocker), charybdotoxin (a large- and intermediate-conductance calcium-activated K(+) channel blocker) or apamin (a small-conductance calcium-activated K(+) channel blocker) combined with a subeffective dose of hesperidin (0.01 mg/kg, intraperitoneally [i.p.]) was able to produce a synergistic antidepressant-like effect in the mice TST. Moreover, the antidepressant-like effect elicited by an effective dose of hesperidin (0.3 mg/kg, i.p.) in TST was abolished by the treatment of mice with pharmacological compounds K(+) channel openers (cromakalim and minoxidil). Results showed that the antidepressant-like effect of hesperidin in TST may involve, at least in part, the modulation of neuronal excitability through inhibition of K(+) channels and may act through a mechanism dependent on the inhibition of L-arginine-NO pathway.

  18. A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism.

    Science.gov (United States)

    Nestorowicz, A; Inagaki, N; Gonoi, T; Schoor, K P; Wilson, B A; Glaser, B; Landau, H; Stanley, C A; Thornton, P S; Seino, S; Permutt, M A

    1997-11-01

    ATP-sensitive potassium (K[ATP]) channels are an essential component of glucose-dependent insulin secretion in pancreatic islet beta-cells. These channels comprise the sulfonylurea receptor (SUR1) and Kir6.2, a member of the inward rectifier K+ channel family. Mutations in the SUR1 subunit are associated with familial hyperinsulinism (HI) (MIM:256450), an inherited disorder characterized by hyperinsulinism in the neonate. Since the Kir6.2 gene maps to human chromosome 11p15.1 (1,2), which also encompasses a locus for HI, we screened the Kir6.2 gene for the presence of mutations in 78 HI probands by single-strand conformation polymorphism (SSCP) and nucleotide sequence analyses. A nonsense mutation, Tyr-->Stop at codon 12 (designated Y12X) was observed in the homozygous state in a single proband. 86Rb+ efflux measurements and single-channel recordings of COS-1 cells co-expressing SUR1 and either wild-type or Y12X mutant Kir6.2 proteins confirmed that K(ATP) channel activity was abolished by this nonsense mutation. The identification of an HI patient homozygous for the Kir6.2/Y12X allele affords an opportunity to observe clinical features associated with mutations resulting in an absence of Kir6.2. These data provide evidence that mutations in the Kir6.2 subunit of the islet beta-cell K(ATP) channel are associated with the HI phenotype and also suggest that the majority of HI cases are not attributable to mutations in the coding region of the Kir6.2 gene.

  19. Perivascular adipose tissue, potassium channels, and vascular dysfunction.

    Science.gov (United States)

    Tano, Jean-Yves; Schleifenbaum, Johanna; Gollasch, Maik

    2014-09-01

    Perivascular adipose tissue has been recognized unequivocally as a major player in the pathology of metabolic and cardiovascular diseases. Through its production of adipokines and the release of other thus far unidentified factors, this recently discovered adipose tissue modulates vascular regulation and the myogenic response. After the discovery of its ability to diminish the vessel's response to vasoconstrictors, a new paradigm established adipose-derived relaxing factor (ADRF) as a paracrine smooth muscle cells' potassium channel opener that could potentially help combat vascular dysfunction. This review will discuss the role of ADRF in vascular dysfunction in obesity and hypertension, the different potassium channels that can be activated by this factor, and describes new pharmacological tools that can mimic the ADRF effect and thus can be beneficial against vascular dysfunction in cardiovascular disease. © 2014 American Heart Association, Inc.

  20. The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle

    OpenAIRE

    Li, Xiantao

    2005-01-01

    Cardiac TREK-1 like potassium channels play an important role in the function of cardiomyocytes. A novel low-conductance TREK-1 like potassium channel and a high-conductance TREK-1 like potassium channel in rat cardiomyocytes are described in this thesis. The biophysical properties of the two cardiac TREK-like channels were similar to those of TREK-1a or TREK-1b channels expressed in HEK293 cells, which both displayed a low- and a...

  1. Cardiac Potassium Channel Dysfunction in Sudden Infant Death Syndrome

    OpenAIRE

    Rhodes, Troy E.; Abraham, Robert A.; Welch, Richard C.; Vanoye, Carlos G.; Crotti, Lia; Arnestad, Marianne; Insolia, Roberto; Pedrazzini, Matteo; Ferrandi, Chiara; Vege, Ashild; Rognum, Torleiv; Roden, Dan M.; Schwartz, Peter J.; George, Alfred L.

    2007-01-01

    Life-threatening arrhythmias have been suspected as one cause of the sudden infant death syndrome (SIDS), and this hypothesis is supported by the observation that mutations in arrhythmia susceptibility genes occur in 5–10% of cases. However, the functional consequences of cardiac potassium channel gene mutations associated with SIDS and how these alleles might mechanistically predispose to sudden death are unknown. To address these questions, we studied four missense KCNH2 (encoding HERG) var...

  2. Two-pore potassium channels in the cardiovascular system.

    Science.gov (United States)

    Gurney, Alison; Manoury, Boris

    2009-03-01

    Two-pore domain (K(2P)) channels emerged about a decade ago and since then have been an expanding area of interest. This is because their biophysical and pharmacological properties make them good candidates to support background potassium currents and membrane potential in many cell types. There is clear evidence for TREK-1 and TASK-1 in the heart and these channels are likely to regulate cardiac action potential duration through their regulation by stretch, polyunsaturated fatty acids, pH, and neurotransmitters. TREK-1 may also have a critical role in mediating the vasodilator response of resistance arteries to polyunsaturated fatty acids, thus contributing to their protective effect on the cardiovascular system. TASK-1, on the other hand, is a strong candidate for a role in hypoxic vasoconstriction of pulmonary arteries. Many other members of the K(2P) channel family have been identified in the cardiovascular system, although their functional roles are still to be demonstrated. This review provides an up to date summary of what is known about the involvement of members of the K(2P) channel family in cells of the heart and arterial circulation. Our knowledge of their roles will improve with the rapidly increasing interest in them and as new selective pharmacological tools emerge. As their physiological roles emerge, the K(2P) family of potassium channels may offer promising therapeutic solutions to target cardiovascular diseases.

  3. Voltage-gated Potassium Channels as Therapeutic Drug Targets

    Science.gov (United States)

    Wulff, Heike; Castle, Neil A.; Pardo, Luis A.

    2009-01-01

    The human genome contains 40 voltage-gated potassium channels (KV) which are involved in diverse physiological processes ranging from repolarization of neuronal or cardiac action potentials, over regulating calcium signaling and cell volume, to driving cellular proliferation and migration. KV channels offer tremendous opportunities for the development of new drugs for cancer, autoimmune diseases and metabolic, neurological and cardiovascular disorders. This review first discusses pharmacological strategies for targeting KV channels with venom peptides, antibodies and small molecules and then highlights recent progress in the preclinical and clinical development of drugs targeting KV1.x, KV7.x (KCNQ), KV10.1 (EAG1) and KV11.1 (hERG) channels. PMID:19949402

  4. Cardiovascular pharmacology of SKP-450, a new potassium channel activator, and its major metabolites SKP-818 and SKP-310.

    Science.gov (United States)

    Shin, H S; Seo, H W; Yoo, S E; Lee, B H

    1998-03-01

    The cardiovascular effects of SKP-450, a newly synthesized potassium channel activator, and its two major metabolites SKP-818 and SKP-310 were evaluated on isolated rat aorta and in freely moving rats and anesthetized beagle dogs. The rank order of potency in relaxing rat aorta precontracted with norepinephrine was SKP-450 > SKP-818 > Lemakalim > SKP-310 (EC50: 0.12, 0.55, 0.71 and 5.89 mumol/l, respectively). In rats, SKP-450, SKP-818 and lemakalim (3-100 micrograms/kg, i.v.) induced a dose-dependent decrease in mean arterial pressure (MAP; ED20: 9.8, 11.7 and 22.4 micrograms/kg, respectively) followed by reflex tachycardia. In dogs, SKP-818 and SKP-310 (0.3-1,000 micrograms/kg, i.v.) had quite similar hemodynamic profiles to SKP-450 but with a smaller potency. SKP-450, SKP-818 and SKP-310 dose-relatedly decreased MAP (ED20: 2.6, 4.2 and 588.8 micrograms/kg, respectively). They slightly increased left ventricular positive dP/dtmax with a transient decrease at the highest dose, while inducing a dose-related decrease in rate-pressure product, tension time index and systolic time. SKP-450, SKP-818 and SKP-310 induced a marked dose-dependent increase in coronary blood flow (Emax: 172.8, 257.9 and 178.7%, respectively) with less effects on blood flow through other arteries. Glybenclamide antagonized all the hemodynamic effects of SKP-450 in rats and dogs, whereas propranolol antagonized its reflex tachycardia in rats. These results indicate that SKP-450 is a potent coronary and peripheral vasodilator in rats and dogs activating ATP-sensitive potassium channels and that SKP-818 and SKP-310 exert a similar hemodynamic profile to the parent compound with equi- and weaker potency, respectively.

  5. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  6. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  7. Voltage-Dependent Gating of hERG Potassium Channels

    Science.gov (United States)

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  8. Potassium Channels in Motor Cells of Samanea saman1

    Science.gov (United States)

    Moran, Nava; Ehrenstein, Gerald; Iwasa, Kunihiko; Mischke, Charles; Bare, Charles; Satter, Ruth L.

    1988-01-01

    Leaflet movements in Samanea saman are driven by the shrinking and swelling of cells in opposing (extensor and flexor) regions of the motor organ (pulvinus). Changes in cell volume, in turn, depend upon large changes in motor cell content of K+, Cl− and other ions. We performed patch-clamp experiments on extensor and flexor protoplasts, to determine whether their plasma membranes contain channels capable of carrying the large K+ currents that flow during leaflet movement. Recordings in the “whole-cell” mode reveal depolarization-activated K+ currents in extensor and flexor cells that increase slowly (t½ = ca. 2 seconds) and remain active for minutes. Recordings from excised patches reveal a single channel conductance of ca. 20 picosiemens in both cell types. The magnitude of the K+ currents is adequate to account quantitatively for K+ loss, previously measured in vivo during cell shrinkage. The K+ channel blockers tetraethylammonium (5 millimolar) or quinine (1 millimolar) blocked channel opening and decreased light- and dark-promoted movements of excised leaflets. These results provide evidence for the role of potassium channels in leaflet movement. Images Fig. 4 PMID:16666362

  9. Regulated RNA editing and functional epistasis in Shaker potassium channels.

    Science.gov (United States)

    Ingleby, Lindsey; Maloney, Rachel; Jepson, James; Horn, Richard; Reenan, Robert

    2009-01-01

    Regulated point modification by an RNA editing enzyme occurs at four conserved sites in the Drosophila Shaker potassium channel. Single mRNA molecules can potentially represent any of 2(4) = 16 permutations (isoforms) of these natural variants. We generated isoform expression profiles to assess sexually dimorphic, spatial, and temporal differences. Striking tissue-specific expression was seen for particular isoforms. Moreover, isoform distributions showed evidence for coupling (linkage) of editing sites. Genetic manipulations of editing enzyme activity demonstrated that a chief determinant of Shaker editing site choice resides not in the editing enzyme, but rather, in unknown factors intrinsic to cells. Characterizing the biophysical properties of currents in nine isoforms revealed an unprecedented feature, functional epistasis; biophysical phenotypes of isoforms cannot be explained simply by the consequences of individual editing effects at the four sites. Our results unmask allosteric communication across disparate regions of the channel protein and between evolved and regulated amino acid changes introduced by RNA editing.

  10. Structural properties of PAS domains from the KCNH potassium channels.

    Science.gov (United States)

    Adaixo, Ricardo; Harley, Carol A; Castro-Rodrigues, Artur F; Morais-Cabral, João H

    2013-01-01

    KCNH channels form an important family of voltage gated potassium channels. These channels include a N-terminal Per-Arnt-Sim (PAS) domain with unknown function. In other proteins PAS domains are implicated in cellular responses to environmental queues through small molecule binding or involvement in signaling cascades. To better understand their role we characterized the structural properties of several channel PAS domains. We determined high resolution structures of PAS domains from the mouse EAG (mEAG), drosophila ELK (dELK) and human ERG (hERG) channels and also of the hERG domain without the first nine amino acids. We analyzed these structures for features connected to ligand binding and signaling in other PAS domains. In particular, we have found cavities in the hERG and mEAG structures that share similarities with the ligand binding sites from other PAS domains. These cavities are lined by polar and apolar chemical groups and display potential flexibility in their volume. We have also found that the hydrophobic patch on the domain β-sheet is a conserved feature and appears to drive the formation of protein-protein contacts. In addition, the structures of the dELK domain and of the truncated hERG domain revealed the presence of N-terminal helices. These helices are equivalent to the helix described in the hERG NMR structures and are known to be important for channel function. Overall, these channel domains retain many of the PAS domain characteristics known to be important for cell signaling.

  11. Overexpression of Eag1 potassium channels in clinical tumours

    Directory of Open Access Journals (Sweden)

    Schliephacke Tessa

    2006-10-01

    Full Text Available Abstract Background Certain types of potassium channels (known as Eag1, KCNH1, Kv10.1 are associated with the production of tumours in patients and in animals. We have now studied the expression pattern of the Eag1 channel in a large range of normal and tumour tissues from different collections utilising molecular biological and immunohistochemical techniques. Results The use of reverse transcription real-time PCR and specifically generated monoclonal anti-Eag1 antibodies showed that expression of the channel is normally limited to specific areas of the brain and to restricted cell populations throughout the body. Tumour samples, however, showed a significant overexpression of the channel with high frequency (up to 80% depending on the tissue source regardless of the detection method (staining with either one of the antibodies, or detection of Eag1 RNA. Conclusion Inhibition of Eag1 expression in tumour cell lines reduced cell proliferation. Eag1 may therefore represent a promising target for the tailored treatment of human tumours. Furthermore, as normal cells expressing Eag1 are either protected by the blood-brain barrier or represent the terminal stage of normal differentiation, Eag1 based therapies could produce only minor side effects.

  12. Overexpression of Eag1 potassium channels in clinical tumours

    Science.gov (United States)

    Hemmerlein, Bernhard; Weseloh, Rüdiger M; Mello de Queiroz, Fernanda; Knötgen, Hendrik; Sánchez, Araceli; Rubio, María E; Martin, Sabine; Schliephacke, Tessa; Jenke, Marc; Heinz-Joachim-Radzun; Stühmer, Walter; Pardo, Luis A

    2006-01-01

    Background Certain types of potassium channels (known as Eag1, KCNH1, Kv10.1) are associated with the production of tumours in patients and in animals. We have now studied the expression pattern of the Eag1 channel in a large range of normal and tumour tissues from different collections utilising molecular biological and immunohistochemical techniques. Results The use of reverse transcription real-time PCR and specifically generated monoclonal anti-Eag1 antibodies showed that expression of the channel is normally limited to specific areas of the brain and to restricted cell populations throughout the body. Tumour samples, however, showed a significant overexpression of the channel with high frequency (up to 80% depending on the tissue source) regardless of the detection method (staining with either one of the antibodies, or detection of Eag1 RNA). Conclusion Inhibition of Eag1 expression in tumour cell lines reduced cell proliferation. Eag1 may therefore represent a promising target for the tailored treatment of human tumours. Furthermore, as normal cells expressing Eag1 are either protected by the blood-brain barrier or represent the terminal stage of normal differentiation, Eag1 based therapies could produce only minor side effects. PMID:17022810

  13. Overexpression of Eag1 potassium channels in clinical tumours.

    Science.gov (United States)

    Hemmerlein, Bernhard; Weseloh, Rüdiger M; Mello de Queiroz, Fernanda; Knötgen, Hendrik; Sánchez, Araceli; Rubio, María E; Martin, Sabine; Schliephacke, Tessa; Jenke, Marc; Heinz-Joachim-Radzun; Stühmer, Walter; Pardo, Luis A

    2006-10-05

    Certain types of potassium channels (known as Eag1, KCNH1, Kv10.1) are associated with the production of tumours in patients and in animals. We have now studied the expression pattern of the Eag1 channel in a large range of normal and tumour tissues from different collections utilising molecular biological and immunohistochemical techniques. The use of reverse transcription real-time PCR and specifically generated monoclonal anti-Eag1 antibodies showed that expression of the channel is normally limited to specific areas of the brain and to restricted cell populations throughout the body. Tumour samples, however, showed a significant overexpression of the channel with high frequency (up to 80% depending on the tissue source) regardless of the detection method (staining with either one of the antibodies, or detection of Eag1 RNA). Inhibition of Eag1 expression in tumour cell lines reduced cell proliferation. Eag1 may therefore represent a promising target for the tailored treatment of human tumours. Furthermore, as normal cells expressing Eag1 are either protected by the blood-brain barrier or represent the terminal stage of normal differentiation, Eag1 based therapies could produce only minor side effects.

  14. Long-pore Electrostatics in Inward-rectifier Potassium Channels

    Science.gov (United States)

    Robertson, Janice L.; Palmer, Lawrence G.; Roux, Benoît

    2008-01-01

    Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (∼85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores. PMID:19001143

  15. Potassium channel gene mutations rarely cause atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Nam Edwin G

    2006-08-01

    Full Text Available Abstract Background Mutations in several potassium channel subunits have been associated with rare forms of atrial fibrillation. In order to explore the role of potassium channels in inherited typical forms of the arrhythmia, we have screened a cohort of patients from a referral clinic for mutations in the channel subunit genes implicated in the arrhythmia. We sought to determine if mutations in KCNJ2 and KCNE1-5 are a common cause of atrial fibrillation. Methods Serial patients with lone atrial fibrillation or atrial fibrillation with hypertension were enrolled between June 1, 2001 and January 6, 2005. Each patient underwent a standardized interview and physical examination. An electrocardiogram, echocardiogram and blood sample for genetic analysis were also obtained. Patients with a family history of AF were screened for mutations in KCNJ2 and KCNE1-5 using automated sequencing. Results 96 patients with familial atrial fibrillation were enrolled. Eighty-three patients had lone atrial fibrillation and 13 had atrial fibrillation and hypertension. Patients had a mean age of 56 years at enrollment and 46 years at onset of atrial fibrillation. Eighty-one percent of patients had paroxysmal atrial fibrillation at enrollment. Unlike patients with an activating mutation in KCNQ1, the patients had a normal QTc interval with a mean of 412 ± 42 ms. Echocardiography revealed a normal mean ejection fraction of 62.0 ± 7.2 % and mean left atrial dimension of 39.9 ± 7.0 mm. A number of common polymorphisms in KCNJ2 and KCNE1-5 were identified, but no mutations were detected. Conclusion Mutations in KCNJ2 and KCNE1-5 rarely cause typical atrial fibrillation in a referral clinic population.

  16. Cardiac Potassium Channel Dysfunction in Sudden Infant Death Syndrome

    Science.gov (United States)

    Rhodes, Troy E.; Abraham, Robert A.; Welch, Richard C.; Vanoye, Carlos G.; Crotti, Lia; Arnestad, Marianne; Insolia, Roberto; Pedrazzini, Matteo; Ferrandi, Chiara; Vege, Ashild; Rognum, Torleiv; Roden, Dan M.; Schwartz, Peter J.; George, Alfred L.

    2008-01-01

    Life-threatening arrhythmias have been suspected as one cause of the sudden infant death syndrome (SIDS), and this hypothesis is supported by the observation that mutations in arrhythmia susceptibility genes occur in 5–10% of cases. However, the functional consequences of cardiac potassium channel gene mutations associated with SIDS and how these alleles might mechanistically predispose to sudden death are unknown. To address these questions, we studied four missense KCNH2 (encoding HERG) variants, one compound KCNH2 genotype, and a missense KCNQ1 mutation all previously identified in Norwegian SIDS cases. Three of the six variants exhibited functional impairments while three were biophysically similar to wild-type channels (KCNH2 variants V279M, R885C, S1040G). When coexpressed with WT-HERG, R273Q and K897T/R954C generated currents resembling the rapid component of the cardiac delayed rectifier current (IKr) but with significantly diminished amplitude. Action potential modeling demonstrated that this level of functional impairment was sufficient to evoke increased action potential duration and pause-dependent early afterdepolarizations. By contrast, KCNQ1-I274V causes a gain-of-function in IKs characterized by increased current density, faster activation, and slower deactivation leading to accumulation of instantaneous current upon repeated stimulation. Action potential simulations using a Markov model of heterozygous I274V-IKs incorporated into the Luo-Rudy (LRd) ventricular cell model demonstrated marked rate-dependent shortening of action potential duration predicting a short QT phenotype. Our results indicate that certain potassium channel mutations associated with SIDS confer overt functional defects consistent with either LQTS or SQTS, and further emphasize the role of congenital arrhythmia susceptibility in this syndrome. PMID:18222468

  17. Kv3.3 potassium channels and spinocerebellar ataxia.

    Science.gov (United States)

    Zhang, Yalan; Kaczmarek, Leonard K

    2016-08-15

    The voltage-dependent potassium channel subunit Kv3.3 is expressed at high levels in cerebellar Purkinje cells, in auditory brainstem nuclei and in many other neurons capable of firing at high rates. In the cerebellum, it helps to shape the very characteristic complex spike of Purkinje cells. Kv3.3 differs from other closely related channels in that human mutations in the gene encoding Kv3.3 (KCNC3) result in a unique neurodegenerative disease termed spinocerebellar ataxia type 13 (SCA13). This primarily affects the cerebellum, but also results in extracerebellar symptoms. Different mutations produce either early onset SCA13, associated with delayed motor and impaired cognitive skill acquisition, or late onset SCA13, which typically produces cerebellar degeneration in middle age. This review covers the localization and physiological function of Kv3.3 in the central nervous system and how the normal function of the channel is altered by the disease-causing mutations. It also describes experimental approaches that are being used to understand how Kv3.3 mutations are linked to neuronal survival, and to develop strategies for treatment. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  18. KCNE3 is an inhibitory subunit of the Kv4.3 potassium channel

    DEFF Research Database (Denmark)

    Lundby, Alicia; Olesen, Søren-Peter

    2006-01-01

    The mammalian Kv4.3 potassium channel is a fast activating and inactivating K+ channel widely distributed in mammalian tissues. Kv4.3 is the major component of various physiologically important currents ranging from A-type currents in the CNS to the transient outward potassium conductance...

  19. Are big potassium-type Ca(2+)-activated potassium channels a viable target for the treatment of epilepsy?

    Science.gov (United States)

    Leo, Antonio; Citraro, Rita; Constanti, Andrew; De Sarro, Giovambattista; Russo, Emilio

    2015-07-01

    BK (big potassium) channels are Ca(2+)-activated K(+) channels widely expressed in mammalian cells. They are extensively distributed in the CNS, the most abundant level being found in brain areas largely involved in epilepsy, namely cortex, hippocampus, piriform cortex, and other limbic structures. BK channels control action potential shape/duration, thereby regulating membrane excitability and Ca(2+) signaling. The potassium channel superfamily represents a rich source of potential targets for therapeutic intervention in epilepsy. Some studies have identified alterations in BK channel function, therefore, supporting the development of drugs acting on these channels for epilepsy treatment. The actual sketch is intriguing and controversial, since mechanisms altering the physiological role of BK channels leading to either a loss- or gain-of-function have both been linked to seizure onset. Not many studies have been performed to unravel the efficacy of drugs acting on these channels as potential antiepileptics; however, paradoxically, efficacy has been demonstrated for both BK channel openers and blockers. Furthermore, their potential usefulness in preventing epileptogenesis has not been investigated at all. Substantial data on risks and benefits of modulating these channels are urgently needed to draw a definitive conclusion on whether BK channels are a viable future target for the treatment of epilepsy.

  20. Use of voltage clamp fluorimetry in understanding potassium channel gating: a review of Shaker fluorescence data.

    Science.gov (United States)

    Horne, A J; Fedida, D

    2009-06-01

    Voltage clamp fluorimetry (VCF) utilizes fluorescent probes that covalently bind to cysteine residues introduced into proteins and emit light as a function of their environment. Measurement of this emitted light during membrane depolarization reveals changes in the emission level as the environment of the labelled residue changes. This allows for the correlation of channel gating events with movement of specific protein moieties, at nanosecond time resolution. Since the pioneering use of this technique to investigate Shaker potassium channel activation movements, VCF has become an invaluable technique used to understand ion channel gating. This review summarizes the theory and some of the data on the application of the VCF technique. Although its usage has expanded beyond voltage-gated potassium channels and VCF is now used in a number of other voltage- and ligand-gated channels, we will focus on studies conducted in Shaker potassium channels, and what they have told us about channel activation and inactivation gating.

  1. EAG2 potassium channel with evolutionarily conserved function as a brain tumor target

    Science.gov (United States)

    Huang, Xi; He, Ye; Dubuc, Adrian M.; Hashizume, Rintaro; Zhang, Wei; Reimand, Jüri; Yang, Huanghe; Wang, Tongfei A.; Stehbens, Samantha J.; Younger, Susan; Barshow, Suzanne; Zhu, Sijun; Cooper, Michael K.; Peacock, John; Ramaswamy, Vijay; Garzia, Livia; Wu, Xiaochong; Remke, Marc; Forester, Craig M.; Kim, Charles C.; Weiss, William A.; James, C. David; Shuman, Marc A.; Bader, Gary D.; Mueller, Sabine; Taylor, Michael D.; Jan, Yuh Nung; Jan, Lily Yeh

    2015-01-01

    Over 20% of the drugs for treating human diseases target ion channels, however, no cancer drug approved by the U.S. Food and Drug Administration (FDA) is intended to target an ion channel. Here, we demonstrate the evolutionarily conserved function of EAG2 potassium channel in promoting brain tumor growth and metastasis, delineate downstream pathways and uncover a mechanism for different potassium channels to functionally corporate and regulate mitotic cell volume and tumor progression. We show that EAG2 potassium channel is enriched at the trailing edge of migrating MB cells to regulate local cell volume dynamics, thereby facilitating cell motility. We identify the FDA-approved antipsychotic drug thioridazine as an EAG2 channel blocker that reduces xenografted MB growth and metastasis, and present a case report of repurposing thioridazine for treating a human patient. Our findings thus illustrate the potential of targeting ion channels in cancer treatment. PMID:26258683

  2. Genetic Variations in the Kir6.2 Subunit (KCNJ11 of Pancreatic ATP-Sensitive Potassium Channel Gene Are Associated with Insulin Response to Glucose Loading and Early Onset of Type 2 Diabetes in Childhood and Adolescence in Taiwan

    Directory of Open Access Journals (Sweden)

    Yi-Der Jiang

    2014-01-01

    Full Text Available To investigate the role of E23K polymorphism of the KCNJ11 gene on early onset of type 2 diabetes in school-aged children/adolescents in Taiwan, we recruited 38 subjects with type 2 diabetes (ages 18.6 ± 6.6 years; body mass index percentiles 83.3 ± 15.4 and 69 normal controls (ages 17.3 ± 3.8 years; body mass index percentiles 56.7 ± 29.0 from a national surveillance for childhood/adolescent diabetes in Taiwan. We searched for the E23K polymorphism of the KCNJ11 gene. We found that type 2 diabetic subjects had higher carrier rate of E23K polymorphism of KCNJ11 gene than control subjects (P = 0.044. After adjusting for age, gender, body mass index percentiles, and fasting plasma insulin, the E23K polymorphism contributed to an increased risk for type 2 diabetes (P = 0.047. K23-allele-containing genotypes conferring increased plasma insulin level during OGTT in normal subjects. However, the diabetic subjects with the K23-allele-containing genotypes had lower fasting plasma insulin levels after adjustment of age and BMI percentiles. In conclusion, the E23K variant of the KCNJ11 gene conferred higher susceptibility to type 2 diabetes in children/adolescents. Furthermore, in normal glucose-tolerant children/adolescents, K23 allele carriers had a higher insulin response to oral glucose loading.

  3. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    Science.gov (United States)

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  4. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium

    DEFF Research Database (Denmark)

    Rosenbaum, Sofia T; Svalø, Julie; Nielsen, Karsten

    2012-01-01

    Small-conductance calcium-activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 mRNA...

  5. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hanne B; Hay-Schmidt, Anders

    2003-01-01

    The Shaker-type voltage-gated potassium channel, Kv1.3, is believed to be restricted in distribution to lymphocytes and neurons. In lymphocytes, this channel has gained intense attention since it has been proven that inhibition of Kv1.3 channels compromise T lymphocyte activation. To investigate...

  6. Role of Kv1 potassium channels in regulating dopamine release and presynaptic D2 receptor function.

    Directory of Open Access Journals (Sweden)

    Philippe Martel

    Full Text Available Dopamine (DA release in the CNS is critical for motor control and motivated behaviors. Dysfunction of its regulation is thought to be implicated in drug abuse and in diseases such as schizophrenia and Parkinson's. Although various potassium channels located in the somatodendritic compartment of DA neurons such as G-protein-gated inward rectifying potassium channels (GIRK have been shown to regulate cell firing and DA release, little is presently known about the role of potassium channels localized in the axon terminals of these neurons. Here we used fast-scan cyclic voltammetry to study electrically-evoked DA release in rat dorsal striatal brain slices. We find that although G-protein-gated inward rectifying (GIRK and ATP-gated (K(ATP potassium channels play only a minor role, voltage-gated potassium channels of the Kv1 family play a major role in regulating DA release. The use of Kv subtype-selective blockers confirmed a role for Kv1.2, 1.3 and 1.6, but not Kv1.1, 3.1, 3.2, 3.4 and 4.2. Interestingly, Kv1 blockers also reduced the ability of quinpirole, a D2 receptor agonist, to inhibit evoked DA overflow, thus suggesting that Kv1 channels also regulate presynaptic D2 receptor function. Our work identifies Kv1 potassium channels as key regulators of DA release in the striatum.

  7. PIST (GOPC) modulates the oncogenic voltage-gated potassium channel KV10.1

    National Research Council Canada - National Science Library

    Herrmann, Solveig; Ninkovic, Milena; Kohl, Tobias; Pardo, Luis A

    2013-01-01

    .... In the case of the voltage-gated potassium channel KV10.1, this is determinant not only for its physiological function in brain, but also for its pathophysiology in tumors and possible use as a therapeutic target...

  8. Eag and HERG potassium channels as novel therapeutic targets in cancer

    Directory of Open Access Journals (Sweden)

    Bali Anish

    2010-12-01

    Full Text Available Abstract Voltage gated potassium channels have been extensively studied in relation to cancer. In this review, we will focus on the role of two potassium channels, Ether à-go-go (Eag, Human ether à-go-go related gene (HERG, in cancer and their potential therapeutic utility in the treatment of cancer. Eag and HERG are expressed in cancers of various organs and have been implicated in cell cycle progression and proliferation of cancer cells. Inhibition of these channels has been shown to reduce proliferation both in vitro and vivo studies identifying potassium channel modulators as putative inhibitors of tumour progression. Eag channels in view of their restricted expression in normal tissue may emerge as novel tumour biomarkers.

  9. A conserved residue cluster that governs kinetics of ATP-dependent gating of Kir6.2 potassium channels

    DEFF Research Database (Denmark)

    Zhang, Roger S; Wright, Jordan; Pless, Stephan Alexander

    2015-01-01

    elements that control the kinetics of ATP-dependent regulation of KATP (Kir6.2 + SUR1) channels using rapid concentration jumps. WT Kir6.2 channels re-open after rapid washout of ATP with a time constant of approximately 60 ms. Extending similar kinetic measurements to numerous mutants revealed fairly...... modest effects on gating kinetics despite significant changes in ATP sensitivity and open probability. However, we identified a pair of highly conserved neighboring amino acids (Trp68, Lys170) that control the rate of channel opening and inhibition in response to ATP. Paradoxically, mutations of Trp68...... or Lys170 markedly slow the kinetics of channel opening (500 ms and 700 ms for Trp68Leu and Lys170Asn, respectively), while increasing channel open probability. Examining the functional effects of these residues using phi-value analysis revealed a steep negative slope. This finding implies...

  10. Role of calcium activated potassium channels in atrial fibrillation pathophysiology and therapy

    DEFF Research Database (Denmark)

    Diness, Jonas G.; Bentzen, Bo H.; S. Sørensen, Ulrik

    2015-01-01

    Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels since they might constitute a relatively atrial selective target. The present review will give...

  11. Gating motions in voltage-gated potassium channels revealed by coarse-grained molecular dynamics simulations

    NARCIS (Netherlands)

    Treptow, W.; Marrink, S.J.; Tarek, M.

    2008-01-01

    Voltage-gated potassium (Kv) channels are ubiquitous transmembrane proteins involved in electric signaling of excitable tissues. A fundamental property of these channels is the ability to open or close in response to changes in the membrane potential. To date, their structure-based activation

  12. Activation of ERG2 potassium channels by the diphenylurea NS1643

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Olesen, Søren-Peter; Grunnet, Morten

    2007-01-01

    Three members of the ERG potassium channel family have been described (ERG1-3 or Kv 11.1-3). ERG1 is by far the best characterized subtype and it constitutes the molecular component of the cardiac I(Kr) current. All three channel subtypes are expressed in neurons but their function remains unclear...

  13. KCNQ potassium channels in sensory system and neural circuits.

    Science.gov (United States)

    Wang, Jing-jing; Li, Yang

    2016-01-01

    M channels, an important regulator of neural excitability, are composed of four subunits of the Kv7 (KCNQ) K(+) channel family. M channels were named as such because their activity was suppressed by stimulation of muscarinic acetylcholine receptors. These channels are of particular interest because they are activated at the subthreshold membrane potentials. Furthermore, neural KCNQ channels are drug targets for the treatments of epilepsy and a variety of neurological disorders, including chronic and neuropathic pain, deafness, and mental illness. This review will update readers on the roles of KCNQ channels in the sensory system and neural circuits as well as discuss their respective mechanisms and the implications for physiology and medicine. We will also consider future perspectives and the development of additional pharmacological models, such as seizure, stroke, pain and mental illness, which work in combination with drug-design targeting of KCNQ channels. These models will hopefully deepen our understanding of KCNQ channels and provide general therapeutic prospects of related channelopathies.

  14. The Eag potassium channel as a new prognostic marker in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Schalkwyk Gerhard V

    2010-12-01

    Full Text Available Abstract Background Ovarian cancer is the second most common cancer of the female genital tract in the United Kingdom (UK, accounting for 6% of female deaths due to cancer. This cancer is associated with poor survival and there is a need for new treatments in addition to existing chemotherapy to improve survival. Potassium (K+ channels have been shown to be overexpressed in various cancers where they appear to play a role in cell proliferation and progression. Objectives To determine the expression of the potassium channels Eag and HERG in ovarian cancer tissue and to assess their role in cell proliferation. Methods The expression of Eag and HERG potassium channels was examined in an ovarian cancer tissue microarray. Their role in cell proliferation was investigated by blocking voltage-gated potassium channels in an ovarian cancer cell line (SK-OV-3. Results We show for the first time that high expression of Eag channels in ovarian cancer patients is significantly associated with poor survival (P = 0.016 unlike HERG channel expression where there was no correlation with survival. There was also a significant association of Eag staining with high tumour grade (P = 0.014 and presence of residual disease (P = 0.011. Proliferation of SK-OV-3 cells was significantly (P + channel blockers. Conclusion This novel finding demonstrates a role for Eag as a prognostic marker for survival in patients with ovarian cancer.

  15. Potassium

    Science.gov (United States)

    ... and blackberries Root vegetables, such as carrots and potatoes Citrus fruits, such as oranges and grapefruit Your kidneys help to keep the right amount of potassium in your body. If you have chronic kidney disease, your kidneys may not remove extra potassium from ...

  16. Potassium Channels Blockers from the Venom of Androctonus mauretanicus mauretanicus

    Directory of Open Access Journals (Sweden)

    Marie-France Martin-Eauclaire

    2012-01-01

    Full Text Available K+ channels selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitable and nonexcitable cells. Their activation allows the cell to repolarize after action potential firing and reduces excitability, whereas channel inhibition increases excitability. In eukaryotes, the pharmacology and pore topology of several structural classes of K+ channels have been well characterized in the past two decades. This information has come about through the extensive use of scorpion toxins. We have participated in the isolation and in the characterization of several structurally distinct families of scorpion toxin peptides exhibiting different K+ channel blocking functions. In particular, the venom from the Moroccan scorpion Androctonus mauretanicus mauretanicus provided several high-affinity blockers selective for diverse K+ channels  (SKCa,  Kv4.x, and  Kv1.x K+ channel families. In this paper, we summarize our work on these toxin/channel interactions.

  17. Involvement of WNK1-mediated potassium channels in the sexual dimorphism of blood pressure.

    Science.gov (United States)

    Yu, Guofeng; Cheng, Mengting; Wang, Wei; Zhao, Rong; Liu, Zhen

    2017-04-01

    Potassium homeostasis plays an essential role in the control of blood pressure. It is unknown, however, whether potassium balance is involved in the gender-associated blood pressure differences. We therefore investigated the possible mechanism of sexual dimorphism in blood pressure regulation by measuring the blood pressure, plasma potassium, renal actions of potassium channels and upstream regulator in male and female mice. Here we found that female mice exhibited lower blood pressure and higher plasma K(+) level as compared to male littermates. Western blot analyses of mouse kidney extract revealed a significant decrease in renal outer medullary potassium (ROMK) channel expression, while large-conductance Ca(2+)-activated K(+) (BK) channel and Na-K-2Cl cotransporter (NKCC2) as well as the upstream regulator with-no-lysine kinase 1 (WNK1) enhanced in female mice under normal condition. Surprisingly, both dietary K(+) loading and K(+) depletion eliminated the differences in plasma K(+) and blood pressure between females and males, and the differences of renal K(+) channels and WNK1 also attenuated in both groups of mice. These findings indicated the existence of a close correlation between K(+) homeostasis and sex-associated blood pressure. Moreover, the differential regulation of ROMK, BK-α and NKCC2 between female and male mice, at least, were partly mediated via WNK1 pathway, which may contribute to the sexual dimorphism of plasma K(+) and blood pressure control. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. hERG potassium channel blockade by the HCN channel inhibitor bradycardic agent ivabradine.

    Science.gov (United States)

    Melgari, Dario; Brack, Kieran E; Zhang, Chuan; Zhang, Yihong; El Harchi, Aziza; Mitcheson, John S; Dempsey, Christopher E; Ng, G André; Hancox, Jules C

    2015-04-24

    Ivabradine is a specific bradycardic agent used in coronary artery disease and heart failure, lowering heart rate through inhibition of sinoatrial nodal HCN-channels. This study investigated the propensity of ivabradine to interact with KCNH2-encoded human Ether-à-go-go-Related Gene (hERG) potassium channels, which strongly influence ventricular repolarization and susceptibility to torsades de pointes arrhythmia. Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. Ih ERG was inhibited with an IC50 of 2.07 μmol/L for the hERG 1a isoform and 3.31 μmol/L for coexpressed hERG 1a/1b. The voltage and time-dependent characteristics of Ih ERG block were consistent with preferential gated-state-dependent channel block. Inhibition was partially attenuated by the N588K inactivation-mutant and the S624A pore-helix mutant and was strongly reduced by the Y652A and F656A S6 helix mutants. In docking simulations to a MthK-based homology model of hERG, the 2 aromatic rings of the drug could form multiple π-π interactions with the aromatic side chains of both Y652 and F656. In monophasic action potential (MAP) recordings from guinea-pig Langendorff-perfused hearts, ivabradine delayed ventricular repolarization and produced a steepening of the MAPD90 restitution curve. Ivabradine prolongs ventricular repolarization and alters electrical restitution properties at concentrations relevant to the upper therapeutic range. In absolute terms ivabradine does not discriminate between hERG and HCN channels: it inhibits Ih ERG with similar potency to that reported for native If and HCN channels, with S6 binding determinants resembling those observed for HCN4. These findings may have important implications both clinically and for future bradycardic drug design. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  19. Inhibition of HERG potassium channels by celecoxib and its mechanism.

    Directory of Open Access Journals (Sweden)

    Roman V Frolov

    Full Text Available Celecoxib (Celebrex, a widely prescribed selective inhibitor of cyclooxygenase-2, can modulate ion channels independently of cyclooxygenase inhibition. Clinically relevant concentrations of celecoxib can affect ionic currents and alter functioning of neurons and myocytes. In particular, inhibition of Kv2.1 channels by celecoxib leads to arrhythmic beating of Drosophila heart and of rat heart cells in culture. However, the spectrum of ion channels involved in human cardiac excitability differs from that in animal models, including mammalian models, making it difficult to evaluate the relevance of these observations to humans. Our aim was to examine the effects of celecoxib on hERG and other human channels critically involved in regulating human cardiac rhythm, and to explore the mechanisms of any observed effect on the hERG channels.Celecoxib inhibited the hERG, SCN5A, KCNQ1 and KCNQ1/MinK channels expressed in HEK-293 cells with IC(50s of 6.0 µM, 7.5 µM, 3.5 µM and 3.7 µM respectively, and the KCND3/KChiP2 channels expressed in CHO cells with an IC(50 of 10.6 µM. Analysis of celecoxib's effects on hERG channels suggested gating modification as the mechanism of drug action.The above channels play a significant role in drug-induced long QT syndrome (LQTS and short QT syndrome (SQTS. Regulatory guidelines require that all new drugs under development be tested for effects on the hERG channel prior to first administration in humans. Our observations raise the question of celecoxib's potential to induce cardiac arrhythmias or other channel related adverse effects, and make a case for examining such possibilities.

  20. Neuronal trafficking of voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Jensen, Camilla S; Rasmussen, Hanne Borger; Misonou, Hiroaki

    2011-01-01

    The computational ability of CNS neurons depends critically on the specific localization of ion channels in the somatodendritic and axonal membranes. Neuronal dendrites receive synaptic inputs at numerous spines and integrate them in time and space. The integration of synaptic potentials...... and discuss how they contribute to the establishment and maintenance of the specific localization of Kv channels in neurons....

  1. Interaction of C-70 fullerene with the Kv1.2 potassium channel

    DEFF Research Database (Denmark)

    Monticelli, L.; Barnoud, J.; Orlowskid, A.

    2012-01-01

    is not understood, though. Meanwhile, fullerene is also known to interfere with the activity of potassium channel proteins, but the mechanisms of protein inhibition are not known. Here we consider the possibility that membrane protein function would be inhibited by C-70 and/or GA through direct contact or through...... lipid-mediated interactions. To this end, we use microsecond time scale atomistic simulations to explore (a) modifications of membrane properties in the presence of C-70 and/or GA, and (b) the possible conformational changes in Kv1.2, a voltage-gated potassium channel, upon exposure to C-70, or GA...

  2. Differential effect of brief electrical stimulation on voltage-gated potassium channels.

    Science.gov (United States)

    Cameron, Morven A; Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H; Morley, John W

    2017-05-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (Na V channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (K V channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different K V -channel subtypes. Computational modeling reveals substantial differences in the response of specific K V -channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different K V -channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that K V -channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (K V channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between K V channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or

  3. Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels

    Science.gov (United States)

    Tang, Xiang D.; Daggett, Heather; Hanner, Markus; Garcia, Maria L.; McManus, Owen B.; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2001-01-01

    Reactive oxygen/nitrogen species are readily generated in vivo, playing roles in many physiological and pathological conditions, such as Alzheimer's disease and Parkinson's disease, by oxidatively modifying various proteins. Previous studies indicate that large conductance Ca2+-activated K+ channels (BKCa or Slo) are subject to redox regulation. However, conflicting results exist whether oxidation increases or decreases the channel activity. We used chloramine-T, which preferentially oxidizes methionine, to examine the functional consequences of methionine oxidation in the cloned human Slo (hSlo) channel expressed in mammalian cells. In the virtual absence of Ca2+, the oxidant shifted the steady-state macroscopic conductance to a more negative direction and slowed deactivation. The results obtained suggest that oxidation enhances specific voltage-dependent opening transitions and slows the rate-limiting closing transition. Enhancement of the hSlo activity was partially reversed by the enzyme peptide methionine sulfoxide reductase, suggesting that the upregulation is mediated by methionine oxidation. In contrast, hydrogen peroxide and cysteine-specific reagents, DTNB, MTSEA, and PCMB, decreased the channel activity. Chloramine-T was much less effective when concurrently applied with the K+ channel blocker TEA, which is consistent with the possibility that the target methionine lies within the channel pore. Regulation of the Slo channel by methionine oxidation may represent an important link between cellular electrical excitability and metabolism. PMID:11222629

  4. Proarrhythmic and Torsadogenic Effects of Potassium Channel Blockers in Patients.

    Science.gov (United States)

    McCauley, Mark; Vallabhajosyula, Sharath; Darbar, Dawood

    2016-06-01

    The most common arrhythmia requiring drug treatment is atrial fibrillation (AF), which affects 2 to 5 million Americans and continues to be a major cause of morbidity and increased mortality. Despite recent advances in catheter-based and surgical therapies, antiarrhythmic drugs continue to be the mainstay of therapy for most patients with symptomatic AF. However, many antiarrhythmics block the rapid component of the cardiac delayed rectifier potassium current (IKr) as a major mechanism of action, and marked QT prolongation and pause-dependent polymorphic ventricular tachycardia (torsades de pointes) are major class toxicities. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel.

    Science.gov (United States)

    Meadows, H J; Benham, C D; Cairns, W; Gloger, I; Jennings, C; Medhurst, A D; Murdock, P; Chapman, C G

    2000-04-01

    We have cloned human TREK-1, one of the newly emerging mammalian family of 2-P domain potassium channels. The channel has 411 amino acids with a 41-amino-acid extension at the C-terminus when compared with the cloned mouse TREK-1 channel. Expression of hTREK-1 produced a substantial hyperpolarising shift in resting membrane potential accompanied by the induction of large, outwardly rectifying, non-inactivating currents which were potassium selective. Pharmacologically, hTREK-1-mediated currents were only blocked to a limited extent by classic potassium channel blockers or open channel pore blockers known to potently inhibit other channels. The channel was reversibly potentiated by arachidonic acid. CNS distribution of hTREK-1 is widespread with higher levels being observed in caudate, putamen, amygdala, thalamus and spinal cord. Only low levels of expression were seen in the majority of peripheral regions. Thus, hTREK-1, although functionally and pharmacologically similar to mouse TREK-1, appears to have a more CNS-specific distribution.

  6. Expression and distribution of Kv4 potassium channel subunits and potassium channel interacting proteins in subpopulations of interneurons in the basolateral amygdala.

    Science.gov (United States)

    Dabrowska, J; Rainnie, D G

    2010-12-15

    The Kv4 potassium channel α subunits, Kv4.1, Kv4.2, and Kv4.3, determine some of the fundamental physiological properties of neurons in the CNS. Kv4 subunits are associated with auxiliary β-subunits, such as the potassium channel interacting proteins (KChIP1 - 4), which are thought to regulate the trafficking and gating of native Kv4 potassium channels. Intriguingly, KChIP1 is thought to show cell type-selective expression in GABA-ergic inhibitory interneurons, while other β-subunits (KChIP2-4) are associated with principal glutamatergic neurons. However, nothing is known about the expression of Kv4 family α- and β-subunits in specific interneurons populations in the BLA. Here, we have used immunofluorescence, co-immunoprecipitation, and Western Blotting to determine the relative expression of KChIP1 in the different interneuron subtypes within the BLA, and its co-localization with one or more of the Kv4 α subunits. We show that all three α-subunits of Kv4 potassium channel are found in rat BLA neurons, and that the immunoreactivity of KChIP1 closely resembles that of Kv4.3. Indeed, Kv4.3 showed almost complete co-localization with KChIP1 in the soma and dendrites of a distinct subpopulation of BLA neurons. Dual-immunofluorescence studies revealed this to be in BLA interneurons immunoreactive for parvalbumin, cholecystokin-8, and somatostatin. Finally, co-immunoprecipitation studies showed that KChIP1 was associated with all three Kv4 α subunits. Together our results suggest that KChIP1 is selectively expressed in BLA interneurons where it may function to regulate the activity of A-type potassium channels. Hence, KChIP1 might be considered as a cell type-specific regulator of GABAergic inhibitory circuits in the BLA. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Novel Leishmania and Malaria Potassium Channels: Candidate Therapeutic Targets

    National Research Council Canada - National Science Library

    McDonald, Thomas V

    2005-01-01

    .... major and T. cruzi). Using a combination of cultured mammalian cells and Xenopus oocytes for heterologous expression we have evidence that 2 channels from malaria [PFK1 & PFK22] and Leishmania [LMK1 & LMK2] generate K+...

  8. Astemizole Derivatives as Fluorescent Probes for hERG Potassium Channel Imaging.

    Science.gov (United States)

    Wang, Beilei; Liu, Zhenzhen; Ma, Zhao; Li, Minyong; Du, Lupei

    2016-03-10

    The detection and imaging of hERG potassium channels in living cells can provide useful information for hERG-correlation studies. Herein, three small-molecule fluorescent probes, based on the potent hERG channel inhibitor astemizole, for the imaging of hERG channels in hERG-transfected HEK293 cells (hERG-HEK293) and human colorectal cancer cells (HT-29), are described. These probes are expected to be applied in the physiological and pathological studies of hERG channels.

  9. Escitalopram block of hERG potassium channels.

    Science.gov (United States)

    Chae, Yun Ju; Jeon, Ji Hyun; Lee, Hong Joon; Kim, In-Beom; Choi, Jin-Sung; Sung, Ki-Wug; Hahn, Sang June

    2014-01-01

    Escitalopram, a selective serotonin reuptake inhibitor, is the pharmacologically active S-enantiomer of the racemic mixture of RS-citalopram and is widely used in the treatment of depression. The effects of escitalopram and citalopram on the human ether-a-go-go-related gene (hERG) channels expressed in human embryonic kidney cells were investigated using voltage-clamp and Western blot analyses. Both drugs blocked hERG currents in a concentration-dependent manner with an IC50 value of 2.6 μM for escitalopram and an IC50 value of 3.2 μM for citalopram. The blocking of hERG by escitalopram was voltage-dependent, with a steep increase across the voltage range of channel activation. However, voltage independence was observed over the full range of activation. The blocking by escitalopram was frequency dependent. A rapid application of escitalopram induced a rapid and reversible blocking of the tail current of hERG. The extent of the blocking by escitalopram during the depolarizing pulse was less than that during the repolarizing pulse, suggesting that escitalopram has a high affinity for the open state of the hERG channel, with a relatively lower affinity for the inactivated state. Both escitalopram and citalopram produced a reduction of hERG channel protein trafficking to the plasma membrane but did not affect the short-term internalization of the hERG channel. These results suggest that escitalopram blocked hERG currents at a supratherapeutic concentration and that it did so by preferentially binding to both the open and the inactivated states of the channels and by inhibiting the trafficking of hERG channel protein to the plasma membrane.

  10. Prognostic significance of the TREK-1 K2P potassium channels in prostate cancer

    OpenAIRE

    Zhang, Gui-Ming; Wan, Fang-Ning; Qin, Xiao-Jian; Cao, Da-Long; Zhang, Hai-Liang; Zhu, Yao; Dai, Bo; Shi, Guo-Hai; Ye, Ding-wei

    2015-01-01

    Background TREK-1 channels belong to the two-pore domain potassium channel superfamily and play an important role in central nervous system diseases. However, few studies have examined their role in carcinogenesis. Methods In this study, we assessed the expression of TREK-1 in 100 prostate cancer (PCa) tissues using immunohistochemistry and further analyzed its clinicopathological significance. Next, cell proliferation and cell cycle analysis were carried out on human PCa PC-3 cell lines wher...

  11. Glycosylation of Eag1 (Kv10.1) potassium channels: intracellular trafficking and functional consequences.

    Science.gov (United States)

    Napp, Joanna; Monje, Francisco; Stühmer, Walter; Pardo, Luis A

    2005-08-19

    N-Linked glycosylation is a common post-translational modification of membrane proteins. Here we report that mature Eag1 potassium channels carry sugar moieties linked to asparagines at positions 388 and 406. Asn-388 seems to undergo only core glycosylation, but complex sugars are bound to Asn-406. Correct complex glycosylation is required for proper trafficking of Eag1 to the plasma membrane but is also crucial for the correct function of channels already inserted in the membrane.

  12. Cortactin Controls Surface Expression of the Voltage-gated Potassium Channel KV10.1

    OpenAIRE

    Herrmann, Solveig; Ninkovic, Milena; Kohl, Tobias; Lörinczi, Éva; Pardo, Luis A.

    2012-01-01

    KV10.1 is a voltage-gated potassium channel aberrantly expressed in many cases of cancer, and participates in cancer initiation and tumor progression. Its action as an oncoprotein can be inhibited by a functional monoclonal antibody, indicating a role for channels located at the plasma membrane, accessible to the antibody. Cortactin is an actin-interacting protein implicated in cytoskeletal architecture and often amplified in several types of cancer. In this study, we describe a physical and ...

  13. PIST (GOPC) modulates the oncogenic voltage-gated potassium channel KV10.1

    OpenAIRE

    Herrmann, Solveig; Ninkovic, Milena; Kohl, Tobias; Pardo, Luis A.

    2013-01-01

    Although crucial for their correct function, the mechanisms controlling surface expression of ion channels are poorly understood. In the case of the voltage-gated potassium channel KV10.1, this is determinant not only for its physiological function in brain, but also for its pathophysiology in tumors and possible use as a therapeutic target. The Golgi resident protein PIST binds several membrane proteins, thereby modulating their expression. Here we describe a PDZ domain-mediated interaction ...

  14. PIST (GOPC) modulates the oncogenic voltage-gated potassium channel KV10.1

    OpenAIRE

    Solveig eHerrmann; Milena eNinkovic; Tobias eKohl; Pardo, Luis A.

    2013-01-01

    Although crucial for their correct function, the mechanisms controlling surface expression of ion channels are poorly understood. In the case of the voltage-gated potassium channel KV10.1,this is determinant not only for its physiological function in brain, but also for its pathophysiology in tumors and possible use as a therapeutic target. The Golgi resident protein PIST binds several membrane proteins, thereby modulating their expression. Here we describe a PDZ domain-mediated interaction o...

  15. Specific Sorting and Post-Golgi trafficking of Dendritic Potassium Channels in Living Neurons

    DEFF Research Database (Denmark)

    Jensen, Camilla Stampe; Watanabe, Shoji; Rasmussen, Hanne Borger

    2014-01-01

    localization in distinct dendritic sub-compartments are largely unknown. Here, we developed a quantitative live-cell imaging method to analyze protein sorting and post-Golgi vesicular trafficking. We focused on two dendritic voltage-gated potassium channels which exhibit distinct localizations; Kv2...

  16. Contributions of counter-charge in a potassium channel voltage-sensor domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Niciforovic, Ana P

    2011-01-01

    in transmembrane segments S2 and S3, namely Glu293 and Asp316 in Shaker potassium channels, has little functional effect on conductance-voltage relationships, although Glu293 appears to catalyze S4 movement. Our results suggest that neither Glu293 nor Asp316 engages in electrostatic state-dependent charge-charge...

  17. Effects of Common Antitussive Drugs on the hERG Potassium Channel Current

    National Research Council Canada - National Science Library

    Deisemann, Heike; Ahrens, Nadine; Schlobohm, Irene; Kirchhoff, Christian; Netzer, Rainer; Möller, Clemens

    2008-01-01

    A common over-the-counter (OTC) non-opioid antitussive drug, clobutinol, was recently withdrawn from the market due to its potential to induce cardiac arrhythmias by a blockade of the potassium channel coded by the human ether-à...

  18. The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels

    DEFF Research Database (Denmark)

    Bentzen, Bo Hjorth; Schmitt, Nicole; Calloe, Kirstine

    2006-01-01

    .g., retigabine) for treatment of epilepsy and neuropathic pain. We investigated the effect of a Bristol-Myers Squibb compound (S)-N-[1-(3-morpholin-4-yl-phenyl)-ethyl]-3-phenyl-acrylamide [(S)-1] on cloned human Kv7.1-5 potassium channels expressed in Xenopus laevis oocytes. Using two-electrode voltage...

  19. Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain

    Science.gov (United States)

    Knaus, Hans‐Günther; Schwarzer, Christoph

    2015-01-01

    ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  20. The mechanism of gentisic acid-induced relaxation of the guinea pig isolated trachea: the role of potassium channels and vasoactive intestinal peptide receptors

    Directory of Open Access Journals (Sweden)

    J.F. Cunha

    2001-03-01

    Full Text Available We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC50 values of 18 µM and Emax of 100% (N = 10 or 20 µM and Emax of 92% (N = 10, respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP. The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 ± 7.0, 43 ± 3.9 and 78 ± 5.6% in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively. Tetraethylammonium (100 µM, a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 µM, a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 ± 12%. Glibenclamide (1 or 3 µM, at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K+ channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 µM, a selective blocker of the large-conductance Ca2+-activated K+ channels, caused rightward shifts (6- and 7-fold of the gentisic acid concentration-relaxation curve. L-N G-nitroarginine (100 µM, a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 µM, while methylene blue (10 or 30 µM or ODQ (1 µM, the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-P-Cl-Phe6,Leu17[VIP] (0.1 µM, a VIP receptor antagonist

  1. Effects of donepezil on hERG potassium channels.

    Science.gov (United States)

    Chae, Yun Ju; Lee, Hong Joon; Jeon, Ji Hyun; Kim, In-Beom; Choi, Jin-Sung; Sung, Ki-Wug; Hahn, Sang June

    2015-02-09

    Donepezil is a potent, selective inhibitor of acetylcholinesterase, which is used for the treatment of Alzheimer's disease. Whole-cell patch-clamp technique and Western blot analyses were used to study the effects of donepezil on the human ether-a-go-go-related gene (hERG) channel. Donepezil inhibited the tail current of the hERG in a concentration-dependent manner with an IC50 of 1.3 μM. The metabolites of donepezil, 6-ODD and 5-ODD, inhibited the hERG currents in a similar concentration-dependent manner; the IC50 values were 1.0 and 1.5 μM, respectively. A fast drug perfusion system demonstrated that donepezil interacted with both the open and inactivated states of the hERG. A fast application of donepezil during the tail currents inhibited the open state of the hERG in a concentration-dependent manner with an IC50 of 2.7 μM. Kinetic analysis of donepezil in an open state of the hERG yielded blocking and unblocking rate constants of 0.54 µM(-1)s(-1) and 1.82 s(-1), respectively. The block of the hERG by donepezil was voltage-dependent with a steep increase across the voltage range of channel activation. Donepezil caused a reduction in the hERG channel protein trafficking to the plasma membrane at low concentration, but decreased the channel protein expression at higher concentrations. These results suggest that donepezil inhibited the hERG at a supratherapeutic concentration, and that it did so by preferentially binding to the activated (open and/or inactivated) states of the channels and by inhibiting the trafficking and expression of the hERG channel protein in the plasma membrane. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Initial steps in the opening of a Shaker potassium channel.

    Science.gov (United States)

    Hoshi, Toshinori; Armstrong, Clay M

    2012-07-31

    The structural model of a K(V) (K(+)-selective, voltage-gated) channel in the open state is known (Protein Data Bank ID code 2R9R). Each subunit of the channel has four negatively charged residues distributed in the transmembrane segments S1, S2, and S3 that bind to and facilitate the movement within the membrane of the positively charged, voltage-sensing residues of S4. When extrapolated to the closed state, the two outermost negatively charged residues are exposed to extracellular fluid and not bound to S4 residues, all of which have theoretically been driven inward by voltage. If this closed state model is correct, these residues are available to bind external cations. We examined the effects of La(3+) on voltage-gated Shaker K(+) channels. Addition of the trivalent cation La(3+) (50 μM) extracellularly markedly prolongs the lag that precedes channel opening and slows the subsequent rise of K(+) current (I(K)) at all voltages. Decay kinetics of I(K) at negative voltages are unaltered. Gating current (I(g)) recorded from a nonconducting mutant shows that La(3+) reduces the initial amplitude of I(g) nearly twofold. We postulate that, in the resting state, La(3+) binds to the unoccupied, outermost negative residues, hindering outward S4 motion, thus increasing the lag on activation and slowing the rise of I(K). In the activated state, La(3+) is displaced by outward movement of arginine residues in S4; La(3+), therefore, is not present to affect channel closing. The results give strong support to the closed state model of the K(V) channel and a clear explanation of the effect of multivalent cations on cellular excitability.

  3. Mechanism of magnesium activation of calcium-activated potassium channels.

    Science.gov (United States)

    Shi, Jingyi; Krishnamoorthy, Gayathri; Yang, Yanwu; Hu, Lei; Chaturvedi, Neha; Harilal, Dina; Qin, Jun; Cui, Jianmin

    2002-08-22

    Large-conductance (BK type) Ca(2+)-dependent K(+) channels are essential for modulating muscle contraction and neuronal activities such as synaptic transmission and hearing. BK channels are activated by membrane depolarization and intracellular Ca(2+) and Mg(2+) (refs 6-10). The energy provided by voltage, Ca(2+) and Mg(2+) binding are additive in activating the channel, suggesting that these signals open the activation gate through independent pathways. Here we report a molecular investigation of a Mg(2+)-dependent activation mechanism. Using a combined site-directed mutagenesis and structural analysis, we demonstrate that a structurally new Mg(2+)-binding site in the RCK/Rossman fold domain -- an intracellular structural motif that immediately follows the activation gate S6 helix -- is responsible for Mg(2+)-dependent activation. Mutations that impair or abolish Mg(2+) sensitivity do not affect Ca(2+) sensitivity, and vice versa. These results indicate distinct structural pathways for Mg(2+)- and Ca(2+)-dependent activation and suggest a possible mechanism for the coupling between Mg(2+) binding and channel opening.

  4. Atomic basis for therapeutic activation of neuronal potassium channels

    DEFF Research Database (Denmark)

    Kim, Robin Y; Yau, Michael C; Galpin, Jason D

    2015-01-01

    chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution...... with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally...... pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators....

  5. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    in pancreatic duct cells, including KCNN4 (K 3.1), KCNMA1 (K1.1), KCNQ1 (K7.1), KCNH2 (K11.1), KCNH5 (K10.2), KCNT1 (K4.1), KCNT2 (K4.2), and KCNK5 (K5.1). We will give an overview of K channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from...

  6. Deubiquitylating enzyme USP2 counteracts Nedd4-2-mediated downregulation of KCNQ1 potassium channels

    DEFF Research Database (Denmark)

    Krzystanek, Katarzyna; Rasmussen, Hanne Borger; Grunnet, Morten

    2012-01-01

    KCNQ1 (Kv7.1), together with its KCNE ß subunits, plays a pivotal role both in the repolarization of cardiac tissue and in water and salt transport across epithelial membranes. Nedd4/Nedd4-like (neuronal precursor cell-expressed developmentally downregulated 4) ubiquitin-protein ligases interact...... with the KCNQ1 potassium channel through a PY motif located in the C terminus of KCNQ1. This interaction induces ubiquitylation of KCNQ1, resulting in a reduced surface density of the channel. It was reported recently that the epithelial sodium channel is regulated by the reverse process...

  7. Effects of Potassium-Channel Opener on Thallium-201 Kinetics: In-vitro Study in Rat Myocyte Preparations and In-vivo Mice Biodistribution Study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Tae; Kim, Eun Ji; Ahn, Byeong Cheol; Son, Kang Kyun; Lee, Kyu Bo [Kyungpook National University School of Medicine, Taegu (Korea, Republic of); Ha, Jeoung Hee [Youngnam University Medical School, Taegu (Korea, Republic of); Kim, Chun Ki [Mt. Sinai School of Medicine, New York (United States)

    1996-10-15

    Potassium channel opener (K-opener) opens ATP-sensitive K{sup +}-channel located at membrane and induces potassium efflux from cytosol, resulting in intracellular hyperpolarization. Newly synthesized K-opener is currently examined for pharmacologic potency by means of rubidium release test from smooth muscle strip preincubated with Rb-86. Since in-vive behavior of thallium is similar to that of rubidium, we hypothesized that K-opener can alter T1-201 kinetics in vivo. This study was prepared to investigate the effects of pinacidil (one of potent K-openers) on the T1-201 uptake and clearance in cultured myocyte, and in-vivo biodistribution in mice. Spontaneous contracting myocytes were prepared to imitate in-vivo condition from 20 hearts of 3-5 days old Sprague-Dawley rat and cultured for 3-5 days before use (5 X 105 cells/ml). Pinacidil was dissolved in 10% DMSO solution at a final concentration of 100nM or 10uM and was co-incubated with T1-201 in HBSS buffer for 20-min to evaluate its effect on cellular T1-uptake, or challenged to cell preparation pre-incubated with T1-201 for washout study. Two, 40 or 100 mg of pinacidil was injected intravenously into ICR mice at 10 min after 5 muCi T1-201 injection, and organ uptake and whole body retention rate were measured at different time points. Co-incubation of pinacidil with T1-201 resulted in a decrease in T1-201 uptake into cultured myocyte by 1.6 to 2.5 times, depending on pinacidil concentration and activity of T1-201 used. Pinacidil enhanced T1-201 washout by 1.6-3.1 times from myocyte preparations pre-incubated with T1-201. Pinacidil treatment appears to be resulted in mild decreases in blood and liver activity in normal mice, in contrast, renal and cardiac uptake were mildly decreased in a dose dependent manner. Whole body retention ratios of T1-201 were lower at 24 hour after injection with 100 mg of pinacidil than control. These results suggest that treatment with K-opener may affect the interpretation of T1

  8. Slick (Kcnt2 Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia

    Directory of Open Access Journals (Sweden)

    Danielle L Tomasello

    2017-09-01

    Full Text Available The Slick (Kcnt2 sodium-activated potassium (K Na channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs, we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene–related peptide (CGRP-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs, and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury.

  9. Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia

    Science.gov (United States)

    Tomasello, Danielle L; Hurley, Edward; Wrabetz, Lawrence; Bhattacharjee, Arin

    2017-01-01

    The Slick (Kcnt2) sodium-activated potassium (KNa) channel is a rapidly gating and weakly voltage-dependent and sodium-dependent potassium channel with no clearly defined physiological function. Within the dorsal root ganglia (DRGs), we show Slick channels are exclusively expressed in small-sized and medium-sized calcitonin gene–related peptide (CGRP)-containing DRG neurons, and a pool of channels are localized to large dense-core vesicles (LDCV)-containing CGRP. We stimulated DRG neurons for CGRP release and found Slick channels contained within CGRP-positive LDCV translocated to the neuronal membrane. Behavioral studies in Slick knockout (KO) mice indicated increased basal heat detection and exacerbated thermal hyperalgesia compared with wild-type littermate controls during neuropathic and chronic inflammatory pain. Electrophysiologic recordings of DRG neurons from Slick KO mice revealed that Slick channels contribute to outward current, propensity to fire action potentials (APs), and to AP properties. Our data suggest that Slick channels restrain the excitability of CGRP-containing neurons, diminishing pain behavior after inflammation and injury. PMID:28943756

  10. Expression of the two pore domain potassium channel TREK-1 in human intervertebral disc cells.

    Science.gov (United States)

    Sharma, Pankaj; Hughes, Stephen; El Haj, Alicia; Maffulli, Nicola

    2012-07-01

    Potassium channels play a major role in intracellular homeostasis and regulation of cell volume. Intervertebral disc cells respond to mechanical loading in a complex manner. Mechanical loading may play a role in disc degeneration. Lumbar intervertebral disc samples from 5 patients (average age: 47 years, range: 25-64 years) were used for this study, investigating cells from the nucleus pulposus and the annulus fibrosus duplicate samples to determine RNA expression and protein expression. Analysis of mRNA expression by RT-PCR demonstrated that TREK 1 was expressed by nucleus pulposus (n=5) and annulus fibrosus (n=5) cells. Currently, TREK-1 is the only potassium channel known to be activated by intracellular acidosis, and responds to mechanical and chemical stimuli. Whilst the precise role of potassium channels in cellular homeostasis remains to be determined, TREK-1 may be important to protect disc cells against ischaemic damage, and subsequent disc degeneration, and may also play a role in effecting mechanotransduction. Further research is required to fully elucidate the role of the TREK-1 ion channel in intervertebral disc cells.

  11. A naturally occurring omega current in a Kv3 family potassium channel from a platyhelminth

    Directory of Open Access Journals (Sweden)

    Spencer Andrew N

    2008-06-01

    Full Text Available Abstract Background Voltage-gated ion channels are membrane proteins containing a selective pore that allows permeable ions to transit the membrane in response to a change in the transmembrane voltage. The typical selectivity filter in potassium channels is formed by a tetrameric arrangement of the carbonyl groups of the conserved amino-acid sequence Gly-Tyr-Gly. This canonical pore is opened or closed by conformational changes that originate in the voltage sensor (S4, a transmembrane helix with a series of positively charged amino acids. This sensor moves through a gating pore formed by elements of the S1, S2 and S3 helices, across the plane of the membrane, without allowing ions to pass through the membrane at that site. Recently, synthetic mutagenesis studies in the Drosophila melanogaster Shaker channel and analysis of human disease-causing mutations in sodium channels have identified amino acid residues that are integral parts of the gating-pore; when these residues are mutated the proteins allow a non-specific cation current, known as the omega current, to pass through the gating-pore with relatively low selectivity. Results The N.at-Kv3.2 potassium channel has an unusual weak inward rectifier phenotype. Several mutations of two amino acids in the voltage sensing (S4 transmembrane helix change the phenotype to a typical delayed rectifier. The inward rectifier channels (wild-type and mutant are sensitive to 4-aminopyridine (4-AP but not tetra-ethyl ammonium (TEA, whereas the delayed rectifier mutants are sensitive to TEA but not 4-AP. The inward rectifier channels also manifest low cation selectivity. The relative selectivity for different cations is sensitive to specific mutations in the S4 helix, Conclusion N.at-Kv3.2, a naturally occurring potassium channel of the Kv3 sequence family, mediates ion permeation through a modified gating pore, not the canonical, highly selective pore typical of potassium channels. This channel has evolved to

  12. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release.

    Science.gov (United States)

    Dahal, Giri Raj; Pradhan, Sarala Joshi; Bates, Emily Anne

    2017-08-01

    Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing. © 2017. Published by The Company of Biologists Ltd.

  13. The thermosensitive potassium channel TREK-1 contributes to coolness-evoked responses of Grueneberg ganglion neurons.

    Science.gov (United States)

    Stebe, Sabrina; Schellig, Katharina; Lesage, Florian; Breer, Heinz; Fleischer, Joerg

    2014-01-01

    Neurons of the Grueneberg ganglion (GG) residing in the vestibule of the murine nose are activated by cool ambient temperatures. Activation of thermosensory neurons is usually mediated by thermosensitive ion channels of the transient receptor potential (TRP) family. However, there is no evidence for the expression of thermo-TRPs in the GG, suggesting that GG neurons utilize distinct mechanisms for their responsiveness to cool temperatures. In search for proteins that render GG neurons responsive to coolness, we have investigated whether TREK/TRAAK channels may play a role; in heterologous expression systems, these potassium channels have been previously found to close upon exposure to coolness, leading to a membrane depolarization. The results of the present study indicate that the thermosensitive potassium channel TREK-1 is expressed in those GG neurons that are responsive to cool temperatures. Studies analyzing TREK-deficient mice revealed that coolness-evoked responses of GG neurons were clearly attenuated in these animals compared with wild-type conspecifics. These data suggest that TREK-1 channels significantly contribute to the responsiveness of GG neurons to cool temperatures, further supporting the concept that TREK channels serve as thermoreceptors in sensory cells. Moreover, the present findings provide the first evidence of how thermosensory GG neurons are activated by given temperature stimuli in the absence of thermo-TRPs.

  14. The uniqueness of the plant mitochondrial potassium channel

    Directory of Open Access Journals (Sweden)

    Donato Pastore

    2013-08-01

    Full Text Available The ATP-inhibited Plant Mitochondrial K+ Channel (PmitoKATPwas discovered about fifteen years ago in Durum WheatMitochondria (DWM. PmitoKATP catalyses the electrophoreticK+ uniport through the inner mitochondrial membrane;moreover, the co-operation between PmitoKATP and K+/H+antiporter allows such a great operation of a K+ cycle tocollapse mitochondrial membrane potential (ΔΨ and ΔpH, thusimpairing protonmotive force (Δp. A possible physiological roleof such ΔΨ control is the restriction of harmful reactive oxygenspecies (ROS production under environmental/oxidative stressconditions. Interestingly, DWM lacking Δp were found to benevertheless fully coupled and able to regularly accomplish ATPsynthesis; this unexpected behaviour makes necessary to recastin some way the classical chemiosmotic model. In the whole,PmitoKATP may oppose to large scale ROS production bylowering ΔΨ under environmental/oxidative stress, but, whenstress is moderate, this occurs without impairing ATP synthesisin a crucial moment for cell and mitochondrial bioenergetics.[BMB Reports 2013; 46(8: 391-397

  15. Characterization of potassium channel modulators with QPatch automated patch-clamp technology: system characteristics and performance

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Friis, Søren; Asmild, Margit

    2003-01-01

    . Using Chinese hamster ovary (CHO) and human embryonic kidney cells (HEK), gigaseals of 4.1 +/- 0.4 GOmega (n = 146) and high-quality whole-cell current recordings were obtained from hERG and KCNQ4 potassium channels. Success rates for gigaseal recordings varied from 40 to 95%, and 67% of the whole......-cell configurations lasted for >20 min. Cells were maintained in suspension up to 4 h in a cell storage facility that is integrated in the QPatch 16. No decline in patchability was observed during this time course. A series of screens was conducted with known inhibitors of the hERG and KCNQ4 potassium channels. Dose......-response relationship characterizations of verapamil and rBeKm-1 blockage of hERG currents provided IC(50) values similar to values reported in the literature....

  16. A role for two-pore potassium (K2P) channels in endometrial epithelial function.

    OpenAIRE

    Patel, SK; Jackson, L.; Warren, AY; P. Arya; Shaw, RW; Khan, RN

    2013-01-01

    The human endometrial epithelium is pivotal to menstrual cycle progression, implantation and early pregnancy. Endometrial function is directly regulated by local factors that include pH, oxygen tension and ion concentrations to generate an environment conducive to fertilization. A superfamily of potassium channels characterized by two-pore domains (K2P) and encoded by KCNK genes is implicated in the control of the cell resting membrane potential through the generation of leak currents and mod...

  17. Encephalitis due to antibodies to voltage gated potassium channel (VGKC with cerebellar involvement in a teenager

    Directory of Open Access Journals (Sweden)

    Megan M Langille

    2015-01-01

    Full Text Available Encephalitis due to antibodies to voltage gated potassium channel (VGKC typically presents with limbic encephalitis and medial temporal lobe involvement on neuroimaging. We describe a case of 13 year girl female with encephalitis due to antibodies to VGKC with signal changes in the cerebellar dentate nuclei bilaterally and clinical features that suggested predominant cerebellar involvement. These have never been reported previously in the literature. Our case expands the phenotypic spectrum of this rare condition.

  18. Ether à go-go potassium channel expression in soft tissue sarcoma patients

    OpenAIRE

    Stühmer Walter; Suarez-Kurtz Guilherme; Mello de Queiroz Fernanda; Pardo Luis A

    2006-01-01

    Abstract Background The expression of the human Eag1 potassium channel (Kv10.1) is normally restricted to the adult brain, but it has been detected in both tumour cell lines and primary tumours. Our purpose was to determine the frequency of expression of Eag1 in soft tissue sarcoma and its potential clinical implications. Results We used specific monoclonal antibodies to determine the expression levels of Eag1 in soft tissue sarcomas from 210 patients by immunohistochemistry. Eag1 was express...

  19. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  20. Ceramide modulates HERG potassium channel gating by translocation into lipid rafts

    Science.gov (United States)

    Ganapathi, Sindura B.; Fox, Todd E.; Elmslie, Keith S.

    2010-01-01

    Human ether-à-go-go-related gene (HERG) potassium channels play an important role in cardiac action potential repolarization, and HERG dysfunction can cause cardiac arrhythmias. However, recent evidence suggests a role for HERG in the proliferation and progression of multiple types of cancers, making it an attractive target for cancer therapy. Ceramide is an important second messenger of the sphingolipid family, which due to its proapoptotic properties has shown promising results in animal models as an anticancer agent. Yet the acute effects of ceramide on HERG potassium channels are not known. In the present study we examined the effects of cell-permeable C6-ceramide on HERG potassium channels stably expressed in HEK-293 cells. C6-ceramide (10 μM) reversibly inhibited HERG channel current (IHERG) by 36 ± 5%. Kinetically, ceramide induced a significant hyperpolarizing shift in the current-voltage relationship (ΔV1/2 = −8 ± 0.5 mV) and increased the deactivation rate (43 ± 3% for τfast and 51 ± 3% for τslow). Mechanistically, ceramide recruited HERG channels within caveolin-enriched lipid rafts. Cholesterol depletion and repletion experiments and mathematical modeling studies confirmed that inhibition and gating effects are mediated by separate mechanisms. The ceramide-induced hyperpolarizing gating shift (raft mediated) could offset the impact of inhibition (raft independent) during cardiac action potential repolarization, so together they may nullify any negative impact on cardiac rhythm. Our results provide new insights into the effects of C6-ceramide on HERG channels and suggest that C6-ceramide can be a promising therapeutic for cancers that overexpress HERG. PMID:20375276

  1. Human Slack Potassium Channel Mutations Increase Positive Cooperativity between Individual Channels

    Directory of Open Access Journals (Sweden)

    Grace E. Kim

    2014-12-01

    Full Text Available Disease-causing mutations in ion channels generally alter intrinsic gating properties such as activation, inactivation, and voltage dependence. We examined nine different mutations of the KCNT1 (Slack Na+-activated K+ channel that give rise to three distinct forms of epilepsy. All produced many-fold increases in current amplitude compared to the wild-type channel. This could not be accounted for by increases in the intrinsic open probability of individual channels. Rather, greatly increased opening was a consequence of cooperative interactions between multiple channels in a patch. The degree of cooperative gating was much greater for all of the mutant channels than for the wild-type channel, and could explain increases in current even in a mutant with reduced unitary conductance. We also found that the same mutation gave rise to different forms of epilepsy in different individuals. Our findings indicate that a major consequence of these mutations is to alter channel-channel interactions.

  2. Pore hydration states of KcsA potassium channels in membranes.

    Science.gov (United States)

    Blasic, Joseph R; Worcester, David L; Gawrisch, Klaus; Gurnev, Philip; Mihailescu, Mihaela

    2015-10-30

    Water-filled hydrophobic cavities in channel proteins serve as gateways for transfer of ions across membranes, but their properties are largely unknown. We determined water distributions along the conduction pores in two tetrameric channels embedded in lipid bilayers using neutron diffraction: potassium channel KcsA and the transmembrane domain of M2 protein of influenza A virus. For the KcsA channel in the closed state, the distribution of water is peaked in the middle of the membrane, showing water in the central cavity adjacent to the selectivity filter. This water is displaced by the channel blocker tetrabutyl-ammonium. The amount of water associated with the channel was quantified, using neutron diffraction and solid state NMR. In contrast, the M2 proton channel shows a V-shaped water profile across the membrane, with a narrow constriction at the center, like the hourglass shape of its internal surface. These two types of water distribution are therefore very different in their connectivity to the bulk water. The water and protein profiles determined here provide important evidence concerning conformation and hydration of channels in membranes and the potential role of pore hydration in channel gating. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Crystal structure of the PAS domain of the hEAG potassium channel.

    Science.gov (United States)

    Tang, Xue; Shao, Juan; Qin, Xiaohong

    2016-08-01

    KCNH voltage-gated potassium channels play critical roles in regulating cellular functions. The channel is composed of four subunits, each of which contains six transmembrane helices forming the central pore. The cytoplasmic parts of the subunits present a Per-Arnt-Sim (PAS) domain at the N-terminus and a cyclic nucleotide-binding homology domain at the C-terminus. PAS domains are conserved from prokaryotes to eukaryotes and are involved in sensing signals and cellular responses. To better understand the functional roles of PAS domains in KCNH channels, the structure of this domain from the human ether-à-go-go channel (hEAG channel) was determined. By comparing it with the structures of the Homo sapiens EAG-related gene (hERG) channel and the Drosophila EAG-like K(+) (dELK) channel and analyzing the structural features of the hEAG channel, it was identified that a hydrophobic patch on the β-sheet may mediate interaction between the PAS domain and other regions of the channel to regulate its functions.

  4. Fear conditioning suppresses large-conductance calcium-activated potassium channels in lateral amygdala neurons.

    Science.gov (United States)

    Sun, P; Zhang, Q; Zhang, Y; Wang, F; Wang, L; Yamamoto, R; Sugai, T; Kato, N

    2015-01-01

    It was previously shown that depression-like behavior is accompanied with suppression of the large-conductance calcium activated potassium (BK) channel in cingulate cortex pyramidal cells. To test whether BK channels are also involved in fear conditioning, we studied neuronal properties of amygdala principal cells in fear conditioned mice. After behavior, we made brain slices containing the amygdala, the structure critically relevant to fear memory. The resting membrane potential in lateral amygdala (LA) neurons obtained from fear conditioned mice (FC group) was more depolarized than in neurons from naïve controls. The frequencies of spikes evoked by current injections were higher in neurons from FC mice, demonstrating that excitability of LA neurons was elevated by fear conditioning. The depolarization in neurons from FC mice was shown to depend on BK channels by using the BK channel blocker charybdotoxin. Suppression of BK channels in LA neurons from the FC group was further confirmed on the basis of the spike width, since BK channels affect the descending phase of spikes. Spikes were broader in the FC group than those in the naïve control in a manner dependent on BK channels. Consistently, quantitative real-time PCR revealed a decreased expression of BK channel mRNA. The present findings suggest that emotional disorder manifested in the forms of fear conditioning is accompanied with BK channel suppression in the amygdala, the brain structure critical to this emotional disorder. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Screening and cDNA Cloning of Kv1 Potassium Channel Toxins in Sea Anemones

    Directory of Open Access Journals (Sweden)

    Kazuo Shiomi

    2010-12-01

    Full Text Available When 21 species of sea anemones were screened for Kv1 potassium channel toxins by competitive inhibition of the binding of 125I-α-dendrotoxin to rat synaptosomal membranes, 11 species (two species of Actiniidae, one species of Hormathiidae, five species of Stichodactylidae and three species of Thalassianthidae were found to be positive. Furthermore, full-length cDNAs encoding type 1 potassium channel toxins from three species of Stichodactylidae and three species of Thalassianthidae were cloned by a combination of RT-PCR, 3′RACE and 5′RACE. The precursors of these six toxins are commonly composed of signal peptide, propart and mature peptide portions. As for the mature peptide (35 amino acid residues, the six toxins share more than 90% sequence identities with one another and with κ1.3-SHTX-She1a (Shk from Stichodactyla helianthus but only 34–63% identities with the other type 1 potassium channel toxins.

  6. Role of inward rectifier potassium channels in salivary gland function and sugar feeding of the fruit fly, Drosophila melanogaster

    Science.gov (United States)

    The arthropod salivary gland is of critical importance for horizontal transmission of pathogens, yet a detailed understanding of the ion conductance pathways responsible for saliva production and excretion is lacking. A superfamily of potassium ion channels, known as inward rectifying potassium (Ki...

  7. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Nielsen, Jonas Bille; Bentzen, Bo Hjorth; Olesen, Morten Salling

    2014-01-01

    Aims: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Disturbances in cardiac potassium conductance are considered as one of the disease mechanisms in AF. We aimed to investigate if mutations in potassium-channel β-subunits KCNE2 and KCNE3 are associated with early-onset lone AF. ...

  8. The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle.

    Science.gov (United States)

    Xian Tao Li; Dyachenko, Vitaly; Zuzarte, Marylou; Putzke, Caroline; Preisig-Müller, Regina; Isenberg, Gerrit; Daut, Jürgen

    2006-01-01

    The biophysical properties and the regulation of the two-pore-domain potassium channel TREK-1 were studied in rat cardiomyocytes. RT-PCR, immunohistochemistry and patch-clamp recording were performed in isolated rat ventricular cardiomyocytes. In some whole-cell-clamp experiments the myocytes were mechanically stretched using a glass stylus. We found strong expression of a splice variant of TREK-1 in rat heart. Immunohistochemistry with antibodies against TREK-1 showed localization of the channel in longitudinal stripes at the external surface membrane of cardiomyocytes. When the cardiomyocytes were mechanically stretched, an outwardly rectifying K+ current component could be detected in whole-cell recordings. In single-channel recordings with symmetrical high K+ solution, two TREK-like channels with 'flickery-burst' kinetics were found: a 'large conductance' K+ channel (132+/-5 pS at positive potentials) and a novel 'low-conductance' channel (41+/-5 pS at positive potentials). The low-conductance channel could be activated by negative pressure in inside-out patches, positive pressure in outside-out patches, intracellular acidification and application of arachidonic acid. Its open probability was strongly increased by depolarization, due to decreased duration of gaps between bursts. The biophysical properties of the two cardiac TREK-like channels were similar to those of TREK-1 channels expressed in HEK293 cells, which both displayed low- and high-conductance modes. Our results suggest that the two TREK-like channels found in rat cardiomyocytes may reflect two different operating modes of TREK-1. The novel low-conductance channels described here may represent the major operating mode of TREK-1. The current flowing through mechanogated TREK-1 channels may serve to counterbalance the inward current flowing through stretch-activated non-selective cation channels during the filling phase of the cardiac cycle and thus to prevent the occurrence of ventricular

  9. Function of Shaker potassium channels produced by cell-free translation upon injection into Xenopus oocytes.

    Science.gov (United States)

    Jarecki, Brian W; Makino, Shin-ichi; Beebe, Emily T; Fox, Brian G; Chanda, Baron

    2013-01-01

    Voltage-gated ion channels are a class of membrane proteins that temporally orchestrate the ion flux critical for chemical and electrical signaling in excitable cells. Current methods to investigate the function of these channels rely on heterologous expression in living systems or reconstitution into artificial membranes; however these approaches have inherent drawbacks which limit potential biophysical applications. Here, we describe a new integrated approach combining cell-free translation of membrane proteins and in vivo expression using Xenopus laevis oocytes. In this method, proteoliposomes containing Shaker potassium channels are synthesized in vitro and injected into the oocytes, yielding functional preparations as shown by electrophysiological and fluorescence measurements within few hours. This strategy for studying eukaryotic ion channels is contrasted with existing, laborious procedures that require membrane protein extraction and reconstitution into synthetic lipid systems.

  10. hERG1 potassium channel in cancer cells: a tool to reprogram immortality.

    Science.gov (United States)

    Gentile, Saverio

    2016-10-01

    It has been well established that changes in ion fluxes across cellular membranes as a function of time is fundamental in maintaining cellular homeostasis of every living cell. Consequently, dysregulation of ion channels activity is a critical event in pathological conditions of several tissues, including cancer. Nevertheless, the role of ion channels in cancer biology is still not well understood and very little is known about the possible therapeutic opportunities offered by the use of the vast collection of drugs that target ion channels. In this review, we focus on the recent advances in understanding the role of the voltage-gated hERG1 potassium channel in cancer and on the effects of pharmacologic manipulation of the hERG1 in cancer cells aiming to provide insights into the biochemical signaling and cellular processes that are altered by using these drugs.

  11. Oxidation of a potassium channel causes progressive sensory function loss during aging.

    Science.gov (United States)

    Cai, Shi-Qing; Sesti, Federico

    2009-05-01

    Potassium channels are key regulators of neuronal excitability. Here we show that oxidation of the K(+) channel KVS-1 during aging causes sensory function loss in Caenorhabditis elegans and that protection of this channel from oxidation preserves neuronal function. Chemotaxis, a function controlled by KVS-1, was significantly impaired in worms exposed to oxidizing agents, but only moderately affected in worms harboring an oxidation-resistant KVS-1 mutant (C113S). In aging C113S transgenic worms, the effects of free radical accumulation were significantly attenuated compared to those in wild type. Electrophysiological analyses showed that both reactive oxygen species (ROS) accumulation during aging and acute exposure to oxidizing agents acted primarily to alter the excitability of the neurons that mediate chemotaxis. Together, these findings establish a pivotal role for ROS-mediated oxidation of voltage-gated K(+) channels in sensorial decline during aging in invertebrates.

  12. A single conserved basic residue in the potassium channel filter region controls KCNQ1 insensitivity toward scorpion toxins.

    Science.gov (United States)

    Chen, Zongyun; Hu, Youtian; Wang, Bin; Cao, Zhijian; Li, Wenxin; Wu, Yingliang

    2015-09-01

    Although many studies concerning the sensitivity mechanism of scorpion toxin-potassium channel interactions have been reported, few have explored the biochemical insensitivity mechanisms of potassium channel receptors toward natural scorpion toxin peptides, such as the KCNQ1 channel. Here, by sequence alignment analyses of the human KCNQ1 channel and scorpion potassium channel MmKv2, which is completely insensitive to scorpion toxins, we proposed that the insensitivity mechanism of KCNQ1 toward natural scorpion toxins might involve two functional regions, the turret and filter regions. Based on this observation, a series of KCNQ1 mutants were constructed to study molecular mechanisms of the KCNQ1 channel insensitivity toward natural scorpion toxins. Electrophysiological studies of chimera channels showed that the channel filter region controls KCNQ1 insensitivity toward the classical scorpion toxin ChTX. Interestingly, further residue mutant experiments showed that a single basic residue in the filter region determined the insensitivity of KCNQ1 channels toward scorpion toxins. Our present work showed that amino acid residue diversification at common sites controls the sensitivity and insensitivity of potassium channels toward scorpion toxins. The unique insensitivity mechanism of KCNQ1 toward natural scorpion toxins will accelerate the rational design of potent peptide inhibitors toward this channel.

  13. Nitric oxide regulates neuronal activity via calcium-activated potassium channels.

    Directory of Open Access Journals (Sweden)

    Lei Ray Zhong

    Full Text Available Nitric oxide (NO is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons.

  14. Chlorella virus ATCV-1 encodes a functional potassium channel of 82 amino acids

    Science.gov (United States)

    Gazzarrini, Sabrina; Kang, Ming; Abenavoli, Alessandra; Romani, Giulia; Olivari, Claudio; Gaslini, Daniele; Ferrara, Giuseppina; van Etten, James L.; Kreim, Michael; Kast, Stefan M.; Thiel, Gerhard; Moroni, Anna

    2010-01-01

    Chlorella virus PBCV-1 (Paramecium bursaria chlorella virus-1) encodes the smallest protein (94 amino acids, named Kcv) previously known to form a functional K+ channel in heterologous systems. In this paper, we characterize another chlorella virus encoded K+ channel protein (82 amino acids, named ATCV-1 Kcv) that forms a functional channel in Xenopus oocytes and rescues Saccharomyces cerevisiae mutants that lack endogenous K+ uptake systems. Compared with the larger PBCV-1 Kcv, ATCV-1 Kcv lacks a cytoplasmic N-terminus and has a reduced number of charged amino acids in its turret domain. Despite these deficiencies, ATCV-1 Kcv accomplishes all the major features of K+ channels: it assembles into a tetramer, is K+ selective and is inhibited by the canonical K+ channel blockers, barium and caesium. Single channel analyses reveal a stochastic gating behavior and a voltage-dependent conductance that resembles the macroscopic I/V relationship. One difference between PBCV-1 and ATCV-1 Kcv is that the latter is more permeable to K+ than Rb+. This difference is partially explained by the presence of a tyrosine residue in the selective filter of ATCV-1 Kcv, whereas PBCV-1 Kcv has a phenylalanine. Hence, ATCV-1 Kcv is the smallest protein to form a K+ channel and it will serve as a model for studying structure–function correlations inside the potassium channel pore. PMID:19267691

  15. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener

    Science.gov (United States)

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  16. Acetaldehyde - ethanol interactions on calcium-activated potassium (BK channels in pituitary tumor (GH3 cells

    Directory of Open Access Journals (Sweden)

    Astrid G. Handlechner

    2013-06-01

    Full Text Available Background: In the central nervous system ethanol (EtOH is metabolized to acetaldehyde (ACA primarily by the oxidative enzyme catalase. Evidence suggests that ACA is responsible for at least some of the effects on the brain that have been attributed to EtOH. Various types of ion channels which are involved in electrical signaling are targets of EtOH like maxi calcium-activated potassium (BK channels. BK channels exhibit various functions like action potential repolarization, blood pressure regulation, hormone secretion, or transmitter release. In most neuronal and neuroendocrine preparations at physiological intracellular calcium levels, EtOH increases BK channel activity. The simultaneous presence of ACA and EtOH reflects the physiological situation after drinking and may result in synergistic as well as antagonistic actions compared to a single application of either drug. The action of ACA on electrical activity has yet not been fully established.Methods: GH3 pituitary tumor cells were used for outside-out and inside-out patch-clamp recordings of BK activity in excised patches. Unitary current amplitude, open probability and channel mean open time of BK channels were measured. Results: Extracellular EtOH raised BK channel activity. In the presence of intracellular ACA this increment of BK activity was suppressed in a dose- as well as calcium-dependent manner. Mean channel open time was significantly reduced by internal ACA, whereas BK channel amplitudes were not affected. The EtOH counteracting effect of ACA was found to depend on succession of application. EtOH was prevented from activating BK channels by pre-exposure of membrane patches to ACA. In contrast BK activation by a hypotonic solution was not affected by internal ACA. Conclusions: Our data suggest an inhibitory impact of ACA on BK activation by EtOH. ACA appears to interact specifically with EtOH at BK channels since intracellular ACA had no effect when BK channels were activated by

  17. A role for two-pore potassium (K2P) channels in endometrial epithelial function.

    Science.gov (United States)

    Patel, Suraj K; Jackson, Leigh; Warren, Averil Y; Arya, Pratibha; Shaw, Robert W; Khan, Raheela N

    2013-01-01

    The human endometrial epithelium is pivotal to menstrual cycle progression, implantation and early pregnancy. Endometrial function is directly regulated by local factors that include pH, oxygen tension and ion concentrations to generate an environment conducive to fertilization. A superfamily of potassium channels characterized by two-pore domains (K2P) and encoded by KCNK genes is implicated in the control of the cell resting membrane potential through the generation of leak currents and modulation by various physicochemical stimuli. The aims of the study were to determine the expression and function of K2P channel subtypes in proliferative and secretory phase endometrium obtained from normo-ovulatory women and in an endometrial cancer cell line. Using immunochemical methods, real-time qRT-PCR proliferation assays and electrophysiology. Our results demonstrate mRNA for several K2P channel subtypes in human endometrium with molecular expression of TREK-1 shown to be higher in proliferative than secretory phase endometrium (P TREK-1 channels in proliferation. Tetraethylammonium- and 4-aminopyridine-insensitive outwards currents were inhibited at all voltages by reducing extracellular pH from 7.4 to 6.6. Higher expression of TREK-1 expression in proliferative phase endometrium may, in part, underlie linked to increased cell division. The effects of pH and a lack of effect of non-specific channel blockers of voltage-gated potassium channels imply a role for K2P channels in the regulation of human endometrial function. © 2012 The Authors. Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  18. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33.

    Science.gov (United States)

    Corratgé-Faillie, Claire; Ronzier, Elsa; Sanchez, Frédéric; Prado, Karine; Kim, Jeong-Hyeon; Lanciano, Sophie; Leonhardt, Nathalie; Lacombe, Benoît; Xiong, Tou Cheu

    2017-07-01

    A complex signaling network involving voltage-gated potassium channels from the Shaker family contributes to the regulation of stomatal aperture. Several kinases and phosphatases have been shown to be crucial for ABA-dependent regulation of the ion transporters. To date, the Ca2+ -dependent regulation of Shaker channels by Ca2+ -dependent protein kinases (CPKs) is still elusive. A functional screen in Xenopus oocytes was launched to identify such CPKs able to regulate the three main guard cell Shaker channels KAT1, KAT2, and GORK. Seven guard cell CPKs were tested and multiple CPK/Shaker couples were identified. Further work on CPK33 indicates that GORK activity is enhanced by CPK33 and unaffected by a nonfunctional CPK33 (CPK33-K102M). Furthermore, Ca2+ -induced stomatal closure is impaired in two cpk33 mutant plants. © 2017 Federation of European Biochemical Societies.

  19. Spatial heterogeneity of myocardial perfusion predicts local potassium channel expression and action potential duration.

    Science.gov (United States)

    Stoll, Marion; Quentin, Michael; Molojavyi, Andrej; Thämer, Volker; Decking, Ulrich K M

    2008-02-01

    In the heart, there is not only a transmural gradient of left ventricular perfusion and action potential duration (APD), but also spatial heterogeneity within each myocardial layer, where local blood flow and energy turnover vary more than three-fold between individual regions. We analysed at high spatial resolution whether a corresponding heterogeneity also extends to ion channel gene expression and APD. In the open-chest beagle dog, left ventricular 300 microL samples of very low or high flow were identified by radioactive microspheres and expression levels determined by quantitative PCR. The distribution of epicardial APD was assessed by mapping local activation repolarization intervals (ARIs) and QT interval (QT). ERG, the potassium channel mediating IKr, and KChIP2, the interacting protein modulating Ito, were increased in Low flow (3.3- and 2.5-fold, P channel expression and APD. Whenever this newly recognized intramural dispersion of APD increases, it may contribute to arrhythmogenesis.

  20. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  1. Modulation of the frequency response of Shaker potassium channels by the quiver peptide suggesting a novel extracellular interaction mechanism.

    Science.gov (United States)

    Wang, Jing W; Wu, Chun-Fang

    2010-07-01

    Recent studies have indicated that the Shaker potassium channel regulates sleep in Drosophila. The Drosophila quiver (qvr) gene encodes a novel potassium channel subunit that modulates the Shaker potassium channel. The Qvr peptide contains a signal sequence for extracellular localization and may regulate a unique feature of the Shaker I(A) current that confers special neuronal excitability patterns. Thus, studies of the Shaker channel properties in the qvr mutant background should provide an opportunity to uncover a new form of physiologic modulation of potassium channels. We have begun to investigate the impact of qvr protein on the Shaker channel properties and its implications in synaptic function in vivo. We studied synaptic transmission at the larval neuromuscular junction and characterized the transient potassium current I(A) in larval muscles. We identified two different functional states of I(A) in qvr larval muscles, as reflected by two distinct components, I(AF) and I(AS), differing in their kinetics of recovery from inactivation and sensitivity to a K(+) channel blocker. Correspondingly, qvr mutant larvae exhibit multiple synaptic discharges following individual nerve stimuli during repetitive activity.

  2. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    Science.gov (United States)

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  3. Small and Intermediate Calcium-Activated Potassium Channel Openers Improve Rat Endothelial and Erectile Function

    Directory of Open Access Journals (Sweden)

    Simon G. Comerma-Steffensen

    2017-09-01

    Full Text Available Modulation of endothelial calcium-activated potassium (KCa channels has been proposed as an approach to restore endothelial function. The present study investigated whether novel openers of KCa channels with small (KCa2.x and intermediate (KCa3.1 conductance, NS309 and NS4591, improve endothelium-dependent relaxation and erectile function. Rat corpus cavernosum (CC strips were mounted for isometric tension recording and processed for immunoblotting. Mean arterial pressure (MAP, intracavernosal pressure (ICP, and electrocardiographic (ECG measurements were conducted in anesthetized rats. Immunoblotting revealed the presence of KCa2.3 and large KCa conductance (KCa1.1 channels in the corpus cavernosum. NS309 and NS4591 increased current in CC endothelial cells in whole cell patch clamp experiments. Relaxation induced by NS309 (<1 μM was inhibited by endothelial cell removal and high extracellular potassium. An inhibitor of nitric oxide (NO synthase, and blockers of KCa2.x and KCa1.1 channels, apamin and iberiotoxin also inhibited NS309 relaxation. Incubation with NS309 (0.5 μM markedly enhanced acetylcholine relaxation. Basal erectile function (ICP/MAP increased during administration of NS309. Increases in ICP/MAP after cavernous nerve stimulation with NS309 were unchanged, whereas NS4591 significantly improved erectile function. Administration of NS309 and NS4591 caused small changes in the electrocardiogram, but neither arrhythmic events nor prolongation of the QTc interval were observed. The present study suggests that openers of KCa2.x and KCa3.1 channels improve endothelial and erectile function. The effects of NS309 and NS4591 on heart rate and ECG are small, but will require additional safety studies before evaluating whether activation of KCa2.3 channels has a potential for treatment of erectile dysfunction.

  4. Functional significance of M-type potassium channels in nociceptive cutaneous sensory endings

    Directory of Open Access Journals (Sweden)

    Gayle M. Passmore

    2012-05-01

    Full Text Available M-channels carry slowly activating potassium currents that regulate excitability in a variety of central and peripheral neurons. Functional M-channels and their Kv7 channel correlates are expressed throughout the somatosensory nervous system where they may play an important role in controlling sensory nerve activity. Here we show that Kv7.2 immunoreactivity is expressed in the peripheral terminals of nociceptive primary afferents. Electrophysiological recordings from single afferents in vitro showed that block of M-channels by 3 µM XE991 sensitised Adelta- but not C-fibres to noxious heat stimulation and induced spontaneous, ongoing activity at 32ºC in many Adelta-fibres. These observations were extended in vivo: intraplantar injection of XE991 selectively enhanced the response of deep dorsal horn neurons to peripheral mid-range mechanical and higher range thermal stimuli, consistent with a selective effect on Adelta-fibre peripheral terminals. These results demonstrate an important physiological role of M-channels in controlling nociceptive Adelta-fibre responses and provide a rationale for the nocifensive behaviours that arise following intraplantar injection of the M-channel blocker XE991.

  5. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel.

    Science.gov (United States)

    Yazdi, Samira; Stein, Matthias; Elinder, Fredrik; Andersson, Magnus; Lindahl, Erik

    2016-01-01

    Voltage-gated potassium (KV) channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs) induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD), the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA) and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins.

  6. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel.

    Directory of Open Access Journals (Sweden)

    Samira Yazdi

    2016-01-01

    Full Text Available Voltage-gated potassium (KV channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD, the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins.

  7. Scorpion Toxins Specific for Potassium (K+ Channels: A Historical Overview of Peptide Bioengineering

    Directory of Open Access Journals (Sweden)

    Zachary L. Bergeron

    2012-11-01

    Full Text Available Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+ channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics.

  8. Sialic Acids Attached to O-Glycans Modulate Voltage-gated Potassium Channel Gating*

    Science.gov (United States)

    Schwetz, Tara A.; Norring, Sarah A.; Ednie, Andrew R.; Bennett, Eric S.

    2011-01-01

    Neuronal, cardiac, and skeletal muscle action potentials are produced and conducted through the highly regulated activity of several types of voltage-gated ion channels. Voltage-gated potassium (Kv) channels are responsible for action potential repolarization. Glycans can be attached to glycoproteins through N- and O-linkages. Previous reports described the impact of N-glycans on voltage-gated ion channel function. Here, we show that sialic acids attached through O-linkages modulate gating of Kv2.1, Kv4.2, and Kv4.3. The conductance-voltage (G-V) relationships for each isoform were shifted uniquely by a depolarizing 8–16 mV under conditions of reduced sialylation. The data indicate that sialic acids modulate Kv channel activation through apparent electrostatic mechanisms that promote channel activity. Voltage-dependent steady-state inactivation was unaffected by changes in sialylation. N-Linked sialic acids cannot be responsible for the G-V shifts because Kv4.2 and Kv4.3 cannot be N-glycosylated, and immunoblot analysis confirmed Kv2.1 is not N-glycosylated. Glycosidase gel shift analysis suggested that Kv2.1, Kv4.2, and Kv4.3 were O-glycosylated and sialylated. To confirm this, azide-modified sugar residues involved specifically in O-glycan and sialic acid biosynthesis were shown to incorporate into all three Kv channel isoforms using Cu(I)-catalyzed cycloaddition chemistry. Together, the data indicate that sialic acids attached to O-glycans uniquely modulate gating of three Kv channel isoforms that are not N-glycosylated. These data provide the first evidence that external O-glycans, with core structures distinct from N-glycans in type and number of sugar residues, can modulate Kv channel function and thereby contribute to changes in electrical signaling that result from regulated ion channel expression and/or O-glycosylation. PMID:21115483

  9. Voltage-dependent sodium channels and calcium-activated potassium channels in human odontoblasts in vitro.

    Science.gov (United States)

    Ichikawa, Hideki; Kim, Hyong-Jung; Shuprisha, Apichai; Shikano, Tetsuo; Tsumura, Maki; Shibukawa, Yoshiyuki; Tazaki, Masakazu

    2012-10-01

    Transmembrane ionic signaling regulates many cellular processes in both physiological and pathologic settings. In this study, the biophysical properties of voltage-dependent Na(+) channels in odontoblasts derived from human dental pulp (HOB cells) were investigated together with the effect of bradykinin on intracellular Ca(2+) signaling and expression of Ca(2+)-activated K(+) channels. Ionic channel activity was characterized by using whole-cell patch-clamp recording and fura-2 fluorescence. Mean resting membrane potential in the HOB cells was -38 mV. Depolarizing steps from a holding potential of -80 mV activated transient voltage-dependent inward currents with rapid activation/inactivation properties. At a holding potential of -50 mV, no inward current was recorded. Fast-activation kinetics exhibited dependence on membrane potential, whereas fast-inactivation kinetics did not. Steady-state inactivation was described by a Boltzmann function with a half-maximal inactivation potential of -70 mV, indicating that whereas the channels were completely inactivated at physiological resting membrane potential, they could be activated when the cells were hyperpolarized. Inward currents disappeared in Na(+)-free extracellular solution. Bradykinin activated intracellular Ca(2+)-releasing and influx pathways. When the HOB cells were clamped at a holding potential of -50 mV, outward currents were recorded at positive potentials, indicating sensitivity to inhibitors of intermediate-conductance Ca(2+)-activated K(+) channels. Human odontoblasts expressed voltage-dependent Na(+) channels, bradykinin receptors, and Ca(2+)-activated K(+) channels, which play an important role in driving cellular functions by channel-receptor signal interaction and membrane potential regulation. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Poulet, Claire; Diness, Jonas Goldin

    2014-01-01

    AIMS: Small-conductance calcium-activated potassium (SK) channels are expressed in the heart of various species, including humans. The aim of the present study was to address whether SK channels play a functional role in human atria. METHODS AND RESULTS: Quantitative real-time PCR analyses showed...

  11. Nonlinearity of a Voltage-Gated Potassium Channel Revealed by the Mechanical Susceptibility

    Science.gov (United States)

    Ariyaratne, Amila; Zocchi, Giovanni

    2013-01-01

    The voltage-gated potassium channel from Aeropyrum pernix operates by coupling the voltage-driven motion of a charged group of amino acids to the opening and closing of the pore. In this experiment, we drive this charged group with an ac field and observe the effect on the gating. The measurements for different frequencies and amplitudes of the forcing reveal an essential nonlinearity in the mechanical behavior of the molecule. Within a continuum-mechanics description, we extract the effective dissipation parameter γ for this conformational motion and find γ≈0.2g/s, similar to recent nanorheology measurements on the conformational motion of an enzyme.

  12. 18F-FDG PET/CT findings in voltage-gated potassium channel limbic encephalitis.

    Science.gov (United States)

    Kamaleshwaran, Koramadai Karuppuswamy; Iyer, Rajesh Shankar; Antony, Joppy; Radhakrishnan, Edathuruthy Kalarickal; Shinto, Ajit

    2013-05-01

    Limbic encephalitis (LE) can be associated with cancer, viral infection, or be idiopathic. One such rare but treatable form is associated with voltage-gated potassium channel (VGKC) antibodies. Typical abnormalities are seen in FDG PET/CT. We report a 39-year-old female patient who presented with 3 months of progressive faciobrachial dystonic seizures and limbic encephalitis. Her serum and cerebrospinal fluid Lgi1 antibody titers were elevated. FDG PET/CT showed basal ganglial hypermetabolism and associated abnormalities. Serial MRI demonstrated atrophic changes predominantly involving the temporal lobes. She is on immunosuppressive therapy and shows clinical improvement with lowering of antibody titers.

  13. Acepromazine inhibits hERG potassium ion channels expressed in human embryonic kidney 293 cells.

    Science.gov (United States)

    Joo, Young Shin; Lee, Hong Joon; Choi, Jin-Sung; Sung, Ki-Wug

    2017-01-01

    The effects of acepromazine on human ether-à-go-go-related gene (hERG) potassium channels were investigated using whole-cell voltage-clamp technique in human embryonic kidney (HEK293) cells transfected with hERG. The hERG currents were recorded with or without acepromazine, and the steady-state and peak tail currents were analyzed for the evaluating the drug effects. Acepromazine inhibited the hERG currents in a concentration-dependent manner with an IC50 value of 1.5 µM and Hill coefficient of 1.1. Acepromazine blocked hERG currents in a voltage-dependent manner between -40 and +10 mV. Before and after application of acepromazine, the half activation potentials of hERG currents changed to hyperpolarizing direction. Acepromazine blocked both the steady-state hERG currents by depolarizing pulse and the peak tail currents by repolarizing pulse; however, the extent of blocking by acepromazine in the repolarizing pulse was more profound than that in the depolarizing pulse, indicating that acepromazine has a high affinity for the open state of the channels, with a relatively lower affinity for the closed state of hERG channels. A fast application of acepromazine during the tail currents inhibited the open state of hERG channels in a concentration-dependent. The steady-state inactivation of hERG currents shifted to the hyperpolarized direction by acepromazine. These results suggest that acepromazine inhibits the hERG channels probably by an open- and inactivated-channel blocking mechanism. Regarding to the fact that the hERG channels are the potential target of drug-induced long QT syndrome, our results suggest that acepromazine can possibly induce a cardiac arrhythmia through the inhibition of hERG channels.

  14. Electrophysiology and pharmacology of tandem domain potassium channel TREK-1 related BDNF synthesis in rat astrocytes.

    Science.gov (United States)

    Lu, Li; Wang, Weiping; Peng, Ying; Li, Jiang; Wang, Ling; Wang, Xiaoliang

    2014-04-01

    In the present study, the functional properties and pharmacology of two-pore domain potassium channel (K2P) TREK-1 in primary cultured rat brain astrocytes were investigated. Western blot, patch clamping techniques, and ELISA were used to detect the distribution and function of TREK-1 as well as the expression of brain-derived neurotrophic factor (BDNF) on the primary cultured astrocytes. It was shown that TREK-1 protein expressed in astrocytes was 2.4-fold higher than it was expressed in microglia. Single channel recording via patch clamping showed that the TREK-1 outward currents in astrocytes could be activated by arachidonic acid (AA) or chloroform with the conductance of 113 ± 14 and 120 ± 13 pS, respectively. The current was also sensitive to mechanical stretch and intracellular acidification. Negative pressure (-30 cm H2O) and acidification of intracellular solution (pH 6.8 or 6.3) both enhanced TREK-1 channel open probability significantly. Further pharmacological studies showed that TREK-1 antagonist penfluridol inhibited AA-induced currents, and both penfluridol and methionine (TREK-1 blockers) significantly increased BDNF level in astrocytes by 50 %. These results indicated that TREK-1 channel current was a major component of K2P currents in astrocytes. TREK-1 channels might play important roles in regulating the function of astrocytes and might be used as a drug target for neuroprotection.

  15. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury.

    Science.gov (United States)

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David L H

    2016-04-19

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury.

  16. Developmental expression of Kv1 voltage-gated potassium channels in the avian hypothalamus.

    Science.gov (United States)

    Doczi, Megan A; Vitzthum, Carl M; Forehand, Cynthia J

    2016-03-11

    Specialized hypothalamic neurons integrate the homeostatic balance between food intake and energy expenditure, processes that may become dysregulated during the development of diabetes, obesity, and other metabolic disorders. Shaker family voltage-gated potassium channels (Kv1) contribute to the maintenance of resting membrane potential, action potential characteristics, and neurotransmitter release in many populations of neurons, although hypothalamic Kv1 channel expression has been largely unexplored. Whole-cell patch clamp recordings from avian hypothalamic brain slices demonstrate a developmental shift in the electrophysiological properties of avian arcuate nucleus neurons, identifying an increase in outward ionic current that corresponds with action potential maturation. Additionally, RT-PCR experiments identified the early expression of Kv1.2, Kv1.3, and Kv1.5 mRNA in the embryonic avian hypothalamus, suggesting that these channels may underlie the electrophysiological changes observed in these neurons. Real-time quantitative PCR analysis on intact microdissections of embryonic hypothalamic tissue revealed a concomitant increase in Kv1.2 and Kv1.5 gene expression at key electrophysiological time points during development. This study is the first to demonstrate hypothalamic mRNA expression of Kv1 channels in developing avian embryos and may suggest a role for voltage-gated ion channel regulation in the physiological patterning of embryonic hypothalamic circuits governing energy homeostasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Small and Intermediate Calcium-Activated Potassium Channel Openers Improve Rat Endothelial and Erectile Function

    Science.gov (United States)

    Comerma-Steffensen, Simon G.; Carvacho, Ingrid; Hedegaard, Elise R.; Simonsen, Ulf

    2017-01-01

    Modulation of endothelial calcium-activated potassium (KCa) channels has been proposed as an approach to restore endothelial function. The present study investigated whether novel openers of KCa channels with small (KCa2.x) and intermediate (KCa3.1) conductance, NS309 and NS4591, improve endothelium-dependent relaxation and erectile function. Rat corpus cavernosum (CC) strips were mounted for isometric tension recording and processed for immunoblotting. Mean arterial pressure (MAP), intracavernosal pressure (ICP), and electrocardiographic (ECG) measurements were conducted in anesthetized rats. Immunoblotting revealed the presence of KCa2.3 and large KCa conductance (KCa1.1) channels in the corpus cavernosum. NS309 and NS4591 increased current in CC endothelial cells in whole cell patch clamp experiments. Relaxation induced by NS309 (cavernous nerve stimulation with NS309 were unchanged, whereas NS4591 significantly improved erectile function. Administration of NS309 and NS4591 caused small changes in the electrocardiogram, but neither arrhythmic events nor prolongation of the QTc interval were observed. The present study suggests that openers of KCa2.x and KCa3.1 channels improve endothelial and erectile function. The effects of NS309 and NS4591 on heart rate and ECG are small, but will require additional safety studies before evaluating whether activation of KCa2.3 channels has a potential for treatment of erectile dysfunction. PMID:28993731

  18. Cullin 7 mediates proteasomal and lysosomal degradations of rat Eag1 potassium channels.

    Science.gov (United States)

    Hsu, Po-Hao; Ma, Yu-Ting; Fang, Ya-Ching; Huang, Jing-Jia; Gan, Yu-Ling; Chang, Pei-Tzu; Jow, Guey-Mei; Tang, Chih-Yung; Jeng, Chung-Jiuan

    2017-01-18

    Mammalian Eag1 (Kv10.1) potassium (K+) channels are widely expressed in the brain. Several mutations in the gene encoding human Eag1 K+ channel have been associated with congenital neurodevelopmental anomalies. Currently very little is known about the molecules mediating protein synthesis and degradation of Eag1 channels. Herein we aim to ascertain the protein degradation mechanism of rat Eag1 (rEag1). We identified cullin 7 (Cul7), a member of the cullin-based E3 ubiquitin ligase family, as a novel rEag1 binding partner. Immunoprecipitation analyses confirmed the interaction between Cul7 and rEag1 in heterologous cells and neuronal tissues. Cul7 and rEag1 also exhibited significant co-localization at synaptic regions in neurons. Over-expression of Cul7 led to reduced protein level, enhanced ubiquitination, accelerated protein turn-over, and decreased current density of rEag1 channels. We provided further biochemical and morphological evidence suggesting that Cul7 targeted endoplasmic reticulum (ER)- and plasma membrane-localized rEag1 to the proteasome and the lysosome, respectively, for protein degradation. Cul7 also contributed to protein degradation of a disease-associated rEag1 mutant. Together, these results indicate that Cul7 mediates both proteasomal and lysosomal degradations of rEag1. Our findings provide a novel insight to the mechanisms underlying ER and peripheral protein quality controls of Eag1 channels.

  19. Structural analysis of the S4-S5 linker of the human KCNQ1 potassium channel.

    Science.gov (United States)

    Gayen, Shovanlal; Li, Qingxin; Kang, CongBao

    2015-01-02

    KCNQ1 plays important roles in the cardiac action potential and consists of an N-terminal domain, a voltage-sensor domain, a pore domain and a C-terminal domain. KCNQ1 is a voltage-gated potassium channel and its channel activity is regulated by membrane potentials. The linker between transmembrane helices 4 and 5 (S4-S5 linker) is important for transferring the conformational changes from the voltage-sensor domain to the pore domain. In this study, the structure of the S4-S5 linker of KCNQ1 was investigated by solution NMR, circular dichroism and fluorescence spectroscopic studies. The S4-S5 linker adopted a helical structure in detergent micelles. The W248 may interact with the cell membrane. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy.

    Science.gov (United States)

    Wang, Liguo; Sigworth, Fred J

    2009-09-10

    A long-sought goal in structural biology has been the imaging of membrane proteins in their membrane environments. This goal has been achieved with electron crystallography in those special cases where a protein forms highly ordered arrays in lipid bilayers. It has also been achieved by NMR methods in proteins up to 50 kilodaltons (kDa) in size, although milligram quantities of protein and isotopic labelling are required. For structural analysis of large soluble proteins in microgram quantities, an increasingly powerful method that does not require crystallization is single-particle reconstruction from electron microscopy of cryogenically cooled samples (electron cryomicroscopy (cryo-EM)). Here we report the first single-particle cryo-EM study of a membrane protein, the human large-conductance calcium- and voltage-activated potassium channel (BK), in a lipid environment. The new method is called random spherically constrained (RSC) single-particle reconstruction. BK channels, members of the six-transmembrane-segment (6TM) ion channel family, were reconstituted at low density into lipid vesicles (liposomes), and their function was verified by a potassium flux assay. Vesicles were also frozen in vitreous ice and imaged in an electron microscope. From images of 8,400 individual protein particles, a three-dimensional (3D) reconstruction of the BK channel and its membrane environment was obtained at a resolution of 1.7-2.0 nm. Not requiring the formation of crystals, the RSC approach promises to be useful in the structural study of many other membrane proteins as well.

  1. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Directory of Open Access Journals (Sweden)

    Dong-Hai Liu

    Full Text Available Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  2. The potassium current carried by TREK-1 channels in rat cardiac ventricular muscle.

    Science.gov (United States)

    Bodnár, Mandy; Schlichthörl, Günter; Daut, Jürgen

    2015-05-01

    We studied the potassium current flowing through TREK-1 channels in rat cardiac ventricular myocytes. We separated the TREK-1 current from other current components by blocking most other channels with a blocker cocktail. We tried to inhibit the TREK-1 current by activating protein kinase A (PKA) with a mixture of forskolin and isobutyl-methylxanthine (IBMX). Activation of PKA blocked an outwardly rectifying current component at membrane potentials positive to -40 mV. At 37 °C, application of forskolin plus IBMX reduced the steady-state outward current measured at positive voltages by about 52 %. Application of the potassium channel blockers quinidine or tetrahexylammonium also reduced the steady-state outward current by about 50 %. Taken together, our results suggest that the increase in temperature from 22 to 37 °C increased the TREK-1 current by a factor of at least 5 and that the average density of the TREK-1 current in rat cardiomyocytes at 37 °C is about 1.5 pA/pF at +30 mV. The contribution of TREK-1 to the action potential was assessed by using a dynamic patch clamp technique. After subtraction of simulated TREK-1 currents, action potential duration at 50 or 90 % repolarisation was increased by about 12 %, indicating that TREK-1 may be functionally important in rat ventricular muscle. During sympathetic stimulation, inhibition of TREK-1 channels via PKA is expected to prolong the action potential primarily in subendocardial myocytes; this may decrease the transmural dispersion of repolarisation and thus may serve to prevent the occurrence of arrhythmias.

  3. Huntington disease skeletal muscle is hyperexcitable owing to chloride and potassium channel dysfunction.

    Science.gov (United States)

    Waters, Christopher W; Varuzhanyan, Grigor; Talmadge, Robert J; Voss, Andrew A

    2013-05-28

    Huntington disease is a progressive and fatal genetic disorder with debilitating motor and cognitive defects. Chorea, rigidity, dystonia, and muscle weakness are characteristic motor defects of the disease that are commonly attributed to central neurodegeneration. However, no previous study has examined the membrane properties that control contraction in Huntington disease muscle. We show primary defects in ex vivo adult skeletal muscle from the R6/2 transgenic mouse model of Huntington disease. Action potentials in diseased fibers are more easily triggered and prolonged than in fibers from WT littermates. Furthermore, some action potentials in the diseased fibers self-trigger. These defects occur because of decreases in the resting chloride and potassium conductances. Consistent with this, the expression of the muscle chloride channel, ClC-1, in Huntington disease muscle was compromised by improper splicing and a corresponding reduction in total Clcn1 (gene for ClC-1) mRNA. Additionally, the total Kcnj2 (gene for the Kir2.1 potassium channel) mRNA was reduced in disease muscle. The resulting muscle hyperexcitability causes involuntary and prolonged contractions that may contribute to the chorea, rigidity, and dystonia that characterize Huntington disease.

  4. Mechanisms underlying the protein-kinase mediated regulation of the HERG potassium channel synthesis

    Science.gov (United States)

    Krishnan, Yamini; Li, Yan; Zheng, Renjian; Kanda, Vikram; McDonald, Thomas V.

    2012-01-01

    The HERG (human ether-a-go-go related gene) potassium channel aids in repolarization of the cardiomyocyte membrane at the end of each action potential. We have previously shown that sustained protein kinase A or C (PKA and PKC) activity specifically enhances channel synthesis over the course of hours to days in heterologous expression and cardiac myocytes. The kinase-mediated augmentation of the channel is post-transcriptional and occurs near or at the endoplasmic reticulum. Here we report our further investigations into the mechanisms of kinase-mediated augmentation of HERG channel protein. We show that HERG channel phosphorylation alone is not sufficient for the PKA-dependent increase to occur. In vitro translation studies indicate that an additional factor is required for the process. Pharmacologic inhibitors suggest that the channel augmentation is not due to kinase-mediated alteration in proteasome or lysosome activity. PKA activation had no effect on stability of HERG mRNA and polyribosomal profiling showed that kinase activity did not elevate translation from low to high rates. Transcriptional inhibition results suggest that the additional cellular factor is a PKA-regulated protein. Together, these findings suggest that PKA-mediated augmentation of HERG abundance is more complex than previously appreciated involving enhancement of already active translation rates, phosphorylation of the channel protein and at least one other cAMP/PKA-responsive protein. Further exploration of molecular components of this regulatory pathway will be necessary to determine exact mechanism and the biomedical impact of this process in vivo. PMID:22613764

  5. Inhibition of cloned hERG potassium channels by risperidone and paliperidone.

    Science.gov (United States)

    Lee, Hong Joon; Choi, Jin-Sung; Choi, Bok Hee; Hahn, Sang June

    2017-06-01

    Risperidone and one of its active metabolites, paliperidone, are widely used for the treatment of schizophrenia. We used a patch-clamp study to investigate the effects of paliperidone on hERG potassium channels expressed in HEK cells. Western blot analyses were used to study the effects of risperidone and paliperidone on hERG and hERG 3.1 isoform channel trafficking. Risperidone and paliperidone inhibited the hERG tail currents in a concentration-dependent manner with IC 50 values of 0.16 and 0.57 μM, respectively. The block of hERG currents by paliperidone was voltage-dependent, increasing over a range of voltages for channel activation. A fast application of paliperidone inhibited the hERG current elicited by a 5-s depolarizing pulse to +60 mV to fully inactivate the hERG currents, suggesting an inactivated state block. A fast application of paliperidone during repolarization reversibly inhibited the hERG tail currents in a concentration-dependent manner with a IC 50 value of 1.26 μM. Kinetic analysis of paliperidone interaction with the open state of the hERG channels showed that the rate constants of association (k +1 ) and dissociation (k -1 ) for paliperidone were 0.45 μM -1  s -1 and 1.07 s -1 , respectively. Paliperidone shifted the steady-state inactivation curve of the hERG currents in a hyperpolarizing direction and also produced a use-dependent block. Risperidone and paliperidone had no effect on hERG and hERG 3.1 channel trafficking to the cell membrane. Our results indicated that paliperidone inhibited the hERG current by preferentially interacting with the open and inactivated states of the channel, but not by disruption of hERG channel protein trafficking.

  6. Modification of C-type inactivating Shaker potassium channels by chloramine-T.

    Science.gov (United States)

    Schlief, T; Schönherr, R; Heinemann, S H

    1996-02-01

    Shaker potassium channels undergo a slow C-type inactivation which can be hastened dramatically by single-point mutations in or near the pore region. We found that the oxidizing agent chloramine-T (Chl-T) causes an irreversible loss of current for those mutants which show C-type inactivation. For several mutants at position T449, which show a wide spectrum of inactivation time constants, the time constant of current rundown induced by Chl-T correlated with the speed of inactivation. Rundown was accelerated when the channels were in the inactivated state but rundown also occurred when channels were not opened or inactivated. Apparently, only those channels which can undergo C-type inactivation are accessible to Chl-T. In order to gain information about the target amino-acid residue for the action of Chl-T and the structural rearrangements occurring during C-type inactivation, several mutant channel proteins were compared with respect to their response to Chl-T. Since Chl-T can oxidize cysteine and methionine residues, we mutated the possible targets in and close to the pore region, namely C462 to A, and M440 and M448 to I. While the residues M440 and C462 were not important for channel rundown, mutation of M448 to I made the channels more resistant to Chl-T by about one order of magnitude. While inactivation was accelerated upon application of Chl-T in most mutants, mutation of M448 to I abolished this effect on the time course of inactivation, indicating that M448 is one of the target residues for Chl-T.

  7. Channeling your inner ear potassium: K(+) channels in vestibular hair cells.

    Science.gov (United States)

    Meredith, Frances L; Rennie, Katherine J

    2016-08-01

    During development of vestibular hair cells, K(+) conductances are acquired in a specific pattern. Functionally mature vestibular hair cells express different complements of K(+) channels which uniquely shape the hair cell receptor potential and filtering properties. In amniote species, type I hair cells (HCI) have a large input conductance due to a ubiquitous low-voltage-activated K(+) current that activates with slow sigmoidal kinetics at voltages negative to the membrane resting potential. In contrast type II hair cells (HCII) from mammalian and non-mammalian species have voltage-dependent outward K(+) currents that activate rapidly at or above the resting membrane potential and show significant inactivation. A-type, delayed rectifier and calcium-activated K(+) channels contribute to the outward K(+) conductance and are present in varying proportions in HCII. In many species, K(+) currents in HCII in peripheral locations of vestibular epithelia inactivate more than HCII in more central locations. Two types of inward rectifier currents have been described in both HCI and HCII. A rapidly activating K(+)-selective inward rectifier current (IK1, mediated by Kir2.1 channels) predominates in HCII in peripheral zones, whereas a slower mixed cation inward rectifier current (Ih), shows greater expression in HCII in central zones of vestibular epithelia. The implications for sensory coding of vestibular signals by different types of hair cells are discussed. This article is part of a Special Issue entitled Reviews 2016>. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Yunzhao R Ren

    Full Text Available The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders.

  9. C-terminal domains implicated in the functional surface expression of potassium channels

    Science.gov (United States)

    Jenke, Marc; Sánchez, Araceli; Monje, Francisco; Stühmer, Walter; Weseloh, Rüdiger M.; Pardo, Luis A.

    2003-01-01

    A short C-terminal domain is required for correct tetrameric assembly in some potassium channels. Here, we show that this domain forms a coiled coil that determines not only the stability but also the selectivity of the multimerization. Synthetic peptides comprising the sequence of this domain in Eag1 and other channels are able to form highly stable tetrameric coiled coils and display selective heteromultimeric interactions. We show that loss of function caused by disruption of this domain in Herg1 can be rescued by introducing the equivalent domain from Eag1, and that this chimeric protein can form heteromultimers with Eag1 while wild-type Erg1 cannot. Additionally, a short endoplasmic reticulum retention sequence closely preceding the coiled coil plays a crucial role for surface expression. Both domains appear to co-operate to form fully functional channels on the cell surface and are a frequent finding in ion channels. Many pathological phenotypes may be attributed to mutations affecting one or both domains. PMID:12554641

  10. Oxidation of a potassium channel causes progressive sensory function loss during ageing

    Science.gov (United States)

    Cai, Shi-Qing; Sesti, Federico

    2009-01-01

    A central question is whether potassium (K+) channels, which are key regulators of neuronal excitability, are targets of reactive oxygen species (ROS) and whether these interactions have a role in the mechanisms underlying neurodegeneration. Here, we show that oxidation of K+ channel KVS-1 during ageing causes sensory function loss in Caenorhabditis elegans, and that protection of this channel from oxidation preserves neuronal function. Chemotaxis, a function controlled by KVS-1, was significantly impaired in worms exposed to oxidizing agents, but only moderately affected in worms harboring an oxidation-resistant KVS-1 mutant (C113S). In ageing C113S transgenic worms, the effects of free radical accumulation were significantly attenuated compared to wild type. Electrophysiological analyses showed that both ROS accumulation during ageing, or acute exposure to oxidizing agents, acted primarily to alter the excitability of the neurons that mediate chemotaxis. Together, these findings establish a pivotal role for ROS-mediated oxidation of voltage-gated K+ channels in sensorial decline during ageing in invertebrates. PMID:19330004

  11. Allitridi inhibits multiple cardiac potassium channels expressed in HEK 293 cells.

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Xu

    Full Text Available Allitridi (diallyl trisulfide is an active compound (volatile oil from garlic. The previous studies reported that allitridi had anti-arrhythmic effect. The potential ionic mechanisms are, however, not understood. The present study was designed to determine the effects of allitridi on cardiac potassium channels expressed in HEK 293 cells using a whole-cell patch voltage-clamp technique and mutagenesis. It was found that allitridi inhibited hKv4.3 channels (IC(50 = 11.4 µM by binding to the open channel, shifting availability potential to hyperpolarization, and accelerating closed-state inactivation of the channel. The hKv4.3 mutants T366A, T367A, V392A, and I395A showed a reduced response to allitridi with IC(50s of 35.5 µM, 44.7 µM, 23.7 µM, and 42.4 µM. In addition, allitridi decreased hKv1.5, hERG, hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells with IC(50s of 40.2 µM, 19.6 µM and 17.7 µM. However, it slightly inhibited hKir2.1 current (100 µM, inhibited by 9.8% at -120 mV. Our results demonstrate for the first time that allitridi preferably blocks hKv4.3 current by binding to the open channel at T366 and T367 of P-loop helix, and at V392 and I395 of S6 domain. It has a weak inhibition of hKv1.5, hERG, and hKCNQ1/hKCNE1 currents. These effects may account for its anti-arrhythmic effect observed in experimental animal models.

  12. Chronic Alcohol, Intrinsic Excitability, and Potassium Channels: Neuroadaptations and Drinking Behavior.

    Science.gov (United States)

    Cannady, Reginald; Rinker, Jennifer A; Nimitvilai, Sudarat; Woodward, John J; Mulholland, Patrick J

    2018-01-28

    Neural mechanisms underlying alcohol use disorder remain elusive, and this lack of understanding has slowed the development of efficacious treatment strategies for reducing relapse rates and prolonging abstinence. While synaptic adaptations produced by chronic alcohol exposure have been extensively characterized in a variety of brain regions, changes in intrinsic excitability of critical projection neurons are understudied. Accumulating evidence suggests that prolonged alcohol drinking and alcohol dependence produce plasticity of intrinsic excitability as measured by changes in evoked action potential firing and after-hyperpolarization amplitude. In this chapter, we describe functional changes in cell firing of projection neurons after long-term alcohol exposure that occur across species and in multiple brain regions. Adaptations in calcium-activated (K Ca 2), voltage-dependent (K V 7), and G protein-coupled inwardly rectifying (K ir 3 or GIRK) potassium channels that regulate the evoked firing and after-hyperpolarization parallel functional changes in intrinsic excitability induced by chronic alcohol. Moreover, there are strong genetic links between alcohol-related behaviors and genes encoding K Ca 2, K V 7, and GIRK channels, and pharmacologically targeting these channels reduces alcohol consumption and alcohol-related behaviors. Together, these studies demonstrate that chronic alcohol drinking produces adaptations in K Ca 2, K V 7, and GIRK channels leading to impaired regulation of the after-hyperpolarization and aberrant cell firing. Correcting the deficit in the after-hyperpolarization with positive modulators of K Ca 2 and K V 7 channels and altering the GIRK channel binding pocket to block the access of alcohol represent a potentially highly effective pharmacological approach that can restore changes in intrinsic excitability and reduce alcohol consumption in affected individuals.

  13. Distribution of high-conductance calcium-activated potassium channels in rat vestibular epithelia.

    Science.gov (United States)

    Schweizer, Felix E; Savin, David; Luu, Cindy; Sultemeier, David R; Hoffman, Larry F

    2009-11-10

    Voltage- and calcium-activated potassium channels (BK) are important regulators of neuronal excitability. BK channels seem to be crucial for frequency tuning in nonmammalian vestibular and auditory hair cells. However, there are a paucity of data concerning BK expression in mammalian vestibular hair cells. We therefore investigated the localization of BK channels in mammalian vestibular hair cells, specifically in rat vestibular neuroepithelia. We find that only a subset of hair cells in the utricle and the crista ampullaris express BK channels. BK-positive hair cells are located mainly in the medial striolar region of the utricle, where they constitute at most 12% of hair cells, and in the central zone of the horizontal crista. A majority of BK-positive hair cells are encapsulated by a calretinin-positive calyx defining them as type I cells. The remainder are either type I cells encapsulated by a calretinin-negative calyx or type II hair cells. Surprisingly, the number of BK-positive hair cells in the utricle peaks in juvenile rats and declines in early adulthood. BK channels were not found in vestibular afferent dendrites or somata. Our data indicate that BK channel expression in the mammalian vestibular system differs from the expression pattern in the mammalian auditory and the nonmammalian vestibular system. The molecular diversity of vestibular hair cells indicates a functional diversity that has not yet been fully characterized. The predominance of BK-positive hair cells within the medial striola of juvenile animals suggests that they contribute to a scheme of highly lateralized coding of linear head movements during late development.

  14. Human ether-à-go-go gene potassium channels are regulated by EGFR tyrosine kinase.

    Science.gov (United States)

    Wu, Wei; Dong, Ming-Qing; Wu, Xing-Gang; Sun, Hai-Ying; Tse, Hung-Fat; Lau, Chu-Pak; Li, Gui-Rong

    2012-02-01

    Human ether á-go-go gene potassium channels (hEAG1 or Kv10.1) are expressed in brain and various human cancers and play a role in neuronal excitement and tumor progression. However, the functional regulation of hEAG channels by signal transduction is not fully understood. The present study was therefore designed to investigate whether hEAG1 channels are regulated by protein tyrosine kinases (PTKs) in HEK 293 cells stably expressing hEAG1 gene using whole-cell patch voltage-clamp, immunoprecipitation, Western blot, and mutagenesis approaches. We found that the selective epidermal growth factor receptor (EGFR) kinase inhibitor AG556 (10 μM), but not the platelet growth factor receptor (PDGFR) kinase inhibitor AG1295 (10 μM) or the Src-family inhibitor PP2 (10 μM), can inhibit hEAG1 current, and the inhibitory effect can be reversed by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate. Immunoprecipitation and Western blot analysis revealed that tyrosine phosphorylation level of hEAG1 channels was reduced by AG556, and the reduction was significantly countered by orthovanadate. The hEAG1 mutants Y90A, Y344A and Y485A, but not Y376A and Y479A, exhibited reduced response to AG556. Interestingly, the inhibition effect of AG556 was lost in triple mutant hEAG1 channels at Y90, Y344, and Y485 with alanine. These results demonstrate for the first time that hEAG1 channel activity is regulated by EGFR kinase at the tyrosine residues Tyr90, Try344, and Try485. This effect is likely involved in regulating neuronal activity and/or tumor growth. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Expression of Potassium Channels in Uterine Smooth Muscle Cells from Patients with Adenomyosis

    Directory of Open Access Journals (Sweden)

    Jing-Hua Shi

    2016-01-01

    Full Text Available Background: Adenomyosis (AM has impaired contraction. This study aimed to explore the expression of potassium channels related to contraction in myometrial smooth muscle cells (MSMCs of AM. Methods: Uterine tissue samples from 22 patients (cases with histologically confirmed AM and 12 (controls with cervical intraepithelial neoplasia were collected for both immunohistochemistry and real-time polymerase chain reaction to detect the expression of large conductance calcium- and voltage-sensitive K + channel (BKCa-α/β subunits, voltage-gated potassium channel (Kv 4.2, and Kv4.3. Student′s t-test was used to compare the expression. Results: The BKCa-α/β subunits, Kv4.2, and Kv4.3 were located in smooth muscle cells, glandular epithelium, and stromal cells. However, BKCa-β subunit expression in endometrial glands of the controls was weak, and Kv4.3 was almost undetectable in the controls. The expression of BKCa-α messenger RNA (mRNA (0.62 ± 0.19-fold decrease, P < 0.05 and Kv4.3 mRNA (0.67 ± 0.20-fold decrease, P < 0.05 decreased significantly in the MSMCs of the control group compared with the AM group. However, there were no significant differences in BKCa-β subunit mRNA or Kv4.2 mRNA. Conclusions: The BKCa-α mRNA and the Kv4.3 mRNA are expressed significantly higher in AM than those in the control group, that might cause the abnormal uterus smooth muscle contractility, change the microcirculation of uterus to accumulate the inflammatory factors, impair the endometrium further, and aggravate the pain.

  16. Kv7 potassium channel activation with ICA-105665 reduces photoparoxysmal EEG responses in patients with epilepsy.

    Science.gov (United States)

    Kasteleijn-Nolst Trenité, Dorotheé G A; Biton, Victor; French, Jacqueline A; Abou-Khalil, Bassel; Rosenfeld, William E; Diventura, Bree; Moore, Elizabeth L; Hetherington, Seth V; Rigdon, Greg C

    2013-08-01

    To assess the effects of ICA-105665, an agonist of neuronal Kv7 potassium channels, on epileptiform EEG discharges, evoked by intermittent photic stimulation (IPS), the so-called photoparoxysmal responses (PPRs) in patients with epilepsy. Male and female patients aged 18-60 years with reproducible PPRs were eligible for enrollment. The study was conducted as a single-blind, single-dose, multiple-cohort study. Four patients were enrolled in each of the first three cohorts. Six patients were enrolled in the fourth cohort and one patient was enrolled in the fifth cohort. PPR responses to 14 IPS frequencies (steps) were used to determine the standard photosensitivity range (SPR) following placebo on day 1 and ICA-105665 on day 2. The SPR was quantified for three eye conditions (eyes closing, eyes closed, and eyes open), and the most sensitive condition was used for assessment of efficacy. A partial response was defined as a reduction in the SPR of at least three units at three separate time points following ICA-105665 compared to the same time points following placebo with no time points with more than three units of increase. Complete suppression was defined by no PPRs in any eye condition at one or more time points. Six individual patients participated in the first three cohorts (100, 200, and 400 mg). Six patients participated in the fourth cohort (500 mg), and one patient participated in the fifth cohort (600 mg). Decreases in SPR occurred in one patient at 100 mg, two patients receiving 400 mg ICA-105665 (complete abolishment of SPR occurred in one patient at 400 mg), and in four of six patients receiving 500 mg. The most common adverse events (AEs) were those related to the nervous system, and dizziness appeared to be the first emerging AE. The single patient in the 600 mg cohort developed a brief generalized seizure within 1 h of dosing, leading to the discontinuation of additional patients at this dose, per the predefined protocol stopping rules. ICA-105665

  17. Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes.

    Science.gov (United States)

    Rohmann, Kevin N; Deitcher, David L; Bass, Andrew H

    2009-07-01

    Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via

  18. The involvement of potassium channel ORK1 in short-term memory and sleep in Drosophila.

    Science.gov (United States)

    Zhang, Xiaoyan; Zheng, Yabin; Ren, Qingguo; Zhou, Hong

    2017-07-01

    The sleep and cognitive dysfunction are common in major depressive disorders (MDDs). Recently, the 2-pore domain potassium channel twik-related K(+) channel 1 (TREK-1) has been identified to be closely related to the etiology of MDD. However, whether TREK-1 is involved in the regulation of sleep and cognition is still unknown. The present study tried to dissect the role of outwardly rectifying K+ channel-1 (ORK1) (TREK-1 homolog in Drosophila) in sleep and cognition in Drosophila. The mutant and over-expressed lines of ork1 were generated using Drosophila genetics. Sleep analysis and short-term memory experiments were used to test sleep time and short-term memory of the mutant and over-expressed ORK1 lines, respectively. Our results showed that the learning index of ork1 mutant lines was increased compared with the wild type. However, ork1 mutant could obviously decrease sleep time in Drosophila. Contrary to the ork1 mutant lines, we also found that ORK1 over-expression could increase sleep time and decreased learning index in Drosophila. Results from this study suggest that ORK1 might play an important role in the regulation of sleep time and short-term memory in Drosophila.

  19. Hexachlorophene Is a Potent KCNQ1/KCNE1 Potassium Channel Activator Which Rescues LQTs Mutants

    Science.gov (United States)

    Zheng, Yueming; Zhu, Xuejing; Zhou, Pingzheng; Lan, Xi; Xu, Haiyan; Li, Min; Gao, Zhaobing

    2012-01-01

    The voltage-gated KCNQ1 potassium channel is expressed in cardiac tissues, and coassembly of KCNQ1 with an auxiliary KCNE1 subunit mediates a slowly activating current that accelerates the repolarization of action potential in cardiomyocytes. Mutations of KCNQ1 genes that result in reduction or loss of channel activity cause prolongation of repolarization during action potential, thereby causing long QT syndrome (LQTs). Small molecule activators of KCNQ1/KCNE1 are useful both for understanding the mechanism of the complex activity and for developing therapeutics for LQTs. In this study we report that hexachlorophene (HCP), the active component of the topical anti-infective prescription drug pHisoHex, is a KCNQ1/KCNE1 activator. HCP potently increases the current amplitude of KCNQ1/KCNE1 expressed by stabilizing the channel in an open state with an EC50 of 4.61±1.29 μM. Further studies in cardiomyocytes showed that HCP significantly shortens the action potential duration at 1 μM. In addition, HCP is capable of rescuing the loss of function of the LQTs mutants caused by either impaired activation gating or phosphatidylinositol-4,5-bisphosphate (PIP2) binding affinity. Our results indicate HCP is a novel KCNQ1/KCNE1 activator and may be a useful tool compound for the development of LQTs therapeutics. PMID:23251633

  20. Cortactin Controls Surface Expression of the Voltage-gated Potassium Channel KV10.1

    Science.gov (United States)

    Herrmann, Solveig; Ninkovic, Milena; Kohl, Tobias; Lörinczi, Éva; Pardo, Luis A.

    2012-01-01

    KV10.1 is a voltage-gated potassium channel aberrantly expressed in many cases of cancer, and participates in cancer initiation and tumor progression. Its action as an oncoprotein can be inhibited by a functional monoclonal antibody, indicating a role for channels located at the plasma membrane, accessible to the antibody. Cortactin is an actin-interacting protein implicated in cytoskeletal architecture and often amplified in several types of cancer. In this study, we describe a physical and functional interaction between cortactin and KV10.1. Binding of these two proteins occurs between the C terminus of KV10.1 and the proline-rich domain of cortactin, regions targeted by many post-translational modifications. This interaction is specific for KV10.1 and does not occur with KV10.2. Cortactin controls the abundance of KV10.1 at the plasma membrane and is required for functional expression of KV10.1 channels. PMID:23144454

  1. Kv10.1 potassium channel: from the brain to the tumors.

    Science.gov (United States)

    Cázares-Ordoñez, V; Pardo, L A

    2017-10-01

    The KCNH1 gene encodes the Kv10.1 (Eag1) ion channel, a member of the EAG (ether-à-go-go) family of voltage-gated potassium channels. Recent studies have demonstrated that KCHN1 mutations are implicated in Temple-Baraitser and Zimmermann-Laband syndromes and other forms of developmental deficits that all present with mental retardation and epilepsy, suggesting that Kv10.1 might be important for cognitive development in humans. Although the Kv10.1 channel is mainly expressed in the mammalian brain, its ectopic expression occurs in 70% of human cancers. Cancer cells and tumors expressing Kv10.1 acquire selective advantages that favor cancer progression through molecular mechanisms that involve several cellular pathways, indicating that protein-protein interactions may be important for Kv10.1 influence in cell proliferation and tumorigenesis. Several studies on transcriptional and post-transcriptional regulation of Kv10.1 expression have shown interesting mechanistic insights about Kv10.1 role in oncogenesis, increasing the importance of identifying the cellular factors that regulate Kv10.1 expression in tumors.

  2. Effects of fluoxetine on protein expression of potassium ion channels in the brain of chronic mild stress rats

    Directory of Open Access Journals (Sweden)

    Chunlin Chen

    2015-01-01

    Full Text Available The purpose of this study is to investigate the expression of major potassium channel subtypes in the brain of chronical mild stress (CMS rats and reveal the effects of fluoxetine on the expression of these channels. Rats were exposed to a variety of unpredictable stress for three weeks and induced anhedonia, lower sucrose preference, locomotor activity and lower body weight. The protein expressions were determined by Western blot. CMS significantly increased the expression of Kv2.1 channel in frontal cortex but not in hippocampus, and the expression level was normalized after fluoxetine treatment. The expression of TREK-1 channel was also obviously increased in frontal cortex in CMS rats. Fluoxetine treatment might prevent this increase. However, the expression of Kv3.1 and Kv4.2 channels was considerably decreased in hippocampus after CMS, and was not affected by fluoxetine. These results suggest that different subtypes of potassium channels are associated with the pathophysiology of depression and that the therapeutical effects of fluoxetine may relate to Kv2.1 and TREK-1 potassium channels.

  3. Nonlinearity of a Voltage-Gated Potassium Channel Revealed by the Mechanical Susceptibility

    Directory of Open Access Journals (Sweden)

    Amila Ariyaratne

    2013-02-01

    Full Text Available The voltage-gated potassium channel from Aeropyrum pernix operates by coupling the voltage-driven motion of a charged group of amino acids to the opening and closing of the pore. In this experiment, we drive this charged group with an ac field and observe the effect on the gating. The measurements for different frequencies and amplitudes of the forcing reveal an essential nonlinearity in the mechanical behavior of the molecule. Within a continuum-mechanics description, we extract the effective dissipation parameter γ for this conformational motion and find γ≈0.2  g/s, similar to recent nanorheology measurements on the conformational motion of an enzyme.

  4. Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling.

    Science.gov (United States)

    Ohno, M; Gibbons, G H; Dzau, V J; Cooke, J P

    1993-07-01

    The endothelium acts as the sensor of shear stress and as the mediator of flow-induced changes in vessel tone and structure. The purpose of this study was to delineate the signal transduction pathway of flow-induced release of endothelium-derived relaxing factor (EDRF). We used a shear stress apparatus (a modified cone-plate viscometer) to expose cultured endothelial cells to a well-defined laminar fluid flow. Confluent bovine aortic endothelial cells (BAECs) were subjected to varying levels of shear stress, and intracellular cyclic GMP (cGMP) in the BAECs was measured by radioimmunoassay. After 60 seconds of laminar fluid flow, BAEC cGMP increased by 300% from basal levels (from 0.54 to 1.70 pmol/mg protein, P shear stress within a physiological range up to 40 dynes/cm2. This increase in cGMP was abrogated by L-N-methyl-arginine (the competitive antagonist of nitric oxide [NO] synthase), indicating that the flow-induced activation of soluble guanylate cyclase was mediated by autocrine NO production. Furthermore, a potassium channel antagonist, tetraethylammonium ion (TEA [3 mmol/L]) and a G(i) or G(o) protein inhibitor, pertussis toxin (100 ng/mL) also blocked the flow-induced increase in cGMP. By contrast, calcium ionophore or atrial natriuretic peptide caused elevations of cGMP that were not affected by TEA or pertussis toxin. These findings indicate that shear stress elevates endothelial cGMP via an NO-dependent mechanism. The effect of shear stress is mediated by a unique signal transduction pathway that is coupled to a pertussis toxin-sensitive G protein and that requires the activity of an endothelial potassium channel.

  5. Membrane proteins involved in potassium shifts during muscle activity and fatigue

    DEFF Research Database (Denmark)

    Kristensen, Michael; Hansen, T.; Juel, C.

    2006-01-01

    Muscle activity is associated with potassium displacements, which may cause fatigue. It was reported previously that the density of the large-conductance Ca2+-dependent K+ (BKCa) channel is higher in the T tubule membrane than in the sarcolemmal membrane and that the opposite is the case...... for the ATP-sensitive K+ (KATP) channel. In the present experiments, we investigated the subcellular localizations of the strong inward rectifier 2.1 K+ (Kir2.1) channel and the Na+-K+-2Cl- (NKCC)1 cotransporter with Western blot analysis of different muscle fractions. Furthermore, muscle function was studied...... while trying to manipulate the opening probability or transport capacity of these proteins during electrical stimulation of isolated soleus muscles. All experiments were made with excised muscle from male Wistar rats. Kir2.1 channels were almost undetectable in the sarcolemmal membrane but present...

  6. Potassium channel and NKCC cotransporter involvement in ocular refractive control mechanisms.

    Directory of Open Access Journals (Sweden)

    Sheila G Crewther

    Full Text Available Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were raised with +/-10D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were made, targeting fluid control mechanisms. Comparison of refractive compensation to 5 mM Ba(2+ and 10(-5 M bumetanide compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba(2+ but significant change only for negative lens defocus with bumetanide (Rx(SAL(-10D = -8.6 +/- .9 D; Rx(Ba2+(-10D = -2.9 +/- .9 D; Rx(Bum(-10D = -2.9 +/- .9 D; Rx(SAL(+10D = +8.2 +/- .9 D; Rx(Ba2+(+10D = +2.8 +/- 1.3 D; Rx(Bum(+10D = +8.0 +/- .7 D. Vitreous chamber depths showed a main effect for drug conditions with less depth change in response to defocus shown for Ba(2+ relative to Saline, while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus. The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse. The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON response, suggest a

  7. Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis

    DEFF Research Database (Denmark)

    Liang, Bo; Soka, Magdalena; Christensen, Alex Horby

    2013-01-01

    The two-pore domain potassium channel, K2P3.1 (TASK-1) modulates background conductance in isolated human atrial cardiomyocytes and has been proposed as a potential drug target for atrial fibrillation (AF). TASK-1 knockout mice have a predominantly ventricular phenotype however, and effects of TA...

  8. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Bek, Toke

    2009-01-01

    PURPOSE: Endothelial dysfunction and impaired vasodilation may be involved in the pathogenesis of retinal vascular diseases. In the present study, the mechanisms underlying bradykinin vasodilation were examined and whether calcium-activated potassium channels of small (SK(Ca)) and intermediate (I...

  9. Students' Understanding of External Representations of the Potassium Ion Channel Protein Part II: Structure-Function Relationships and Fragmented Knowledge

    Science.gov (United States)

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research that has focused on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This study focuses on students' understanding of three external representations (ribbon diagram, wireframe, and hydrophobic/hydrophilic) of the potassium ion channel protein. Analysis…

  10. The calcium-activated potassium channel KCa3.1 is an important modulator of hepatic injury

    DEFF Research Database (Denmark)

    Møller, Linda Maria Sevelsted; Fialla, Annette Dam; Schierwagen, Robert

    2016-01-01

    The calcium-activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Ef...

  11. The potassium channel KCa3.1 as new therapeutic target for the prevention of obliterative airway disease

    DEFF Research Database (Denmark)

    Hua, Xiaoqin; Deuse, Tobias; Chen, Yi-Je

    2013-01-01

    The calcium-activated potassium channel KCa3.1 is critically involved in T-cell activation as well as in the proliferation of smooth muscle cells and fibroblasts. We sought to investigate whether KCa3.1 contributes to the pathogenesis of obliterative airway disease (OAD) and whether knockout or p...

  12. Rapid activation of inwardly rectifying potassium channels by immobile G-protein-coupled receptors.

    Science.gov (United States)

    Lober, Robert M; Pereira, Miguel A; Lambert, Nevin A

    2006-11-29

    G-protein-coupled receptors (GPCRs) mediate slow synaptic transmission and many other effects of small molecule and peptide neurotransmitters. In the standard model of GPCR signaling, receptors and G-proteins diffuse laterally within the plane of the plasma membrane and encounter each other by random collision. This model predicts that signaling will be most efficient if both GPCRs and G-proteins are free to diffuse, thus maximizing collision frequency. However, neuronal GPCRs are often recruited to and enriched at specific synaptic locations, suggesting receptor mobility is restricted in these cells. Here, we test the hypothesis that restricting GPCR mobility impairs signaling in neurons by limiting the frequency of collisions between receptors and G-proteins. Mu-opioid receptors (MORs) were immobilized on the surface of cerebellar granule neurons by avidin-mediated cross-linking, and inwardly rectifying potassium (GIRK) channels were used as rapid indicators of G-protein activation. Mobile and immobile MORs activated GIRK channels with the same onset kinetics and agonist sensitivity in these neurons. In a heterologous expression system, GFP (green fluorescent protein)-tagged G alpha(oA) subunits remained mobile after cross-linking, but their mobility was reduced in the presence of immobile MORs, suggesting that these receptors and subunits were transiently precoupled. In addition, channel activation could be reconstituted with immobile GPCRs, G-protein heterotrimers, and GIRK channels. These results show that collision frequency is not rate-limiting for G-protein activation in CNS neurons, and are consistent with the idea that signaling components are compartmentalized or preassembled.

  13. Kv3.3 potassium channels in lens epithelium and corneal endothelium.

    Science.gov (United States)

    Rae, J L; Shepard, A R

    2000-03-01

    Human Kv3.3/KCNC3 is a Shaw-type potassium channel that has been mapped to chromosome 19q13.3-13.4. Complete mouse and rat Kv3.3 cDNA coding sequences have been published, yet the human Kv3.3 cDNA has remained incomplete for years. We report here for the first time the amino acid sequence for hKv3.3 and the electrophysiological behavior of the encoded channel in transiently transfected mammalian cells. In addition, we report the occurrence of Kv3.3 message in rabbit corneal endothelial cells and the properties of the currents when the corneal channel is expressed. The hKv3.3 gene is highly GC-rich (69%) and contains numerous GC runs which made DNA sequencing and PCR amplification especially problematic. The full-length sequence contains two possible start codons. The encoded 757 amino acid hKv3. 3 protein is about 93% identical to mouse and rat Kv3.3 in the first 659 amino acids before the C-terminal domains diverge greatly as a result of alternative splicing. The rabbit cornea Kv3.3 is a close sequence match for hKv3.3 even in the C-terminal domain. However, we have not yet found a cornea sequence which contains the first potential start codon from hKv3.3. Electrophysiologically, the hKv3. 3 channel produces an A-current although expression of constructs which lack the 5' region of the first start codon inactivate much more slowly than full-length constructs. This short hKv3.3 construct also shows changes in activation. Copyright 2000 Academic Press.

  14. Screening for cardiac HERG potassium channel interacting proteins using the yeast two-hybrid technique.

    Science.gov (United States)

    Ma, Qingyan; Yu, Hong; Lin, Jijin; Sun, Yifan; Shen, Xinyuan; Ren, Li

    2014-02-01

    The human ERG protein (HERG or Kv 11.1) encoded by the human ether-a-go-go-related gene (herg) is the pore-forming subunit of the cardiac delayed rectifier potassium current (IKr) responsible for action potential (AP) repolarization. Mutations in HERG lead to long-QT syndrome, a major cause of arrhythmias. Protein-protein interactions are fundamental for ion channel trafficking, membrane localization, and functional modulation. To identify proteins involved in the regulation of the HERG channel, we conducted a yeast two-hybrid screen of a human heart cDNA library using the C-terminus or N-terminus of HERG as bait. Fifteen proteins were identified as HERG amino terminal (HERG-NT)-interacting proteins, including Caveolin-1 (a membrane scaffold protein with multiple interacting partners, including G-proteins, kinases and NOS), the zinc finger protein, FHL2 and PTPN12 (a non-receptor tyrosine phosphatase). Eight HERG carboxylic terminal (HERG-CT)-interacting proteins were also identified, including the NF-κB-interacting protein myotrophin, We have identified multiple potential interacting proteins that may regulate cardiac IKr through cytoskeletal interactions, G-protein modulation, phosphorylation and downstream second messenger and transcription cascades. These findings provide further insight into dynamic modulation of HERG under physiological conditions and arrhythmogenesis. © 2013 International Federation for Cell Biology.

  15. Prognostic significance of the TREK-1 K2P potassium channels in prostate cancer.

    Science.gov (United States)

    Zhang, Gui-Ming; Wan, Fang-Ning; Qin, Xiao-Jian; Cao, Da-Long; Zhang, Hai-Liang; Zhu, Yao; Dai, Bo; Shi, Guo-Hai; Ye, Ding-Wei

    2015-07-30

    TREK-1 channels belong to the two-pore domain potassium channel superfamily and play an important role in central nervous system diseases. However, few studies have examined their role in carcinogenesis. In this study, we assessed the expression of TREK-1 in 100 prostate cancer (PCa) tissues using immunohistochemistry and further analyzed its clinicopathological significance. Next, cell proliferation and cell cycle analysis were carried out on human PCa PC-3 cell lines where TREK-1 was stably knockdown. We found that compared with normal prostate tissues, PCa tissues showed overexpressed TREK-1 levels and TREK-1 levels were positively associated with Gleason score and T staging. High level of TREK-1 expression was related to shorter castration resistance free survival (CRFS). Furthermore, knockdown of TREK-1 significantly inhibited PCa cell proliferation in vitro and in vivo, and induced a G1/S cell cycle arrest. Our results suggest that TREK-1 might be a biomarker in CRFS judgment of PCa, as well as a potential therapeutic target.

  16. Ether à go-go potassium channel expression in soft tissue sarcoma patients

    Directory of Open Access Journals (Sweden)

    Stühmer Walter

    2006-10-01

    Full Text Available Abstract Background The expression of the human Eag1 potassium channel (Kv10.1 is normally restricted to the adult brain, but it has been detected in both tumour cell lines and primary tumours. Our purpose was to determine the frequency of expression of Eag1 in soft tissue sarcoma and its potential clinical implications. Results We used specific monoclonal antibodies to determine the expression levels of Eag1 in soft tissue sarcomas from 210 patients by immunohistochemistry. Eag1 was expressed in 71% of all tumours, with frequencies ranging from 56% (liposarcoma to 82% (rhabdomyosarcoma. We detected differences in expression levels depending on the histological type, but no association was seen between expression of this protein and sex, age, grade or tumour size. Four cell lines derived from relevant sarcoma histological types (fibrosarcoma and rhabdomyosarcoma were tested for Eag1 expression by real-time RT-PCR. We found all four lines to be positive for Eag1. In these cell lines, blockage of Eag1 by RNA interference led to a decrease in proliferation. Conclusion Eag1 is aberrantly expressed in over 70% sarcomas. In sarcoma cell lines, inhibition of Eag1 expression and/or function leads to reduced proliferation. The high frequency of expression of Eag1 in primary tumours and the restriction of normal expression of the channel to the brain, suggests the application of this protein for diagnostic or therapeutic purposes.

  17. Effect of methamphetamine on the microglial damage: role of potassium channel Kv1.3.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Methamphetamine (Meth abusing represents a major public health problem worldwide. Meth has long been known to induce neurotoxicity. However, the mechanism is still remained poorly understood. Growing evidences indicated that the voltage-gated potassium channels (Kv were participated in neuronal damage and microglia function. With the whole cell patch clamp, we found that Meth significantly increased the outward K⁺ currents, therefore, we explored whether Kv1.3, one of the major K⁺ channels expressed in microglia, was involved in Meth-induced microglia damage. Our study showed that Meth significantly increased the cell viability in a dose dependent manner, while the Kv blocker, tetraethylamine (TEA, 4-Aminopyridine (4-AP and Kv1.3 specific antagonist margatoxin (MgTx, prevented against the damage mediated by Meth. Interestingly, treatment of cells with Meth resulted in increasing expression of Kv1.3 rather than Kv1.5, at both mRNA and protein level, which is partially blocked by MgTx. Furthermore, Meth also stimulated a significant increased expression of IL-6 and TNF-α at protein level, which was significantly inhibited by MgTx. Taken together, these results demonstrated that Kv1.3 was involved in Meth-mediated microglial damage, providing the potential target for the development of therapeutic strategies for Meth abuse.

  18. Ether à go-go potassium channel expression in soft tissue sarcoma patients.

    Science.gov (United States)

    Mello de Queiroz, Fernanda; Suarez-Kurtz, Guilherme; Stühmer, Walter; Pardo, Luis A

    2006-10-05

    The expression of the human Eag1 potassium channel (Kv10.1) is normally restricted to the adult brain, but it has been detected in both tumour cell lines and primary tumours. Our purpose was to determine the frequency of expression of Eag1 in soft tissue sarcoma and its potential clinical implications. We used specific monoclonal antibodies to determine the expression levels of Eag1 in soft tissue sarcomas from 210 patients by immunohistochemistry. Eag1 was expressed in 71% of all tumours, with frequencies ranging from 56% (liposarcoma) to 82% (rhabdomyosarcoma). We detected differences in expression levels depending on the histological type, but no association was seen between expression of this protein and sex, age, grade or tumour size. Four cell lines derived from relevant sarcoma histological types (fibrosarcoma and rhabdomyosarcoma) were tested for Eag1 expression by real-time RT-PCR. We found all four lines to be positive for Eag1. In these cell lines, blockage of Eag1 by RNA interference led to a decrease in proliferation. Eag1 is aberrantly expressed in over 70% sarcomas. In sarcoma cell lines, inhibition of Eag1 expression and/or function leads to reduced proliferation. The high frequency of expression of Eag1 in primary tumours and the restriction of normal expression of the channel to the brain, suggests the application of this protein for diagnostic or therapeutic purposes.

  19. Cloning and characterization of multiple forms of the human kidney ROM-K potassium channel.

    Science.gov (United States)

    Shuck, M E; Bock, J H; Benjamin, C W; Tsai, T D; Lee, K S; Slightom, J L; Bienkowski, M J

    1994-09-30

    The rat kidney ROM-K1 potassium channel cDNA was used to clone the homolog from human kidney using a combination of cDNA cloning, reverse transcriptase-polymerase chain reaction (RT-PCR), and primer extension cloning methods. In addition to the human species homolog of ROM-K1, four additional transcripts that are formed by alternative splicing of a single human gene were also characterized (hROM-K2 to hROM-K5). All five transcripts share a common 3' exon that encodes the majority of the channel protein and in three of the isoforms translation is initiated at a start codon contained within this exon (hROM-K2, hROM-K4, and hROM-K5). The two other transcripts contain additional exons that potentially extend the open reading frame by either 19 amino acid residues (hROM-K1) or by 17 amino acid residues (hROM-K3). Comparison of the translation products from the three representative transcripts (hROM-K1, hROM-K2, and hROM-K3) confirmed that hROM-K1 gave the largest product (41.6 kDa) and was translated more efficiently than either hROM-K2 or hROM-K3. Also, despite the presence of several additional canonical acceptor sites for Asn-linked glycosylation relative to rat ROM-K1, all three channel polypeptides were glycosylated to a similar extent in the in vitro translation reactions when canine pancreatic microsomes were included. A survey of the tissue distribution of expression of the various forms in selected human tissues showed that the core-exon linked to all four possible 5' exons are detected almost exclusively in kidney. The core-exon was also detected in human kidney and lower amounts were detected in skeletal muscle > pancreas > spleen > brain = heart > liver RNAs by RT-PCR. Alternatively, Northern blot analysis of poly(A)+ RNAs from these same tissues revealed a 2.8-kilobase transcript only in kidney. Heterologous expression of either the hROM-K1, hROM-K2, or hROM-K3 channel transcripts in Xenopus oocytes led to the expression of K(+)-selective, Ba(2+)-sensitive

  20. Oestrogen promotes KCNQ1 potassium channel endocytosis and postendocytic trafficking in colonic epithelium

    Science.gov (United States)

    Rapetti-Mauss, Raphael; O'Mahony, Fiona; Sepulveda, Francisco V; Urbach, Valerie; Harvey, Brian J

    2013-01-01

    The cAMP-regulated potassium channel KCNQ1:KCNE3 plays an essential role in transepithelial Cl− secretion. Recycling of K+ across the basolateral membrane provides the driving force necessary to maintain apical Cl− secretion. The steroid hormone oestrogen (17β-oestradiol; E2), produces a female-specific antisecretory response in rat distal colon through the inhibition of the KCNQ1:KCNE3 channel. It has previously been shown that rapid inhibition of the channel conductance results from E2-induced uncoupling of the KCNE3 regulatory subunit from the KCNQ1 channel pore complex. The purpose of this study was to determine the mechanism required for sustained inhibition of the channel function. We found that E2 plays a role in regulation of KCNQ1 cell membrane abundance by endocytosis. Ussing chamber experiments have shown that E2 inhibits both Cl− secretion and KCNQ1 current in a colonic cell line, HT29cl.19A, when cultured as a confluent epithelium. Following E2 treatment, KCNQ1 was retrieved from the plasma membrane by a clathrin-mediated endocytosis, which involved the association between KCNQ1 and the clathrin adaptor, AP-2. Following endocytosis, KCNQ1 was accumulated in early endosomes. Following E2-induced endocytosis, rather than being degraded, KCNQ1 was recycled by a biphasic mechanism involving Rab4 and Rab11. Protein kinase Cδ and AMP-dependent kinase were rapidly phosphorylated in response to E2 on their activating phosphorylation sites, Ser643 and Thr172, respectively (as previously shown). Both kinases are necessary for the E2-induced endocytosis, because E2 failed to induce KCNQ1 internalization following pretreatment with specific inhibitors of both protein kinase Cδ and AMP-dependent kinase. The ubiquitin ligase Nedd4.2 binds KCNQ1 in response to E2 to induce channel internalization. This study has provided the first demonstration of hormonal regulation of KCNQ1 trafficking. In conclusion, we propose that internalization of KCNQ1 is a key event

  1. Sequence Alterations of I(Ks Potassium Channel Genes in Kazakhstani Patients with Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Ainur Akilzhanova

    2014-12-01

    Full Text Available Introduction. Atrial fibrillation (AF is the most common sustained arrhythmia, and it results in significant morbidity and mortality. However, the pathogenesis of AF remains unclear to date. Recently, more pieces of evidence indicated that AF is a multifactorial disease resulting from the interaction between environmental factors and genetics. Recent studies suggest that genetic mutation of the slow delayed rectifier potassium channel (I(Ks may underlie AF.Objective. To investigate sequence alterations of I(Ks potassium channel genes KCNQ1, KCNE1 and KCNE2 in Kazakhstani patients with atrial fibrillation.Methods. Genomic DNA of 69 cases with atrial fibrillation and 27 relatives were analyzed for mutations in all protein-coding exons and their flanking splice site regions of the genes KCNQ1 (NM_000218.2 and NM_181798.1, KCNE1 (NM_000219.2, and KCNE2 (NM_172201.1 using bidirectional sequencing on the ABI 3730xL DNA Analyzer (Applied Biosystems, Foster City, CA, USA.Results. In total, a disease-causing mutation was identified in 39 of the 69 (56.5% index cases. Of these, altered sequence variants in the KCNQ1 gene accounted for 14.5% of the mutations, whereas a KCNE1 mutation accounted for 43.5% of the mutations and KCNE2 mutation accounted for 1.4% of the mutations. The majority of the distinct mutations were found in a single case (80%, whereas 20% of the mutations were observed more than once. We found two sequence variants in KCNQ1 exon 13 (S546S G1638A and exon 16 (Y662Y, C1986T in ten patients (14.5%. In KCNE1 gene in exon 3 mutation, S59G A280G was observed in 30 of 69 patients (43.5% and KCNE2 exon 2 T10K C29A in 1 patient (1.4%. Genetic cascade screening of 27 relatives to the 69 index cases with an identified mutation revealed 26.9% mutation carriers  who were at risk of cardiac events such as syncope or sudden unexpected death.Conclusion. In this cohort of Kazakhstani index cases with AF, a disease-causing mutation was identified in

  2. Conserved single residue in the BK potassium channel required for activation by alcohol and intoxication in C. elegans.

    Science.gov (United States)

    Davis, Scott J; Scott, Luisa L; Hu, Kevin; Pierce-Shimomura, Jonathan T

    2014-07-16

    Alcohol directly modulates the BK potassium channel to alter behaviors in species ranging from invertebrates to humans. In the nematode Caenorhabditis elegans, mutations that eliminate the BK channel, SLO-1, convey dramatic resistance to intoxication by ethanol. We hypothesized that certain conserved amino acids are critical for ethanol modulation, but not for basal channel function. To identify such residues, we screened C. elegans strains with different missense mutations in the SLO-1 channel. A strain with the SLO-1 missense mutation T381I in the RCK1 domain was highly resistant to intoxication. This mutation did not interfere with other BK channel-dependent behaviors, suggesting that the mutant channel retained normal in vivo function. Knock-in of wild-type versions of the worm or human BK channel rescued intoxication and other BK channel-dependent behaviors in a slo-1-null mutant background. In contrast, knock-in of the worm T381I or equivalent human T352I mutant BK channel selectively rescued BK channel-dependent behaviors while conveying resistance to intoxication. Single-channel patch-clamp recordings confirmed that the human BK channel engineered with the T352I missense mutation was insensitive to activation by ethanol, but otherwise had normal conductance, potassium selectivity, and only subtle differences in voltage dependence. Together, our behavioral and electrophysiological results demonstrate that the T352I mutation selectively disrupts ethanol modulation of the BK channel. The T352I mutation may alter a binding site for ethanol and/or interfere with ethanol-induced conformational changes that are critical for behavioral responses to ethanol. Copyright © 2014 the authors 0270-6474/14/349562-12$15.00/0.

  3. Antidepressant-induced Ubiquitination and Degradation of the Cardiac Potassium Channel hERG*

    Science.gov (United States)

    Dennis, Adrienne T.; Nassal, Drew; Deschenes, Isabelle; Thomas, Dierk; Ficker, Eckhard

    2011-01-01

    The most common cause for adverse cardiac events by antidepressants is acquired long QT syndrome (acLQTS), which produces electrocardiographic abnormalities that have been associated with syncope, torsade de pointes arrhythmias, and sudden cardiac death. acLQTS is often caused by direct block of the cardiac potassium current IKr/hERG, which is crucial for terminal repolarization in human heart. Importantly, desipramine belongs to a group of tricyclic antidepressant compounds that can simultaneously block hERG and inhibit its surface expression. Although up to 40% of all hERG blockers exert combined hERG block and trafficking inhibition, few of these compounds have been fully characterized at the cellular level. Here, we have studied in detail how desipramine inhibits hERG surface expression. We find a previously unrecognized combination of two entirely different mechanisms; desipramine increases hERG endocytosis and degradation as a consequence of drug-induced channel ubiquitination and simultaneously inhibits hERG forward trafficking from the endoplasmic reticulum. This unique combination of cellular effects in conjunction with acute channel block may explain why tricyclic antidepressants as a compound class are notorious for their association with arrhythmias and sudden cardiac death. Taken together, we describe the first example of drug-induced channel ubiquitination and degradation. Our data are directly relevant to the cardiac safety of not only tricyclic antidepressants but also other therapeutic compounds that exert multiple effects on hERG, as hERG trafficking and degradation phenotypes may go undetected in most preclinical safety assays designed to screen for acLQTS. PMID:21832094

  4. PIST (GOPC) modulates the oncogenic voltage-gated potassium channel KV10.1.

    Science.gov (United States)

    Herrmann, Solveig; Ninkovic, Milena; Kohl, Tobias; Pardo, Luis A

    2013-01-01

    Although crucial for their correct function, the mechanisms controlling surface expression of ion channels are poorly understood. In the case of the voltage-gated potassium channel KV10.1, this is determinant not only for its physiological function in brain, but also for its pathophysiology in tumors and possible use as a therapeutic target. The Golgi resident protein PIST binds several membrane proteins, thereby modulating their expression. Here we describe a PDZ domain-mediated interaction of KV10.1 and PIST, which enhances surface levels of KV10.1. The functional, but not the physical interaction of both proteins is dependent on the coiled-coil and PDZ domains of PIST; insertion of eight amino acids in the coiled-coil domain to render the neural form of PIST (nPIST) and the corresponding short isoform in an as-of-yet unknown form abolishes the effect. In addition, two new isoforms of PIST (sPIST and nsPIST) lacking nearly the complete PDZ domain were cloned and shown to be ubiquitously expressed. PIST and KV10.1 co-precipitate from native and expression systems. nPIST also showed interaction, but did not alter the functional expression of the channel. We could not document physical interaction between KV10.1 and sPIST, but it reduced KV10.1 functional expression in a dominant-negative manner. nsPIST showed weak physical interaction and no functional effect on KV10.1. We propose these isoforms to work as modulators of PIST function via regulating the binding on interaction partners.

  5. Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide.

    Science.gov (United States)

    Sales, Thais Torquato; Resende, Fernando Francisco Borges; Chaves, Natália Lemos; Titze-De-Almeida, Simoneide Souza; Báo, Sônia Nair; Brettas, Marcella Lemos; Titze-De-Almeida, Ricardo

    2016-10-01

    Glioblastoma multiforme (GBM) is the most aggressive type of human primary brain tumor. The standard treatment protocol includes radiotherapy in combination with temozolomide (TMZ). Despite advances in GBM treatment, the survival time of patients diagnosed with glioma is 14.5 months. Regarding tumor biology, various types of cancer cell overexpress the ether à go-go 1 (Eag1) potassium channel. Therefore, the present study examined the role of Eag1 in the cell damage caused by TMZ on the U87MG glioblastoma cell line. Eag1 was inhibited using a channel blocker (astemizole) or silenced by a short-hairpin RNA expression vector (pKv10.1-3). pKv10.1-3 (0.2 µg) improved the Eag1 silencing caused by 250 µM TMZ, as determined by reverse transcription-quantitative polymerase chain reaction and immunocytochemistry. Additionally, inhibiting Eag1 with the vector or astemizole (5 µM) reduced glioblastoma cell viability and sensitized cells to TMZ. Cell viability decreased by 63% for pKv10.1-3 + TMZ compared with 34% for TMZ alone, and by 77% for astemizole + TMZ compared with 46% for TMZ alone, as determined by MTT assay. In addition, both the vector and astemizole increased the apoptosis rate of glioblastoma cells triggered by TMZ, as determined by an Annexin V apoptosis assay. Collectively, the current data reveal that Eag1 has a role in the damage caused to glioblastoma by TMZ. Furthermore, suppression of this channel can improve the action of TMZ on U87MG glioblastoma cells. Thus, silencing Eag1 is a promising strategy to improve GBM treatment and merits additional studies in animal models of glioma.

  6. PIST (GOPC modulates the oncogenic voltage-gated potassium channel KV10.1

    Directory of Open Access Journals (Sweden)

    Solveig eHerrmann

    2013-08-01

    Full Text Available Although crucial for their correct function, the mechanisms controlling surface expression of ion channels are poorly understood. In the case of the voltage-gated potassium channel KV10.1,this is determinant not only for its physiological function in brain, but also for its pathophysiology in tumors and possible use as a therapeutic target. The Golgi resident protein PIST binds several membrane proteins, thereby modulating their expression. Here we describe a PDZ domain-mediated interaction of KV10.1and PIST, which enhances surface levels ofKV10.1. The functional, but not the physical interaction of both proteins is dependent on the coiled-coil and PDZ domains of PIST; insertion of eight amino acids in the coiled-coil domain to render the neural form of PIST (nPIST and the corresponding short isoform in an as-of-yet unknown form abolishes the effect. In addition, two new isoforms of PIST (sPIST and nsPIST lacking nearly the complete PDZ domain were cloned and shown to be ubiquitously expressed. PIST and KV10.1 co-precipitate from native and expression systems. nPISTalso showed interaction, but did not alter the functional expression of the channel. We could not document physical interaction betweenKV10.1 and sPIST, but it reduced KV10.1 functional expression in a dominant-negative manner. nsPIST showed weak physical interaction and no functional effect on KV10.1. We propose these isoforms to work as modulators of PIST function via regulating the binding on interaction partners.

  7. Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+) Channel 1). A Novel Therapeutic Target?

    Science.gov (United States)

    Vivier, Delphine; Bennis, Khalil; Lesage, Florian; Ducki, Sylvie

    2016-06-09

    Potassium (K(+)) channels are membrane proteins expressed in most living cells that selectively control the flow of K(+) ions. More than 80 genes encode the K(+) channel subunits in the human genome. The TWIK-related K(+) channel (TREK-1) belongs to the two-pore domain K(+) channels (K2P) and displays various properties including sensitivity to physical (membrane stretch, acidosis, temperature) and chemical stimuli (signaling lipids, volatile anesthetics). The distribution of TREK-1 in the central nervous system, coupled with the physiological consequences of its opening and closing, leads to the emergence of this channel as an attractive therapeutic target. We review the TREK-1 channel, its structural and functional properties, and the pharmacological agents (agonists and antagonists) able to modulate its gating.

  8. Effects of 15 Hz square wave magnetic fields on the voltage-gated sodium and potassium channels in prefrontal cortex pyramidal neurons.

    Science.gov (United States)

    Zheng, Yu; Dou, Jun-Rong; Gao, Yang; Dong, Lei; Li, Gang

    2017-04-01

    Although magnetic fields have significant effects on neurons, little is known about the mechanisms behind their effects. The present study aimed to measure the effects of magnetic fields on ion channels in cortical pyramidal neurons. Cortical pyramidal neurons of Kunming mice were isolated and then subjected to 15 Hz, 1 mT square wave (duty ratio 50%) magnetic fields stimulation. Sodium currents (INa), transient potassium currents (IA) and delayed rectifier potassium currents (IK) were recorded by whole-cell patch clamp method. We found that magnetic field exposure depressed channel current densities, and altered the activation kinetics of sodium and potassium channels. The inactivation properties of INa and IA were also altered. Magnetic field exposure alters ion channel function in neurons. It is likely that the structures of sodium and potassium channels were influenced by the applied field. Sialic acid, which is an important component of the channels, could be the molecule responsible for the reported results.

  9. Ionic channels in plants: potassium transport Canais iônicos em plantas: o transporte de potássio

    Directory of Open Access Journals (Sweden)

    Antonio Costa de Oliveira

    1995-01-01

    Full Text Available The discovery of potassium channels on the plasma membrane has helped to elucidate important mechanisms in animal and plant physiology. Plant growth and development associated mechanisms, such as germination, leaf movements, stomatal action, ion uptake in roots, phloem transport and nutrient storage are linked to potassium transport. Studies describing potassium transport regulation by abscisic acid (ABA, Ca++, light and other factors are presented here. Also the types of channels that regulate potassium uptake and efflux in the cell, and the interaction of these channels with external signals, are discussed.A descoberta de canais iônicos presentes na membrana plasmática tem ajudado a elucidar importantes mecanismos fisiológicos em animais e plantas. Mecanismos associados ao crescimento e desenvolvimento das plantas, tais como germinação, movimento foliar, abertura e fechamento de estômatos, absorção de íons pelas raízes e armazenamento de nutrientes estão ligados ao transporte de potássio. Estudos descrevendo a regulação do transporte deste nutriente por ácido abscísico (ABA, Ca++, luz e outros fatores são apresentados. Os tipos de canais que regulam a saída e entrada de potássio na célula, e as interações destes com os sinais externos, são discutidos.

  10. Expression of G-protein inwardly rectifying potassium channels (GIRKs in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. Methods GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU assay. Results GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2 was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4 mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4 mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein

  11. Toxic effects of environmental rare earth elements on delayed outward potassium channels and their mechanisms from a microscopic perspective.

    Science.gov (United States)

    Wang, Lihong; He, Jingfang; Xia, Ao; Cheng, Mengzhu; Yang, Qing; Du, Chunlei; Wei, Haiyan; Huang, Xiaohua; Zhou, Qing

    2017-08-01

    The wide applications cause a large amount of rare earth elements (REEs) to be released into the environment, and ultimately into the human body through food chain. Toxic effects of REEs on humans have been extensively studied, but their toxic effects and binding targets in cells are not understood. Delayed outward potassium channels (K+ channels) are good targets for exogenous substances or clinical drugs. To evaluate cellular toxicities of REEs and clarify toxic mechanisms, the toxicities of REEs on the K+ channel and their structural basis were investigated. The results showed that delayed outward potassium channels on the plasma membrane are the targets of REEs acting on living organisms, and the changes in the thermodynamic and kinetic characteristics of the K+ channel are the reasons of diseases induced by REEs. Two types of REEs, a light REE La3+ and a heavy REE Tb3+, displayed different intensity of toxicities on the K+ channel, in which the toxicity of Tb3+ was stronger than that of La3+. More interestingly, in comparison with that of heavy metal Cd2+, the cytotoxicities of the light and heavy REEs showed discriminative differences, and the cytotoxicity of Tb3+ was higher than that of Cd2+, while the cytotoxicity of La3+ was lower than that of Cd2+. These different cytotoxicities of La3+, Tb3+ and Cd2+ on human resulted from the varying binding abilities of the metals to this channel protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Targeting the Small- and Intermediate-Conductance Ca2+-Activated Potassium Channels: The Drug-Binding Pocket at the Channel/Calmodulin Interface

    Directory of Open Access Journals (Sweden)

    Meng Cui

    2014-10-01

    Full Text Available The small- and intermediate-conductance Ca2+-activated potassium (SK/IK channels play important roles in the regulation of excitable cells in both the central nervous and cardiovascular systems. Evidence from animal models has implicated SK/IK channels in neurological conditions such as ataxia and alcohol use disorders. Further, genome-wide association studies have suggested that cardiovascular abnormalities such as arrhythmias and hypertension are associated with single nucleotide polymorphisms that occur within the genes encoding the SK/IK channels. The Ca2+ sensitivity of the SK/IK channels stems from a constitutively bound Ca2+-binding protein: calmodulin. Small-molecule positive modulators of SK/IK channels have been developed over the past decade, and recent structural studies have revealed that the binding pocket of these positive modulators is located at the interface between the channel and calmodulin. SK/IK channel positive modulators can potentiate channel activity by enhancing the coupling between Ca2+ sensing via calmodulin and mechanical opening of the channel. Here, we review binding pocket studies that have provided structural insight into the mechanism of action for SK/IK channel positive modulators. These studies lay the foundation for structure-based drug discovery efforts that can identify novel SK/IK channel positive modulators. © 2014 S. Karger AG, Basel

  13. Vertebrate rod photoreceptors express both BK and IK calcium-activated potassium channels, but only BK channels are involved in receptor potential regulation.

    Science.gov (United States)

    Pelucchi, Bruna; Grimaldi, Annalisa; Moriondo, Andrea

    2008-01-01

    In salamander rods, Ca(2+)-activated K(+) current (I(KCa)) provides an effective "clamp" of the dark membrane potential to its normal resting level. By a combination of electrophysiological, pharmacological, and immunohistochemical approaches, we show that salamander rods functionally express large-conductance Ca(2+)- and voltage-dependent potassium (BK) channel and intermediate-conductance Ca(2+)-dependent potassium (IK) channel, but not small-conductance Ca(2+)-dependent potassium channel (SK) subtypes. Application of 100 nM iberiotoxin and 100 nM clotrimazole reduced net I(KCa) to 36% and 63%, respectively, whereas the current was unaffected by application of 1 microM apamin. Consistently, anti- SK1, -SK2, and -SK3 antibodies were unable to stain rod photoreceptors, whereas both anti-BK and -SK4/ IK1 antibodies heavily stained the ellipsoid region of the inner segments of the rods. Moreover, by using current-clamp experiments, it was clearly seen that the strong clamping effect of the total I(KCa) was lost when IbTx, but not CLTZ, was applied to the bath. This behavior strongly suggests that of BK and IK channels, only the former are responsible for the clamping effect on the photoreceptor membrane potential.

  14. The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Membrez, Mathieu; Nicolas, Céline S

    2007-01-01

    OBJECTIVE: The voltage-gated KCNQ1 potassium channel regulates key physiological functions in a number of tissues. In the heart, KCNQ1 alpha-subunits assemble with KCNE1 beta-subunits forming a channel complex constituting the delayed rectifier current I(Ks). In epithelia, KCNQ1 channels...... participate in controlling body electrolyte homeostasis. Several regulatory mechanisms of the KCNQ1 channel complexes have been reported, including protein kinase A (PKA)-phosphorylation and beta-subunit interactions. However, the mechanisms controlling the membrane density of KCNQ1 channels have attracted...... less attention. METHODS AND RESULTS: Here we demonstrate that KCNQ1 proteins expressed in HEK293 cells are down-regulated by Nedd4/Nedd4-like ubiquitin-protein ligases. KCNQ1 and KCNQ1/KCNE1 currents were reduced upon co-expression of Nedd4-2, the isoform among the nine members of the Nedd4/Nedd4-like...

  15. Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif

    DEFF Research Database (Denmark)

    Jespersen, Thomas; Rasmussen, Hanne B; Grunnet, Morten

    2004-01-01

    KCNQ1 potassium channels are expressed in many epithelial tissues as well as in the heart. In epithelia KCNQ1 channels play an important role in salt and water transport and the channel has been reported to be located apically in some cell types and basolaterally in others. Here we show that KCNQ1...... channels are located basolaterally when expressed in polarised MDCK cells. The basolateral localisation of KCNQ1 is not affected by co-expression of any of the five KCNE beta-subunits. We characterise two independent basolateral sorting signals present in the N-terminal tail of KCNQ1. Mutation...... located protein, to the basolateral plasma membrane. Furthermore, a di-leucine-like motif at residues 38-40 (LEL) was found to affect the basolateral localisation of KCNQ1. Mutation of these two leucines resulted in a primarily intracellular localisation of the channel....

  16. Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Antigny, Fabrice; Hautefort, Aurélie; Meloche, Jolyane; Belacel-Ouari, Milia; Manoury, Boris; Rucker-Martin, Catherine; Péchoux, Christine; Potus, François; Nadeau, Valérie; Tremblay, Eve; Ruffenach, Grégoire; Bourgeois, Alice; Dorfmüller, Peter; Breuils-Bonnet, Sandra; Fadel, Elie; Ranchoux, Benoît; Jourdon, Philippe; Girerd, Barbara; Montani, David; Provencher, Steeve; Bonnet, Sébastien; Simonneau, Gérald; Humbert, Marc; Perros, Frédéric

    2016-04-05

    Mutations in the KCNK3 gene have been identified in some patients suffering from heritable pulmonary arterial hypertension (PAH). KCNK3 encodes an outward rectifier K(+) channel, and each identified mutation leads to a loss of function. However, the pathophysiological role of potassium channel subfamily K member 3 (KCNK3) in PAH is unclear. We hypothesized that loss of function of KCNK3 is a hallmark of idiopathic and heritable PAH and contributes to dysfunction of pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, leading to pulmonary artery remodeling: consequently, restoring KCNK3 function could alleviate experimental pulmonary hypertension (PH). We demonstrated that KCNK3 expression and function were reduced in human PAH and in monocrotaline-induced PH in rats. Using a patch-clamp technique in freshly isolated (not cultured) pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, we found that KCNK3 current decreased progressively during the development of monocrotaline-induced PH and correlated with plasma-membrane depolarization. We demonstrated that KCNK3 modulated pulmonary arterial tone. Long-term inhibition of KCNK3 in rats induced distal neomuscularization and early hemodynamic signs of PH, which were related to exaggerated proliferation of pulmonary artery endothelial cells, pulmonary artery smooth muscle cell, adventitial fibroblasts, and pulmonary and systemic inflammation. Lastly, in vivo pharmacological activation of KCNK3 significantly reversed monocrotaline-induced PH in rats. In PAH and experimental PH, KCNK3 expression and activity are strongly reduced in pulmonary artery smooth muscle cells and endothelial cells. KCNK3 inhibition promoted increased proliferation, vasoconstriction, and inflammation. In vivo pharmacological activation of KCNK3 alleviated monocrotaline-induced PH, thus demonstrating that loss of KCNK3 is a key event in PAH pathogenesis and thus could be therapeutically targeted.

  17. Deficiency of TREK-1 potassium channel exacerbates secondary injury following spinal cord injury in mice.

    Science.gov (United States)

    Fang, Yongkang; Huang, Xiaojiang; Wan, Yue; Tian, Hao; Tian, Yeye; Wang, Wei; Zhu, Suiqiang; Xie, Minjie

    2017-04-01

    Spinal cord injury (SCI) involves complex pathological process which can be complicated by secondary injury. TREK-1 is a member of the two-pore domain potassium (K2P) channel family, which can be modulated by a number of physiological and pathological stimuli. Recent studies suggest that TREK-1 plays an active role in depression, pain and neuroprotection. However, its role in the pathological process after SCI remains unclear. In this study, we tested the expression and function of TREK-1 in spinal cord of mice after traumatic SCI. TREK-1 was widely expressed in mice spinal cord, including astrocytes and neurons. Deficiency of TREK-1 significantly exacerbated focal inflammatory responses as indicated by the increased accumulation of microglia/macrophage as well as pro-inflammatory factor interleukin-1 beta (IL-1β) and tumor necrosis factor alpha expression. Meanwhile, TREK-1 knockout mice showed enhanced reactive astrogliosis, chondroitin sulphate proteoglycans (CSPGs) production and decreased glutamate transporter-1 expression compared to the wide-type mice after SCI. Furthermore, TREK-1 deficiency promoted neurons and oligodendrocytes apoptosis, aggravated demyelination, cavity formation and retarded motor recovery. In summary, our findings provide the first in vivo evidence suggesting that TREK-1 may thereby constitute a promising therapeutic target to treat acute SCI. © 2017 International Society for Neurochemistry.

  18. Supratentorial white matter blurring associated with voltage-gated potassium channel-complex limbic encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, H.; Mader, I. [University Medical Center Freiburg, Department of Neuroradiology, Freiburg (Germany); Rauer, S.; Baumgartner, A. [University Medical Center Freiburg, Department of Neurology, Freiburg (Germany); Paus, S. [University Medical Center, Department of Neurology, Bonn (Germany); Wagner, J. [University Medical Center, Department of Epileptology, Bonn (Germany); Malter, M.P. [University of Cologne, Department of Neurology, Cologne (Germany); Pruess, H. [Charite - Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Lewerenz, J.; Kassubek, J. [Ulm University, Department of Neurology, Ulm (Germany); Hegen, H.; Auer, M.; Deisenhammer, F. [University Innsbruck, Department of Neurology, Innsbruck (Austria); Ufer, F. [University Medical Center, Department of Neurology, Hamburg (Germany); Bien, C.G. [Epilepsy Centre Bethel, Bielefeld-Bethel (Germany)

    2015-12-15

    Limbic encephalitis (LE) associated with voltage-gated potassium channel-complex antibodies (VGKC-LE) is frequently non-paraneoplastic and associated with marked improvement following corticosteroid therapy. Mesial temporal lobe abnormalities are present in around 80 % of patients. If associated or preceded by faciobrachial dystonic seizures, basal ganglia signal changes may occur. In some patients, blurring of the supratentorial white matter on T2-weighted images (SWMB) may be seen. The purpose of this study was to evaluate the incidence of SWMB and whether it is specific for VGKC-LE. Two experienced neuroradiologists independently evaluated signal abnormalities on FLAIR MRI in 79 patients with LE while unaware on the antibody type. SWMB was independently assessed as present in 10 of 36 (28 %) compared to 2 (5 %) of 43 non-VGKC patients (p = 0.009). It was not related to the presence of LGI1 or CASPR2 proteins of VGKC antibodies. MRI showed increased temporomesial FLAIR signal in 22 (61 %) VGKC compared to 14 (33 %) non-VGKC patients (p = 0.013), and extratemporomesial structures were affected in one VGKC (3 %) compared to 11 (26 %) non-VGKC patients (p = 0.005). SWMB is a newly described MRI sign rather specific for VGKC-LE. (orig.)

  19. Circadian rhythm in QT interval is preserved in mice deficient of potassium channel interacting protein 2

    DEFF Research Database (Denmark)

    Gottlieb, Lisa A; Lubberding, Anniek; Larsen, Anders Peter

    2017-01-01

    Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted...... telemetric devices recorded electrocardiogram continuously for 5 days in conscious wild-type mice (WT, n = 9) and KChIP2(-/-) mice (n = 9) in light:dark periods and in complete darkness. QT intervals were determined from all RR intervals and corrected for heart rate (QT100 = QT/(RR/100)(1/2)). Moreover, QT...... intervals were determined from complexes within the RR range of mean-RR ± 1% in the individual mouse (QTmean-RR). We find that RR intervals are 125 ± 5 ms in WT and 123 ± 4 ms in KChIP2(-/-) (p = 0.81), and QT intervals are 52 ± 1 and 52 ± 1 ms, respectively(p = 0.89). No ventricular arrhythmias or sudden...

  20. Guiding TRAIL to cancer cells through Kv10.1 potassium channel overcomes resistance to doxorubicin.

    Science.gov (United States)

    Hartung, Franziska; Pardo, Luis A

    2016-10-01

    Resisting cell death is one of the hallmarks of cancer, and represents a common problem resulting in ineffective cancer therapy. To overcome resistance to apoptosis, we designed an antibody-based therapy strategy using Kv10.1 as a target. Kv10.1 is a voltage-gated potassium channel, which has been identified as a tumor marker several years ago. The agent consists of a Kv10.1-specific single-chain antibody fused to the soluble tumor necrosis factor-related apoptosis-inducing ligand (scFv62-TRAIL). We combined scFv62-TRAIL with different chemotherapeutic drugs, all of which failed to induce apoptosis when used alone. In the combination, we could overcome the resistance and selectively induce apoptosis. Among the drugs, doxorubicin showed the most promising effect. Additionally, we observed improved efficacy by pre-treating the cells with doxorubicin before scFv62-TRAIL application. Expression analysis of the TRAIL death receptors suggests a doxorubicin-induced increase in the abundance of receptors as the mechanism for sensitization. Furthermore, we confirmed the anti-tumor effect and efficacy of our combination strategy in vivo in SCID mice bearing subcutaneous tumors. In conclusion, we propose a novel strategy to overcome resistance to chemotherapy in cancer cells. Doxorubicin and scFv62-TRAIL reciprocally sensitize the cells to each other, specifically in Kv10.1-positive tumor cells.

  1. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium.

    Science.gov (United States)

    Noble, Karen; Floyd, Rachel; Shmygol, Andre; Shmygol, Anatoly; Mobasheri, A; Wray, Susan

    2010-01-01

    Calcium-activated potassium channels are important in a variety of smooth muscles, contributing to excitability and contractility. In the myometrium previous work has focussed on the large conductance channels (BK), and the role of small conductance channels (SK) has received scant attention, despite the finding that over-expression of an SK channel isoform (SK3) results in uterine dysfunction and delayed parturition. This study therefore characterises the expression of the three SK channel isoforms (SK1-3) in rat myometrium throughout pregnancy and investigates their effect on cytosolic [Ca] and force and compares this with that of BK channels. Consistent expression of all SK isoform transcripts and clear immunostaining of SK1-3 was found. Inhibition of SK1-3 channels (apamin, scyllatoxin) significantly inhibited outward current, caused membrane depolarisation and elicited action potentials in previously quiescent cells. Apamin or scyllatoxin increased the amplitude of [Ca] and force in spontaneously contracting myometrial strips throughout gestation. The functional effect of SK inhibition was larger than that of BK channel inhibition. Thus we show for the first time that SK1-3 channels are expressed and translated throughout pregnancy and contribute to outward current, regulate membrane potential and hence Ca signals in pregnant rat myometrium. They contribute more to quiescence that BK channels. 2009 Elsevier Ltd. All rights reserved.

  2. Cytotoxic effect of zinc oxide nanoparticles on murine photoreceptor cells via potassium channel block and Na(+) /K(+) -ATPase inhibition.

    Science.gov (United States)

    Chen, Chao; Bu, Wenjuan; Ding, Hongyan; Li, Qin; Wang, Dabo; Bi, Hongsheng; Guo, Dadong

    2017-06-01

    Zinc oxide (ZnO) nanoparticles can exhibit toxicity towards organisms and oxidative stress is often hypothesized to be one of the most important factors. Nevertheless, the detailed mechanism of toxicity-induced by ZnO nanoparticles has not been completely addressed. The present study aimed to investigate the toxic effects of ZnO nanoparticles on the expression and activity of Na(+) /K(+) -ATPase and on potassium channel block. In the present study, we explored the cytotoxic effect of ZnO nanoparticles on murine photoreceptor cells using lactate dehydrogenase (LDH) release assay, reactive oxygen species (ROS) determination, mitochondrial membrane potential (Δφm) measurement, delayed rectifier potassium current recordings and Na(+) /K(+) -ATPase expression and activity monitoring. The results indicated that ZnO nanoparticles could increase the LDH release in medium, aggravate the ROS level within cells, collapse the Δφm, block the delayed rectifier potassium current, and attenuate the expressions of Na(+) /K(+) -ATPase at both mRNA and protein levels and its activity, and thus exert cytotoxic effects on murine photoreceptor cells, finally damaging target cells. Our findings will facilitate the understanding of the mechanism involved in ZnO nanoparticle-induced cytotoxicity in murine photoreceptor cells via potassium channel block and Na(+) /K(+) -ATPase inhibition. © 2017 John Wiley & Sons Ltd.

  3. Genome-wide DNA hydroxymethylation identifies potassium channels in the nucleus accumbens as discriminators of methamphetamine addiction and abstinence.

    Science.gov (United States)

    Cadet, J L; Brannock, C; Krasnova, I N; Jayanthi, S; Ladenheim, B; McCoy, M T; Walther, D; Godino, A; Pirooznia, M; Lee, R S

    2017-08-01

    Epigenetic consequences of exposure to psychostimulants are substantial but the relationship of these changes to compulsive drug taking and abstinence is not clear. Here, we used a paradigm that helped to segregate rats that reduce or stop their methamphetamine (METH) intake (nonaddicted) from those that continue to take the drug compulsively (addicted) in the presence of footshocks. We used that model to investigate potential alterations in global DNA hydroxymethylation in the nucleus accumbens (NAc) because neuroplastic changes in the NAc may participate in the development and maintenance of drug-taking behaviors. We found that METH-addicted rats did indeed show differential DNA hydroxymethylation in comparison with both control and nonaddicted rats. Nonaddicted rats also showed differences from control rats. Differential DNA hydroxymethylation observed in addicted rats occurred mostly at intergenic sites located on long and short interspersed elements. Interestingly, differentially hydroxymethylated regions in genes encoding voltage (Kv1.1, Kv1.2, Kvb1 and Kv2.2)- and calcium (Kcnma1, Kcnn1 and Kcnn2)-gated potassium channels observed in the NAc of nonaddicted rats were accompanied by increased mRNA levels of these potassium channels when compared with mRNA expression in METH-addicted rats. These observations indicate that changes in differentially hydroxymethylated regions and increased expression of specific potassium channels in the NAc may promote abstinence from drug-taking behaviors. Thus, activation of specific subclasses of voltage- and/or calcium-gated potassium channels may provide an important approach to the beneficial treatment for METH addiction.

  4. Cyclic expression of the voltage?gated potassium channel KV10.1 promotes disassembly of the primary cilium

    OpenAIRE

    Sánchez, A.; Urrego, D.; Pardo, L.

    2016-01-01

    Abstract The primary cilium, critical for morphogenic and growth factor signaling, is assembled upon cell cycle exit, but the links between ciliogenesis and cell cycle progression are unclear. KV10.1 is a voltage?gated potassium channel frequently overexpressed in tumors. We have previously reported that expression of KV10.1 is temporally restricted to a time period immediately prior to mitosis in healthy cells. Here, we provide microscopical and biochemical evidence that KV10.1 localizes to ...

  5. The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Tripti eSharma

    2013-06-01

    Full Text Available Potassium (K+ is inevitable for plant growth and development. It plays a crucial role in the regulation of enzyme activities, in adjusting the electrical membrane potential and the cellular turgor, in regulating cellular homeostasis and in the stabilization of protein synthesis. Uptake of K+ from the soil and its transport to growing organs is essential for a healthy plant development. Uptake and allocation of K+ are performed by K+ channels and transporters belonging to different protein families. In this review, we summarize the knowledge on the versatile physiological roles of plant K+ channels and their behaviour under stress conditions in the model plant Arabidopsis thaliana.

  6. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms.

    Science.gov (United States)

    Duménieu, Maël; Oulé, Marie; Kreutz, Michael R; Lopez-Rojas, Jeffrey

    2017-01-01

    Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.

  7. Distribution of voltage-gated potassium and hyperpolarization-activated channels in sensory afferent fibers in the rat carotid body.

    Science.gov (United States)

    Buniel, Maria; Glazebrook, Patricia A; Ramirez-Navarro, Angelina; Kunze, Diana L

    2008-10-01

    The chemosensory glomus cells of the carotid body (CB) detect changes in O2 tension. Carotid sinus nerve fibers, which originate from peripheral sensory neurons located within the petrosal ganglion, innervate the CB. Release of transmitter from glomus cells activates the sensory afferent fibers to transmit information to the nucleus of the solitary tract in the brainstem. The ion channels expressed within the sensory nerve terminals play an essential role in the ability of the terminal to initiate action potentials in response to transmitter-evoked depolarization. However, with a few exceptions, the identity of ion channels expressed in these peripheral nerve fibers is unknown. This study addresses the expression of voltage-gated channels in the sensory fibers with a focus on channels that set the resting membrane potential and regulate discharge patterns. By using immunohistochemistry and fluorescence confocal microscopy, potassium channel subunits and HCN (hyperpolarization-activated) family members were localized both in petrosal neurons that expressed tyrosine hydroxylase and in the CSN axons within the carotid body. Channels contributing to resting membrane potential, including HCN2 responsible in part for I(h) current and the KCNQ2 and KCNQ5 subunits thought to underlie the neuronal "M current," were identified in the sensory neurons and their axons innervating the carotid body. In addition, the results presented here demonstrate expression of several potassium channels that shape the action potential and the frequency of discharge, including Kv1.4, Kv1.5, Kv4.3, and K(Ca) (BK). The role of these channels should be considered in interpretation of the fiber discharge in response to perturbation of the carotid body environment.

  8. Pharmacological and molecular comparison of K(ATP) channels in rat basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Ploug, Kenneth Beri; Edvinsson, Lars; Olesen, Jes

    2006-01-01

    ATP-sensitive potassium (K(ATP)) channels play an important role in the regulation of cerebral vascular tone. In vitro studies using synthetic K(ATP) channel openers suggest that the pharmacological profiles differ between rat basilar arteries and rat middle cerebral arteries. To address this issue......, we studied the possible involvement of endothelial K(ATP) channels by pressurized arteriography after luminal administration of synthetic K(ATP) channel openers to rat basilar and middle cerebral arteries. Furthermore, we examined the mRNA and protein expression profile of K(ATP) channels to rat...... basilar and middle cerebral arteries using quantitative real-time PCR (Polymerase Chain Reaction) and Western blotting, respectively. In the perfusion system, we found no significant responses after luminal application of three K(ATP) channel openers to rat basilar and middle cerebral arteries...

  9. Microelectrode array measurement of potassium ion channel remodeling on the field action potential duration in rapid atrial pacing rabbits model.

    Science.gov (United States)

    Sun, Juan; Yan, Huang; Wugeti, Najina; Guo, Yujun; Zhang, Ling; Ma, Mei; Guo, Xingui; Jiao, Changan; Xu, Wenli; Li, Tianqi

    2015-01-01

    Atrial fibrillation (AF) arises from abnormalities in atrial structure and electrical activity. Microelectrode arrays (MEA) is a real-time, nondestructive measurement of the resting and action potential signal, from myocardial cells, to the peripheral circuit of electrophysiological activity. This study examined the field action potential duration (fAPD) of the right atrial appendage (RAA) by MEA in rapid atrial pacing (RAP) in the right atrium of rabbits. In addition, this study also investigated the effect of potassium ion channel blockers on fAPD. 40 New Zealand white rabbits of either sex were randomly divided into 3 groups: 1) the control, 2) potassium ion channel blocker (TEA, 4-Ap and BaCl2), and 3) amiodarone groups. The hearts were quickly removed and right atrial appendage sectioned (slice thickness 500 μm). Each slice was perfused with Tyrode's solution and continuously stimulated for 30 minutes. Sections from the control group were superfused with Tyrode's solution for 10 minutes, while the blocker groups and amiodarone were both treated with their respective compounds for 10 minutes each. The fAPD of RAA and action field action potential morphology were measured using MEA. In non-pace (control) groups, fAPD was 188.33 ± 18.29 ms after Tyrode's solution superfusion, and 173.91 ± 6.83 ms after RAP. In pace/potassium ion channel groups, TEA and BaCl2 superfusion prolonged atrial field action potential (fAPD) (control vs blocker: 176.67 ± 8.66 ms vs 196.11 ± 10.76 ms, 182.22 ± 12.87 ms vs 191.11 ± 13.09 ms with TEA and BaCl2 superfusion, respectively, P action potential in animal heart slices. After superfusing potassium ion channel blockers, fAPD was prolonged. These results suggest that Ito, IKur and IK1 remodel and mediate RAP-induced atrial electrical remodeling. Amiodarone alter potassium ion channel activity (Ito, IKur, IK1 and IKs), shortening fAPD.

  10. Clinical spectrum and diagnostic value of antibodies against the potassium channel-related protein complex☆

    Science.gov (United States)

    Montojo, M.T.; Petit-Pedrol, M.; Graus, F.; Dalmau, J.

    2016-01-01

    Introduction Antibodies against a protein complex that includes voltage-gated potassium channels (VGKC) have been reported in patients with limbic encephalitis, peripheral nerve hyperexcitability, Morvan's syndrome, and a large variety of neurological syndromes. Review summary In this article, a review is presented of the syndromes associated with antibodies against VGKC-related proteins and the main antigens of this protein complex, the proteins LGI1 (leucine rich glioma inactivated protein 1) and Caspr2 (contactin-associated protein-like 2). The conceptual problems and clinical implications of the description of antibodies against VGKC-related proteins other than LGI1 and Caspr2 are also discussed. Although initial studies indicated the occurrence of antibodies against VGKC, recent investigations have shown that the main antigens are a neuronal secreted protein known as LGI1 which modulates synaptic excitability, and a protein called Caspr2 located on the cell surface and processes of neurons of different brain regions, and at the juxtaparanodal region of myelinated axons. While antibodies against LGI1 preferentially associate with classical limbic encephalitis, antibodies against Caspr2 associate with a wider spectrum of symptoms, including Morvan's syndrome, peripheral nerve hyperexcitability or neuromyotonia, and limbic or more extensive encephalitis. In addition there are reports of patients with antibodies against VGKC-related proteins that are different from LGI1 or Caspr2. In these cases, the identity and location of the antigens are unknown, the syndrome association is not specific, and the response to treatment uncertain. Conclusions The discovery of antigens such as LGI1 and Caspr2 has resulted in a clinical and molecular definition of the broad group of diseases previously attributed to antibodies against VGKC. Considering the literature that describes the presence of antibodies against VGKC other than LGI1 and Caspr2 proteins, we propose a practical

  11. Potassium channel KIR4.1-specific antibodies in children with acquired demyelinating CNS disease.

    Science.gov (United States)

    Kraus, Verena; Srivastava, Rajneesh; Kalluri, Sudhakar Reddy; Seidel, Ulrich; Schuelke, Markus; Schimmel, Mareike; Rostasy, Kevin; Leiz, Steffen; Hosie, Stuart; Grummel, Verena; Hemmer, Bernhard

    2014-02-11

    A serum antibody against the inward rectifying potassium channel KIR4.1 (KIR4.1-IgG) was recently discovered, which is found in almost half of adult patients with multiple sclerosis. We investigated the prevalence of KIR4.1-IgG in children with acquired demyelinating disease (ADD) of the CNS. We also compared antibody responses to KIR4.1 and myelin oligodendrocyte glycoproteins (MOGs), another potential autoantigen in childhood ADDs. We measured KIR4.1-IgG by ELISA in children with ADD (n = 47), other neurologic disease (n = 22), and autoimmune disease (n = 22), and in healthy controls (HCs) (n = 18). One hundred six samples were also measured by capture ELISA. Binding of KIR4.1-IgG human subcortical white matter was analyzed by immunofluorescence. Anti-MOG antibodies were measured using a cell-based assay. KIR4.1-IgG titers were significantly higher in children with ADD compared with all control groups by ELISA and capture ELISA (p disease or autoimmune disease or the HCs (0%) were KIR4.1-IgG antibody positive by ELISA. Sera containing KIR4.1-IgG stained glial cells in brain tissue sections. No correlation among KIR4.1-IgG, age, or MOG-IgG was observed in the ADD group. Serum antibodies to KIR4.1 are found in the majority of children with ADD but not in children with other diseases or in HCs. These findings suggest that KIR4.1 is an important target of autoantibodies in childhood ADD.

  12. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients.

    Science.gov (United States)

    Tobin, William Oliver; Lennon, Vanda A; Komorowski, Lars; Probst, Christian; Clardy, Stacey Lynn; Aksamit, Allen J; Appendino, Juan Pablo; Lucchinetti, Claudia F; Matsumoto, Joseph Y; Pittock, Sean J; Sandroni, Paola; Tippmann-Peikert, Maja; Wirrell, Elaine C; McKeon, Andrew

    2014-11-11

    To describe the detection frequency and clinical associations of immunoglobulin G (IgG) targeting dipeptidyl-peptidase-like protein-6 (DPPX), a regulatory subunit of neuronal Kv4.2 potassium channels. Specimens from 20 patients evaluated on a service basis by tissue-based immunofluorescence yielded a synaptic immunostaining pattern consistent with DPPX-IgG (serum, 20; CSF, all 7 available). Transfected HEK293 cell-based assay confirmed DPPX specificity in all specimens. Sixty-nine patients with stiff-person syndrome and related disorders were also evaluated by DPPX-IgG cell-based assay. Of 20 seropositive patients, 12 were men; median symptom onset age was 53 years (range, 13-75). Symptom onset was insidious in 15 and subacute in 5. Twelve patients reported prodromal weight loss. Neurologic disorders were multifocal. All had one or more brain or brainstem manifestations: amnesia (16), delirium (8), psychosis (4), depression (4), seizures (2), and brainstem disorders (15; eye movement disturbances [8], ataxia [7], dysphagia [6], dysarthria [4], respiratory failure [3]). Nine patients reported sleep disturbance. Manifestations of central hyperexcitability included myoclonus (8), exaggerated startle (6), diffuse rigidity (6), and hyperreflexia (6). Dysautonomia involved the gastrointestinal tract (9; diarrhea [6], gastroparesis, and constipation [3]), bladder (7), cardiac conduction system (3), and thermoregulation (1). Two patients had B-cell neoplasms: gastrointestinal lymphoma (1), and chronic lymphocytic leukemia (1). Substantial neurologic improvements followed immunotherapy in 7 of 11 patients with available treatment data. DPPX-IgG was not detected in any of the stiff-person syndrome patients. DPPX-IgG is a biomarker for an immunotherapy-responsive multifocal neurologic disorder of the central and autonomic nervous systems. © 2014 American Academy of Neurology.

  13. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes.

    Science.gov (United States)

    Waters, Michael F; Minassian, Natali A; Stevanin, Giovanni; Figueroa, Karla P; Bannister, John P A; Nolte, Dagmar; Mock, Allan F; Evidente, Virgilio Gerald H; Fee, Dominic B; Müller, Ulrich; Dürr, Alexandra; Brice, Alexis; Papazian, Diane M; Pulst, Stefan M

    2006-04-01

    Potassium channel mutations have been described in episodic neurological diseases. We report that K+ channel mutations cause disease phenotypes with neurodevelopmental and neurodegenerative features. In a Filipino adult-onset ataxia pedigree, the causative gene maps to 19q13, overlapping the SCA13 disease locus described in a French pedigree with childhood-onset ataxia and cognitive delay. This region contains KCNC3 (also known as Kv3.3), encoding a voltage-gated Shaw channel with enriched cerebellar expression. Sequencing revealed two missense mutations, both of which alter KCNC3 function in Xenopus laevis expression systems. KCNC3(R420H), located in the voltage-sensing domain, had no channel activity when expressed alone and had a dominant-negative effect when co-expressed with the wild-type channel. KCNC3(F448L) shifted the activation curve in the negative direction and slowed channel closing. Thus, KCNC3(R420H) and KCNC3(F448L) are expected to change the output characteristics of fast-spiking cerebellar neurons, in which KCNC channels confer capacity for high-frequency firing. Our results establish a role for KCNC3 in phenotypes ranging from developmental disorders to adult-onset neurodegeneration and suggest voltage-gated K+ channels as candidates for additional neurodegenerative diseases.

  14. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK channels

    Directory of Open Access Journals (Sweden)

    Michael J Shipston

    2014-08-01

    Full Text Available Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK channels are important determinants of their (pathophysiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs and acyl thioesterases. (APTs. S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signalling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease.

  15. Novel intramolecular photoinduced electron transfer-based probe for the Human Ether-a-go-go-Related Gene (hERG) potassium channel.

    Science.gov (United States)

    Liu, Zhenzhen; Zhou, Yubin; Du, Lupei; Li, Minyong

    2015-12-21

    Drug induced long QT syndrome is a high risk event in clinic, which mainly results from their high affinity to the Human Ether-a-go-go-Related Gene (hERG) potassium channel. Therefore, evaluation of the drug's inhibitory activity against the hERG potassium channel is a required step in drug discovery and development. In this study, we developed a series of novel conformation-mediated intramolecular photoinduced electron transfer fluorogenic probes for the hERG potassium channel. After careful evaluation, probes N4 and N6 showed good activity and may have a promising application in the cell-based hERG potassium channel inhibitory activity assay, as well as potential hERG-associated cardiotoxicity evaluation. Compared with other assay methods, such as patch clamp assay, radio-ligand competitive binding assay, fluorescence polarization and potential-sensitive fluorescent probes, this method is convenient and can also selectively measure the inhibitory activity in the native state of the hERG potassium channel. Meanwhile, these probes can also be used for hERG potassium channel imaging without complex washing steps.

  16. Selection of inhibitor-resistant viral potassium channels identifies a selectivity filter site that affects barium and amantadine block.

    Directory of Open Access Journals (Sweden)

    Franck C Chatelain

    Full Text Available BACKGROUND: Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. METHODOLOGY/PRINCIPAL FINDINGS: We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4. A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T-->S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. CONCLUSIONS/SIGNIFICANCE: The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features.

  17. Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block

    Science.gov (United States)

    Fujiwara, Yuichiro; Arrigoni, Cristina; Domigan, Courtney; Ferrara, Giuseppina; Pantoja, Carlos; Thiel, Gerhard; Moroni, Anna; Minor, Daniel L.

    2009-01-01

    Background Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. Methodology/Principal Findings We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T→S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. Conclusions/Significance The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features. PMID:19834614

  18. Expression of stretch-activated two-pore potassium channels in human myometrium in pregnancy and labor.

    Directory of Open Access Journals (Sweden)

    Iain L O Buxton

    Full Text Available BACKGROUND: We tested the hypothesis that the stretch-activated, four-transmembrane domain, two pore potassium channels (K2P, TREK-1 and TRAAK are gestationally-regulated in human myometrium and contribute to uterine relaxation during pregnancy until labor. METHODOLOGY: We determined the gene and protein expression of K2P channels in non-pregnant, pregnant term and preterm laboring myometrium. We employed both molecular biological and functional studies of K2P channels in myometrial samples taken from women undergoing cesarean delivery of a fetus. PRINCIPAL FINDINGS: TREK-1, but not TREK-2, channels are expressed in human myometrium and significantly up-regulated during pregnancy. Down-regulation of TREK-1 message was seen by Q-PCR in laboring tissues consistent with a role for TREK-1 in maintaining uterine quiescence prior to labor. The TRAAK channel was unregulated in the same women. Blockade of stretch-activated channels with a channel non-specific tarantula toxin (GsMTx-4 or the more specific TREK-1 antagonist L-methionine ethyl ester altered contractile frequency in a dose-dependent manner in pregnant myometrium. Arachidonic acid treatment lowered contractile tension an effect blocked by fluphenazine. Functional studies are consistent with a role for TREK-1 in uterine quiescence. CONCLUSIONS: We provide evidence supporting a role for TREK-1 in contributing to uterine quiescence during gestation and hypothesize that dysregulation of this mechanism may underlie certain cases of spontaneous pre-term birth.

  19. Modification of sodium and potassium channel kinetics by diethyl ether and studies on sodium channel inactivation in the crayfish giant axon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bean, Bruce Palmer [Univ. of Rochester, NY (United States)

    1979-01-01

    The effects of ether and halothane on membrane currents in the voltage clamped crayfish giant axon membrane were investigated. Concentrations of ether up to 300 mM and of halothane up to 32 mM had no effect on resting potential or leakage conductance. Ether and halothane reduced the size of sodium currents without changing the voltage dependence of the peak currents or their reversal potential. Ether and halothane also produced a reversible, dose-dependent speeding of sodium current decay at all membrane potentials. Ether reduced the time constants for inactivation, and also shifted the midpoint of the steady-state inactivation curve in the hyperpolarizing direction. Potassium currents were smaller with ether present, with no change in the voltage dependence of steady-state currents. The activation of potassium channels was faster with ether present. There was no apparent change in the capacitance of the crayfish giant axon membrane with ether concentrations of up to 100 mM. Experiments on sodium channel inactivation kinetics were performed using 4-aminopyridine to block potassium currents. Sodium currents decayed with a time course generally fit well by a single exponential. The time constant of decay was a steep function of voltage, especially in the negative resistance region of the peak current vs voltage relation.The time course of inactivation was very similar to that of the decay of the current at the same potential. The measurement of steady-state inactivation curves with different test pulses showed no shifts along the voltage asix. The voltage-dependence of the integral of sodium conductance was measured to test models of sodium channel inactivation in which channels must open before inactivating; the results appear inconsistent with some of the simplest cases of such models.

  20. Clathrodin, hymenidin and oroidin, and their synthetic analogues as inhibitors of the voltage-gated potassium channels.

    Science.gov (United States)

    Zidar, Nace; Žula, Aleš; Tomašič, Tihomir; Rogers, Marc; Kirby, Robert W; Tytgat, Jan; Peigneur, Steve; Kikelj, Danijel; Ilaš, Janez; Mašič, Lucija Peterlin

    2017-10-20

    We have prepared three alkaloids from the Agelas sponges, clathrodin, hymenidin and oroidin, and a series of their synthetic analogues, and evaluated their inhibitory effect against six isoforms of the Kv1 subfamily of voltage-gated potassium channels, Kv1.1-Kv1.6, expressed in Chinese Hamster ovary (CHO) cells using automated patch clamp electrophysiology assay. The most potent inhibitor was the (E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-4,5-dichloro-1H-pyrrole-2-carboxamide (6g) with IC50 values between 1.4 and 6.1 μM against Kv1.3, Kv1.4, Kv1.5 and Kv1.6 channels. All compounds tested displayed selectivity against Kv1.1 and Kv1.2 channels. For confirmation of their activity and selectivity, compounds were additionally evaluated in the second independent system against Kv1.1-Kv1.6 and Kv10.1 channels expressed in Xenopus laevis oocytes under voltage clamp conditions where IC50 values against Kv1.3-Kv1.6 channels for the most active analogues (e.g. 6g) were lower than 1 μM. Because of the observed low sub-micromolar IC50 values and fairly low molecular weights, the prepared compounds represent good starting points for further optimisation towards more potent and selective voltage-gated potassium channel inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Effects of protein-protein interactions and ligand binding on the ion permeation in KCNQ1 potassium channel.

    Science.gov (United States)

    Jalily Hasani, Horia; Ganesan, Aravindhan; Ahmed, Marawan; Barakat, Khaled H

    2018-01-01

    The voltage-gated KCNQ1 potassium ion channel interacts with the type I transmembrane protein minK (KCNE1) to generate the slow delayed rectifier (IKs) current in the heart. Mutations in these transmembrane proteins have been linked with several heart-related issues, including long QT syndromes (LQTS), congenital atrial fibrillation, and short QT syndrome. Off-target interactions of several drugs with that of KCNQ1/KCNE1 ion channel complex have been known to cause fatal cardiac irregularities. Thus, KCNQ1/KCNE1 remains an important avenue for drug-design and discovery research. In this work, we present the structural and mechanistic details of potassium ion permeation through an open KCNQ1 structural model using the combined molecular dynamics and steered molecular dynamics simulations. We discuss the processes and key residues involved in the permeation of a potassium ion through the KCNQ1 ion channel, and how the ion permeation is affected by (i) the KCNQ1-KCNE1 interactions and (ii) the binding of chromanol 293B ligand and its derivatives into the complex. The results reveal that interactions between KCNQ1 with KCNE1 causes a pore constriction in the former, which in-turn forms small energetic barriers in the ion-permeation pathway. These findings correlate with the previous experimental reports that interactions of KCNE1 dramatically slows the activation of KCNQ1. Upon ligand-binding onto the complex, the energy-barriers along ion permeation path are more pronounced, as expected, therefore, requiring higher force in our steered-MD simulations. Nevertheless, pulling the ion when a weak blocker is bound to the channel does not necessitate high force in SMD. This indicates that our SMD simulations have been able to discern between strong and week blockers and reveal their influence on potassium ion permeation. The findings presented here will have some implications in understanding the potential off-target interactions of the drugs with the KCNQ1/KCNE1 channel

  2. Selective Small Molecule Activators of TREK-2 Channels Stimulate Dorsal Root Ganglion c-Fiber Nociceptor Two-Pore-Domain Potassium Channel Currents and Limit Calcium Influx.

    Science.gov (United States)

    Dadi, Prasanna K; Vierra, Nicholas C; Days, Emily; Dickerson, Matthew T; Vinson, Paige N; Weaver, C David; Jacobson, David A

    2017-03-15

    The two-pore-domain potassium (K2P) channel TREK-2 serves to modulate plasma membrane potential in dorsal root ganglia c-fiber nociceptors, which tunes electrical excitability and nociception. Thus, TREK-2 channels are considered a potential therapeutic target for treating pain; however, there are currently no selective pharmacological tools for TREK-2 channels. Here we report the identification of the first TREK-2 selective activators using a high-throughput fluorescence-based thallium (Tl+) flux screen (HTS). An initial pilot screen with a bioactive lipid library identified 11-deoxy prostaglandin F2α as a potent activator of TREK-2 channels (EC50 ≈ 0.294 μM), which was utilized to optimize the TREK-2 Tl+ flux assay (Z' = 0.752). A HTS was then performed with 76 575 structurally diverse small molecules. Many small molecules that selectively activate TREK-2 were discovered. As these molecules were able to activate single TREK-2 channels in excised membrane patches, they are likely direct TREK-2 activators. Furthermore, TREK-2 activators reduced primary dorsal root ganglion (DRG) c-fiber Ca2+ influx. Interestingly, some of the selective TREK-2 activators such as 11-deoxy prostaglandin F2α were found to inhibit the K2P channel TREK-1. Utilizing chimeric channels containing portions of TREK-1 and TREK-2, the region of the TREK channels that allows for either small molecule activation or inhibition was identified. This region lies within the second pore domain containing extracellular loop and is predicted to play an important role in modulating TREK channel activity. Moreover, the selective TREK-2 activators identified in this HTS provide important tools for assessing human TREK-2 channel function and investigating their therapeutic potential for treating chronic pain.

  3. The KCNQ5 potassium channel from mouse: a broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes

    DEFF Research Database (Denmark)

    Jensen, Henrik Sindal; Callø, Kirstine; Jespersen, Thomas

    2005-01-01

    Bank accession number: AY679158). The predicted protein is 95% identical to human KCNQ5. Upon expression in Xenopus oocytes, these proteins form voltage-dependent slowly activating channels with half-maximal activation at -21 mV. Our functional characterization revealed three novel modes of modulation: p...

  4. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis.

    Science.gov (United States)

    Vincent, Angela; Buckley, Camilla; Schott, Jonathan M; Baker, Ian; Dewar, Bonnie-Kate; Detert, Niels; Clover, Linda; Parkinson, Abigail; Bien, Christian G; Omer, Salah; Lang, Bethan; Rossor, Martin N; Palace, Jackie

    2004-03-01

    Patients presenting with subacute amnesia are frequently seen in acute neurological practice. Amongst the differential diagnoses, herpes simplex encephalitis, Korsakoff's syndrome and limbic encephalitis should be considered. Limbic encephalitis is typically a paraneoplastic syndrome with a poor prognosis; thus, identifying those patients with potentially reversible symptoms is important. Voltage-gated potassium channel antibodies (VGKC-Ab) have recently been reported in three cases of reversible limbic encephalitis. Here we review the clinical, immunological and neuropsychological features of 10 patients (nine male, one female; age range 44-79 years), eight of whom were identified in two centres over a period of 15 months. The patients presented with 1-52 week histories of memory loss, confusion and seizures. Low plasma sodium concentrations, initially resistant to treatment, were present in eight out of 10. Brain MRI at onset showed signal change in the medial temporal lobes in eight out of 10 cases. Paraneoplastic antibodies were negative, but VGKC-Ab ranged from 450 to 5128 pM (neurological and healthy controls <100 pM). CSF oligoclonal bands were found in only one, but bands matched with those in the serum were found in six other patients. VGKC-Abs in the CSF, tested in five individuals, varied between <1 and 10% of serum values. Only one patient had neuromyotonia, which was excluded by electromyography in seven of the others. Formal neuropsychology testing showed severe and global impairment of memory, with sparing of general intellect in all but two patients, and of nominal functions in all but one. Variable regimes of steroids, plasma exchange and intravenous immunoglobulin were associated with variable falls in serum VGKC-Abs, to values between 2 and 88% of the initial values, together with marked improvement of neuropsychological functioning in six patients, slight improvement in three and none in one. The improvement in neuropsychological functioning in

  5. Clinical spectrum and diagnostic value of antibodies against the potassium channel related protein complex.

    Science.gov (United States)

    Montojo, M T; Petit-Pedrol, M; Graus, F; Dalmau, J

    2015-06-01

    Antibodies against a protein complex that includes voltage-gated potassium channels (VGKC) have been reported in patients with limbic encephalitis, peripheral nerve hyperexcitability, Morvan's syndrome, and a large variety of neurological syndromes. In this article, a review is presented of the syndromes associated with antibodies against VGKC-related proteins and the main antigens of this protein complex, the proteins LGI1 (leucine rich glioma inactivated protein 1) and Caspr2 (contactin-associated protein-like 2). The conceptual problems and clinical implications of the description of antibodies against VGKC-related proteins other than LGI1 and Caspr2 are also discussed. Although initial studies indicated the occurrence of antibodies against VGKC, recent investigations have shown that the main antigens are a neuronal secreted protein known as LGI1 which modulates synaptic excitability, and a protein called Caspr2 located on the cell surface and processes of neurons of different brain regions, and at the juxtaparanodal region of myelinated axons. While antibodies against LGI1 preferentially associate with classical limbic encephalitis, antibodies against Caspr2 associate with a wider spectrum of symptoms, including Morvan's syndrome, peripheral nerve hyperexcitability or neuromyotonia, and limbic or more extensive encephalitis. In addition there are reports of patients with antibodies against VGKC-related proteins that are different from LGI1 or Caspr2. In these cases, the identity and location of the antigens are unknown, the syndrome association is not specific, and the response to treatment uncertain. The discovery of antigens such as LGI1 and Caspr2 has resulted in a clinical and molecular definition of the broad group of diseases previously attributed to antibodies against VGKC. Considering the literature that describes the presence of antibodies against VGKC other than LGI1 and Caspr2 proteins, we propose a practical algorithm for the diagnosis and treatment

  6. A specific two-pore domain potassium channel blocker defines the structure of the TASK-1 open pore.

    Science.gov (United States)

    Streit, Anne K; Netter, Michael F; Kempf, Franca; Walecki, Magdalena; Rinné, Susanne; Bollepalli, Murali K; Preisig-Müller, Regina; Renigunta, Vijay; Daut, Jürgen; Baukrowitz, Thomas; Sansom, Mark S P; Stansfeld, Phillip J; Decher, Niels

    2011-04-22

    Two-pore domain potassium (K(2P)) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K(2P) channels. We describe A1899 as a potent and highly selective blocker of the K(2P) channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K(2P) open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K(2P) channels.

  7. A Specific Two-pore Domain Potassium Channel Blocker Defines the Structure of the TASK-1 Open Pore*

    Science.gov (United States)

    Streit, Anne K.; Netter, Michael F.; Kempf, Franca; Walecki, Magdalena; Rinné, Susanne; Bollepalli, Murali K.; Preisig-Müller, Regina; Renigunta, Vijay; Daut, Jürgen; Baukrowitz, Thomas; Sansom, Mark S. P.; Stansfeld, Phillip J.; Decher, Niels

    2011-01-01

    Two-pore domain potassium (K2P) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K2P channels. We describe A1899 as a potent and highly selective blocker of the K2P channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K2P open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K2P channels. PMID:21362619

  8. Formation of Functional Heterodimers by TREK-1 and TREK-2 Two-pore Domain Potassium Channel Subunits*

    Science.gov (United States)

    Lengyel, Miklós; Czirják, Gábor; Enyedi, Péter

    2016-01-01

    Two-pore domain (K2P) potassium channels are the major molecular correlates of the background (leak) K+ current in a wide variety of cell types. They generally play a key role in setting the resting membrane potential and regulate the response of excitable cells to various stimuli. K2P channels usually function as homodimers, and only a few examples of heteromerization have been previously reported. Expression of the TREK (TWIK-related K+ channel) subfamily members of K2P channels often overlaps in neurons and in other excitable cells. Here, we demonstrate that heterologous coexpression of TREK-1 and TREK-2 subunits results in the formation of functional heterodimers. Taking advantage of a tandem construct (in which the two different subunits were linked together to enforce heterodimerization), we characterized the biophysical and pharmacological properties of the TREK-1/TREK-2 current. The heteromer was inhibited by extracellular acidification and by spadin similarly to TREK-1, and its ruthenium red sensitivity was intermediate between TREK-1 and TREK-2 homodimers. The heterodimer has also been distinguished from the homodimers by its unique single channel conductance. Assembly of the two different subunits was confirmed by coimmunoprecipitation of epitope-tagged TREK-1 and TREK-2 subunits, coexpressed in Xenopus oocytes. Formation of TREK-1/TREK-2 channels was also demonstrated in native dorsal root ganglion neurons indicating that heterodimerization may provide greater diversity of leak K+ conductances also in native tissues. PMID:27129242

  9. Ras-association domain of sorting Nexin 27 is critical for regulating expression of GIRK potassium channels.

    Directory of Open Access Journals (Sweden)

    Bartosz Balana

    Full Text Available G protein-gated inwardly rectifying potassium (GIRK channels play an important role in regulating neuronal excitability. Sorting nexin 27b (SNX27b, which reduces surface expression of GIRK channels through a PDZ domain interaction, contains a putative Ras-association (RA domain with unknown function. Deleting the RA domain in SNX27b (SNX27b-ΔRA prevents the down-regulation of GIRK2c/GIRK3 channels. Similarly, a point mutation (K305A in the RA domain disrupts regulation of GIRK2c/GIRK3 channels and reduces H-Ras binding in vitro. Finally, the dominant-negative H-Ras (S17N occludes the SNX27b-dependent decrease in surface expression of GIRK2c/GIRK3 channels. Thus, the presence of a functional RA domain and the interaction with Ras-like G proteins comprise a novel mechanism for modulating SNX27b control of GIRK channel surface expression and cellular excitability.

  10. Hippocampal ether-à-go-go1 potassium channels blockade: effects in the startle reflex and prepulse inhibition.

    Science.gov (United States)

    Issy, A C; Fonseca, J R; Pardo, L A; Stühmer, W; Del Bel, E A

    2014-01-24

    Recently, our group described the ether-à-go-go1(Eag1) voltage-gated potassium (K(+)) channel (Kv10.1) expression in the dopaminergic cells indicating that these channels are part of the diversified group of ion channels related to dopaminergic neurons function. The increase of dopamine neurotransmission induces a reduction in the prepulse inhibition (PPI) of the acoustic startle reflex in rodents, which is a reliable index of sensorimotor gating deficits. The PPI response has been reported to be abnormally reduced in schizophrenia patients. The role of Eag1 K(+) channels in the PPI reaction had not been revealed until now, albeit the singular distribution of Eag1 in the dentate gyrus of the hippocampus and the hippocampal regulation of the startle reflex and PPI. The aim of this work was to investigate if Eag1 blockade on hippocampus modifies the PPI-disruptive effects of apomorphine in Wistar rats. Bilateral injection of anti-Eag1 single-chain antibody into the dentate gyrus of hippocampus did not modify apomorphine-disruptive effects in the PPI response. However, Eag1 antibody completely restored the startle amplitude decrease revealed after dentate gyrus surgery. These potentially biological important phenomenon merits further investigation regarding the role of Eag1 K(+) channels, mainly, on startle reflex modulation, since the physiological role of these channels remain obscure. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Maturation of spiking activity in trout retinal ganglion cells coincides with upregulation of Kv3.1- and BK-related potassium channels.

    Science.gov (United States)

    Henne, Jutta; Jeserich, Gunnar

    2004-01-01

    Developmental changes in membrane excitability and the potassium channel profile were monitored in acutely isolated trout retinal ganglion cells by patch-clamp recording in combination with single-cell RT-PCR. During embryonic development in the egg, a sustained above-threshold stimulation of ganglion cells elicited in most cases only a single spike response. After hatching, the proportion of multiply spiking cells increased strongly and the ability of spike frequency coding was acquired. This was accompanied by the occurrence of a highly tetraethylammonium (TEA)- and quinine-sensitive delayed rectifier current, which gradually masked a rapidly inactivating A-type potassium current that was predominant at earlier stages. Pharmacology of the delayed rectifier current closely matched those of recombinant Traw1, a Kv3.1-related potassium channel in trout. The appearance of this current correlated closely with initial expression of Traw1 and Traw2 channel transcripts, as revealed by multiplex single-cell RT-PCR, whereas mRNA, encoding Shaker-related channel genes in trout (termed Tsha1-Tsha4), were already detectable at early embryonic stages. Iberiotoxin-sensitive, calcium-activated potassium currents (BK) were extremely low before hatching, but increased significantly thereafter. These developmental changes in potassium channel expression occurred after the arrival of retinal fibers in the optic tectum and the initiation of synapse formation in the visual center. It is suggested that early expressed Shaker-related potassium channels could act to influence neuronal differentiation, whereas proper neuronal signaling requires expression of Kv3.1- and BK-related potassium channels. Copyright 2003 Wiley-Liss, Inc.

  12. Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643)

    DEFF Research Database (Denmark)

    Hansen, Rie Schultz; Diness, Thomas Goldin; Christ, Torsten

    2005-01-01

    The cardiac action potential is generated by a concerted action of different ion channels and transporters. Dysfunction of any of these membrane proteins can give rise to cardiac arrhythmias, which is particularly true for the repolarizing potassium channels. We suggest that an increased repolari...

  13. The Kunitz-Type Protein ShPI-1 Inhibits Serine Proteases and Voltage-Gated Potassium Channels

    Directory of Open Access Journals (Sweden)

    Rossana García-Fernández

    2016-04-01

    Full Text Available The bovine pancreatic trypsin inhibitor (BPTI-Kunitz-type protein ShPI-1 (UniProt: P31713 is the major protease inhibitor from the sea anemone Stichodactyla helianthus. This molecule is used in biotechnology and has biomedical potential related to its anti-parasitic effect. A pseudo wild-type variant, rShPI-1A, with additional residues at the N- and C-terminal, has a similar three-dimensional structure and comparable trypsin inhibition strength. Further insights into the structure-function relationship of rShPI-1A are required in order to obtain a better understanding of the mechanism of action of this sea anemone peptide. Using enzyme kinetics, we now investigated its activity against other serine proteases. Considering previous reports of bifunctional Kunitz-type proteins from anemones, we also studied the effect of rShPI-1A on voltage-gated potassium (Kv channels. rShPI-1A binds Kv1.1, Kv1.2, and Kv1.6 channels with IC50 values in the nM range. Hence, ShPI-1 is the first member of the sea anemone type 2 potassium channel toxins family with tight-binding potency against several proteases and different Kv1 channels. In depth sequence analysis and structural comparison of ShPI-1 with similar protease inhibitors and Kv channel toxins showed apparent non-sequence conservation for known key residues. However, we detected two subtle patterns of coordinated amino acid substitutions flanking the conserved cysteine residues at the N- and C-terminal ends.

  14. Wine polyphenol resveratrol inhibits contractions of isolated rat uterus by activation of smooth muscle inwardly rectifying potassium channels

    Directory of Open Access Journals (Sweden)

    Novaković Radmila

    2016-01-01

    Full Text Available Resveratrol is a phytoalexin produced in a number of plant species including grapes. The benefit of resveratrol to health is widely reported. Resveratrol has been found to promote relaxation of non-pregnant and pregnant uterus, but its mechanism of action is unclear. The aims of our study were to investigate the involvement of inwardly rectifying potassium channels (Kir in inhibitory effects of resveratrol on three models of contractions of non-pregnant rat uterus: the spontaneous rhythmic contractions (SRC, oxytocin-elicited phasic contractions and tonic oxytocin-elicited contractions.Uterine strips were obtained from virgin female Wistar rats in oestrus. Strips were mounted into organ bath for recording isometric tension in Krebs-Ringer solution. Experiments followed a multiple curve design. In order to test the involvement of Kirchannels in a mechanism of action of resveratrol(1-100 μM,BaCl2 (1 mM,a antagonist of inwardly rectifying pota­ssium channels was used. Resveratrol induced a concentration-dependent relaxation of all models of contractions. BaCl2 antagonized the response to resveratrolon SRC and oxytocin-elicited phasic contractions. Relaxation achieved by resveratrolon tonic oxytocin-elicited concentrations was insensitive to BaCl2.The antagonism of resveratrol effects by inwardly rectifying potassium channels antagonist suggests that Kir channels are involved in resveratrol action on phasic contractions of rat uterus. Inhibitory effect of resveratrol on tonic contractions did not include Kir channels. [Projekat Ministartsva nauke Republike Srbije, br. TR31020

  15. A highly polarized excitable cell separates sodium channels from sodium-activated potassium channels by more than a millimeter.

    Science.gov (United States)

    Ban, Yue; Smith, Benjamin E; Markham, Michael R

    2015-07-01

    The bioelectrical properties and resulting metabolic demands of electrogenic cells are determined by their morphology and the subcellular localization of ion channels. The electric organ cells (electrocytes) of the electric fish Eigenmannia virescens generate action potentials (APs) with Na(+) currents >10 μA and repolarize the AP with Na(+)-activated K(+) (KNa) channels. To better understand the role of morphology and ion channel localization in determining the metabolic cost of electrocyte APs, we used two-photon three-dimensional imaging to determine the fine cellular morphology and immunohistochemistry to localize the electrocytes' ion channels, ionotropic receptors, and Na(+)-K(+)-ATPases. We found that electrocytes are highly polarized cells ∼ 1.5 mm in anterior-posterior length and ∼ 0.6 mm in diameter, containing ∼ 30,000 nuclei along the cell periphery. The cell's innervated posterior region is deeply invaginated and vascularized with complex ultrastructural features, whereas the anterior region is relatively smooth. Cholinergic receptors and Na(+) channels are restricted to the innervated posterior region, whereas inward rectifier K(+) channels and the KNa channels that terminate the electrocyte AP are localized to the anterior region, separated by >1 mm from the only sources of Na(+) influx. In other systems, submicrometer spatial coupling of Na(+) and KNa channels is necessary for KNa channel activation. However, our computational simulations showed that KNa channels at a great distance from Na(+) influx can still terminate the AP, suggesting that KNa channels can be activated by distant sources of Na(+) influx and overturning a long-standing assumption that AP-generating ion channels are restricted to the electrocyte's posterior face. Copyright © 2015 the American Physiological Society.

  16. Molecular and functional characterization of Anopheles gambiae inward rectifier potassium (Kir1) channels: a novel role in egg production.

    Science.gov (United States)

    Raphemot, Rene; Estévez-Lao, Tania Y; Rouhier, Matthew F; Piermarini, Peter M; Denton, Jerod S; Hillyer, Julián F

    2014-08-01

    Inward rectifier potassium (Kir) channels play essential roles in regulating diverse physiological processes. Although Kir channels are encoded in mosquito genomes, their functions remain largely unknown. In this study, we identified the members of the Anopheles gambiae Kir gene family and began to investigate their function. Notably, we sequenced the A. gambiae Kir1 (AgKir1) gene and showed that it encodes all the canonical features of a Kir channel: an ion pore that is composed of a pore helix and a selectivity filter, two transmembrane domains that flank the ion pore, and the so-called G-loop. Heterologous expression of AgKir1 in Xenopus oocytes revealed that this gene encodes a functional, barium-sensitive Kir channel. Quantitative RT-PCR experiments then showed that relative AgKir1 mRNA levels are highest in the pupal stage, and that AgKir1 mRNA is enriched in the adult ovaries. Gene silencing of AgKir1 by RNA interference did not affect the survival of female mosquitoes following a blood meal, but decreased their egg output. These data provide evidence for a new role of Kir channels in mosquito fecundity, and further validates them as promising molecular targets for the development of a new class of mosquitocides to be used in vector control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2.

    Science.gov (United States)

    Bukiya, Anna N; Rosenhouse-Dantsker, Avia

    2017-07-01

    G-protein gated inwardly rectifying potassium (GIRK or Kir3) channels play a major role in the control of the heart rate, and require the membrane phospholipid phosphatidylinositol-bis-phosphate (PI(4,5)P 2 ) for activation. Recently, we have shown that the activity of the heterotetrameric Kir3.1/Kir3.4 channel that underlies atrial K ACh currents was enhanced by cholesterol. Similarly, the activities of both the Kir3.4 homomer and its active pore mutant Kir3.4* (Kir3.4_S143T) were also enhanced by cholesterol. Here we employ planar lipid bilayers to investigate the crosstalk between PI(4,5)P 2 and cholesterol, and demonstrate that these two lipids act synergistically to activate Kir3.4* currents. Further studies using the Xenopus oocytes heterologous expression system suggest that PI(4,5)P 2 and cholesterol act via distinct binding sites. Whereas PI(4,5)P 2 binds to the cytosolic domain of the channel, the putative binding region of cholesterol is located at the center of the transmembrane domain overlapping the central glycine hinge region of the channel. Together, our data suggest that changes in the levels of two key membrane lipids - cholesterol and PI(4,5)P 2 - could act in concert to provide fine-tuning of Kir3 channel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Preclinical study of a Kv11.1 potassium channel activator as antineoplastic approach for breast cancer.

    Science.gov (United States)

    Fukushiro-Lopes, Daniela F; Hegel, Alexandra D; Rao, Vidhya; Wyatt, Debra; Baker, Andrew; Breuer, Eun-Kyoung; Osipo, Clodia; Zartman, Jeremiah J; Burnette, Miranda; Kaja, Simon; Kouzoukas, Dimitrios; Burris, Sarah; Jones, W Keith; Gentile, Saverio

    2018-01-09

    Potassium ion (K + ) channels have been recently found to play a critical role in cancer biology. Despite that pharmacologic manipulation of ion channels is recognized as an important therapeutic approach, very little is known about the effects of targeting of K + channels in cancer. In this study, we demonstrate that use of the Kv11.1 K + channel activator NS1643 inhibits tumor growth in an in vivo model of breast cancer. Tumors exposed to NS1643 had reduced levels of proliferation markers, high expression levels of senescence markers, increased production of ROS and DNA damage compared to tumors of untreated mice. Importantly, mice treated with NS1643 did not exhibit significant cardiac dysfunction. In conclusion, pharmacological stimulation of Kv11.1 activity produced arrested TNBC-derived tumor growth by generating DNA damage and senescence without significant side effects. We propose that use of Kv11.1 channels activators could be considered as a possible pharmacological strategy against breast tumors.

  19. The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia.

    Science.gov (United States)

    Agarwal, Jasmin R; Griesinger, Frank; Stühmer, Walter; Pardo, Luis A

    2010-01-27

    The voltage-gated potassium channel hEag1 (KV10.1) has been related to cancer biology. The physiological expression of the human channel is restricted to the brain but it is frequently and abundantly expressed in many solid tumors, thereby making it a promising target for a specific diagnosis and therapy. Because chronic lymphatic leukemia has been described not to express hEag1, it has been assumed that the channel is not expressed in hematopoietic neoplasms in general. Here we show that this assumption is not correct, because the channel is up-regulated in myelodysplastic syndromes, chronic myeloid leukemia and almost half of the tested acute myeloid leukemias in a subtype-dependent fashion. Most interestingly, channel expression strongly correlated with increasing age, higher relapse rates and a significantly shorter overall survival. Multivariate Cox regression analysis revealed hEag1 expression levels in AML as an independent predictive factor for reduced disease-free and overall survival; such an association had not been reported before. As a functional correlate, specific hEag1 blockade inhibited the proliferation and migration of several AML cell lines and primary cultured AML cells in vitro. Our observations implicate hEag1 as novel target for diagnostic, prognostic and/or therapeutic approaches in AML.

  20. Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes*

    Science.gov (United States)

    Ramos Gomes, Fernanda; Romaniello, Vincenzo; Sánchez, Araceli; Weber, Claudia; Narayanan, Pratibha; Psol, Maryna; Pardo, Luis A.

    2015-01-01

    KV10.1 is a voltage-gated potassium channel expressed selectively in the mammalian brain but also aberrantly in cancer cells. In this study we identified short splice variants of KV10.1 resulting from exon-skipping events (E65 and E70) in human brain and cancer cell lines. The presence of the variants was confirmed by Northern blot and RNase protection assays. Both variants completely lacked the transmembrane domains of the channel and produced cytoplasmic proteins without channel function. In a reconstituted system, both variants co-precipitated with the full-length channel and induced a robust down-regulation of KV10.1 current when co-expressed with the full-length form, but their effect was mechanistically different. E65 required a tetramerization domain and induced a reduction in the overall expression of full-length KV10.1, whereas E70 mainly affected its glycosylation pattern. E65 triggered the activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle control. Our observations highlight the relevance of noncanonical functions for the oncogenicity of KV10.1, which need to be considered when ion channels are targeted for cancer therapy. PMID:26518875

  1. Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes.

    Science.gov (United States)

    Ramos Gomes, Fernanda; Romaniello, Vincenzo; Sánchez, Araceli; Weber, Claudia; Narayanan, Pratibha; Psol, Maryna; Pardo, Luis A

    2015-12-18

    KV10.1 is a voltage-gated potassium channel expressed selectively in the mammalian brain but also aberrantly in cancer cells. In this study we identified short splice variants of KV10.1 resulting from exon-skipping events (E65 and E70) in human brain and cancer cell lines. The presence of the variants was confirmed by Northern blot and RNase protection assays. Both variants completely lacked the transmembrane domains of the channel and produced cytoplasmic proteins without channel function. In a reconstituted system, both variants co-precipitated with the full-length channel and induced a robust down-regulation of KV10.1 current when co-expressed with the full-length form, but their effect was mechanistically different. E65 required a tetramerization domain and induced a reduction in the overall expression of full-length KV10.1, whereas E70 mainly affected its glycosylation pattern. E65 triggered the activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle control. Our observations highlight the relevance of noncanonical functions for the oncogenicity of KV10.1, which need to be considered when ion channels are targeted for cancer therapy. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The stretch-dependent potassium channel TREK-1 and its function in murine myometrium.

    Science.gov (United States)

    Monaghan, Kevin; Baker, Salah A; Dwyer, Laura; Hatton, William C; Sik Park, Kyung; Sanders, Kenton M; Koh, Sang Don

    2011-03-01

    Smooth muscle of the uterus stays remarkably quiescent during normal pregnancy to allow sufficient time for development of the fetus. At present the mechanisms leading to uterine quiescence during pregnancy and how the suppression of activity is relieved at term are poorly understood. Myometrial excitability is governed by ion channels, and a major hypothesis regarding the regulation of contractility during pregnancy has been that expression of certain channels is regulated by hormonal influences. We have explored the expression and function of stretch-dependent K+ (SDK) channels, which are likely to be due to TREK channels, in murine myometrial tissues and myocytes using PCR, Western blots, patch clamp, intracellular microelectrode and isometric force measurements. TREK-1 is more highly expressed than TREK-2 in myometrium, and there was no detectable expression of TRAAK. Expression of TREK-1 transcripts and protein was regulated during pregnancy and delivery. SDK channels were activated in response to negative pressure applied to patches. SDK channels were insensitive to a broad-spectrum of K+ channel blockers, including tetraethylammonium and 4-aminopyridine, and insensitive to intracellular Ca2+. SDK channels were activated by stretch and arachidonic acid and inhibited by reagents that block TREK-1 channels, l-methionine and/or methioninol. Our data suggest that uterine excitability and contractility during pregnancy is regulated by the expression of SDK/TREK-1 channels. Up-regulation of these channels stabilizes membrane potential and controls contraction during pregnancy and down-regulation of these channels induces the onset of delivery.

  3. Inhibitory Effects of Glycyrrhetinic Acid on the Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes and HERG Channel

    Directory of Open Access Journals (Sweden)

    Delin Wu

    2013-01-01

    Full Text Available Background. Licorice has long been used to treat many ailments including cardiovascular disorders in China. Recent studies have shown that the cardiac actions of licorice can be attributed to its active component, glycyrrhetinic acid (GA. However, the mechanism of action remains poorly understood. Aim. The effects of GA on the delayed rectifier potassium current (IK, the rapidly activating (IKr and slowly activating (IKs components of IK, and the HERG K+ channel expressed in HEK-293 cells were investigated. Materials and Methods. Single ventricular myocytes were isolated from guinea pig myocardium using enzymolysis. The wild type HERG gene was stably expressed in HEK293 cells. Whole-cell patch clamping was used to record IK (IKr, IKs and the HERG K+ current. Results. GA (1, 5, and 10 μM inhibited IK (IKr, IKs and the HERG K+ current in a concentration-dependent manner. Conclusion. GA significantly inhibited the potassium currents in a dose- and voltage-dependent manner, suggesting that it exerts its antiarrhythmic action through the prolongation of APD and ERP owing to the inhibition of IK (IKr, IKs and HERG K+ channel.

  4. Excessive blinking and ataxia in a child with occult neuroblastoma and voltage-gated potassium channel antibodies.

    LENUS (Irish Health Repository)

    Allen, Nicholas M

    2012-05-01

    A previously healthy 9-year-old girl presented with a 10-day history of slowly progressive unsteadiness, slurred speech, and behavior change. On examination there was cerebellar ataxia and dysarthria, excessive blinking, subtle perioral myoclonus, and labile mood. The finding of oligoclonal bands in the cerebrospinal fluid prompted paraneoplastic serological evaluation and search for an occult neural crest tumor. Antineuronal nuclear autoantibody type 1 (anti-Hu) and voltage-gated potassium channel complex antibodies were detected in serum. Metaiodobenzylguanidine scan and computed tomography scan of the abdomen showed a localized abdominal mass in the region of the porta hepatis. A diagnosis of occult neuroblastoma was made. Resection of the stage 1 neuroblastoma and treatment with pulsed corticosteroids resulted in resolution of all symptoms and signs. Excessive blinking has rarely been described with neuroblastoma, and, when it is not an isolated finding, it may be a useful clue to this paraneoplastic syndrome. Although voltage-gated potassium channel complex autoimmunity has not been described previously in the setting of neuroblastoma, it is associated with a spectrum of paraneoplastic neurologic manifestations in adults, including peripheral nerve hyperexcitability disorders.

  5. Bickerstaff's encephalitis and Miller Fisher syndrome associated with voltage-gated potassium channel and novel anti-neuronal antibodies.

    Science.gov (United States)

    Tüzün, E; Kürtüncü, M; Lang, B; Içöz, S; Akman-Demir, G; Eraksoy, M; Vincent, A

    2010-10-01

    GQ1b antibody (GQ1b-Ab) is detected in approximately two-thirds of sera of patients with Bickerstaffs encephalitis (BE). Whilst some of the remaining patients have antibodies to other gangliosides, many patients with BE are reported to be seronegative. Voltage-gated potassium channel antibody (VGKC-Ab) at high titer was detected during the diagnostic work-up of one patient with BE. Sera of an additional patient with BE and nine patients with Miller Fisher syndrome (MF) (all GQ1b-Ab positive) were investigated for VGKC-Ab and other anti-neuronal antibodies by radioimmunoprecipitation using 125I-dendrotoxin-VGKC and immunohistochemistry, respectively. Two patients with MF exhibited moderate titer VGKC-Abs. Regardless of positivity for VGKC or GQ1b antibodies, serum IgG of all patients with BE and MF reacted with the molecular layer and Purkinje cells of the cerebellum in a distinctive pattern. Voltage-gated potassium channel antibodies might be involved in some cases of BE or MF. The common staining pattern despite different antibody results suggests that there might be other, as yet unidentified, antibodies associated with BE and MF.

  6. The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changkeun; Guo, Jiangtao; Zeng, Weizhong; Kim, Sunghoon; She, Ji; Cang, Chunlei; Ren, Dejian; Jiang , Youxing (UPENN); (UTSMC); (HHMI)

    2017-07-19

    TMEM175 is a lysosomal K+ channel that is important for maintaining the membrane potential and pH stability in lysosomes1. It contains two homologous copies of a six-transmembrane-helix (6-TM) domain, which has no sequence homology to the canonical tetrameric K+ channels and lacks the TVGYG selectivity filter motif found in these channels2, 3, 4. The prokaryotic TMEM175 channel, which is present in a subset of bacteria and archaea, contains only a single 6-TM domain and functions as a tetramer. Here, we present the crystal structure of a prokaryotic TMEM175 channel from Chamaesiphon minutus, CmTMEM175, the architecture of which represents a completely different fold from that of canonical K+ channels. All six transmembrane helices of CmTMEM175 are tightly packed within each subunit without undergoing domain swapping. The highly conserved TM1 helix acts as the pore-lining inner helix, creating an hourglass-shaped ion permeation pathway in the channel tetramer. Three layers of hydrophobic residues on the carboxy-terminal half of the TM1 helices form a bottleneck along the ion conduction pathway and serve as the selectivity filter of the channel. Mutagenesis analysis suggests that the first layer of the highly conserved isoleucine residues in the filter is primarily responsible for channel selectivity. Thus, the structure of CmTMEM175 represents a novel architecture of a tetrameric cation channel whose ion selectivity mechanism appears to be distinct from that of the classical K+ channel family.

  7. The Role of Potassium Channels in the Temperature Control of Stomatal Aperture.

    Science.gov (United States)

    Ilan, N.; Moran, N.; Schwartz, A.

    1995-07-01

    We used the patch-clamp technique to examine the effect of temperature (13-36[deg]C) on the depolarization-activated K channels (KD channels) and on the hyperpolarization-activated channels (KH channels) in the plasma membrane of Vicia faba guard-cell protoplasts. The steady-state whole-cell conductance of both K channel types increased with temperature up to 20[deg]C. However, whereas the whole-cell conductance of the KH channels increased further and saturated at 28[deg]C, that of KD channels decreased at higher temperatures. The unitary conductance of both channel types increased with temperature like the rate of diffusion in water (temperature quotient of approximately 1.5), constituting the major contribution to the conductance increase in the whole cells. The mean number of available KH channels was not affected significantly by temperature, but the mean number of available KD channels increased significantly between 13 and 20[deg]C and declined drastically above 20[deg]C. This decrease and the reduced steady-state voltage-dependent probability of opening of the KD channels above 28[deg]C (because of a shift of voltage dependence by +21 mV) account for the depression of the whole-cell KD conductance at the higher temperatures. This may be a basic mechanism by which leaves of well-watered plants keep their stomata open during heat stress to promote cooling by transpiration.

  8. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yan; Lin, Zuoxian [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Xia, Menghang; Zheng, Wei [National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892 (United States); Li, Zhiyuan, E-mail: li_zhiyuan@gibh.ac.cn [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China)

    2013-03-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC{sub 50} values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds.

  9. Update on the implication of potassium channels in autism: K+ channelautism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Luca eGuglielmi

    2015-03-01

    Full Text Available Autism spectrum disorders (ASDs are characterized by impaired ability to properly implement environmental stimuli that are essential to achieve a state of social and cultural exchange. Indeed, the main features of ASD are impairments of interpersonal relationships, verbal and non-verbal communication and restricted and repetitive behaviors. These aspects are often accompanied by several comorbidities such as motor delay, praxis impairment, gait abnormalities, insomnia and above all epilepsy. Genetic analyses of autistic individuals uncovered deleterious mutations in several K+ channel types strengthening the notion that their intrinsic dysfunction may play a central etiologic role in ASD. However, indirect implication of K+ channels in ASD has been also reported. For instance, loss of fragile X mental retardation protein (FMRP results in K+ channels deregulation, network dysfunction and ASD-like cognitive and behavioral symptoms. Therefore, this review provides an update on direct and indirect implications of K+ channels in ASDs. Owing to a mounting body of evidence associating a channelopathy pathogenesis to autism and that nearly 500 ion channel proteins are encoded by the human genome, we also propose to classify ASDs − whose susceptibility is significantly enhanced by ion channels defects, either in a monogenic or multigenic condition − in a new category named channelAutism Spectrum Disorder (channelASD; cASD and introduce a new taxonomy (e.g.: Kvx.y-channelASD and likewise Navx.y-channelASD, Cavx.y-channelASD; etc.. This review also highlights some degree of clinical and genetic overlap between K+ channelASDs and K+ channelepsies, whereby such correlation suggests that a subcategory characterized by a channelASD-channelepsy phenotype may be distinguished. Ultimately, this overview aims to further understand the different clinical subgroups and help parse out the distinct biological basis of autism that are essential to establish patient

  10. Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway

    DEFF Research Database (Denmark)

    Wulf-Johansson, H.; Amrutkar, D.V.; Hay-Schmidt, Anders

    2010-01-01

    Large conductance calcium-activated potassium (BK(Ca)) channels are membrane proteins contributing to electrical propagation through neurons. Calcitonin gene-related peptide (CGRP) is a neuropeptide found in the trigeminovascular system (TGVS). Both BK(Ca) channels and CGRP are involved in migraine...... pathophysiology. Here we study the expression and localization of BK(Ca) channels and CGRP in the rat trigeminal ganglion (TG) and the trigeminal nucleus caudalis (TNC) as these structures are involved in migraine pain. Also the effect of the BK(Ca) channel blocker iberiotoxin and the BK(Ca) channel opener NS...

  11. Role of voltage-gated sodium, potassium and calcium channels in the development of cocaine-associated cardiac arrhythmias

    Science.gov (United States)

    O'Leary, Michael E; Hancox, Jules C

    2010-01-01

    Cocaine is a highly active stimulant that alters dopamine metabolism in the central nervous system resulting in a feeling of euphoria that with time can lead to addictive behaviours. Cocaine has numerous deleterious effects in humans including seizures, vasoconstriction, ischaemia, increased heart rate and blood pressure, cardiac arrhythmias and sudden death. The cardiotoxic effects of cocaine are indirectly mediated by an increase in sympathomimetic stimulation to the heart and coronary vasculature and by a direct effect on the ion channels responsible for maintaining the electrical excitability of the heart. The direct and indirect effects of cocaine work in tandem to disrupt the co-ordinated electrical activity of the heart and have been associated with life-threatening cardiac arrhythmias. This review focuses on the direct effects of cocaine on cardiac ion channels, with particular focus on sodium, potassium and calcium channels, and on the contributions of these channels to cocaine-induced arrhythmias. Companion articles in this edition of the journal examine the epidemiology of cocaine use (Wood & Dargan [1]) and the treatment of cocaine-associated arrhythmias (Hoffmann [2]). PMID:20573078

  12. Quantitative Confocal Microscopy Analysis as a Basis for Search and Study of Potassium Kv1.x Channel Blockers

    Science.gov (United States)

    Feofanov, Alexey V.; Kudryashova, Kseniya S.; Nekrasova, Oksana V.; Vassilevski, Alexander A.; Kuzmenkov, Alexey I.; Korolkova, Yuliya V.; Grishin, Eugene V.; Kirpichnikov, Mikhail P.

    Artificial KcsA-Kv1.x (x = 1, 3) receptors were recently designed by transferring the ligand-binding site from human Kv1.x voltage-gated potassium channels into corresponding domain of the bacterial KscA channel. We found that KcsA-Kv1.x receptors expressed in E. coli cells are embedded into cell membrane and bind ligands when the cells are transformed to spheroplasts. We supposed that E. coli spheroplasts with membrane-embedded KcsA-Kv1.x and fluorescently labeled ligand agitoxin-2 (R-AgTx2) can be used as elements of an advanced analytical system for search and study of Kv1-channel blockers. To realize this idea, special procedures were developed for measurement and quantitative treatment of fluorescence signals obtained from spheroplast membrane using confocal laser scanning microscopy (CLSM). The worked out analytical "mix and read" systems supported by quantitative CLSM analysis were demonstrated to be reliable alternative to radioligand and electrophysiology techniques in the search and study of selective Kv1.x channel blockers of high scientific and medical importance.

  13. Potassium channel abnormalities are consistent with early axon degeneration of motor axons in the G127X SOD1 mouse model of amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Maglemose, Rikke; Hedegaard, Anne; Lehnhoff, Janna

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease, which selectively affects upper and lower motoneurones. The underlying pathophysiology of the disease is complex but electrophysiological studies of peripheral nerves in ALS patients as well as human autopsy studies indicate...... that a potassium channel dysfunction/loss is present early in the symptomatic phase. It remains unclear to what extent potassium channel abnormalities reflect a specific pathogenic mechanism in ALS. The aim of this study was therefore to investigate the temporal changes in the expression and/or function...... of potassium channels in motoneurones in the adult G127X SOD1 mouse model of ALS, a model which has a very long presymptomatic phase. Evidence from animal models indicates that the early progressive motoneurone dysfunction and degeneration can be largely compensated by motor unit remodeling, delaying...

  14. Phycodnavirus potassium ion channel proteins question the virus molecular piracy hypothesis.

    Science.gov (United States)

    Hamacher, Kay; Greiner, Timo; Ogata, Hiroyuki; Van Etten, James L; Gebhardt, Manuela; Villarreal, Luis P; Cosentino, Cristian; Moroni, Anna; Thiel, Gerhard

    2012-01-01

    Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+) channels. To determine if these viral K(+) channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+) channel pore modules from seven phycodnaviruses to the K(+) channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+) channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+) channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+) channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+) channels in algae and perhaps even all cellular organisms.

  15. Phycodnavirus potassium ion channel proteins question the virus molecular piracy hypothesis.

    Directory of Open Access Journals (Sweden)

    Kay Hamacher

    Full Text Available Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+ channels. To determine if these viral K(+ channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+ channel pore modules from seven phycodnaviruses to the K(+ channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+ channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+ channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+ channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+ channels in algae and perhaps even all cellular organisms.

  16. Update on the implication of potassium channels in autism: K(+) channelautism spectrum disorder.

    Science.gov (United States)

    Guglielmi, Luca; Servettini, Ilenio; Caramia, Martino; Catacuzzeno, Luigi; Franciolini, Fabio; D'Adamo, Maria Cristina; Pessia, Mauro

    2015-01-01

    Autism spectrum disorders (ASDs) are characterized by impaired ability to properly implement environmental stimuli that are essential to achieve a state of social and cultural exchange. Indeed, the main features of ASD are impairments of interpersonal relationships, verbal and non-verbal communication and restricted and repetitive behaviors. These aspects are often accompanied by several comorbidities such as motor delay, praxis impairment, gait abnormalities, insomnia, and above all epilepsy. Genetic analyses of autistic individuals uncovered deleterious mutations in several K(+) channel types strengthening the notion that their intrinsic dysfunction may play a central etiologic role in ASD. However, indirect implication of K(+) channels in ASD has been also reported. For instance, loss of fragile X mental retardation protein (FMRP) results in K(+) channels deregulation, network dysfunction and ASD-like cognitive and behavioral symptoms. This review provides an update on direct and indirect implications of K(+) channels in ASDs. Owing to a mounting body of evidence associating a channelopathy pathogenesis to autism and showing that nearly 500 ion channel proteins are encoded by the human genome, we propose to classify ASDs - whose susceptibility is significantly enhanced by ion channels defects, either in a monogenic or multigenic condition - in a new category named " c hannel A utism S pectrum D isorder" (channelASD; cASD) and introduce a new taxonomy (e.g., Kv x.y-channelASD and likewise Nav x.y-channelASD, Cav x.y-channelASD; etc.). This review also highlights some degree of clinical and genetic overlap between K(+) channelASDs and K(+) channelepsies, whereby such correlation suggests that a subcategory characterized by a channelASD-channelepsy phenotype may be distinguished. Ultimately, this overview aims to further understand the different clinical subgroups and help parse out the distinct biological basis of autism that are essential to establish patient

  17. The inhibitory effect of the antipsychotic drug haloperidol on HERG potassium channels expressed in Xenopus oocytes

    Science.gov (United States)

    Suessbrich, H; Schönherr, R; Heinemann, S H; Attali, B; Lang, F; Busch, A E

    1997-01-01

    The antipsychotic drug haloperidol can induce a marked QT prolongation and polymorphic ventricular arrhythmias. In this study, we expressed several cloned cardiac K+ channels, including the human ether-a-go-go related gene (HERG) channels, in Xenopus oocytes and tested them for their haloperidol sensitivity.Haloperidol had only little effects on the delayed rectifier channels Kv1.1, Kv1.2, Kv1.5 and IsK, the A-type channel Kv1.4 and the inward rectifier channel Kir2.1 (inhibition <6% at 3 μM haloperidol).In contrast, haloperidol blocked HERG channels potently with an IC50 value of approximately 1 μM. Reduced haloperidol, the primary metabolite of haloperidol, produced a block with an IC50 value of 2.6 μM.Haloperidol block was use- and voltage-dependent, suggesting that it binds preferentially to either open or inactivated HERG channels. As haloperidol increased the degree and rate of HERG inactivation, binding to inactivated HERG channels is suggested.The channel mutant HERG S631A has been shown to exhibit greatly reduced C-type inactivation which occurs only at potentials greater than 0 mV. Haloperidol block of HERG S631A at 0 mV was four fold weaker than for HERG wild-type channels. Haloperidol affinity for HERG S631A was increased four fold at +40 mV compared to 0 mV.In summary, the data suggest that HERG channel blockade is involved in the arrhythmogenic side effects of haloperidol. The mechanism of haloperidol block involves binding to inactivated HERG channels. PMID:9138706

  18. Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol.

    Science.gov (United States)

    Dopico, Alejandro M; Bukiya, Anna N; Singh, Aditya K

    2012-08-01

    Cholesterol (CLR) is an essential component of eukaryotic plasma membranes. CLR regulates the membrane physical state, microdomain formation and the activity of membrane-spanning proteins, including ion channels. Large conductance, voltage- and Ca²⁺-gated K⁺ (BK) channels link membrane potential to cell Ca²⁺ homeostasis. Thus, they control many physiological processes and participate in pathophysiological mechanisms leading to human disease. Because plasmalemma BK channels cluster in CLR-rich membrane microdomains, a major driving force for studying BK channel-CLR interactions is determining how membrane CLR controls the BK current phenotype, including its pharmacology, channel sorting, distribution, and role in cell physiology. Since both BK channels and CLR tissue levels play a pathophysiological role in human disease, identifying functional and structural aspects of the CLR-BK channel interaction may open new avenues for therapeutic intervention. Here, we review the studies documenting membrane CLR-BK channel interactions, dissecting out the many factors that determine the final BK current response to changes in membrane CLR content. We also summarize work in reductionist systems where recombinant BK protein is studied in artificial lipid bilayers, which documents a direct inhibition of BK channel activity by CLR and builds a strong case for a direct interaction between CLR and the BK channel-forming protein. Bilayer lipid-mediated mechanisms in CLR action are also discussed. Finally, we review studies of BK channel function during hypercholesterolemia, and underscore the many consequences that the CLR-BK channel interaction brings to cell physiology and human disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system.

    Science.gov (United States)

    Wiedmann, Felix; Schmidt, Constanze; Lugenbiel, Patrick; Staudacher, Ingo; Rahm, Ann-Kathrin; Seyler, Claudia; Schweizer, Patrick A; Katus, Hugo A; Thomas, Dierk

    2016-05-01

    The improvement of treatment strategies in cardiovascular medicine is an ongoing process that requires constant optimization. The ability of a therapeutic intervention to prevent cardiovascular pathology largely depends on its capacity to suppress the underlying mechanisms. Attenuation or reversal of disease-specific pathways has emerged as a promising paradigm, providing a mechanistic rationale for patient-tailored therapy. Two-pore-domain K(+) (K(2P)) channels conduct outward K(+) currents that stabilize the resting membrane potential and facilitate action potential repolarization. K(2P) expression in the cardiovascular system and polymodal K2P current regulation suggest functional significance and potential therapeutic roles of the channels. Recent work has focused primarily on K(2P)1.1 [tandem of pore domains in a weak inwardly rectifying K(+) channel (TWIK)-1], K(2P)2.1 [TWIK-related K(+) channel (TREK)-1], and K(2P)3.1 [TWIK-related acid-sensitive K(+) channel (TASK)-1] channels and their role in heart and vessels. K(2P) currents have been implicated in atrial and ventricular arrhythmogenesis and in setting the vascular tone. Furthermore, the association of genetic alterations in K(2P)3.1 channels with atrial fibrillation, cardiac conduction disorders and pulmonary arterial hypertension demonstrates the relevance of the channels in cardiovascular disease. The function, regulation and clinical significance of cardiovascular K(2P) channels are summarized in the present review, and therapeutic options are emphasized. © 2016 Authors; published by Portland Press Limited.

  20. K(ATP channel opener diazoxide prevents neurodegeneration: a new mechanism of action via antioxidative pathway activation.

    Directory of Open Access Journals (Sweden)

    Noemí Virgili

    Full Text Available Pharmacological modulation of ATP-sensitive potassium channels has become a promising new therapeutic approach for the treatment of neurodegenerative diseases due to their role in mitochondrial and cellular protection. For instance, diazoxide, a well-known ATP-sensitive potassium channel activator with high affinity for mitochondrial component of the channel has been proved to be effective in animal models for different diseases such as Alzheimer's disease, stroke or multiple sclerosis. Here, we analyzed the ability of diazoxide for protecting neurons front different neurotoxic insults in vitro and ex vivo. Results showed that diazoxide effectively protects NSC-34 motoneurons from glutamatergic, oxidative and inflammatory damage. Moreover, diazoxide decreased neuronal death in organotypic hippocampal slice cultures after exicitotoxicity and preserved myelin sheath in organotypic cerebellar cultures exposed to pro-inflammatory demyelinating damage. In addition, we demonstrated that one of the mechanisms of actions implied in the neuroprotective role of diazoxide is mediated by the activation of Nrf2 expression and nuclear translocation. Nrf2 expression was increased in NSC-34 neurons in vitro as well as in the spinal cord of experimental autoimmune encephalomyelitis animals orally administered with diazoxide. Thus, diazoxide is a neuroprotective agent against oxidative stress-induced damage and cellular dysfunction that can be beneficial for diseases such as multiple sclerosis.

  1. Activation of vascular KCNQ (Kv7) potassium channels reverses spasmogen-induced constrictor responses in rat basilar artery

    Science.gov (United States)

    Mani, Bharath K; Brueggemann, Lioubov I; Cribbs, Leanne L; Byron, Kenneth L

    2011-01-01

    BACKGROUND AND PURPOSE Cerebral vasospasm is the persistent constriction of large conduit arteries in the base of the brain. This pathologically sustained contraction of the arterial myocytes has been attributed to locally elevated concentrations of vasoconstrictor agonists (spasmogens). We assessed the presence and function of KCNQ (Kv7) potassium channels in rat basilar artery myocytes, and determined the efficacy of Kv7 channel activators in relieving spasmogen-induced basilar artery constriction. EXPERIMENTAL APPROACH Expression and function of Kv7 channels in freshly isolated basilar artery myocytes were evaluated by reverse transcriptase polymerase chain reaction and whole-cell electrophysiological techniques. Functional responses to Kv7 channel modulators were studied in intact artery segments using pressure myography. KEY RESULTS All five mammalian KCNQ subtypes (KCNQ1-5) were detected in the myocytes. Kv currents were attributed to Kv7 channel activity based on their voltage dependence of activation (V0.5∼−34 mV), lack of inactivation, enhancement by flupirtine (a selective Kv7 channel activator) and inhibition by 10,10-bis(pyridin-4-ylmethyl)anthracen-9-one (XE991; a selective Kv7 channel blocker). XE991 depolarized the myocytes and constricted intact basilar arteries. Celecoxib, a clinically used anti-inflammatory drug, not only enhanced Kv7 currents but also inhibited voltage-sensitive Ca2+ currents. In arteries pre-constricted with spasmogens, both celecoxib and flupirtine were more effective in dilating artery segments than was nimodipine, a selective L-type Ca2+ channel blocker. CONCLUSIONS AND IMPLICATIONS Kv7 channels are important determinants of basilar artery contractile status. Targeting the Kv7 channels using flupirtine or celecoxib could provide a novel strategy to relieve basilar artery constriction in patients with cerebral vasospasm. LINKED ARTICLES To view two letters to the Editor regarding this article visit http://dx.doi.org/10

  2. Expression of inwardly rectifying potassium channels (GIRKs and beta-adrenergic regulation of breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Cakir Yavuz

    2004-12-01

    Full Text Available Abstract Background Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. We wished to determine if this regulation exists in breast adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying potassium channel (GIRK1 has been shown in tissue samples from approximately 40% of primary human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic signaling. Methods Breast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene expression were determined by both relative competitive and real time PCR. Potassium flux was determined by flow cytometry and cell signaling was determined by western blotting. Results Breast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed mRNA for the GIRK1 channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (1 μM increased the GIRK1 mRNA levels and decreased beta2-adrenergic mRNA levels, while treatment for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol hemifumarate, led to increases in K+ flux into MDA-MB-453 cells, and this increase was inhibited by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, a high affinity agonist for beta-adrenergic receptors stimulated activation of Erk 1/2 in MDA-MB-453 cells. Conclusions Our data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer.

  3. Surface-enhanced IR absorption spectroscopy of the KcsA potassium channel upon application of an electric field.

    Science.gov (United States)

    Yamakata, Akira; Shimizu, Hirofumi; Oiki, Shigetoshi

    2015-09-07

    Surface-enhanced IR absorption spectroscopy (SEIRAS) is a powerful tool for studying the structure of molecules adsorbed on an electrode surface (ATR-SEIRA). Coupled with an electrochemical system, structural changes induced by changes in the electric field can be detected. All the membrane proteins are subjected to the effect of membrane electric field, but conformational changes at different membrane potentials and their functional relevance have not been studied extensively except for channel proteins. In this contribution, background information of potential-dependent functional and structural changes of a prototypical channel, the KcsA channel, is summarized, and SEIRAS applied to the KcsA channel under the application of the potential is shown. The potassium channels allow K(+) to permeate selectively through the structural part called the selectivity filter, in which dehydrated K(+) ions interact with backbone carbonyls. In the absence of K(+), the selectivity filter undergoes conformational changes to the non-conductive collapsed conformation. To apply the electric field, the KcsA channels were fixed on the gold surface in either upside or reverse orientation. The SEIRA spectrum in K(+) or Na(+) solution revealed both backbone structural changes and local changes in the OCO-carboxylate groups. Upon application of the negative electric field, the spectrum of OCO was enhanced only in the K(+) solution. These results indicate that the negative electric field accumulates local K(+) concentration, which turned the collapsed filter to the conductive conformation. ATR-SEIRA serves as an unprecedented experimental system for examining membrane proteins under an electric field.

  4. The inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on K2P (two-pore domain potassium) channel TREK-1.

    Science.gov (United States)

    Shin, Hye Won; Soh, Jeong Seop; Kim, Hee Zoo; Hong, Jinpyo; Woo, Dong Ho; Heo, Jun Young; Hwang, Eun Mi; Park, Jae-Yong; Lee, C Justin

    2014-02-01

    Bupivacaine, levobupivacaine, and ropivacaine are amide local anesthetics. Levobupivacaine and ropivacaine are stereoisomers of bupivacaine and were developed to circumvent the bupivacaine's severe toxicity. The recently characterized background potassium channel, K(2P) TREK-1, is a well-known target for various local anesthetics. The purpose of study is to investigate the differences in inhibitory potency and stereoselectivity among bupivacaine, levobupivacaine, and ropivacaine on K(2P) TREK-1 channels overexpressed in COS-7 cells. We investigated the effects of bupivacaine, levobupivacaine, and ropivacaine (10, 50, 100, 200, and 400 μM) on TREK-1 channels expressed in COS-7 cells by using the whole cell patch clamp technique with a voltage ramp protocol ranging from -100 to 100 mV for 200 ms from a holding potential of -70 mV. Bupivacaine, levobupivacaine, and ropivacaine showed reversible inhibition of TREK-1 channels in a concentration-dependent manner. The half-maximal inhibitory concentrations (IC(50)) of bupivacaine, levobupivacaine, and ropivacaine were 95.4 ± 14.6, 126.1 ± 24.5, and 402.7 ± 31.8 μM, respectively. IC(50) values indicated a rank order of potency (bupivacaine > levobupivacaine > ropivacaine) with stereoselectivity. Hill coefficients were 0.84, 0.93, and 0.89 for bupivacaine, levobupivacaine, and ropivacaine, respectively. Inhibitory effects on TREK-1 channels by bupivacaine, levobupivacaine, and ropivacaine demonstrated stereoselectivity: bupivacaine was more potent than levobupivacaine and ropivacaine. Inhibition of TREK-1 channels and consecutive depolarization of the cell membrane by bupivacaine, levobupivacaine, and ropivacaine may contribute to the blockade of neuronal conduction and side effects.

  5. Differential sensitivity of TREK-1, TREK-2 and TRAAK background potassium channels to the polycationic dye ruthenium red.

    Science.gov (United States)

    Braun, G; Lengyel, M; Enyedi, P; Czirják, G

    2015-04-01

    Pharmacological separation of the background potassium currents of closely related K2P channels is a challenging problem. We previously demonstrated that ruthenium red (RR) inhibits TASK-3 (K2 P 9.1), but not TASK-1 (K2 P 3.1) channels. RR has been extensively used to distinguish between TASK currents in native cells. In the present study, we systematically investigate the RR sensitivity of a more comprehensive set of K2 P channels. K(+) currents were measured by two-electrode voltage clamp in Xenopus oocytes and by whole-cell patch clamp in mouse dorsal root ganglion (DRG) neurons. RR differentiates between two closely related members of the TREK subfamily. TREK-2 (K2 P 10.1) proved to be highly sensitive to RR (IC50 = 0.2 μM), whereas TREK-1 (K2 P 2.1) was not affected by the compound. We identified aspartate 135 (D135) as the target of the inhibitor in mouse TREK-2c. D135 lines the wall of the extracellular ion pathway (EIP), a tunnel structure through the extracellular cap characteristic for K2 P channels. TREK-1 contains isoleucine in the corresponding position. The mutation of this isoleucine (I110D) rendered TREK-1 sensitive to RR. The third member of the TREK subfamily, TRAAK (K2 P 4.1) was more potently inhibited by ruthenium violet, a contaminant in some RR preparations, than by RR. DRG neurons predominantly express TREK-2 and RR-resistant TREK-1 and TRESK (K2 P 18.1) background K(+) channels. We detected the RR-sensitive leak K(+) current component in DRG neurons. We propose that RR may be useful for distinguishing TREK-2 (K2P 10.1) from TREK-1 (K2P 2.1) and other RR-resistant K2 P channels in native cells. © 2014 The British Pharmacological Society.

  6. Differential sensitivity of TREK–1, TREK–2 and TRAAK background potassium channels to the polycationic dye ruthenium red

    Science.gov (United States)

    Braun, G; Lengyel, M; Enyedi, P; Czirják, G

    2015-01-01

    Background and Purpose Pharmacological separation of the background potassium currents of closely related K2P channels is a challenging problem. We previously demonstrated that ruthenium red (RR) inhibits TASK-3 (K2P9.1), but not TASK-1 (K2P3.1) channels. RR has been extensively used to distinguish between TASK currents in native cells. In the present study, we systematically investigate the RR sensitivity of a more comprehensive set of K2P channels. Experimental Approach K+ currents were measured by two-electrode voltage clamp in Xenopus oocytes and by whole-cell patch clamp in mouse dorsal root ganglion (DRG) neurons. Key Results RR differentiates between two closely related members of the TREK subfamily. TREK-2 (K2P10.1) proved to be highly sensitive to RR (IC50 = 0.2 μM), whereas TREK-1 (K2P2.1) was not affected by the compound. We identified aspartate 135 (D135) as the target of the inhibitor in mouse TREK-2c. D135 lines the wall of the extracellular ion pathway (EIP), a tunnel structure through the extracellular cap characteristic for K2P channels. TREK-1 contains isoleucine in the corresponding position. The mutation of this isoleucine (I110D) rendered TREK-1 sensitive to RR. The third member of the TREK subfamily, TRAAK (K2P4.1) was more potently inhibited by ruthenium violet, a contaminant in some RR preparations, than by RR. DRG neurons predominantly express TREK-2 and RR-resistant TREK-1 and TRESK (K2P18.1) background K+ channels. We detected the RR-sensitive leak K+ current component in DRG neurons. Conclusions and Implications We propose that RR may be useful for distinguishing TREK-2 (K2P10.1) from TREK-1 (K2P2.1) and other RR-resistant K2P channels in native cells. PMID:25409575

  7. Role of hydrophobic and ionic forces in the movement of S4 of the Shaker potassium channel.

    Science.gov (United States)

    Elliott, David J S; Neale, Edward J; Munsey, Tim S; Bannister, John P; Sivaprasadarao, Asipu

    2012-12-01

    Voltage-gated ion (K(+), Na(+), Ca(2+)) channels contain a pore domain (PD) surrounded by four voltage sensing domains (VSD). Each VSD is made up of four transmembrane helices, S1-S4. S4 contains 6-7 positively charged residues (arginine/lysine) separated two hydrophobic residues, whereas S1-S3 contribute to two negatively charged clusters. These structures are conserved among all members of the voltage-gated ion channel family and play essential roles in voltage gating. The role of S4 charged residues in voltage gating is well established: During depolarization, they move out of the membrane electric field, exerting a mechanical force on channel gates, causing them to open. However, the role of the intervening hydrophobic residues in voltage sensing is unclear. Here we studied the role of these residues in the prototypical Shaker potassium channel. We have altered the physicochemical properties of both charged and hydrophobic positions of S4 and examined the effect of these modifications on the gating properties of the channel. For this, we have introduced cysteines at each of these positions, expressed the mutants in Xenopus oocytes, and examined the effect of in situ addition of charge, via Cd(2+), on channel gating by two-electrode voltage clamp. Our results reveal a face of the S4 helix (comprising residues L358, L361, R365 and R368) where introduction of charge at hydrophobic positions destabilises the closed state and removal of charges from charged positions has an opposite effect. We propose that hydrophobic residues play a crucial role in limiting gating to a physiological voltage range.

  8. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.

    Science.gov (United States)

    Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-04-14

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries.

    Science.gov (United States)

    Hedegaard, Elise R; Gouliaev, Anja; Winther, Anna K; Arcanjo, Daniel D R; Aalling, Mathilde; Renaltan, Nirthika S; Wood, Mark E; Whiteman, Matthew; Skovgaard, Nini; Simonsen, Ulf

    2016-01-01

    Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  10. K+ CHANNELEPSY: progress in the neurobiology of potassium channels and epilepsy

    Directory of Open Access Journals (Sweden)

    Maria Cristina D'Adamo

    2013-09-01

    Full Text Available K+ channels are important determinants of seizure susceptibility. These membrane proteins, encoded by more than 70 genes, make the largest group of ion channels that fine-tune the electrical activity of neuronal and non-neuronal cells in the brain. Their ubiquity and extremely high genetic and functional diversity, unmatched by any other ion channel type, place K+ channels as primary targets of genetic variations or perturbations in K+-dependent homeostasis, even in the absence of a primary channel defect. It is therefore not surprising that numerous inherited or acquired K+ channels dysfunctions have been associated with several neurologic syndromes, including epilepsy, which often generate confusion in the classification of the associated diseases. Therefore, we propose to name the K+ channels defects underlying distinct epilepsies as K+ channelepsies, and introduce a new nomenclature (e.g. Kx.y-channelepsy, following the widely used K+ channel classification, which could be also adopted to easily identify other channelopathies involving Na+ (e.g. Navx.y-phenotype, Ca2+ (e.g. Cavx.y-phenotype, and Cl- channels. Furthermore, we discuss novel genetic defects in K+ channels and associated proteins that underlie distinct epileptic phenotypes in humans, and analyze critically the recent progress in the neurobiology of this disease that has also been provided by investigations on valuable animal models of epilepsy. The abundant and varied lines of evidence discussed here strongly foster assessments for variations in genes encoding for K+ channels and associated proteins in patients with idiopathic epilepsy, provide new avenues for future investigations, and highlight these proteins as critical pharmacological targets.

  11. Calcium-activated potassium channels - a therapeutic target for modulating nitric oxide in cardiovascular disease?

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Simonsen, Ulf

    2010-01-01

    IMPORTANCE OF THE FIELD: Cardiovascular risk factors are often associated with endothelial dysfunction, which is also prognostic for occurrence of cardiovascular events. Endothelial dysfunction is reflected by blunted vasodilatation and reduced nitric oxide (NO) bioavailability. Endothelium......-dependent vasodilatation is mediated by NO, prostacyclin, and an endothelium-derived hyperpolarising factor (EDHF), and involves small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels. Therefore, SK and IK channels may be drug targets for the treatment of endothelial dysfunction in cardiovascular...... disease. AREAS COVERED IN THIS REVIEW: SK and IK channels are involved in EDHF-type vasodilatation, but recent studies suggest that these channels are also involved in the regulation of NO bioavailability. Here we review how SK and IK channels may regulate NO bioavailability. WHAT THE READER WILL GAIN...

  12. Potassium channels-mediated electrophysiologic responses are inhibited by cytosolic phospholipase A2α ablation.

    Science.gov (United States)

    Wang, Na; Hu, Ying-Hong; Su, Li-Da

    2018-01-03

    Cytosolic phospholipase A2α (cPLA2α) is implicated in the progression of excitotoxic neuronal injury and cerebral ischemia. Previous work suggests that cPLA2α increases aberrant electrophysiologic events through attenuating K channel functions. Nevertheless, which K channels are affected by cPLA2α needs to be determined. Here we examined K channels-mediated electrophysiologic responses in hippocampal CA1 pyramidal neurons from wild-type and cPLA2α mice using simultaneous patch-clamp recording and confocal Ca imaging. After the exposure to the blockers of Ca-sensitive and A-type K channels, all CA1 neurons developed spike broadening and increased dendritic Ca transients. These effects were occluded in CA1 neurons from cPLA2α mice. Therefore, cPLA2α modulates the functions of Ca-sensitive and A-type K channels in neurotoxicity.

  13. Inhibition of HERG potassium channels by domiphen bromide and didecyl dimethylammonium bromide.

    Science.gov (United States)

    Long, Yan; Chen, Wanjuan; Lin, Zuoxian; Sun, Hongmao; Xia, Menghang; Zheng, Wei; Li, Zhiyuan

    2014-08-15

    Domiphen bromide and didecyl dimethylammonium bromide were widely used environmental chemicals with potent activity on blockade of human ether-a-go-go related gene (HERG) channels. But the mechanism of their action is not clear. The kinetics of block of HERG channels by domiphen bromide and didecyl dimethylammonium bromide was studied in order to characterize the inhibition of HERG currents by these quaternary ammonium compounds (QACs). Domiphen bromide and didecyl dimethylammonium bromide inhibited HERG channel currents in a dose-dependent manner with IC50 values of 9nM and 5nM, respectively. Block of HERG channel by domiphen bromide and didecyl dimethylammonium bromide was voltage-dependent and use-dependent. Domiphen bromide and didecyl dimethylammonium bromide caused substantial negative shift of the activation curves, accelerated activated process, but had no effects on the deactivation and reactivation processes. The docking models implied that these two compounds bound to PAS domain of HERG channels and inhibited its function. Our data demonstrated that domiphen bromide and didecyl dimethylammonium bromide blocked the HERG channel with a preference for the activated channel state. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Upregulation of basolateral small conductance potassium channels (KCNQ1/KCNE3) in ulcerative colitis.

    Science.gov (United States)

    Al-Hazza, Adel; Linley, John; Aziz, Qadeer; Hunter, Malcolm; Sandle, Geoffrey

    2016-02-05

    Basolateral K(+) channels hyperpolarize colonocytes to ensure Na(+) (and thus water) absorption. Small conductance basolateral (KCNQ1/KCNE3) K(+) channels have never been evaluated in human colon. We therefore evaluated KCNQ1/KCNE3 channels in distal colonic crypts obtained from normal and active ulcerative colitis (UC) patients. KCNQ1 and KCNE3 mRNA levels were determined by qPCR, and KCNQ1/KCNE3 channel activity in normal and UC crypts, and the effects of forskolin (activator of adenylate cyclase) and UC-related proinflammatory cytokines on normal crypts, studied by patch clamp recording. Whereas KCNQ1 and KCNE3 mRNA expression was similar in normal and UC crypts, single 6.8 pS channels were seen in 36% of basolateral patches in normal crypts, and to an even greater extent (74% of patches, P KCNQ1/KCNE3 channels make only a small contribution to basolateral conductance in normal colonic crypts, with increased channel activity in UC appearing insufficient to prevent colonic cell depolarization in this disease. This supports the proposal that defective Na(+) absorption rather than enhanced Cl(-) secretion, is the dominant pathophysiological mechanism of diarrhea in UC. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Frequency-dependent modulation of KCNQ1 and HERG1 potassium channels

    DEFF Research Database (Denmark)

    Diness, Thomas Goldin; Hansen, Rie Schultz; Olesen, Søren-Peter

    2006-01-01

    To obtain information about a possible frequency-dependent modulation of HERG1 and hKCNQ1 channels, we performed heterologous expression in Xenopus laevis oocytes. Channel activation was obtained by voltage protocols roughly imitating cardiac action potentials at frequencies of 1, 3, 5.8, and 8.3Hz....... The activity of HERG1 channels was inhibited down to 65% at high frequencies. In contrast, hKCNQ1 channel activity was increased up to 525% at high frequencies. The general frequency-dependent modulation of the channels was unaffected by both co-expression of hKCNQ1 and HERG1 channels, and by the presence...... of the beta-subunits KCNE1 and KCNE2. In addition, the functional role of HERG1 in native guinea pig cardiac myocytes was demonstrated at different pacing frequencies by application of 10microM of the new HERG1 activator, NS1643. In conclusion, we have demonstrated that HERG1 and hKCNQ1 channels are inversely...

  16. Engineering a peptide inhibitor towards the KCNQ1/KCNE1 potassium channel (IKs).

    Science.gov (United States)

    Hu, Youtian; Chen, Jing; Wang, Bin; Yang, Weishan; Zhang, Chuangeng; Hu, Jun; Xie, Zili; Cao, Zhijian; Li, Wenxin; Wu, Yingliang; Chen, Zongyun

    2015-09-01

    The KCNQ1/KCNE1 channel (IKs) plays important roles in the physiological and pathological process of heart, but no potent peptide acting on this channel has been reported. In this work, we found that the natural scorpion venom hardly inhibited KCNQ1/KCNE1 channel currents. Based on this observation, we attempted to use three natural scorpion toxins ChTX, BmKTX and OmTx2 with two different structural folds as templates to engineer potent peptide inhibitors towards the KCNQ1/KCNE1 channel. Pharmacological experiments showed that when we screen with 1μM MT2 peptide, an analog derived from BmKTX toxin, KCNQ1/KCNE1 channel currents could be effectively inhibited. Concentration-dependent experiments showed that MT2 inhibited the KCNQ1/KCNE1 channel with an IC50 value of 4.6±1.9μM. The mutagenesis experiments indicated that MT2 peptide likely used Lys26 residue to interact with the KCNQ1/KCNE1 channel. With MT2 as a new template, we further designed a more potent MT2-2 peptide, which selectively inhibited the KCNQ1/KCNE1 channel with an IC50 of 1.51±0.62μM. Together, this work provided a much potent KCNQ1/KCNE1 channel peptide inhibitor so far, and highlighted the role of molecular strategy in developing potent peptide inhibitors for the natural toxin-insensitive orphan receptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Temperature dependence of unitary properties of an ATP-dependent potassium channel in cardiac myocytes.

    OpenAIRE

    McLarnon, J G; Hamman, B.N.; Tibbits, G.F.

    1993-01-01

    The temperature dependence of the properties of unitary currents in cultured rat ventricular myocytes has been studied. Currents flowing through an ATP-dependent K+ channel were recorded from inside-out patches with the bath temperature varied from 10 degrees to 30 degrees C. The channel conductance was 56 pS at room temperature (22 degrees C), and the amplitudes of unitary currents and the channel conductance exhibited a relatively weak (Q10 from 1.4 to 1.6) dependence on temperature. The te...

  18. Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Galpin, Jason D; Niciforovic, Ana P

    2013-01-01

    the kinetics of this process remain obscure. Using a combination of synthetic amino acid analogs and concatenated channel subunits we establish two H-bonds near the extracellular surface of the channel that endow Kv channels with a mechanism to time the entry into slow inactivation: an intra-subunit H-bond...... between Asp447 and Trp434 and an inter-subunit H-bond connecting Tyr445 to Thr439. Breaking of either interaction triggers slow inactivation by means of a local disruption in the selectivity filter, while severing the Tyr445-Thr439 H-bond is likely to communicate this conformational change to the adjacent...

  19. Inhibition of hERG potassium channel by the antiarrhythmic agent mexiletine and its metabolite m-hydroxymexiletine.

    Science.gov (United States)

    Gualdani, Roberta; Tadini-Buoninsegni, Francesco; Roselli, Mariagrazia; Defrenza, Ivana; Contino, Marialessandra; Colabufo, Nicola Antonio; Lentini, Giovanni

    2015-10-01

    Mexiletine is a sodium channel blocker, primarily used in the treatment of ventricular arrhythmias. Moreover, recent studies have demonstrated its therapeutic value to treat myotonic syndromes and to relieve neuropathic pain. The present study aims at investigating the direct blockade of hERG potassium channel by mexiletine and its metabolite m-hydroxymexiletine (MHM). Our data show that mexiletine inhibits hERG in a time- and voltage-dependent manner, with an IC50 of 3.7 ± 0.7 μmol/L. Analysis of the initial onset of current inhibition during a depolarizing test pulse indicates mexiletine binds preferentially to the open state of the hERG channel. Looking for a possible mexiletine alternative, we show that m-hydroxymexiletine (MHM), a minor mexiletine metabolite recently reported to be as active as the parent compound in an arrhythmia animal model, is a weaker hERG channel blocker, compared to mexiletine (IC50 = 22.4 ± 1.2 μmol/L). The hERG aromatic residues located in the S6 helix (Tyr652 and Phe656) are crucial in the binding of mexiletine and the different affinities of mexiletine and MHM with hERG channel are interpreted by modeling their corresponding binding interactions through ab initio calculations. The simulations demonstrate that the introduction of a hydroxyl group on the meta-position of the aromatic portion of mexiletine weakens the interaction of the drug xylyloxy moiety with Tyr652. These results provide further insights into the molecular basis of drug/hERG interactions and, in agreement with previously reported results on clofilium and ibutilide analogs, support the possibility of reducing hERG potency and related toxicity by modifying the aromatic pattern of substitution of clinically relevant compounds.

  20. Intersubunit Concerted Cooperative and cis-Type Mechanisms Modulate Allosteric Gating in Two-Pore-Domain Potassium Channel TREK-2.

    Science.gov (United States)

    Zhuo, Ren-Gong; Peng, Peng; Liu, Xiao-Yan; Yan, Hai-Tao; Xu, Jiang-Ping; Zheng, Jian-Quan; Wei, Xiao-Li; Ma, Xiao-Yun

    2016-01-01

    In response to diverse stimuli, two-pore-domain potassium channel TREK-2 regulates cellular excitability, and hence plays a key role in mediating neuropathic pain, mood disorders and ischemia through. Although more and more input modalities are found to achieve their modulations via acting on the channel, the potential role of subunit interaction in these modulations remains to be explored. In the current study, the deletion (lack of proximal C-terminus, ΔpCt) or point mutation (G312A) was introduced into TREK-2 subunits to limit K(+) conductance and used to report subunit stoichiometry. The constructs were then combined with wild type (WT) subunit to produce concatenated dimers with defined composition, and the gating kinetics of these channels to 2-Aminoethoxydiphenyl borate (2-APB) and extracellular pH (pHo) were characterized. Our results show that combination of WT and ΔpCt/G312A subunits reserves similar gating properties to that of WT dimmers, suggesting that the WT subunit exerts dominant and positive effects on the mutated one, and thus the two subunits controls channel gating via a concerted cooperative manner. Further introduction of ΔpCt into the latter subunit of heterodimeric channel G312A-WT or G312A-G312A attenuated their sensitivity to 2-APB and pHo alkalization, implicating that these signals were transduced by a cis-type mechanism. Together, our findings elucidate the mechanisms for how the two subunits control the pore gating of TREK-2, in which both intersubunit concerted cooperative and cis-type manners modulate the allosteric regulations induced by 2-APB and pHo alkalization.

  1. Intersubunit concerted cooperative and cis-type mechanisms modulate allosteric gating in two-pore-domain potassium channel TREK-2

    Directory of Open Access Journals (Sweden)

    Ren-Gong eZhuo

    2016-05-01

    Full Text Available In response to diverse stimuli, two-pore-domain potassium channel TREK-2 regulates cellular excitability, and hence plays a key role in mediating neuropathic pain, mood disorders and ischemia through. Although more and more input modalities are found to achieve their modulations via acting on the channel, the potential role of subunit interaction in these modulations remains to be explored. In the current study, the deletion (lack of proximal C-terminus, pCt or point mutation (G312A was introduced into TREK-2 subunits to limit K+ conductance and used to report subunit stoichiometry. The constructs were then combined with wild type (WT subunit to produce concatenated dimers with defined composition, and the gating kinetics of these channels to 2-Aminoethoxydiphenyl borate (2-APB and extracellular pH (pHo were characterized. Our results show that combination of WT and pCt/G312A subunits reserves similar gating properties to that of WT dimmers, suggesting that the WT subunit exerts dominant and positive effects on the mutated one, and thus the two subunits controls channel gating via a concerted cooperative manner. Further introduction of pCt into the latter subunit of heterodimeric channel G312A-WT or G312A-G312A attenuated their sensitivity to 2-APB and pHo alkalization, implicating that these signals were transduced by a cis-type mechanism. Together, our findings elucidate the mechanisms for how the two subunits control the pore gating of TREK-2, in which both intersubunit concerted cooperative and cis-type manners modulate the allosteric regulations induced by 2-APB and pHo alkalization.

  2. Purification and structural study of the voltage-sensor domain of the human KCNQ1 potassium ion channel.

    Science.gov (United States)

    Peng, Dungeng; Kim, Ji-Hun; Kroncke, Brett M; Law, Cheryl L; Xia, Yan; Droege, Kristin D; Van Horn, Wade D; Vanoye, Carlos G; Sanders, Charles R

    2014-04-01

    KCNQ1 (also known as KV7.1 or KVLQT1) is a voltage-gated potassium channel modulated by members of the KCNE protein family. Among multiple functions, KCNQ1 plays a critical role in the cardiac action potential. This channel is also subject to inherited mutations that cause certain cardiac arrhythmias and deafness. In this study, we report the overexpression, purification, and preliminary structural characterization of the voltage-sensor domain (VSD) of human KCNQ1 (Q1-VSD). Q1-VSD was expressed in Escherichia coli and purified into lyso-palmitoylphosphatidylglycerol micelles, conditions under which this tetraspan membrane protein yields excellent nuclear magnetic resonance (NMR) spectra. NMR studies reveal that Q1-VSD shares a common overall topology with other channel VSDs, with an S0 helix followed by transmembrane helices S1-S4. The exact sequential locations of the helical spans do, however, show significant variations from those of the homologous segments of previously characterized VSDs. The S4 segment of Q1-VSD was seen to be α-helical (with no 310 component) and underwent rapid backbone amide H-D exchange over most of its length. These results lay the foundation for more advanced structural studies and can be used to generate testable hypotheses for future structure-function experiments.

  3. Oxidation of potassium channels by ROS: a general mechanism of aging and neurodegeneration?

    Science.gov (United States)

    Sesti, Federico; Liu, Shuang; Cai, Shi-Qing

    2010-01-01

    A wealth of evidence underscores the tight link between oxidative stress, neurodegeneration and aging. When the level of excess reactive oxygen species (ROS) increases in the cell, a phenomenon characteristic of aging, DNA is damaged, proteins are oxidized, lipids are degraded and more ROS are produced, all culminating in significant cell injury. Recently we showed that in the nematode, Caenorhabditis elegans, oxidation of K(+) channels by ROS is a major mechanism underlying the loss of neuronal function. The C. elegans results support an argument that K(+) channels controlling neuronal excitability and survival might provide a common, functionally important substrate for ROS in aging mammals. Here we discuss the implications that oxidation of K(+) channels by ROS might have for the mammalian brain during normal aging, as well as in neurodegenerative diseases such as Alzheimer's and Parkinson's. We argue that oxidation of K(+) channels by ROS is a common theme in the aging brain and suggest directions for future experimentation.

  4. Effect of potassium channel blocker Tetraethylammonium pretreatment on prevention of the 6-OHDA-induced chronic Parkinson's disease in rats

    Directory of Open Access Journals (Sweden)

    H. Haghdoost-Yazdi

    2016-06-01

    Full Text Available Background: Nuclease and caspase activities that promote death signals and cause apoptosis are dependent to potassium ion. Objective: The aim of this study was to investigate the effect of potassium channel blocker tetraethylammonium (TEA on prevention of Parkinson's disease in rats. Methods: This experimental study was conducted on 33 male rats in Qazvin University of Medical Sciences, 2014. 6-hydroxydopamine (6-OHDA was injected into the striatum of the brain. The rats received different doses of TEA twice daily the day before the 6-OHDA injection till 15 days after the injection. The severity of Parkinsonism was assessed by the apomorphine-induced rotational behavior, the elevated body swing test (EBST, and the rotarod test. Data were analyzed using Kruskal Wallis and Mann Whitney U tests. Findings: Pretreatment with 5 mg/kg TEA significantly reduced the severity of rotations compared to the saline group. TEA did not reduce the swings in the EBST. In the rotarod test, TEA caused significant improvement in the motor performance of the rats. Conclusion: With regards to the results, it seems that pretreatment with TEA can partly reduce the severity of behavioral symptoms in the 6-OHDA-induced chronic Parkinson's disease. The higher the TEA dose, the more significant the reduction in the severity of symptoms.

  5. Mutant LGI1 Inhibits Seizure-Induced Trafficking of Kv4.2 Potassium Channels

    OpenAIRE

    Smith, Stephen E.P.; Xu, Lin; Kasten, Michael R.; Anderson, Matthew P.

    2012-01-01

    Activity-dependent redistribution of ion channels mediates neuronal circuit plasticity and homeostasis, and could provide pro-epileptic or compensatory anti-epileptic responses to a seizure. Thalamocortical neurons transmit sensory information to the cerebral cortex and through reciprocal corticothalamic connections are intensely activated during a seizure. Therefore, we assessed whether a seizure alters ion channel surface expression and consequent neurophysiologic function of thalamocortica...

  6. Functional Consequences of Methionine Oxidation of hERG Potassium Channels

    Science.gov (United States)

    Su, Zhi; Limberis, James; Martin, Ruth L.; Xu, Rong; Kolbe, Katrin; Heinemann, Stefan H.; Hoshi, Toshinori; Cox, Bryan F.; Gintant, Gary A.

    2010-01-01

    Reactive species oxidatively modify numerous proteins including ion channels. Oxidative sensitivity of ion channels is often conferred by amino acids containing sulfur atoms, such as cysteine and methionine. Functional consequences of oxidative modification of methionine in hERG1 (human ether à go-go related gene 1), which encodes cardiac IKr channels, are unknown. Here we used chloramine-T (ChT), which preferentially oxidizes methionine, to examine the functional consequences of methionine oxidation of hERG channels stably expressed in a human embryonic kidney cell line (HEK 293) and native hERG channels in a human neuroblastoma cell line (SH-SY5Y). ChT (300 µM) significantly decreased whole-cell hERG current in both HEK 293 and SH-SY5Y cells. In HEK 293 cells, the effects of ChT on hERG current were time- and concentration-dependent, and were markedly attenuated in the presence of enzyme methionine sulfoxide reductase A that specifically repairs oxidized methionine. After treatment with ChT, the channel deactivation upon repolarization to −60 or −100 mV was significantly accelerated. The effect of ChT on channel activation kinetics was voltage-dependent; activation slowed during depolarization to +30 mV but accelerated during depolarization to 0 or −10 mV. In contrast, the reversal potential, inactivation kinetics, and voltage-dependence of steady-state inactivation remained unaltered. Our results demonstrate that the redox status of methionine is an important modulator of hERG channel. PMID:17624316

  7. The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel.

    Science.gov (United States)

    Zhao, Juan; Blunck, Rikard

    2016-10-06

    Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proximal C-terminus. In order to characterize the intrinsic gating of the voltage sensing domain in the absence of the pore domain, the Shaker Kv channel was truncated after the fourth transmembrane helix S4 (Shaker-iVSD). Shaker-iVSD showed significantly altered gating kinetics and formed a cation-selective ion channel with a strong preference for protons. Ion conduction in Shaker-iVSD developed despite identical primary sequence, indicating an allosteric influence of the pore domain. Shaker-iVSD also displays pronounced 'relaxation'. Closing of the pore correlates with entry into relaxation suggesting that the two processes are energetically related.

  8. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Matthew T Dickerson

    Full Text Available Glucose-stimulated insulin secretion (GSIS relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s that control β-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN. Intracellular OPN is highly expressed in β-cells and is upregulated under pre-diabetic conditions to help maintain normal β-cell function; however, the functional role of iOPN in β-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human β-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm in HEK293 cells and in primary mouse β-cells. Intracellular OPN was also knocked down in β-cells to test its effect on β-cell TALK-1 channel activity. Reducing β-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient β-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased

  9. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria - An amazing defence tool against hyperosmotic stress

    Directory of Open Access Journals (Sweden)

    Daniela eTrono

    2015-12-01

    Full Text Available In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about fifteen years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP. Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous and tissues/organs (etiolated and green have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane towards the matrix, so collapsing membrane potential (ΔΨ, the main component of the protonmotive force (Δp in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate

  10. Effect of antiarrhythmic drugs on small conductance calcium - activated potassium channels.

    Science.gov (United States)

    Simó-Vicens, Rafel; Sauter, Daniel R P; Grunnet, Morten; Diness, Jonas G; Bentzen, Bo H

    2017-05-15

    Atrial fibrillation (AF) is the most common type of arrhythmia. Current pharmacological treatment for AF is moderately effective and/or increases the risk of serious ventricular adverse effects. To avoid ventricular adverse effects, a new target has been considered, the small conductance calcium-activated K+ channels (KCa2.X, SK channels). In the heart, KCa2.X channels are functionally more important in atria compared to ventricles, and pharmacological inhibition of the channel confers atrial selective prolongation of the cardiac action potential and converts AF to sinus rhythm in animal models of AF. Whether antiarrhythmic drugs (AADs) recommended for treating AF target KCa2.X channels is unknown. To this end, we tested a large number of AADs on the human KCa2.2 and KCa2.3 channels to assess their effect on this new target using automated whole-cell patch clamp. Of the AADs recommended for treatment of AF only dofetilide and propafenone inhibited hKCa2.X channels, with no subtype selectivity. The calculated IC50 were 90±10µmol/l vs 60±10µmol/l for dofetilide and 42±4µmol/l vs 80±20µmol/l for propafenone (hKCa2.3 vs hKCa2.2). Whether this inhibition has clinical importance for their antiarrhythmic effect is unlikely, as the calculated IC50 values are very high compared to the effective free therapeutic plasma concentration of the drugs when used for AF treatment, 40,000-fold for dofetilide and 140-fold higher for propafenone. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Endoxifen, the active metabolite of tamoxifen, inhibits cloned hERG potassium channels.

    Science.gov (United States)

    Chae, Yun Ju; Lee, Keon Jin; Lee, Hong Joon; Sung, Ki-Wug; Choi, Jin-Sung; Lee, Eun Hui; Hahn, Sang June

    2015-04-05

    The effects of tamoxifen, and its active metabolite endoxifen (4-hydroxy-N-desmethyl-tamoxifen), on hERG currents stably expressed in HEK cells were investigated using the whole-cell patch-clamp technique and an immunoblot assay. Tamoxifen and endoxifen inhibited hERG tail currents at -50mV in a concentration-dependent manner with IC50 values of 1.2 and 1.6μM, respectively. The steady-state activation curve of the hERG currents was shifted to the hyperpolarizing direction in the presence of endoxifen. The voltage-dependent inhibition of hERG currents by endoxifen increased steeply in the voltage range of channel activation. The inhibition by endoxifen displayed a shallow voltage dependence (δ=0.18) in the full activation voltage range. A fast application of endoxifen induced a reversible block of hERG tail currents during repolarization in a concentration-dependent manner, which suggested an interaction with the open state of the channel. Endoxifen also decreased the hERG current elicited by a 5s depolarizing pulse to +60mV to inactivate the hERG currents, suggesting an interaction with the activated (open and/or inactivated) states of the channels. Tamoxifen and endoxifen inhibited the hERG channel protein trafficking to the plasma membrane in a concentration-dependent manner with endoxifen being more potent than tamoxifen. These results indicated that tamoxifen and endoxifen inhibited the hERG current by direct channel blockage and by the disruption of channel trafficking to the plasma membrane in a concentration-dependent manner. A therapeutic concentration of endoxifen inhibited the hERG current by preferentially interacting with the activated (open and/or inactivated) states of the channel. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Insights into the stimulatory mechanism of 2-aminoethoxydiphenyl borate on TREK-2 potassium channel.

    Science.gov (United States)

    Zhuo, R-G; Liu, X-Y; Zhang, S-Z; Wei, X-L; Zheng, J-Q; Xu, J-P; Ma, X-Y

    2015-08-06

    2-Aminoethoxydiphenyl borate (2-APB) has been recently identified as a common agonist of TWIK-related K(+) channel (TREK)/TRAAK channels, a subfamily of two-pore domain K(+) (K2P) channels. TREK-2 displays much higher sensitivity to 2-APB compared with TREK-1, despite that these two channels share the highest homology among K2P members. However, the structural basis for their difference in response to 2-APB still remains unknown. Here we identified that the cytosolic C-terminus (Ct) domain plays a dominant role in controlling the stimulatory effects of 2-APB on TREK-2 channel. The distal Ct region negatively regulates the effect of 2-APB, while the proximal Ct is sufficient to evoke the full 2-APB activation of the channel. Further mapping within the proximal Ct revealed that His368 is required for 2-APB activation, and the cooperation of the other non-conserved residues is also necessary. We also identified a secondary active site for 2-APB, which is located at the bottom of the transmembrane segment M2. Finally, we demonstrated that key residues or domains required for 2-APB activation are not involved in the gating mechanism of the selectivity filter. In summary, we reveal a unique modulatory model of TREK-2-Ct that distinguishes it from TREK-1 in high sensitivity to 2-APB. The cooperation of the non-conserved residues within the proximal Ct of TREK-2 plays a dominant role in the 2-APB-induced channel opening, whereas the distal Ct negatively regulates the process. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Role of TREK-1 potassium channel in bladder overactivity after partial bladder outlet obstruction in mouse.

    Science.gov (United States)

    Baker, Salah A; Hatton, William J; Han, Junguk; Hennig, Grant W; Britton, Fiona C; Koh, Sang Don

    2010-02-01

    Mouse models of partial bladder outlet obstruction cause bladder hypertrophy. Expression of a number of ion channels is altered in hypertrophic detrusor muscle, resulting in bladder dysfunction. We determined whether mechanosensitive TREK-1 channels are present in the murine bladder and whether their expression is altered in partial bladder outlet obstruction, resulting in abnormal filling responses. Partial bladder outlet obstruction was surgically induced in CD-1 mice and the mice recovered for 14 days. Cystometry was done to evaluate bladder pressure responses during filling at 25 microl per minute in partial bladder outlet obstruction mice and sham operated controls. TREK-1 channel expression was determined at the mRNA and protein levels by quantitative reverse transcriptase-polymerase chain reaction and Western blotting, respectively, and localized in the bladder wall using immunohistochemistry. Obstructed bladders showed about a 2-fold increase in weight vs sham operated bladders. TREK-1 channel protein expression on Western blots from bladder smooth muscle strip homogenates was significantly decreased in obstructed mice. Immunohistochemistry revealed a significant decrease in TREK-1 channel immunoreactivity in detrusor smooth muscle in obstructed mice. On cystometry the TREK-1 channel blocker L-methioninol induced a significant increase in premature contractions during filling in sham operated mice. L-methioninol had no significant effect in obstructed mice, which showed an overactive detrusor phenotype. TREK-1 channel down-regulation in detrusor myocytes is associated with bladder overactivity in a murine model of partial bladder outlet obstruction. Copyright 2010 American Urological Association. Published by Elsevier Inc. All rights reserved.

  14. Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels

    Science.gov (United States)

    Osteen, Jeremiah D.; Barro-Soria, Rene; Robey, Seth; Sampson, Kevin J.; Kass, Robert S.; Larsson, H. Peter

    2012-01-01

    KCNQ1 (Kv7.1) is a unique member of the superfamily of voltage-gated K+ channels in that it displays a remarkable range of gating behaviors tuned by coassembly with different β subunits of the KCNE family of proteins. To better understand the basis for the biophysical diversity of KCNQ1 channels, we here investigate the basis of KCNQ1 gating in the absence of β subunits using voltage-clamp fluorometry (VCF). In our previous study, we found the kinetics and voltage dependence of voltage-sensor movements are very similar to those of the channel gate, as if multiple voltage-sensor movements are not required to precede gate opening. Here, we have tested two different hypotheses to explain KCNQ1 gating: (i) KCNQ1 voltage sensors undergo a single concerted movement that leads to channel opening, or (ii) individual voltage-sensor movements lead to channel opening before all voltage sensors have moved. Here, we find that KCNQ1 voltage sensors move relatively independently, but that the channel can conduct before all voltage sensors have activated. We explore a KCNQ1 point mutation that causes some channels to transition to the open state even in the absence of voltage-sensor movement. To interpret these results, we adopt an allosteric gating scheme wherein KCNQ1 is able to transition to the open state after zero to four voltage-sensor movements. This model allows for widely varying gating behavior, depending on the relative strength of the opening transition, and suggests how KCNQ1 could be controlled by coassembly with different KCNE family members. PMID:22509038

  15. Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking.

    Science.gov (United States)

    Zhang, Yihong; Colenso, Charlotte K; El Harchi, Aziza; Cheng, Hongwei; Witchel, Harry J; Dempsey, Chris E; Hancox, Jules C

    2016-08-01

    The antiarrhythmic drug amiodarone delays cardiac repolarisation through inhibition of hERG-encoded potassium channels responsible for the rapid delayed rectifier potassium current (IKr). This study aimed to elucidate molecular determinants of amiodarone binding to the hERG channel. Whole-cell patch-clamp recordings were made at 37°C of ionic current (IhERG) carried by wild-type (WT) or mutant hERG channels expressed in HEK293 cells. Alanine mutagenesis and ligand docking were used to investigate the roles of pore cavity amino-acid residues in amiodarone binding. Amiodarone inhibited WT outward IhERG tails with a half-maximal inhibitory concentration (IC50) of ∼45nM, whilst inward IhERG tails in a high K(+) external solution ([K(+)]e) of 94mM were blocked with an IC50 of 117.8nM. Amiodarone's inhibitory action was contingent upon channel gating. Alanine-mutagenesis identified multiple residues directly or indirectly involved in amiodarone binding. The IC50 for the S6 aromatic Y652A mutation was increased to ∼20-fold that of WT IhERG, similar to the pore helical mutant S624A (∼22-fold WT control). The IC50 for F656A mutant IhERG was ∼17-fold its corresponding WT control. Computational docking using a MthK-based hERG model differentiated residues likely to interact directly with drug and those whose Ala mutation may affect drug block allosterically. The requirements for amiodarone block of aromatic residues F656 and Y652 within the hERG pore cavity are smaller than for other high affinity IhERG inhibitors, with relative importance to amiodarone binding of the residues investigated being S624A∼Y652A>F656A>V659A>G648A>T623A. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury.

    Science.gov (United States)

    Yu, Wei; Parakramaweera, Randika; Teng, Shavonne; Gowda, Manasa; Sharad, Yashsavi; Thakker-Varia, Smita; Alder, Janet; Sesti, Federico

    2016-10-26

    The delayed rectifier potassium (K + ) channel KCNB1 (Kv2.1), which conducts a major somatodendritic current in cortex and hippocampus, is known to undergo oxidation in the brain, but whether this can cause neurodegeneration and cognitive impairment is not known. Here, we used transgenic mice harboring human KCNB1 wild-type (Tg-WT) or a nonoxidable C73A mutant (Tg-C73A) in cortex and hippocampus to determine whether oxidized KCNB1 channels affect brain function. Animals were subjected to moderate traumatic brain injury (TBI), a condition characterized by extensive oxidative stress. Dasatinib, a Food and Drug Administration-approved inhibitor of Src tyrosine kinases, was used to impinge on the proapoptotic signaling pathway activated by oxidized KCNB1 channels. Thus, typical lesions of brain injury, namely, inflammation (astrocytosis), neurodegeneration, and cell death, were markedly reduced in Tg-C73A and dasatinib-treated non-Tg animals. Accordingly, Tg-C73A mice and non-Tg mice treated with dasatinib exhibited improved behavioral outcomes in motor (rotarod) and cognitive (Morris water maze) assays compared to controls. Moreover, the activity of Src kinases, along with oxidative stress, were significantly diminished in Tg-C73A brains. Together, these data demonstrate that oxidation of KCNB1 channels is a contributing mechanism to cellular and behavioral deficits in vertebrates and suggest a new therapeutic approach to TBI. This study provides the first experimental evidence that oxidation of a K + channel constitutes a mechanism of neuronal and cognitive impairment in vertebrates. Specifically, the interaction of KCNB1 channels with reactive oxygen species plays a major role in the etiology of mouse model of traumatic brain injury (TBI), a condition associated with extensive oxidative stress. In addition, a Food and Drug Administration-approved drug ameliorates the outcome of TBI in mouse, by directly impinging on the toxic pathway activated in response to

  17. Activation of endothelial and epithelial K(Ca) 2.3 calcium-activated potassium channels by NS309 relaxes human small pulmonary arteries and bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Nielsen, Gorm

    2012-01-01

    BACKGROUND AND PURPOSE: Small (K(Ca) 2) and intermediate (K(Ca) 3.1) conductance calcium-activated potassium channels (K(Ca) ) may contribute to both epithelium- and endothelium-dependent relaxations, but this has not been established in human pulmonary arteries and bronchioles. Therefore, we inv...

  18. The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size

    DEFF Research Database (Denmark)

    Christensen, Alex Hørby; Chatelain, Franck C; Huttner, Inken G

    2016-01-01

    The two-pore domain potassium (K(+)) channel TWIK-1 (or K2P1.1) contributes to background K(+) conductance in diverse cell types. TWIK-1, encoded by the KCNK1 gene, is present in the human heart with robust expression in the atria, however its physiological significance is unknown. To evaluate th...

  19. Students' Understanding of External Representations of the Potassium Ion Channel Protein, Part I: Affordances and Limitations of Ribbon Diagrams, Vines, and Hydrophobic/Polar Representations

    Science.gov (United States)

    Harle, Marissa; Towns, Marcy H.

    2012-01-01

    Research on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This project focuses on students' understanding of three external representations of the potassium ion channel protein. This is part I of a two-part study, which focuses on the affordances and…

  20. The Mutation P.T613a in the Pore Helix of the Kv 11.1 Potassium Channel is Associated with Long Qt Syndrome

    DEFF Research Database (Denmark)

    Poulsen, Kristian L; Hotait, Mostafa; Calloe, Kirstine

    2015-01-01

    BACKGROUND: Loss-of-function mutations in the voltage gated potassium channel Kv 11.1 have been associated with the Long QT Syndrome (LQTS) type 2. We identified the p.T613A mutation in Kv 11.1 in a family with LQTS. T613A is located in the outer part of the pore helix, a structure that is involved...

  1. Chronic fluoxetine treatment increases NO bioavailability and calcium-sensitive potassium channels activation in rat mesenteric resistance arteries.

    Science.gov (United States)

    Pereira, Camila A; Ferreira, Nathanne S; Mestriner, Fabiola L; Antunes-Rodrigues, José; Evora, Paulo R B; Resstel, Leonardo B M; Carneiro, Fernando S; Tostes, Rita C

    2015-10-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Association analysis of a highly polymorphic CAG Repeat in the human potassium channel gene KCNN3 and migraine susceptibility

    Directory of Open Access Journals (Sweden)

    Ovcaric Mick

    2005-09-01

    Full Text Available Abstract Background Migraine is a polygenic multifactorial disease, possessing environmental and genetic causative factors with multiple involved genes. Mutations in various ion channel genes are responsible for a number of neurological disorders. KCNN3 is a neuronal small conductance calcium-activated potassium channel gene that contains two polyglutamine tracts, encoded by polymorphic CAG repeats in the gene. This gene plays a critical role in determining the firing pattern of neurons and acts to regulate intracellular calcium channels. Methods The present association study tested whether length variations in the second (more 3' polymorphic CAG repeat in exon 1 of the KCNN3 gene, are involved in susceptibility to migraine with and without aura (MA and MO. In total 423 DNA samples from unrelated individuals, of which 202 consisted of migraine patients and 221 non-migraine controls, were genotyped and analysed using a fluorescence labelled primer set on an ABI310 Genetic Analyzer. Allele frequencies were calculated from observed genotype counts for the KCNN3 polymorphism. Analysis was performed using standard contingency table analysis, incorporating the chi-squared test of independence and CLUMP analysis. Results Overall, there was no convincing evidence that KCNN3 CAG lengths differ between Caucasian migraineurs and controls, with no significant difference in the allelic length distribution of CAG repeats between the population groups (P = 0.090. Also the MA and MO subtypes did not differ significantly between control allelic distributions (P > 0.05. The prevalence of the long CAG repeat (>19 repeats did not reach statistical significance in migraineurs (P = 0.15, nor was there a significant difference between the MA and MO subgroups observed compared to controls (P = 0.46 and P = 0.09, respectively, or between MA vs MO (P = 0.40. Conclusion This association study provides no evidence that length variations of the second polyglutamine array in

  3. Mechanism of inhibition by olanzapine of cloned hERG potassium channels.

    Science.gov (United States)

    Lee, Hong Joon; Choi, Jin-Sung; Hahn, Sang June

    2015-11-16

    Olanzapine is widely used in the treatment of schizophrenia and related psychoses. We investigated the effects of olanzapine on human ether-a-go-go related gene (hERG) channels stably expressed in human embryonic kidney (HEK) cells using the whole-cell patch-clamp technique. Olanzapine inhibited hERG tail currents at -50mV in a concentration-dependent manner with an IC50 value of 8.0μM and a Hill coefficient of 0.9. The voltage-dependent inhibition of the hERG currents by olanzapine increased steeply in the voltage range of channel activation. Olanzapine also shifted the steady-state activation curve of the hERG currents in a hyperpolarizing direction. At more depolarized potentials where the channels were fully activated (between 0 and +50mV), the olanzapine inhibition was voltage-independent. The steady-state inactivation curve of the hERG currents was shifted in the hyperpolarizing direction in the presence of olanzapine. A fast application of olanzapine induced a reversible inhibition of the hERG tail currents during repolarization in a concentration-dependent manner with an IC50 value of 11.9μM, suggesting an open-channel block. Olanzapine also decreased the hERG current elicited by a 5s depolarizing pulse to +60mV to inactivate the hERG currents, suggesting an inhibition of the activated (open and/or inactivated) states of the channels. These results indicated that olanzapine inhibited the hERG current by preferentially interacting with the activated states of the channel. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. External Ba2+ block of the two-pore domain potassium channel TREK-1 defines conformational transition in its selectivity filter.

    Science.gov (United States)

    Ma, Xiao-Yun; Yu, Jin-Mei; Zhang, Shu-Zhuo; Liu, Xiao-Yan; Wu, Bao-Hong; Wei, Xiao-Li; Yan, Jia-Qing; Sun, Hong-Liang; Yan, Hai-Tao; Zheng, Jian-Quan

    2011-11-18

    TREK-1 is a member of the two-pore domain potassium channel family that is known as a leak channel and plays a key role in many physiological and pathological processes. The conformational transition of the selectivity filter is considered as an effective strategy for potassium channels to control the course of potassium efflux. It is well known that TREK-1 is regulated by a large volume of extracellular and intracellular signals. However, until now, little was known about the selectivity filter gating mechanism of the channel. In this research, it was found that Ba(2+) blocked the TREK-1 channel in a concentration- and time-dependent manner. A mutagenesis analysis showed that overlapped binding of Ba(2+) at the assumed K(+) binding site 4 (S4) within the selectivity filter was responsible for the inhibitory effects on TREK-1. Then, Ba(2+) was used as a probe to explore the conformational transition in the selectivity filter of the channel. It was confirmed that collapsed conformations were induced by extracellular K(+)-free and acidification at the selectivity filters, leading to nonconductive to permeable ions. Further detailed characterization demonstrated that the two conformations presented different properties. Additionally, the N-terminal truncated isoform (ΔN41), a product derived from alternative translation initiation, was identified as a constitutively nonconductive variant. Together, these results illustrate the important role of selectivity filter gating in the regulation of TREK-1 by the extracellular K(+) and proton.

  5. External Ba2+ Block of the Two-pore Domain Potassium Channel TREK-1 Defines Conformational Transition in Its Selectivity Filter*

    Science.gov (United States)

    Ma, Xiao-Yun; Yu, Jin-Mei; Zhang, Shu-Zhuo; Liu, Xiao-Yan; Wu, Bao-Hong; Wei, Xiao-Li; Yan, Jia-Qing; Sun, Hong-Liang; Yan, Hai-Tao; Zheng, Jian-Quan

    2011-01-01

    TREK-1 is a member of the two-pore domain potassium channel family that is known as a leak channel and plays a key role in many physiological and pathological processes. The conformational transition of the selectivity filter is considered as an effective strategy for potassium channels to control the course of potassium efflux. It is well known that TREK-1 is regulated by a large volume of extracellular and intracellular signals. However, until now, little was known about the selectivity filter gating mechanism of the channel. In this research, it was found that Ba2+ blocked the TREK-1 channel in a concentration- and time-dependent manner. A mutagenesis analysis showed that overlapped binding of Ba2+ at the assumed K+ binding site 4 (S4) within the selectivity filter was responsible for the inhibitory effects on TREK-1. Then, Ba2+ was used as a probe to explore the conformational transition in the selectivity filter of the channel. It was confirmed that collapsed conformations were induced by extracellular K+-free and acidification at the selectivity filters, leading to nonconductive to permeable ions. Further detailed characterization demonstrated that the two conformations presented different properties. Additionally, the N-terminal truncated isoform (ΔN41), a product derived from alternative translation initiation, was identified as a constitutively nonconductive variant. Together, these results illustrate the important role of selectivity filter gating in the regulation of TREK-1 by the extracellular K+ and proton. PMID:21965685

  6. hERG potassium channel blockage by scorpion toxin BmKKx2 enhances erythroid differentiation of human leukemia cells K562.

    Directory of Open Access Journals (Sweden)

    Jian Ma

    Full Text Available The hERG potassium channel can modulate the proliferation of the chronic myelogenous leukemic K562 cells, and its role in the erythroid differentiation of K562 cells still remains unclear.The hERG potassium channel blockage by a new 36-residue scorpion toxin BmKKx2, a potent hERG channel blocker with IC50 of 6.7 ± 1.7 nM, enhanced the erythroid differentiation of K562 cells. The mean values of GPA (CD235a fluorescence intensity in the group of K562 cells pretreated by the toxin for 24 h and followed by cytosine arabinoside (Ara-C treatment for 72 h were about 2-fold stronger than those of K562 cells induced by Ara-C alone. Such unique role of hERG potassium channel was also supported by the evidence that the effect of the toxin BmKKx2 on cell differentiation was nullified in hERG-deficient cell lines. During the K562 cell differentiation, BmKKx2 could also suppress the expression of hERG channels at both mRNA and protein levels. Besides the function of differentiation enhancement, BmKKx2 was also found to promote the differentiation-dependent apoptosis during the differentiation process of K562 cells. In addition, the blockage of hERG potassium channel by toxin BmKKx2 was able to decrease the intracellular Ca(2+ concentration during the K562 cell differentiation, providing an insight into the mechanism of hERG potassium channel regulating this cellular process.Our results revealed scorpion toxin BmKKx2 could enhance the erythroid differentiation of leukemic K562 cells via inhibiting hERG potassium channel currents. These findings would not only accelerate the functional research of hERG channel in different leukemic cells, but also present the prospects of natural scorpion toxins as anti-leukemic drugs.

  7. Substance P Depolarizes Lamprey Spinal Cord Neurons by Inhibiting Background Potassium Channels.

    Directory of Open Access Journals (Sweden)

    Carolina Thörn Pérez

    Full Text Available Substance P is endogenously released in the adult lamprey spinal cord and accelerates the burst frequency of fictive locomotion. This is achieved by multiple effects on interneurons and motoneurons, including an attenuation of calcium currents, potentiation of NMDA currents and reduction of the reciprocal inhibition. While substance P also depolarizes spinal cord neurons, the underlying mechanism has not been resolved. Here we show that effects of substance P on background K+ channels are the main source for this depolarization. Hyperpolarizing steps induced inward currents during whole-cell voltage clamp that were reduced by substance P. These background K+ channels are pH sensitive and are selectively blocked by anandamide and AVE1231. These blockers counteracted the effect of substance P on these channels and the resting membrane potential depolarization in spinal cord neurons. Thus, we have shown now that substance P inhibits background K+ channels that in turn induce depolarization, which is likely to contribute to the frequency increase observed with substance P during fictive locomotion.

  8. Role of vascular potassium channels in the regulation of renal hemodynamics

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Braunstein, Thomas Hartig; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    function. Results from in vivo experiments are sparse. We discuss the role of the different classes of renal vascular K+ channels and their possible role in the integrated function of the renal microvasculature. Since several pathological conditions, among them hypertension, are associated with alterations...

  9. Antibodies to voltage-gated potassium and calcium channels in epilepsy.

    NARCIS (Netherlands)

    Majoie, H.J.; Baets, M.H.V. de; Renier, W.O.; Lang, B.; Vincent, A.

    2006-01-01

    OBJECTIVE: To determine the prevalence of antibodies to ion channels in patients with long standing epilepsy. BACKGROUND: Although the CNS is thought to be protected from circulating antibodies by the blood brain barrier, glutamate receptor antibodies have been reported in Rasmussen's encephalitis,

  10. Muscarinic modulation of TASK-like background potassium channel in rat carotid body chemoreceptor cells.

    Science.gov (United States)

    Ortiz, Fernando C; Varas, Rodrigo

    2010-04-06

    The carotid body is the main peripheral arterial chemoreceptor and it is essential to initiate the cardiovascular and respiratory compensatory reflex responses to a decrease in the arterial oxygen. The carotid body chemoreceptor (type-I) cells respond to hypoxia with membrane depolarization, voltage-gated Ca(2+) entry and secretion of transmitters. A key step in this response is the inhibition of a TASK-like background K(+) current. It has been reported that TASK-K(+) channels can be modulated by G-protein coupled receptors, such as the muscarinic acetylcholine receptor (mAChRs). Since there is a proposed role for ACh as an autocrine/paracrine modulator of the carotid body function, we have investigated the possible regulation of the background K(+) current by mAChRs. In identified type-I cells, methacholine (100microM) or muscarine (50microM) increased intracellular Ca(2+) levels. In cell-attached patch recordings, TASK-K(+) background channel activity was reduced by approximately 50% during mAChR activation and by the diacylglycerol analogue oleoylacetylglycerol (OAG, 20microM). The co-application of both metacholine and OAG do not further inhibit K(+) channel activity. In addition, two chemically different inhibitors of protein kinase C activity, calphostin C (100nM) and chelerythrine (50microM) are both able to suppress the muscarinic inhibition of the TASK-like K(+) channel and to increase channel activity in the absence of mAChR agonists. Our results suggest a muscarinic regulation of the TASK-like K(+) current in rat carotid body type-I cells through a PLC/PKC-dependent pathway. Additionally, our findings are consistent with an autocrine/paracrine role for cholinergic autoreceptors present within the carotid body. Copyright 2010 Elsevier B.V. All rights reserved.

  11. K(v)1.5 potassium channel gene regulation by Sp1 transcription factor and oxidative stress.

    Science.gov (United States)

    Fountain, Samuel J; Cheong, Alex; Li, Jing; Dondas, Naciye Y; Zeng, Fanning; Wood, Ian C; Beech, David J

    2007-11-01

    K(V)1.5, a voltage-gated potassium channel, has functional importance in regulating blood vessel tone and cardiac action potentials and is a target for numerous therapeutic drug development programs. Despite the importance of K(V)1.5, there is little knowledge of the mechanisms controlling expression of its underlying gene, Kcna5. We identified a 5' flanking region of the murine Kcna5 gene that drives expression of a luciferase reporter gene in primary smooth muscle cells and a smooth muscle cell line. The promoter contained CACCC nucleotide motifs, which we have shown to bind the Sp1 transcription factor in the aorta under physiological conditions in vivo. Inhibition of Sp1-Kcna5 promoter interactions using mithramycin A, a dominant-negative Sp1 mutant, or disruption of the CACCC boxes by mutagenesis inhibited promoter activity. Conversely, expression of exogenous Sp1 augmented promoter activity. Sp1 has known sensitivity to oxidative stress and, consistent with this property, Kcna5 promoter activity was suppressed by hydrogen peroxide-induced oxidative stress. Our results show that Kcna5 promoter activity in vascular smooth muscle is critically dependent on Sp1 regulation via CACCC box motifs and identify mechanisms that potentially influence the expression of K(V)1.5 channel expression in physiological or pathological conditions.

  12. G-Protein-Gated Inwardly Rectifying Potassium (GIRK) Channel Subunit 3 Knock-Out Mice Show Enhanced Ethanol Reward

    Science.gov (United States)

    Tipps, Megan E.; Raybuck, Jonathan D.; Kozell, Laura B.; Lattal, K. Matthew; Buck, Kari J.

    2016-01-01

    Background G protein-coupled inwardly rectifying potassium (GIRK) channels contribute to the effects of a number of drugs of abuse, including ethanol. However, the roles of individual subunits in the rewarding effects of ethanol are poorly understood. Methods We compare conditioned place preference (CPP) in GIRK3 subunit knock-out (GIRK3−/−), heterozygote (GIRK3+/−), and wild-type (WT) mice. In addition, the development of locomotor tolerance/sensitization and the effects of ethanol intoxication on associative learning (fear conditioning) are also assessed. Results Our data show significant ethanol CPP in GIRK3−/− and GIRK3+/− mice, but not in the WT littermates. In addition, we demonstrate that these effects are not due to differences in ethanol metabolism, the development of ethanol tolerance/sensitivity, or associative learning abilities. While there were no consistent genotype differences in the fear conditioning assay, our data do show a selective sensitization of the impairing effects of ethanol intoxication on contextual learning, but no effect on cued learning. Conclusions These findings suggest that GIRK3 plays a role in ethanol reward. Further, the selectivity of this effect suggests that GIRK channels could be an effective therapeutic target for the prevention and/or treatment of alcoholism. PMID:27012303

  13. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Soo Hwa [Laboratories of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, San 56-1 Sillim-Dong Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Choi, Changsun [Department of Food and Nutrition, College of Human Ecology, Chung-Ang University, Anseong, Gyeonggi (Korea, Republic of); Hong, Seong-Geun; Yarishkin, Oleg V. [Department of Physiology, College of Medicine, Gyeongsang National University, Jinju (Korea, Republic of); Bae, Young Min; Kim, Jae Gon [Department of Physiology, College of Medicine, Konkuk University, Seoul (Korea, Republic of); O' Grady, Scott M. [Department of Physiology, 495 Animal Science/Veterinary Medicine Bldg., St. Paul, University of Minnesota, MN (United States); Yoon, Kyong-Ah [Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Kang, Kyung-Sun [Veterinary Public Health, College of Veterinary Medicine, Seoul National University, San 56-1 Sillim-Dong Kwanak-Gu, Seoul (Korea, Republic of); Ryu, Pan Dong [Laboratories of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, San 56-1 Sillim-Dong Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, So Yeong, E-mail: leeso@snu.ac.kr [Laboratories of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, San 56-1 Sillim-Dong Kwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2009-06-26

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.

  14. [Role of calcium activated-potassium channels in the injury to rat alveolar macrophages induced by quartz].

    Science.gov (United States)

    Li, Jun; Sun, Jingzhi; Yang, Li; Zhao, Jing; Wang, Zhenglun; Yang, Lei

    2014-01-01

    To investigate the role of calcium activated-potassium channels (KCa) in the injury to rat alveolar macrophages induced by quartz. The experiments were conducted on a rat alveolar macrophage cell line (NR8383) in vitro, where crystal silica (100 üg/ml) and amorphous silica (100 üg/ml) were used as the test substances and the cells without any treatment as negative controls. At first the effects of two kinds of quartz were compared. Then KCa special inhibitors (Paxilline for BK, Tram-34 for IK, Apamin for SK) were added in different doses to the in vitro test system with 100 üg/ml crystal quartz as matrix, to observe the function of such channels. Cell viability, lactate dehydrogenase (LDH), interleukin-1β (IL-1β) and tumor necrosis factor-a (TNF-α) were tested. Comparing to the negative control group, cell viability reduced, LDH leakage, IL-1β and TNF-α release increased significantly in the amorphous quartz group, furthermore, the effects by crystal quartz were much more serious than those by amorphous quartz, with a statistical significance (P quartz group, IK blockers (Tram-34) led to increase in cell viability significantly, with a statistical significance (P quartz in the rat alveolar macrophages cell line in vitro, which might serve as a signal in the early regulation of inflammatory responses by quartz.

  15. Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy.

    Science.gov (United States)

    Simons, Cas; Rash, Lachlan D; Crawford, Joanna; Ma, Linlin; Cristofori-Armstrong, Ben; Miller, David; Ru, Kelin; Baillie, Gregory J; Alanay, Yasemin; Jacquinet, Adeline; Debray, François-Guillaume; Verloes, Alain; Shen, Joseph; Yesil, Gözde; Guler, Serhat; Yuksel, Adnan; Cleary, John G; Grimmond, Sean M; McGaughran, Julie; King, Glenn F; Gabbett, Michael T; Taft, Ryan J

    2015-01-01

    Temple-Baraitser syndrome (TBS) is a multisystem developmental disorder characterized by intellectual disability, epilepsy, and hypoplasia or aplasia of the nails of the thumb and great toe. Here we report damaging de novo mutations in KCNH1 (encoding a protein called ether à go-go, EAG1 or KV10.1), a voltage-gated potassium channel that is predominantly expressed in the central nervous system (CNS), in six individuals with TBS. Characterization of the mutant channels in both Xenopus laevis oocytes and human HEK293T cells showed a decreased threshold of activation and delayed deactivation, demonstrating that TBS-associated KCNH1 mutations lead to deleterious gain of function. Consistent with this result, we find that two mothers of children with TBS, who have epilepsy but are otherwise healthy, are low-level (10% and 27%) mosaic carriers of pathogenic KCNH1 mutations. Consistent with recent reports, this finding demonstrates that the etiology of many unresolved CNS disorders, including epilepsies, might be explained by pathogenic mosaic mutations.

  16. Rearrangement of potassium ions and Kv1.1/Kv1.2 potassium channels in regenerating axons following end-to-end neurorrhaphy: ionic images from TOF-SIMS.

    Science.gov (United States)

    Liu, Chiung-Hui; Chang, Hung-Ming; Wu, Tsung-Huan; Chen, Li-You; Yang, Yin-Shuo; Tseng, To-Jung; Liao, Wen-Chieh

    2017-10-01

    The voltage-gated potassium channels Kv1.1 and Kv1.2 that cluster at juxtaparanodal (JXP) regions are essential in the regulation of nerve excitability and play a critical role in axonal conduction. When demyelination occurs, Kv1.1/Kv1.2 activity increases, suppressing the membrane potential nearly to the equilibrium potential of K+, which results in an axonal conduction blockade. The recovery of K+-dependent communication signals and proper clustering of Kv1.1/Kv1.2 channels at JXP regions may directly reflect nerve regeneration following peripheral nerve injury. However, little is known about potassium channel expression and its relationship with the dynamic potassium ion distribution at the node of Ranvier during the regenerative process of peripheral nerve injury (PNI). In the present study, end-to-end neurorrhaphy (EEN) was performed using an in vivo model of PNI. The distribution of K+ at regenerating axons following EEN was detected by time-of-flight secondary-ion mass spectrometry. The specific localization and expression of Kv1.1/Kv1.2 channels were examined by confocal microscopy and western blotting. Our data showed that the re-establishment of K+ distribution and intensity was correlated with the functional recovery of compound muscle action potential morphology in EEN rats. Furthermore, the re-clustering of Kv1.1/1.2 channels 1 and 3 months after EEN at the nodal region of the regenerating nerve corresponded to changes in the K+ distribution. This study provided direct evidence of K+ distribution in regenerating axons for the first time. We proposed that the Kv1.1/Kv1.2 channels re-clustered at the JXP regions of regenerating axons are essential for modulating the proper patterns of K+ distribution in axons for maintaining membrane potential stability after EEN.

  17. Effect of antiarrhythmic drugs on small conductance calcium –activated potassium channels

    DEFF Research Database (Denmark)

    Simo Vicens, Rafel; Sauter, Daniel Rafael Peter; Grunnet, Morten

    2017-01-01

    . Whether antiarrhythmic drugs (AADs) recommended for treating AF target KCa2.X channels is unknown. To this end, we tested a large number of AADs on the human KCa2.2 and KCa2.3 channels to assess their effect on this new target using automated whole-cell patch clamp. Of the AADs recommended for treatment...... for their antiarrhythmic effect is unlikely, as the calculated IC50 values are very high compared to the effective free therapeutic plasma concentration of the drugs when used for AF treatment, 40,000-fold for dofetilide and 140- fold higher for propafenone.......Atrial fibrillation (AF) is the most common type of arrhythmia. Current pharmacological treatment for AF is moderately effective and/or increases the risk of serious ventricular adverse effects. To avoid ventricular adverse effects, a new target has been considered, the small conductance calcium...

  18. Effects of norquetiapine, the active metabolite of quetiapine, on cloned hERG potassium channels.

    Science.gov (United States)

    Lee, Hong Joon; Choi, Jin-Sung; Choi, Bok Hee; Hahn, Sang June

    2017-11-11

    Quetiapine is an atypical antipsychotic drug that is widely used for the treatment of schizophrenia. It is mainly metabolized by a cytochrome P450 system in the liver. Norquetiapine is a major active metabolite in humans with a pharmacological profile that differs distinctly from that of quetiapine. We used the whole-cell patch-clamp technique to investigate the effects of norquetiapine on hERG channels that are stably expressed in HEK cells. Quetiapine and norquetiapine inhibited the hERG tail currents at -50mV in a concentration-dependent manner with IC50 values of 8.3 and 10.8μM, respectively, which suggested equal potency. The block of hERG currents by norquetiapine was voltage-dependent with a steep increase over a range of voltages for channel activation. However, at more depolarized potentials where the channels were fully activated, the block by norquetiapine was voltage-independent. The steady-state inactivation curve of the hERG currents was shifted to the hyperpolarizing direction in the presence of norquetiapine. Norquetiapine did not produce a use-dependent block. A fast application of norquetiapine inhibited the hERG current elicited by a 5s depolarizing pulse to +60mV, which fully inactivated the hERG currents, suggesting an inactivated-state block. During a repolarizing pulse wherein the hERG current was slowly deactivated, albeit remaining in an open state, a fast application of norquetiapine rapidly and reversibly inhibited the open state of the hERG current. Our results indicated that quetiapine and norquetiapine had equal potency in inhibiting hERG tail currents. Norquetiapine inhibited the hERG current by preferentially interacting with the open and/or inactivated states of the channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Deletion of TRAAK potassium channel affects brain metabolism and protects against ischemia.

    Directory of Open Access Journals (Sweden)

    Christophe Laigle

    Full Text Available Cerebral stroke is a worldwide leading cause of disability. The two-pore domain K⁺ channels identified as background channels are involved in many functions in brain under physiological and pathological conditions. We addressed the hypothesis that TRAAK, a mechano-gated and lipid-sensitive two-pore domain K⁺ channel, is involved in the pathophysiology of brain ischemia. We studied the effects of TRAAK deletion on brain morphology and metabolism under physiological conditions, and during temporary focal cerebral ischemia in Traak⁻/⁻ mice using a combination of in vivo magnetic resonance imaging (MRI techniques and multinuclear magnetic resonance spectroscopy (MRS methods. We provide the first in vivo evidence establishing a link between TRAAK and neurometabolism. Under physiological conditions, Traak⁻/⁻ mice showed a particular metabolic phenotype characterized by higher levels of taurine and myo-inositol than Traak⁺/⁺ mice. Upon ischemia, Traak⁻/⁻ mice had a smaller infarcted volume, with lower contribution of cellular edema than Traak⁺/⁺ mice. Moreover, brain microcirculation was less damaged, and brain metabolism and pH were preserved. Our results show that expression of TRAAK strongly influences tissue levels of organic osmolytes. Traak⁻/⁻ mice resilience to cellular edema under ischemia appears related to their physiologically high levels of myo-inositol and of taurine, an aminoacid involved in the modulation of mitochondrial activity and cell death. The beneficial effects of TRAAK deletion designate this channel as a promising pharmacological target for the treatment against stroke.

  20. Biophysical characterization of KV3.1 potassium channel activating compounds

    DEFF Research Database (Denmark)

    Taskin, Bahar; von Schoubye, Nadia Lybøl; Sheykhzade, Majid

    2015-01-01

    The effect of two positive modulators, RE1 and EX15, on the voltage-gated K+ channel Kv3.1 was investigated using the whole-cell patch-clamp technique on HEK293 cells expressing Kv3.1a. RE1 and EX15 increased the Kv3.1 currents in a concentration-dependent manner with an EC50 value of 4.5 and 1.3...

  1. Altered distribution of small-conductance calcium-activated potassium channel SK3 in Hirschsprung's disease.

    Science.gov (United States)

    Coyle, David; O'Donnell, Anne Marie; Puri, Prem

    2015-10-01

    SK3 channels are voltage-independent Ca(2+)-dependent K(+) channels that play a key role in regulating smooth muscle membrane potential during purinergic inhibitory neurotransmission in the colon. Dysmotility problems are common after a properly performed pull-through operation for Hirschsprung's disease (HSCR). We hypothesised that ganglionic bowel just proximal to the transition zone is abnormal and designed this study to investigate SK3 channel expression in HSCR. Entire resected bowel specimens were collected at the time of pull-through surgery for HSCR (n=6). Control colonic specimens were obtained at the time of colostomy closure in patients following anorectoplasty (n=6). SK3 protein expression was assessed qualitatively using immunofluorescence with confocal microscopy and quantitatively using western blot (WB) analysis. Positive SK3 immunofluorescence was seen in the mucosa and in all three smooth muscle layers and the myenteric plexus in control specimens. SK3 immunofluorescence co-localised with PDGFRα. A band was detected at ~70kDa on WB. SK3 protein expression was barely detectable in aganglionic tissue and markedly reduced in the ganglionic bowel of 3 patients with HSCR compared to controls. Decreased SK3 expression in ganglionic bowel may explain the basis of persistent bowel symptoms in some patients following a properly performed pull-through operation for HSCR. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants

    Science.gov (United States)

    Mustapha, Mirna; Fang, Qing; Gong, Tzy-Wen; Dolan, David F.; Raphael, Yehoash; Camper, Sally A.; Duncan, R. Keith

    2012-01-01

    The absence of thyroid hormone (TH) during late gestation and early infancy can cause irreparable deafness in both humans and rodents. A variety of rodent models have been utilized in an effort to identify the underlying molecular mechanism. Here, we characterize a mouse model of secondary hypothyroidism, pituitary transcription factor 1 (Pit1dw), which has profound, congenital deafness that is rescued by oral TH replacement. These mutants have tectorial membrane abnormalities, including a prominent Hensen's stripe, elevated β-tectorin composition, and disrupted striated-sheet matrix. They lack distortion product otoacoustic emissions and cochlear microphonic responses, and exhibit reduced endocochlear potentials, suggesting defects in outer hair cell function and potassium recycling. Auditory system and hair cell physiology, histology and anatomy studies reveal novel defects of hormone deficiency related to deafness: (1) permanently impaired expression of KCNJ10 in the stria vascularis of Pit1dw mice, which likely contributes to the reduced endocochlear potential, (2) significant outer hair cell loss in the mutants, which may result from cellular stress induced by the lower KCNQ4 expression and current levels in Pit1dw mutant outer hair cells and (3) sensory and strial cell deterioration, which may have implications for thyroid hormone dysregulation in age related hearing impairment. In summary, we suggest that these defects in outer hair cell and strial cell function are important contributors to the hearing impairment in Pit1dw mice. PMID:19176829

  3. Tyrosine phosphatases epsilon and alpha perform specific and overlapping functions in regulation of voltage-gated potassium channels in Schwann cells

    DEFF Research Database (Denmark)

    Tiran, Zohar; Peretz, Asher; Sines, Tal

    2006-01-01

    + channels and Src were analyzed in vivo in mice lacking either or both PTPs. Lack of either PTP increases Kv channel activity and phosphorylation in Schwann cells, indicating these PTPs inhibit Kv current amplitude in vivo. Open probability and unitary conductance of Kv channels are unchanged, suggesting......Tyrosine phosphatases (PTPs) epsilon and alpha are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPepsilon and PTPalpha and the mechanisms by which they regulate K...... an effect on channel number or organization. PTPalpha inhibits Kv channels more strongly than PTPepsilon; this correlates with constitutive association of PTPalpha with Kv2.1, driven by membranal localization of PTPalpha. PTPalpha, but not PTPepsilon, activates Src in sciatic nerve extracts, suggesting Src...

  4. Fluoxetine Protection in Decompression Sickness in Mice is Enhanced by Blocking TREK-1 Potassium Channel with the "spadin" Antidepressant.

    Science.gov (United States)

    Vallée, Nicolas; Lambrechts, Kate; De Maistre, Sébastien; Royal, Perrine; Mazella, Jean; Borsotto, Marc; Heurteaux, Catherine; Abraini, Jacques; Risso, Jean-Jacques; Blatteau, Jean-Eric

    2016-01-01

    In mice, disseminated coagulation, inflammation, and ischemia induce neurological damage that can lead to death. These symptoms result from circulating bubbles generated by a pathogenic decompression. Acute fluoxetine treatment or the presence of the TREK-1 potassium channel increases the survival rate when mice are subjected to an experimental dive/decompression protocol. This is a paradox because fluoxetine is a blocker of TREK-1 channels. First, we studied the effects of an acute dose of fluoxetine (50 mg/kg) in wild-type (WT) and TREK-1 deficient mice (knockout homozygous KO and heterozygous HET). Then, we combined the same fluoxetine treatment with a 5-day treatment protocol with spadin, in order to specifically block TREK-1 activity (KO-like mice). KO and KO-like mice were regarded as antidepressed models. In total, 167 mice (45 WTcont 46 WTflux 30 HETflux and 46 KOflux) constituting the flux-pool and 113 supplementary mice (27 KO-like 24 WTflux2 24 KO-likeflux 21 WTcont2 17 WTno dive) constituting the spad-pool were included in this study. Only 7% of KO-TREK-1 treated with fluoxetine (KOflux) and 4% of mice treated with both spadin and fluoxetine (KO-likeflux) died from decompression sickness (DCS) symptoms. These values are much lower than those of WT control (62%) or KO-like mice (41%). After the decompression protocol, mice showed significant consumption of their circulating platelets and leukocytes. Spadin antidepressed mice were more likely to exhibit DCS. Nevertheless, mice which had both blocked TREK-1 channels and fluoxetine treatment were better protected against DCS. We conclude that the protective effect of such an acute dose of fluoxetine is enhanced when TREK-1 is inhibited. We confirmed that antidepressed models may have worse DCS outcomes, but concomitant fluoxetine treatment not only decreased DCS severity but increased the survival rate.

  5. Variants of stretch-activated two-pore potassium channel TREK-1 associated with preterm labor in humans.

    Science.gov (United States)

    Wu, Yi-Ying; Singer, Cherie A; Buxton, Iain L O

    2012-10-01

    Spontaneous preterm labor (PTL) is a uniquely human problem that results in preterm delivery of an underdeveloped fetus. The underlying cause remains elusive. The cost to societies in human suffering and treasure is enormous. The stretch-activated two pore potassium channel TREK-1 is up-regulated during gestation to term such that it may maintain uterine quiescence by hyperpolarizing the smooth muscle cell membrane. We have hypothesized that the human TREK-1 channel is involved in myometrial relaxation during pregnancy and that splice variants of the TREK-1 channel expressed in preterm myometrium are associated with preterm delivery by interaction with full-length TREK-1. We detected three wild-type human TREK-1 transcript isoforms in nonpregnant and pregnant human myometrium. Using RT-PCR, we identified five unique TREK-1 splice variants in myometrium from women in PTL. These myometrial TREK-1 variants lack either the pore or the transmembrane domains or both. In transiently transfected HEK293T cells, wild-type TREK-1 was predominantly expressed at the plasma membrane. However, individual splice variants were expressed uniformly throughout the cell. Wild-type TREK-1 was localized at the plasma membrane and cytoplasm close to the plasma membrane when coexpressed with each splice variant. Co-immunoprecipitation of FLAG epitope-tagged TREK-1 and six-His epitope-tagged splice variants using Ni bead columns successfully pulled down wild-type TREK-1. These results suggest that each of four TREK-1 splice variants interacts with full-length wild-type TREK-1 and that in vivo, such interactions may contribute to a PTL phenotype.

  6. Fluoxetine protection in decompression sickness in mice is enhanced by blocking TREK-1 potassium channel with the spadin antidepressant.

    Directory of Open Access Journals (Sweden)

    Nicolas eVallée

    2016-02-01

    Full Text Available In mice, disseminated coagulation, inflammation and ischemia induce neurological damages that can lead to the death. These symptoms result from circulating bubbles generated by a pathogenic decompression. An acute fluoxetine treatment or the presence of the TREK-1 potassium channel increased the survival rate when mice are subjected to an experimental dive/decompression protocol. This is a paradox because fluoxetine is a blocker of TREK-1 channels. First, we studied the effects of an acute dose of fluoxetine (50mg/kg in wild-type (WT and TREK-1 deficient mice (Knockout homozygous KO and heterozygous HET. Then, we combined the same fluoxetine treatment with a five-day treatment by spadin, in order to specifically block TREK-1 activity (KO-like mice. KO and KO-like mice could be regarded as antidepressed models.167 mice (45 WTcont 46 WTflux 30 HETflux and 46 KOflux constituting the flux-pool and 113 supplementary mice (27 KO-like 24 WTflux2 24 KO-likeflux 21 WTcont2 17 WTno dive constituting the spad-pool were included in this study. Only 7% of KO-TREK-1 treated with fluoxetine (KOflux and 4% of mice treated with both spadin and fluoxetine (KO-likeflux died from decompression sickness (DCS symptoms. These values are much lower than those of WT control (62% or KO-like mice (41%. After the decompression protocol, mice showed a significant consumption of their circulating platelets and leukocytes.Spadin antidepressed mice were more likely to declare DCS. Nevertheless, which had both blocked TREK-1 channel and were treated with fluoxetine were better protected against DCS. We conclude that the protective effect of such an acute dose of fluoxetine is enhanced when TREK-1 is inhibited. We confirmed that antidepressed models may have worse DCS outcomes, but a concomitant fluoxetine treatment not only decreases DCS severity but increases the survival rate.

  7. Variants of Stretch-Activated Two-Pore Potassium Channel TREK-1 Associated with Preterm Labor in Humans1

    Science.gov (United States)

    Wu, Yi-Ying; Singer, Cherie A.; Buxton, Iain L.O.

    2012-01-01

    ABSTRACT Spontaneous preterm labor (PTL) is a uniquely human problem that results in preterm delivery of an underdeveloped fetus. The underlying cause remains elusive. The cost to societies in human suffering and treasure is enormous. The stretch-activated two pore potassium channel TREK-1 is up-regulated during gestation to term such that it may maintain uterine quiescence by hyperpolarizing the smooth muscle cell membrane. We have hypothesized that the human TREK-1 channel is involved in myometrial relaxation during pregnancy and that splice variants of the TREK-1 channel expressed in preterm myometrium are associated with preterm delivery by interaction with full-length TREK-1. We detected three wild-type human TREK-1 transcript isoforms in nonpregnant and pregnant human myometrium. Using RT-PCR, we identified five unique TREK-1 splice variants in myometrium from women in PTL. These myometrial TREK-1 variants lack either the pore or the transmembrane domains or both. In transiently transfected HEK293T cells, wild-type TREK-1 was predominantly expressed at the plasma membrane. However, individual splice variants were expressed uniformly throughout the cell. Wild-type TREK-1 was localized at the plasma membrane and cytoplasm close to the plasma membrane when coexpressed with each splice variant. Co-immunoprecipitation of FLAG epitope-tagged TREK-1 and six-His epitope-tagged splice variants using Ni bead columns successfully pulled down wild-type TREK-1. These results suggest that each of four TREK-1 splice variants interacts with full-length wild-type TREK-1 and that in vivo, such interactions may contribute to a PTL phenotype. PMID:22811574

  8. Developing a Comparative Docking Protocol for the Prediction of Peptide Selectivity Profiles: Investigation of Potassium Channel Toxins

    Directory of Open Access Journals (Sweden)

    Serdar Kuyucak

    2012-02-01

    Full Text Available During the development of selective peptides against highly homologous targets, a reliable tool is sought that can predict information on both mechanisms of binding and relative affinities. These tools must first be tested on known profiles before application on novel therapeutic candidates. We therefore present a comparative docking protocol in HADDOCK using critical motifs, and use it to “predict” the various selectivity profiles of several major αKTX scorpion toxin families versus Kv1.1, Kv1.2 and Kv1.3. By correlating results across toxins of similar profiles, a comprehensive set of functional residues can be identified. Reasonable models of channel-toxin interactions can be then drawn that are consistent with known affinity and mutagenesis. Without biological information on the interaction, HADDOCK reproduces mechanisms underlying the universal binding of αKTX-2 toxins, and Kv1.3 selectivity of αKTX-3 toxins. The addition of constraints encouraging the critical lysine insertion confirms these findings, and gives analogous explanations for other families, including models of partial pore-block in αKTX-6. While qualitatively informative, the HADDOCK scoring function is not yet sufficient for accurate affinity-ranking. False minima in low-affinity complexes often resemble true binding in high-affinity complexes, despite steric/conformational penalties apparent from visual inspection. This contamination significantly complicates energetic analysis, although it is usually possible to obtain correct ranking via careful interpretation of binding-well characteristics and elimination of false positives. Aside from adaptations to the broader potassium channel family, we suggest that this strategy of comparative docking can be extended to other channels of interest with known structure, especially in cases where a critical motif exists to improve docking effectiveness.

  9. Effect of potassium channel blocker 4-aminopyridine pretreatment on the 6-OHDA-induced Parkinson's disease in rats

    Directory of Open Access Journals (Sweden)

    M. Sofiabadi

    2015-06-01

    Full Text Available Background: Nuclease and caspase enzymes activities which promote death signals and lead to apoptosis are dependent to potassium ions. Objective: The aim of this study was to determine the effect of 4-aminopyridine (4-AP potassium channel blocker on the animal model of Parkinson's disease. Methods: This experimental study was performed in Qazvin University of Medical Sciences, 2013. Male Rats were received different doses of 4-AP twice daily from half an hour before injection of 6-hydroxydopamine (6-OHDA to 7 or 15 days after that. 6-OHDA was injected into medial forebrain bundle (MFB in acute model groups and into striatum in chronic model groups. The severity of Parkinsonism was assessed by standard behavioral methods. Data were analyzed using Kruskal-Wallis and Mann Whitney U tests. Findings: In acute model groups, administration of 0.5 mg/kg 4-AP (n=9 had no remarkable effect on behavioral symptoms, but 1 mg/kg 4-AP (n=8 significantly reduced the severity of apomorphine-induced rotations and improved motor learning in rotarod test. In chronic model groups, although 1 mg/kg 4-AP (n=7 significantly reduced the severity of rotations and improved motor learning, but 0.5 mg/kg 4-AP (n=8 was more effective. Conclusion: Pretreatment with 4-AP can reduce 6-OHDA-induced dopaminergic neuron death. Since the chronic model of 6-OHDA is more similar to Parkinson's disease in human, the low dose of 4-AP is recommended for treatment of this disease.

  10. Altered Potassium Ion Channel Function as a Possible Mechanism of Increased Blood Pressure in Rats Fed Thermally Oxidized Palm Oil Diets.

    Science.gov (United States)

    Nkanu, Etah E; Owu, Daniel U; Osim, Eme E

    2017-12-27

    Intake of thermally oxidized palm oil leads to cytotoxicity and alteration of the potassium ion channel function. This study investigated the effects of fresh and thermally oxidized palm oil diets on blood pressure and potassium ion channel function in blood pressure regulation. Male Wistar rats were randomly divided into three groups of eight rats. Control group received normal feed; fresh palm oil (FPO) and thermally oxidized palm oil (TPO) groups were fed a diet mixed with 15% (weight/weight) fresh palm oil and five times heated palm oil, respectively, for 16 weeks. Blood pressure was measured; blood samples, hearts, and aortas were collected for biochemical and histological analyses. Thermally oxidized palm oil significantly elevated basal mean arterial pressure (MAP). Glibenclamide (10-5 mmol/L) and tetraethylammonium (TEA; 10-3 mmol/L) significantly raised blood pressure in TPO compared with FPO and control groups. Levcromakalim (10-6 mmol/L) significantly (p palm oil increases MAP probably due to the attenuation of adenosine triphosphate-sensitive potassium (KATP) and large-conductance calcium-dependent potassium (BKCa) channels, tissue peroxidation, and altered histological structures of the heart and blood vessels.

  11. Allosteric effects of erythromycin pretreatment on thioridazine block of hERG potassium channels.

    Science.gov (United States)

    Crumb, W J

    2014-04-01

    The prevalence of concurrent use of two or more drugs that block human ether-a-go-go-related gene product (hERG) K(+) channels is not uncommon, but is not well characterized. This study defined the effects of concurrent exposure of two hERG-blocking drugs on hERG current amplitude. Experiments were conducted to determine if concomitant exposure to two potent pore hERG blockers, thioridazine and terfenadine and a weak hERG blocker, erythromycin, would result in an additive, synergistic or inhibitory effect. hERG currents from stably transfected HEK cells were measured using the whole-cell variant of the patch-clamp method at physiological temperatures. Concentration-response relationships for thioridazine or terfenadine were obtained with cells pre-exposed to erythromycin. Pre-exposure of cells to erythromycin resulted in an approximately 14-22-fold rightward shift in the hERG concentration-response curve for thioridazine and terfenadine respectively. This reduction in affinity was not the result of a change in the voltage-dependent characteristics of the channel. Results suggest an external binding site for erythromycin. Pretreatment with erythromycin induced an approximately 14-22-fold reduction in hERG affinity for pore-binding drugs at concentrations of erythromycin, which by themselves only block hERG by 10% or less. These results suggest distinct, allosterically linked binding sites on opposite sides of the hERG channel. Occupancy of the external site by erythromycin reduces the affinity of the pore binding site. Furthermore, these results suggest that co-administration of erythromycin may provide some reduction in cardiac liability of potent hERG-blocking drugs. © 2014 The British Pharmacological Society.

  12. Relevance of lysine snorkeling in the outer transmembrane domain of small viral potassium ion channels.

    Science.gov (United States)

    Gebhardt, Manuela; Henkes, Leonhard M; Tayefeh, Sascha; Hertel, Brigitte; Greiner, Timo; Van Etten, James L; Baumeister, Dirk; Cosentino, Cristian; Moroni, Anna; Kast, Stefan M; Thiel, Gerhard

    2012-07-17

    Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called "snorkeling" of a cationic amino acid, which is conserved in the outer TMD of small viral K(+) channels. Experimentally, snorkeling activity is not mandatory for Kcv(PBCV-1) because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, Kcv(ATCV-1) and Kcv(MT325), lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of Kcv(PBCV-1) and N-terminally truncated mutants; the truncated mutants mimic Kcv(ATCV-1) and Kcv(MT325). Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K(+) channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains.

  13. Discovery and characterization of a potent and selective inhibitor of Aedes aegypti inward rectifier potassium channels.

    Directory of Open Access Journals (Sweden)

    Rene Raphemot

    Full Text Available Vector-borne diseases such as dengue fever and malaria, which are transmitted by infected female mosquitoes, affect nearly half of the world's population. The emergence of insecticide-resistant mosquito populations is reducing the effectiveness of conventional insecticides and threatening current vector control strategies, which has created an urgent need to identify new molecular targets against which novel classes of insecticides can be developed. We previously demonstrated that small molecule inhibitors of mammalian Kir channels represent promising chemicals for new mosquitocide development. In this study, high-throughput screening of approximately 30,000 chemically diverse small-molecules was employed to discover potent and selective inhibitors of Aedes aegypti Kir1 (AeKir1 channels heterologously expressed in HEK293 cells. Of 283 confirmed screening 'hits', the small-molecule inhibitor VU625 was selected for lead optimization and in vivo studies based on its potency and selectivity toward AeKir1, and tractability for medicinal chemistry. In patch clamp electrophysiology experiments of HEK293 cells, VU625 inhibits AeKir1 with an IC50 value of 96.8 nM, making VU625 the most potent inhibitor of AeKir1 described to date. Furthermore, electrophysiology experiments in Xenopus oocytes revealed that VU625 is a weak inhibitor of AeKir2B. Surprisingly, injection of VU625 failed to elicit significant effects on mosquito behavior, urine excretion, or survival. However, when co-injected with probenecid, VU625 inhibited the excretory capacity of mosquitoes and was toxic, suggesting that the compound is a substrate of organic anion and/or ATP-binding cassette (ABC transporters. The dose-toxicity relationship of VU625 (when co-injected with probenecid is biphasic, which is consistent with the molecule inhibiting both AeKir1 and AeKir2B with different potencies. This study demonstrates proof-of-concept that potent and highly selective inhibitors of mosquito

  14. Novel neuroprotectant chiral 3-n-butylphthalide inhibits tandem-pore-domain potassium channel TREK-1.

    Science.gov (United States)

    Ji, Xin-cai; Zhao, Wan-hong; Cao, Dong-xu; Shi, Qiao-qiao; Wang, Xiao-liang

    2011-02-01

    To study the effects of 3-n-butylphthalide (NBP) on the TREK-1 channel expressed in Chinese hamster ovary (CHO) cells. Whole-cell patch-clamp recording was used to record TREK-1 channel currents. The effects of varying doses of l-NBP on TREK-1 currents were also observed. Current-clamp recordings were performed to measure the resting membrane potential in TREK-1-transfected CHO (TREK-1/CHO) and wild-type CHO (Wt/CHO) cells. l-NBP (0.01-10 μmol/L) showed concentration-dependent inhibition on TREK-1 currents (IC(50)=0.06±0.03 μmol/L), with a maximum current reduction of 70% at a concentration of 10 μmol/L. l-NBP showed a more potent inhibition on TREK-1 current than d-NBP or dl-NBP. This effect was partially reversed upon washout and was not voltage-dependent. l-NBP 10 μmol/L elevated the membrane potential in TREK-1/CHO cells from -55.3 mV to -42.9 mV. However, it had no effect on the membrane potential of Wt/CHO cells. 1-NBP potently inhibited TREK-1 current and elevated the membrane potential, which may contribute to its neuroprotective activity.

  15. Association between potassium channel SNPs and essential hypertension in Xinjiang Kazak Chinese patients.

    Science.gov (United States)

    Han, Yuan-Yuan; Wang, Li-Jie; Zhang, Liang; Zhang, Wen-Wen; Ma, Ke-Tao; Li, Li; Si, Jun-Qiang

    2017-09-01

    The aim of the present study was to examine whether single-nucleotide polymorphisms (SNPs) of β1 subunit of large-conductance Ca2+-activated K+ channel (KCNMB1) and inwardly rectifying K+ channel, subfamily J, member-11 (KCNJ11) are associated with essential hypertension (EH) in Xinjiang Kazak Chinese patients. A polymerase chain reaction-restriction fragment length polymorphism technique was applied to detect the distribution of selected alleles and genotype frequencies in a cohort of Xinjiang Kazak Chinese patients. Samples from 267 patients with EH and 259 normotensive (NT) controls were analyzed. An unconditional logistic regression analysis was used to estimate the odds ratio and 95% confidence interval of the risk factors that are associated with the development of EH. Genotype and allele frequency analyses revealed that the frequency of genotypes KCNJ11-rs2285676 and KCNMB1-rs11739136 was not significantly different between the EH and NT groups. Individuals carrying the GG genotype of KCNJ11-rs5219 had a 2.08 times higher risk of having EH than individuals carrying the GA+AA genotype of KCNJ11-rs5219. Furthermore, the G allele frequency of KCNJ11-rs5219 in the EH group was significantly higher than that of the NT group (P=0.048). Additionally, logistic regression analysis revealed that the body weight and GG genotype of KCNJ11-rs5219 were positively associated with EH in Xinjiang Kazak Chinese patients (P<0.01).

  16. The Barium Site in a Potassium Channel by X-Ray Crystallography

    Science.gov (United States)

    Jiang, Youxing; MacKinnon, Roderick

    2000-01-01

    X-ray diffraction data were collected from frozen crystals (100°K) of the KcsA K+ channel equilibrated with solutions containing barium chloride. Difference electron density maps (Fbarium − Fnative, 5.0 Å resolution) show that Ba2+ resides at a single location within the selectivity filter. The Ba2+ blocking site corresponds to the internal aspect (adjacent to the central cavity) of the “inner ion” position where an alkali metal cation is found in the absence of the blocking Ba2+ ion. The location of Ba2+ with respect to Rb+ ions in the pore is in good agreement with the findings on the functional interaction of Ba2+ with K+ (and Rb+) in Ca2+-activated K+ channels (Neyton, J., and C. Miller. 1988. J. Gen. Physiol. 92:549–567). Taken together, these structural and functional data imply that at physiological ion concentrations a third ion may interact with two ions in the selectivity filter, perhaps by entering from one side and displacing an ion on the opposite side. PMID:10694255

  17. Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely through a Common Mechanism.

    Science.gov (United States)

    Luethy, Anita; Boghosian, James D; Srikantha, Rithu; Cotten, Joseph F

    2017-06-01

    The TWIK-related acid-sensitive potassium channel 3 (TASK-3; KCNK9) tandem pore potassium channel function is activated by halogenated anesthetics through binding at a putative anesthetic-binding cavity. To understand the pharmacologic requirements for TASK-3 activation, we studied the concentration-response of TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, halothane, α-chloralose, 2,2,2-trichloroethanol [TCE], and chloral hydrate), to ethanol, and to a panel of halogenated methanes and alcohols. We used mutagenesis to probe the anesthetic-binding cavity as observed in a TASK-3 homology model. TASK-3 activation was quantified by Ussing chamber voltage clamp analysis. We mutagenized the residue Val-136, which lines the anesthetic-binding cavity, its flanking residues (132 to 140), and Leu-122, a pore-gating residue. The 2-halogenated ethanols activate wild-type TASK-3 with the following rank order efficacy (normalized current [95% confidence interval]): 2,2,2-tribromo-(267% [240-294]) > 2,2,2-trichloro-(215% [196-234]) > chloral hydrate (165% [161-176]) > 2,2-dichloro- > 2-chloro ≈ 2,2,2-trifluoroethanol > ethanol. Similarly, carbon tetrabromide (296% [245-346]), carbon tetrachloride (180% [163-196]), and 1,1,1,3,3,3-hexafluoropropanol (200% [194-206]) activate TASK-3, whereas the larger carbon tetraiodide and α-chloralose inhibit. Clinical agents activate TASK-3 with the following rank order efficacy: halothane (207% [202-212]) > isoflurane (169% [161-176]) > sevoflurane (164% [150-177]) > desflurane (119% [109-129]). Mutations at and near residue-136 modify TCE activation of TASK-3, and interestingly M159W, V136E, and L122D were resistant to both isoflurane and TCE activation. TASK-3 function is activated by a multiple agents and requires a halogenated substituent between ∼30 and 232 cm3/mol volume with potency increased by halogen polarizeability. Val-136 and adjacent residues may mediate anesthetic binding and stabilize an open state

  18. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    Science.gov (United States)

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  19. Trafficking and intracellular regulation of Kv7.1 potassium channels in the heart

    DEFF Research Database (Denmark)

    Nielsen, Nathalie Hélix

    : a fast (IKr) and a slower one (IKs). Impairment of either current gives rise to prolongation of the action potential duration and thus may induce the so-called Long QT Syndrome. KCNH2 is the molecular component of the IKr current whereas the association of the KCNQ1 and KCNE1 gene products (Kv7.......1 and KCNE1 proteins) encode for the IKs current. KCNE1 is a b-subunit that associates with the Kv7.1 channel and changes its electrical properties. Mutations in the KCNQ1 gene are the most common cause of congenital Long QT Syndrome; specifically it causes the Long QT Syndrome 1. The repolarization...

  20. Cerebrovascular responses in mice deficient in the potassium channel, TREK-1.

    Science.gov (United States)

    Namiranian, Khodadad; Lloyd, Eric E; Crossland, Randy F; Marrelli, Sean P; Taffet, George E; Reddy, Anilkumar K; Hartley, Craig J; Bryan, Robert M

    2010-08-01

    We tested the hypothesis that TREK-1, a two-pore domain K channel, is involved with dilations in arteries. Because there are no selective activators or inhibitors of TREK-1, we generated a mouse line deficient in TREK-1. Endothelium-mediated dilations were not different in arteries from wild-type (WT) and TREK-1 knockout (KO) mice. This includes dilations of the middle cerebral artery to ATP, dilations of the basilar artery to ACh, and relaxations of the aorta to carbachol, a cholinergic agonist. The nitric oxide (NO) and endothelium-dependent hyperpolarizing factor components of ATP dilations were identical in the middle cerebral arteries of WT and TREK-1 KO mice. Furthermore, the NO and cyclooxygenase-dependent components were identical in the basilar arteries of the different genotypes. Dilations of the basilar artery to alpha-linolenic acid, an activator of TREK-1, were not affected by the absence of TREK-1. Whole cell currents recorded using patch-clamp techniques were similar in cerebrovascular smooth muscle cells (CVSMCs) from WT and TREK-1 KO mice. alpha-linolenic acid or arachidonic acid increased whole cell currents in CVSMCs from both WT and TREK-1 KO mice. The selective blockers of large-conductance Ca-activated K channels, penitrem A and iberiotoxin, blocked the increased currents elicited by either alpha-linolenic or arachidonic acid. In summary, dilations were similar in arteries from WT and TREK-1 KO mice. There was no sign of TREK-1-like currents in CVSMCs from WT mice, and there were no major differences in currents between the genotypes. We conclude that regulation of arterial diameter is not altered in mice lacking TREK-1.

  1. 6-Substituted benzopyrans as potassium channel activators: synthesis, vasodilator properties, and multivariate analysis.

    Science.gov (United States)

    Mannhold, R; Cruciani, G; Weber, H; Lemoine, H; Derix, A; Weichel, C; Clementi, M

    1999-03-25

    During the last 10 years compounds have been discovered which can activate or block KATP channels. In particular, K channel activators (KCA) have been found to be smooth muscle relaxants with their main utility in hypertension and bronchodilation. In this paper we describe the synthesis of new KCA of the benzopyran type with a fixed 4-substituent and a systematic variation in the 6-position. The relaxant potency in rat aorta and trachea was used for biological characterization of the benzopyrans. In both biological test systems, they exhibit potency ranges of more than 3 log units. Structure-activity relationships are investigated by principal component analysis (PCA) and partial least-squares (PLS) analysis. Most striking outliers in an initial PLS analysis of the entire database were the unsubstituted 6-H compound 13 as well as 34 and 35. For the remaining set of 31 compounds, a 3-component PLS model explains the variance in biological activity to 81% in the aortic and to 82% in the tracheal test system. 6-Substituents influence affinity by a direct (presumably dipolar) interaction with the receptor site. According to the 2D-plot of the partial PLS weights, a strong electronegativity as well as high values for the integy moment and for the heat of formation in water dominate the first component; low values for substituent size (as defined by globularity or surface) are in addition favorable for high potency. High lipophilicity and low minimum energies of interaction dominate the second component. Chemical descriptors for the biological potency of the test set in rat aorta and rat trachea are very similar according to the almost identical projection of the Y-variables onto the X-component space.

  2. Complex N-Glycans Influence the Spatial Arrangement of Voltage Gated Potassium Channels in Membranes of Neuronal-Derived Cells.

    Directory of Open Access Journals (Sweden)

    M Kristen Hall

    Full Text Available The intrinsic electrical properties of a neuron depend on expression of voltage gated potassium (Kv channel isoforms, as well as their distribution and density in the plasma membrane. Recently, we showed that N-glycosylation site occupancy of Kv3.1b modulated its placement in the cell body and neurites of a neuronal-derived cell line, B35 neuroblastoma cells. To extrapolate this mechanism to other N-glycosylated Kv channels, we evaluated the impact of N-glycosylation occupancy of Kv3.1a and Kv1.1 channels. Western blots revealed that wild type Kv3.1a and Kv1.1 α-subunits had complex and oligomannose N-glycans, respectively, and that abolishment of the N-glycosylation site(s generated Kv proteins without N-glycans. Total internal reflection fluorescence microscopy images revealed that N-glycans of Kv3.1a contributed to its placement in the cell membrane while N-glycans had no effect on the distribution of Kv1.1. Based on particle analysis of EGFP-Kv proteins in the adhered membrane, glycosylated forms of Kv3.1a, Kv1.1, and Kv3.1b had differences in the number, size or density of Kv protein clusters in the cell membrane of neurites and cell body of B35 cells. Differences were also observed between the unglycosylated forms of the Kv proteins. Cell dissociation assays revealed that cell-cell adhesion was increased by the presence of complex N-glycans of Kv3.1a, like Kv3.1b, whereas cell adhesion was similar in the oligomannose and unglycosylated Kv1.1 subunit containing B35 cells. Our findings provide direct evidence that N-glycans of Kv3.1 splice variants contribute to the placement of these glycoproteins in the plasma membrane of neuronal-derived cells while those of Kv1.1 were absent. Further when the cell membrane distribution of the Kv channel was modified by N-glycans then the cell-cell adhesion properties were altered. Our study demonstrates that N-glycosylation of Kv3.1a, like Kv3.1b, provides a mechanism for the distribution of these

  3. Complex N-Glycans Influence the Spatial Arrangement of Voltage Gated Potassium Channels in Membranes of Neuronal-Derived Cells.

    Science.gov (United States)

    Hall, M Kristen; Weidner, Douglas A; Edwards, Michael A J; Schwalbe, Ruth A

    2015-01-01

    The intrinsic electrical properties of a neuron depend on expression of voltage gated potassium (Kv) channel isoforms, as well as their distribution and density in the plasma membrane. Recently, we showed that N-glycosylation site occupancy of Kv3.1b modulated its placement in the cell body and neurites of a neuronal-derived cell line, B35 neuroblastoma cells. To extrapolate this mechanism to other N-glycosylated Kv channels, we evaluated the impact of N-glycosylation occupancy of Kv3.1a and Kv1.1 channels. Western blots revealed that wild type Kv3.1a and Kv1.1 α-subunits had complex and oligomannose N-glycans, respectively, and that abolishment of the N-glycosylation site(s) generated Kv proteins without N-glycans. Total internal reflection fluorescence microscopy images revealed that N-glycans of Kv3.1a contributed to its placement in the cell membrane while N-glycans had no effect on the distribution of Kv1.1. Based on particle analysis of EGFP-Kv proteins in the adhered membrane, glycosylated forms of Kv3.1a, Kv1.1, and Kv3.1b had differences in the number, size or density of Kv protein clusters in the cell membrane of neurites and cell body of B35 cells. Differences were also observed between the unglycosylated forms of the Kv proteins. Cell dissociation assays revealed that cell-cell adhesion was increased by the presence of complex N-glycans of Kv3.1a, like Kv3.1b, whereas cell adhesion was similar in the oligomannose and unglycosylated Kv1.1 subunit containing B35 cells. Our findings provide direct evidence that N-glycans of Kv3.1 splice variants contribute to the placement of these glycoproteins in the plasma membrane of neuronal-derived cells while those of Kv1.1 were absent. Further when the cell membrane distribution of the Kv channel was modified by N-glycans then the cell-cell adhesion properties were altered. Our study demonstrates that N-glycosylation of Kv3.1a, like Kv3.1b, provides a mechanism for the distribution of these proteins to the cell

  4. Hypaconitine-induced QT prolongation mediated through inhibition of KCNH2 (hERG) potassium channels in conscious dogs.

    Science.gov (United States)

    Xie, Shuilin; Jia, Ying; Liu, Aiming; Dai, Renke; Huang, Lizhen

    2015-05-26

    Hypaconitine is one of the main aconitum alkaloids in traditional Chinese medicines prepared with herbs from the genus Acotinum. These herbs are widely used for the treatment of cardiac insufficiency and arrhythmias. However, Acotinum alkaloids are known for their toxicity as well as their pharmacological activity, especially cardiotoxicity including QT prolongation, and the mechanism of this toxicity is not clear. In this study, hypaconitine was administered orally to conscious Beagle dogs, and electrocardiograms were recorded by telemetry. Pharmacokinetic studies (6h) were conducted to evaluate the relationship between QT prolongation and exposure level. HEK293 cells stably transfected with KCNH2 (hERG) cDNA were used to examine the effects of hypaconitine on the KCNH2 channel by using the manual patch clamp technique. In the conscious dogs, all doses of hypaconitine induced QTcV (QT interval corrected according to the Van de Water formula) prolongation by more than 23% (67ms) of control in a dose-dependent manner. The maximum QTcV prolongation was observed at 2h after dosing. Maximum prolongation percentages were plotted against plasma concentrations of hypaconitine and showed a strong correlation (R(2)=0.789). In the in vitro study in HEK293 cells, hypaconitine inhibited the KCNH2 currents in a concentration-dependent manner with an IC50 of 8.1nM. These data suggest that hypaconitine inhibits KCNH2 potassium channels and this effect might be the molecular mechanism underlying QT prolongation in conscious dogs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Statistical Epistasis and Functional Brain Imaging Support a Role of Voltage-Gated Potassium Channels in Human Memory

    Science.gov (United States)

    Heck, Angela; Vogler, Christian; Gschwind, Leo; Ackermann, Sandra; Auschra, Bianca; Spalek, Klara; Rasch, Björn; de Quervain, Dominique; Papassotiropoulos, Andreas

    2011-01-01

    Despite the current progress in high-throughput, dense genome scans, a major portion of complex traits' heritability still remains unexplained, a phenomenon commonly termed “missing heritability.” The negligence of analytical approaches accounting for gene-gene interaction effects, such as statistical epistasis, is probably central to this phenomenon. Here we performed a comprehensive two-way SNP interaction analysis of human episodic memory, which is a heritable complex trait, and focused on 120 genes known to show differential, memory-related expression patterns in rat hippocampus. Functional magnetic resonance imaging was also used to capture genotype-dependent differences in memory-related brain activity. A significant, episodic memory-related interaction between two markers located in potassium channel genes (KCNB2 and KCNH5) was observed (Pnominal combined = 0.000001). The epistatic interaction was robust, as it was significant in a screening (Pnominal = 0.0000012) and in a replication sample (Pnominal = 0.01). Finally, we found genotype-dependent activity differences in the parahippocampal gyrus (Pnominal = 0.001) supporting the behavioral genetics finding. Our results demonstrate the importance of analytical approaches that go beyond single marker statistics of complex traits. PMID:22216252

  6. Calcitriol inhibits Ether-a go-go potassium channel expression and cell proliferation in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Becerra, Rocio [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Diaz, Lorenza, E-mail: lorenzadiaz@gmail.com [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Camacho, Javier [Department of Pharmacology, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Av. Instituto Politecnico Nacional 2508, San Pedro Zacatenco 07360, Mexico, D.F. (Mexico); Barrera, David; Ordaz-Rosado, David; Morales, Angelica [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Ortiz, Cindy Sharon [Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Avila, Euclides [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico); Bargallo, Enrique [Department of Breast Tumors, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Arrecillas, Myrna [Department of Pathology, Instituto Nacional de Cancerologia, Av. San Fernando No. 22, Tlalpan 14080, Mexico, D.F. (Mexico); Halhali, Ali; Larrea, Fernando [Department of Reproductive Biology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, Tlalpan 14000 Mexico, D.F. (Mexico)

    2010-02-01

    Antiproliferative actions of calcitriol have been shown to occur in many cell types; however, little is known regarding the molecular basis of this process in breast carcinoma. Ether-a-go-go (Eag1) potassium channels promote oncogenesis and are implicated in breast cancer cell proliferation. Since calcitriol displays antineoplastic effects while Eag1 promotes tumorigenesis, and both factors antagonically regulate cell cycle progression, we investigated a possible regulatory effect of calcitriol upon Eag1 as a mean to uncover new molecular events involved in the antiproliferative activity of this hormone in human breast tumor-derived cells. RT real-time PCR and immunocytochemistry showed that calcitriol suppressed Eag1 expression by a vitamin D receptor (VDR)-dependent mechanism. This effect was accompanied by inhibition of cell proliferation, which was potentiated by astemizole, a nonspecific Eag1 inhibitor. Immunohistochemistry and Western blot demonstrated that Eag1 and VDR abundance was higher in invasive-ductal carcinoma than in fibroadenoma, and immunoreactivity of both proteins was located in ductal epithelial cells. Our results provide evidence of a novel mechanism involved in the antiproliferative effects of calcitriol and highlight VDR as a cancer therapeutic target for breast cancer treatment and prevention.

  7. Statistical epistasis and functional brain imaging support a role of voltage-gated potassium channels in human memory.

    Science.gov (United States)

    Heck, Angela; Vogler, Christian; Gschwind, Leo; Ackermann, Sandra; Auschra, Bianca; Spalek, Klara; Rasch, Björn; de Quervain, Dominique; Papassotiropoulos, Andreas

    2011-01-01

    Despite the current progress in high-throughput, dense genome scans, a major portion of complex traits' heritability still remains unexplained, a phenomenon commonly termed "missing heritability." The negligence of analytical approaches accounting for gene-gene interaction effects, such as statistical epistasis, is probably central to this phenomenon. Here we performed a comprehensive two-way SNP interaction analysis of human episodic memory, which is a heritable complex trait, and focused on 120 genes known to show differential, memory-related expression patterns in rat hippocampus. Functional magnetic resonance imaging was also used to capture genotype-dependent differences in memory-related brain activity. A significant, episodic memory-related interaction between two markers located in potassium channel genes (KCNB2 and KCNH5) was observed (P(nominal combined)=0.000001). The epistatic interaction was robust, as it was significant in a screening (P(nominal)=0.0000012) and in a replication sample (P(nominal)=0.01). Finally, we found genotype-dependent activity differences in the parahippocampal gyrus (P(nominal)=0.001) supporting the behavioral genetics finding. Our results demonstrate the importance of analytical approaches that go beyond single marker statistics of complex traits. © 2011 Heck et al.

  8. MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset

    Directory of Open Access Journals (Sweden)

    Christina Gross

    2016-09-01

    Full Text Available Seizures are bursts of excessive synchronized neuronal activity, suggesting that mechanisms controlling brain excitability are compromised. The voltage-gated potassium channel Kv4.2, a major mediator of hyperpolarizing A-type currents in the brain, is a crucial regulator of neuronal excitability. Kv4.2 expression levels are reduced following seizures and in epilepsy, but the underlying mechanisms remain unclear. Here, we report that Kv4.2 mRNA is recruited to the RNA-induced silencing complex shortly after status epilepticus in mice and after kainic acid treatment of hippocampal neurons, coincident with reduction of Kv4.2 protein. We show that the microRNA miR-324-5p inhibits Kv4.2 protein expression and that antagonizing miR-324-5p is neuroprotective and seizure suppressive. MiR-324-5p inhibition also blocks kainic-acid-induced reduction of Kv4.2 protein in vitro and in vivo and delays kainic-acid-induced seizure onset in wild-type but not in Kcnd2 knockout mice. These results reveal an important role for miR-324-5p-mediated silencing of Kv4.2 in seizure onset.

  9. Functional study of TREK-1 potassium channels during rat heart development and cardiac ischemia using RNAi techniques.

    Science.gov (United States)

    Yang, Xiaojuan; Guo, Peng; Li, Jiang; Wang, Weiping; Xu, Shaofeng; Wang, Ling; Wang, Xiaoliang

    2014-08-01

    To explore the physiological and pathological significance of the 2-pore domain potassium channel TWIK-related K(+) (TREK)-1 in rat heart, its expression and role during heart development and cardiac ischemia were investigated. In the former study, the ventricles of Sprague Dawley rats were collected from embryo day 19 to postnatal 18 months and examined for mRNA and protein expression of TREK-1. It was found that both increased during development, reached a maximum at postnatal day 28, and remained higher at postnatal day 3 through to postnatal 18 months. In the latter study, protein expression of TREK-1 was examined after initiation of acute heart ischemia by ligation of the left anterior descending coronary artery. TREK-1 expression was found to be increased in the endocardium but unchanged in the epicardium. In primary cultured rat neonatal ventricular myocytes subjected to hypoxia (oxygen-glucose deprivation), TREK-1 expression was increased. In cultured neonatal cardiomyocytes, silencing of the TREK-1 gene by lentivirus delivery of the short-hairpin RNAs, L-sh-492 and L-sh-605, was found to promote their viability and number. In addition, both short-hairpin RNA provided protection against hypoxia-induced injury to cardiomyocytes in vitro. These results suggest that TREK-1 plays an important role in neonatal rat heart development and downregulation of TREK-1 may provide protection against ischemic injury. It seems that TREK-1 is a potential drug target for treatment of acute heart ischemia.

  10. Arachidonic acid has protective effects on oxygen-glucose deprived astrocytes mediated through enhancement of potassium channel TREK-1 activity.

    Science.gov (United States)

    Lu, Li; Zhang, Guangru; Song, Chunli; Wang, Xuexi; Qian, Weina; Wang, Zhuanling; Liu, Yanan; Gong, Sheng; Zhou, Shuning

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) have neuroprotective effects against ischemic brain diseases. The newly discovered potassium channel "TREK-1" is a promising target for therapies against neurodegeneration. Arachidonic acid (AA) is an n-6 PUFA, as well as a potent TREK-1 activator. We previously showed that TREK-1 is expressed at high levels in astrocytes. However, the effect of AA on astrocytes in ischemia remains unknown. Here, we assessed the effects of 3-30μM AA on astrocyte apoptosis, glutamate uptake, and expression of the astrocytic glutamate transporter 1 (GLT-1) and TREK-1 under different conditions. Under normal conditions, 3-30μM AA showed no effect on astrocytic apoptosis or TREK-1 expression, whereas glutamate uptake decreased significantly and its change paralleled the decreased expression of GLT-1. When astrocytes were subjected to 4h of oxygen-glucose deprivation (OGD), 10μM AA markedly alleviated OGD-induced cell death, recovering from 63.50±1.90% to 82.96±4.63% of the control value. AA also rescued the decreased glutamate uptake and increased mRNA, as well as protein levels of GLT-1 and TREK-1. Our results provide new evidence of a protective effect of AA on astrocytes under OGD conditions, suggesting that a low concentration of AA may protect against brain ischemic diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Hyaluronan Does Not Affect Bupivacaine’s Inhibitory Action on Voltage-Gated Potassium Channel Activities in Bovine Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    William Hester

    2012-01-01

    Full Text Available Objectives. The objective of this paper is to determine if hyaluronan affects bupivacaine’s anesthetic function. Methods. Whole cell patch clamp recordings were performed on bovine articular chondrocytes cultured in 60 mm dishes. The chondrocytes were treated with phosphate-buffered saline (control group, 7.5 mg/mL hyaluronan (Orthovisc, 0.25% bupivacaine, or a mixture of 7.5 mg/mL hyaluronan and 0.25% bupivacaine. Outward currents were elicited by step depolarization from −90 mV to 150 mV with 5 mV increments and holding for 200 ms. Results. The amplitude of outward currents elicited at 150 mV was 607.1±135.4 pA (mean ± standard error in the chondrocytes treated with phosphate buffered saline, 550.0±194.9 pA in the chondrocytes treated with hyaluronan, 18.4±8.3 pA in the chondrocytes treated with bupivacaine, and 12.8±2.6 pA in the chondrocytes treated with a mixture of hyaluronan and bupivacaine. Conclusion. Hyaluronan does not affect bupivacaine’s inhibitory action on the potassium channel activities in bovine articular chondrocytes. This finding suggests that intra-articular injection of a mixture of hyaluronan and bupivacaine may not affect the anesthetic effects of bupivacaine.

  12. Statistical epistasis and functional brain imaging support a role of voltage-gated potassium channels in human memory.

    Directory of Open Access Journals (Sweden)

    Angela Heck

    Full Text Available Despite the current progress in high-throughput, dense genome scans, a major portion of complex traits' heritability still remains unexplained, a phenomenon commonly termed "missing heritability." The negligence of analytical approaches accounting for gene-gene interaction effects, such as statistical epistasis, is probably central to this phenomenon. Here we performed a comprehensive two-way SNP interaction analysis of human episodic memory, which is a heritable complex trait, and focused on 120 genes known to show differential, memory-related expression patterns in rat hippocampus. Functional magnetic resonance imaging was also used to capture genotype-dependent differences in memory-related brain activity. A significant, episodic memory-related interaction between two markers located in potassium channel genes (KCNB2 and KCNH5 was observed (P(nominal combined=0.000001. The epistatic interaction was robust, as it was significant in a screening (P(nominal=0.0000012 and in a replication sample (P(nominal=0.01. Finally, we found genotype-dependent activity differences in the parahippocampal gyrus (P(nominal=0.001 supporting the behavioral genetics finding. Our results demonstrate the importance of analytical approaches that go beyond single marker statistics of complex traits.

  13. Cyclic expression of the voltage-gated potassium channel KV10.1 promotes disassembly of the primary cilium.

    Science.gov (United States)

    Sánchez, Araceli; Urrego, Diana; Pardo, Luis A

    2016-05-01

    The primary cilium, critical for morphogenic and growth factor signaling, is assembled upon cell cycle exit, but the links between ciliogenesis and cell cycle progression are unclear. KV10.1 is a voltage-gated potassium channel frequently overexpressed in tumors. We have previously reported that expression of KV10.1 is temporally restricted to a time period immediately prior to mitosis in healthy cells. Here, we provide microscopical and biochemical evidence that KV10.1 localizes to the centrosome and the primary cilium and promotes ciliary disassembly. Interference with KV10.1 ciliary localization abolishes not only the effects on ciliary disassembly, but also KV10.1-induced tumor progression in vivo Conversely, upon knockdown of KV10.1, ciliary disassembly is impaired, proliferation is delayed, and proliferating cells show prominent primary cilia. Thus, modulation of ciliogenesis by KV10.1 can explain the influence of KV10.1 expression on the proliferation of normal cells and is likely to be a major mechanism underlying its tumorigenic effects. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  14. Small RNA interference-mediated gene silencing of TREK-1 potassium channel in cultured astrocytes.

    Science.gov (United States)

    Wu, Xiao; Tang, Ronghua; Liu, Yang; Song, Jingjiao; Yu, Zhiyuan; Wang, Wei; Xie, Minjie

    2012-12-01

    This study was aimed to examine the effect of TREK-1 silencing on the function of astrocytes. Three 21-nucleotide small interfering RNA (siRNA) duplexes (siT1, siT2, siT3) targeting TREK-1 were constructed. Cy3-labeled dsRNA oligmers were used to determine the transfection efficiency in cultured astrocytes. TREK-1-specific siRNA duplexes (siT1, siT2, siT3) at the optimal concentration were transfected into cultured astrocytes, and the most efficient siRNA was identified by the method of immunocytochemical staining and Western blotting. The proliferation of astrocytes tranfected with TREK-1-targeting siRNA under hypoxia condition was measured by fluorescence-activated cell sorting (FACS). The results showed that TREK-1 was expressed in cultured astrocytes. The dsRNA oligmers targeting TREK-1 could be transfected efficiently in cultured astrocytes and down-regulate the expression of TREK-1 in astrocytes. Moreover, the down-regulation of TREK-1 in astrocytes contributed to the proliferation of astrocytes under hypoxia condition as determined by cell cycle analysis. It was concluded that siRNA is a powerful technique that can be used to knockdown the expression of TREK-1 in astrocytes, which helps further investigate the function of TREK-1 channel in astrocytes under physicological and pathological condition.

  15. Inwardly rectifying potassium channel 4.1 expression in post-traumatic syringomyelia.

    Science.gov (United States)

    Najafi, E; Stoodley, M A; Bilston, L E; Hemley, S J

    2016-03-11

    Post-traumatic syringomyelia (PTS) is a serious neurological disorder characterized by fluid filled cavities that develop in the spinal cord. PTS is thought to be caused by an imbalance between fluid inflow and outflow in the spinal cord, but the underlying mechanisms are unknown. The ion channel Kir4.1 plays an important role in the uptake of K(+) ions from the extracellular space and release of K(+) ions into the microvasculature, generating an osmotic gradient that drives water movement. Changes in Kir4.1 expression may contribute to disturbances in K(+) homeostasis and subsequently fluid imbalance. Here we investigated whether changes in Kir4.1 protein expression occur in PTS. Western blotting and immunohistochemistry were used to evaluate Kir4.1 and glial fibrillary acidic protein (GFAP) expression in a rodent model of PTS at 3 days, 1, 6 or 12 weeks post-surgery. In Western blotting experiments, Kir4.1 expression increased 1 week post-surgery at the level of the cavity. Immunohistochemical analysis examined changes in the spinal parenchyma directly in contact with the syrinx cavity. In these experiments, there was a significant decrease in Kir4.1 expression in PTS animals compared to controls at 3 days and 6 weeks post-surgery, while an up-regulation of GFAP in PTS animals was observed at 1 and 12 weeks. This suggests that while overall Kir4.1 expression is unchanged at these time-points, there are many astrocytes surrounding the syrinx cavity that are not expressing Kir4.1. The results demonstrate a disturbance in the removal of K(+) ions in tissue surrounding a post-traumatic syrinx cavity. It is possible this contributes to water accumulation in the injured spinal cord leading to syrinx formation or exacerbation of the underlying pathology. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Molecular modeling and structural analysis of two-pore domain potassium channels TASK1 interactions with the blocker A1899

    Directory of Open Access Journals (Sweden)

    David Mauricio Ramirez

    2015-03-01

    Full Text Available A1899 is a potent and highly selective blocker of the Two-pore domain potassium (K2P channel TASK-1, it acts as an antagonist blocking the K+ flux and binds to TASK-1 in the inner cavity and shows an activity in nanomolar order. This drug travels through the central cavity and finally binds in the bottom of the selectivity filter with some threonines and waters molecules forming a H-bond network and several hydrophobic interactions. Using alanine mutagenesis screens the binding site was identify involving residues in the P1 and P2 pore loops, the M2 and M4 transmembrane segments, and the halothane response element; mutations were introduced in the human TASK-1 (KCNK3, NM_002246 expressed in Oocytes from anesthetized Xenopus laevis frogs. Based in molecular modeling and structural analysis as such as molecular docking and binding free energy calculations a pose was suggested using a TASK-1 homology models. Recently, various K2P crystal structures have been obtained. We want redefined – from a structural point of view – the binding mode of A1899 in TASK-1 homology models using as a template the K2P crystal structures. By computational structural analysis we describe the molecular basis of the A1899 binding mode, how A1899 travel to its binding site and suggest an interacting pose (Figure 1. after 100 ns of molecular dynamics simulation (MDs we found an intra H-Bond (80% of the total MDs, a H-Bond whit Thr93 (42% of the total MDs, a pi-pi stacking interaction between a ring and Phe125 (88% of the total MDs and several water bridges. Our experimental and computational results allow the molecular understanding of the structural binding mechanism of the selective blocker A1899 to TASK-1 channels. We identified the structural common and divergent features of TASK-1 channel through our theoretical and experimental studies of A1899 drug action.

  17. Molecular Proximity of Kv1.3 Voltage-gated Potassium Channels and ?1-Integrins on the Plasma Membrane of Melanoma Cells

    OpenAIRE

    Artym, Vira V.; Petty, Howard R.

    2002-01-01

    Tumor cell membranes have multiple components that participate in the process of metastasis. The present study investigates the physical association of ?1-integrins and Kv1.3 voltage-gated potassium channels in melanoma cell membranes using resonance energy transfer (RET) techniques. RET between donor-labeled anti??1-integrin and acceptor-labeled anti-Kv1.3 channels was detected on LOX cells adherent to glass and fibronectin-coated coverslips. However, RET was not observed on LOX cells in sus...

  18. Chronic electroconvulsive stimulation but not chronic restraint stress modulates mRNA expression of voltage-dependent potassium channels Kv7.2 and Kv11.1 in the rat piriform cortex

    DEFF Research Database (Denmark)

    Hjæresen, Marie-Louise; Hageman, Ida; Wörtwein, Gitta

    2008-01-01

    The mechanisms by which stress and electroconvulsive therapy exert opposite effects on the course of major depression are not known. Potential candidates might include the voltage-dependent potassium channels. Potassium channels play an important role in maintaining the resting membrane potential...... and controlling neuronal excitability. To explore this hypothesis, we examined the effects of one or several electroconvulsive stimulations and chronic restraint stress (6 h/day for 21 days) on the expression of voltage-dependent potassium channel Kv7.2, Kv11.1, and Kv11.3 mRNA in the rat brain using in situ...... voltage-dependent potassium channels are not modulated by restraint stress at the level of mRNA expression. However, our findings suggest that repeated electroconvulsive stimulation alter Kv7.2 and Kv11.1 function in the piriform cortex, a finding with potential relevance for the chain of neurobiological...

  19. Comparison of the Effects of a Transient Outward Potassium Channel Activator on Currents Recorded from Atrial and Ventricular Cardiomyocytes

    DEFF Research Database (Denmark)

    Callø, Kirstine; Nof, Eyal; Jespersen, Thomas

    2011-01-01

    NS5806 activates the transient outward potassium current (I(to) ) in canine ventricular cells. We compared the effects of NS5806 on canine atrial versus ventricular tissues and myocytes.......NS5806 activates the transient outward potassium current (I(to) ) in canine ventricular cells. We compared the effects of NS5806 on canine atrial versus ventricular tissues and myocytes....

  20. Tumor necrosis factor α modulates sodium-activated potassium channel SLICK in rat dorsal horn neurons via p38 MAPK activation pathway

    Directory of Open Access Journals (Sweden)

    Wang K

    2017-05-01

    Full Text Available Kun Wang,1 Feng Wang,1 Jun-Ping Bao,2 Zhi-Yang Xie,1 Lu Chen,1 Bao-Yi Zhou,1 Xin-Hui Xie,2 Xiao-Tao Wu1,2 1Medical School of Southeast University, 2Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China Abstract: The dorsal horn (DH of the spinal cord is the integrative center that processes and transmits pain sensation. Abnormal changes in ion channel expression can enhance the excitability of pain-related DH neurons. Sodium-activated potassium (KNa channels are highly expressed particularly in the central nervous system; however, information about whether rat DH neurons express the SLICK channel protein is lacking, and the direct effects on SLICK in response to inflammation and the potential signaling pathway mediating such effects are yet to be elucidated. Here, using cultured DH neurons, we have shown that tumor necrosis factor-α inhibits the total outward potassium current IK and the KNa current predominantly as well as induces a progressive loss of firing accommodation. However, we found that this change in channel activity is offset by the p38 inhibitor SB202190, thereby suggesting the modulation of SLICK channel activity via the p38 MAPK pathway. Furthermore, we have demonstrated that the tumor necrosis factor-α modulation of KNa channels does not occur at the level of SLICK channel gating but arises from possible posttranslational modification. Keywords: p38 MAPK, SLICK channel, neuropathic pain, dorsal horn, TNF-α

  1. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK

    Directory of Open Access Journals (Sweden)

    Leopoldo Raul Beltran

    2013-11-01

    Full Text Available For a long time, the focus of trigeminal chemoperception has rested almost exclusively on TRP channels. However, two-pore domain (K2P potassium channels have recently been identified as targets for substances associated with typical trigeminal sensations, such as numbing and tingling. In addition, they have been shown to be modulated by several TRP agonists. We investigated whether the pungent substances piperine, capsaicin, 6-gingerol and polygodial have an effect on human K2P channels. For this purpose, we evaluated the effects of these pungent substances on both wild-type and mutant K2P channels by means of two-electrode voltage-clamp experiments using Xenopus laevis oocytes. All four pungent substances were found to inhibit the basal activity of TASK-1 (K2P 3.1, TASK-3 (K2P 9.1, and TRESK (K2P 18.1 channels. This inhibitory effect was dose-dependent and, with the exception of polygodial on TASK-1, fully reversible. However, only piperine exhibited an IC50 similar to its reported EC50 on TRP channels. Finally, we observed for TASK-3 that mutating H98 to E markedly decreases the inhibition induced by piperine, capsaicin, and 6-gingerol, but not by polygodial. Our data contribute to the relatively sparse knowledge concerning the pharmacology of K2P channels and also raise the question of whether K2P channels could be involved in the pungency perception of piperine.

  2. Molecular Proximity of Kv1.3 Voltage-gated Potassium Channels and β1-Integrins on the Plasma Membrane of Melanoma Cells

    Science.gov (United States)

    Artym, Vira V.; Petty, Howard R.

    2002-01-01

    Tumor cell membranes have multiple components that participate in the process of metastasis. The present study investigates the physical association of β1-integrins and Kv1.3 voltage-gated potassium channels in melanoma cell membranes using resonance energy transfer (RET) techniques. RET between donor-labeled anti–β1-integrin and acceptor-labeled anti-Kv1.3 channels was detected on LOX cells adherent to glass and fibronectin-coated coverslips. However, RET was not observed on LOX cells in suspension, indicating that molecular proximity of these membrane molecules is adherence-related. Several K+ channel blockers, including tetraethylammonium, 4-aminopyridine, and verapamil, inhibited RET between β1-integrins and Kv1.3 channels. However, the irrelevant K+ channel blocker apamin had no effect on RET between β1-integrins and Kv1.3 channels. Based on these findings, we speculate that the lateral association of Kv1.3 channels with β1-integrins contributes to the regulation of integrin function and that channel blockers might affect tumor cell behavior by influencing the assembly of supramolecular structures containing integrins. PMID:12084773

  3. Ether-à-go-go 1 (Eag1) potassium channel expression in dopaminergic neurons of basal ganglia is modulated by 6-hydroxydopamine lesion.

    Science.gov (United States)

    Ferreira, N R; Mitkovski, M; Stühmer, W; Pardo, L A; Del Bel, E A

    2012-04-01

    The ether à go-go (Eag) gene encodes the voltage-gated potassium (K(+)) ion channel Kv10.1, whose function still remains unknown. As dopamine may directly affect K(+) channels, we evaluated whether a nigrostriatal dopaminergic lesion induced by the neurotoxin 6-hydroxydopamine (6-OHDA) would alter Eag1-K(+) channel expression in the rat basal ganglia and related brain regions. Male Wistar rats received a microinjection of either saline or 6-OHDA (unilaterally) into the medial forebrain bundle. The extent of the dopaminergic lesion induced by 6-OHDA was evaluated by apomorphine-induced rotational behavior and by tyrosine hydroxylase (TH) immunoreactivity. The 6-OHDA microinjection caused a partial or complete lesion of dopaminergic cells, as well as a reduction of Eag1+ cells in a manner proportional to the extent of the lesion. In addition, we observed a decrease in TH immunoreactivity in the ipsilateral striatum. In conclusion, the expression of the Eag1-K(+)-channel throughout the nigrostriatal pathway in the rat brain, its co-localization with dopaminergic cells and its reduction mirroring the extent of the lesion highlight a physiological circuitry where the functional role of this channel can be investigated. The Eag1-K(+) channel expression in dopaminergic cells suggests that these channels are part of the diversified group of ion channels that generate and maintain the electrophysiological activity pattern of dopaminergic midbrain neurons.

  4. Molecular determinants for the activating/blocking actions of the 2H-1,4-benzoxazine derivatives, a class of potassium channel modulators targeting the skeletal muscle KATP channels.

    Science.gov (United States)

    Tricarico, Domenico; Mele, Antonietta; Camerino, Giulia Maria; Laghezza, Antonio; Carbonara, Giuseppe; Fracchiolla, Giuseppe; Tortorella, Paolo; Loiodice, Fulvio; Camerino, Diana Conte

    2008-07-01

    The 2H-1,4-benzoxazine derivatives are modulators of the skeletal muscle ATP-sensitive-K(+) channels (K(ATP)), activating it in the presence of ATP but inhibiting it in the absence of nucleotide. To investigate the molecular determinants for the activating/blocking actions of these compounds, novel molecules with different alkyl or aryl-alkyl substitutes at position 2 of the 1,4-benzoxazine ring were prepared. The effects of the lengthening of the alkyl chain and of branched substitutes, as well as of the introduction of aliphatic/aromatic rings on the activity of the molecules, were investigated on the skeletal muscle K(ATP) channels of the rat, in excised-patch experiments, in the presence or absence of internal ATP (10(-4) M). In the presence of ATP, the 2-n-hexyl analog was the most potent activator (DE(50) = 1.08 x 10(-10) M), whereas the 2-phenylethyl was not effective. The rank order of efficacy of the openers was 2-n-hexyl > or =2-cyclohexylmethyl >2-isopropyl = 2-n-butyl > or = 2-phenyl > or = 2-benzyl = 2-isobutyl analogs. In the absence of ATP, the 2-phenyl analog was the most potent inhibitor (IC(50) = 2.5 x 10(-11) M); the rank order of efficacy of the blockers was 2-phenyl > or = 2-n-hexyl > 2-n-butyl > 2-cyclohexylmethyl, whereas the 2-phenylethyl, 2-benzyl, and 2-isobutyl 1,4-benzoxazine analogs were not effective; the 2-isopropyl analog activated the K(ATP) channel even in the absence of nucleotide. Therefore, distinct molecular determinants for the activating or blocking actions for these compounds can be found. For example, the replacement of the linear with the branched alkyl substitutes at the position 2 of the 1,4-benzoxazine nucleus determines the molecular switch from blockers to openers. These compounds were 100-fold more potent and effective as openers than other KCO against the muscle K(ATP) channels.

  5. Ranolazine inhibition of hERG potassium channels: drug-pore interactions and reduced potency against inactivation mutants.

    Science.gov (United States)

    Du, Chunyun; Zhang, Yihong; El Harchi, Aziza; Dempsey, Christopher E; Hancox, Jules C

    2014-09-01

    The antianginal drug ranolazine, which combines inhibitory actions on rapid and sustained sodium currents with inhibition of the hERG/IKr potassium channel, shows promise as an antiarrhythmic agent. This study investigated the structural basis of hERG block by ranolazine, with lidocaine used as a low potency, structurally similar comparator. Recordings of hERG current (IhERG) were made from cell lines expressing wild-type (WT) or mutant hERG channels. Docking simulations were performed using homology models built on MthK and KvAP templates. In conventional voltage clamp, ranolazine inhibited IhERG with an IC50 of 8.03μM; peak IhERG during ventricular action potential clamp was inhibited ~62% at 10μM. The IC50 values for ranolazine inhibition of the S620T inactivation deficient and N588K attenuated inactivation mutants were respectively ~73-fold and ~15-fold that for WT IhERG. Mutations near the bottom of the selectivity filter (V625A, S624A, T623A) exhibited IC50s between ~8 and 19-fold that for WT IhERG, whilst the Y652A and F656A S6 mutations had IC50s ~22-fold and 53-fold WT controls. Low potency lidocaine was comparatively insensitive to both pore helix and S6 mutations, but was sensitive to direction of K(+) flux and particularly to loss of inactivation, with an IC50 for S620T-hERG ~49-fold that for WT IhERG. Docking simulations indicated that the larger size of ranolazine gives it potential for a greater range of interactions with hERG pore side chains compared to lidocaine, in particular enabling interaction of its two aromatic groups with side chains of both Y652 and F656. The N588K mutation is responsible for the SQT1 variant of short QT syndrome and our data suggest that ranolazine is unlikely to be effective against IKr/hERG in SQT1 patients. Copyright © 2014. Published by Elsevier Ltd.

  6. Associations of two-pore domain potassium channels and triple negative breast cancer subtype in The Cancer Genome Atlas: systematic evaluation of gene expression and methylation.

    Science.gov (United States)

    Dookeran, Keith A; Zhang, Wei; Stayner, Leslie; Argos, Maria

    2017-09-12

    It is unclear whether 2-pore domain potassium channels are novel molecular markers with differential expression related to biologically aggressive triple-negative type breast tumors. Our objective was to systematically evaluate associations of 2-pore domain potassium channel gene expression and DNA methylation with triple-negative subtype in The Cancer Genome Atlas invasive breast cancer dataset. Methylation and expression data for all fifteen 2-pore domain potassium family genes were examined for 1040 women, and associations with triple-negative subtype (vs. luminal A) were evaluated using age/race adjusted generalized-linear models, with Bonferroni-corrected significance thresholds. Subtype associated CpG loci were evaluated for functionality related to expression using Spearman's correlation. Overexpression of KCNK5, KCNK9 and KCNK12, and underexpression of KCNK6 and KCNK15, were significantly associated with triple-negative subtype (Bonferroni-corrected p triple-negative subtype (Bonferroni-corrected p triple-negative vs. luminal A subtype were demonstrated for: KCNK2 (gene body: cg04923840, cg13916421), KCNK5 (gene body: cg05255811, cg18705155, cg09130674, cg21388745, cg00859574) and KCNK9 (TSS1500: cg21415530, cg12175729; KCNK9/TRAPPC9 intergenic region: cg17336929, cg25900813, cg03919980). CpG loci listed for KCNK5 and KCNK9 all showed relative hypomethylation for probability of triple-negative vs. luminal A subtype. Triple-negative subtype was associated with distinct 2-pore domain potassium channel expression patterns. Both KCNK5 and KCNK9 overexpression appeared to be functionally related to CpG loci hypomethylation.

  7. Activation of µ-opioid receptors and block of KIR3 potassium channels and NMDA receptor conductance by l- and d-methadone in rat locus coeruleus

    Science.gov (United States)

    Matsui, Aya; Williams, John T

    2010-01-01

    BACKGROUND AND PURPOSE Methadone activates opioid receptors to increase a potassium conductance mediated by G-protein-coupled, inwardly rectifying, potassium (KIR3) channels. Methadone also blocks KIR3 channels and N-methyl-D-aspartic acid (NMDA) receptors. However, the concentration dependence and stereospecificity of receptor activation and channel blockade by methadone on single neurons has not been characterized. EXPERIMENTAL APPROACH Intracellular and whole-cell recording were made from locus coeruleus neurons in brain slices and the activation of µ-opioid receptors and blockade of KIR3 and NMDA channels with l- and d-methadone was examined. KEY RESULTS The potency of l-methadone, measured by the amplitude of hyperpolarization was 16.5-fold higher than with d-methadone. A maximum hyperpolarization was caused by both enantiomers (∼30 mV); however, the maximum outward current measured with whole-cell voltage-clamp recording was smaller than the current induced by [Met]5enkephalin. The KIR3 conductance induced by activation of α2-adrenoceptors was decreased with high concentrations of l- and d-methadone (10–30 µM). In addition, methadone blocked the resting inward rectifying conductance (KIR). Both l- and d-methadone blocked the NMDA receptor-dependent current. The block of NMDA receptor-dependent current was voltage-dependent suggesting that methadone acted as a channel blocker. CONCLUSIONS AND IMPLICATIONS Methadone activated µ-opioid receptors at low concentrations in a stereospecific manner. KIR3 and NMDA receptor channel block was not stereospecific and required substantially higher concentrations. The separation in the concentration range suggests that the activation of µ-opioid receptors rather than the channel blocking properties mediate both the therapeutic and toxic actions of methadone. PMID:20659105

  8. Molecular analysis of potassium ion channel genes in sudden death cases among patients administered psychotropic drug therapy: are polymorphisms in LQT genes a potential risk factor?

    Science.gov (United States)

    Kamei, Sayako; Sato, Noriko; Harayama, Yuta; Nunotani, Miyako; Takatsu, Kanae; Shiozaki, Tetsuya; Hayashi, Tokutaro; Asamura, Hideki

    2014-02-01

    Psychotropic drugs can pose the risk of acquired long QT syndrome (LQTS). Unexpected autopsy-negative sudden death in patients taking psychotropic drugs may be associated with prolonged QT intervals and life-threatening arrhythmias. We analyzed genes that encode for cardiac ion channels and potentially associated with LQTS, examining specifically the potassium channel genes KCNQ1 and KCNH2 in 10 cases of sudden death involving patients administered psychotropic medication in which autopsy findings identified no clear cause of death. We amplified and sequenced all exons of KCNQ1 and KCNH2, identifying G643S, missense polymorphism in KCNQ1, in 6 of the 10 cases. A study analysis indicated that only 11% of 381 healthy Japanese individuals carry this polymorphism. Reports of previous functional analyses indicate that the G643S polymorphism in the KCNQ1 potassium channel protein causes mild I(Ks) channel dysfunction. Our present study suggests that administering psychotropic drug therapy to individuals carrying the G643S polymorphism may heighten the risk of prolonged QT intervals and life-threatening arrhythmias. Thus, screening for the G643S polymorphism before prescribing psychotropic drugs may help reduce the risk of unexpected sudden death.

  9. Emerging Role of Calcium-Activated Potassium Channel in the Regulation of Cell Viability Following Potassium Ions Challenge in HEK293 Cells and Pharmacological Modulation

    Science.gov (United States)

    Tricarico, Domenico; Mele, Antonietta; Calzolaro, Sara; Cannone, Gianluigi; Camerino, Giulia Maria; Dinardo, Maria Maddalena; Latorre, Ramon; Conte Camerino, Diana

    2013-01-01

    Emerging evidences suggest that Ca2+activated-K+-(BK) channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L) or hypokalemia (0.55 mEq/L) conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293) in the presence or absence of BK channel modulators. The BK channel openers(10-11-10-3M) were: acetazolamide(ACTZ), Dichlorphenamide(DCP), methazolamide(MTZ), bendroflumethiazide(BFT), ethoxzolamide(ETX), hydrochlorthiazide(HCT), quercetin(QUERC), resveratrol(RESV) and NS1619; and the BK channel blockers(2x10-7M-5x10-3M) were: tetraethylammonium(TEA), iberiotoxin(IbTx) and charybdotoxin(ChTX). Experiments on cell viability and channel currents were performed using cell counting kit-8 and patch-clamp techniques, respectively. Hslo whole-cell current was potentiated by BK channel openers with different potency and efficacy in hslo-HEK293. The efficacy ranking of the openers at -60 mV(Vm) was BFT> ACTZ >DCP ≥RESV≥ ETX> NS1619> MTZ≥ QUERC; HCT was not effective. Cell viability after 24 h of incubation under hyperkalemia was enhanced by 82+6% and 33+7% in hslo-HEK293 cells and HEK293 cells, respectively. IbTx, ChTX and TEA enhanced cell viability in hslo-HEK293. BK openers prevented the enhancement of the cell viability induced by hyperkalemia or IbTx in hslo-HEK293 showing an efficacy which was comparable with that observed as BK openers. BK channel modulators failed to affect cell currents and viability under hyperkalemia conditions in the absence of hslo subunit. In contrast, under hypokalemia cell viability was reduced by -22+4% and -23+6% in hslo-HEK293 and HEK293 cells, respectively; the BK channel modulators failed to affect this parameter in these cells. In conclusion, BK channel regulates cell viability under hyperkalemia but not hypokalemia conditions. BFT and ACTZ were the most potent drugs either in activating the BK current and in preventing the cell

  10. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat.

    Science.gov (United States)

    Meiri, N; Ghelardini, C; Tesco, G; Galeotti, N; Dahl, D; Tomsic, D; Cavallaro, S; Quattrone, A; Capaccioli, S; Bartolini, A; Alkon, D L

    1997-04-29

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic "knockouts".

  11. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat

    Science.gov (United States)

    Meiri, Noam; Ghelardini, Carla; Tesco, Giuseppina; Galeotti, Nicoletta; Dahl, Dennis; Tomsic, Daniel; Cavallaro, Sebastiano; Quattrone, Alessandro; Capaccioli, Sergio; Bartolini, Alessandro; Alkon, Daniel L.

    1997-01-01

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic “knockouts”. PMID:9114006

  12. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration.

    Science.gov (United States)

    Rosa, Paolo; Sforna, Luigi; Carlomagno, Silvia; Mangino, Giorgio; Miscusi, Massimo; Pessia, Mauro; Franciolini, Fabio; Calogero, Antonella; Catacuzzeno, Luigi

    2017-09-01

    Glioblastomas (GBMs) are brain tumors characterized by diffuse invasion of cancer cells into the healthy brain parenchyma, and establishment of secondary foci. GBM cells abundantly express large-conductance, calcium-activated potassium (BK) channels that are thought to promote cell invasion. Recent evidence suggests that the GBM high invasive potential mainly originates from a pool of stem-like cells, but the expression and function of BK channels in this cell subpopulation have not been studied. We investigated the expression of BK channels in GBM stem-like cells using electrophysiological and immunochemical techniques, and assessed their involvement in the migratory process of this important cell subpopulation. In U87-MG cells, BK channel expression and function were markedly upregulated by growth conditions that enriched the culture in GBM stem-like cells (U87-NS). Cytofluorimetric analysis further confirmed the appearance of a cell subpopulation that co-expressed high levels of BK channels and CD133, as well as other stem cell markers. A similar association was also found in cells derived from freshly resected GBM biopsies. Finally, transwell migration tests showed that U87-NS cells migration was much more sensitive to BK channel block than U87-MG cells. Our data show that BK channels are highly expressed in GBM stem-like cells, and participate to their high migratory activity. J. Cell. Physiol. 232: 2478-2488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Would calcium or potassium channels be responsible for cardiac arrest produced by adenosine and ATP in the right atria of Wistar rats?

    Science.gov (United States)

    Camara, Henrique; Rodrigues, Juliano Quintella Dantas; Alves, Gabriel Andrade; da Silva Junior, Edilson Dantas; Caricati-Neto, Afonso; Garcia, Antônio G; Jurkiewicz, Aron

    2015-12-05

    Autonomic nerves release ATP, which is processed into adenosine in the synaptic cleft. Adenosine and ATP exert a negative chronotropic effect in the heart. This study aims to evaluate adenosine and P2 receptors and cellular signalling in cardiac arrest produced by purines in the heart. Right atria of adult Wistar rats were used to evaluate the effects of adenosine, ATP and CPA (an adenosine A1 receptor agonist), in the presence and absence of DPCPX, an adenosine A1 receptor antagonist. Effects of adenosine A2 and A3 receptors agonists and antagonists were also investigated. Finally, involvement of calcium and potassium channels in these responses was assessed using BayK 8644 and 4-Aminopyridine. Cumulative concentration-effect curves of adenosine and CPA resulted in a negative chronotropic effect culminating in cardiac arrest at 1000μM (adenosine) and 1µM (CPA). Furthermore, ATP produced a negative chronotropic effect at 1-300µM and cardiac arrest at 1000μM in the right atrium. ATPγS (a non-hydrolysable analogue of ATP) reduced chronotropism only. The effects of adenosine, CPA and ATP were inhibited by DPCPX, a selective adenosine A1 receptor antagonist. The selective adenosine A2 and A3 receptors antagonists did not alter the chronotropic response of adenosine. 4-Aminopyridine, a blocker of potassium channels at 10mM, prevented the cardiac arrest produced by adenosine and ATP, while BayK 8644, activator of calcium channels, did not prevent cardiac arrest. Adenosine A1 receptor activation by adenosine and ATP produces cardiac arrest in the right atrium of Wistar rats predominantly through activation of potassium channels. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy.

    Science.gov (United States)

    Lyu, Chuang; Mulder, Jan; Barde, Swapnali; Sahlholm, Kristoffer; Zeberg, Hugo; Nilsson, Johanna; Århem, Peter; Hökfelt, Tomas; Fried, Kaj; Shi, Tie-Jun Sten

    2015-07-22

    Increased nociceptive neuronal excitability underlies chronic pain conditions. Various ion channels, including sodium, calcium and potassium channels have pivotal roles in the control of neuronal excitability. The members of the family of G protein-gated inwardly rectifying potassium (GIRK) channels, GIRK1-4, have been implicated in modulating excitability. Here, we investigated the expression and distribution of GIRK1 and GIRK2 in normal and injured dorsal root ganglia (DRGs) and spinal cord of rats. We found that ~70% of the DRG neurons expressed GIRK1, while only <10% expressed GIRK2. The neurochemical profiles of GIRK1- and GIRK2-immunoreactive neurons were characterized using the neuronal markers calcitonin gene-related peptide, isolectin-B4 and neurofilament-200, and the calcium-binding proteins calbindin D28k, calretinin, parvalbumin and secretagogin. Both GIRK subunits were expressed in DRG neurons with nociceptive characteristics. However, while GIRK1 was widely expressed in several sensory neuronal subtypes, GIRK2 was detected mainly in a group of small C-fiber neurons. In the spinal dorsal horn, GIRK1- and -2-positive cell bodies and processes were mainly observed in lamina II, but also in superficial and deeper layers. Abundant GIRK1-, but not GIRK2-like immunoreactivity, was found in the ventral horn (laminae VI-X). Fourteen days after axotomy, GIRK1 and GIRK2 were down-regulated in DRG neurons at the mRNA and protein levels. Both after axotomy and rhizotomy there was a reduction of GIRK1- and -2-positive processes in the dorsal horn, suggesting a presynaptic localization of these potassium channels. Furthermore, nerve ligation caused accumulation of both subunits on both sides of the lesion, providing evidence for anterograde and retrograde fast axonal transport. Our data support the hypothesis that reduced GIRK function is associated with increased neuronal excitability and causes sensory disturbances in post-injury conditions, including neuropathic

  15. Cortical effect of oxaliplatin associated with sustained neuropathic pain: exacerbation of cortical activity and down-regulation of potassium channel expression in somatosensory cortex.

    Science.gov (United States)

    Thibault, Karine; Calvino, Bernard; Dubacq, Sophie; Roualle-de-Rouville, Marie; Sordoillet, Vallier; Rivals, Isabelle; Pezet, Sophie

    2012-08-01

    Oxaliplatin is a third-generation platinum-based chemotherapy drug that has gained importance in the treatment of advanced metastatic colorectal cancer. Its dose-limiting side effect is the production of chronic peripheral neuropathy. Using a modified model of oxaliplatin-induced sensory neuropathy, we investigated plastic changes at the cortical level as possible mechanisms underlying the chronicity of pain sensation in this model. Changes in gene expression were studied using DNA microarray which revealed that when oxaliplatin-treated animals displayed clinical neuropathic pain symptoms, including mechanical and thermal hypersensitivity, approximately 900 were down-regulated in the somatosensory cortex. Because of the known role of potassium channels in neuronal excitability, the study further focussed on the down-regulation of these channels as the possible molecular origin of cortical hyperexcitability. Quantification of the magnitude of neuronal extracellular signal-regulated kinase (ERK) phosphorylation in cortical neurons as a marker of neuronal activity revealed a 10-fold increase induced by oxaliplatin treatment, suggesting that neurons of cortical areas involved in transmission of painful stimuli undergo a chronic cortical excitability. We further demonstrated, using cortical injection of lentiviral vector shRNA against Kv2.2, that down-regulation of this potassium channel in naive animals induced a sustained thermal and mechanical hypersensitivity. In conclusion, although the detailed mechanisms leading to this cortical excitability are still unknown, our study demonstrated that a cortical down regulation of potassium channels could underlie pain chronicity in this model of chemotherapy-induced neuropathic pain. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  16. Effects of Chelidonium majus extracts and major alkaloids on hERG potassium channels and on dog cardiac action potential - a safety approach.

    Science.gov (United States)

    Orvos, Péter; Virág, László; Tálosi, László; Hajdú, Zsuzsanna; Csupor, Dezső; Jedlinszki, Nikoletta; Szél, Tamás; Varró, András; Hohmann, Judit

    2015-01-01

    Chelidonium majus or greater celandine is spread throughout the world, and it is a very common and frequent component of modern phytotherapy. Although C. majus contains alkaloids with remarkable physiological effect, moreover, safety pharmacology properties of this plant are not widely clarified, medications prepared from this plant are often used internally. In our study the inhibitory effects of C. majus herb extracts and alkaloids on hERG potassium current as well as on cardiac action potential were investigated. Our data show that hydroalcoholic extracts of greater celandine and its alkaloids, especially berberine, chelidonine and sanguinarine have a significant hERG potassium channel blocking effect. These extracts and alkaloids also prolong the cardiac action potential in dog ventricular muscle. Therefore these compounds may consequently delay cardiac repolarization, which may result in the prolongation of the QT interval and increase the risk of potentially fatal ventricular arrhythmias. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Interaction between the Cardiac Rapidly (IKr) and Slowly (IKs) Activating Delayed Rectifier Potassium Channels Revealed by Low K+-induced hERG Endocytic Degradation*

    Science.gov (United States)

    Guo, Jun; Wang, Tingzhong; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Fridman, Michael D.; Fisher, John T.; Zhang, Shetuan

    2011-01-01

    Cardiac repolarization is controlled by the rapidly (IKr) and slowly (IKs) activating delayed rectifier potassium channels. The human ether-a-go-go-related gene (hERG) encodes IKr, whereas KCNQ1 and KCNE1 together encode IKs. Decreases in IKr or IKs cause long QT syndrome (LQTS), a cardiac disorder with a high risk of sudden death. A reduction in extracellular K+ concentration ([K+]o) induces LQTS and selectively causes endocytic degradation of mature hERG channels from the plasma membrane. In the present study, we investigated whether IKs compensates for the reduced IKr under low K+ conditions. Our data show that when hERG and KCNQ1 were expressed separately in human embryonic kidney (HEK) cells, exposure to 0 mm K+ for 6 h completely eliminated the mature hERG channel expression but had no effect on KCNQ1. When hERG and KCNQ1 were co-expressed, KCNQ1 significantly delayed 0 mm K+-induced hERG reduction. Also, hERG degradation led to a significant reduction in KCNQ1 in 0 mm K+ conditions. An interaction between hERG and KCNQ1 was identified in hERG+KCNQ1-expressing HEK cells. Furthermore, KCNQ1 preferentially co-immunoprecipitated with mature hERG channels that are localized in the plasma membrane. Biophysical and pharmacological analyses indicate that although hERG and KCNQ1 closely interact with each other, they form distinct hERG and KCNQ1 channels. These data extend our understanding of delayed rectifier potassium channel trafficking and regulation, as well as the pathology of LQTS. PMID:21844197

  18. Inhibition of human ether-a-go-go-related gene potassium channels by alpha 1-adrenoceptor antagonists prazosin, doxazosin, and terazosin.

    Science.gov (United States)

    Thomas, Dierk; Wimmer, Anna-Britt; Wu, Kezhong; Hammerling, Bettina C; Ficker, Eckhard K; Kuryshev, Yuri A; Kiehn, Johann; Katus, Hugo A; Schoels, Wolfgang; Karle, Christoph A

    2004-05-01

    Human ether-a-go-go-related gene (HERG) potassium channels are expressed in multiple tissues including the heart and adenocarcinomas. In cardiomyocytes, HERG encodes the alpha-subunit underlying the rapid component of the delayed rectifier potassium current, I(Kr), and pharmacological reduction of HERG currents may cause acquired long QT syndrome. In addition, HERG currents have been shown to be involved in the regulation of cell proliferation and apoptosis. Selective alpha 1-adrenoceptor antagonists are commonly used in the treatment of hypertension and benign prostatic hyperplasia. Recently, doxazosin has been associated with an increased risk of heart failure. Moreover, quinazoline-derived alpha 1-inhibitors induce apoptosis in cardiomyocytes and prostate tumor cells independently of alpha1-adrenoceptor blockade. To assess the action of the effects of prazosin, doxazosin, and terazosin on HERG currents, we investigated their acute electrophysiological effects on cloned HERG potassium channels heterologously expressed in Xenopus oocytes and HEK 293 cells.Prazosin, doxazosin, and terazosin blocked HERG currents in Xenopus oocytes with IC(50) values of 10.1, 18.2, and 113.2 microM respectively, whereas the IC(50) values for HERG channel inhibition in human HEK 293 cells were 1.57 microM, 585.1 nM, and 17.7 microM. Detailed biophysical studies revealed that inhibition by the prototype alpha 1-blocker prazosin occurred in closed, open, and inactivated channels. Analysis of the voltage-dependence of block displayed a reduction of inhibition at positive membrane potentials. Frequency-dependence was not observed. Prazosin caused a negative shift in the voltage-dependence of both activation (-3.8 mV) and inactivation (-9.4 mV). The S6 mutations Y652A and F656A partially attenuated (Y652A) or abolished (F656A) HERG current blockade, indicating that prazosin binds to a common drug receptor within the pore-S6 region. In conclusion, this study demonstrates that HERG

  19. Noradrenaline stimulates cell proliferation by suppressing potassium channels via Gi/o-protein-coupled α1B-adrenoceptors in human osteoblasts

    Science.gov (United States)

    Kodama, D; Togari, A

    2013-01-01

    Background and Purpose Recent studies demonstrated that the sympathetic nervous system regulates bone metabolism via β2-adrenoceptors. Although α-adrenoceptors are also expressed in osteogenic cells, their functions in bone metabolism have been less studied. We previously demonstrated that noradrenaline suppressed potassium currents via α1B-adrenoceptors in the human osteoblast SaM-1 cell line. The aim of this study was to investigate the signal transduction pathway and the physiological role of noradrenaline in human osteoblasts in more detail. Experimental Approach To investigate signal transduction through α1B-adrenoceptors, we used whole-cell patch clamp recording and Ca fluorescence imaging. Potassium channels regulate membrane potential and cell proliferation activity in non-excitable cells, so we evaluated cell proliferation activity by BrdU incorporation and WST assay. Key Results In SaM-1 cells, bath-applied noradrenaline elevated intracellular Ca2+ concentration and this effect was abolished by both chloroethylclonidine, an α1B-adrenoceptor antagonist, and U73122, a PLC inhibitor. However, the inhibitory effect of noradrenaline on whole-cell current was unaffected by U73122. In contrast, in cells pretreated with either Pertussis toxin, a Gi/o-protein-coupled receptor inhibitor, or gallein, a Gβγ-protein inhibitor, the inhibitory effect of noradrenaline on whole-cell current was significantly suppressed. Noradrenaline-induced enhancement of cell proliferation was inhibited by CsCl, a non-selective potassium channel blocker, gallein and H89, a PKA inhibitor, but not by U73122. Conclusions and Implications Noradrenaline facilitated cell proliferation by regulation of potassium currents in human osteoblasts via Gi/o-protein-coupled α1B-adrenoceptors, not via coupling to Gq-proteins. PMID:23061915

  20. Noradrenaline stimulates cell proliferation by suppressing potassium channels via G(i/o) -protein-coupled α(1B) -adrenoceptors in human osteoblasts.

    Science.gov (United States)

    Kodama, D; Togari, A

    2013-03-01

    Recent studies demonstrated that the sympathetic nervous system regulates bone metabolism via β(2) -adrenoceptors. Although α-adrenoceptors are also expressed in osteogenic cells, their functions in bone metabolism have been less studied. We previously demonstrated that noradrenaline suppressed potassium currents via α(1B) -adrenoceptors in the human osteoblast SaM-1 cell line. The aim of this study was to investigate the signal transduction pathway and the physiological role of noradrenaline in human osteoblasts in more detail. To investigate signal transduction through α(1B) -adrenoceptors, we used whole-cell patch clamp recording and Ca fluorescence imaging. Potassium channels regulate membrane potential and cell proliferation activity in non-excitable cells, so we evaluated cell proliferation activity by BrdU incorporation and WST assay. In SaM-1 cells, bath-applied noradrenaline elevated intracellular Ca(2+) concentration and this effect was abolished by both chloroethylclonidine, an α(1B) -adrenoceptor antagonist, and U73122, a PLC inhibitor. However, the inhibitory effect of noradrenaline on whole-cell current was unaffected by U73122. In contrast, in cells pretreated with either Pertussis toxin, a G(i/o) -protein-coupled receptor inhibitor, or gallein, a Gβγ-protein inhibitor, the inhibitory effect of noradrenaline on whole-cell current was significantly suppressed. Noradrenaline-induced enhancement of cell proliferation was inhibited by CsCl, a non-selective potassium channel blocker, gallein and H89, a PKA inhibitor, but not by U73122. Noradrenaline facilitated cell proliferation by regulation of potassium currents in human osteoblasts via G(i/o) -protein-coupled α(1B) -adrenoceptors, not via coupling to Gq-proteins. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  1. In vivo imaging of tumour xenografts with an antibody targeting the potassium channel Kv10.1.

    Science.gov (United States)

    Napp, Joanna; Pardo, Luis A; Hartung, Franziska; Tietze, Lutz F; Stühmer, Walter; Alves, Frauke

    2016-10-01

    The Kv10.1 (Eag1) voltage-gated potassium channel represents a promising molecular target for novel cancer therapies or diagnostic purposes. Physiologically, it is only expressed in the brain, but it was found overexpressed in more than 70 % of tumours of diverse origin. Furthermore, as a plasma membrane protein, it is easily accessible to extracellular interventions. In this study we analysed the feasibility of the anti-Kv10.1 monoclonal antibody mAb62 to target tumour cells in vitro and in vivo and to deliver therapeutics to the tumour. Using time-domain near infrared fluorescence (NIRF) imaging in a subcutaneous MDA-MB-435S tumour model in nude mice, we showed that mAb62-Cy5.5 specifically accumulates at the tumour for at least 1 week in vivo with a maximum intensity at 48 h. Blocking experiments with an excess of unlabelled mAb62 and application of the free Cy5.5 fluorophore demonstrate specific binding to the tumour. Ex vivo NIRF imaging of whole tumours as well as NIRF imaging and microscopy of tumour slices confirmed the accumulation of the mAb62-Cy5.5 in tumours but not in brain tissue. Moreover, mAb62 was conjugated to the prodrug-activating enzyme β-D-galactosidase (β-gal; mAb62-β-gal). The β-gal activity of the mAb62-β-gal conjugate was analysed in vitro on Kv10.1-expressing MDA-MB-435S cells in comparison to control AsPC-1 cells. We show that the mAb62-β-gal conjugate possesses high β-gal activity when bound to Kv10.1-expressing MDA-MB-435S cells. Moreover, using the β-gal activatable NIRF probe DDAOG, we detected mAb62-β-gal activity in vivo over the tumour area. In summary, we could show that the anti-Kv10.1 antibody is a promising tool for the development of novel concepts of targeted cancer therapy.

  2. Concerted Trafficking Regulation of Kv2.1 and KATP Channels by Leptin in Pancreatic β-Cells.

    Science.gov (United States)

    Wu, Yi; Shyng, Show-Ling; Chen, Pei-Chun

    2015-12-11

    In pancreatic β-cells, voltage-gated potassium 2.1 (Kv2.1) channels are the dominant delayed rectifier potassium channels responsible for action potential repolarization. Here, we report that leptin, a hormone secreted by adipocytes known to inhibit insulin secretion, causes a transient increase in surface expression of Kv2.1 channels in rodent and human β-cells. The effect of leptin on Kv2.1 surface expression is mediated by the AMP-activated protein kinase (AMPK). Activation of AMPK mimics whereas inhibition of AMPK occludes the effect of leptin. Inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase β, a known upstream kinase of AMPK, also blocks the effect of leptin. In addition, the cAMP-dependent protein kinase (PKA) is involved in Kv2.1 channel trafficking regulation. Inhibition of PKA prevents leptin or AMPK activators from increasing Kv2.1 channel density, whereas stimulation of PKA is sufficient to promote Kv2.1 channel surface expression. The increased Kv2.1 surface expression by leptin is dependent on actin depolymerization, and pharmacologically induced actin depolymerization is sufficient to enhance Kv2.1 surface expression. The signaling and cellular mechanisms underlying Kv2.1 channel trafficking regulation by leptin mirror those reported recently for ATP-sensitive potassium (KATP) channels, which are critical for coupling glucose stimulation with membrane depolarization. We show that the leptin-induced increase in surface KATP channels results in more hyperpolarized membrane potentials than control cells at stimulating glucose concentrations, and the increase in Kv2.1 channels leads to a more rapid repolarization of membrane potential in cells firing action potentials. This study supports a model in which leptin exerts concerted trafficking regulation of KATP and Kv2.1 channels to coordinately inhibit insulin secretion. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A whole-genome RNAi screen uncovers a novel role for human potassium channels in cell killing by the parasite Entamoeba histolytica

    Science.gov (United States)

    Marie, Chelsea; Verkerke, Hans P.; Theodorescu, Dan; Petri, William A.

    2015-01-01

    The parasite Entamoeba histolytica kills human cells resulting in ulceration, inflammation and invasion of the colonic epithelium. We used the cytotoxic properties of ameba to select a genome-wide RNAi library to reveal novel host factors that control susceptibility to amebic killing. We identified 281 candidate susceptibility genes and bioinformatics analyses revealed that ion transporters were significantly enriched among susceptibility genes. Potassium (K+) channels were the most common transporter identified. Their importance was further supported by colon biopsy of humans with amebiasis that demonstrated suppressed K+ channel expression. Inhibition of human K+ channels by genetic silencing, pharmacologic inhibitors and with excess K+ protected diverse cell types from E. histolytica-induced death. Contact with E. histolytica parasites triggered K+ channel activation and K+ efflux by intestinal epithelial cells, which preceded cell killing. Specific inhibition of Ca2+-dependent K+ channels was highly effective in preventing amebic cytotoxicity in intestinal epithelial cells and macrophages. Blockade of K+ efflux also inhibited caspase-1 activation, IL-1β secretion and pyroptotic death in THP-1 macrophages. We concluded that K+ channels are host mediators of amebic cytotoxicity in multiple cells types and of inflammasome activation in macrophages. PMID:26346926

  4. Molecular proximity of Kv1.3 voltage-gated potassium channels and beta(1)-integrins on the plasma membrane of melanoma cells: effects of cell adherence and channel blockers.

    Science.gov (United States)

    Artym, Vira V; Petty, Howard R

    2002-07-01

    Tumor cell membranes have multiple components that participate in the process of metastasis. The present study investigates the physical association of beta1-integrins and Kv1.3 voltage-gated potassium channels in melanoma cell membranes using resonance energy transfer (RET) techniques. RET between donor-labeled anti-beta1-integrin and acceptor-labeled anti-Kv1.3 channels was detected on LOX cells adherent to glass and fibronectin-coated coverslips. However, RET was not observed on LOX cells in suspension, indicating that molecular proximity of these membrane molecules is adherence-related. Several K(+) channel blockers, including tetraethylammonium, 4-aminopyridine, and verapamil, inhibited RET between beta1-integrins and Kv1.3 channels. However, the irrelevant K(+) channel blocker apamin had no effect on RET between beta1-integrins and Kv1.3 channels. Based on these findings, we speculate that the lateral association of Kv1.3 channels with beta1-integrins contributes to the regulation of integrin function and that channel blockers might affect tumor cell behavior by influencing the assembly of supramolecular structures containing integrins.

  5. Potent suppression of Kv1.3 potassium channel and IL-2 secretion by diphenyl phosphine oxide-1 in human T cells.

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    Full Text Available Diphenyl phosphine oxide-1 (DPO-1 is a potent Kv1.5 channel inhibitor that has therapeutic potential for the treatment of atrial fibrillation. Many other Kv1.5 channel blockers also potently inhibit the Kv1.3 channel, but whether DPO-1 blocks Kv1.3 channels has not been investigated. The Kv1.3 channel is highly expressed in activated T cells, which is considered a favorable target for immunomodulation. Accordingly, we hypothesized that DPO-1 may exert immunosuppressive and anti-inflammatory effects by inhibiting Kv1.3 channel activity. In this study, DPO-1 blocked Kv1.3 current in a voltage-dependent and concentration-dependent manner, with IC₅₀ values of 2.58 µM in Jurkat cells and 3.11 µM in human peripheral blood T cells. DPO-1 also accelerated the inactivation rate and negatively shifted steady-state inactivation. Moreover, DPO-1 at 3 µM had no apparent effect on the Ca²⁺ activated potassium channel (K(Ca current in both Jurkat cells and human peripheral blood T cells. In Jurkat cells, pre-treatment with DPO-1 for 24 h decreased Kv1.3 current density, and protein expression by 48±6% and 60±9%, at 3 and 10 µM, respectively (both p<0.05. In addition, Ca²⁺ influx to Ca²⁺-depleted cells was blunted and IL-2 production was also reduced in activated Jurkat cells. IL-2 secretion was also inhibited by the Kv1.3 inhibitors margatoxin and charybdotoxin. Our results demonstrate for the first time that that DPO-1, at clinically relevant concentrations, blocks Kv1.3 channels, decreases Kv1.3 channel expression and suppresses IL-2 secretion. Therefore, DPO-1 may be a useful treatment strategy for immunologic disorders.

  6. The influence of progesterone alone and in combination with estradiol on ventricular action potential duration and triangulation in response to potassium channel inhibition.

    Science.gov (United States)

    Tisdale, James E; Overholser, Brian R; Wroblewski, Heather A; Sowinski, Kevin M

    2011-03-01

    Females are at increased risk for torsades de pointes (TdP). Some evidence suggests that progesterone may protect against TdP, but few data exist regarding the effects of progesterone on cardiac repolarization. We determined the effects of progesterone alone and in combination with estradiol on ventricular action potential duration (APD) and triangulation in response to potassium channel inhibition. Female New Zealand white rabbits (n = 30) underwent ovariectomy and were implanted with 21-day sustained release pellets (each n = 6): progesterone; estradiol; progesterone; & estradiol combined; dihydrotestosterone (DHT); and placebo. After 20 days, hearts were excised, mounted, perfused with modified Krebs-Henseleit buffer, and paced at 150 bpm. After baseline measurements, hearts were perfused with quinidine 3 μmol/L. The degree of quinidine-associated prolongation of ventricular APD at 90% repolarization (APD(90) ) in the progesterone group was significantly less than that in the estradiol and the combined estradiol and progesterone groups, and not significantly different than in the DHT group. The degree of prolongation of action potential triangulation (APD(90) - APD(30) ) in hearts from progesterone-treated rabbits was significantly less than that in the estradiol group, and not significantly different from that in hearts from DHT-treated rabbits. There were no significant differences in quinidine effects on ventricular APD(90) or action potential triangulation between hearts exposed to estradiol alone or those exposed to both estradiol and progesterone. Progesterone protects against prolongation of APD(90) and triangulation associated with potassium channel inhibition. However, progesterone does not attenuate the effects of estradiol on prolongation of ventricular APD(90) associated with potassium channel inhibition. © 2010 Wiley Periodicals, Inc.

  7. Analysis of the expression of Kv10.1 potassium channel in patients with brain metastases and glioblastoma multiforme: impact on survival

    OpenAIRE

    Martínez, Ramón; Stühmer, Walter; Martin, Sabine; Schell, Julian; Reichmann, Andrea; Rohde, Veit; Pardo, Luis

    2015-01-01

    Background Kv10.1, a voltage-gated potassium channel only detected in the healthy brain, was found to be aberrantly expressed in extracerebral cancers. Investigations of Kv10.1 in brain metastasis and glioblastoma multiforme (GBM) are lacking. Methods We analyzed the expression of Kv10.1 by immunohistochemistry in these brain tumors (75 metastasis from different primary tumors, 71 GBM patients) and the influence of a therapy with tricyclic antidepressants (which are Kv10.1 blockers) on surviv...

  8. Photobiomodulation on KATP Channels of Kir6.2-Transfected HEK-293 Cells

    Directory of Open Access Journals (Sweden)

    Fu-qing Zhong

    2014-01-01

    Full Text Available Background and Objective. ATP-sensitive potassium (KATP channel couples cell metabolism to excitability. To explore role of KATP channels in cellular photobiomodulation, we designed experiment to study effect of low intensity 808 nm laser irradiation on the activity of membrane KATP channel. Study Design/Materials and Methods. Plasmids encoding Kir6.2 was constructed and heterologously expressed in cultured mammalian HEK-293 cells. The patch-clamp and data acquisition systems were used to record KATP channel current before and after irradiation. A laser beam of Ga-As 808 nm at 5 mW/cm2 was used in experiments. A one-way ANOVA test followed by a post hoc Student-Newman-Keuls test was used to assess the statistical differences between data groups. Results. Obvious openings of KATP channels of Kir6.2-transfected HEK-293 cells and excised patches were recorded during and after low intensity 808 nm laser irradiation. Compared with the channels that did not undergo irradiation, open probability, current amplitude, and dwell time of KATP channels after irradiation improved. Conclusions. Low intensity 808 nm laser irradiation may activate membrane KATP channels of Kir6.2-transfected HEK-293 cells and in excised patches.

  9. Effects of helium-neon laser irradiation and local anesthetics on potassium channels in pond snail neurons.

    Science.gov (United States)

    Ignatov, Yu D; Vislobokov, A I; Vlasov, T D; Kolpakova, M E; Mel'nikov, K N; Petrishchev, I N

    2005-10-01

    Intracellular dialysis and membrane voltage clamping were used to show that He-Ne laser irradiation of a pond snail neuron at a dose of 0.7 x 10(-4) J (power density 1.5 x 10(2) W/m2) increases the amplitude of the potential-dependent slow potassium current, while a dose of 0.7 x 10(-3) J decreases this current. Bupivacaine suppresses the potassium current. Combined application of laser irradiation at a dose of 0.7 x 10(-3) J increased the blocking effect of 10 microM bupivacaine on the slow potassium current, while an irradiation dose of 0.7 x 10(-4) J weakened the effect of bupivacaine.

  10. Altered expression and modulation of the two-pore-domain (K2P) mechanogated potassium channel TREK-1 in overactive human detrusor.

    Science.gov (United States)

    Pineda, Ricardo H; Nedumaran, Balachandar; Hypolite, Joseph; Pan, Xiao-Qing; Wilson, Shandra; Meacham, Randall B; Malykhina, Anna P

    2017-08-01

    Detrusor overactivity (DO) is the abnormal response of the urinary bladder to physiological stretch during the filling phase of the micturition cycle. The mechanisms of bladder smooth muscle compliance upon the wall stretch are poorly understood. We previously reported that the function of normal detrusor is regulated by TREK-1, a member of the mechanogated subfamily of two-pore-domain potassium (K2P) channels. In the present study, we aimed to identify the changes in expression and function of TREK-1 channels under pathological conditions associated with DO, evaluate the potential relationship between TREK-1 channels and cytoskeletal proteins in the human bladder, and test the possibility of modulation of TREK-1 channel expression by small RNAs. Expression of TREK-1 channels in DO specimens was 2.7-fold decreased compared with control bladders and was associated with a significant reduction of the recorded TREK-1 currents. Isolated DO muscle strips failed to relax when exposed to a TREK-1 channel opener. Immunocytochemical labeling revealed close association of TREK-1 channels with cell cytoskeletal proteins and caveolins, with caveolae microdomains being severely disrupted in DO specimens. Small activating RNA (saRNA) tested in vitro provided evidence that expression of TREK-1 protein could be partially upregulated. Our data confirmed a significant downregulation of TREK-1 expression in human DO specimens and provided evidence of close association between the channel, cell cytoskeleton, and caveolins. Upregulation of TREK-1 expression by saRNA could be a future step for the development of in vivo pharmacological and genetic approaches to treat DO in humans. Copyright © 2017 the American Physiological Society.

  11. Regulation of voltage-gated potassium channels attenuates resistance of side-population cells to gefitinib in the human lung cancer cell line NCI-H460.

    Science.gov (United States)

    Choi, Seon Young; Kim, Hang-Rae; Ryu, Pan Dong; Lee, So Yeong

    2017-02-21

    Side-population (SP) cells that exclude anti-cancer drugs have been found in various tumor cell lines. Moreover, SP cells have a higher proliferative potential and drug resistance than main population cells (Non-SP cells). Also, several ion channels are responsible for the drug resistance and proliferation of SP cells in cancer. To confirm the expression and function of voltage-gated potassium (Kv) channels of SP cells, these cells, as well as highly expressed ATP-binding cassette (ABC) transporters and stemness genes, were isolated from a gefitinib-resistant human lung adenocarcinoma cell line (NCI-H460), using Hoechst 33342 efflux. In the present study, we found that mRNA expression of Kv channels in SP cells was different compared to Non-SP cells, and the resistance of SP cells to gefitinib was weakened with a combination treatment of gefitinib and Kv channel blockers or a Kv7 opener, compared to single-treatment gefitinib, through inhibition of the Ras-Raf signaling pathway. The findings indicate that Kv channels in SP cells could be new targets for reducing the resistance to gefitinib.

  12. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1

    Directory of Open Access Journals (Sweden)

    Lien Moreels

    2017-09-01

    Full Text Available The human ether-à-go-go channel (hEag1 or KV10.1 is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel KV10.1 inhibitor from the sea anemone Anthopleura elegantissima. Purified sea anemone fractions were screened for inhibitory activity on KV10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on KV10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-à-go-go-related gene potassium channel (hERG or Kv11.1. The toxin inhibits KV10.1 with an IC50 value of 1.1 μM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other KV and NaV channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified KV10.1 inhibitor can be used as a tool to further characterize the oncogenic channel KV10.1 or as a

  13. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1.

    Science.gov (United States)

    Moreels, Lien; Peigneur, Steve; Galan, Diogo T; De Pauw, Edwin; Béress, Lászlo; Waelkens, Etienne; Pardo, Luis A; Quinton, Loïc; Tytgat, Jan

    2017-09-13

    The human ether-à-go-go channel (hEag1 or KV10.1) is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel KV10.1 inhibitor from the sea anemone Anthopleura elegantissima. Purified sea anemone fractions were screened for inhibitory activity on KV10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were