WorldWideScience

Sample records for atp-binding protein evolved

  1. A man-made ATP-binding protein evolved independent of nature causes abnormal growth in bacterial cells.

    Directory of Open Access Journals (Sweden)

    Joshua M Stomel

    Full Text Available Recent advances in de novo protein evolution have made it possible to create synthetic proteins from unbiased libraries that fold into stable tertiary structures with predefined functions. However, it is not known whether such proteins will be functional when expressed inside living cells or how a host organism would respond to an encounter with a non-biological protein. Here, we examine the physiology and morphology of Escherichia coli cells engineered to express a synthetic ATP-binding protein evolved entirely from non-biological origins. We show that this man-made protein disrupts the normal energetic balance of the cell by altering the levels of intracellular ATP. This disruption cascades into a series of events that ultimately limit reproductive competency by inhibiting cell division. We now describe a detailed investigation into the synthetic biology of this man-made protein in a living bacterial organism, and the effect that this protein has on normal cell physiology.

  2. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules

    NARCIS (Netherlands)

    Masereeuw, R.; Russel, F.G.M.

    2012-01-01

    The ATP-binding cassette transport proteins (ABC transporters) represent important determinants of drug excretion. Protective or excretory tissues where these transporters mediate substrate efflux include the kidney proximal tubule. Regulation of the transport proteins in this tissue requires elabor

  3. Data for proteomic analysis of ATP-binding proteins and kinase inhibitor target proteins using an ATP probe

    Directory of Open Access Journals (Sweden)

    Jun Adachi

    2015-12-01

    Full Text Available Interactions between ATP and ATP-binding proteins (ATPome are common and are required for most cellular processes. Thus, it is clearly important to identify and quantify these interactions for understanding basic cellular mechanisms and the pathogenesis of various diseases. We used an ATP competition assay (competition between ATP and acyl-ATP probes that enabled us to distinguish specific ATP-binding proteins from non-specific proteins (Adachi et al., 2014 [1]. As a result, we identified 539 proteins, including 178 novel ATP-binding protein candidates. We also established an ATPome selectivity profiling method for kinase inhibitors using our cataloged ATPome list. Normally only kinome selectivity is profiled in selectivity profiling of kinase inhibitors. In this data, we expand the profiled targets from the kinome to the ATPome through performance of ATPome selectivity profiling and obtained target profiles of staurosporine and (S-crizotinib. The data accompanying the manuscript on this approach (Adachi et al., 2014 [1] have been deposited to the ProteomeXchange with identifier PXD001200.

  4. Molecular Characterization of LjABCG1, an ATP-Binding Cassette Protein in Lotus japonicus.

    Directory of Open Access Journals (Sweden)

    Akifumi Sugiyama

    Full Text Available LjABCG1, a full-size ABCG subfamily of ATP-binding cassette proteins of a model legume, Lotus japonicus, was reported as a gene highly expressed during the early stages of nodulation, but have not been characterized in detail. In this study we showed that the induction of LjABCG1 expression was remarkable by methyl jasmonate treatment, and reporter gene experiments indicated that LjABCG1 was strongly expressed in the nodule parenchyma and cell layers adjacent to the root vascular tissue toward the nodule. LjABCG1 was suggested to be localized at the plasma membrane based on the fractionation of microsomal membranes as well as separation via aqueous two-phase partitioning. The physiological functions of LjABCG1 in symbiosis and pathogenesis were analyzed in homologous and heterologous systems. LjABCG1 knock-down L. japonicus plants did not show clear phenotypic differences in nodule formation, and not in defense against Pseudomonas syringae, either. In contrast, when LjABCG1 was expressed in the Arabidopsis pdr8-1 mutant, the penetration frequency of Phytophthora infestans, a potato late blight pathogen, was significantly reduced in LjABCG1/pdr8-1 than in pdr8-1 plants. This finding indicated that LjABCG1, at least partially, complemented the phenotype of pdr8 in Arabidopsis, suggesting the multiple roles of this protein in plant-microbe interactions.

  5. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis.

    Science.gov (United States)

    Mao, Lisong; Wang, Yanli; Liu, Yuemin; Hu, Xiche

    2004-02-20

    intermolecular interactions of large biomolecular systems becomes computationally feasible. The establishment of the molecular basis for recognition of the adenine moiety of ATP in proteins will directly impact molecular design of ATP-binding site targeted enzyme inhibitors such as kinase inhibitors.

  6. Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-Binding: requirement for establishing chronic persistent infection.

    Directory of Open Access Journals (Sweden)

    Joshua E Drumm

    2009-05-01

    Full Text Available Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosisuniversal stress protein (USP homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-A-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii Rv2623 binds ATP; and iv the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection.

  7. Mycobacterium tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP Binding: Requirement for Establishing Chronic Persistent Infection

    Energy Technology Data Exchange (ETDEWEB)

    Drumm, J.; Mi, K; Bilder, P; Sun, M; Lim, J; Bielefeldt-Ohmann, H; Basaraba, R; So, M; Zhu, G; et. al.

    2009-01-01

    Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosisuniversal stress protein (USP) homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-A-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii Rv2623 binds ATP; and iv the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection.

  8. Maltose-binding protein effectively stabilizes the partially closed conformation of the ATP-binding cassette transporter MalFGK2

    KAUST Repository

    Weng, Jingwei

    2017-02-23

    Maltose transporter MalFGK2 is a type-I importer in the ATP-binding cassette (ABC) transporter superfamily. Upon the binding of its periplasmic binding protein, MalE, the ATPase activity of MalFGK2 can be greatly enhanced. Crystal structures of the MalFGK2-MalE-maltose complex in a so-called

  9. Computational characterization of TTHA0379: A potential glycerophosphocholine binding protein of Ugp ATP-binding cassette transporter.

    Science.gov (United States)

    Chandravanshi, Monika; Gogoi, Prerana; Kanaujia, Shankar Prasad

    2016-11-05

    For the de novo biosynthesis of phospholipids, byproducts such as sn-glycerol-3-phosphate (G3P) and glycerophosphocholine (GPC) of glycerophospholipid metabolic pathway are imported inside the cell by an ATP-binding cassette (ABC) transporter known as UgpABCE. Of which, UgpA and UgpE constitutes the transmembrane domains (TMDs), UgpC forms the dimer of ATP-hydrolyzing component and UgpB is the periplasmic substrate binding protein. Structurally, UgpABCE transporter displays similarity to the maltose ABC transporter of Escherichia coli; thus, has been grouped into the CUT1 (Carbohydrate Uptake Transporter-1) family of bacterial ABC transporters. Being a member of CUT1 family, several Ugp (Uptake glycerol phosphate) protein sequences in biological database(s) exhibit sequence and structure similarity to sugar ABC transporters and have been annotated as sugar binding proteins; one of such proteins is TTHA0379 from Thermus thermophilus HB8. Here, in this study, we used computational method(s) to distinguish UgpB and sugar binding proteins based on their primary and tertiary structure features. A comprehensive analysis of these proteins indicates that they are evolutionarily related to each other having common conserved features at their primary and tertiary structure levels. However, they display differences at their active sites owing to the dissimilarity in their ligand preferences. In addition, phylogenetic analysis of TTHA0379 along with UgpB and sugar binding proteins reveals that both the groups of proteins forms two distinct clades and TTHA0379 groups with UgpB proteins. Furthermore, analysis of the ligand binding pocket shows that all the essential features of glycerophosphocholine binding protein i.e. UgpB, are conserved in TTHA0379 as well. Combining these features, here, we designate TTHA0379 to be a GPC binding protein.

  10. HIV-1 Protein Nef Inhibits Activity of ATP-binding Cassette Transporter A1 by Targeting Endoplasmic Reticulum Chaperone Calnexin*

    Science.gov (United States)

    Jennelle, Lucas; Hunegnaw, Ruth; Dubrovsky, Larisa; Pushkarsky, Tatiana; Fitzgerald, Michael L.; Sviridov, Dmitri; Popratiloff, Anastas; Brichacek, Beda; Bukrinsky, Michael

    2014-01-01

    HIV-infected patients are at increased risk of developing atherosclerosis, in part due to an altered high density lipoprotein profile exacerbated by down-modulation and impairment of ATP-binding cassette transporter A1 (ABCA1) activity by the HIV-1 protein Nef. However, the mechanisms of this Nef effect remain unknown. Here, we show that Nef interacts with an endoplasmic reticulum chaperone calnexin, which regulates folding and maturation of glycosylated proteins. Nef disrupted interaction between calnexin and ABCA1 but increased affinity and enhanced interaction of calnexin with HIV-1 gp160. The Nef mutant that did not bind to calnexin did not affect the calnexin-ABCA1 interaction. Interaction with calnexin was essential for functionality of ABCA1, as knockdown of calnexin blocked the ABCA1 exit from the endoplasmic reticulum, reduced ABCA1 abundance, and inhibited cholesterol efflux; the same effects were observed after Nef overexpression. However, the effects of calnexin knockdown and Nef on cholesterol efflux were not additive; in fact, the combined effect of these two factors together did not differ significantly from the effect of calnexin knockdown alone. Interestingly, gp160 and ABCA1 interacted with calnexin differently; although gp160 binding to calnexin was dependent on glycosylation, glycosylation was of little importance for the interaction between ABCA1 and calnexin. Thus, Nef regulates the activity of calnexin to stimulate its interaction with gp160 at the expense of ABCA1. This study identifies a mechanism for Nef-dependent inactivation of ABCA1 and dysregulation of cholesterol metabolism. PMID:25170080

  11. Purification, crystallization and preliminary X-ray diffraction analysis of the putative ABC transporter ATP-binding protein from Thermotoga maritima

    Science.gov (United States)

    Ethayathulla, Abdul S.; Bessho, Yoshitaka; Shinkai, Akeo; Padmanabhan, Balasundaram; Singh, Tej P.; Kaur, Punit; Yokoyama, Shigeyuki

    2008-01-01

    Adenosine triphosphate (ATP) binding cassette transporters (ABC transporters) are ATP hydrolysis-dependent transmembrane transporters. Here, the overproduction, purification and crystallization of the putative ABC transporter ATP-binding protein TM0222 from Thermotoga maritima are reported. The protein was crystallized in the hexagonal space group P6422, with unit-cell parameters a = b = 148.49, c = 106.96 Å, γ = 120.0°. Assuming the presence of two molecules in the asymmetric unit, the calculated V M is 2.84 Å3 Da−1, which corresponds to a solvent content of 56.6%. A three-wavelength MAD data set was collected to 2.3 Å resolution from SeMet-substituted TM0222 crystals. Data sets were collected on the BL38B1 beamline at SPring-8, Japan. PMID:18540059

  12. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.

    Science.gov (United States)

    Fry, D C; Kuby, S A; Mildvan, A S

    1986-02-01

    The MgATP binding site of adenylate kinase, located by a combination of NMR and x-ray diffraction, is near three protein segments, five to seven amino acids in length, that are homologous in sequence to segments found in other nucleotide-binding phosphotransferases, such as myosin and F1-ATPase, ras p21 and transducin GTPases, and cAMP-dependent and src protein kinases, suggesting equivalent mechanistic roles of these segments in all of these proteins. Segment 1 is a glycine-rich flexible loop that, on adenylate kinase, may control access to the ATP-binding site by changing its conformation. Segment 2 is an alpha-helix containing two hydrophobic residues that interact with the adenine-ribose moiety of ATP, and a lysine that may bind to the beta- and gamma-phosphates of ATP. Segment 3 is a hydrophobic strand of parallel beta-pleated sheet, terminated by a carboxylate, that flanks the triphosphate binding site. The various reported mutations of ras p21 that convert it to a transforming agent all appear to involve segment 1, and such substitutions may alter the properties of p21 by hindering a conformational change at this segment. In F1-ATPase, the flexible loop may, by its position, control both the accessibility and the ATP/ADP equilibrium constant on the enzyme.

  13. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.

    Science.gov (United States)

    Wei, Shipeng; Roessler, Bryan C; Icyuz, Mert; Chauvet, Sylvain; Tao, Binli; Hartman, John L; Kirk, Kevin L

    2016-03-01

    The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.

  14. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    Directory of Open Access Journals (Sweden)

    Adrien Nicolaï

    Full Text Available ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD of Hsp70 propagates a signal to its substrate-binding domain (SBD. Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in

  15. Role of NH{sub 2}-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Kostsin, Dzmitry G. [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Academicheskaya Str. 27, Minsk 220072 (Belarus); Kashiwayama, Yoshinori [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Takanashi, Kojiro; Yazaki, Kazufumi [Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoko University, Uji, Kyoto 611-0011 (Japan); Imanaka, Tsuneo, E-mail: imanaka@pha.u-toyama.ac.jp [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Morita, Masashi [Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2014-10-24

    Highlights: • ABCD proteins classifies based on with or without NH{sub 2}-terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH{sub 2}-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH{sub 2}-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH{sub 2}-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH{sub 2}-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH{sub 2}-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH{sub 2}-terminal H0 motif in organelle targeting is widely conserved in living organisms.

  16. Lobular Distribution and Variability in Hepatic ATP Binding Cassette Protein B1 (ABCB1, P-gp): Ontogenetic Differences and Potential for Toxicity

    Science.gov (United States)

    Abanda, Ngu Njei; Riches, Zoe; Collier, Abby C.

    2017-01-01

    The ATP Binding Cassette B1 (ABCB1) transporter has critical roles in endo- and xenobiotic efficacy and toxicity. To understand population variability in hepatic transport we determined ABCB1 mRNA and protein levels in total liver lysates sampled from 8 pre-defined sites (n = 24, 18–69 years), and in S9 from randomly acquired samples (n = 87, 7 days–87 years). ABCB1 levels did not differ significantly throughout individual livers and showed 4.4-fold protein variation between subjects. Neither mRNA nor protein levels varied with sex, ethnicity, obesity or triglycerides in lysates or S9 (that showed the same relationships), but protein levels were lower in pediatric S9 (p < 0.0001), with 76% of adult ABCB1 present at birth and predicted to mature in 5 years. Pediatric total liver lysates were not available. In summary, opportunistic collection for studying human hepatic ABCB1 is acceptable. Additionally, ABCB1 may be lower in children, indicating differential potential for toxicity and response to therapy in this special population. PMID:28218636

  17. Effects of silencing the ATP-binding cassette protein E1 gene by electroporation on the proliferation and migration of EC109 human esophageal cancer cells.

    Science.gov (United States)

    Li, Xiao-Rui; Yang, Liu-Zhong; Huo, Xiao-Qing; Wang, Ying; Yang, Qing-Hui; Zhang, Qing-Qin

    2015-07-01

    In the present study, the gene expression of ATP-binding cassette protein E1 (ABCE1) in the EC109 human esophageal cancer cell line was silenced using electroporation to examine the effect if the ABCE1 gene on the growth migration and cell cycle of cancer cells. The small interference (si)RNA sequence of ABCE1 was designed and synthesized to transfect the EC109 cells by electroporation. The mRNA and protein expression levels of ABCE1 were then detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The analysis of the cell cycle and apoptosis was performed using flow cytometry. The effect of silencing the ABCE1 gene on the proliferation, migration and invasive ability of the EC109 human esophageal cancer cells were assessed using a Cell counting kit-8 (CCK-8) and with proliferation, wound-healing and cell invasion assays. The mRNA and protein expression levels of ABCE1 were significantly lower in the experimental group compared with the control group (Pmigration capacity of the cells in the experimental group was significantly decreased (Pmigration in esophageal cancer and silencing the ABCE1 gene by electroporation can significantly reduce the proliferation, invasion and migration capacity of EC109 cells in vitro.

  18. Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica

    Science.gov (United States)

    Shitan, Nobukazu; Bazin, Ingrid; Dan, Kazuyuki; Obata, Kazuaki; Kigawa, Koji; Ueda, Kazumitsu; Sato, Fumihiko; Forestier, Cyrille; Yazaki, Kazufumi

    2003-01-01

    Alkaloids comprise one of the largest groups of plant secondary metabolites. Berberine, a benzylisoquinoline alkaloid, is preferentially accumulated in the rhizome of Coptis japonica, a ranunculaceous plant, whereas gene expression for berberine biosynthetic enzymes has been observed specifically in root tissues, which suggests that berberine synthesized in the root is transported to the rhizome, where there is high accumulation. We recently isolated a cDNA encoding a multidrug-resistance protein (MDR)-type ATP-binding cassette (ABC) transporter (Cjmdr1) from berberine-producing cultured C. japonica cells, which is highly expressed in the rhizome. Functional analysis of Cjmdr1 by using a Xenopus oocyte expression system showed that CjMDR1 transported berberine in an inward direction, resulting in a higher accumulation of berberine in Cjmdr1-injected oocytes than in the control. Typical inhibitors of ABC proteins, such as vanadate, nifedipine, and glibenclamide, as well as ATP depletion, clearly inhibited this CjMDR1-dependent berberine uptake, suggesting that CjMDR1 functioned as an ABC transporter. Conventional membrane separation methods showed that CjMDR1 was localized in the plasma membrane of C. japonica cells. In situ hybridization indicated that Cjmdr1 mRNA was expressed preferentially in xylem tissues of the rhizome. These findings strongly suggest that CjMDR1 is involved in the translocation of berberine from the root to the rhizome. PMID:12524452

  19. Universal stress protein Rv2624c alters abundance of arginine and enhances intracellular survival by ATP binding in mycobacteria

    Science.gov (United States)

    Jia, Qiong; Hu, Xinling; Shi, Dawei; Zhang, Yan; Sun, Meihao; Wang, Jianwei; Mi, Kaixia; Zhu, Guofeng

    2016-01-01

    The universal stress protein family is a family of stress-induced proteins. Universal stress proteins affect latency and antibiotic resistance in mycobacteria. Here, we showed that Mycobacterium smegmatis overexpressing M. tuberculosis universal stress protein Rv2624c exhibits increased survival in human monocyte THP-1 cells. Transcriptome analysis suggested that Rv2624c affects histidine metabolism, and arginine and proline metabolism. LC-MS/MS analysis showed that Rv2624c affects the abundance of arginine, a modulator of both mycobacteria and infected THP-1 cells. Biochemical analysis showed that Rv2624c is a nucleotide-binding universal stress protein, and an Rv2624c mutant incapable of binding ATP abrogated the growth advantage in THP-1 cells. Rv2624c may therefore modulate metabolic pathways in an ATP-dependent manner, changing the abundance of arginine and thus increasing survival in THP-1 cells. PMID:27762279

  20. Inherited surfactant deficiency due to uniparental disomy of rare mutations in the surfactant protein-B and ATP binding cassette, subfamily A, member 3 genes

    Science.gov (United States)

    Hamvas, Aaron; Nogee, Lawrence M.; Wegner, Daniel J.; DePass, Kelcey; Christodoulou, John; Bennetts, Bruce; McQuade, Leon R.; Gray, Peter H.; Deterding, Robin R.; Carroll, Travis R.; Kammesheidt, Anja; Kasch, Laura M.; Kulkarni, Shashikant; Cole, F. Sessions

    2009-01-01

    Objective To characterize inheritance of homozygous, rare, recessive loss-of-function mutations in the surfactant protein-B (SFTPB) or ATP binding cassette, subfamily A, member 3 (ABCA3) genes in newborns with lethal respiratory failure. Study design We resequenced parents whose infants were homozygous for mutations in SFTPB or ABCA3. For infants with only one heterozygous parent, we performed microsatellite analysis for chromosomes 2 (SFTPB) and 16 (ABCA3). Results We identified one infant homozygous for the c.1549C>GAA mutation (121ins2) in SFTPB for whom only the mother was heterozygous and 3 infants homozygous for mutations in ABCA3 (p.K914R, p.P147L, and c.806_7insGCT) for whom only the fathers were heterozygous. For the SP-B deficient infant, microsatellite markers confirmed maternal heterodisomy with segmental isodisomy. Microsatellite analysis confirmed paternal isodisomy for the three ABCA3 deficient infants. Two ABCA3 deficient infants underwent lung transplantation at 3 and 5 months of age, respectively, and two infants died. None exhibited any non-pulmonary phenotype. Conclusions Uniparental disomy should be suspected in infants with rare homozygous mutations in SFTPB or ABCA3. Confirmation of parental carrier status is important to provide recurrence risk and to monitor expression of other phenotypes that may emerge through reduction to homozygosity of recessive alleles. PMID:19647838

  1. Lipid absorption defects in intestine-specific microsomal triglyceride transfer protein and ATP-binding cassette transporter A1-deficient mice.

    Science.gov (United States)

    Iqbal, Jahangir; Parks, John S; Hussain, M Mahmood

    2013-10-18

    We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92-95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations.

  2. ATP binding by the P-loop NTPase OsYchF1 (an unconventional G protein) contributes to biotic but not abiotic stress responses.

    Science.gov (United States)

    Cheung, Ming-Yan; Li, Xiaorong; Miao, Rui; Fong, Yu-Hang; Li, Kwan-Pok; Yung, Yuk-Lin; Yu, Mei-Hui; Wong, Kam-Bo; Chen, Zhongzhou; Lam, Hon-Ming

    2016-03-01

    G proteins are involved in almost all aspects of the cellular regulatory pathways through their ability to bind and hydrolyze GTP. The YchF subfamily, interestingly, possesses the unique ability to bind both ATP and GTP, and is possibly an ancestral form of G proteins based on phylogenetic studies and is present in all kingdoms of life. However, the biological significance of such a relaxed ligand specificity has long eluded researchers. Here, we have elucidated the different conformational changes caused by the binding of a YchF homolog in rice (OsYchF1) to ATP versus GTP by X-ray crystallography. Furthermore, by comparing the 3D relationships of the ligand position and the various amino acid residues at the binding sites in the crystal structures of the apo-bound and ligand-bound versions, a mechanism for the protein's ability to bind both ligands is revealed. Mutation of the noncanonical G4 motif of the OsYchF1 to the canonical sequence for GTP specificity precludes the binding/hydrolysis of ATP and prevents OsYchF1 from functioning as a negative regulator of plant-defense responses, while retaining its ability to bind/hydrolyze GTP and its function as a negative regulator of abiotic stress responses, demonstrating the specific role of ATP-binding/hydrolysis in disease resistance. This discovery will have a significant impact on our understanding of the structure-function relationships of the YchF subfamily of G proteins in all kingdoms of life.

  3. ATP结合盒蛋白E1在真核生物中的作用%Role of ATP-binding cassette protein E1 in eukaryote

    Institute of Scientific and Technical Information of China (English)

    尤锋; 李燕

    2012-01-01

    ATP结合盒(ATP-binding cassette,ABC)蛋白超家族是真核生物进化过程中最为保守的一类蛋白.ABCE1是ABC超家族中E亚家族的唯一成员,除可抑制哺乳动物核糖核酸酶L外,还参与真核生物蛋白合成的翻译起始、终止及核糖体循环,并有可能成为新的抗肿瘤靶点.本文对ABCE1的基本生物学特性及其生物学作用作一介绍.%ATP-binding cassette ( ABC) proteins are one of the most conserved protein families in eukaryote evolution. ABCE1 is the only member in ABC E subfamily. It was found that ABCE1, a ribonuclease L inhibitor in mammals, participates in the protein translation's initiation, termination and ribosome recycling of eukaryote, and may become a new antitumor target. This article reviews the basic biological characteristics and functions of ABCE1.

  4. Crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus.

    Science.gov (United States)

    Manjula, M; Pampa, K J; Kumar, S M; Mukherjee, S; Kunishima, N; Rangappa, K S; Lokanath, N K

    2015-03-27

    The ATP binding cassette (ABC) transporters, represent one of the largest superfamilies of primary transporters, which are very essential for various biological functions. The crystal structure of ATP-binding subunit of an ABC transporter from Geobacillus kaustophilus has been determined at 1.77 Å resolution. The crystal structure revealed that the protomer has two thick arms, (arm I and II), which resemble 'L' shape. The ATP-binding pocket is located close to the end of arm I. ATP molecule is docked into the active site of the protein. The dimeric crystal structure of ATP-binding subunit of ABC transporter from G. kaustophilus has been compared with the previously reported crystal structure of ATP-binding subunit of ABC transporter from Salmonella typhimurium.

  5. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity

    NARCIS (Netherlands)

    Rijpma, S.R.; Heuvel, J.J.; Velden, M. van der; Sauerwein, R.W.; Russel, F.G.; Koenderink, J.B.

    2014-01-01

    BACKGROUND: Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involve

  6. Localization of the ATP-binding cassette (ABC transport proteins PfMRP1, PfMRP2, and PfMDR5 at the Plasmodium falciparum plasma membrane

    Directory of Open Access Journals (Sweden)

    Luty Adrian JF

    2009-08-01

    Full Text Available Abstract Background The spread of drug resistance has been a major obstacle to the control of malaria. The mechanisms underlying drug resistance in malaria seem to be complex and multigenic. The current literature on multiple drug resistance against anti-malarials has documented PfMDR1, an ATP-binding cassette (ABC protein, as an important determinant of resistance. In the Plasmodium falciparum genome, there are several ABC transporters some of which could be putative drug transporting proteins. In order to understand the molecular mechanisms underlying drug resistance, characterization of these transporters is essential. The aim of this study was to characterize and localize putative ABC transporters. Methods In the plasmoDB database, 16 members of the P. falciparum ABC family can be identified, 11 of which are putative transport proteins. A phylogenetic analysis of the aligned NBDs of the PfABC genes was performed. Antibodies against PfMRP1 (PfABCC1, PfMRP2 (PfABCC2, and PfMDR5 (PfABCB5 were generated, affinity purified and used in immunocytochemistry to localize the proteins in the asexual stages of the parasite. Results The ABC family members of P. falciparum were categorized into subfamilies. The ABC B subfamily was the largest and contained seven members. Other family members that could be involved in drug transport are PfABCC1, PfABCC2, PfABCG1, and PfABCI3. The expression and localization of three ABC transport proteins was determined. PfMRP1, PfMRP2, and PfMDR5 are localized to the plasma membrane in all asexual stages of the parasite. Conclusion In conclusion, 11 of the 16 ABC proteins in the P. falciparum genome are putative transport proteins, some of which might be involved in drug resistance. Moreover, it was demonstrated that three of these proteins are expressed on the parasite's plasma membrane.

  7. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Directory of Open Access Journals (Sweden)

    Shabeesh Balan

    Full Text Available Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS (prototype for AED-resistant epilepsy; juvenile myoclonic epilepsy (JME (prototype for AED-responsive epilepsy; and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004. This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004 and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05 cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency

  8. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    Science.gov (United States)

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE

  9. Localization of the ATP-binding cassette (ABC) transport proteins PfMRP1, PfMRP2, and PfMDR5 at the Plasmodium falciparum plasma membrane.

    NARCIS (Netherlands)

    Kavishe, R.A.; Heuvel, J.M.W. van den; Vegte-Bolmer, M. van de; Luty, A.J.; Russel, F.G.M.; Koenderink, J.B.

    2009-01-01

    BACKGROUND: The spread of drug resistance has been a major obstacle to the control of malaria. The mechanisms underlying drug resistance in malaria seem to be complex and multigenic. The current literature on multiple drug resistance against anti-malarials has documented PfMDR1, an ATP-binding casse

  10. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Park, Soyeon; Park, Bo-Kyoung; Hahn, Tae-Wook

    2016-06-01

    Brucella abortus RB51 is an attenuated vaccine strain that has been most frequently used for bovine brucellosis. Although it is known to provide good protection in cattle, it still has some drawbacks including resistance to rifampicin, residual virulence and pathogenicity in humans. Thus, there has been a continuous interest on new safe and effective bovine vaccine candidates. In the present study, we have constructed unmarked mutants by deleting singly cydD and cydC genes, which encode ATP-binding cassette transporter proteins, from the chromosome of the virulent Brucella abortus isolate from Korean cow (referred to as IVK15). Both IVK15ΔcydD and ΔcydC mutants showed increased sensitivity to metal ions, hydrogen peroxide and acidic pH, which are mimic to intracellular environment during host infection. Additionally, the mutants exhibited a significant growth defect in RAW264.7 cells and greatly attenuated in mice. Vaccination of mice with either IVK15ΔcydC or IVK15ΔcydD mutant could elicit an anti-Brucella specific immunoglobulin G (IgG) and IgG subclass responses as well as enhance the secretion of interferon-gamma, and provided better protection against challenge with B. abortus strain 2308 than with the commercial B. abortus strain RB51 vaccine. Collectively, these results suggest that both IVK15ΔcydC and IVK15ΔcydD mutants could be an attenuated vaccine candidate against B. abortus.

  11. Role of ATP binding and hydrolysis in the gating of the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    Taras Gout

    2012-01-01

    Full Text Available The CFTR gene is unique within the ATP-binding cassette (ABC protein family, predominantly of transporters, by coding a chloride channel. The gating mechanism of ABC proteins has been characterized by the ATP Switch model in terms cycles of dimer formation and dissociation linked to ATP binding and hydrolysis, respectively. It would be of interest to assess the extent that Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, a functional channel, fits the ATP Switch model for ABC transporters. Additional transporter mechanisms, namely those of Pgp and HlyB, are discussed for perspective. Literature search of databases selected key references in comparing and contrasting the gating mechanism. CFTR is a functional chloride channel facilitating transmembrane anion flow down electrochemical gradients. A dysfunctional CFTR protein results in cystic fibrosis, a fatal pleiotropic disease currently managed symptomatically. Understanding the gating mechanism will help target drug development aimed at alleviating and curing the disease.

  12. The power stroke driven by ATP binding in CFTR as studied by molecular dynamics simulations.

    Science.gov (United States)

    Furukawa-Hagiya, Tomoka; Furuta, Tadaomi; Chiba, Shuntaro; Sohma, Yoshiro; Sakurai, Minoru

    2013-01-10

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP binding cassette (ABC) protein superfamily. Currently, it remains unclear how ATP binding causes the opening of the channel gate at the molecular level. To clarify this mechanism, we first constructed an atomic model of the inward-facing CFTR using the X-ray structures of other ABC proteins. Molecular dynamics (MD) simulations were then performed to explore the structure and dynamics of the inward-facing CFTR in a membrane environment. In the MgATP-bound state, two nucleotide-binding domains (NBDs) formed a head-to-tail type of dimer, in which the ATP molecules were sandwiched between the Walker A and signature motifs. Alternatively, one of the final MD structures in the apo state was similar to that of a "closed-apo" conformation found in the X-ray analysis of ATP-free MsbA. Principal component analysis for the MD trajectory indicated that NBD dimerization causes significant structural and dynamical changes in the transmembrane domains (TMDs), which is likely indicative of the formation of a chloride ion access path. This study suggests that the free energy gain from ATP binding acts as a driving force not only for NBD dimerization but also for NBD-TMD concerted motions.

  13. The role of ATP-binding cassette (ABC) transporters in pathogenesis and multidrug resistance of the wheat pathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    Stergiopoulos, I.

    2003-01-01

    ATP-binding cassette (ABC) transporters are membrane proteins that utilise the energy derived from the hydrolysis of ATP to drive the transport of compounds over biological membranes. They are members of one of the largest protein families to date, present in both pro- and eukaryotic

  14. The saci_2123 gene of the hyperthermoacidophile Sulfolobus acidocaldarius encodes an ATP-binding cassette multidrug transporter

    NARCIS (Netherlands)

    Yang, Nuan; Driessen, Arnold J. M.

    2015-01-01

    Multidrug resistance (MDR) transporters are capable of secreting structurally and functionally unrelated toxic compounds from the cell. Among this group are ATP-binding cassette (ABC) transporters. These membrane proteins are typically arranged as either hetero- or homo-dimers of ABC half-transporte

  15. The function of the ATP-binding cassette (ABC) transporter ABCB1 is not susceptible to actin disruption

    NARCIS (Netherlands)

    Meszaros, Peter; Hummel, Ina; Klappe, Karin; Draghiciu, Oana; Hoekstra, Dick; Kok, Jan W.

    2013-01-01

    Previously we have shown that the activity of the multidrug transporter ABCC1 (multidrug resistance protein 1), and its localization in lipid rafts, depends on cortical actin (Hummel I, Klappe K, Ercan C, Kok JW. Mol. Pharm. 2011 79, 229-40). Here we show that the efflux activity of the ATP-binding

  16. Activity-Based Proteomics Reveals Heterogeneous Kinome and ATP-Binding Proteome Responses to MEK Inhibition in KRAS Mutant Lung Cancer.

    Science.gov (United States)

    Kim, Jae-Young; Stewart, Paul A; Borne, Adam L; Fang, Bin; Welsh, Eric A; Chen, Yian Ann; Eschrich, Steven A; Koomen, John M; Haura, Eric B

    2016-06-01

    One way cancer cells can escape from targeted agents is through their ability to evade drug effects by rapidly rewiring signaling networks. Many protein classes, such as kinases and metabolic enzymes, are regulated by ATP binding and hydrolysis. We hypothesized that a system-level profiling of drug-induced alterations in ATP-binding proteomes could offer novel insights into adaptive responses. Here, we mapped global ATP-binding proteomes perturbed by two clinical MEK inhibitors, AZD6244 and MEK162, in KRAS mutant lung cancer cells as a model system harnessing a desthiobiotin-ATP probe coupled with LC-MS/MS. We observed strikingly unique ATP-binding proteome responses to MEK inhibition, which revealed heterogeneous drug-induced pathway signatures in each cell line. We also identified diverse kinome responses, indicating each cell adapts to MEK inhibition in unique ways. Despite the heterogeneity of kinome responses, decreased probe labeling of mitotic kinases and an increase of kinases linked to autophagy were identified to be common responses. Taken together, our study revealed a diversity of adaptive ATP-binding proteome and kinome responses to MEK inhibition in KRAS mutant lung cancer cells, and our study further demonstrated the utility of our approach to identify potential candidates of targetable ATP-binding enzymes involved in adaptive resistance and to develop rational drug combinations.

  17. Activity-Based Proteomics Reveals Heterogeneous Kinome and ATP-Binding Proteome Responses to MEK Inhibition in KRAS Mutant Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jae-Young Kim

    2016-04-01

    Full Text Available One way cancer cells can escape from targeted agents is through their ability to evade drug effects by rapidly rewiring signaling networks. Many protein classes, such as kinases and metabolic enzymes, are regulated by ATP binding and hydrolysis. We hypothesized that a system-level profiling of drug-induced alterations in ATP-binding proteomes could offer novel insights into adaptive responses. Here, we mapped global ATP-binding proteomes perturbed by two clinical MEK inhibitors, AZD6244 and MEK162, in KRAS mutant lung cancer cells as a model system harnessing a desthiobiotin-ATP probe coupled with LC-MS/MS. We observed strikingly unique ATP-binding proteome responses to MEK inhibition, which revealed heterogeneous drug-induced pathway signatures in each cell line. We also identified diverse kinome responses, indicating each cell adapts to MEK inhibition in unique ways. Despite the heterogeneity of kinome responses, decreased probe labeling of mitotic kinases and an increase of kinases linked to autophagy were identified to be common responses. Taken together, our study revealed a diversity of adaptive ATP-binding proteome and kinome responses to MEK inhibition in KRAS mutant lung cancer cells, and our study further demonstrated the utility of our approach to identify potential candidates of targetable ATP-binding enzymes involved in adaptive resistance and to develop rational drug combinations.

  18. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis.

    Science.gov (United States)

    Bompadre, Silvia G; Hwang, Tzyh-Chang

    2007-08-25

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that belongs to the ATP-binding cassette (ABC) transporter superfamily. Defective function of CFTR is responsible for cystic fibrosis (CF), the most common lethal autosomal recessive disorder in Caucasian populations. The disease is manifested in defective chloride transport across the epithelial cells in various tissues. To date, more than 1400 different mutations have been identified as CF-associated. CFTR is regulated by phosphorylation in its regulatory (R) domain, and gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBD1 and NBD2). Recent studies reveal that the NBDs of CFTR may dimerize as observed in other ABC proteins. Upon dimerization of CFTR's two NBDs, in a head-to-tail configuration, the two ATP-binding pockets (ABP1 and ABP2) are formed by the canonical Walker A and B motifs from one NBD and the signature sequence from the partner NBD. Mutations of the amino acids that interact with ATP reveal that the two ABPs play distinct roles in controlling ATP-dependent gating of CFTR. It was proposed that binding of ATP to the ABP2, which is formed by the Walker A and B in NBD2 and the signature sequence in NBD1, is critical for catalyzing channel opening. While binding of ATP to the ABP1 alone may not increase the opening rate, it does contribute to the stabilization of the open channel conformation. Several disease-associated mutations of the CFTR channel are characterized by gating defects. Understanding how CFTR's two NBDs work together to gate the channel could provide considerable mechanistic information for future pharmacological studies, which could pave the way for tailored drug design for therapeutical interventions in CF.

  19. Transport in technicolor: mapping ATP-binding cassette transporters in sea urchin embryos.

    Science.gov (United States)

    Gökirmak, Tufan; Shipp, Lauren E; Campanale, Joseph P; Nicklisch, Sascha C T; Hamdoun, Amro

    2014-09-01

    One quarter of eukaryotic genes encode membrane proteins. These include nearly 1,000 transporters that translocate nutrients, signaling molecules, and xenobiotics across membranes. While it is well appreciated that membrane transport is critical for development, the specific roles of many transporters have remained cryptic, in part because of their abundance and the diversity of their substrates. Multidrug resistance ATP-binding cassette (ABC) efflux transporters are one example of cryptic membrane proteins. Although most organisms utilize these ABC transporters during embryonic development, many of these transporters have broad substrate specificity, and their developmental functions remain incompletely understood. Here, we review advances in our understanding of ABC transporters in sea urchin embryos, and methods developed to spatially and temporally map these proteins. These studies reveal that multifunctional transporters are required for signaling, homeostasis, and protection of the embryo, and shed light on how they are integrated into ancestral developmental pathways recapitulated in disease.

  20. The saci_2123 gene of the hyperthermoacidophile Sulfolobus acidocaldarius encodes an ATP-binding cassette multidrug transporter.

    Science.gov (United States)

    Yang, Nuan; Driessen, Arnold J M

    2015-01-01

    Multidrug resistance (MDR) transporters are capable of secreting structurally and functionally unrelated toxic compounds from the cell. Among this group are ATP-binding cassette (ABC) transporters. These membrane proteins are typically arranged as either hetero- or homo-dimers of ABC half-transporters with each subunit consisting of a membrane domain fused at the C-terminus to an ATP-binding domain, or as full transporters in which the two subunits are fused into a single polypeptide. The saci_2123 gene of the thermoacidophilic archaeon Sulfolobus acidocaldarius is the only gene in the genome that encodes an ATP-binding cassette half-transporter, while a homologous gene is present in the genomes of S. solfataricus, S. tokodaii and S islandicus. Saci_2123 shares homology with well-characterized bacterial and mammalian MDR transporters. The saci_2132 gene is up-regulated when cells are exposed to drugs. A deletion mutant of saci_2132 was found to be more vulnerable to a set of toxic compounds, including detergents, antibiotics and uncouplers as compared to the wild-type strain, while the drug resistance could be restored through the plasmid-based expression of saci_2132. These data demonstrate that Saci_2132 is an archaeal ABC-MDR transporter and therefore it was termed Smr1 (Sulfolobus multidrug resistance transporter 1).

  1. Receptor-transporter interactions of canonical ATP-binding cassette import systems in prokaryotes.

    Science.gov (United States)

    Schneider, Erwin; Eckey, Viola; Weidlich, Daniela; Wiesemann, Nicole; Vahedi-Faridi, Ardeshir; Thaben, Paul; Saenger, Wolfram

    2012-04-01

    ATP-binding cassette (ABC) transport systems mediate the translocation of solutes across biological membranes at the expense of ATP. They share a common modular architecture comprising two pore-forming transmembrane domains and two nucleotide binding domains. In prokaryotes, ABC transporters are involved in the uptake of a large variety of chemicals, including nutrients, osmoprotectants and signal molecules. In pathogenic bacteria, some ABC importers are virulence factors. Canonical ABC import systems require an additional component, a substrate-specific receptor or binding protein for function. Interaction of the liganded receptor with extracytoplasmic loop regions of the transmembrane domains initiate the transport cycle. In this review we summarize the current knowledge on receptor-transporter interplay provided by crystal structures as well as by biochemical and biophysical means. In particular, we focus on the maltose/maltodextrin transporter of enterobacteria and the transporters for positively charged amino acids from the thermophile Geobacillus stearothermophilus and Salmonella enterica serovar Typhimurium.

  2. ATP Binding Turns Plant Cryptochrome Into an Efficient Natural Photoswitch

    Science.gov (United States)

    Müller, Pavel; Bouly, Jean-Pierre; Hitomi, Kenichi; Balland, Véronique; Getzoff, Elizabeth D.; Ritz, Thorsten; Brettel, Klaus

    2014-06-01

    Cryptochromes are flavoproteins that drive diverse developmental light-responses in plants and participate in the circadian clock in animals. Plant cryptochromes have found application as photoswitches in optogenetics. We have studied effects of pH and ATP on the functionally relevant photoreduction of the oxidized FAD cofactor to the semi-reduced FADH. radical in isolated Arabidopsis cryptochrome 1 by transient absorption spectroscopy on nanosecond to millisecond timescales. In the absence of ATP, the yield of light-induced radicals strongly decreased with increasing pH from 6.5 to 8.5. With ATP present, these yields were significantly higher and virtually pH-independent up to pH 9. Analysis of our data in light of the crystallographic structure suggests that ATP-binding shifts the pKa of aspartic acid D396, the putative proton donor to FAD.-, from ~7.4 to >9, and favours a reaction pathway yielding long-lived aspartate D396-. Its negative charge could trigger conformational changes necessary for signal transduction.

  3. Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitator superfamily

    NARCIS (Netherlands)

    Stergiopoulos, I.; Zwiers, L.H.; Waard, De M.A.

    2002-01-01

    This review provides an overview of members of the ATP-binding cassette (ABC) and major facilitator superfamily (MFS) of transporters identified in filamentous fungi. The most common function of these membrane proteins is to provide protection against natural toxic compounds present in the environme

  4. An ATP Binding Cassette Transporter Mediates the Uptake of α-(1,6)-Linked Dietary Oligosaccharides in Bifidobacterium and Correlates with Competitive Growth on These Substrates

    DEFF Research Database (Denmark)

    Hansen, Morten Ejby; Fredslund, Folmer; Andersen, Joakim Mark

    2016-01-01

    and lactobacilli in the human gut. Here we show that the solute binding protein (BlG16BP) associated with an ATP binding cassette (ABC) transporter from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 binds -(1,6)-linked glucosides and galactosides of varying size, linkage, and monosaccharide...

  5. Control of Mycosphaerella graminicola on wheat seedlings by medical drugs known to modulate the activity of ATP-binding cassette transporters

    NARCIS (Netherlands)

    Roohparvar, R.; Huser, A.; Zwiers, L.H.; Waard, de M.A.

    2007-01-01

    Medical drugs known to modulate the activity of human ATP-binding cassette (ABC) transporter proteins (modulators) were tested for the ability to potentiate the activity of the azole fungicide cyproconazole against in vitro growth of Mycosphaerella graminicola and to control disease development due

  6. Substrate Specificity and Ionic Regulation of GlnPQ from Lactococcus lactis. An ATP-Binding Cassette Transporter with Four Extracytoplasmic Substrate-Binding Domains

    NARCIS (Netherlands)

    Schuurman-Wolters, Gea K.; Poolman, Bert

    2005-01-01

    We report on the functional characterization of GlnPQ, an ATP-binding cassette transporter with four extracytoplasmic substrate-binding domains. The first predicted transmembrane helix of GlnP was cleaved off in the mature protein and most likely serves as the signal sequence for the extracytoplasmi

  7. ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome.

    Science.gov (United States)

    Cailliez, Fabien; Müller, Pavel; Gallois, Michaël; de la Lande, Aurélien

    2014-09-17

    Cryptochromes are flavoproteins encountered in most vegetal and animal species. They play a role of blue-light receptors in plants and in invertebrates. The putative resting state of the FAD cofactor in these proteins is its fully oxidized form, FADox. Upon blue-light excitation, the isoalloxazine ring (ISO) may undergo an ultrafast reduction by a nearby tryptophan residue W400. This primary reduction triggers a cascade of electron and proton transfers, ultimately leading to the formation of the FADH° radical. A recent experimental study has shown that the yield of FADH° formation in Arabidopsis cryptochrome can be strongly modulated by ATP binding and by pH, affecting the protonation state of D396 (proton donor to FAD°(-)). Here we provide a detailed molecular analysis of these effects by means of combined classical molecular dynamics simulations and time-dependent density functional theory calculations. When ATP is present and D396 protonated, FAD remains in close contact with W400, thereby enhancing electron transfer (ET) from W400 to ISO*. In contrast, deprotonation of D396 and absence of ATP introduce flexibility to the photoactive site prior to FAD excitation, with the consequence of increased ISO-W400 distance and diminished tunneling rate by almost two orders of magnitude. We show that under these conditions, ET from the adenine moiety of FAD becomes a competitive relaxation pathway. Overall, our data suggest that the observed effects of ATP and pH on the FAD photoreduction find their roots in the earliest stage of the photoreduction process; i.e., ATP binding and the protonation state of D396 determine the preferred pathway of ISO* relaxation.

  8. ABCC4与人类肿瘤%ATP-binding cassette transporter family class C4 and human cancer

    Institute of Scientific and Technical Information of China (English)

    石妮; 赵晓航

    2011-01-01

    ATP-binding cassette transporter family class C4 (ABCC4) is known as a member of the ATP-binding cassette transporter super-family, involved in the active transport of endogenous anions and xenobiotic, which is not normally produced or expected to be present in human, such as antibiotics. Recently it has been found that the copy number variations of Abcc4 gene and overexpression of ABCC4 protein in many kinds of human cancers, which might involved in tumorigenesis, progress and chemotherapeutic response. This review will focus on the ectopic expression of Abcc4 in human cancer and the potential role of ABCC4 in tumorigenesis and progress.%ABCC4(ATP-binding cassette transporter family class C4,ABCC4)是ABC蛋白家族成员,主要参与转运机体物质代谢中产生的有机阴离子和一些异型生物质等生物学功能.近年研究发现某些人类肿瘤存在Abcc4基因的拷贝数变异,主要表现为Abcc4基因拷贝数增加和ABCC4蛋白过表达,这些改变与肿瘤发生发展、耐药,以及治疗疗效具有相关性.该文综述了Abcc4基因的拷贝数变异和异常表达与肿瘤生物学特性的关系,探讨ABCC4在肿瘤发生发展中的作用机制.

  9. ATP binding and hydrolysis-driven rate-determining events in the RFC-catalyzed PCNA clamp loading reaction.

    Science.gov (United States)

    Sakato, Miho; Zhou, Yayan; Hingorani, Manju M

    2012-02-17

    The multi-subunit replication factor C (RFC) complex loads circular proliferating cell nuclear antigen (PCNA) clamps onto DNA where they serve as mobile tethers for polymerases and coordinate the functions of many other DNA metabolic proteins. The clamp loading reaction is complex, involving multiple components (RFC, PCNA, DNA, and ATP) and events (minimally: PCNA opening/closing, DNA binding/release, and ATP binding/hydrolysis) that yield a topologically linked clamp·DNA product in less than a second. Here, we report pre-steady-state measurements of several steps in the reaction catalyzed by Saccharomyces cerevisiae RFC and present a comprehensive kinetic model based on global analysis of the data. Highlights of the reaction mechanism are that ATP binding to RFC initiates slow activation of the clamp loader, enabling it to open PCNA (at ~2 s(-1)) and bind primer-template DNA (ptDNA). Rapid binding of ptDNA leads to formation of the RFC·ATP·PCNA(open)·ptDNA complex, which catalyzes a burst of ATP hydrolysis. Another slow step in the reaction follows ATP hydrolysis and is associated with PCNA closure around ptDNA (8 s(-1)). Dissociation of PCNA·ptDNA from RFC leads to catalytic turnover. We propose that these early and late rate-determining events are intramolecular conformational changes in RFC and PCNA that control clamp opening and closure, and that ATP binding and hydrolysis switch RFC between conformations with high and low affinities, respectively, for open PCNA and ptDNA, and thus bookend the clamp loading reaction.

  10. Functional analysis of the ATP-binding cassette (ABC transporter gene family of Tribolium castaneum

    Directory of Open Access Journals (Sweden)

    Broehan Gunnar

    2013-01-01

    Full Text Available Abstract Background The ATP-binding cassette (ABC transporters belong to a large superfamily of proteins that have important physiological functions in all living organisms. Most are integral membrane proteins that transport a broad spectrum of substrates across lipid membranes. In insects, ABC transporters are of special interest because of their role in insecticide resistance. Results We have identified 73 ABC transporter genes in the genome of T. castaneum, which group into eight subfamilies (ABCA-H. This coleopteran ABC family is significantly larger than those reported for insects in other taxonomic groups. Phylogenetic analysis revealed that this increase is due to gene expansion within a single clade of subfamily ABCC. We performed an RNA interference (RNAi screen to study the function of ABC transporters during development. In ten cases, injection of double-stranded RNA (dsRNA into larvae caused developmental phenotypes, which included growth arrest and localized melanization, eye pigmentation defects, abnormal cuticle formation, egg-laying and egg-hatching defects, and mortality due to abortive molting and desiccation. Some of the ABC transporters we studied in closer detail to examine their role in lipid, ecdysteroid and eye pigment transport. Conclusions The results from our study provide new insights into the physiological function of ABC transporters in T. castaneum, and may help to establish new target sites for insect control.

  11. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly.

    Science.gov (United States)

    Schaedler, Theresia A; Thornton, Jeremy D; Kruse, Inga; Schwarzländer, Markus; Meyer, Andreas J; van Veen, Hendrik W; Balk, Janneke

    2014-08-22

    An ATP-binding cassette transporter located in the inner mitochondrial membrane is involved in iron-sulfur cluster and molybdenum cofactor assembly in the cytosol, but the transported substrate is unknown. ATM3 (ABCB25) from Arabidopsis thaliana and its functional orthologue Atm1 from Saccharomyces cerevisiae were expressed in Lactococcus lactis and studied in inside-out membrane vesicles and in purified form. Both proteins selectively transported glutathione disulfide (GSSG) but not reduced glutathione in agreement with a 3-fold stimulation of ATPase activity by GSSG. By contrast, Fe(2+) alone or in combination with glutathione did not stimulate ATPase activity. Arabidopsis atm3 mutants were hypersensitive to an inhibitor of glutathione biosynthesis and accumulated GSSG in the mitochondria. The growth phenotype of atm3-1 was strongly enhanced by depletion of the mitochondrion-localized, GSH-dependent persulfide oxygenase ETHE1, suggesting that the physiological substrate of ATM3 contains persulfide in addition to glutathione. Consistent with this idea, a transportomics approach using mass spectrometry showed that glutathione trisulfide (GS-S-SG) was transported by Atm1. We propose that mitochondria export glutathione polysulfide, containing glutathione and persulfide, for iron-sulfur cluster assembly in the cytosol.

  12. Caveolin-1 and ATP binding cassette transporter A1 and G1-mediated cholesterol efflux.

    Science.gov (United States)

    Wang, Faqi; Gu, Hong-mei; Zhang, Da-wei

    2014-01-01

    Atherosclerosis is one major cause of cardiovascular diseases, the leading cause of death in industrialized countries. Reverse cholesterol transport (RCT) is thought to be one primary pathway to protect against atherosclerosis. The first and rate-limiting step of RCT is ATP-binding cassette transport A1 (ABCA1) and ABCG1-mediated cholesterol efflux from the cells. Recently, caveolin-1 (CAV1), a scaffolding protein that organizes and concentrates certain caveolin-interacting signaling molecules and receptors within caveolae membranes, has been shown to regulate ABCA1 and ABCG1-mediated cholesterol efflux probably via interacting with them. In the present review, we summarize the current knowledge and views on the regulatory role of CAV1 on the cholesterol homeostasis with emphasis on the association of CAV1 with ABCA1 and ABCG1. We conclude that the dominance of the positive regulation by CAV1 on the ABCA1 and ABCG1-mediated cholesterol efflux is depending on the species, cell types, as well as the levels of CAV1 expression.

  13. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast.

    Science.gov (United States)

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D; Andersen, Tonni G; Pomorski, Thomas G

    2014-12-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been implicated in sterol uptake, but key features of their activity remain to be elucidated. Here, we apply fluorescent cholesterol (NBD-cholesterol) to monitor sterol uptake under anaerobic and aerobic conditions in two fungal species, Candida glabrata (Cg) and Saccharomyces cerevisiae (Sc). We found that in both fungal species, ABC transporter-dependent uptake of cholesterol under anaerobic conditions and in mutants lacking HEM1 gene is promoted in the presence of the serum protein albumin that is able to bind the sterol molecule. Furthermore, the C. glabrata ABC transporter CgAus1p expressed in S. cerevisiae requires the presence of serum or albumin for efficient cholesterol uptake. These results suggest that albumin can serve as sterol donor in ABC transporter-dependent sterol uptake, a process potentially important for growth of C. glabrata inside infected humans.

  14. Plant Vacuolar ATP-binding Cassette Transporters That Translocate Folates and Antifolates in Vitro and Contribute to Antifolate Tolerance in Vivo*

    OpenAIRE

    Raichaudhuri, Ayan; Peng, Mingsheng; Naponelli, Valeria; Chen, Sixue; Sánchez-Fernández, Rocío; Gu, Honglan; Gregory, Jesse F.; Hanson, Andrew D; Rea, Philip A.

    2009-01-01

    The vacuoles of pea (Pisum sativum) leaves and red beet (Beta vulgaris) storage root are major sites for the intracellular compartmentation of folates. In the light of these findings and preliminary experiments indicating that some plant multidrug resistance-associated protein (MRP) subfamily ATP-binding cassette transporters are able to transport compounds of this type, the Arabidopsis thaliana vacuolar MRP, AtMRP1 (AtABCC1), and its functional equivalent(s) in vacuol...

  15. Disruption of lolCDE, Encoding an ATP-Binding Cassette Transporter, Is Lethal for Escherichia coli and Prevents Release of Lipoproteins from the Inner Membrane

    OpenAIRE

    Narita, Shin-ichiro; Tanaka, Kimie; Matsuyama, Shin-ichi; Tokuda, Hajime

    2002-01-01

    ATP-binding cassette transporter LolCDE was previously identified, by using reconstituted proteoliposomes, as an apparatus catalyzing the release of outer membrane-specific lipoproteins from the inner membrane of Escherichia coli. Mutations resulting in defective LolD were previously shown to be lethal for E. coli. The amino acid sequences of LolC and LolE are similar to each other, but the necessity of both proteins for lipoprotein release has not been proved. Moreover, previous reconstituti...

  16. Protein Biophysics Explains Why Highly Abundant Proteins Evolve Slowly

    Directory of Open Access Journals (Sweden)

    Adrian W.R. Serohijos

    2012-08-01

    Full Text Available The consistent observation across all kingdoms of life that highly abundant proteins evolve slowly demonstrates that cellular abundance is a key determinant of protein evolutionary rate. However, other empirical findings, such as the broad distribution of evolutionary rates, suggest that additional variables determine the rate of protein evolution. Here, we report that under the global selection against the cytotoxic effects of misfolded proteins, folding stability (ΔG, simultaneous with abundance, is a causal variable of evolutionary rate. Using both theoretical analysis and multiscale simulations, we demonstrate that the anticorrelation between the premutation ΔG and the arising mutational effect (ΔΔG, purely biophysical in origin, is a necessary requirement for abundance–evolutionary rate covariation. Additionally, we predict and demonstrate in bacteria that the strength of abundance–evolutionary rate correlation depends on the divergence time separating reference genomes. Altogether, these results highlight the intrinsic role of protein biophysics in the emerging universal patterns of molecular evolution.

  17. Multidrug efflux pumps: the structures of prokaryotic ATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues.

    Science.gov (United States)

    Kerr, Ian D; Jones, Peter M; George, Anthony M

    2010-02-01

    One of the Holy Grails of ATP-binding cassette transporter research is a structural understanding of drug binding and transport in a eukaryotic multidrug resistance pump. These transporters are front-line mediators of drug resistance in cancers and represent an important therapeutic target in future chemotherapy. Although there has been intensive biochemical research into the human multidrug pumps, their 3D structure at atomic resolution remains unknown. The recent determination of the structure of a mouse P-glycoprotein at subatomic resolution is complemented by structures for a number of prokaryotic homologues. These structures have provided advances into our knowledge of the ATP-binding cassette exporter structure and mechanism, and have provided the template data for a number of homology modelling studies designed to reconcile biochemical data on these clinically important proteins.

  18. Oxidized LDL upregulated ATP binding cassette transporter-1 in THP-1 macrophages

    Institute of Scientific and Technical Information of China (English)

    Chao-ke TANG; Guang-hui YI; Jun-hao YANG; Lu-shan LIU; Zuo WANG; Chang-geng RUAN; Yong-zong YANG

    2004-01-01

    AIM: To study the effect of oxidized low density lipoprotein (ox-LDL) on ATP binding cassette transporter A1 (ABCA1) in THP-1 macrophages. METHODS: After exposing the cultured THP-1 macrophages to ox-LDL for different periods, cholesterol efflux was determined by FJ-2107P type liquid scintillator. ABCA1 mRNA and protein level were determined by reverse trancriptase-polymerase chain reaction (RT-PCR) and Western blot, respectively.The cholesterol level in THP-1 macrophage foam cells was detected by high performance liquid chromatography.RESULTS: ox-LDL elevated AB CA1 in both protein and mRNA levels and increased apolipoprotein (apo) A-I-mediated cholesterol efflux in a time- and dose-dependent manner. 22(R)-hydroxyeholesterol and 9-cis-retinoic acid did significantly increase cholesterol efflux in THP-1 macrophage foam cells (P<0.05), respectively. Both of them further promoted cholesterol efflux (P<0.01). As expected, liver X receptor (LXR) agonist decreased content of esterified cholesterol in the macrophage foam cells compared with control, whereas only a slight decrease of free cholesterol was observed. LXR activity was slightly increased by oxidized LDL by 12 % at 12 h compared with 6 h.However, LXR activity was increased about 1.8 times at 24 h, and oxidized LDL further increased LXR activity by about 2.6 times at 48 h. CONCLUSION: ABCA1 gene expression was markedly increased in cholesterol-loaded cells as a result of activation of LXR/RXR. ABCA1 plays an important role in the homeostasis of cholesterol in the macrophages.

  19. Multidrug transport by ATP binding cassette transporters : a proposed two-cylinder engine mechanism

    NARCIS (Netherlands)

    van Veen, HW; Higgins, CF; Konings, WN

    2001-01-01

    The elevated expression of ATP binding cassette (ABC) multidrug transporters in multidrug-resistant cells interferes with the drug-based control of cancers and infectious pathogenic microorganisms. Multidrug transporters interact directly with the drug substrates. This review summarizes current insi

  20. Serum albumin promotes ATP-binding cassette transporter-dependent sterol uptake in yeast

    DEFF Research Database (Denmark)

    Marek, Magdalena; Silvestro, Daniele; Fredslund, Maria D.;

    2014-01-01

    Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been i...

  1. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Motoyuki; Gouaux, Eric (Oregon HSU)

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  2. Small substrate transport and mechanism of a molybdate ATP binding cassette transporter in a lipid environment.

    Science.gov (United States)

    Rice, Austin J; Harrison, Alistair; Alvarez, Frances J D; Davidson, Amy L; Pinkett, Heather W

    2014-05-23

    Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria.

  3. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site.

    Science.gov (United States)

    Chen, Hongming; Tucker, Julie; Wang, Xiaotao; Gavine, Paul R; Phillips, Chris; Augustin, Martin A; Schreiner, Patrick; Steinbacher, Stefan; Preston, Marian; Ogg, Derek

    2016-05-01

    MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5-inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented.

  4. The Q Motif Is Involved in DNA Binding but Not ATP Binding in ChlR1 Helicase.

    Directory of Open Access Journals (Sweden)

    Hao Ding

    Full Text Available Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI. The Q motif, consisting of nine amino acids (GFXXPXPIQ with an invariant glutamine (Q residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11 gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase.

  5. Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera.

    Science.gov (United States)

    Çakır, Birsen; Kılıçkaya, Ozan

    2013-01-01

    The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 "full-size," 41 "half-size," and 15 "soluble" putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.

  6. Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera.

    Directory of Open Access Journals (Sweden)

    Birsen Çakır

    Full Text Available The ATP-binding cassette (ABC protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 "full-size," 41 "half-size," and 15 "soluble" putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog and ABCC (multidrug resistance-associated protein. We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.

  7. Optimizing expression and purification of an ATP-binding gene gsiA from Escherichia coli k-12 by using GFP fusion

    Directory of Open Access Journals (Sweden)

    Zhongshan Wang

    2011-01-01

    Full Text Available The cloning, expression and purification of the glutathione (sulfur import system ATP-binding protein (gsiA was carried out. The coding sequence of Escherichia coli gsiA, which encodes the ATP-binding protein of a glutathione importer, was amplified by PCR, and then inserted into a prokaryotic expression vector pWaldo-GFPe harboring green fluorescent protein (GFP reporter gene. The resulting recombinant plasmid pWaldo-GFP-GsiA was transformed into various E. coli strains, and expression conditions were optimized. The effect of five E. coli expression strains on the production of the recombinant gsiA protein was evaluated. E. coli BL21 (DE3 was found to be the most productive strain for GsiA-GFP fusion-protein expression, most of which was insoluble fraction. However, results from in-gel and Western blot analysis suggested that expression of recombinant GsiA in Rosetta (DE3 provides an efficient source in soluble form. By using GFP as reporter, the most suitable host strain was conveniently obtained, whereby optimizing conditions for overexpression and purification of the proteins for further functional and structural studies, became, not only less laborious, but also time-saving.

  8. The functional importance of co-evolving residues in proteins.

    Science.gov (United States)

    Sandler, Inga; Zigdon, Nitzan; Levy, Efrat; Aharoni, Amir

    2014-02-01

    Computational approaches for detecting co-evolution in proteins allow for the identification of protein-protein interaction networks in different organisms and the assignment of function to under-explored proteins. The detection of co-variation of amino acids within or between proteins, moreover, allows for the discovery of residue-residue contacts and highlights functional residues that can affect the binding affinity, catalytic activity, or substrate specificity of a protein. To explore the functional impact of co-evolutionary changes in proteins, a combined experimental and computational approach must be recruited. Here, we review recent studies that apply computational and experimental tools to obtain novel insight into the structure, function, and evolution of proteins. Specifically, we describe the application of co-evolutionary analysis for predicting high-resolution three-dimensional structures of proteins. In addition, we describe computational approaches followed by experimental analysis for identifying specificity-determining residues in proteins. Finally, we discuss studies addressing the importance of such residues in terms of the functional divergence of proteins, allowing proteins to evolve new functions while avoiding crosstalk with existing cellular pathways or forming reproductive barriers and hence promoting speciation.

  9. Structural models of zebrafish (Danio rerio NOD1 and NOD2 NACHT domains suggest differential ATP binding orientations: insights from computational modeling, docking and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Jitendra Maharana

    Full Text Available Nucleotide-binding oligomerization domain-containing protein 1 (NOD1 and NOD2 are cytosolic pattern recognition receptors playing pivotal roles in innate immune signaling. NOD1 and NOD2 recognize bacterial peptidoglycan derivatives iE-DAP and MDP, respectively and undergoes conformational alternation and ATP-dependent self-oligomerization of NACHT domain followed by downstream signaling. Lack of structural adequacy of NACHT domain confines our understanding about the NOD-mediated signaling mechanism. Here, we predicted the structure of NACHT domain of both NOD1 and NOD2 from model organism zebrafish (Danio rerio using computational methods. Our study highlighted the differential ATP binding modes in NOD1 and NOD2. In NOD1, γ-phosphate of ATP faced toward the central nucleotide binding cavity like NLRC4, whereas in NOD2 the cavity was occupied by adenine moiety. The conserved 'Lysine' at Walker A formed hydrogen bonds (H-bonds and Aspartic acid (Walker B formed electrostatic interaction with ATP. At Sensor 1, Arg328 of NOD1 exhibited an H-bond with ATP, whereas corresponding Arg404 of NOD2 did not. 'Proline' of GxP motif (Pro386 of NOD1 and Pro464 of NOD2 interacted with adenine moiety and His511 at Sensor 2 of NOD1 interacted with γ-phosphate group of ATP. In contrast, His579 of NOD2 interacted with the adenine moiety having a relatively inverted orientation. Our findings are well supplemented with the molecular interaction of ATP with NLRC4, and consistent with mutagenesis data reported for human, which indicates evolutionary shared NOD signaling mechanism. Together, this study provides novel insights into ATP binding mechanism, and highlights the differential ATP binding modes in zebrafish NOD1 and NOD2.

  10. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification.

    Science.gov (United States)

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T; Ruggles, Kelly V; DeGiorgis, Joseph A; Kohlwein, Sepp D; Schon, Eric A; Sturley, Stephen L

    2015-11-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.

  11. Structure, function, and evolution of bacterial ATP-binding cassette systems

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, A.L.; Dassa, E.; Orelle, C.; Chen, J. (Purdue)

    2010-07-27

    The ATP-binding cassette (ABC) systems constitute one of the largest superfamilies of paralogous sequences. All ABC systems share a highly conserved ATP-hydrolyzing domain or protein (the ABC; also referred to as a nucleotide-binding domain [NBD]) that is unequivocally characterized by three short sequence motifs (Fig. 1): these are the Walker A and Walker B motifs, indicative of the presence of a nucleotide-binding site, and the signature motif, unique to ABC proteins, located upstream of the Walker B motif (426). Other motifs diagnostic of ABC proteins are also indicated in Fig. 1. The biological significance of these motifs is discussed in Structure, Function, and Dynamics of the ABC. ABC systems are widespread among living organisms and have been detected in all genera of the three kingdoms of life, with remarkable conservation in the primary sequence of the cassette and in the organization of the constitutive domains or subunits (203, 420). ABC systems couple the energy of ATP hydrolysis to an impressively large variety of essential biological phenomena, comprising not only transmembrane (TM) transport, for which they are best known, but also several non-transport-related processes, such as translation elongation (62) and DNA repair (174). Although ABC systems deserve much attention because they are involved in severe human inherited diseases (107), they were first discovered and characterized in detail in prokaryotes, as early as the 1970s (13, 148, 238, 468). The most extensively analyzed systems were the high-affinity histidine and maltose uptake systems of Salmonella enterica serovar Typhimurium and Escherichia coli. Over 2 decades ago, after the completion of the nucleotide sequences encoding these transporters in the respective laboratories of Giovanna Ames and Maurice Hofnung, Hiroshi Nikaido and colleagues noticed that the two systems displayed a global similarity in the nature of their components and, moreover, that the primary sequences of MalK and

  12. Evolvability of yeast protein-protein interaction interfaces.

    Science.gov (United States)

    Talavera, David; Williams, Simon G; Norris, Matthew G S; Robertson, David L; Lovell, Simon C

    2012-06-22

    The functional importance of protein-protein interactions indicates that there should be strong evolutionary constraint on their interaction interfaces. However, binding interfaces are frequently affected by amino acid replacements. Change due to coevolution within interfaces can contribute to variability but is not ubiquitous. An alternative explanation for the ability of surfaces to accept replacements may be that many residues can be changed without affecting the interaction. Candidates for these types of residues are those that make interchain interaction only through the protein main chain, β-carbon, or associated hydrogen atoms. Since almost all residues have these atoms, we hypothesize that this subset of interface residues may be more easily substituted than those that make interactions through other atoms. We term such interactions "residue type independent." Investigating this hypothesis, we find that nearly a quarter of residues in protein interaction interfaces make exclusively interchain residue-type-independent contacts. These residues are less structurally constrained and less conserved than residues making residue-type-specific interactions. We propose that residue-type-independent interactions allow substitutions in binding interfaces while the specificity of binding is maintained.

  13. High glucose decreases the expression of ATP-binding cassette transporter G1 in human vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Jiahong Xue; Zuyi Yuan; Yue Wu; Yan Zhao; Zhaofei Wan

    2008-01-01

    Objective:ATP-binding cassette transporters(ABC) A1 and G1 play an important role in mediating cholesterol efflux and preventing macrophage foam cell formation. In this study, we examined the regulation of ABC transporters by high glucose in human vascular smooth muscle cells(VSMCs), the other precursor of foam cells. Methods:Incubation of human VSMCs with D-ghicose(5 to 30 mM) for 1 to 7 days in the presence or absence of antioxidant and nuclear factor(NF)-kB inhibitors, the expressions of ABCA1 and ABCG1 were analyzed by real time PCR and Western blotting. Results:High glucose decreased ABCG1 mRNA and protein expression in cultured VSMCs, whereas the expression of ABCA1 was not significantly decreased. Down-regulation of ABCG1 mRNA expression by high glucose was abolished by antioxidant N-acetyl-L-cysteine(NAC) and NF-kB inhibitors, BAY 11-7085 and tosyl-phenylalanine chloromethyl-ketone(TPCK). Conclusion:High glucose suppresses the expression of ABCG1 in VSMCs, which is the possible mechanism of VSMC derived foam cell transformation.

  14. AztD, a Periplasmic Zinc Metallochaperone to an ATP-binding Cassette (ABC) Transporter System in Paracoccus denitrificans.

    Science.gov (United States)

    Handali, Melody; Roychowdhury, Hridindu; Neupane, Durga P; Yukl, Erik T

    2015-12-11

    Bacterial ATP-binding cassette (ABC) transporters of transition metals are essential for acquisition of necessary elements from the environment. A large number of Gram-negative bacteria, including human pathogens, have a fourth conserved gene of unknown function adjacent to the canonical permease, ATPase, and solute-binding protein (SBP) genes of the AztABC zinc transporter system. To assess the function of this putative accessory factor (AztD) from Paracoccus denitrificans, we have analyzed its transcriptional regulation, metal binding properties, and interaction with the SBP (AztC). Transcription of the aztD gene is significantly up-regulated under conditions of zinc starvation. Recombinantly expressed AztD purifies with slightly substoichiometric zinc from the periplasm of Escherichia coli and is capable of binding up to three zinc ions with high affinity. Size exclusion chromatography and a simple intrinsic fluorescence assay were used to determine that AztD as isolated is able to transfer bound zinc nearly quantitatively to apo-AztC. Transfer occurs through a direct, associative mechanism that prevents loss of metal to the solvent. These results indicate that AztD is a zinc chaperone to AztC and likely functions to maintain zinc homeostasis through interaction with the AztABC system. This work extends our understanding of periplasmic zinc trafficking and the function of chaperones in this process.

  15. The ATP-binding cassette transporter-2 (ABCA2) regulates esterification of plasma membrane cholesterol by modulation of sphingolipid metabolism.

    Science.gov (United States)

    Davis, Warren

    2014-01-01

    The ATP-binding cassette transporters are a large family (~48 genes divided into seven families A-G) of proteins that utilize the energy of ATP-hydrolysis to pump substrates across lipid bilayers against a concentration gradient. The ABC "A" subfamily is comprised of 13 members and transport sterols, phospholipids and bile acids. ABCA2 is the most abundant ABC transporter in human and rodent brain with highest expression in oligodendrocytes, although it is also expressed in neurons. Several groups have studied a possible connection between ABCA2 and Alzheimer's disease as well as early atherosclerosis. ABCA2 expression levels have been associated with changes in cholesterol and sphingolipid metabolism. In this paper, we hypothesized that ABCA2 expression level may regulate esterification of plasma membrane-derived cholesterol by modulation of sphingolipid metabolism. ABCA2 overexpression in N2a neuroblastoma cells was associated with an altered bilayer distribution of the sphingolipid ceramide that inhibited acylCoA:cholesterol acyltransferase (ACAT) activity and cholesterol esterification. In contrast, depletion of endogenous ABCA2 in the rat schwannoma cell line D6P2T increased esterification of plasma membrane cholesterol following treatment with exogenous bacterial sphingomyelinase. These findings suggest that control of ABCA2 expression level may be a key locus of regulation for esterification of plasma membrane-derived cholesterol through modulation of sphingolipid metabolism.

  16. Transmembrane gate movements in the type II ATP-binding cassette (ABC) importer BtuCD-F during nucleotide cycle.

    Science.gov (United States)

    Joseph, Benesh; Jeschke, Gunnar; Goetz, Birke A; Locher, Kaspar P; Bordignon, Enrica

    2011-11-25

    ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins that translocate substrates across cell membranes. The alternating access of their transmembrane domains to opposite sides of the membrane powered by the closure and reopening of the nucleotide binding domains is proposed to drive the translocation events. Despite clear structural similarities, evidence for considerable mechanistic diversity starts to accumulate within the importers subfamily. We present here a detailed study of the gating mechanism of a type II ABC importer, the BtuCD-F vitamin B(12) importer from Escherichia coli, elucidated by EPR spectroscopy. Distance changes at key positions in the translocation gates in the nucleotide-free, ATP- and ADP-bound conformations of the transporter were measured in detergent micelles and liposomes. The translocation gates of the BtuCD-F complex undergo conformational changes in line with a "two-state" alternating access model. We provide the first direct evidence that binding of ATP drives the gates to an inward-facing conformation, in contrast to type I importers specific for maltose, molybdate, or methionine. Following ATP hydrolysis, the translocation gates restore to an apo-like conformation. In the presence of ATP, an excess of vitamin B(12) promotes the reopening of the gates toward the periplasm and the dislodgment of BtuF from the transporter. The EPR data allow a productive translocation cycle of the vitamin B(12) transporter to be modeled.

  17. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori.

    Science.gov (United States)

    Atsumi, Shogo; Miyamoto, Kazuhisa; Yamamoto, Kimiko; Narukawa, Junko; Kawai, Sawako; Sezutsu, Hideki; Kobayashi, Isao; Uchino, Keiro; Tamura, Toshiki; Mita, Kazuei; Kadono-Okuda, Keiko; Wada, Sanae; Kanda, Kohzo; Goldsmith, Marian R; Noda, Hiroaki

    2012-06-19

    Bt toxins derived from the arthropod bacterial pathogen Bacillus thuringiensis are widely used for insect control as insecticides or in transgenic crops. Bt resistance has been found in field populations of several lepidopteran pests and in laboratory strains selected with Bt toxin. Widespread planting of crops expressing Bt toxins has raised concerns about the potential increase of resistance mutations in targeted insects. By using Bombyx mori as a model, we identified a candidate gene for a recessive form of resistance to Cry1Ab toxin on chromosome 15 by positional cloning. BGIBMGA007792-93, which encodes an ATP-binding cassette transporter similar to human multidrug resistance protein 4 and orthologous to genes associated with recessive resistance to Cry1Ac in Heliothis virescens and two other lepidopteran species, was expressed in the midgut. Sequences of 10 susceptible and seven resistant silkworm strains revealed a common tyrosine insertion in an outer loop of the predicted transmembrane structure of resistant alleles. We confirmed the role of this ATP-binding cassette transporter gene in Bt resistance by converting a resistant silkworm strain into a susceptible one by using germline transformation. This study represents a direct demonstration of Bt resistance gene function in insects with the use of transgenesis.

  18. The rem Mutations in the ATP-Binding Groove of the Rad3/XPD Helicase Lead to Xeroderma pigmentosum-Cockayne Syndrome-Like Phenotypes

    Science.gov (United States)

    Montelone, Beth A.; Aguilera, Andrés

    2014-01-01

    The eukaryotic TFIIH complex is involved in Nucleotide Excision Repair and transcription initiation. We analyzed three yeast mutations of the Rad3/XPD helicase of TFIIH known as rem (recombination and mutation phenotypes). We found that, in these mutants, incomplete NER reactions lead to replication fork breaking and the subsequent engagement of the homologous recombination machinery to restore them. Nevertheless, the penetrance varies among mutants, giving rise to a phenotype gradient. Interestingly, the mutations analyzed reside at the ATP-binding groove of Rad3 and in vivo experiments reveal a gain of DNA affinity upon damage of the mutant Rad3 proteins. Since mutations at the ATP-binding groove of XPD in humans are present in the Xeroderma pigmentosum-Cockayne Syndrome (XP-CS), we recreated rem mutations in human cells, and found that these are XP-CS-like. We propose that the balance between the loss of helicase activity and the gain of DNA affinity controls the capacity of TFIIH to open DNA during NER, and its persistence at both DNA lesions and promoters. This conditions NER efficiency and transcription resumption after damage, which in human cells would explain the XP-CS phenotype, opening new perspectives to understand the molecular basis of the role of XPD in human disease. PMID:25500814

  19. ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 10 (ABCC10) are not primary resistance factors for cabazitaxel

    Institute of Scientific and Technical Information of China (English)

    Rishil J Kathawala; Yi-Jun Wang; Suneet Shukla; Yun-Kai Zhang; Saeed Alqahtani; Amal Kaddoumi; Suresh V Ambudkar; Charles R Ashby Jr; Zhe-Sheng Chen

    2015-01-01

    Introduction:ATP-binding cassette subfamily B member 1 (ABCB1) and subfamily C member 10 (ABCC10) proteins are efflux transporters that couple the energy derived from ATP hydrolysis to the translocation of toxic substances and chemotherapeutic drugs out of cells. Cabazitaxel is a novel taxane that differs from paclitaxel by its lower affinity for ATP-binding cassette (ABC) transporters. Methods:We determined the effects of cabazitaxel, a novel tubulin-binding taxane, and paclitaxel on paclitaxel-resistant, ABCB1-overexpressing KB-C2 and LLC-MDR1-WT cells and paclitaxel-resistant, ABCC10-overexpressing HEK293/ABCC10 cells by calculating the degree of drug resistance and measuring ATPase activity of the ABCB1 transporter. Results:Decreased resistance to cabazitaxel compared with paclitaxel was observed in KB-C2, LLC-MDR1-WT, and HEK293/ABCC10 cells. Moreover, cabazitaxel had low efficacy, whereas paclitaxel had high efficacy in stimulating the ATPase activity of ABCB1, indicating a direct interaction of both drugs with the transporter. Conclusion:ABCB1 and ABCC10 are not primary resistance factors for cabazitaxel compared with paclitaxel, suggesting that cabazitaxel may have a low affinity for these efflux transporters.

  20. ATP-binding cassette transporters in tumor endothelial cells and resistance to metronomic chemotherapy.

    Science.gov (United States)

    Hida, Kyoko; Kikuchi, Hiroshi; Maishi, Nako; Hida, Yasuhiro

    2017-02-16

    Drug resistance is a major problem in anticancer therapy. ATP-binding cassette (ABC) transporters have a role in the multidrug resistance. A new regimen of chemotherapy has been proposed, called "metronomic chemotherapy". Metronomic chemotherapy is the frequent, regular administration of drug doses designed to maintain low, but active, concentrations of chemotherapeutic drugs over prolonged periods of time, without causing serious toxicities. Metronomic chemotherapy regimens were developed to optimize the antitumor efficacy of agents that target the tumor vasculature instead of tumor cells, and to reduce toxicity of antineoplastic drugs [1]. Nevertheless, recent studies revealed that ABC transporters are expressed at a higher level in the endothelium in the tumor. To avoid resistance to metronomic anti-angiogenic chemotherapy, ABC transporter inhibition of tumor endothelial cells may be a promising strategy. In this mini-review, we discuss the possible mechanism of resistance to metronomic chemotherapy from the viewpoint of tumor endothelial cell biology, focusing on ABC transporters.

  1. Protection against chemotherapy-induced alopecia: targeting ATP-binding cassette transporters in the hair follicle?

    Science.gov (United States)

    Haslam, Iain S; Pitre, Aaron; Schuetz, John D; Paus, Ralf

    2013-11-01

    Currently, efficacious treatments for chemotherapy-induced alopecia (hair loss) are lacking, and incidences of permanent hair loss following high-dose chemotherapy are on the increase. In this article, we describe mechanisms by which the pharmacological defense status of the hair follicle might be enhanced, thereby reducing the accumulation of cytotoxic cancer drugs and preventing or reducing hair loss and damage. We believe this could be achieved via the selective increase in ATP-binding cassette (ABC) transporter expression within the hair follicle epithelium, following application of topical agonists for regulatory nuclear receptors. Clinical application would require the development of hair follicle-targeted formulations, potentially utilizing nanoparticle technology. This novel approach has the potential to yield entirely new therapeutic options for the treatment and management of chemotherapy-induced alopecia, providing significant psychological and physical benefit to cancer patients.

  2. Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module.

    Science.gov (United States)

    Hebbeln, Peter; Rodionov, Dmitry A; Alfandega, Anja; Eitinger, Thomas

    2007-02-20

    BioMNY proteins are considered to constitute tripartite biotin transporters in prokaryotes. Recent comparative genomic and experimental analyses pointed to the similarity of BioMN to homologous modules of prokaryotic transporters mediating uptake of metals, amino acids, and vitamins. These systems resemble ATP-binding cassette-containing transporters and include typical ATPases (e.g., BioM). Absence of extracytoplasmic solute-binding proteins among the members of this group, however, is a distinctive feature. Genome context analyses uncovered that only one-third of the widespread bioY genes are linked to bioMN. Many bioY genes are located at loci encoding biotin biosynthesis, and others are unlinked to biotin metabolic or transport genes. Heterologous expression of the bioMNY operon and of the single bioY of the alpha-proteobacterium Rhodobacter capsulatus conferred biotin-transport activity on recombinant Escherichia coli cells. Kinetic analyses identified BioY as a high-capacity transporter that was converted into a high-affinity system in the presence of BioMN. BioMNY-mediated biotin uptake was severely impaired by replacement of the Walker A lysine residue in BioM, demonstrating dependency of high-affinity transport on a functional ATPase. Biochemical assays revealed that BioM, BioN, and BioY proteins form stable complexes in membranes of the heterologous host. Expression of truncated bio transport operons, each with one gene deleted, resulted in stable BioMN complexes but revealed only low amounts of BioMY and BioNY aggregates in the absence of the respective third partner. The results substantiate our earlier suggestion of a mechanistically novel group of membrane transporters.

  3. Molecular cloning and functional characterization of an ATP-binding cassette transporter OtrC from Streptomyces rimosus

    Directory of Open Access Journals (Sweden)

    Yu Lan

    2012-08-01

    Full Text Available Abstract Background The otrC gene of Streptomyces rimosus was previously annotated as an oxytetracycline (OTC resistance protein. However, the amino acid sequence analysis of OtrC shows that it is a putative ATP-binding cassette (ABC transporter with multidrug resistance function. To our knowledge, none of the ABC transporters in S. rimosus have yet been characterized. In this study, we aimed to characterize the multidrug exporter function of OtrC and evaluate its relevancy to OTC production. Results In order to investigate OtrC’s function, otrC is cloned and expressed in E. coli The exporter function of OtrC was identified by ATPase activity determination and ethidium bromide efflux assays. Also, the susceptibilities of OtrC-overexpressing cells to several structurally unrelated drugs were compared with those of OtrC-non-expressing cells by minimal inhibitory concentration (MIC assays, indicating that OtrC functions as a drug exporter with a broad range of drug specificities. The OTC production was enhanced by 1.6-fold in M4018 (P = 0.000877 and 1.4-fold in SR16 (P = 0.00973 duplication mutants, while it decreased to 80% in disruption mutants (P = 0.0182 and 0.0124 in M4018 and SR16, respectively. Conclusions The results suggest that OtrC is an ABC transporter with multidrug resistance function, and plays an important role in self-protection by drug efflux mechanisms. This is the first report of such a protein in S. rimosus, and otrC could be a valuable target for genetic manipulation to improve the production of industrial antibiotics.

  4. A Survey of the ATP-Binding Cassette (ABC Gene Superfamily in the Salmon Louse (Lepeophtheirus salmonis.

    Directory of Open Access Journals (Sweden)

    Greta Carmona-Antoñanzas

    Full Text Available Salmon lice, Lepeophtheirus salmonis (Krøyer, 1837, are fish ectoparasites causing significant economic damage in the mariculture of Atlantic salmon, Salmo salar Linnaeus, 1758. The control of L. salmonis at fish farms relies to a large extent on treatment with anti-parasitic drugs. A problem related to chemical control is the potential for development of resistance, which in L. salmonis is documented for a number of drug classes including organophosphates, pyrethroids and avermectins. The ATP-binding cassette (ABC gene superfamily is found in all biota and includes a range of drug efflux transporters that can confer drug resistance to cancers and pathogens. Furthermore, some ABC transporters are recognised to be involved in conferral of insecticide resistance. While a number of studies have investigated ABC transporters in L. salmonis, no systematic analysis of the ABC gene family exists for this species. This study presents a genome-wide survey of ABC genes in L. salmonis for which, ABC superfamily members were identified through homology searching of the L. salmonis genome. In addition, ABC proteins were identified in a reference transcriptome of the parasite generated by high-throughput RNA sequencing (RNA-seq of a multi-stage RNA library. Searches of both genome and transcriptome allowed the identification of a total of 33 genes / transcripts coding for ABC proteins, of which 3 were represented only in the genome and 4 only in the transcriptome. Eighteen sequences were assigned to ABC subfamilies known to contain drug transporters, i.e. subfamilies B (4 sequences, C (11 and G (2. The results suggest that the ABC gene family of L. salmonis possesses fewer members than recorded for other arthropods. The present survey of the L. salmonis ABC gene superfamily will provide the basis for further research into potential roles of ABC transporters in the toxicity of salmon delousing agents and as potential mechanisms of drug resistance.

  5. Selective and ATP-dependent translocation of peptides by the homodimeric ATP binding cassette transporter TAP-like (ABCB9)

    NARCIS (Netherlands)

    Wolters, Justina Clarinda; Abele, Rupert; Tampé, Robert

    2005-01-01

    The transporter associated with antigen processing (TAP)-like (TAPL, ABCB9) belongs to the ATP-binding cassette transporter family, which translocates a vast variety of solutes across membranes. The function of this half-size transporter has not yet been determined. Here, we show that TAPL forms a h

  6. ROLE OF ATP BINDING CASSETTE SUB-FAMILY MEMBER 2 (ABCG2) IN MOUSE EMBRYONIC STEM CELL DEVELOPMENT.

    Science.gov (United States)

    ATP binding cassette sub-family member 2 (ABCG2), is a member of the ABC transporter superfamily and a principal xenobiotic transporter. ABCG2 is also highly expressed in certain stem cell populations where it is thought to be related to stem cell plasticity, although the role o...

  7. Protein coalitions in a core mammalian biochemical network linked by rapidly evolving proteins

    Directory of Open Access Journals (Sweden)

    Tsoka Sophia

    2011-05-01

    Full Text Available Abstract Background Cellular ATP levels are generated by glucose-stimulated mitochondrial metabolism and determine metabolic responses, such as glucose-stimulated insulin secretion (GSIS from the β-cells of pancreatic islets. We describe an analysis of the evolutionary processes affecting the core enzymes involved in glucose-stimulated insulin secretion in mammals. The proteins involved in this system belong to ancient enzymatic pathways: glycolysis, the TCA cycle and oxidative phosphorylation. Results We identify two sets of proteins, or protein coalitions, in this group of 77 enzymes with distinct evolutionary patterns. Members of the glycolysis, TCA cycle, metabolite transport, pyruvate and NADH shuttles have low rates of protein sequence evolution, as inferred from a human-mouse comparison, and relatively high rates of evolutionary gene duplication. Respiratory chain and glutathione pathway proteins evolve faster, exhibiting lower rates of gene duplication. A small number of proteins in the system evolve significantly faster than co-pathway members and may serve as rapidly evolving adapters, linking groups of co-evolving genes. Conclusions Our results provide insights into the evolution of the involved proteins. We find evidence for two coalitions of proteins and the role of co-adaptation in protein evolution is identified and could be used in future research within a functional context.

  8. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Robey, R W; Medina-Pérez, W Y; Nishiyama, K

    2001-01-01

    microM. To determine putative mechanisms of resistance to flavopiridol, we exposed the human breast cancer cell line MCF-7 to incrementally increasing concentrations of flavopiridol. The resulting resistant subline, MCF-7 FLV1000, is maintained in 1,000 nM flavopiridol and was found to be 24-fold......We sought to characterize the interactions of flavopiridol with members of the ATP-binding cassette (ABC) transporter family. Cells overexpressing multidrug resistance-1 (MDR-1) and multidrug resistance-associated protein (MRP) did not exhibit appreciable flavopiridol resistance, whereas cell lines...... resistant to flavopiridol, as well as highly cross-resistant to mitoxantrone (675-fold), topotecan (423-fold), and SN-38 (950-fold), the active metabolite of irinotecan. Because this cross-resistance pattern is consistent with that reported for ABCG2-overexpressing cells, cytotoxicity studies were repeated...

  9. Conformational changes of the bacterial type I ATP-binding cassette importer HisQMP2 at distinct steps of the catalytic cycle.

    Science.gov (United States)

    Heuveling, Johanna; Frochaux, Violette; Ziomkowska, Joanna; Wawrzinek, Robert; Wessig, Pablo; Herrmann, Andreas; Schneider, Erwin

    2014-01-01

    Prokaryotic solute binding protein-dependent ATP-binding cassette import systems are divided into type I and type II and mechanistic differences in the transport process going along with this classification are under intensive investigation. Little is known about the conformational dynamics during the catalytic cycle especially concerning the transmembrane domains. The type I transporter for positively charged amino acids from Salmonella enterica serovar Typhimurium (LAO-HisQMP2) was studied by limited proteolysis in detergent solution in the absence and presence of co-factors including ATP, ADP, LAO/arginine, and Mg(2+) ions. Stable peptide fragments could be obtained and differentially susceptible cleavage sites were determined by mass spectrometry as Lys-258 in the nucleotide-binding subunit, HisP, and Arg-217/Arg-218 in the transmembrane subunit, HisQ. In contrast, transmembrane subunit HisM was gradually degraded but no stable fragment could be detected. HisP and HisQ were equally resistant under pre- and post-hydrolysis conditions in the presence of arginine-loaded solute-binding protein LAO and ATP/ADP. Some protection was also observed with LAO/arginine alone, thus reflecting binding to the transporter in the apo-state and transmembrane signaling. Comparable digestion patterns were obtained with the transporter reconstituted into proteoliposomes and nanodiscs. Fluorescence lifetime spectroscopy confirmed the change of HisQ(R218) to a more apolar microenvironment upon ATP binding and hydrolysis. Limited proteolysis was subsequently used as a tool to study the consequences of mutations on the transport cycle. Together, our data suggest similar conformational changes during the transport cycle as described for the maltose ABC transporter of Escherichia coli, despite distinct structural differences between both systems.

  10. The role of ATP-binding cassette transporters in neuro-inflammation: relevance for bioactive lipids

    Directory of Open Access Journals (Sweden)

    Gijs eKooij

    2012-04-01

    Full Text Available ATP-binding cassette (ABC transporters are highly expressed by brain endothelial cells that form the blood-brain barrier (BBB. These efflux pumps play an important role in maintaining brain homeostasis as they actively hinder the entry of unwanted blood-derived compounds into the central nervous system (CNS. Consequently, their high activity at the BBB has been a major hurdle for the treatment of several brain diseases, as they prevent numerous drugs to reach their site of action within the brain. Importantly, recent data indicate that endogenous substrates for ABC transporters may include inflammatory mediators, such as prostaglandins, leukotrienes, cytokines, chemokines and bioactive lipids, suggesting a potential role for ABC transporters in immunological responses, and more specifically in inflammatory brain disorders, such as multiple sclerosis (MS. In this review, we will give a comprehensive overview of recent findings that illustrate this novel role for ABC transporters in neuro-inflammatory processes. Moreover, we will provide first insights into underlying mechanisms and focus on the importance for bioactive lipids, in particular platelet-activating factor (PAF, herein. A thorough understanding of these events may form the basis for the development for selective treatment modalities to dampen the neuro-inflammatory attack in MS and thereby reducing tissue damage.

  11. Protein (Cyanobacteria): 198756 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available -chain amino acid transport ATP-binding protein LivG (fragment) Microcystis aeruginosa PCC 7941 MRLFGELSALEN...VAIAGHIHNSSNLWTGILGLPVSRREEEKTYKRAGELLDLVGLTDQSNRKARNLAYGDQRRLEIARALALQPQLLLLDEPAAGMNPSEKGSLSQLIRQIRDNLALTVLLIEHHVPLVMGLCDRIAVLDFGKLIALGDPVTVRENRAVIEAYLGDE ...

  12. Whole-transcriptome survey of the putative ATP-binding cassette (ABC) transporter family genes in the latex-producing laticifers of Hevea brasiliensis.

    Science.gov (United States)

    Zhiyi, Nie; Guijuan, Kang; Yu, Li; Longjun, Dai; Rizhong, Zeng

    2015-01-01

    The ATP-binding cassette (ABC) proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree). A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 'full-size', 21 'half-size' and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress) stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis.

  13. Whole-transcriptome survey of the putative ATP-binding cassette (ABC transporter family genes in the latex-producing laticifers of Hevea brasiliensis.

    Directory of Open Access Journals (Sweden)

    Nie Zhiyi

    Full Text Available The ATP-binding cassette (ABC proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree. A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 'full-size', 21 'half-size' and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis.

  14. The role of ATP-binding cassette transporter A2 in childhood acute lymphoblastic leukemia multidrug resistance

    OpenAIRE

    Aberuyi, N; Rahgozar, S; Moafi, A

    2014-01-01

    Acute lymphoblastic leukemia (ALL) is one of the most prevalent hematologic malignancies in children. Although the cure rate of ALL has improved over the past decades, the most important reason for ALL treatment failure is multidrug resistance (MDR) phenomenon. The current study aims to explain the mechanisms involved in multidrug resistance of childhood ALL, and introduces ATP-binding cassette transporterA2 (ABCA2) as an ABC transporter gene which may have a high impact on MDR. Benefiting fr...

  15. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    Directory of Open Access Journals (Sweden)

    Flavio Alves Lara

    Full Text Available In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA, a well-known inhibitor of ATP binding cassette (ABC transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may

  16. ATP-Binding Cassette Transporters Modulate Both Coelenterazine- and D-Luciferin-Based Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Ruimin Huang

    2011-05-01

    Full Text Available Bioluminescence imaging (BLI of luciferase reporters provides a cost-effective and sensitive means to image biological processes. However, transport of luciferase substrates across the cell membrane does affect BLI readout intensity from intact living cells. To investigate the effect of ATP-binding cassette (ABC transporters on BLI readout, we generated click beetle (cLuc, firefly (fLuc, Renilla (rLuc, and Gaussia (gLuc luciferase HEK-293 reporter cells that overexpressed different ABC transporters (ABCB1, ABCC1, and ABCG2. In vitro studies showed a significant BLI intensity decrease in intact cells compared to cell lysates, when ABCG2 was overexpressed in HEK-293/cLuc, fLuc, and rLuc cells. Selective ABC transporter inhibitors were also applied. Inhibition of ABCG2 activity increased the BLI intensity more than two-fold in HEK-293/cLuc, fLuc, and rLuc cells; inhibition of ABCB1 elevated the BLI intensity two-fold only in HEK-293/rLuc cells. BLI of xenografts derived from HEK-293/ABC transporter/luciferase reporter cells confirmed the results of inhibitor treatment in vivo. These findings demonstrate that coelenterazine-based rLuc-BLI intensity can be modulated by ABCB1 and ABCG2. ABCG2 modulates d-luciferin-based BLI in a luciferase type–independent manner. Little ABC transporter effect on gLuc-BLI intensity is observed because a large fraction of gLuc is secreted. The expression level of ABC transporters is one key factor affecting BLI intensity, and this may be particularly important in luciferase-based applications in stem cell research.

  17. Probing the ATP-Binding Pocket of Protein Kinase DYRK1A with Benzothiazole Fragment Molecules.

    Science.gov (United States)

    Rothweiler, Ulli; Stensen, Wenche; Brandsdal, Bjørn Olav; Isaksson, Johan; Leeson, Frederick Alan; Engh, Richard Alan; Svendsen, John S Mjøen

    2016-11-10

    DYRK1A has emerged as a potential target for therapies of Alzheimer's disease using small molecules. On the basis of the observation of selective DYRK1A inhibition by firefly d-luciferin, we have explored static and dynamic structural properties of fragment sized variants of the benzothiazole scaffold with respect to DYRK1A using X-ray crystallography and NMR techniques. The compounds have excellent ligand efficiencies and show a remarkable diversity of binding modes in dynamic equilibrium. Binding geometries are determined in part by interactions often considered "weak", including "orthogonal multipolar" types represented by, for example, F-CO, sulfur-aromatic, and halogen-aromatic interactions, together with hydrogen bonds that are modulated by variation of electron withdrawing groups. These studies show how the benzothiazole scaffold is highly promising for the development of therapeutic DYRK1A inhibitors. In addition, the subtleties of the binding interactions, including dynamics, show how full structural studies are required to fully interpret the essential physical determinants of binding.

  18. Molecular Events Involved in a Single Cycle of Ligand Transfer from an ATP Binding Cassette Transporter, LolCDE, to a Molecular Chaperone, LolA*

    OpenAIRE

    Taniguchi, Naohiro; Tokuda, Hajime

    2008-01-01

    An ATP binding cassette transporter LolCDE complex releases lipoproteins from the inner membrane of Escherichia coli in an ATP-dependent manner, leading to the formation of a complex between a lipoprotein and a periplasmic chaperone, LolA. LolA is proposed to undergo a conformational change upon the lipoprotein binding. The lipoprotein is then transferred from the LolA-lipoprotein complex to the outer membrane via LolB. Unlike most ATP binding cassette transporters med...

  19. Distinct alterations in ATP-binding cassette transporter expression in liver, kidney, small intestine, and brain in adjuvant-induced arthritic rats.

    Science.gov (United States)

    Kawase, Atsushi; Norikane, Sari; Okada, Ayaka; Adachi, Mamiko; Kato, Yukio; Iwaki, Masahiro

    2014-08-01

    Pathophysiological changes of infection or inflammation are associated with alterations in the production of numerous absorption, distribution, metabolism and excretion-related proteins. However, little information is available on the effects of inflammation on the expression levels and activities of ATP-binding cassette (ABC) transporters. We examined the effect of acute (on day 7) and chronic (on day 21) inflammation on the expression of ABC transporters in some major tissues in rat. Adjuvant-induced arthritis (AA) in rats was used as an animal model for inflammation. The mRNA levels of mdr1a and mdr1b encoding P-glycoprotein (P-gp) decreased significantly in livers of AA rats on day 21. Hepatic protein levels of P-gp, Mrp2, and Bcrp decreased significantly in membranes but not homogenates of AA rats after 7 days and after 21 days of treatment with adjuvant. Contrary to liver, protein levels of P-gp and Mrp2, but not Bcrp in kidney, increased significantly in membranes. The biliary excretion of rhodamine 123 was decreased in rats with chronic inflammation owing to decreases in efflux activities of P-gp. Our results showed that the expression of transporters in response to inflammation was organ dependent. In particular, hepatic and renal P-gp and Mrp2 exhibited opposite changes in membrane protein levels.

  20. Genome-wide identification of ATP-binding cassette (ABC) transporters and their roles in response to polycyclic aromatic hydrocarbons (PAHs) in the copepod Paracyclopina nana.

    Science.gov (United States)

    Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Lee, Young Hwan; Kim, Hui-Su; Kim, Il-Chan; Lee, Jae-Seong

    2017-02-01

    The ATP-binding cassette (ABC) protein superfamily is one of the largest gene families and is highly conserved in all domains. The ABC proteins play roles in several biological processes, including multi-xenobiotic resistance (MXR), by functioning as transporters in the cellular membrane. They also mediate the cellular efflux of a wide range of substrates against concentration gradients. In this study, 37 ABC genes belonging to eight distinct subfamilies were identified in the marine copepod Paracyclopina nana and annotated based on a phylogenetic analysis. Also, the functions of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRPs), conferring MXR, were verified using fluorescent substrates and specific inhibitors. The activities of MXR-mediated ABC proteins and their transcriptional level were examined in response to polyaromatic hydrocarbons (PAHs), main components of the water-accommodated fraction. This study increases the understanding of the protective role of MXR in response to PAHs over the comparative evolution of ABC gene families.

  1. Metabotropic glutamate receptors and interacting proteins: evolving drug targets.

    Science.gov (United States)

    Enz, Ralf

    2012-01-01

    The correct targeting, localization, regulation and signaling of metabotropic glutamate receptors (mGluRs) represent major mechanisms underlying the complex function of neuronal networks. These tasks are accomplished by the formation of synaptic signal complexes that integrate functionally related proteins such as neurotransmitter receptors, enzymes and scaffold proteins. By these means, proteins interacting with mGluRs are important regulators of glutamatergic neurotransmission. Most described mGluR interaction partners bind to the intracellular C-termini of the receptors. These domains are extensively spliced and phosphorylated, resulting in a high variability of binding surfaces offered to interacting proteins. Malfunction of mGluRs and associated proteins are linked to neurodegenerative and neuropsychiatric disorders including addiction, depression, epilepsy, schizophrenia, Alzheimer's, Huntington's and Parkinson's disease. MGluR associated signal complexes are dynamic structures that assemble and disassemble in response to the neuronal fate. This, in principle, allows therapeutic intervention, defining mGluRs and interacting proteins as promising drug targets. In the last years, several studies elucidated the geometry of mGluRs in contact with regulatory proteins, providing a solid fundament for the development of new therapeutic strategies. Here, I will give an overview of human disorders directly associated with mGluR malfunction, provide an up-to-date summary of mGluR interacting proteins and highlight recently described structures of mGluR domains in contact with binding partners.

  2. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Y.C.; Liu, C.

    2010-12-28

    Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitors in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.

  3. Equilibrated Atomic Models of Outward-Facing P-glycoprotein and Effect of ATP Binding on Structural Dynamics

    Science.gov (United States)

    Pan, Lurong; Aller, Stephen G.

    2015-01-01

    P-glycoprotein (Pgp) is an ATP-binding cassette (ABC) transporter that alternates between inward- and outward-facing conformations to capture and force substrates out of cells like a peristaltic pump. The high degree of similarity in outward-facing structures across evolution of ABC transporters allowed construction of a high-confidence outward-facing Pgp atomic model based on crystal structures of outward-facing Sav1866 and inward-facing Pgp. The model adhered to previous experimentally determined secondary- and tertiary- configurations during all-atom molecular dynamics simulations in the presence or absence of MgATP. Three long lasting (>100 ns) meta-stable states were apparent in the presence of MgATP revealing new insights into alternating access. The two ATP-binding pockets are highly asymmetric resulting in differential control of overall structural dynamics and allosteric regulation of the drug-binding pocket. Equilibrated Pgp has a considerably different electrostatic profile compared to Sav1866 that implicates significant kinetic and thermodynamic differences in transport mechanisms. PMID:25600711

  4. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells.

    Science.gov (United States)

    Wang, Zhaojing; Xu, Yonghong; Meng, Xiangning; Watari, Fumio; Liu, Hudan; Chen, Xiao

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  5. Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance

    Directory of Open Access Journals (Sweden)

    Yi-Jun Wang

    2014-09-01

    Full Text Available The phenomenon of multidrug resistance (MDR has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs, such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance.

  6. Effect of Apolipoprotein A-I on ATP Binding Cassette Transporter A1 Degradation and Cholesterol Efflux in THP-1 Macrophage-derived Foam Cells

    Institute of Scientific and Technical Information of China (English)

    Chao-Ke TANG; Chang-Geng RUAN; Yong-Zong YANG; Guo-Hua TANG; Guang-Hui IY; Zuo WANG; Lu-Shan LIU; Shuang WAN; Zhong-Hua YUAN; Xiu-Sheng HE; Jun-Hao YANG

    2004-01-01

    Cholesterol-loaded macrophage foam cells are a central componentof atherosclerotic lesions ATP binding cassette transporter A1(ABCA1),the defective molecule in Tangier disease,mediates the efflux ofphospholipid and cholesterol from cells to apolipoprotein A-I(apoA-I),reversing foam cell formation.This study investigated the effect of apoA-I on ABCA1 degradation and cholesterol efflux in THP-1 macrophagederived foam cells.After exposure of the cultured THP-1 macrophage-derived foam cells to apoA-I for different time,cholesterol efflux,ABCA1 mRNA and protein levels were determined by FJ-2107P type liquid scintillator,RT-PCR and Western blot,respectively.The mean ABCA1 fluorescence intensity on THP-1macrophage-derived foam cells was detected by flow cytometry.Results showed that apoA-I markedly increased ABCAl-mediated cholesterol efflux from THP-1 macrophage-derived foam cells.This was accompanied by an increase in the content of ABCA1.ApoA-I did not alter ABCA 1 mRNA abundance.Significantly,thiol protease inhibitors increased the level ofABCA1 protein and slowed its decay in THP-1macrophage-derived foam cells,whereas none of the proteosome-specific inhibitor lactacystin,other protease inhibitors,or the lysosomal inhibitor NH4Cl showed such effects.The apoA-I-mediated cellular cholesterol efflux was enhanced by thiol protease inhibitors.Our results suggested that thiol protease inhibitors mightprovide an alternative way to upregulate ABCA1 protein.This strategy is especially appealing since it may mimic the stabilizing effect of the natural ligands apoA-I.

  7. Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3β modulation in colorectal carcinoma.

    Directory of Open Access Journals (Sweden)

    Yung-Kuo Lee

    Full Text Available Multidrug resistance (MDR, an unfavorable factor compromising the treatment efficacy of anticancer drugs, involves the upregulation of ATP binding cassette (ABC transporters and induction of galectin-3 signaling. Galectin-3 plays an anti-apoptotic role in many cancer cells and regulates various pathways to activate MDR. Thus, the inhibition of galectin-3 has the potential to enhance the efficacy of the anticancer drug epirubicin. In this study, we examined the effects and mechanisms of silencing galectin-3 via RNA interference (RNAi on the β-catenin/GSK-3β pathway in human colon adenocarcinoma Caco-2 cells. Galectin-3 knockdown increased the intracellular accumulation of epirubicin in Caco-2 cells; suppressed the mRNA expression of galectin-3, β-catenin, cyclin D1, c-myc, P-glycoprotein (P-gp, MDR-associated protein (MRP 1, and MRP2; and downregulated the protein expression of P-gp, cyclin D1, galectin-3, β-catenin, c-Myc, and Bcl-2. Moreover, galectin-3 RNAi treatment significantly increased the mRNA level of GSK-3β, Bax, caspase-3, and caspase-9; remarkably increased the Bax-to-Bcl-2 ratio; and upregulated the GSK-3β and Bax protein expressions. Apoptosis was induced by galectin-3 RNAi and/or epirubicin as demonstrated by chromatin condensation, a higher sub-G1 phase proportion, and increased caspase-3 and caspase-9 activity, indicating an intrinsic/mitochondrial apoptosis pathway. Epirubicin-mediated resistance was effectively inhibited via galectin-3 RNAi treatment. However, these phenomena could be rescued after galectin-3 overexpression. We show for the first time that the silencing of galectin-3 sensitizes MDR cells to epirubicin by inhibiting ABC transporters and activating the mitochondrial pathway of apoptosis through modulation of the β-catenin/GSK-3β pathway in human colon cancer cells.

  8. Advances in research of ATP-binding cassette transporters in drug resistance mechanisms of intractable epilepsy%ATP结合盒式蛋白在难治性癫(痫)耐药性机制的研究进展

    Institute of Scientific and Technical Information of China (English)

    付帅

    2014-01-01

    Epilepsy is one of the common diseases in the nervous system with its complicated pathogenesis still remains unknown.The drug resistance mechanism of intractable epilepsy has always been a key point in the research of neuroscience.A possible cause for the drug resistance is the over expression of efflux drug transporters,e.g.ATP-binding cassette transporters,which may decrease extracellular antiepileptic drugs levels in brains of intractable epilepsy patients.ATP-binding cassette transporters are super family of transporter proteins that require ATP hydrolysis for the transport of substrates across membranes,including P-glycoprotein,multidrug resistance-associated protein,major vault protein and breast cancer resistance associated protein.They are major impediment for the AED successful treatment of many forms of refractory epilepsy in human.This paper reviews the research progress on over-expression of ATP-binding cassette transporters and mechanism of drug resistance in intractable epilepsy.%难治性癫(痫)因其耐药机制的复杂性,迄今尚未清楚,目前探究其对抗癫(痫)药物的多重耐药性的一大热点是外流性药物转运蛋白.ATP结合盒式蛋白是外流性药物转运蛋白的代表,其中包括P糖蛋白、多药耐药蛋白、穹窿体主蛋白、乳腺癌耐药蛋白等,它们可以决定抗癫(痫)药物能否有效地作用于癫(痫)部位,而难治性癫(痫)患者对这些蛋白的高表达普遍存在,但是否与疾病耐药性相关仍需进一步探讨.该文从癫(痫)患者的ATP结合盒式蛋白高表达原因和蛋白对药物转运的作用机制方面对患者耐药性影响方面作一综述.

  9. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fry, D.C.; Byler, D.M.; Susi, H.; Brown, M.; Kuby, S.A.; Mildvan A.S.

    1988-05-17

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme, appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase, with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of ..beta..-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% ..cap alpha..-helix, 38% ..beta..-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possible due to disorder, it can be fit by using methods developed on well-characterized globular proteins. The CD spectrum is best fit by assuming the presence of at most 13% ..cap alpha..-helix in the peptide, 24 +/- 2% ..beta..-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformation changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assess by CD.

  10. LrABCF1, a GCN-type ATP-binding cassette transporter from Lilium regale, is involved in defense responses against viral and fungal pathogens

    Science.gov (United States)

    ATP-binding cassette (ABC) transporters are essential for membrane translocation in diverse biological processes, such as plant development and defense response. Here, a general control non-derepressible (GCN)-type ABC transporter gene, designated LrABCF1, was identified from Cucumber mosaic virus (...

  11. Conserved inhibitory mechanism and competent ATP binding mode for adenylyltransferases with Fic fold.

    Directory of Open Access Journals (Sweden)

    Arnaud Goepfert

    Full Text Available The ubiquitous FIC domain is evolutionarily conserved from bacteria to human and has been shown to catalyze AMP transfer onto protein side-chain hydroxyl groups. Recently, it was predicted that most catalytically competent Fic proteins are inhibited by the presence of an inhibitory helix αinh that is provided by a cognate anti-toxin (class I, or is part of the N- or C-terminal part of the Fic protein itself (classes II and III. In vitro, inhibition is relieved by mutation of a conserved glutamate of αinh to glycine. For the class III bacterial Fic protein NmFic from Neisseria meningitidis, the inhibitory mechanism has been elucidated. Here, we extend above study by including bacterial class I and II Fic proteins VbhT from Bartonella schoenbuchensis and SoFic from Shewanella oneidensis, respectively, and the respective E->G mutants. Comparative enzymatic and crystallographic analyses show that, in all three classes, the ATP substrate binds to the wild-type FIC domains, but with the α-phosphate in disparate and non-competent orientations. In the E->G mutants, however, the tri-phosphate moiety is found reorganized to the same tightly bound structure through a unique set of hydrogen bonds with Fic signature motif residues. The γ-phosphate adopts the location that is taken by the inhibitory glutamate in wild-type resulting in an α-phosphate orientation that can be attacked in-line by a target side-chain hydroxyl group. The latter is properly registered to the Fic active center by main-chain β-interactions with the β-hairpin flap. These data indicate that the active site motif and the exposed edge of the flap are both required to form an adenylylation-competent Fic protein.

  12. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    Science.gov (United States)

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-01

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  13. ATP-binding cassette transporter enhances tolerance to DDT in Tetrahymena.

    Science.gov (United States)

    Ning, YingZhi; Dang, Huai; Liu, GuangLong; Xiong, Jie; Yuan, DongXia; Feng, LiFang; Miao, Wei

    2015-03-01

    The reuse of dichlorodiphenyltrichloroethane (DDT) as an indoor residual spray was permitted by the World Health Organization in 2007, and approximately 14 countries still use DDT to control disease vectors. The extensive exposure of insects to DDT has resulted in the emergence of DDT resistance, especially in mosquitoes, and the mechanism for this resistance in mosquitoes has been widely reported. Spraying can also introduce DDT directly into surface water, and DDT can subsequently accumulate in microorganisms, but the mechanism for the resistance to DDT degradation in microorganisms is unclear. Using whole-genome microarray analysis, we detected an abcb15 gene that was up-regulated in a specific manner by DDT treatment in T. thermophile. The deduced ABCB15 peptide sequence had two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs) to form the structure TMD-NBD-TMD-NBD, and each NBD contained three conserved motifs: Walker-A, C-loop, and Walker-B, which indicated the T. thermophila abcb15 was a typical ABC transporter gene. The expression of ABCB15 fused with a C-terminal green fluorescent protein was found to be on the periphery of the cell, suggesting that ABCB15 was a membrane pump protein. In addition, cells with abcb15 partially knocked down (abcb15-KD) grew slower than wild-type cells in the presence of 256 mg L(-1) DDT, indicating the tolerance of abcb15-KD strain to DDT exposure was decreased. Thus, we suggest that in Tetrahymena, the membrane pump protein encoded by ABCT gene abcb15 can enhance the tolerance to DDT and protect cells from this exogenous toxin by efficiently pumping it to the extracellular space.

  14. The ABCC6 transporter: what lessons can be learnt from other ATP-binding cassette transporters?

    Directory of Open Access Journals (Sweden)

    Olivier M. Vanakker

    2013-10-01

    Full Text Available ABC transporters represent a large family of ATP-driven transmembrane transporters involved in uni- or bidirectional transfer of a variety of substrates. Divided in 7 families, they represent 48 transporter proteins, several of which are associated with human disease. Among the latter is ABCC6, a unidirectional exporter protein primarily expressed in liver and kidney. ABCC6 deficiency causes pseudoxanthoma elasticum (PXE, characterised by calcification and fragmentation of elastic fibres, resulting in oculocutaneous and cardiovascular symptoms. Unique among connective tissue disorders, the relation between the ABCC6 transporter and ectopic mineralization in PXE remains enigmatic, not in the least because of lack of knowledge on the substrate(s of ABCC6 and its unusual expression pattern. Because many features, including structure and transport mechanism, are shared by ABC transporters, it is worthwhile to evaluate if and to what extent the knowledge on the (pathophysiology of other transporters may provide useful clues towards understanding the (pathophysiological role of ABCC6. In this paper, we summarize relevant knowledge and methods for analysis on ABC transporters which may be useful for the further study of ABCC6.

  15. CryoEM and Molecular Dynamics of the Circadian KaiB-KaiC Complex Indicates That KaiB Monomers Interact with KaiC and Block ATP Binding Clefts

    Energy Technology Data Exchange (ETDEWEB)

    Villarreal, Seth A.; Pattanayek, Rekha; Williams, Dewight R.; Mori, Tetsuya; Qin, Ximing; Johnson, Carl H.; Egli, Martin; Stewart, Phoebe L. [Case Western; (Vanderbilt); (Vanderbilt-MED)

    2014-10-02

    The circadian control of cellular processes in cyanobacteria is regulated by a posttranslational oscillator formed by three Kai proteins. During the oscillator cycle, KaiA serves to promote autophosphorylation of KaiC while KaiB counteracts this effect. Here, we present a crystallographic structure of the wild-type Synechococcus elongatus KaiB and a cryo-electron microscopy (cryoEM) structure of a KaiBC complex. The crystal structure shows the expected dimer core structure and significant conformational variations of the KaiB C-terminal region, which is functionally important in maintaining rhythmicity. The KaiBC sample was formed with a C-terminally truncated form of KaiC, KaiC-Δ489, which is persistently phosphorylated. The KaiB–KaiC-Δ489 structure reveals that the KaiC hexamer can bind six monomers of KaiB, which form a continuous ring of density in the KaiBC complex. We performed cryoEM-guided molecular dynamics flexible fitting simulations with crystal structures of KaiB and KaiC to probe the KaiBC protein–protein interface. This analysis indicated a favorable binding mode for the KaiB monomer on the CII end of KaiC, involving two adjacent KaiC subunits and spanning an ATP binding cleft. A KaiC mutation, R468C, which has been shown to affect the affinity of KaiB for KaiC and lengthen the period in a bioluminescence rhythm assay, is found within the middle of the predicted KaiBC interface. The proposed KaiB binding mode blocks access to the ATP binding cleft in the CII ring of KaiC, which provides insight into how KaiB might influence the phosphorylation status of KaiC.

  16. The ATP-binding Cassette Transporter OsABCG15 is Required for Anther Development and Pollen Fertility in Rice

    Institute of Scientific and Technical Information of China (English)

    Bai-Xiao Niu; Fu-Rong He; Ming He; Ding Ren; Le-Tian Chen; Yao-Guang Liu

    2013-01-01

    Plant male reproductive development is a complex biological process,but the underlying mechanism is not well understood.Here,we characterized a rice (Oryza sativa L.) male sterile mutant.Based on mapbased cloning and sequence analysis,we identified a 1,459-bp deletion in an adenosine triphosphate (ATP)-binding cassette (ABC) transporter gene,OsABCG15,causing abnormal anthers and male sterility.Therefore,we named this mutant osabcg15.Expression analysis showed that OsABCG15 is expressed specifically in developmental anthers from stage 8 (meiosis Ⅱ stage) to stage 10 (late microspore stage).Two genes CYP704B2 and WDA1,involved in the biosynthesis of very-long-chain fatty acids for the establishment of the anther cuticle and pollen exine,were downregulated in osabcg15 mutant,suggesting that OsABCG15 may play a key function in the processes related to sporopollenin biosynthesis or sporopollenin transfer from tapetal cells to anther locules.Consistently,histological analysis showed that osabcg15 mutants developed obvious abnormality in postmeiotic tapetum degeneration,leading to rapid degredation of young microspores.The results suggest that OsABCG15 plays a critical role in exine formation and pollen development,similar to the homologous gene of AtABCG26 in Arabidopsis.This work is helpful to understand the regulatory network in rice anther development.

  17. Modulating the function of ATP-binding cassette subfamily G member 2 (ABCG2) with inhibitor cabozantinib.

    Science.gov (United States)

    Zhang, Guan-Nan; Zhang, Yun-Kai; Wang, Yi-Jun; Barbuti, Anna Maria; Zhu, Xi-Jun; Yu, Xin-Yue; Wen, Ai-Wen; Wurpel, John N D; Chen, Zhe-Sheng

    2017-01-25

    Cabozantinib (XL184) is a small molecule tyrosine kinase receptor inhibitor, which targets c-Met and VEGFR2. Cabozantinib has been approved by the Food and Drug Administration to treat advanced medullary thyroid cancer and renal cell carcinoma. In the present study, we evaluated the ability of cabozantinib to modulate the function of the ATP-binding cassette subfamily G member 2 (ABCG2) by sensitizing cells that are resistant to ABCG2 substrate antineoplastic drugs. We used a drug-selected resistant cell line H460/MX20 and three ABCG2 stable transfected cell lines ABCG2-482-R2, ABCG2-482-G2, and ABCG2-482-T7, which overexpress ABCG2. Cabozantinib, at non-toxic concentrations (3 or 5μM), sensitized the ABCG2-overexpressing cells to mitoxantrone, SN-38, and topotecan. Our results indicate that cabozantinib reverses ABCG2-mediated multidrug resistance by antagonizing the drug efflux function of the ABCG2 transporter instead of downregulating its expression. The molecular docking analysis indicates that cabozantinib binds to the drug-binding site of the ABCG2 transporter. Overall, our findings demonstrate that cabozantinib inhibits the ABCG2 transporter function and consequently enhances the effect of the antineoplastic agents that are substrates of ABCG2. Cabozantinib may be a useful agent in anticancer treatment regimens for patients who are resistant to ABCG2 substrate drugs.

  18. Afatinib reverses multidrug resistance in ovarian cancer via dually inhibiting ATP binding cassette subfamily B member 1.

    Science.gov (United States)

    Wang, Sheng-qi; Liu, Shi-ting; Zhao, Bo-xin; Yang, Fu-heng; Wang, Ya-tian; Liang, Qian-Ying; Sun, Ya-bin; Liu, Yuan; Song, Zhi-hua; Cai, Yun; Li, Guo-feng

    2015-09-22

    ABCB1-mediated multidrug resistance (MDR) remains a major obstacle to successful chemotherapy in ovarian cancer. Herein, afatinib at nontoxic concentrations significantly reversed ABCB1-mediated MDR in ovarian cancer cells in vitro (p afatinib caused tumor regressions and tumor necrosis in A2780T xenografts in vivo. More interestingly, unlike reversible TKIs, afatinib had a distinctive dual-mode action. Afatinib not only inhibited the efflux function of ABCB1, but also attenuated its expression transcriptionally via down-regulation of PI3K/AKT and MAPK/p38-dependent activation of NF-κB. Furthermore, apart from a substrate binding domain, afatinib could also bind to an ATP binding domain of ABCB1 through forming hydrogen bonds with Gly533, Gly534, Lys536 and Ala560 sites. Importantly, mutations in these four binding sites of ABCB1 and the tyrosine kinase domain of EGFR were not correlated with the reversal activity of afatinib on MDR. Given that afatinib is a clinically approved drug, our results suggest combining afatinib with chemotherapeutic drugs in ovarian cancer. This study can facilitate the rediscovery of superior MDR reversal agents from molecular targeted drugs to provide a more effective and safer way of resensitizing MDR.

  19. Simulated microgravity alters the expression of cytoskeleton- and ATP-binding-related genes in MLO-Y4 osteocytes

    Science.gov (United States)

    Chen, Zhihao; Zhao, Fan; Qi, Yiduo; Hu, Lifang; Li, Dijie; Yin, Chong; Su, Peihong; Zhang, Yan; Ma, Jianhua; Qian, Jing; Zhou, Hongpo; Zou, Yiwei; Qian, Airong

    2016-12-01

    Bone undergoes dynamic modelling and remodelling processes, and it requires gravity-mediated mechanical stimulation for the maintenance of mineral content and structure. Osteocytes are the most commonly found cells in the mature bone, and they are sensitive to mechanical changes. The purpose of this study was to investigate the effects of microgravity simulated with a random position machine (RPM) on the gene expression profile of osteocytes. Genes sensitive to RPM treatment were sorted on the basis of biological processes, interactions and signalling pathways. Overall, 504 differentially expressed genes (DEGs) in osteocytes cultured under RPM conditions were found. The DEGs were further analysed using bioinformatics tools such as DAVID and iReport. A total of 15 ATP-binding and cytoskeleton-related genes were further confirmed by quantitative real-time PCR (qRT-PCR). Our findings demonstrate that the RPM affected the expression of genes involved in cytoskeleton remodelling and the energy-transfer process in osteocytes. The identification of mechanosensitive genes may enhance our understanding of the roles of osteocytes in mechanosensation and may provide some potential targets for preventing and treating bone-related diseases.

  20. ATP-Binding Cassette Genes Genotype and Expression: A Potential Association with Pancreatic Cancer Development and Chemoresistance?

    Directory of Open Access Journals (Sweden)

    Li Pang

    2014-01-01

    Full Text Available Genetic polymorphisms in ABC (ATP-binding cassette transporter genes are associated with differential responses to chemotherapy in various cancers including pancreatic cancer. In this study, four SNPs in the ABCB1, ABCC1, and ABCG2 genes were investigated in normal and pancreatic cancerous specimens. The expression of the three transporters was also analyzed. The TT genotypes of G2677T and C3435T in ABCB1 gene were associated with lower risk of developing pancreatic cancer (P=0.013, OR = 0.35 and P=0.015, OR = 0.29, resp.. To our knowledge, this is the first report of the common polymorphisms in the ABCB1 gene affecting the genetic risk of developing pancreatic cancer. Moreover, the expression of ABCB1 in 2677TT and 3435TT carriers was lower compared to the wild-type homozygotes and heterozygotes. A cell viability assay, using standard pancreatic cancer cell lines, revealed that the ABCB1 2677TT-3455TT haplotype was more sensitive than the other haplotypes to gemcitabine. Conclusion. Polymorphisms in ABCB1 G2677T and G3435T were associated with differential susceptibility to pancreatic cancer and may predict responses to chemotherapy.

  1. Retinoic acid receptor agonists regulate expression of ATP-binding cassette transporter G1 in macrophages.

    Science.gov (United States)

    Ayaori, Makoto; Yakushiji, Emi; Ogura, Masatsune; Nakaya, Kazuhiro; Hisada, Tetsuya; Uto-Kondo, Harumi; Takiguchi, Shunichi; Terao, Yoshio; Sasaki, Makoto; Komatsu, Tomohiro; Iizuka, Maki; Yogo, Makiko; Uehara, Yoshinari; Kagechika, Hiroyuki; Nakanishi, Tsuyoshi; Ikewaki, Katsunori

    2012-04-01

    ABC transporter G1 (ABCG1) plays a pivotal role in HDL-mediated cholesterol efflux and atherogenesis. We investigated whether, and how, retinoic acid receptors (RARs) regulate ABCG1 expression in macrophages. All-trans retinoic acid (ATRA), an RAR ligand, increased ABCG1 protein levels and apoA-I/HDL-mediated cholesterol efflux from the macrophages. Both ATRA and other RAR agonists, TTNPB and Am580, increased major transcripts driven by promoter B upstream of exon 5, though minor transcripts driven by promoter A upstream of exon 1 were only increased by ATRA. The stimulatory effects of ATRA on ABCG1 expression were completely abolished in the presence of RAR/RXR antagonists but were only partially canceled in the presence of an LXR antagonist. Adenovirus with overexpressed oxysterol sulfotransferase abolished the LXR pathway, as previously reported, and ATRA-responsiveness in ABCA1/ABCG1 expressions were respectively attenuated by 38 and 22% compared to the control virus. Promoter assays revealed that ABCG1 levels were regulated more by promoter B than promoter A, and ATRA activated promoter B in a liver X receptor-responsive element (LXRE)-dependent manner. Further, LXRE-B in intron 7, but not LXRE-A in intron 5, enhanced ATRA responsiveness under overexpression of all RAR isoforms-RARα/β/γ. In contrast, the activation of promoter B by TTNPB depended on LXRE-B and RARα, but not on RARβ/γ. Finally, chromatin immunoprecipitation and gel-shift assays revealed a specific and direct repeat 4-dependent binding of RARα to LXRE-B. In conclusion, RAR ligands increase ABCA1/G1 expression and apoA-I/HDL-mediated cholesterol efflux from macrophages, and modulate ABCG1 promoter activity via LXRE-dependent mechanisms.

  2. Solution structure and function in trifluoroethanol of PP-50, an ATP-binding peptide from F1ATPase.

    Science.gov (United States)

    Chuang, W J; Abeygunawardana, C; Gittis, A G; Pedersen, P L; Mildvan, A S

    1995-05-10

    PP-50, a synthetic peptide, based on residues 141-190 of the beta-subunit of mitochondrial F1ATPase, containing the GX4GKT consensus sequence for nucleoside triphosphate binding, binds ATP tightly (Kd = 17.5 microM) as found by fluorescence titration at pH 4.0. CD and 2D proton NMR studies at pH 4.0 revealed two beta-turns, regions of extended secondary structure, transient tertiary structure, and flexibility in the GX4GKT region (W.J. Chuang, C. Abeygunawardana, P. L. Pedersen, and A. S. Mildvan, 1992, Biochemistry 31, 7915-7921). CD titration of PP-50 with trifluoroethanol (TFE) reveals a decrease in ellipticity at 208 and 222 nm, saturating at 25% TFE. Computer analysis indicates that 25% TFE increases the helix content from 5.8 to 28.6%, decreases the beta-structure from 30.2 to 20.2% and decreases the coil content from 64 to 51.2%. Fluorescence titrations of H2ATP2- with PP-50 in 25% TFE yields a Kd of 7.3 microM, 2.4-fold tighter than in H2O, probably due to TFE increasing the activity of H2ATP2- . PP-50 completely quenches the fluorescence of H2ATP2- in 25% TFE, while in H2O the fluorescence quenching is only 62%. In H2O the binding of H2ATP2- increases the structure of PP-50 as detected by CD, but in 25% TFE no significant change in CD is found on binding either H2ATP2- or Mg2+ HATP (Kd = 14 microM). The complete proton NMR spectrum of PP-50 in 25% TFE has been assigned. The solution structure, determined by distance geometry, molecular dynamics with simulated annealing, and energy minimization, consists of a coil (residues 1-8), a strand (residues 9-12), a loop (residues 13-22) containing the GX4GKT consensus sequence (residues 16-23), an alpha-helix (residues 23-36), a turn (residues 38-41), and a coil (residues 42-50), similar to that of the corresponding region of the X-ray structure of F1ATPase (J.P. Abrahams, A.G.W. Leslie, R. Lutter, and J. E. Walker, 1994 Nature 370, 621-628) and to the structure of a homologous peptide from the ATP-binding site of

  3. The role of ATP-binding cassette transporter A2 in childhood acute lymphoblastic leukemia multidrug resistance

    Science.gov (United States)

    Aberuyi, N; Rahgozar, S; Moafi, A

    2014-01-01

    Acute lymphoblastic leukemia (ALL) is one of the most prevalent hematologic malignancies in children. Although the cure rate of ALL has improved over the past decades, the most important reason for ALL treatment failure is multidrug resistance (MDR) phenomenon. The current study aims to explain the mechanisms involved in multidrug resistance of childhood ALL, and introduces ATP-binding cassette transporterA2 (ABCA2) as an ABC transporter gene which may have a high impact on MDR. Benefiting from articles published inreputable journals from1994 to date and experiments newly performed by our group, a comprehensive review is written about ABCA2 and its role in MDR regarding childhood ALL. ABCA2 transports drugs from the cytoplasm into the lysosomal compartment, where they may become degraded and exported from the cell. The aforementioned mechanism may contribute to MDR. It has been reported that ABCA2 may induce resistance to mitoxantrone, estrogen derivatives and estramustine. It is resistant to the aforementioned compounds. Furthermore, the overexpression ofABCA2 in methotrexate, vinblastine and/or doxorubicin treated Jurkat cells are observed in several publications. The recent study of our group showsthatthe overexpression ofABCA2 gene in children with ALL increases the risk of MDR by 15 times. ABCA2 is the second identified member of the ABCA; ABC transporters' subfamily. ABCA2 gene expression profile is suggested to be an unfavorable prognostic factor in ALL treatment. Better understanding of the MDR mechanisms and the factors involved may improve the therapeutic outcome of ALL by modifying the treatment protocols. PMID:25254091

  4. The role of ATP-binding cassette transporter A2 in childhood acute lymphoblastic leukemia multidrug resistance.

    Science.gov (United States)

    Aberuyi, N; Rahgozar, S; Moafi, A

    2014-01-01

    Acute lymphoblastic leukemia (ALL) is one of the most prevalent hematologic malignancies in children. Although the cure rate of ALL has improved over the past decades, the most important reason for ALL treatment failure is multidrug resistance (MDR) phenomenon. The current study aims to explain the mechanisms involved in multidrug resistance of childhood ALL, and introduces ATP-binding cassette transporterA2 (ABCA2) as an ABC transporter gene which may have a high impact on MDR. Benefiting from articles published inreputable journals from1994 to date and experiments newly performed by our group, a comprehensive review is written about ABCA2 and its role in MDR regarding childhood ALL. ABCA2 transports drugs from the cytoplasm into the lysosomal compartment, where they may become degraded and exported from the cell. The aforementioned mechanism may contribute to MDR. It has been reported that ABCA2 may induce resistance to mitoxantrone, estrogen derivatives and estramustine. It is resistant to the aforementioned compounds. Furthermore, the overexpression ofABCA2 in methotrexate, vinblastine and/or doxorubicin treated Jurkat cells are observed in several publications. The recent study of our group showsthatthe overexpression ofABCA2 gene in children with ALL increases the risk of MDR by 15 times. ABCA2 is the second identified member of the ABCA; ABC transporters' subfamily. ABCA2 gene expression profile is suggested to be an unfavorable prognostic factor in ALL treatment. Better understanding of the MDR mechanisms and the factors involved may improve the therapeutic outcome of ALL by modifying the treatment protocols.

  5. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy.

    Science.gov (United States)

    Fry, D C; Byler, D M; Susi, H; Brown, E M; Kuby, S A; Mildvan, A S

    1988-05-17

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694], appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase [Sachsenheimer, W., & Schulz, G.E. (1977) J. Mol. Biol. 114, 23-26], with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of beta-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% alpha-helix, 38% beta-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possibly due to disorder, it can be fit by using methods developed on well-characterized globular proteins. On this basis, the peptide consists of 35 +/- 10% beta-structure, 60 +/- 12% turns and aperiodic structure, and not more than 10% alpha-helix. The CD spectrum is best fit by assuming the presence of at most 13% alpha-helix in the peptide, 24 +/- 2% beta-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformational changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assessed by CD. Detailed assignments of resonances in the peptide spectrum and intermolecular NOEs between protons of bound MgATP and

  6. Retinoic acid isomers up-regulate ATP binding cassette A1 and G1 and cholesterol efflux in rat astrocytes: implications for their therapeutic and teratogenic effects.

    Science.gov (United States)

    Chen, Jing; Costa, Lucio G; Guizzetti, Marina

    2011-09-01

    Recent studies suggest that retinoids may be effective in the treatment of Alzheimer's disease, although exposure to an excess of retinoids during gestation causes teratogenesis. Cholesterol is essential for brain development, but high levels of cholesterol have been associated with Alzheimer's disease. We hypothesized that retinoic acid may affect cholesterol homeostasis in rat astrocytes, which regulate cholesterol distribution in the brain, through the up-regulation of cholesterol transporters ATP binding cassette (Abc)a1 and Abcg1. Tretinoin, 13-cis retinoic acid (13-cis-RA), 9-cis-RA, and the selective retinoid X receptor (RXR) agonist methoprene significantly increased cholesterol efflux induced by cholesterol acceptors and protein levels of Abca1 by 2.3- (± 0.25), 3.6- (± 0.42), 4.1- (± 0.5), and 1.75- (± 0.43) fold, respectively, and Abcg1 by 2.1- (± 0.26), 2.2- (± 0.33), 2.5- (± 0.23), and 2.2- (± 0.21) fold, respectively. 13-cis-RA and 9-cis-RA also significantly increased mRNA levels of Abca1 (maximal induction 7.3 ± 0.42 and 2.7 ± 0.17, respectively) and Abcg1 (maximal induction 2.0 ± 0.18 and 1.8 ± 0.09, respectively), and the levels of membrane-bound Abca1 (2.5 ± 0.3 and 2.5 ± 0.40-fold increase, respectively), whereas they significantly decreased intracellular cholesterol content without affecting cholesterol synthesis. The effect of 9-cis-RA on cholesterol homeostasis in astrocytes can be ascribed to the activation of RXR, whereas the effects of 13-cis-RA and tretinoin were independent of either RXRs or retinoic acid receptors. These findings suggest that retinoids affect cholesterol homeostasis in astrocytes and that this effect may be involved in both their therapeutic and teratogenic actions.

  7. Polymorphisms in ATP-binding cassette transporter genes and interaction with diet and life style factors in relation to colorectal cancer in a Danish prospective case-cohort study

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov; Andersen, Vibeke; Tjonneland, Anne;

    2015-01-01

    The ATP-binding cassette (ABC) transporter family transports various molecules across the enterocytes in the gut protecting the intestine against potentially harmful substances. Moreover, ABC transporters are involved in mucosal immune defence through interaction with cytokines. The study aimed...

  8. Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Zhang Jianzhen

    2011-10-01

    Full Text Available Abstract Background The ATP-binding cassette (ABC transporter superfamily is the largest transporter gene family responsible for transporting specific molecules across lipid membranes in all living organisms. In insects, ABC transporters not only have important functions in molecule transport, but also play roles in insecticide resistance, metabolism and development. Results From the genome of the silkworm, Bombyx mori, we have identified 51 putative ABC genes which are classified into eight subfamilies (A-H by phylogenetic analysis. Gene duplication is very evident in the ABCC and ABCG subfamilies, whereas gene numbers and structures are well conserved in the ABCD, ABCE, ABCF, and ABCH subfamilies. Microarray analysis revealed that expression of 32 silkworm ABC genes can be detected in at least one tissue during different developmental stages, and the expression patterns of some of them were confirmed by quantitative real-time PCR. A large number of ABC genes were highly expressed in the testis compared to other tissues. One of the ABCG genes, BmABC002712, was exclusively and abundantly expressed in the Malpighian tubule implying that BmABC002712 plays a tissue-specific role. At least 5 ABCG genes, including BmABC005226, BmABC005203, BmABC005202, BmABC010555, and BmABC010557, were preferentially expressed in the midgut, showing similar developmental expression profiles to those of 20-hydroxyecdysone (20E-response genes. 20E treatment induced the expression of these ABCG genes in the midgut and RNA interference-mediated knockdown of USP, a component of the 20E receptor, decreased their expression, indicating that these midgut-specific ABCG genes are 20E-responsive. Conclusion In this study, a genome-wide analysis of the silkworm ABC transporters has been conducted. A comparison of ABC transporters from 5 insect species provides an overview of this vital gene superfamily in insects. Moreover, tissue- and stage-specific expression data of the

  9. Up-regulation of the ATP-binding cassette transporter A1 inhibits hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Simone Bocchetta

    Full Text Available Hepatitis C virus (HCV establishes infection using host lipid metabolism pathways that are thus considered potential targets for indirect anti-HCV strategies. HCV enters the cell via clathrin-dependent endocytosis, interacting with several receptors, and virus-cell fusion, which depends on acidic pH and the integrity of cholesterol-rich domains of the hepatocyte membrane. The ATP-binding Cassette Transporter A1 (ABCA1 mediates cholesterol efflux from hepatocytes to extracellular Apolipoprotein A1 and moves cholesterol within cell membranes. Furthermore, it generates high-density lipoprotein (HDL particles. HDL protects against arteriosclerosis and cardiovascular disease. We show that the up-regulation of ABCA1 gene expression and its cholesterol efflux function in Huh7.5 hepatoma cells, using the liver X receptor (LXR agonist GW3965, impairs HCV infection and decreases levels of virus produced. ABCA1-stimulation inhibited HCV cell entry, acting on virus-host cell fusion, but had no impact on virus attachment, replication, or assembly/secretion. It did not affect infectivity or properties of virus particles produced. Silencing of the ABCA1 gene and reduction of the specific cholesterol efflux function counteracted the inhibitory effect of the GW3965 on HCV infection, providing evidence for a key role of ABCA1 in this process. Impaired virus-cell entry correlated with the reorganisation of cholesterol-rich membrane microdomains (lipid rafts. The inhibitory effect could be reversed by an exogenous cholesterol supply, indicating that restriction of HCV infection was induced by changes of cholesterol content/distribution in membrane regions essential for virus-cell fusion. Stimulation of ABCA1 expression by GW3965 inhibited HCV infection of both human primary hepatocytes and isolated human liver slices. This study reveals that pharmacological stimulation of the ABCA1-dependent cholesterol efflux pathway disrupts membrane cholesterol homeostasis

  10. Function and regulation of ATP-binding cassette transport proteins involved in hepatobiliary transport (vol 12, pg 13, 2000)

    NARCIS (Netherlands)

    Hooiveld, GJEJ; van Montfoort, JE; Meijer, DKF; Muller, M

    2001-01-01

    Hepatobiliary transport of endogenous and exogenous compounds is mediated by the coordinated action of multiple transport systems present at the sinusoidal (basolateral) and canalicular (apical) membrane domains of hepatocytes. During the last few years many of these transporters have been cloned an

  11. Structural Coupling of Extrinsic Proteins with the Oxygen-Evolving Center in Photosystem II

    Directory of Open Access Journals (Sweden)

    Kentaro eIfuku

    2016-02-01

    Full Text Available Photosystem II (PSII, which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The PSII extrinsic proteins shield the catalytic Mn4CaO5 cluster from the outside bulk solution and enhance binding of inorganic cofactors, such as Ca2+ and Cl-, in the oxygen-evolving center (OEC of PSII. Among PSII extrinsic proteins, PsbO is commonly found in all oxygenic organisms, while PsbP and PsbQ are specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP exist in cyanobacteria. In addition, red algae and diatoms have unique PSII extrinsic proteins, such as PsbQ’ and Psb31, suggesting functional divergence during evolution. Recent studies with reconstitution experiments combined with Fourier transform infrared spectroscopy have revealed how the individual PSII extrinsic proteins affect the structure and function of the OEC in different organisms. In this review, we summarize our recent results and discuss changes that have occurred in the structural coupling of extrinsic proteins with the OEC during evolutionary history.

  12. An evolved Mxe GyrA intein for enhanced production of fusion proteins.

    Science.gov (United States)

    Marshall, Carrie J; Grosskopf, Vanessa A; Moehling, Taylor J; Tillotson, Benjamin J; Wiepz, Gregory J; Abbott, Nicholas L; Raines, Ronald T; Shusta, Eric V

    2015-02-20

    Expressing antibodies as fusions to the non-self-cleaving Mxe GyrA intein enables site-specific, carboxy-terminal chemical modification of the antibodies by expressed protein ligation (EPL). Bacterial antibody-intein fusion protein expression platforms typically yield insoluble inclusion bodies that require refolding to obtain active antibody-intein fusion proteins. Previously, we demonstrated that it was possible to employ yeast surface display to express properly folded single-chain antibody (scFv)-intein fusions, therefore permitting the direct small-scale chemical functionalization of scFvs. Here, directed evolution of the Mxe GyrA intein was performed to improve both the display and secretion levels of scFv-intein fusion proteins from yeast. The engineered intein was shown to increase the yeast display levels of eight different scFvs by up to 3-fold. Additionally, scFv- and green fluorescent protein (GFP)-intein fusion proteins can be secreted from yeast, and while fusion of the scFvs to the wild-type intein resulted in low expression levels, the engineered intein increased scFv-intein production levels by up to 30-fold. The secreted scFv- and GFP-intein fusion proteins retained their respective binding and fluorescent activities, and upon intein release, EPL resulted in carboxy-terminal azide functionalization of the target proteins. The azide-functionalized scFvs and GFP were subsequently employed in a copper-free, strain-promoted click reaction to site-specifically immobilize the proteins on surfaces, and it was demonstrated that the functionalized, immobilized scFvs retained their antigen binding specificity. Taken together, the evolved yeast intein platform provides a robust alternative to bacterial intein expression systems.

  13. Evolving trends in biosciences: Multi-purpose proteins - GFP and GFP-like proteins

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.; Ingole, B.S.

    with a minor peak at 475 nm and with extinction coefficients of roughly 30,000 and 7000 M –1 cm –1 respectively. The emission peak 13 is at 508 nm. Chromophore biosynthesis The production of visual colour is related to the forma- tion... and envi- ronment can be visualized. Chemical labelling of a puri- fied protein in vitro does not lend itself to visualization of the unperturbed intracellular milieu. Introduction of fluo- rescently labelled antibodies raised against a protein...

  14. Evaluation of the role of ATP-binding cassette transporters as a defence mechanism against temephos in populations of Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Estelita Pereira Lima

    2014-11-01

    Full Text Available The role of ATP-binding cassette (ABC transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM. The best result in the series was obtained with the addition of verapamil (40 μM, which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated.

  15. Genetic Analysis of the Mode of Interplay between an ATPase Subunit and Membrane Subunits of the Lipoprotein-Releasing ATP-Binding Cassette Transporter LolCDE†

    OpenAIRE

    Ito, Yasuko; Matsuzawa, Hitomi; Matsuyama, Shin-ichi; Narita, Shin-ichiro; Tokuda, Hajime

    2006-01-01

    The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the i...

  16. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis%囊性纤维化跨膜电导调节体:ATP结合和水解门控Cl-通道

    Institute of Scientific and Technical Information of China (English)

    BOMPADRE; Silvia; G; HWANG; Tzyh-Chang

    2007-01-01

    and NBD2). Recent studies reveal that the NBDs of CFTR may dimerize as observed in other ABC proteins. Upon dimerization of CFTR's two NBDs, in a head-to-tail configuration, the two ATP-binding pockets (ABP1 and ABP2) are formed by the canonical Walker A and B motifs from one NBD and the signature sequence from the partner NBD. Mutations of the amino acids that interact with ATP reveal that the two ABPs play distinct roles in controlling ATP-dependent gating of CFTR. It was proposed that binding of ATP to the ABP2, which is formed by the Walker A and B in NBD2 and the signature sequence in NBD1, is critical for catalyzing channel opening. While binding of ATP to the ABP1 alone may not increase the opening rate, it does contribute to the stabilization of the open channel conformation. Several disease-associated mutations of the CFTR channel are characterized by gating defects. Understanding how CFTR's two NBDs work together to gate the channel could provide considerable mechanistic information for future pharmacological studies, which could pave the way for tailored drug design for therapeutical interventions in CF.

  17. Toxic and nontoxic components of botulinum neurotoxin complex are evolved from a common ancestral zinc protein

    Energy Technology Data Exchange (ETDEWEB)

    Inui, Ken [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Sagane, Yoshimasa [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Miyata, Keita [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Miyashita, Shin-Ichiro [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Suzuki, Tomonori [Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558 (Japan); Shikamori, Yasuyuki [Agilent Technologies International Japan, Ltd. Takaura-cho 9-1, Hachioji-shi, Tokyo 192-0033 (Japan); Ohyama, Tohru; Niwa, Koichi [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan); Watanabe, Toshihiro, E-mail: t-watana@bioindustry.nodai.ac.jp [Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493 (Japan)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer BoNT and NTNHA proteins share a similar protein architecture. Black-Right-Pointing-Pointer NTNHA and BoNT were both identified as zinc-binding proteins. Black-Right-Pointing-Pointer NTNHA does not have a classical HEXXH zinc-coordinating motif similar to that found in all serotypes of BoNT. Black-Right-Pointing-Pointer Homology modeling implied probable key residues involved in zinc coordination. -- Abstract: Zinc atoms play an essential role in a number of enzymes. Botulinum neurotoxin (BoNT), the most potent toxin known in nature, is a zinc-dependent endopeptidase. Here we identify the nontoxic nonhemagglutinin (NTNHA), one of the BoNT-complex constituents, as a zinc-binding protein, along with BoNT. A protein structure classification database search indicated that BoNT and NTNHA share a similar domain architecture, comprising a zinc-dependent metalloproteinase-like, BoNT coiled-coil motif and concanavalin A-like domains. Inductively coupled plasma-mass spectrometry analysis demonstrated that every single NTNHA molecule contains a single zinc atom. This is the first demonstration of a zinc atom in this protein, as far as we know. However, the NTNHA molecule does not possess any known zinc-coordinating motif, whereas all BoNT serotypes possess the classical HEXXH motif. Homology modeling of the NTNHA structure implied that a consensus K-C-L-I-K-X{sub 35}-D sequence common among all NTNHA serotype molecules appears to coordinate a single zinc atom. These findings lead us to propose that NTNHA and BoNT may have evolved distinct functional specializations following their branching out from a common ancestral zinc protein.

  18. A SAS-6-like protein suggests that the Toxoplasma conoid complex evolved from flagellar components.

    Science.gov (United States)

    de Leon, Jessica Cruz; Scheumann, Nicole; Beatty, Wandy; Beck, Josh R; Tran, Johnson Q; Yau, Candace; Bradley, Peter J; Gull, Keith; Wickstead, Bill; Morrissette, Naomi S

    2013-07-01

    SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.

  19. Binding of PDZ-RhoGEF to ATP-binding cassette transporter A1 (ABCA1) induces cholesterol efflux through RhoA activation and prevention of transporter degradation.

    Science.gov (United States)

    Okuhira, Keiichiro; Fitzgerald, Michael L; Tamehiro, Norimasa; Ohoka, Nobumichi; Suzuki, Kazuhiro; Sawada, Jun-ichi; Naito, Mikihiko; Nishimaki-Mogami, Tomoko

    2010-05-21

    ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux to apolipoprotein A1 (apoA-I) initiates the biogenesis of high density lipoprotein. Here we show that the Rho guanine nucleotide exchange factors PDZ-RhoGEF and LARG bind to the C terminus of ABCA1 by a PDZ-PDZ interaction and prevent ABCA1 protein degradation by activating RhoA. ABCA1 is a protein with a short half-life, and apoA-I stabilizes ABCA1 protein; however, depletion of PDZ-RhoGEF/LARG by RNA interference suppressed the apoA-I stabilization of ABCA1 protein in human primary fibroblasts. Exogenous PDZ-RhoGEF expression activated RhoA and increased ABCA1 protein levels and cholesterol efflux activity. Likewise, forced expression of a constitutively active RhoA mutant significantly increased ABCA1 protein levels, whereas a dominant negative RhoA mutant decreased them. The constitutively active RhoA retarded ABCA1 degradation, thus accounting for its ability to increase ABCA1 protein. Moreover, stimulation with apoA-I transiently activated RhoA, and the pharmacological inhibition of RhoA or the dominant negative RhoA blocked the ability of apoA-I to stabilize ABCA1. Finally, depletion of RhoA or RhoGEFs/RhoA reduces the cholesterol efflux when transcriptional regulation via PPARgamma is eliminated. Taken together, our results have identified a novel physical and functional interaction between ABCA1 and PDZ-RhoGEF/LARG, which activates RhoA, resulting in ABCA1 stabilization and cholesterol efflux activity.

  20. No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2003-01-01

    Full Text Available Abstract Background It has been suggested that rates of protein evolution are influenced, to a great extent, by the proportion of amino acid residues that are directly involved in protein function. In agreement with this hypothesis, recent work has shown a negative correlation between evolutionary rates and the number of protein-protein interactions. However, the extent to which the number of protein-protein interactions influences evolutionary rates remains unclear. Here, we address this question at several different levels of evolutionary relatedness. Results Manually curated data on the number of protein-protein interactions among Saccharomyces cerevisiae proteins was examined for possible correlation with evolutionary rates between S. cerevisiae and Schizosaccharomyces pombe orthologs. Only a very weak negative correlation between the number of interactions and evolutionary rate of a protein was observed. Furthermore, no relationship was found between a more general measure of the evolutionary conservation of S. cerevisiae proteins, based on the taxonomic distribution of their homologs, and the number of protein-protein interactions. However, when the proteins from yeast were assorted into discrete bins according to the number of interactions, it turned out that 6.5% of the proteins with the greatest number of interactions evolved, on average, significantly slower than the rest of the proteins. Comparisons were also performed using protein-protein interaction data obtained with high-throughput analysis of Helicobacter pylori proteins. No convincing relationship between the number of protein-protein interactions and evolutionary rates was detected, either for comparisons of orthologs from two completely sequenced H. pylori strains or for comparisons of H. pylori and Campylobacter jejuni orthologs, even when the proteins were classified into bins by the number of interactions. Conclusion The currently available comparative-genomic data do not

  1. Human small cell lung cancer NYH cells selected for resistance to the bisdioxopiperazine topoisomerase II catalytic inhibitor ICRF-187 demonstrate a functional R162Q mutation in the Walker A consensus ATP binding domain of the alpha isoform

    DEFF Research Database (Denmark)

    Wessel, I; Jensen, L H; Jensen, P B;

    1999-01-01

    -AMSA), which act by stabilizing enzyme-DNA-drug complexes at a stage in which the DNA gate strand is cleaved and the protein is covalently attached to DNA. Human small cell lung cancer NYH cells selected for resistance to ICRF-187 (NYH/187) showed a 25% increase in topoisomerase IIalpha level and no change...... in expression of the beta isoform. Sequencing of the entire topoisomerase IIalpha cDNA from NYH/187 cells demonstrated a homozygous G-->A point mutation at nucleotide 485, leading to a R162Q conversion in the Walker A consensus ATP binding site (residues 161-165 in the alpha isoform), this being the first drug......-selected mutation described at this site. Western blotting after incubation with ICRF-187 showed no depletion of the alpha isoform in NYH/187 cells in contrast to wild-type (wt) cells, whereas equal depletion of the beta isoform was observed in the two sublines. Alkaline elution assay demonstrated a lack...

  2. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojing [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Xu, Yonghong [Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, 430060 Wuhan (China); Meng, Xiangning [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Watari, Fumio [Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Chen, Xiao, E-mail: mornsmile@yahoo.com [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China)

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  3. An attenuated mutant of the Rv1747 ATP-binding cassette transporter of Mycobacterium tuberculosis and a mutant of its cognate kinase, PknF, show increased expression of the efflux pump-related iniBAC operon

    Science.gov (United States)

    Spivey, Vicky L; Whalan, Rachael H; Hirst, Elizabeth M A; Smerdon, Stephen J; Buxton, Roger S

    2013-01-01

    The ATP-binding cassette transporter Rv1747 is required for the growth of Mycobacterium tuberculosis in mice and in macrophages. Its structure suggests it is an exporter. Rv1747 forms a two-gene operon with pknF coding for the serine/threonine protein kinase PknF, which positively modulates the function of the transporter. We show that deletion of Rv1747 or pknF results in a number of transcriptional changes which could be complemented by the wild type allele, most significantly up-regulation of the iniBAC genes. This operon is inducible by isoniazid and ethambutol and by a broad range of inhibitors of cell wall biosynthesis and is required for efflux pump functioning. However, neither the Rv1747 or pknF mutant showed increased susceptibility to a range of drugs and cell wall stress reagents including isoniazid and ethambutol, cell wall structure and cell division appear normal by electron microscopy, and no differences in lipoarabinomannan were found. Transcription from the pknF promoter was not induced by a range of stress reagents. We conclude that the loss of Rv1747 affects cell wall biosynthesis leading to the production of intermediates that cause induction of iniBAC transcription and implicates it in exporting a component of the cell wall, which is necessary for virulence. PMID:23915284

  4. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein.

    Science.gov (United States)

    Rodriguez, Erik A; Tran, Geraldine N; Gross, Larry A; Crisp, Jessica L; Shu, Xiaokun; Lin, John Y; Tsien, Roger Y

    2016-09-01

    Far-red fluorescent proteins (FPs) are desirable for in vivo imaging because with these molecules less light is scattered, absorbed, or re-emitted by endogenous biomolecules compared with cyan, green, yellow, and orange FPs. We developed a new class of FP from an allophycocyanin α-subunit (APCα). Native APC requires a lyase to incorporate phycocyanobilin. The evolved FP, which we named small ultra-red FP (smURFP), covalently attaches a biliverdin (BV) chromophore without a lyase, and has 642/670-nm excitation-emission peaks, a large extinction coefficient (180,000 M(-1)cm(-1)) and quantum yield (18%), and photostability comparable to that of eGFP. smURFP has significantly greater BV incorporation rate and protein stability than the bacteriophytochrome (BPH) FPs. Moreover, BV supply is limited by membrane permeability, and smURFPs (but not BPH FPs) can incorporate a more membrane-permeant BV analog, making smURFP fluorescence comparable to that of FPs from jellyfish or coral. A far-red and near-infrared fluorescent cell cycle indicator was created with smURFP and a BPH FP.

  5. Natural allelic variants of bovine ATP-binding cassette transporter ABCG2: increased activity of the Ser581 variant and development of tools for the discovery of new ABCG2 inhibitors.

    Science.gov (United States)

    Merino, Gracia; Real, Rebeca; Baro, Marta F; Gonzalez-Lobato, Lucia; Prieto, Julio G; Alvarez, Ana I; Marques, Margarita M

    2009-01-01

    ATP-binding cassette transporter ABCG2 [breast cancer resistance protein (BCRP)] is a member of the ABC transporter superfamily that actively extrudes xenotoxins from cells and is a major determinant of the bioavailability of many compounds. ABCG2 expression is strongly induced during lactation in the mammary gland and is related to the active secretion of drugs into the milk. The presence of drug residues and environmental pollutants in milk is an outstanding problem for human milk consumption and milk industrial processes, involving important risks to public health and the dairy industry. In cows, a single nucleotide polymorphism (SNP) in this protein has been described previously (Tyr581) and is associated with higher fat and protein percentages and lower milk yield. However, whether this amino acid substitution affects ABCG2-mediated drug transport in cows, including milk secretion, required further exploration. We cloned the two variants of bovine ABCG2 and evaluated the effect of this SNP on mitoxantrone accumulation assays performed in ovine primary fibroblasts transiently expressing either of the variants. It is interesting to note that statistically significant differences in activity between both variants were observed, and the Ser581 variant was related with an increased efflux activity. In addition, we demonstrated that genistein is a very good inhibitor of bovine ABCG2 and identified new inhibitors of the transporter, such as the macrocyclic lactones, ivermectin, and selamectin. Moreover, the inhibitory effect of these compounds on human and murine ABCG2 homologs was confirmed using transduced Marbin-Dabin canine kidney II cells. These findings may have important implications regarding the presence of drug residues in milk and drug interactions affecting the pharmacological behavior of ABCG2 substrates.

  6. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    Science.gov (United States)

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.

  7. Cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) and cholesterol uptake via the LDL receptor influences cholesterol-induced impairment of beta cell function in mice

    NARCIS (Netherlands)

    Kruit, J. K.; Kremer, P. H. C.; Dai, L.; Tang, R.; Ruddle, P.; de Haan, W.; Brunham, L. R.; Verchere, C. B.; Hayden, M. R.

    2010-01-01

    Cellular cholesterol accumulation is an emerging mechanism for beta cell dysfunction in type 2 diabetes. Absence of the cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) results in increased islet cholesterol and impaired insulin secretion, indicating that impaired cholesterol effl

  8. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    Directory of Open Access Journals (Sweden)

    Wei Sheng Chia

    Full Text Available p97/Valosin-containing protein (VCP is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD. It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  9. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

    Directory of Open Access Journals (Sweden)

    Gracian Tejral

    2017-03-01

    Full Text Available Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation”  “semi-open conformation  “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.

  10. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

    Science.gov (United States)

    Tejral, Gracian; Sopko, Bruno; Necas, Alois; Schoner, Wilhelm

    2017-01-01

    Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation”  “semi-open conformation  “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis. PMID:28316890

  11. Heterocyclic cyclohexanone monocarbonyl analogs of curcumin can inhibit the activity of ATP-binding cassette transporters in cancer multidrug resistance.

    Science.gov (United States)

    Revalde, Jezrael L; Li, Yan; Hawkins, Bill C; Rosengren, Rhonda J; Paxton, James W

    2015-02-01

    Curcumin (CUR) is a phytochemical that inhibits the xenobiotic ABC efflux transporters implicated in cancer multidrug resistance (MDR), such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins 1 and 5 (MRP1 and MRP5). The use of CUR in the clinic however, is complicated by its instability and poor pharmacokinetic profile. Monocarbonyl analogs of CUR (MACs) are compounds without CUR's unstable β-diketone moiety and were reported to have improved stability and in vivo disposition. Whether the MACs can be used as MDR reversal agents is less clear, as the absence of a β-diketone may negatively impact transporter inhibition. In this study, we investigated 23 heterocyclic cyclohexanone MACs for inhibitory effects against P-gp, BCRP, MRP1 and MRP5. Using flow cytometry and resistance reversal assays, we found that many of these compounds inhibited the transport activity of the ABC transporters investigated, often with much greater potency than CUR. Overall the analogs were most effective at inhibiting BCRP and we identified three compounds, A12 (2,6-bis((E)-2,5-dimethoxy-benzylidene)cyclohexanone), A13 (2,6-bis((E)-4-hydroxyl-3-methoxybenzylidene)-cyclohexanone) and B11 (3,5-bis((E)-2-fluoro-4,5-dimethoxybenzylidene)-1-methylpiperidin-4-one), as the most promising BCRP inhibitors. These compounds inhibited BCRP activity in a non-cell line, non-substrate-specific manner. Their inhibition occurred by direct transporter interaction rather than modulating protein or cell surface expression. From these results, we concluded that MACs, such as the heterocyclic cyclohexanone analogs in this study, also have potential as MDR reversal agents and may be superior alternatives to the unstable parent compound, CUR.

  12. Kaempferol suppresses lipid accumulation in macrophages through the downregulation of cluster of differentiation 36 and the upregulation of scavenger receptor class B type I and ATP-binding cassette transporters A1 and G1.

    Science.gov (United States)

    Li, Xiu-Ying; Kong, Ling-Xi; Li, Juan; He, Hai-Xia; Zhou, Yuan-Da

    2013-02-01

    The accumulation of foam cells in atherosclerotic lesions is a hallmark of early-stage atherosclerosis. Kaempferol has been shown to inhibit oxidized low-density lipoprotein (oxLDL) uptake by macrophages; however, the underlying molecular mechanisms are not yet fully investigated. In this study, we shown that treatment with kaempferol markedly suppresses oxLDL-induced macrophage foam cell formation, which occurs due to a decrease in lipid accumulation and an increase in cholesterol efflux from THP-1-derived macrophages. Additionally, the kaempferol treatment of macrophages led to the downregulation of cluster of differentiation 36 (CD36) protein levels, the upregulation of ATP-binding cassette (ABC) transporter A1 (ABCA1), scavenger receptor class B type I (SR-BI) and ABCG1 protein levels, while no effects on scavenger receptor A (SR-A) expression were observed. Kaempferol had similar effects on the mRNA and protein expression of ABCA1, SR-BI, SR-A, CD36 and ABCG1. The reduced CD36 expression following kaempferol treatment involved the inhibition of c-Jun-activator protein-1 (AP-1) nuclear translocation. The inhibition of AP-1 using the inhibitor, SP600125, confirmed this involvement, as the AP-1 inhibition significantly augmented the kaempferol-induced reduction in CD36 expression. Accordingly, the kaempferol-mediated suppression of lipid accumulation in macrophages was also augmented by SP600125. The increased expression of ABCA1, SR-BI and ABCG1 following kaempferol treatment was accompanied by the enhanced protein expression of heme oxygenase-1 (HO-1). This increase was reversed following the knockdown of the HO-1 gene using small hairpin RNA (shRNA). Moreover, the kaempferol-mediated attenuation of lipid accumulation and the promotion of cholesterol efflux was also inhibited by HO-1 shRNA. In conclusion, the c-Jun-AP‑1-dependent downregulation of CD36 and the HO-1-dependent upregulation of ABCG1, SR-BI and ABCA1 may mediate the beneficial effects of

  13. ATP regulation of type-1 inositol 1,4,5-trisphosphate receptor activity does not require walker A-type ATP-binding motifs.

    Science.gov (United States)

    Betzenhauser, Matthew J; Wagner, Larry E; Park, Hyung Seo; Yule, David I

    2009-06-12

    ATP is known to increase the activity of the type-1 inositol 1,4,5-trisphosphate receptor (InsP3R1). This effect is attributed to the binding of ATP to glycine rich Walker A-type motifs present in the regulatory domain of the receptor. Only two such motifs are present in neuronal S2+ splice variant of InsP3R1 and are designated the ATPA and ATPB sites. The ATPA site is unique to InsP3R1, and the ATPB site is conserved among all three InsP3R isoforms. Despite the fact that both the ATPA and ATPB sites are known to bind ATP, the relative contribution of these two sites to the enhancing effects of ATP on InsP3R1 function is not known. We report here a mutational analysis of the ATPA and ATPB sites and conclude neither of these sites is required for ATP modulation of InsP3R1. ATP augmented InsP3-induced Ca2+ release from permeabilized cells expressing wild type and ATP-binding site-deficient InsP3R1. Similarly, ATP increased the single channel open probability of the mutated InsP3R1 to the same extent as wild type. ATP likely exerts its effects on InsP3R1 channel function via a novel and as yet unidentified mechanism.

  14. Seminal Plasma Characteristics and Expression of ATP-binding Cassette Transporter A1 (ABCA1) in Canine Spermatozoa from Ejaculates with Good and Bad Freezability.

    Science.gov (United States)

    Schäfer-Somi, S; Palme, N

    2016-04-01

    The composition of seminal plasma and the localization of the ATP-binding cassette transporter A1 (ABCA1) in spermatozoa from good and bad freezers were compared to frozen-thawed spermatozoa from the same dog. Ejaculates were obtained from 31 stud dogs, and the sperm-rich fraction (SRF) was kept for analysis. One aliquot was used for the analysis of concentration, progressive motility (P; CASA), viability (V; CASA) and leucocyte count, and the analysis was performed by flow cytometry (FITC-PNA/PI), SCSA and HOST. In seminal plasma, concentration of albumin, cholesterol, calcium, inorganic phosphate, sodium, potassium, zinc and copper was measured. Semen smears were prepared and evaluated for the expression of ABCA1. The remainder of each ejaculate was frozen. After thawing, the quality assessment was repeated and further smears were prepared. According to post-thaw semen quality, dogs were assigned to good freezers (n = 20) or bad freezers (n = 11), the latter were defined as 40% morphologically abnormal sperm and/or Bad freezers were older than good freezers (5.3 vs 3.4 years, p bad freezers, the percentage of sperm with ABCA1 signal in the acrosome was lower (26.3% vs 35.7%, p good freezers (p bad freezer sperm, an increase in acrosome damages coincided with an increased loss of cholesterol transporters and cell death, and a lower cholesterol concentration in seminal plasma. Follow-up studies revealed whether a relation exists between these findings.

  15. Two different point mutations in ABL gene ATP-binding domain conferring Primary Imatinib resistance in a Chronic Myeloid Leukemia (CML patient: A case report

    Directory of Open Access Journals (Sweden)

    Iqbal Zafar

    2004-01-01

    Full Text Available Imatinib (Gleevec is the effective therapy for BCR-ABL positive CML patients. Point mutations have been detected in ATP-binding domain of ABL gene which disturbs the binding of Gleevec to this target leading to resistance. Detection of mutations is helpful in clinical management of imatinib resistance. We established a very sensitive (ASO PCR to detect mutations in an imatinib-resistant CML patient. Mutations C944T and T1052C were detected which cause complete partial imatinib resistance, respectively. This is the first report of multiple point mutations conferring primary imatinib resistance in same patient at the same time. Understanding the biological reasons of primary imatinib resistance is one of the emerging issues of pharmacogenomics and will be helpful in understanding primary resistance of molecularly-targeted cancer therapies. It will also be of great utilization in clinical management of imatinib resistance. Moreover, this ASO-PCR assay is very effective in detecting mutations related to imatinib resistance.

  16. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase

    Science.gov (United States)

    Pucheta-Martínez, Encarna; Saladino, Giorgio; Morando, Maria Agnese; Martinez-Torrecuadrada, Jorge; Lelli, Moreno; Sutto, Ludovico; D'Amelio, Nicola; Gervasio, Francesco Luigi

    2016-04-01

    Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.

  17. HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck

    Directory of Open Access Journals (Sweden)

    Pene-Dumitrescu Teodora

    2012-03-01

    Full Text Available Abstract Background Nef is an HIV-1 accessory protein essential for viral replication and AIDS progression. Nef interacts with a multitude of host cell signaling partners, including members of the Src kinase family. Nef preferentially activates Hck, a Src-family kinase (SFK strongly expressed in macrophages and other HIV target cells, by binding to its regulatory SH3 domain. Recently, we identified a series of kinase inhibitors that preferentially inhibit Hck in the presence of Nef. These compounds also block Nef-dependent HIV replication, validating the Nef-SFK signaling pathway as an antiretroviral drug target. Our findings also suggested that by binding to the Hck SH3 domain, Nef indirectly affects the conformation of the kinase active site to favor inhibitor association. Results To test this hypothesis, we engineered a "gatekeeper" mutant of Hck with enhanced sensitivity to the pyrazolopyrimidine tyrosine kinase inhibitor, NaPP1. We also modified the RT loop of the Hck SH3 domain to enhance interaction of the kinase with Nef. This modification stabilized Nef:Hck interaction in solution-based kinase assays, as a way to mimic the more stable association that likely occurs at cellular membranes. Introduction of the modified RT loop rendered Hck remarkably more sensitive to activation by Nef, and led to a significant decrease in the Km for ATP as well as enhanced inhibitor potency. Conclusions These observations suggest that stable interaction with Nef may induce Src-family kinase active site conformations amenable to selective inhibitor targeting.

  18. Lipid raft involved in drug resistance: relationship between multidrug resistance ATP-binding cassette transporters and lipid raft%脂筏参与耐药: 多药耐药相关ABC转运蛋白与脂筏的关系

    Institute of Scientific and Technical Information of China (English)

    王琳; 贾宇; 姜远英

    2011-01-01

    Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. Recently ATP-binding cassette (ABC) transporters, which are associated with multidrug resistance, have been found in lipid rafts; therefore they might be related to drug resistance. Here we introduce the relationship between the localization and functions of three multi-drug related ABC transporters, including two relevant to multidrug resistance in tumor cells(Pgp/ABCB1 and MRP1/ABCC1) and one relevant to multidrug resistance in Candida albicans (Cdrlp). We also discuss the influence of sphingolipids and cholesterol, two major components of lipid rafts, on the localization and function of the above three ABC transporters.%脂筏(lipid raft)和细胞的许多功能,如信号转导、蛋白质和脂类的转运等都相关.近来有研究发现,与多药耐药密切相关的ABC转运蛋白(ATP-binding cassette transporter)定位于脂筏中,因此推测脂筏可能与耐药性有一定关系.本文综述了3种和耐药相关的ABC转运蛋白的定位与其功能之间的联系,分别是和肿瘤细胞多药耐药相关的ABC转运蛋白Pgp/ABCB1、MRP1/ABCC1以及与白假丝酵母菌(白念珠菌)多药耐药相关的ABC转运蛋白Cdr1p;并进一步讨论了脂筏的重要组成成分胆固醇和鞘脂对上述3种ABC转运蛋白的定位和功能的影响.

  19. Duplicate abalone egg coat proteins bind sperm lysin similarly, but evolve oppositely, consistent with molecular mimicry at fertilization.

    Directory of Open Access Journals (Sweden)

    Jan E Aagaard

    Full Text Available Sperm and egg proteins constitute a remarkable paradigm in evolutionary biology: despite their fundamental role in mediating fertilization (suggesting stasis, some of these molecules are among the most rapidly evolving ones known, and their divergence can lead to reproductive isolation. Because of strong selection to maintain function among interbreeding individuals, interacting fertilization proteins should also exhibit a strong signal of correlated divergence among closely related species. We use evidence of such molecular co-evolution to target biochemical studies of fertilization in North Pacific abalone (Haliotis spp., a model system of reproductive protein evolution. We test the evolutionary rates (d(N/d(S of abalone sperm lysin and two duplicated egg coat proteins (VERL and VEZP14, and find a signal of co-evolution specific to ZP-N, a putative sperm binding motif previously identified by homology modeling. Positively selected residues in VERL and VEZP14 occur on the same face of the structural model, suggesting a common mode of interaction with sperm lysin. We test this computational prediction biochemically, confirming that the ZP-N motif is sufficient to bind lysin and that the affinities of VERL and VEZP14 are comparable. However, we also find that on phylogenetic lineages where lysin and VERL evolve rapidly, VEZP14 evolves slowly, and vice versa. We describe a model of sexual conflict that can recreate this pattern of anti-correlated evolution by assuming that VEZP14 acts as a VERL mimic, reducing the intensity of sexual conflict and slowing the co-evolution of lysin and VERL.

  20. Structural insights into the evolution of a non-biological protein: importance of surface residues in protein fold optimization.

    Directory of Open Access Journals (Sweden)

    Matthew D Smith

    Full Text Available Phylogenetic profiling of amino acid substitution patterns in proteins has led many to conclude that most structural information is carried by interior core residues that are solvent inaccessible. This conclusion is based on the observation that buried residues generally tolerate only conserved sequence changes, while surface residues allow more diverse chemical substitutions. This notion is now changing as it has become apparent that both core and surface residues play important roles in protein folding and stability. Unfortunately, the ability to identify specific mutations that will lead to enhanced stability remains a challenging problem. Here we discuss two mutations that emerged from an in vitro selection experiment designed to improve the folding stability of a non-biological ATP binding protein. These mutations alter two solvent accessible residues, and dramatically enhance the expression, solubility, thermal stability, and ligand binding affinity of the protein. The significance of both mutations was investigated individually and together, and the X-ray crystal structures of the parent sequence and double mutant protein were solved to a resolution limit of 2.8 and 1.65 A, respectively. Comparative structural analysis of the evolved protein to proteins found in nature reveals that our non-biological protein evolved certain structural features shared by many thermophilic proteins. This experimental result suggests that protein fold optimization by in vitro selection offers a viable approach to generating stable variants of many naturally occurring proteins whose structures and functions are otherwise difficult to study.

  1. The capacity of Listeria monocytogenes mutants with in-frame deletions in putative ATP-binding cassette transporters to form biofilms and comparison with the wild type

    Directory of Open Access Journals (Sweden)

    Marina Ceruso

    2014-02-01

    Full Text Available Listeria monocytogenes (Lm is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877 were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that DLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment.

  2. Polycyclic aromatic hydrocarbons (PAHs) mediate transcriptional activation of the ATP binding cassette transporter ABCB6 gene via the aryl hydrocarbon receptor (AhR).

    Science.gov (United States)

    Chavan, Hemantkumar; Krishnamurthy, Partha

    2012-09-14

    Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics.

  3. Prognostic significance and molecular mechanism of ATP-binding cassette subfamily C member 4 in resistance to neoadjuvant radiotherapy of locally advanced rectal carcinoma.

    Directory of Open Access Journals (Sweden)

    Zhiqi Yu

    Full Text Available BACKGROUND: Mechanism of radioresistance in rectal carcinoma remains largely unknown. We aimed to evaluate the predictive role of ATP-binding cassette subfamily C member 4 (ABCC4 in locally advanced rectal carcinoma and explore possible molecular mechanisms by which ABCC4 confers the resistance to neoadjuvant radiotherapy. METHODS: The expression of ABCC4 and P53 mutant in biopsy tissue specimens from 121 locally advanced rectal carcinoma patients was examined using immunohistochemistry. The factors contributing to 3-year overall survival and disease-free survival were evaluated using the Kaplan-Meier method and Cox proportional hazard model. Lentivirus-mediated small hairpin RNA was applied to inhibit ABCC4 expression in colorectal carcinoma cell line RKO, and investigate the radiosensitivity in xenograft model. Intracellular cyclic adenosine monophosphate concentration and cell cycle distribution following irradiation were detected. RESULTS: High expression of ABCC4 and p53 mutant in pretreated tumors, poor pathological response, and high final tumor staging were significant factors independently predicted an unfavorable prognosis of locally advanced rectal carcinoma patients after neoadjuvant radiotherapy. Down-regulation of ABCC4 expression significantly enhanced irradiation-induced suppression of tumor growth in xenograft model. Furthermore, down-regulation of ABCC4 expression enhanced intracellular cyclic adenosine monophosphate production and noticeable deficiency of G1-S phase checkpoint in cell cycle following irradiation. CONCLUSIONS: Our study suggests that ABCC4 serves as a novel predictive biomarker that is responsible for the radioresistance and predicts a poor prognosis for locally advanced rectal carcinoma after neoadjuvant radiotherapy.

  4. The Capacity of Listeria Monocytogenes Mutants with In-Frame Deletions in Putative ATP-Binding Cassette Transporters to form Biofilms and Comparison with the Wild Type

    Science.gov (United States)

    Ceruso, Marina; Fratamico, Pina; Chirollo, Claudia; Taglialatela, Rosanna; Cortesi, Maria Luisa

    2014-01-01

    Listeria monocytogenes (Lm) is a food-borne pathogen responsible for human listeriosis, an invasive infection with high mortality rates. Lm has developed efficient strategies for survival under stress conditions such as starvation and wide variations in temperature, pH, and osmolarity. Therefore, Lm can survive in food under multiple stress conditions. Detailed studies to determine the mode of action of this pathogen for survival under stress conditions are important to control Lm in food. It has been shown that genes encoding for ATP-binding cassette (ABC) transporters are induced in Lm in food, in particular under stress conditions. Previous studies showed that these genes are involved in sensitivity to nisin, acids, and salt. The aim of this study was to determine the involvement of some ABC transporters in biofilm formation. Therefore, deletion mutants of ABC transporter genes (LMOf2365_1875 and LMOf2365_1877) were created in Lm F2365, and then were compared to the wild type for their capacity to form biofilms. Lm strain F2365 was chosen as reference since the genome is fully sequenced and furthermore this strain is particularly involved in food-borne outbreaks of listeriosis. Our results showed that ΔLMOf2365_1875 had an increased capacity to form biofilms compared to the wild type, indicating that LMOf2365_1875 negatively regulates biofilm formation. A deeper knowledge on the ability to form biofilms in these mutants may help in the development of intervention strategies to control Lm in food and in the environment. PMID:27800311

  5. Solution structure of the 45-residue ATP-binding peptide of adenylate kinase as determined by 2-D NMR, FTIR, and CD spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fry, D.C.; Byler, D.M.; Susi, H.; Brown, E.M.; Kuby, S.A.; Mildyan, A.S.

    1986-05-01

    In the X-ray structure of adenylate kinase residues 1-45 exist as 47% ..cap alpha..-helix, 29% ..beta..-structure (strands and turns) and 24% coil. The solution structure of a synthetic peptide corresponding to residues 1-45, which constitutes the MgATP binding site was studied by 3 independent spectroscopic methods. Globularity of the peptide was shown by its broad NMR resonances which narrow upon denaturation, and by its ability to bind MgATP with similar affinity and conformation as the intact enzyme does. COSY and NOESY NMR methods at 250 and 500 MHz reveal proximities among NH, C..cap alpha.., and C..beta.. protons indicative of >20% ..cap alpha..-helix, and >20% ..beta..-structure. Correlation of regions of secondary structure with the primary sequence by 2D NMR indicates at least one ..cap alpha..-helix (res. 23 to 29) and two ..beta..-strands (res. 12 to 15 and 34 to 38). The broad amide I band in the deconvoluted FTIR spectrum could be fit as the sum of 4 peaks due to specific secondary structures, yielding less than or equal to=45% ..cap alpha..-helix, less than or equal to=40% ..beta..-structure and greater than or equal to=15% coil. The CD spectrum, from 185-250 nm, interpreted with a 3-parameter basis set, yielded 20 +/- 5% ..cap alpha..=helix, and less than or equal to=20% ..beta..-structure. The solution structure of peptide 1-45 thus approximates that of residues 1-45 in the crystal.

  6. Evolved Lactococcus lactis Strains for Enhanced Expression of Recombinant Membrane Proteins

    NARCIS (Netherlands)

    Martinez Linares, Daniel; Geertsma, Eric R.; Poolman, Bert

    2010-01-01

    The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant membr

  7. Proteins involved in motility and sperm-egg interaction evolve more rapidly in mouse spermatozoa.

    Science.gov (United States)

    Vicens, Alberto; Lüke, Lena; Roldan, Eduardo R S

    2014-01-01

    Proteomic studies of spermatozoa have identified a large catalog of integral sperm proteins. Rapid evolution of these proteins may underlie adaptive changes of sperm traits involved in different events leading to fertilization, although the selective forces underlying such rapid evolution are not well understood. A variety of selective forces may differentially affect several steps ending in fertilization, thus resulting in a compartmentalized adaptation of sperm proteins. Here we analyzed the evolution of genes associated to various events in the sperm's life, from sperm formation to sperm-egg interaction. Evolutionary analyses were performed on gene sequences from 17 mouse strains whose genomes have been sequenced. Four of these are derived from wild Mus musculus, M. domesticus, M. castaneus and M. spretus. We found a higher proportion of genes exhibiting a signature of positive selection among those related to sperm motility and sperm-egg interaction. Furthermore, sperm proteins involved in sperm-egg interaction exhibited accelerated evolution in comparison to those involved in other events. Thus, we identified a large set of candidate proteins for future comparative analyses of genotype-phenotype associations in spermatozoa of species subjected to different sexual selection pressures. Adaptive evolution of proteins involved in motility could be driven by sperm competition, since this selective force is known to increase the proportion of motile sperm and their swimming velocity. On the other hand, sperm proteins involved in gamete interaction could be coevolving with their egg partners through episodes of sexual selection or sexual conflict resulting in species-specific sperm-egg interactions and barriers preventing interspecies fertilization.

  8. The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes.

    Science.gov (United States)

    Rioult, Damien; Pasquier, Jennifer; Boulangé-Lecomte, Céline; Poret, Agnès; Abbas, Imane; Marin, Matthieu; Minier, Christophe; Le Foll, Frank

    2014-08-01

    In marine and estuarine species, immunotoxic and/or immunomodulatory mechanisms are the crossroad of interactions between xenobiotics, microorganisms and physicochemical variations of the environment. In mussels, immunity relies exclusively on innate responses carried out by cells collectively called hemocytes and found in the open hemolymphatic circulatory system of these organisms. However, hemocytes do not form a homogenous population of immune cells since distinct subtypes of mussel blood cells can be distinguished by cytochemistry, flow cytometry or cell motility analysis. Previous studies have also shown that these cells are able to efflux xenobiotics by means of ATP binding cassette (ABC) transporter activities conferring a multixenobiotic resistance (MXR) phenotype. ABC transporters corresponding to vertebrate class B/P-glycoprotein (P-gp) and to class C/multidrug resistance related protein (MRP) are characterized in Mytilidae. Herein, we have investigated the relative contributions of ABCB- and ABCC-mediated efflux within the different hemocyte subpopulations of Mytilus edulis mussels, collected from areas differentially impacted by chemical contaminants in Normandy (France). RT-PCR analyses provide evidence for the presence of ABCB and ABCC transporters transcripts in hemocytes. Immunodetection of ABCB/P-gp with the monoclonal antibody UIC2 in living hemocytes revealed that expression was restricted to granular structures of spread cells. Efflux transporter activities, with calcein-AM as fluorescent probe, were measured by combining flow cytometry to accurate Coulter cell size measurements in order to get a cell-volume normalized fluorescence concentration. In these conditions, basal fluorescence levels were higher in hemocytes originating from Yport (control site) than in cells collected from the harbor of Le Havre, where mussels are more exposed to with persistent pollutants. By using specific ABCB/P-gp (verapamil, PSC833, zosuquidar) and ABCC/MRP (MK

  9. Visualizing Protein Interactions and Dynamics: Evolving a Visual Language for Molecular Animation

    Science.gov (United States)

    Jenkinson, Jodie; McGill, Gael

    2012-01-01

    Undergraduate biology education provides students with a number of learning challenges. Subject areas that are particularly difficult to understand include protein conformational change and stability, diffusion and random molecular motion, and molecular crowding. In this study, we examined the relative effectiveness of three-dimensional…

  10. Three functionally diverged major White Spot Syndrome Virus structural proteins evolved by gene duplication

    NARCIS (Netherlands)

    Hulten, van M.C.W.; Goldbach, R.W.; Vlak, J.M.

    2000-01-01

    White spot syndrome virus (WSSV) is an invertebrate virus causing considerable mortality in penaeid shrimp. The oval-to-bacilliform shaped virions, isolated from infected Penaeus monodon, contain four major proteins: VP28, VP26, VP24 and VP19 (28, 26, 24 and 19 kDa, respectively). VP26 and VP24 are

  11. Brain inflammation in a chronic epilepsy model : Evolving pattern of the translocator protein during epileptogenesis

    NARCIS (Netherlands)

    Amhaoul, Halima; Hamaide, Julie; Bertoglio, Daniele; Reichel, Stephanie Nadine; Verhaeghe, Jeroen; Geerts, Elly; Dam, van Debby; De Deyn, Peter Paul; Kumar-Singh, Samir; Katsifis, Andrew; Van der Linden, Annemie; Staelens, Steven; Dedeurwaerdere, Stefanie

    2015-01-01

    Aims: A hallmark in the neuropathology of temporal lobe epilepsy is brain inflammation which has been suggested as both a biomarker and a new mechanistic target for treatments. The translocator protein (TSPO), due to its high upregulation under neuroinflammatory conditions and the availability of se

  12. Host response transcriptional profiling reveals extracellular components and ABC (ATP-binding cassette transporters gene enrichment in typhoid fever-infected Nigerian children

    Directory of Open Access Journals (Sweden)

    Resau James H

    2011-09-01

    bacterial invasion. Distinct gene expression profiles can also be obtained from acute vs. convalescent phase during typhoid fever infection. We found novel down-regulation of ABC (ATP-binding cassette transporters genes such as ABCA7, ABCC5, and ABCD4 and ATPase activity as the highest enriched pathway. Conclusions We identified unique extracellular components and ABC transporters gene enrichments in typhoid fever-infected Nigerian children, which have never been reported. These enriched gene clusters may represent novel targeted pathways to improve diagnostic, prognostic, therapeutic and next-generation vaccine strategies for typhoid fever in Africa.

  13. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn

    Science.gov (United States)

    Dively, Galen P.; Finkenbinder, Chad

    2016-01-01

    sweet corn provide strong evidence of field-evolved resistance in H. zea populations to multiple Cry toxins. The high adoption rate of Bt field corn and cotton, along with the moderate dose expression of Cry1Ab and related Cry toxins in these crops, and decreasing refuge compliance probably contributed to the evolution of resistance. Our results have important implications for resistance monitoring, refuge requirements and other regulatory policies, cross-resistance issues, and the sustainability of the pyramided Bt technology. PMID:28036388

  14. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  15. jEcho: an Evolved weight vector to CHaracterize the protein's posttranslational modification mOtifs.

    Science.gov (United States)

    Zhao, Miaomiao; Zhang, Zhao; Mai, Guoqin; Luo, Youxi; Zhou, Fengfeng

    2015-06-01

    Protein's posttranslational modification (PTM) represents a major dynamic regulation of protein functions after the translation of polypeptide chains from mRNA molecule. Compared with the costly and labor-intensive wet laboratory characterization of PTMs, the computer-based detection of PTM residues has been a major complementary technique in recent years. Previous studies demonstrated that the PTM-flanking positions convey different contributions to the computational detection of PTM residue, but did not directly translate this observation into the in silico PTM prediction. We propose a weight vector to represent the variant contributions of the PTM-flanking positions and use an evolutionary algorithm to optimize the vector. Even a simple nearest neighbor algorithm with the incorporated optimal weight vector outperforms the currently available algorithms. The algorithm is implemented as an easy-to-use computer program, jEcho version 1.0. The implementation language, Java, makes jEcho platform-independent and visually interactive. The predicted results may be directly exported as publication-quality images or text files. jEcho may be downloaded from http://www.healthinformaticslab.org/supp/ .

  16. Visualizing protein interactions and dynamics: evolving a visual language for molecular animation.

    Science.gov (United States)

    Jenkinson, Jodie; McGill, Gaël

    2012-01-01

    Undergraduate biology education provides students with a number of learning challenges. Subject areas that are particularly difficult to understand include protein conformational change and stability, diffusion and random molecular motion, and molecular crowding. In this study, we examined the relative effectiveness of three-dimensional visualization techniques for learning about protein conformation and molecular motion in association with a ligand-receptor binding event. Increasingly complex versions of the same binding event were depicted in each of four animated treatments. Students (n = 131) were recruited from the undergraduate biology program at University of Toronto, Mississauga. Visualization media were developed in the Center for Molecular and Cellular Dynamics at Harvard Medical School. Stem cell factor ligand and cKit receptor tyrosine kinase were used as a classical example of a ligand-induced receptor dimerization and activation event. Each group completed a pretest, viewed one of four variants of the animation, and completed a posttest and, at 2 wk following the assessment, a delayed posttest. Overall, the most complex animation was the most effective at fostering students' understanding of the events depicted. These results suggest that, in select learning contexts, increasingly complex representations may be more desirable for conveying the dynamic nature of cell binding events.

  17. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  18. Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche.

    Directory of Open Access Journals (Sweden)

    Domenico Simone

    Full Text Available BACKGROUND: The twin-arginine translocation (Tat protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. CONCLUSIONS/SIGNIFICANCE: TatC proteins appear to be diversifying within

  19. Phosphorylation at Ser²⁶ in the ATP-binding site of Ca²⁺/calmodulin-dependent kinase II as a mechanism for switching off the kinase activity.

    Science.gov (United States)

    Yilmaz, Mehtap; Gangopadhyay, Samudra S; Leavis, Paul; Grabarek, Zenon; Morgan, Kathleen G

    2013-02-07

    CaMKII (Ca²⁺/calmodulin-dependent kinase II) is a serine/threonine phosphotransferase that is capable of long-term retention of activity due to autophosphorylation at a specific threonine residue within each subunit of its oligomeric structure. The γ isoform of CaMKII is a significant regulator of vascular contractility. Here, we show that phosphorylation of CaMKII γ at Ser²⁶, a residue located within the ATP-binding site, terminates the sustained activity of the enzyme. To test the physiological importance of phosphorylation at Ser²⁶, we generated a phosphospecific Ser²⁶ antibody and demonstrated an increase in Ser²⁶ phosphorylation upon depolarization and contraction of blood vessels. To determine if the phosphorylation of Ser²⁶ affects the kinase activity, we mutated Ser²⁶ to alanine or aspartic acid. The S26D mutation mimicking the phosphorylated state of CaMKII causes a dramatic decrease in Thr²⁸⁷ autophosphorylation levels and greatly reduces the catalytic activity towards an exogenous substrate (autocamtide-3), whereas the S26A mutation has no effect. These data combined with molecular modelling indicate that a negative charge at Ser²⁶ of CaMKII γ inhibits the catalytic activity of the enzyme towards its autophosphorylation site at Thr²⁸⁷ most probably by blocking ATP binding. We propose that Ser²⁶ phosphorylation constitutes an important mechanism for switching off CaMKII activity.

  20. NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Yusuke Suenaga

    2014-01-01

    Full Text Available The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease.

  1. Tiaozhi Tongmai Granules reduce atherogenesis and promote the expression of ATP-binding cassette transporter A1 in rabbit atherosclerotic plaque macrophages and the liver

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2014-07-01

    Conclusions: Tiaozhi Tongmai Granules appear to have an anti-atherogenic effect that is most likely mediated by simultaneously upregulating the protein expression of ABCA1 in rabbit atherosclerotic plaque macrophages and in the liver.

  2. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells

    NARCIS (Netherlands)

    Hinrichs, JWJ; Klappe, K; Hummel, [No Value; Kok, JW

    2004-01-01

    In this study we show that P-glycoprotein in multi-drug-resistant 2780AD human ovarian carcinoma cells and multidrug resistance-associated protein 1 in multi-drug-resistant HT29(col) human colon carcinoma cells are predominantly located in Lubrol-based detergent-insoluble glycosphingolipid-enriched

  3. Cystathionine beta-Synthase (CBS) Domains 1 and 2 Fulfill Different Roles in Ionic Strength Sensing of the ATP-binding Cassette (ABC) Transporter OpuA

    NARCIS (Netherlands)

    Karasawa, Akira; Erkens, Guus B.; Berntsson, Ronnie P. -A.; Otten, Renee; Schuurman-Wolters, Gea K.; Mulder, Frans A. A.; Poolman, Bert

    2011-01-01

    The cystathionine beta-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are crit

  4. Multidrug resistance associated proteins in multidrug resistance

    OpenAIRE

    Sodani, Kamlesh; Patel, Atish; Kathawala, Rishil J.; Chen, Zhe-Sheng

    2012-01-01

    Multidrug resistance proteins (MRPs) are members of the C family of a group of proteins named ATP-binding cassette (ABC) transporters. These ABC transporters together form the largest branch of proteins within the human body. The MRP family comprises of 13 members, of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell. They are mainly lipophilic anionic transporters and are reported to transport fr...

  5. New World and Old World Alphaviruses Have Evolved to Exploit Different Components of Stress Granules, FXR and G3BP Proteins, for Assembly of Viral Replication Complexes

    Science.gov (United States)

    Kim, Dal Young; Reynaud, Josephine M.; Rasalouskaya, Aliaksandra; Akhrymuk, Ivan; Mobley, James A.; Frolov, Ilya; Frolova, Elena I.

    2016-01-01

    The positive-strand RNA viruses initiate their amplification in the cell from a single genome delivered by virion. This single RNA molecule needs to become involved in replication process before it is recognized and degraded by cellular machinery. In this study, we show that distantly related New World and Old World alphaviruses have independently evolved to utilize different cellular stress granule-related proteins for assembly of complexes, which recruit viral genomic RNA and facilitate formation of viral replication complexes (vRCs). Venezuelan equine encephalitis virus (VEEV) utilizes all members of the Fragile X syndrome (FXR) family, while chikungunya and Sindbis viruses exploit both members of the G3BP family. Despite being in different families, these proteins share common characteristics, which determine their role in alphavirus replication, namely, the abilities for RNA-binding and for self-assembly into large structures. Both FXR and G3BP proteins interact with virus-specific, repeating amino acid sequences located in the C-termini of hypervariable, intrinsically disordered domains (HVDs) of viral nonstructural protein nsP3. We demonstrate that these host factors orchestrate assembly of vRCs and play key roles in RNA and virus replication. Only knockout of all of the homologs results in either pronounced or complete inhibition of replication of different alphaviruses. The use of multiple homologous proteins with redundant functions mediates highly efficient recruitment of viral RNA into the replication process. This independently evolved acquisition of different families of cellular proteins by the disordered protein fragment to support alphavirus replication suggests that other RNA viruses may utilize a similar mechanism of host factor recruitment for vRC assembly. The use of different host factors by alphavirus species may be one of the important determinants of their pathogenesis. PMID:27509095

  6. NS4A protein as a marker of HCV history suggests that different HCV genotypes originally evolved from genotype 1b

    Directory of Open Access Journals (Sweden)

    Asad Sultan

    2011-06-01

    Full Text Available Abstract Background The 9.6 kb long RNA genome of Hepatitis C virus (HCV is under the control of RNA dependent RNA polymerase, an error-prone enzyme, for its transcription and replication. A high rate of mutation has been found to be associated with RNA viruses like HCV. Based on genetic variability, HCV has been classified into 6 different major genotypes and 11 different subtypes. However this classification system does not provide significant information about the origin of the virus, primarily due to high mutation rate at nucleotide level. HCV genome codes for a single polyprotein of about 3011 amino acids which is processed into structural and non-structural proteins inside host cell by viral and cellular proteases. Results We have identified a conserved NS4A protein sequence for HCV genotype 3a reported from four different continents of the world i.e. Europe, America, Australia and Asia. We investigated 346 sequences and compared amino acid composition of NS4A protein of different HCV genotypes through Multiple Sequence Alignment and observed amino acid substitutions C22, V29, V30, V38, Q46 and Q47 in NS4A protein of genotype 1b. Furthermore, we observed C22 and V30 as more consistent members of NS4A protein of genotype 1a. Similarly Q46 and Q47 in genotype 5, V29, V30, Q46 and Q47 in genotype 4, C22, Q46 and Q47 in genotype 6, C22, V38, Q46 and Q47 in genotype 3 and C22 in genotype 2 as more consistent members of NS4A protein of these genotypes. So the different amino acids that were introduced as substitutions in NS4A protein of genotype 1 subtype 1b have been retained as consistent members of the NS4A protein of other known genotypes. Conclusion These observations indicate that NS4A protein of different HCV genotypes originally evolved from NS4A protein of genotype 1 subtype 1b, which in turn indicate that HCV genotype 1 subtype 1b established itself earlier in human population and all other known genotypes evolved later as a result of

  7. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    Science.gov (United States)

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.

  8. 4,6-Substituted-1,3,5-triazin-2(1H)-ones as monocyclic catalytic inhibitors of human DNA topoisomerase IIα targeting the ATP binding site.

    Science.gov (United States)

    Pogorelčnik, Barbara; Janežič, Matej; Sosič, Izidor; Gobec, Stanislav; Solmajer, Tom; Perdih, Andrej

    2015-08-01

    Human DNA topoisomerase IIα (htIIα) is a validated target for the development of novel anticancer agents. Starting from our discovered 4-amino-1,3,5-triazine inhibitors of htIIα, we investigated a library of 2,4,6-trisubstituted-1,3,5-triazines for novel inhibitors that bind to the htIIα ATP binding site using a combination of structure-based and ligand-based pharmacophore models and molecular docking. 4,6-substituted-1,3,5-triazin-2(1H)-ones 8, 9 and 14 were identified as novel inhibitors with activity comparable to the established drug etoposide (1). Compound 8 inhibits the htIIα decatenation in a superior fashion to etoposide. Cleavage assays demonstrated that selected compounds 8 and 14 do not act as poisons and antagonize the poison effect of etoposide. Microscale thermophoresis (MST) confirmed binding of compound 8 to the htIIα ATPase domain and compound 14 effectively inhibits the htIIα mediated ATP hydrolysis. The molecular dynamics simulation study provides further insight into the molecular recognition. The 4,6-disubstituted-1,3,5-triazin-2(1H)-ones represent the first validated monocyclic class of catalytic inhibitors that bind to the to the htIIα ATPase domain.

  9. Spectrum of mutations in the ATP binding domain of ATP7B gene of Wilson Disease in a regional Indian cohort.

    Science.gov (United States)

    Guggilla, Sreenivasa Rao; Senagari, Jalandhar Reddy; Rao, P N; Madireddi, Sujatha

    2015-09-10

    Wilson disease is an autosomal recessive disorder of abnormal copper accumulation in the liver, brain, kidney and cornea, resulting in hepatic and neurological abnormalities, which results from impaired ATP7B protein function due to mutations in candidate ATP7B gene, till date more than 500 disease causing mutations were found. In India most disease causing mutations were identified in ATP-BD. DNA samples of the 101 WD cases and 100 control population were analyzed for mutations. 11 mutations were identified in 57 chromosomes. Three novel mutations, c.3310T>A (p.Cys1104Ser), c.3337C>A (p.Leu1113Met) on exon 15 and c.3877G>A (p.Glu1293Lys) on exon 18 were identified for the first time in the ATP7B gene. Two mutations, c.3121C>T (p.Arg1041Trp) and c.3128T>C (p.Leu1043Pro) on exon 14 were discovered for the first time in Indian Wilson disease patients. Four previously reported mutations c.3008C>T, c.3029A>G on exon 13, c.3182G>A on exon 14 and c.3809A>G on exon 18 from South India were also found in this study. Our research has enriched the spectrum of mutations of the ATP7B gene in the south Indian population. The detection of new mutations in the ATP7B gene can aid in genetic counseling and clinical or/prenatal diagnosis.

  10. The bovine ATP-binding cassette transporter ABCG2 Tyr581Ser single-nucleotide polymorphism increases milk secretion of the fluoroquinolone danofloxacin.

    Science.gov (United States)

    Otero, Jon A; Real, Rebeca; de la Fuente, Álvaro; Prieto, Julio G; Marqués, Margarita; Álvarez, Ana I; Merino, Gracia

    2013-03-01

    The bovine adenosine triphosphate-binding cassette transporter G2 (ABCG2/breast cancer resistance protein) polymorphism Tyr581Ser (Y581S) has recently been shown to increase in vitro transepithelial transport of antibiotics. Since this transporter has been extensively related to the active secretion of drugs into milk, the potential in vivo effect of this polymorphism on secretion of xenobiotics in livestock could have striking consequences for milk production, the dairy industry, and public health. Our purpose was to study the in vivo effect of this polymorphism on the secretion of danofloxacin, a widely used veterinary antibiotic, into milk. Danofloxacin (1.25 mg/kg) was administered to six Y/Y 581 homozygous and six Y/S 581 heterozygous lactating cows, and plasma and milk samples were collected and analyzed by high-performance liquid chromatography. No differences were found in the pharmacokinetic parameters of danofloxacin in plasma between the two groups of animals. In contrast, Y/S heterozygous cows showed a 2-fold increase in danofloxacin levels in milk. In addition, the pharmacokinetic elimination parameters, mean residence time and elimination half-life, were significantly lower in the milk of the animals carrying the Y/S polymorphism. These in vivo results are in agreement with our previously published in vitro data, which showed a greater capacity of the S581 variant in accumulation assays, and demonstrate, for the first time, an important effect of the Y581S single-nucleotide polymorphism on antibiotic secretion into cow milk. These findings could be extended to other ABCG2 substrates, and may be relevant for the treatment of mastitis and for the design of accurate and novel strategies to handle milk residues.

  11. NMR studies of the MgATP binding site of adenylate kinase and of a 45-residue peptide fragment of the enzyme.

    Science.gov (United States)

    Fry, D C; Kuby, S A; Mildvan, A S

    1985-08-13

    Proton NMR was used to study the interaction of beta,gamma-bidentate Cr3+ATP and MgATP with rabbit muscle adenylate kinase, which has 194 amino acids, and with a synthetic peptide consisting of residues 1-45 of the enzyme, which has previously been shown to bind MgepsilonATP [Hamada, M., Palmieri, R. H., Russell, G. A., & Kuby, S. A. (1979) Arch. Biochem. Biophys. 195, 155-177]. The peptide is globular and binds Cr3+ATP competitively with MgATP with a dissociation constant, KD(Cr3+ATP) = 35 microM, comparable to that of the complete enzyme [KI(Cr3+ATP) = 12 microM]. Time-dependent nuclear Overhauser effects (NOE's) were used to measure interproton distances on enzyme- and peptide-bound MgATP. The correlation time was measured directly for peptide-bound MgATP by studying the frequency dependence of the NOE's at 250 and 500 MHz. The H2' to H1' distance so obtained (3.07 A) was within the range established by X-ray and model-building studies of nucleotides (2.9 +/- 0.2 A). Interproton distances yielded conformations of enzyme- and peptide-bound MgATP with indistinguishable anti-glycosyl torsional angles (chi = 63 +/- 12 degrees) and 3'-endo/O1'-endo ribose puckers (sigma = 96 +/- 12 degrees). Enzyme- and peptide-bound MgATP molecules exhibited different C4'-C5' torsional angles (gamma) of 170 degrees and 50 degrees, respectively. Ten intermolecular NOE's from protons of the enzyme and four such NOE's from protons of the peptide to protons of bound MgATP were detected, which indicated proximity of the adenine ribose moiety to the same residues on both the enzyme and the peptide. Paramagnetic effects of beta,gamma-bidentate Cr3+ATP on the longitudinal relaxation rates of protons of the peptide provided a set of distances to the side chains of five residues, which allowed the location of the bound Cr3+ atom to be uniquely defined. Distances from enzyme-bound Cr3+ATP to the side chains of three residues of the protein agreed with those measured for the peptide. The mutual

  12. Heat Shock Protein 90 Inhibitors repurposed against Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Dea eShahinas

    2015-04-01

    Full Text Available Hsp90 is an essential chaperone responsible for trafficking a vast array of client proteins, which are substrates that Hsp90 regulates in eukaryotic cells under stress conditions. The ATP-binding N-terminal domain of Hsp90 (also known as a GHKL type ATPase domain can serve as a specific drug target, because sufficient structural diversity in the ATP-binding pocket of Hsp90 allows for ortholog selectivity of Hsp90 inhibitors. The primary objective of this study is to identify inhibitors specific for the ATP-binding domain of Entamoeba histolytica Hsp90 (EhHsp90. An additional aim, using a combination of site-directed mutagenesis and a protein in vitro assay, is to show that the antiparasitic activity of Hsp90 inhibitors is dependent on specific residues within the ATP-binding domain. Here, we tested the activity of 43 inhibitors of Hsp90 that we previously identified using a high-throughput screen. Of the 43 compounds tested, 19 competed for binding of the EhHsp90 ATP-binding domain. Five out of the 19 EhHsp90 protein hits demonstrated activity against E. histolytica in vitro culture: rifabutin, rutilantin, cetylpyridinium chloride, pararosaniline pamoate and gentian violet. These 5 top E. histolytica Hsp90 inhibitors showed 30-100% inhibition of E. histolytica in culture in the micromolar range. These data suggest that E. histolytica-specific Hsp90 inhibitors are possible to identify and provide important lead compounds for the development of novel antiamebic drugs.

  13. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins

    NARCIS (Netherlands)

    Hollenstein, K.; Comellas-Bigler, M.; Bevers, L.E.; Feiters, M.C.; Meyer-Klaucke, W.; Hagedoorn, P.-L.; Locher, K.P.

    2009-01-01

    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO4 2−) and tungstate (WO4 2−). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across th

  14. Novel mechanism of bacteriocin secretion and immunity carried out by lactococcal multidrug resistance proteins

    NARCIS (Netherlands)

    Gajic, O; Buist, G; Kojic, M; Topisirovic, L; Kuipers, OP; Kok, J

    2003-01-01

    A natural isolate of Lactococcus lactis was shown to produce two narrow spectrum class II bacteriocins, designated LsbA and LsbB. The cognate genes are located on a 5.6-kb plasmid within a gene cluster specifying LmrB, an ATP-binding cassette-type multidrug resistance transporter protein. LsbA is a

  15. ATP-Binding Cassette Systems of Brucella

    Directory of Open Access Journals (Sweden)

    Dominic C. Jenner

    2009-01-01

    Full Text Available Brucellosis is a prevalent zoonotic disease and is endemic in the Middle East, South America, and other areas of the world. In this study, complete inventories of putative functional ABC systems of five Brucella species have been compiled and compared. ABC systems of Brucella melitensis 16M, Brucella abortus 9-941, Brucella canis RM6/66, Brucella suis 1330, and Brucella ovis 63/290 were identified and aligned. High numbers of ABC systems, particularly nutrient importers, were found in all Brucella species. However, differences in the total numbers of ABC systems were identified (B. melitensis, 79; B. suis, 72; B. abortus 64; B. canis, 74; B. ovis, 59 as well as specific differences in the functional ABC systems of the Brucella species. Since B. ovis is not known to cause human brucellosis, functional ABC systems absent in the B. ovis genome may represent virulence factors in human brucellosis.

  16. Conformational changes and ligand recognition of Escherichia coli D-xylose binding protein revealed

    DEFF Research Database (Denmark)

    Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Park, Chankyu

    2010-01-01

    ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-r...

  17. Pharmacophore modeling of nilotinib as an inhibitor of ATP-binding cassette drug transporters and BCR-ABL kinase using a three-dimensional quantitative structure-activity relationship approach.

    Science.gov (United States)

    Shukla, Suneet; Kouanda, Abdul; Silverton, Latoya; Talele, Tanaji T; Ambudkar, Suresh V

    2014-07-07

    Nilotinib (Tasigna) is a tyrosine kinase inhibitor approved by the FDA to treat chronic phase chronic myeloid leukemia patients. It is also a transport substrate of the ATP-binding cassette (ABC) drug efflux transporters ABCB1 (P-glycoprotein, P-gp) and ABCG2 (BCRP), which may have an effect on the pharmacokinetics and toxicity of this drug. The goal of this study was to identify pharmacophoric features of nilotinib in order to potentially develop specific inhibitors of BCR-ABL kinase with minimal interactions with ABC drug transporters. Three-dimensional pharmacophore modeling and quantitative structure-activity relationship (QSAR) studies were carried out on a series of nilotinib analogues to identify chemical features that contribute to inhibitory activity of nilotinib against BCR-ABL kinase activity, P-gp, and ABCG2. Twenty-five derivatives of nilotinib were synthesized and were then tested to measure their activity to inhibit BCR-ABL kinase and to inhibit the function of ABC drug transporters. A set of in vitro experiments including kinase activity and cell-based transport assays and photolabeling of P-gp and ABCG2 with a transport substrate, [(125)I]-iodoarylazido-prazosin (IAAP), were carried out in isolated membranes to evaluate the potency of the derivatives to inhibit the function of ABC drug transporters and BCR-ABL kinase. Sixteen, fourteen, and ten compounds were selected as QSAR data sets, respectively, to generate PHASE v3.1 pharmacophore models for BCR-ABL kinase, ABCG2, and P-gp inhibitors. The IC50 values of these derivatives against P-gp, ABCG2, or BCR-ABL kinase were used to generate pharmacophore features required for optimal interactions with these targets. A seven-point pharmacophore (AADDRRR) for BCR-ABL kinase inhibitory activity, a six-point pharmacophore (ADHRRR) for ABCG2 inhibitory activity, and a seven-point pharmacophore (AADDRRR) for P-gp inhibitory activity were generated. The derived models clearly demonstrate high predictive power

  18. The catalytic subunit of human protein kinase CK2 structurally deviates from its maize homologue in complex with the nucleotide competitive inhibitor emodin

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Klopffleisch, Karsten; Issinger, Olaf-Georg;

    2008-01-01

    in the ATP-binding loop, whereas human CK2alpha shows its largest adaptations in the hinge region connecting the two main domains of the protein kinase core. These observations emphasize the importance of local plasticity for ligand binding and demonstrate that two orthologues of an enzyme can behave quite...

  19. Human breast cancer resistance protein : Interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine

    NARCIS (Netherlands)

    Pavek, P; Merino, G; Wagenaar, E; Bolscher, E; Novotna, M; Jonker, JW; Schinkel, AH

    2005-01-01

    The breast cancer resistance protein (BCRP/ABCG2) is an ATP-binding cassette drug efflux transporter that extrudes xenotoxins from cells, mediating drug resistance and affecting the pharmacological behavior of many compounds. To study the interaction of human wild-type BCRP with steroid drugs, hormo

  20. Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export

    OpenAIRE

    Evers, R.; Haas, M; Sparidans, R; Beijnen, J.; Wielinga, P R; Lankelma, J.; Borst, P

    2000-01-01

    The multidrug resistance proteins MRP1 and MRP2 are members of the same subfamily of ATP-binding cassette transporters. Besides organic molecules conjugated to negatively charged ligands, these proteins also transport cytotoxic drugs for which no negatively charged conjugates are known to exist. In polarized MDCKII cells, MRP1 routes to the lateral plasma membrane, and MRP2 to the apical plasma membrane. In these cells MRP1 transports daunorubicin, and MRP2 vinblastine; both transporters expo...

  1. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.

    Science.gov (United States)

    Wei, Shipeng; Roessler, Bryan C; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L; Kirk, Kevin L

    2014-07-18

    ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs.

  2. Backward Evolving Quantum States

    CERN Document Server

    Vaidman, L

    2006-01-01

    The basic concept of the two-state vector formalism, which is the time symmetric approach to quantum mechanics, is the backward evolving quantum state. However, due to the time asymmetry of the memory's arrow of time, the possible ways to manipulate a backward evolving quantum state differ from those for a standard, forward evolving quantum state. The similarities and the differences between forward and backward evolving quantum states regarding the no-cloning theorem, nonlocal measurements, and teleportation are discussed. The results are relevant not only in the framework of the two-state vector formalism, but also in the framework of retrodictive quantum theory.

  3. Recent advances in protein kinase inhibition: current molecular scaffolds used for inhibitor synthesis.

    Science.gov (United States)

    Stover, D R; Lydon, N B; Nunes, J J

    1999-07-01

    Early efforts to discover and develop protein kinase inhibitors have focused largely on a small group of oncology targets such as the EGFR and PKC enzymes. More recently, hundreds of protein kinases have been identified at the genetic level, many of which are now being assigned functions in a variety of signaling pathways. Additionally, mutagenesis and X-ray crystallographic studies have further defined common structural features associated with binding of the ATP cofactor within a conserved ATP binding cleft. These studies have also demonstrated significant differences in the ATP binding cleft between individual kinases, providing a molecular basis for understanding and exploiting inhibitor specificity. The current review will focus on recent developments in the field of ATP site-directed inhibitors with particular emphasis on the major scaffolds being derivatized to take advantage of variable regions of the active site.

  4. 三磷酸腺苷结合盒转运体A1在巨噬细胞胆固醇流出中的作用%Effects of ATP binding cassette transporter A1 on cholesterol efflux in macrophages

    Institute of Scientific and Technical Information of China (English)

    唐朝克; 严鹏科; 杨永宗

    2003-01-01

    Tangier disease is caused by mutations in ATP binding cassette transporter AI( ABCA1).ABCA1 interacts with lipid-free apolipoproteins, promoting phospholipid and cholesterol ettlux fzom cells and giving rise to HDL particles. ABCA1 may act as a phospholipid translocase facilitating phospholipid binding to apoA-Ⅰ. ABCA1 gene expression is upregulated in cholesterol-loaded cells as a result of activation of IXR/RXR- mediated gene transcription. LXR and RXR coordinately induce a battery of genes mediating cellular cholesterol efllux, centripetal cholesterol tramport, and cholesterol excretion in bile. Small- molecule activators of LXR/RXR or other stimulators of macrophage or intestinal cholesterol efl]ux hold great promise as future treat-ments for atherosclerosis.

  5. Modeling Evolving Innovation Networks

    OpenAIRE

    Koenig, Michael D.; Battiston, Stefano; Schweitzer, Frank

    2007-01-01

    We develop a new framework for modeling innovation networks which evolve over time. The nodes in the network represent firms, whereas the directed links represent unilateral interactions between the firms. Both nodes and links evolve according to their own dynamics and on different time scales. The model assumes that firms produce knowledge based on the knowledge exchange with other firms, which involves both costs and benefits for the participating firms. In order to increase their knowledge...

  6. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.

    Science.gov (United States)

    Ramjeesingh, Mohabir; Ugwu, Francisca; Stratford, Fiona L L; Huan, Ling-Jun; Li, Canhui; Bear, Christine E

    2008-06-01

    The two NBDs (nucleotide-binding domains) of ABC (ATP-binding-cassette) proteins function in a complex to mediate ATPase activity and this activity has been linked to their regulated transport activity. A similar model has been proposed for CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel defective in cystic fibrosis, wherein ATP binding and hydrolysis regulate the channel gate. Recently, it was shown that the individual NBDs isolated from CFTR primarily mediate adenylate kinase activity, raising the possibility that this activity may also contribute to gating of the CFTR channel. However, this present study shows that whereas the isolated NBDs exhibit adenylate kinase activity, the full-length purified and reconstituted CFTR protein functions as an ATPase, arguing that the enzymatic activity of the NBDs is dependent on their molecular context and appropriate domain-domain assembly. As expected, the disease-causing mutant bearing a mutation in the ABC signature motif, CFTR-G551D, exhibited a markedly reduced ATPase activity. Furthermore, mutation of the putative catalytic base in CFTR caused a reduction in ATPase activity, with the CFTR-E1371Q mutant supporting a low level of residual activity. Neither of these mutants exhibited detectable adenylate kinase activity. Together, these findings support the concept that the molecular mechanism of action of CFTR is dependent on ATP binding and hydrolysis, and that the structure of prokaryotic ABC ATPases provide a useful template for understanding their mechanism of action.

  7. Crystal structure of the protein At3g01520, a eukaryotic universal stress protein-like protein from Arabidopsis thaliana in complex with AMP.

    Science.gov (United States)

    Kim, Do Jin; Bitto, Eduard; Bingman, Craig A; Kim, Hyun-Jung; Han, Byung Woo; Phillips, George N

    2015-07-01

    Members of the universal stress protein (USP) family are conserved in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants and confer abilities to respond to a wide range of environmental stresses. Arabidopsis thaliana contains 44 USP domain-containing proteins, and USP domain is found either in a small protein with unknown physiological function or in an N-terminal portion of a multi-domain protein, usually a protein kinase. Here, we report the first crystal structure of a eukaryotic USP-like protein encoded from the gene At3g01520. The crystal structure of the protein At3g01520 was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 21.8% (Rfree = 26.1%) at 2.5 Å resolution. The crystal structure includes three At3g01520 protein dimers with one AMP molecule bound to each protomer, comprising a Rossmann-like α/β overall fold. The bound AMP and conservation of residues in the ATP-binding loop suggest that the protein At3g01520 also belongs to the ATP-binding USP subfamily members.

  8. Ras GTPase-like protein MglA, a controller of bacterial social-motility in Myxobacteria, has evolved to control bacterial predation by Bdellovibrio.

    Directory of Open Access Journals (Sweden)

    David S Milner

    2014-04-01

    Full Text Available Bdellovibrio bacteriovorus invade Gram-negative bacteria in a predatory process requiring Type IV pili (T4P at a single invasive pole, and also glide on surfaces to locate prey. Ras-like G-protein MglA, working with MglB and RomR in the deltaproteobacterium Myxococcus xanthus, regulates adventurous gliding and T4P-mediated social motility at both M. xanthus cell poles. Our bioinformatic analyses suggested that the GTPase activating protein (GAP-encoding gene mglB was lost in Bdellovibrio, but critical residues for MglA(Bd GTP-binding are conserved. Deletion of mglA(Bd abolished prey-invasion, but not gliding, and reduced T4P formation. MglA(Bd interacted with a previously uncharacterised tetratricopeptide repeat (TPR domain protein Bd2492, which we show localises at the single invasive pole and is required for predation. Bd2492 and RomR also interacted with cyclic-di-GMP-binding receptor CdgA, required for rapid prey-invasion. Bd2492, RomR(Bd and CdgA localize to the invasive pole and may facilitate MglA-docking. Bd2492 was encoded from an operon encoding a TamAB-like secretion system. The TamA protein and RomR were found, by gene deletion tests, to be essential for viability in both predatory and non-predatory modes. Control proteins, which regulate bipolar T4P-mediated social motility in swarming groups of deltaproteobacteria, have adapted in evolution to regulate the anti-social process of unipolar prey-invasion in the "lone-hunter" Bdellovibrio. Thus GTP-binding proteins and cyclic-di-GMP inputs combine at a regulatory hub, turning on prey-invasion and allowing invasion and killing of bacterial pathogens and consequent predatory growth of Bdellovibrio.

  9. Evolutionarily evolved discriminators in the 3-TPR domain of the Toc64 family involved in protein translocation at the outer membrane of chloroplasts and mitochondria.

    Science.gov (United States)

    Mirus, Oliver; Bionda, Tihana; von Haeseler, Arndt; Schleiff, Enrico

    2009-08-01

    Transport of polypeptides across membranes is a general and essential cellular process utilised by molecular machines. At least one component of these complexes contains a domain composed of three tetratricopeptide repeat (3-TPR) motifs. We have focussed on the receptor Toc64 to elucidate the evolved functional specifications of its 3-TPR domain. Toc64 is a component of the Toc core complex and functionally replaces Tom70 at the outer membrane of mitochondria in plants. Its 3-TPR domain recognises the conserved C-terminus of precursor-bound chaperones. We built homology models of the 3-TPR domain of chloroplastic Toc64 from different species and of the mitochondrial isoform from Arabidopsis. Guided by modelling, we identified residues essential for functional discrimination of the differently located isoforms to be located almost exclusively on the convex surface of the 3-TPR domain. The only exception is at568Ser/ps557Met, which is positioned in the ligand-binding groove. The functional implications of the homology models are discussed.

  10. Methods Evolved by Observation

    Science.gov (United States)

    Montessori, Maria

    2016-01-01

    Montessori's idea of the child's nature and the teacher's perceptiveness begins with amazing simplicity, and when she speaks of "methods evolved," she is unveiling a methodological system for observation. She begins with the early childhood explosion into writing, which is a familiar child phenomenon that Montessori has written about…

  11. Inhibiting NF-K B increases cholesterol efflux from THP-1 derived- foam cells treated with Angll via up-regulating the expression of ATP-binding cassette transporter A1

    Institute of Scientific and Technical Information of China (English)

    Kun Liu; Yanfu Wang; Zhijian Chen; Yuhua Liao; Xiang Gao; Jian Chen

    2008-01-01

    Objective:To study the role of nuclear factor-kappa B(NF- K B) in cholesterol efflux from THP-I derived-foam cells treated with Angiotensin Ⅱ (Ang Ⅱ ). Methods:Cultured THP-l derived-foam cells were treated with Ang Ⅱ or preincubated with tosyl-phenylalan inechloromethyl-ketone(TPCK) NF-K B inhibitor. The levels of activated NF-K B in the cells were examined by sandwich ELISA. Cellular cholesterol content was studied by electron microscopy scanning and zymochemistry via fluorospectrophotometer and cholesterol efflux was detected by scintillation counting technique. ABCAI mRNA and protein were quantified by RT-PCR and Western blotting. Results:Addition of TPCK to the cells before Ang Ⅱ stimulation attenuated the response of NF- K B p65 nuclear translocation induced by Ang Ⅱ and showed no peak in foam cells group and caused a reduction in cholesterol content and an increase in cholesterol effiux by 24.1%(P < 0.05) and 41.1%(P < 0.05) respectively, when compared with Ang Ⅱ group. In accordance, the ABCAl mRNA and protein were increased by 30% and 19%(P< 0.05) respectively, when compared with Ang Ⅱ group. Conclusion:Ang Ⅱ can down- regulate ABCAI in THP-l derived-foam cells via NF- K B, which leads to less cholesterol effiux and the increase of cholesterol content with the consequence of the promotion of atherosclerosis.

  12. EVOLVE 2014 International Conference

    CERN Document Server

    Tantar, Emilia; Sun, Jian-Qiao; Zhang, Wei; Ding, Qian; Schütze, Oliver; Emmerich, Michael; Legrand, Pierrick; Moral, Pierre; Coello, Carlos

    2014-01-01

    This volume encloses research articles that were presented at the EVOLVE 2014 International Conference in Beijing, China, July 1–4, 2014.The book gathers contributions that emerged from the conference tracks, ranging from probability to set oriented numerics and evolutionary computation; all complemented by the bridging purpose of the conference, e.g. Complex Networks and Landscape Analysis, or by the more application oriented perspective. The novelty of the volume, when considering the EVOLVE series, comes from targeting also the practitioner’s view. This is supported by the Machine Learning Applied to Networks and Practical Aspects of Evolutionary Algorithms tracks, providing surveys on new application areas, as in the networking area and useful insights in the development of evolutionary techniques, from a practitioner’s perspective. Complementary to these directions, the conference tracks supporting the volume, follow on the individual advancements of the subareas constituting the scope of the confe...

  13. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  14. The RecX protein interacts with the RecA protein and modulates its activity in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Galvão, C.W. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Souza, E.M. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Etto, R.M. [Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR (Brazil); Pedrosa, F.O.; Chubatsu, L.S.; Yates, M.G. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil); Schumacher, J.; Buck, M. [Department of Life Sciences, Imperial College London, London (United Kingdom); Steffens, M.B.R. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2012-10-15

    DNA repair is crucial to the survival of all organisms. The bacterial RecA protein is a central component in the SOS response and in recombinational and SOS DNA repairs. The RecX protein has been characterized as a negative modulator of RecA activity in many bacteria. The recA and recX genes of Herbaspirillum seropedicae constitute a single operon, and evidence suggests that RecX participates in SOS repair. In the present study, we show that the H. seropedicae RecX protein (RecX{sub Hs}) can interact with the H. seropedicae RecA protein (RecA{sub Hs}) and that RecA{sub Hs} possesses ATP binding, ATP hydrolyzing and DNA strand exchange activities. RecX{sub Hs} inhibited 90% of the RecA{sub Hs} DNA strand exchange activity even when present in a 50-fold lower molar concentration than RecA{sub Hs}. RecA{sub Hs} ATP binding was not affected by the addition of RecX, but the ATPase activity was reduced. When RecX{sub Hs} was present before the formation of RecA filaments (RecA-ssDNA), inhibition of ATPase activity was substantially reduced and excess ssDNA also partially suppressed this inhibition. The results suggest that the RecX{sub Hs} protein negatively modulates the RecA{sub Hs} activities by protein-protein interactions and also by DNA-protein interactions.

  15. Targeting Yes-associated Protein with Evolved Peptide Aptamers to Disrupt TGF-β Signaling Pathway: Therapeutic Implication for Bone Tumor.

    Science.gov (United States)

    Ji, Wei-Ping; Dong, Yang

    2015-11-01

    The binding of transcription coactivator Yes-associated protein (YAP) to Smad transcription factors is an important event in activating transforming growth factor-β (TGF-β) signaling pathway, which is involved in the tumorigenicity and metastasis of bone tumor. Design of peptide aptamers to disrupt YAPSmad interaction has been established as a promising approach for bone tumor therapy. Here, an evolution strategy was used to optimize Smad-derived peptides for high potency binding to YAP WW2 domain, resulting in an improved peptide population, from which those high-scoring candidates were characterized rigorously using molecular dynamics (MD) simulations and interaction free energy calculations. With the computational protocol we were able to generate a number of potential domain binders, which were then substantiated by using fluorescence spectroscopy assay. Subsequently, the complex structure of YAP WW2 domain with a high-affinity peptide was modeled and examined in detail, which was then used to guide structure-based peptide optimization to obtain several strong domain binders. Structural and energetic analysis revealed that electrostatic complementarity is primarily responsible for domainpeptide recognition, while other nonbonded interactions such as hydrogen bonding and salt bridges can contribute significantly to the recognition specificity.

  16. DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli

    Science.gov (United States)

    Echave, Pedro; Esparza-Cerón, M. Angel; Cabiscol, Elisa; Tamarit, Jordi; Ros, Joaquim; Membrillo-Hernández, Jorge; Lin, E. C. C.

    2002-01-01

    The adhE gene of Escherichia coli encodes a multifunctional ethanol oxidoreductase (AdhE) that catalyzes successive reductions of acetyl-CoA to acetaldehyde and then to ethanol reversibly at the expense of NADH. Mutant JE52, serially selected for acquired and improved ability to grow aerobically on ethanol, synthesized an AdhEA267T/E568K with two amino acid substitutions that sequentially conferred improved catalytic properties and stability. Here we show that the aerobic growth ability on ethanol depends also on protection of the mutant AdhE against metal-catalyzed oxidation by the chaperone DnaK (a member of the Hsp70 family). No DnaK protection of the enzyme is evident during anaerobic growth on glucose. Synthesis of DnaK also protected E. coli from H2O2 killing under conditions when functional AdhE is not required. Our results therefore suggest that, in addition to the known role of protecting cells against heat stress, DnaK also protects numerous kinds of proteins from oxidative damage. PMID:11917132

  17. Evolving XSLT stylesheets

    CERN Document Server

    Zorzano, Nestor; Laredo, J L J; Sevilla, J P; Garcia, Pablo; Merelo, J J

    2007-01-01

    This paper introduces a procedure based on genetic programming to evolve XSLT programs (usually called stylesheets or logicsheets). XSLT is a general purpose, document-oriented functional language, generally used to transform XML documents (or, in general, solve any problem that can be coded as an XML document). The proposed solution uses a tree representation for the stylesheets as well as diverse specific operators in order to obtain, in the studied cases and a reasonable time, a XSLT stylesheet that performs the transformation. Several types of representation have been compared, resulting in different performance and degree of success.

  18. Measurably evolving populations

    DEFF Research Database (Denmark)

    Drummond, Alexei James; Pybus, Oliver George; Rambaut, Andrew

    2003-01-01

    processes through time. Populations for which such studies are possible � measurably evolving populations (MEPs) � are characterized by sufficiently long or numerous sampled sequences and a fast mutation rate relative to the available range of sequence sampling times. The impact of sequences sampled through...... time has been most apparent in the disciplines of RNA viral evolution and ancient DNA, where they enable us to estimate divergence times without paleontological calibrations, and to analyze temporal changes in population size, population structure and substitution rates. Thus, MEPs could increase our...

  19. Evolving Procurement Organizations

    DEFF Research Database (Denmark)

    Bals, Lydia; Laiho, Aki; Laine, Jari

    Procurement has to find further levers and advance its contribution to corporate goals continuously. This places pressure on its organization in order to facilitate its performance. Therefore, Procurement organizations constantly have to evolve in order to match these demands. A conceptual model...... is presented and results of a first case study discussed. The findings highlight the importance of taking a contingency perspective on Procurement organization, understanding the internal and internal contingency factors. From a theoretical perspective, it opens up insights that can be furthermore leveraged...... in future studies in the fields of hybrid procurement organizations, global sourcing organizations as well as international procurement offices (IPOs). From a practical standpoint, an assessment of external and internal contingencies provides the opportunity to consciously match organization to its...

  20. Evolving Procurement Organizations

    DEFF Research Database (Denmark)

    Bals, Lydia; Laine, Jari; Mugurusi, Godfrey

    Procurement has to find further levers and advance its contribution to corporate goals continuously. This places pressure on its organization in order to facilitate its performance. Therefore, procurement organizations constantly have to evolve in order to match these demands. A conceptual model...... putting the structural elements in focus is derived from the analysis of two case companies, which extends the existing literature and opens new avenues for future research. The findings highlight the importance of taking a contingency perspective on procurement organization, understanding the internal...... and external contingency factors and having a more detailed look at the structural dimensions chosen, beyond the well-known characteristics of centralization, formalization, participation, specialization, standardization and size. From a theoretical perspective, it opens up insights that can be leveraged...

  1. How the first biopolymers could have evolved.

    Science.gov (United States)

    Abkevich, V I; Gutin, A M; Shakhnovich, E I

    1996-01-01

    In this work, we discuss a possible origin of the first biopolymers with stable unique structures. We suggest that at the prebiotic stage of evolution, long organic polymers had to be compact to avoid hydrolysis and had to be soluble and thus must not be exceedingly hydrophobic. We present an algorithm that generates such sequences for model proteins. The evolved sequences turn out to have a stable unique structure, into which they quickly fold. This result illustrates the idea that the unique three-dimensional native structures of first biopolymers could have evolved as a side effect of nonspecific physicochemical factors acting at the prebiotic stage of evolution. PMID:8570645

  2. Communicability across evolving networks.

    Science.gov (United States)

    Grindrod, Peter; Parsons, Mark C; Higham, Desmond J; Estrada, Ernesto

    2011-04-01

    Many natural and technological applications generate time-ordered sequences of networks, defined over a fixed set of nodes; for example, time-stamped information about "who phoned who" or "who came into contact with who" arise naturally in studies of communication and the spread of disease. Concepts and algorithms for static networks do not immediately carry through to this dynamic setting. For example, suppose A and B interact in the morning, and then B and C interact in the afternoon. Information, or disease, may then pass from A to C, but not vice versa. This subtlety is lost if we simply summarize using the daily aggregate network given by the chain A-B-C. However, using a natural definition of a walk on an evolving network, we show that classic centrality measures from the static setting can be extended in a computationally convenient manner. In particular, communicability indices can be computed to summarize the ability of each node to broadcast and receive information. The computations involve basic operations in linear algebra, and the asymmetry caused by time's arrow is captured naturally through the noncommutativity of matrix-matrix multiplication. Illustrative examples are given for both synthetic and real-world communication data sets. We also discuss the use of the new centrality measures for real-time monitoring and prediction.

  3. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  4. Rapidly Evolving Giant Dermatofibroma

    Directory of Open Access Journals (Sweden)

    K. J. Lang

    2010-01-01

    Full Text Available Dermatofibroma, also known as “fibrous histiocytoma”, is a benign dermal or subcutaneous poorly circumscribed proliferation of spindle-shaped fibroblasts and macrophages in the dermis. Although it is commonly present as a brownish nodule the legs of females, it may also arise on the upper extremities, trunk, and rarely on the head. The exact pathogenesis is unclear. However, it is widely believed that the originating insult to the dermis is a folliculitis, an arthropod bite, or an unspecified initial inflammatory condition. Giant dermatofibromas of greater than 5 cm in diameter are rare, with only 22 cases reported in the literature. We present a case of a rapidly evolving pedunculated mass in the groin of a male patient. Histological examination confirmed this to be a giant dermatofibroma. Though this specimen cannot is not confirmed as such, the cellular subtype is sometimes present as a larger lesion with anecdotal reports of local recurrence and distant metastases. The clinical and radiological features which were somewhat suspicious of malignancy are considered in the context of the definitive pathological diagnosis of a benign lesion.

  5. Evolving paradigms in pharmacovigilance.

    Science.gov (United States)

    Brewster, Wendy; Gibbs, Trevor; Lacroix, Karol; Murray, Alison; Tydeman, Michael; Almenoff, June

    2006-05-01

    All medicines have adverse effects as well as benefits. The aim of pharmacovigilance is to protect public health by monitoring medicines to identify and evaluate issues and ensure that the overall benefits outweigh the potential risks. The tools and processes used in pharmacovigilance are continually evolving. Increasingly sophisticated tools are being designed to evaluate safety data from clinical trials to enhance the likelihood of detecting safety signals ahead of product registration. Methods include integration of safety data throughout development, meta-analytical techniques, quantitative and qualitative methods for evaluation of adverse event data and graphical tools to explore laboratory and biometric data. Electronic data capture facilitates monitoring of ongoing studies so that it is possible to promptly identify potential issues and manage patient safety. In addition, GSK employs a number of proactive methods for post-marketing signal detection and knowledge management using state-of-the-art statistical and analytical tools. Using these tools, together with safety data collected through pharmacoepidemiologic studies, literature and spontaneous reporting, potential adverse drug reactions can be better identified in marketed products. In summary, the information outlined in this paper provides a valuable benchmark for risk management and pharmacovigilance in pharmaceutical development.

  6. Evolution and tinkering: what do a protein kinase, a transcriptional regulator and chromosome segregation/cell division proteins have in common?

    Science.gov (United States)

    Derouiche, Abderahmane; Shi, Lei; Kalantari, Aida; Mijakovic, Ivan

    2016-02-01

    In this study, we focus on functional interactions among multi-domain proteins which share a common evolutionary origin. The examples we develop are four Bacillus subtilis proteins, which all possess an ATP-binding Walker motif: the bacterial tyrosine kinase (BY-kinase) PtkA, the chromosome segregation protein Soj (ParA), the cell division protein MinD and a transcription regulator SalA. These proteins have arisen via duplication of the ancestral ATP-binding domain, which has undergone fusions with other functional domains in the process of divergent evolution. We point out that these four proteins, despite having very different physiological roles, engage in an unusually high number of binary functional interactions. Namely, MinD attracts Soj and PtkA to the cell pole, and in addition, activates the kinase function of PtkA. SalA also activates the kinase function of PtkA, and it gets phosphorylated by PtkA as well. The consequence of this phosphorylation is the activation of SalA as a transcriptional repressor. We hypothesize that these functional interactions remain preserved during divergent evolution and represent a constraint on the process of evolutionary "tinkering", brought about by fusions of different functional domains.

  7. Investigation of the Flexibility of Protein Kinases Implicated in the Pathology of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Michael P. Mazanetz

    2014-06-01

    Full Text Available The pathological characteristics of Alzheimer’s Disease (AD have been linked to the activity of three particular kinases—Glycogen Synthase Kinase 3β (GSK3β, Cyclin-Dependent Kinase 5 (CDK5 and Extracellular-signal Regulated Kinase 2 (ERK2. As a consequence, the design of selective, potent and drug-like inhibitors of these kinases is of particular interest. Structure-based design methods are well-established in the development of kinase inhibitors. However, progress in this field is limited by the difficulty in obtaining X-ray crystal structures suitable for drug design and by the inability of this method to resolve highly flexible regions of the protein that are crucial for ligand binding. To address this issue, we have undertaken a study of human protein kinases CDK5/p25, CDK5, ERK2 and GSK3β using both conventional molecular dynamics (MD and the new Active Site Pressurisation (ASP methodology, to look for kinase-specific patterns of flexibility that could be leveraged for the design of selective inhibitors. ASP was used to examine the intrinsic flexibility of the ATP-binding pocket for CDK5/p25, CDK5 and GSK3β where it is shown to be capable of inducing significant conformational changes when compared with X-ray crystal structures. The results from these experiments were used to quantify the dynamics of each protein, which supported the observations made from the conventional MD simulations. Additional information was also derived from the ASP simulations, including the shape of the ATP-binding site and the rigidity of the ATP-binding pocket. These observations may be exploited in the design of selective inhibitors of GSK3β, CDK5 and ERK2.

  8. Investigation of the flexibility of protein kinases implicated in the pathology of Alzheimer's disease.

    Science.gov (United States)

    Mazanetz, Michael P; Laughton, Charles A; Fischer, Peter M

    2014-06-30

    The pathological characteristics of Alzheimer's Disease (AD) have been linked to the activity of three particular kinases--Glycogen Synthase Kinase 3β (GSK3β), Cyclin-Dependent Kinase 5 (CDK5) and Extracellular-signal Regulated Kinase 2 (ERK2). As a consequence, the design of selective, potent and drug-like inhibitors of these kinases is of particular interest. Structure-based design methods are well-established in the development of kinase inhibitors. However, progress in this field is limited by the difficulty in obtaining X-ray crystal structures suitable for drug design and by the inability of this method to resolve highly flexible regions of the protein that are crucial for ligand binding. To address this issue, we have undertaken a study of human protein kinases CDK5/p25, CDK5, ERK2 and GSK3β using both conventional molecular dynamics (MD) and the new Active Site Pressurisation (ASP) methodology, to look for kinase-specific patterns of flexibility that could be leveraged for the design of selective inhibitors. ASP was used to examine the intrinsic flexibility of the ATP-binding pocket for CDK5/p25, CDK5 and GSK3β where it is shown to be capable of inducing significant conformational changes when compared with X-ray crystal structures. The results from these experiments were used to quantify the dynamics of each protein, which supported the observations made from the conventional MD simulations. Additional information was also derived from the ASP simulations, including the shape of the ATP-binding site and the rigidity of the ATP-binding pocket. These observations may be exploited in the design of selective inhibitors of GSK3β, CDK5 and ERK2.

  9. THE ROLE OF MULTIDRUG RESISTANCE ASSOCIATED PROTEIN (MRP) IN THE BLOOD-BRAIN BARRIER AND OPIOID ANALGESIA

    OpenAIRE

    Su, Wendy; Pasternak, Gavril W.

    2013-01-01

    The blood brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance associated protein (MRP), a 190 kDa protein similar to Pgp is also ABC transport that has been im...

  10. Modulation of breast cancer resistance protein mediated atypical multidrug resistance using RNA interference delivered by adenovirus

    Institute of Scientific and Technical Information of China (English)

    LI Wen-tong; ZHOU Geng-yin; WANG Chun-ling; GUO Cheng-hao; SONG Xian-rang; CHI Wei-ling

    2005-01-01

    @@ Clinical multidrug resistance (MDR) of malignancies to many antineoplastic agents is the major obstacle in the successful treatment of cancer. The emergence of breast cancer resistance protein (BCRP), a member of the adenosine triphosphate (ATP) binding cassette (ABC) transporter family, has necessitated the development of antagonists. To overcome the BCRP-mediated atypical MDR, RNA interference (RNAi) delivered by adenovirus targeting BCRP mRNA was used to inhibit the atypical MDR expression by infecting MCF-7/MX100 cell lines with constructed RNAi adenovirus.

  11. Origins of Protein Functions in Cells

    Science.gov (United States)

    Seelig, Burchard; Pohorille, Andrzej

    2011-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis and in vitro evolution of very large libraries of random amino acid sequences. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions yet, important clues have been uncovered. In one example (Keefe and Szostak, 2001), novel ATP binding proteins were identified that appear to be unrelated in both sequence and structure to any known ATP binding proteins. One of these proteins was subsequently redesigned computationally to bind GTP through introducing several mutations that introduce targeted structural changes to the protein, improve its binding to guanine and prevent water from accessing the active center. This study facilitates further investigations of individual evolutionary steps that lead to a change of function in primordial proteins. In a second study (Seelig and Szostak, 2007), novel enzymes were generated that can join two pieces of RNA in a reaction for which no natural enzymes are known

  12. Marshal: Maintaining Evolving Models Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SIFT proposes to design and develop the Marshal system, a mixed-initiative tool for maintaining task models over the course of evolving missions. Marshal-enabled...

  13. ATP-Binding Cassettee Transporter Signals Salt-Induced Stomatal Closure in Arabidopsis thaliana L. by H2S Pathway%ABC转运体位于H2S上游参与盐胁迫诱导的拟南芥气孔关闭

    Institute of Scientific and Technical Information of China (English)

    吴延朋; 李洪旺; 侯丽霞; 张丹丹; 刘新

    2014-01-01

    本文以拟南芥野生型、ABC转运体缺失突变体(Atmrp4、Atmrp5和Atmrp4/5)为材料研究了硫化氢(hydrogen sulfide, H2S)和ABC转运体在盐胁迫诱导拟南芥气孔关闭中的作用及其相互关系。结果表明,盐胁迫能够引起拟南芥叶片AtMRP4及AtMRP5表达量显著升高,诱导野生型拟南芥叶片气孔关闭,但对Atmrp4、Atmrp5及Atmrp4/5气孔开度无显著影响;而ABC转运体抑制剂格列本脲(glibenclamide, Gli)可减弱盐胁迫诱导的拟南芥气孔关闭的作用,表明ABC转运体参与盐胁迫诱导的拟南芥气孔关闭过程。盐胁迫能够引起野生型拟南芥H2S合成相关酶L-/D-半胱氨酸脱巯基酶(L-/D-CDes)活性及H2S含量显著升高,而ABC转运体抑制剂格列本脲处理后则没有这种变化,同时盐胁迫也不能引起Atmrp4、Atmrp5及Atmrp4/5的L-/D-CDes活性及H2S含量显著升高,表明ABC转运体位于H2S上游参与盐胁迫诱导气孔关闭过程。%Using Arabidopsis thaliana wild type, ATP-binding cassette (ABC) transporter deficient mutants Atmrp4, Atmrp5, Atmrp4/5 as materials, the participation of hydrogen sulifde (H2S) and ABC transporter signal pathway in salt-induced stomatal closure were studied. These results showed that AtMRP4 and AtMRP5 transcription rate in Arabidopsis leaves increased dramaticly under salt stress, and salt stress induced stomata closure in wild type, but had no effect on Atmrp4, Atmrp5 and Atmrp4/5. The ABC transporter inhibitor glibenclamide (Gli) inhibited the inducing effects of salt stress on stomata closure in wild type, it could be deduced that ABC transporter participate in salt-induced stomatal closure in Arabidopsis. Salt-induced increase in L-/D-cysteine desulfhydrase (L-/D-CDes, enzymes participate in H2S production) activities and H2S content could be seen in wild type, but had no effect on wild type treated by Gli as well as Atmrp4, Atmrp5, Atmrp4/5. All these results indicated that ABC transporter functions upstream

  14. Effect of 5-fluorouracil on the expression of ATP-binding cassette superfamily G member 2 in human colon cancer cell SW480%氟尿嘧啶对人结肠癌SW480细胞ABCG2表达的影响

    Institute of Scientific and Technical Information of China (English)

    瞿金妙; 尤捷; 刘海光; 黄奇迪; 郭贵龙

    2013-01-01

    目的 观察氟尿嘧啶(5-FU)对人结肠癌SW480细胞ABCG2表达的影响.方法 用不同药物浓度的5-FU处理SW480细胞,用CCK8法检测5-FU在SW480中的IC50,流式细胞仪检测SW480细胞ABCG2的阳性表达率,RT-PCR检测ABCG2的mRNA在SW480细胞中的表达差异.结果 5-FU对SW480细胞的IC50随着药物浓度的增加而升高(P<0.05).流式细胞仪检测发现,正常SW480细胞(A组)中ABCG2阳性表达率为(6.26±0.86)%;在药物处理48 h后即刻检测时(B组)的阳性表达率下降至(3.43±1.18)%(P<0.05);在药物处理48 h后的第2代细胞检测时(C组)则升高至(12.91±3.42)%(P<0.05).3组ABCG2 mRNA表达趋势与流式细胞仪检测结果的趋势一致.结论 不同浓度的5-FU可以影响人结肠癌SW480细胞ABCG2的表达.%Objective To investigate the effect of 5-fluorouracil (5-FU) on the expression of ATP-binding cassette superfamily G member 2(ABCG2) in human colon cancer cell SW480.Methods SW480 cells were treated with various concentrations of 5-FU.CCK8 assay was utilized to detect the 5-FU IC50 to SW480 cells.Positive expression of ABCG2 was detected by flow cytometry,and mRNA expression of ABCG2 was detected by real time polymerase chain reaction (RT-PCR).Results The 5-FU IC50 to SW480 cells increased as the drug concentration increased(P<0.05).Flow cytometry revealed that positive expression rate of ABCG2 in normal SW480 cells (group A) was (6.26±0.86)%.Immediately after treatment with 5-FU for 48 hours,the positive expression rate of ABCG2 (group B) was (3.43±1.18)%(P<0.05).In the second passage of cells after treatment with 5-FU for 48 hours,the positive expression rate of ABCG2 (group C) was (12.91±3.42)%(P<0.05).The mRNA expression of ABCG2 detected by RT-PCR was in accordance with the results from flow cytometry.Conclusion Expression of ABCG2 in SW480 cells can be affected by various concentrations of 5-FU.

  15. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  16. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin

    DEFF Research Database (Denmark)

    Beedholm-Ebsen, Rasmus; van de Wetering, Koen; Hardlei, Tore;

    2010-01-01

    transporters by cellular gene silencing showed a role in cellular Cbl efflux of the ATP-binding cassette (ABC)-drug transporter, ABCC1, alias multidrug resistance protein 1 (MRP1), which is present in the basolateral membrane of intestinal epithelium and in other cells. The ability of MRP1 to mediate ATP...... and kidney. In contrast, Cbl accumulates in the terminal part of the intestine of these mice, suggesting a functional malabsorption because of a lower epithelial basolateral Cbl efflux. The identification of this Cbl export mechanism now allows the delineation of a coherent pathway for Cbl trafficking from...

  17. Characterization of a novel domain ‘GATE’ in the ABC protein DrrA and its role in drug efflux by the DrrAB complex

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han; Rahman, Sadia; Li, Wen; Fu, Guoxing; Kaur, Parjit, E-mail: pkaur@gsu.edu

    2015-03-27

    A novel domain, GATE (Glycine-loop And Transducer Element), is identified in the ABC protein DrrA. This domain shows sequence and structural conservation among close homologs of DrrA as well as distantly-related ABC proteins. Among the highly conserved residues in this domain are three glycines, G215, G221 and G231, of which G215 was found to be critical for stable expression of the DrrAB complex. Other conserved residues, including E201, G221, K227 and G231, were found to be critical for the catalytic and transport functions of the DrrAB transporter. Structural analysis of both the previously published crystal structure of the DrrA homolog MalK and the modeled structure of DrrA showed that G215 makes close contacts with residues in and around the Walker A motif, suggesting that these interactions may be critical for maintaining the integrity of the ATP binding pocket as well as the complex. It is also shown that G215A or K227R mutation diminishes some of the atomic interactions essential for ATP catalysis and overall transport function. Therefore, based on both the biochemical and structural analyses, it is proposed that the GATE domain, located outside of the previously identified ATP binding and hydrolysis motifs, is an additional element involved in ATP catalysis. - Highlights: • A novel domain ‘GATE’ is identified in the ABC protein DrrA. • GATE shows high sequence and structural conservation among diverse ABC proteins. • GATE is located outside of the previously studied ATP binding and hydrolysis motifs. • Conserved GATE residues are critical for stability of DrrAB and for ATP catalysis.

  18. Evolving Objects for Software Engineering

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper is concerned with evolving objects method for softwaredesign that can adapt to the changing environments and requirements automatically. We presen t system architecture with objects library, where there are objects based on dom ain ontologies. We define some genetic operators for objects, and discuss how to apply these genetic operators on objects to get new objects, which can satisfy new requirements.

  19. Evolving sensitivity balances Boolean Networks.

    Directory of Open Access Journals (Sweden)

    Jamie X Luo

    Full Text Available We investigate the sensitivity of Boolean Networks (BNs to mutations. We are interested in Boolean Networks as a model of Gene Regulatory Networks (GRNs. We adopt Ribeiro and Kauffman's Ergodic Set and use it to study the long term dynamics of a BN. We define the sensitivity of a BN to be the mean change in its Ergodic Set structure under all possible loss of interaction mutations. In silico experiments were used to selectively evolve BNs for sensitivity to losing interactions. We find that maximum sensitivity was often achievable and resulted in the BNs becoming topologically balanced, i.e. they evolve towards network structures in which they have a similar number of inhibitory and excitatory interactions. In terms of the dynamics, the dominant sensitivity strategy that evolved was to build BNs with Ergodic Sets dominated by a single long limit cycle which is easily destabilised by mutations. We discuss the relevance of our findings in the context of Stem Cell Differentiation and propose a relationship between pluripotent stem cells and our evolved sensitive networks.

  20. Thermal and evolved gas analyzer

    Science.gov (United States)

    Williams, M. S.; Boynton, W. V.; James, R. L.; Verts, W. T.; Bailey, S. H.; Hamara, D. K.

    1998-01-01

    The Thermal and Evolved Gas Analyzer (TEGA) instrument will perform calorimetry and evolved gas analysis on soil samples collected from the Martian surface. TEGA is one of three instruments, along with a robotic arm, that form the Mars Volatile and Climate Survey (MVACS) payload. The other instruments are a stereo surface imager, built by Peter Smith of the University of Arizona and a meteorological station, built by JPL. The MVACS lander will investigate a Martian landing site at approximately 70 deg south latitude. Launch will take place from Kennedy Space Center in January, 1999. The TEGA project started in February, 1996. In the intervening 24 months, a flight instrument concept has been designed, prototyped, built as an engineering model and flight model, and tested. The instrument performs laboratory-quality differential-scanning calorimetry (DSC) over the temperature range of Mars ambient to 1400K. Low-temperature volatiles (water and carbon dioxide ices) and the carbonates will be analyzed in this temperature range. Carbonates melt and evolve carbon dioxide at temperatures above 600 C. Evolved oxygen (down to a concentration of 1 ppm) is detected, and C02 and water vapor and the isotopic variations of C02 and water vapor are detected and their concentrations measured. The isotopic composition provides important tests of the theory of solar system formation.

  1. Theoretical model of the three-dimensional structure of a disease resistance gene homolog encoding resistance protein in Vigna mungo.

    Science.gov (United States)

    Basak, Jolly; Bahadur, Ranjit P

    2006-10-01

    Plant disease resistance (R) genes, the key players of innate immunity system in plants encode 'R' proteins. 'R' protein recognizes product of avirulance gene from the pathogen and activate downstream signaling responses leading to disease resistance. No three dimensional (3D) structural information of any 'R' proteins is available as yet. We have reported a 'R' gene homolog, the 'VMYR1', encoding 'R' protein in Vigna mungo. Here, we describe the homology modeling of the 'VMYR1' protein. The model was created by using the 3D structure of an ATP-binding cassette transporter protein from Vibrio cholerae as a template. The strategy for homology modeling was based on the high structural conservation in the superfamily of P-loop containing nucleoside triphosphate hydrolase in which target and template proteins belong. This is the first report of theoretical model structure of any 'R' proteins.

  2. canEvolve: a web portal for integrative oncogenomics.

    Directory of Open Access Journals (Sweden)

    Mehmet Kemal Samur

    Full Text Available BACKGROUND & OBJECTIVE: Genome-wide profiles of tumors obtained using functional genomics platforms are being deposited to the public repositories at an astronomical scale, as a result of focused efforts by individual laboratories and large projects such as the Cancer Genome Atlas (TCGA and the International Cancer Genome Consortium. Consequently, there is an urgent need for reliable tools that integrate and interpret these data in light of current knowledge and disseminate results to biomedical researchers in a user-friendly manner. We have built the canEvolve web portal to meet this need. RESULTS: canEvolve query functionalities are designed to fulfill most frequent analysis needs of cancer researchers with a view to generate novel hypotheses. canEvolve stores gene, microRNA (miRNA and protein expression profiles, copy number alterations for multiple cancer types, and protein-protein interaction information. canEvolve allows querying of results of primary analysis, integrative analysis and network analysis of oncogenomics data. The querying for primary analysis includes differential gene and miRNA expression as well as changes in gene copy number measured with SNP microarrays. canEvolve provides results of integrative analysis of gene expression profiles with copy number alterations and with miRNA profiles as well as generalized integrative analysis using gene set enrichment analysis. The network analysis capability includes storage and visualization of gene co-expression, inferred gene regulatory networks and protein-protein interaction information. Finally, canEvolve provides correlations between gene expression and clinical outcomes in terms of univariate survival analysis. CONCLUSION: At present canEvolve provides different types of information extracted from 90 cancer genomics studies comprising of more than 10,000 patients. The presence of multiple data types, novel integrative analysis for identifying regulators of oncogenesis, network

  3. ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages.

    Science.gov (United States)

    Hou, Jie M; D'Lima, Nadia G; Rigel, Nathan W; Gibbons, Henry S; McCann, Jessica R; Braunstein, Miriam; Teschke, Carolyn M

    2008-07-01

    The Sec-dependent translocation pathway that involves the essential SecA protein and the membrane-bound SecYEG translocon is used to export many proteins across the cytoplasmic membrane. Recently, several pathogenic bacteria, including Mycobacterium tuberculosis, were shown to possess two SecA homologs, SecA1 and SecA2. SecA1 is essential for general protein export. SecA2 is specific for a subset of exported proteins and is important for M. tuberculosis virulence. The enzymatic activities of two SecA proteins from the same microorganism have not been defined for any bacteria. Here, M. tuberculosis SecA1 and SecA2 are shown to bind ATP with high affinity, though the affinity of SecA1 for ATP is weaker than that of SecA2 or Escherichia coli SecA. Amino acid substitution of arginine or alanine for the conserved lysine in the Walker A motif of SecA2 eliminated ATP binding. We used the SecA2(K115R) variant to show that ATP binding was necessary for the SecA2 function of promoting intracellular growth of M. tuberculosis in macrophages. These results are the first to show the importance of ATPase activity in the function of accessory SecA2 proteins.

  4. Coupled oscillators on evolving networks

    Science.gov (United States)

    Singh, R. K.; Bagarti, Trilochan

    2016-12-01

    In this work we study coupled oscillators on evolving networks. We find that the steady state behavior of the system is governed by the relative values of the spread in natural frequencies and the global coupling strength. For coupling strong in comparison to the spread in frequencies, the system of oscillators synchronize and when coupling strength and spread in frequencies are large, a phenomenon similar to amplitude death is observed. The network evolution provides a mechanism to build inter-oscillator connections and once a dynamic equilibrium is achieved, oscillators evolve according to their local interactions. We also find that the steady state properties change by the presence of additional time scales. We demonstrate these results based on numerical calculations studying dynamical evolution of limit-cycle and van der Pol oscillators.

  5. Mandelbrot Law of Evolving Networks

    Institute of Scientific and Technical Information of China (English)

    REN Xue-Zao; YANG Zi-Mo; WANG Bing-Hong; ZHOU Tao

    2012-01-01

    We show that the degree distribution of a growing network with linear preferential attachment approximately follows the Mandelbrot law,and propose an analytical method based on a recursive formula that can be used to obtain a more accurate expression of the shifting coefficient.Simulations demonstrate the advantages of our method. This work provides a possible mechanism leading to the Mandelbrot law of evolving networks,and refines the mainstream analytical methods for the shifting coefficient.

  6. A Calculus of Evolving Objects

    Directory of Open Access Journals (Sweden)

    M. Dezani-Ciancaglini

    2008-01-01

    Full Text Available The demands of developing modern, highly dynamic applications have led to an increasing interest in dynamic programming languages and mechanisms. Not only must applications evolve over time, but the object models themselves may need to be adapted to the requirements of different run-time contexts. Class-based models and prototype-based models, for example, may need to co-exist to meet the demands of dynamically evolving applications. Multi-dimensional dispatch, fine-grained and dynamic software composition, and run-time evolution of behaviour are further examples of diverse mechanisms which may need to co-exist in a dynamically evolving run-time environment. How can we model the semantics of these highly dynamic features, yet still offer some reasonable safety guarantees?To this end we present an original calculus in which objects can adapt their behaviour at run-time. Both objects and environments are represented by first-class mappings between variables and values. Message sends are dynamically resolved to method calls. Variables may be dynamically bound, making it possible to model a variety of dynamic mechanisms within the same calculus. Despite the highly dynamic nature of the calculus, safety properties are assured by a type assignment system.

  7. Evolving Systems and Adaptive Key Component Control

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.

    2009-01-01

    We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.

  8. Cardiac myosin binding protein C phosphorylation affects cross-bridge cycle's elementary steps in a site-specific manner.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Based on our recent finding that cardiac myosin binding protein C (cMyBP-C phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302, DAD (Asp273-Ala282-Asp302, SAS (Ser273-Ala282-Ser302, and t/t (cMyBP-C null genotypes, and the results were compared to transgenic mice expressing wide-type (WT cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi, and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc, and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases.

  9. Ring Separation Highlights the Protein-Folding Mechanism Used by the Phage EL-Encoded Chaperonin.

    Science.gov (United States)

    Molugu, Sudheer K; Hildenbrand, Zacariah L; Morgan, David Gene; Sherman, Michael B; He, Lilin; Georgopoulos, Costa; Sernova, Natalia V; Kurochkina, Lidia P; Mesyanzhinov, Vadim V; Miroshnikov, Konstantin A; Bernal, Ricardo A

    2016-04-05

    Chaperonins are ubiquitous, ATP-dependent protein-folding molecular machines that are essential for all forms of life. Bacteriophage φEL encodes its own chaperonin to presumably fold exceedingly large viral proteins via profoundly different nucleotide-binding conformations. Our structural investigations indicate that ATP likely binds to both rings simultaneously and that a misfolded substrate acts as the trigger for ATP hydrolysis. More importantly, the φEL complex dissociates into two single rings resulting from an evolutionarily altered residue in the highly conserved ATP-binding pocket. Conformational changes also more than double the volume of the single-ring internal chamber such that larger viral proteins are accommodated. This is illustrated by the fact that φEL is capable of folding β-galactosidase, a 116-kDa protein. Collectively, the architecture and protein-folding mechanism of the φEL chaperonin are significantly different from those observed in group I and II chaperonins.

  10. Substrate protein folds while it is bound to the ATP-independent chaperone Spy.

    Science.gov (United States)

    Stull, Frederick; Koldewey, Philipp; Humes, Julia R; Radford, Sheena E; Bardwell, James C A

    2016-01-01

    Chaperones assist in the folding of many proteins in the cell. Although the most well-studied chaperones use cycles of ATP binding and hydrolysis to assist in protein folding, a number of chaperones have been identified that promote folding in the absence of high-energy cofactors. Precisely how ATP-independent chaperones accomplish this feat is unclear. Here we characterized the kinetic mechanism of substrate folding by the small ATP-independent chaperone Spy from Escherichia coli. Spy rapidly associates with its substrate, immunity protein 7 (Im7), thereby eliminating Im7's potential for aggregation. Remarkably, Spy then allows Im7 to fully fold into its native state while it remains bound to the surface of the chaperone. These results establish a potentially widespread mechanism whereby ATP-independent chaperones assist in protein refolding. They also provide compelling evidence that substrate proteins can fold while being continuously bound to a chaperone.

  11. Discovery of pyrido[3,4-g]quinazoline derivatives as CMGC family protein kinase inhibitors: Design, synthesis, inhibitory potency and X-ray co-crystal structure.

    Science.gov (United States)

    Esvan, Yannick J; Zeinyeh, Wael; Boibessot, Thibaut; Nauton, Lionel; Théry, Vincent; Knapp, Stefan; Chaikuad, Apirat; Loaëc, Nadège; Meijer, Laurent; Anizon, Fabrice; Giraud, Francis; Moreau, Pascale

    2016-08-08

    The design and synthesis of new pyrido[3,4-g]quinazoline derivatives is described as well as their protein kinase inhibitory potencies toward five CMGC family members (CDK5, CK1, GSK3, CLK1 and DYRK1A). The interest for this original tricyclic heteroaromatic scaffold as modulators of CLK1/DYRK1A activity was validated by nanomolar potencies (compounds 12 and 13). CLK1 co-crystal structures with two inhibitors revealed the binding mode of these compounds within the ATP-binding pocket.

  12. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    Bagaria, A.; Swaminathan, S.; Kumaran, D.; Burley, S. K.

    2011-04-01

    The ATP-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and non-transport related processes such as translation of RNA and DNA repair. Typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP) and Ribose binding protein (RBP). Each of these proteins consists of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations have been reported and so for MBP. The closed/active form of the protein interacts with the integral membrane component of the system in both transport and chemotaxis. Herein, we report 1.9{angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound to

  13. The 'E' factor -- evolving endodontics.

    Science.gov (United States)

    Hunter, M J

    2013-03-01

    Endodontics is a constantly developing field, with new instruments, preparation techniques and sealants competing with trusted and traditional approaches to tooth restoration. Thus general dental practitioners must question and understand the significance of these developments before adopting new practices. In view of this, the aim of this article, and the associated presentation at the 2013 British Dental Conference & Exhibition, is to provide an overview of endodontic methods and constantly evolving best practice. The presentation will review current preparation techniques, comparing rotary versus reciprocation, and question current trends in restoration of the endodontically treated tooth.

  14. Synchronization in an evolving network

    CERN Document Server

    Singh, R K

    2015-01-01

    In this work we study the dynamics of Kuramoto oscillators on a stochastically evolving network whose evolution is governed by the phases of the individual oscillators and degree distribution. Synchronization is achieved after a threshold connection density is reached. This cumulative effect of topology and dynamics has many real-world implications, where synchronization in a system emerges as a collective property of its components in a self-organizing manner. The synchronous state remains stable as long as the connection density remains above the threshold value, with additional links providing resilience against network fluctuations.

  15. Protein

    Science.gov (United States)

    ... Food Service Resources Additional Resources About FAQ Contact Protein Protein is found throughout the body—in muscle, ... the heart and respiratory system, and death. All Protein Isn’t Alike Protein is built from building ...

  16. Evolving models for peroxisome biogenesis

    NARCIS (Netherlands)

    Hettema, Ewald H; Erdmann, Ralf; van der Klei, Ida; Veenhuis, Marten

    2014-01-01

    Significant progress has been made towards our understanding of the mechanism of peroxisome formation, in particular concerning sorting of peroxisomal membrane proteins, matrix protein import and organelle multiplication. Here we evaluate the progress made in recent years. We focus mainly on progres

  17. Peripartum hysterectomy: an evolving picture.

    LENUS (Irish Health Repository)

    Turner, Michael J

    2012-02-01

    Peripartum hysterectomy (PH) is one of the obstetric catastrophes. Evidence is emerging that the role of PH in modern obstetrics is evolving. Improving management of postpartum hemorrhage and newer surgical techniques should decrease PH for uterine atony. Rising levels of repeat elective cesarean deliveries should decrease PH following uterine scar rupture in labor. Increasing cesarean rates, however, have led to an increase in the number of PHs for morbidly adherent placenta. In the case of uterine atony or rupture where PH is required, a subtotal PH is often sufficient. In the case of pathological placental localization involving the cervix, however, a total hysterectomy is required. Furthermore, the involvement of other pelvic structures may prospectively make the diagnosis difficult and the surgery challenging. If resources permit, PH for pathological placental localization merits a multidisciplinary approach. Despite advances in clinical practice, it is likely that peripartum hysterectomy will be more challenging for obstetricians in the future.

  18. Evolving networks by merging cliques

    Science.gov (United States)

    Takemoto, Kazuhiro; Oosawa, Chikoo

    2005-10-01

    We propose a model for evolving networks by merging building blocks represented as complete graphs, reminiscent of modules in biological system or communities in sociology. The model shows power-law degree distributions, power-law clustering spectra, and high average clustering coefficients independent of network size. The analytical solutions indicate that a degree exponent is determined by the ratio of the number of merging nodes to that of all nodes in the blocks, demonstrating that the exponent is tunable, and are also applicable when the blocks are classical networks such as Erdös-Rényi or regular graphs. Our model becomes the same model as the Barabási-Albert model under a specific condition.

  19. Axial Spondyloarthritis: An Evolving Concept

    Directory of Open Access Journals (Sweden)

    Nelly Ziadé

    2015-07-01

    Full Text Available Axial spondyloarthritis (AxSpA is the prototype of a family of inter-related yet heterogeneous diseases sharing common clinical and genetic manifestations: the spondyloarthritides (SpAs. The condition mainly affects the sacroiliac joints and axial skeleton, and has a clear classification scheme, wider epidemiological data, and distinct therapeutic guidelines when compared with other SpAs. However, the concept of AxSpA has not been immutable over time and has evolved tremendously on many levels over the past decades. This review identifies the evolution of the AxSpA concept at two levels. First, at the level of classification, the old classifications and rationales leading to the current Assessment of SpondyloArthritis international Society (ASAS classification are reviewed, and the advantages and drawbacks are discussed. Second, at the therapeutic level, current and future treatments are described and treatment strategies are discussed.

  20. The evolving Gleason grading system.

    Science.gov (United States)

    Chen, Ni; Zhou, Qiao

    2016-02-01

    The Gleason grading system for prostate adenocarcinoma has evolved from its original scheme established in the 1960s-1970s, to a significantly modified system after two major consensus meetings conducted by the International Society of Urologic Pathology (ISUP) in 2005 and 2014, respectively. The Gleason grading system has been incorporated into the WHO classification of prostate cancer, the AJCC/UICC staging system, and the NCCN guidelines as one of the key factors in treatment decision. Both pathologists and clinicians need to fully understand the principles and practice of this grading system. We here briefly review the historical aspects of the original scheme and the recent developments of Gleason grading system, focusing on major changes over the years that resulted in the modern Gleason grading system, which has led to a new "Grade Group" system proposed by the 2014 ISUP consensus, and adopted by the 2016 WHO classification of tumours of the prostate.

  1. Inferring interaction partners from protein sequences

    Science.gov (United States)

    Bitbol, Anne-Florence; Dwyer, Robert S.; Colwell, Lucy J.; Wingreen, Ned S.

    2016-01-01

    Specific protein−protein interactions are crucial in the cell, both to ensure the formation and stability of multiprotein complexes and to enable signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interaction partners, causing their sequences to be correlated. Here we exploit these correlations to accurately identify, from sequence data alone, which proteins are specific interaction partners. Our general approach, which employs a pairwise maximum entropy model to infer couplings between residues, has been successfully used to predict the 3D structures of proteins from sequences. Thus inspired, we introduce an iterative algorithm to predict specific interaction partners from two protein families whose members are known to interact. We first assess the algorithm’s performance on histidine kinases and response regulators from bacterial two-component signaling systems. We obtain a striking 0.93 true positive fraction on our complete dataset without any a priori knowledge of interaction partners, and we uncover the origin of this success. We then apply the algorithm to proteins from ATP-binding cassette (ABC) transporter complexes, and obtain accurate predictions in these systems as well. Finally, we present two metrics that accurately distinguish interacting protein families from noninteracting ones, using only sequence data. PMID:27663738

  2. Specificity and function of Archaeal DNA replication initiator proteins

    DEFF Research Database (Denmark)

    Samson, Rachel Y.; Xu, Yanqun; Gadelha, Catarina;

    2013-01-01

    Chromosomes with multiple DNA replication origins are a hallmark of Eukaryotes and some Archaea. All eukaryal nuclear replication origins are defined by the origin recognition complex (ORC) that recruits the replicative helicase MCM(2-7) via Cdc6 and Cdt1. We find that the three origins...... to investigate the role of ATP binding and hydrolysis in initiator function in vivo and in vitro. We find that the ATP-bound form of Orc1-1 is proficient for replication and implicates hydrolysis of ATP in downregulation of origin activity. Finally, we reveal that ATP and DNA binding by Orc1-1 remodels...... the protein's structure rather than that of the DNA template....

  3. CERN internal communication is evolving

    CERN Multimedia

    2016-01-01

    CERN news will now be regularly updated on the CERN People page (see here).      Dear readers, All over the world, communication is becoming increasingly instantaneous, with news published in real time on websites and social networks. In order to keep pace with these changes, CERN's internal communication is evolving too. From now on, you will be informed of what’s happening at CERN more often via the “CERN people” page, which will frequently be updated with news. The Bulletin is following this trend too: twice a month, we will compile the most important articles published on the CERN site, with a brand-new layout. You will receive an e-mail every two weeks as soon as this new form of the Bulletin is available. If you have interesting news or stories to share, tell us about them through the form at: https://communications.web.cern.ch/got-story-cern-website​. You can also find out about news from CERN in real time...

  4. Recommendation in evolving online networks

    Science.gov (United States)

    Hu, Xiao; Zeng, An; Shang, Ming-Sheng

    2016-02-01

    Recommender system is an effective tool to find the most relevant information for online users. By analyzing the historical selection records of users, recommender system predicts the most likely future links in the user-item network and accordingly constructs a personalized recommendation list for each user. So far, the recommendation process is mostly investigated in static user-item networks. In this paper, we propose a model which allows us to examine the performance of the state-of-the-art recommendation algorithms in evolving networks. We find that the recommendation accuracy in general decreases with time if the evolution of the online network fully depends on the recommendation. Interestingly, some randomness in users' choice can significantly improve the long-term accuracy of the recommendation algorithm. When a hybrid recommendation algorithm is applied, we find that the optimal parameter gradually shifts towards the diversity-favoring recommendation algorithm, indicating that recommendation diversity is essential to keep a high long-term recommendation accuracy. Finally, we confirm our conclusions by studying the recommendation on networks with the real evolution data.

  5. Multiscale modelling of evolving foams

    Science.gov (United States)

    Saye, R. I.; Sethian, J. A.

    2016-06-01

    We present a set of multi-scale interlinked algorithms to model the dynamics of evolving foams. These algorithms couple the key effects of macroscopic bubble rearrangement, thin film drainage, and membrane rupture. For each of the mechanisms, we construct consistent and accurate algorithms, and couple them together to work across the wide range of space and time scales that occur in foam dynamics. These algorithms include second order finite difference projection methods for computing incompressible fluid flow on the macroscale, second order finite element methods to solve thin film drainage equations in the lamellae and Plateau borders, multiphase Voronoi Implicit Interface Methods to track interconnected membrane boundaries and capture topological changes, and Lagrangian particle methods for conservative liquid redistribution during rearrangement and rupture. We derive a full set of numerical approximations that are coupled via interface jump conditions and flux boundary conditions, and show convergence for the individual mechanisms. We demonstrate our approach by computing a variety of foam dynamics, including coupled evolution of three-dimensional bubble clusters attached to an anchored membrane and collapse of a foam cluster.

  6. A NusG paralogue from Mycobacterium tuberculosis, Rv0639, has evolved to interact with ribosomal protein S10 (Rv0700) but not to function as a transcription elongation-termination factor.

    Science.gov (United States)

    Kalyani, B Sudha; Kunamneni, Radhika; Wal, Megha; Ranjan, Amitabh; Sen, Ranjan

    2015-01-01

    NusG, a well-conserved protein in all the three forms of life, is involved in transcription elongation and termination, as well as in the process of transcription-translation coupling. The existence of species-specific functional, as well as conformational, divergences in NusG makes it an attractive transcription factor to study, especially if it originates from a pathogen. Here, we report functional and conformational characterizations of the Mycobacterium tuberculosis (Mtb) protein Rv0639 that has been annotated as a homologue of Escherichia coli NusG. Rv0639 failed to complement the in vivo functions of E. coli NusG (Ec NusG) and did not exhibit any signature of a transcription elongation-termination factor. However, it retained the ability to bind to its cognate ribosomal protein S10 (Rv0700). Compared with Ec NusG, Rv0639 possesses unique conformational features characterized by altered secondary structures in the C-terminal domain (CTD), an unusually long and disordered linker region between the N-terminal domain (NTD) and CTD, and a folding of its NTD over its CTD. This unusual folded conformation could have imparted specialized functions to this protein, required to adapt the physiology of Mtb. We speculate that in the absence of a bona fide RfaH, a NusG paralogue that is involved in pathogenicity in E. coli, Rv0639 functions as an RfaH-like factor and is involved in pathogenicity using unidentified ops-like sequences in the Mtb genome. And hence, we reannotate Rv0639 as a paralogue of NusG, instead of a homologue.

  7. The Exploitation of Evolving Resources

    CERN Document Server

    McGlade, Jacqueline; Law, Richard

    1993-01-01

    The impact of man on the biosphere is profound. Quite apart from our capacity to destroy natural ecosystems and to drive species to extinction, we mould the evolution of the survivors by the selection pressures we apply to them. This has implications for the continued health of our natural biological resources and for the way in which we seek to optimise yield from those resources. Of these biological resources, fish stocks are particularly important to mankind as a source of protein. On a global basis, fish stocks provide the major source of protein for human consumption from natural ecosystems, amounting to some seventy million tonnes in 1970. Although fisheries management has been extensively developed over the last century, it has not hitherto considered the evolutionary consequences of fishing activity. While this omission may not have been serious in the past, the ever increasing intensity of exploitation and the deteriorating health of fish stocks has generated an urgent need for a better understanding...

  8. Evolving evolutionary algorithms using linear genetic programming.

    Science.gov (United States)

    Oltean, Mihai

    2005-01-01

    A new model for evolving Evolutionary Algorithms is proposed in this paper. The model is based on the Linear Genetic Programming (LGP) technique. Every LGP chromosome encodes an EA which is used for solving a particular problem. Several Evolutionary Algorithms for function optimization, the Traveling Salesman Problem and the Quadratic Assignment Problem are evolved by using the considered model. Numerical experiments show that the evolved Evolutionary Algorithms perform similarly and sometimes even better than standard approaches for several well-known benchmarking problems.

  9. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore.

    Science.gov (United States)

    Miller, J Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H James; Huband, Michael D; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y; Mehrens, Shawn; Mueller, W Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J V N Vara; Shelly, John A; Skerlos, Laura; Sulavik, Mark; Thomas, V Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C Kendall

    2009-02-10

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.

  10. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H. James; Huband, Michael D.; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y.; Mehrens, Shawn; Mueller, W. Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J.V.N. Vara; Shelly, John A.; Skerlos, Laura; Sulavik, Mark; Thomas, V. Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C. Kendall; (Pfizer)

    2009-06-25

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.

  11. NCBI nr-aa BLAST: CBRC-DRER-26-0538 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-26-0538 ref|NP_229856.1| hemolysin secretion ATP-binding protein, putative [Vibrio cholera...e O1 biovar eltor str. N16961] ref|ZP_01681061.1| hemolysin secretion ATP-binding protein, putative [Vibrio cholera...e V52] ref|ZP_01971238.1| hemolysin secretion ATP-binding protein, putative [Vibrio cholera...e NCTC 8457] ref|ZP_01974256.1| hemolysin secretion ATP-binding protein, putative [Vibrio cholera...e B33] gb|AAF93375.1| hemolysin secretion ATP-binding protein, putative [Vibrio cholera

  12. The Computational Complexity of Evolving Systems

    NARCIS (Netherlands)

    Verbaan, P.R.A.

    2006-01-01

    Evolving systems are systems that change over time. Examples of evolving systems are computers with soft-and hardware upgrades and dynamic networks of computers that communicate with each other, but also colonies of cooperating organisms or cells within a single organism. In this research, several m

  13. Evolving Technologies: A View to Tomorrow

    Science.gov (United States)

    Tamarkin, Molly; Rodrigo, Shelley

    2011-01-01

    Technology leaders must participate in strategy creation as well as operational delivery within higher education institutions. The future of higher education--the view to tomorrow--is irrevocably integrated and intertwined with evolving technologies. This article focuses on two specific evolving technologies: (1) alternative IT sourcing; and (2)…

  14. Multidrug resistance associated proteins in multidrug resistance

    Institute of Scientific and Technical Information of China (English)

    Kamlesh Sodani; Atish Patel; Rishil J. Kathawala; Zhe-Sheng Chen

    2012-01-01

    Multidrug resistance proteins (MRPs) are members of the C family of a group of proteins named ATP-binding cassette (ABC) transporters.These ABC transporters together form the largest branch of proteins within the human body.The MRP family comprises of 13 members,of which MRP1 to MRP9 are the major transporters indicated to cause multidrug resistance in tumor cells by extruding anticancer drugs out of the cell.They are mainly lipophilic anionic transporters and are reported to transport free or conjugates of glutathione (GSH),glucuronate,or sulphate.In addition,MRP1 to MRP3 can transport neutral organic drugs in free form in the presence of free GSH.Collectively,MRPs can transport drugs that differ structurally and mechanistically,including natural anticancer drugs,nucleoside analogs,antimetabolites,and tyrosine kinase inhibitors.Many of these MRPs transport physiologically important anions such as leukotriene C4,bilirubin glucuronide,and cyclic nucleotides.This review focuses mainly on the physiological functions,cellular resistance characteristics,and probable in vivo role of MRP1 to MRP9.

  15. WSC-07: Evolving the Web Services Challenge

    NARCIS (Netherlands)

    Blake, M. Brian; Cheung, William K.W.; Jaeger, Michael C.; Wombacher, Andreas

    2007-01-01

    Service-oriented architecture (SOA) is an evolving architectural paradigm where businesses can expose their capabilities as modular, network-accessible software services. By decomposing capabilities into modular services, organizations can share their offerings at multiple levels of granularity whil

  16. Robot navigation system using intrinsic evolvable hardware

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently there has been great interest in the idea that evolvable system based on the principle of ar tifcial intelligence can be used to continuously and autonomously adapt the behaviour of physically embedded systems such as autonomous mobile robots and intelligent home devices. Meanwhile, we have seen the introduc tion of evolvable hardware(EHW): new integrated electronic circuits that are able to continuously evolve to a dapt the chages in the environment implemented by evolutionary algorithms such as genetic algorithm(GA)and reinforcement learning. This paper concentrates on developing a robotic navigation system whose basic behav iours are obstacle avoidance and light source navigation. The results demonstrate that the intrinsic evolvable hardware system is able to create the stable robotiiuc behaviours as required in the real world instead of the tra ditional hardware systems.

  17. Acquiring Evolving Technologies: Web Services Standards

    Science.gov (United States)

    2016-06-30

    2006 Carnegie Mellon University Acquiring Evolving Technologies: Web Services Standards Harry L. Levinson Software Engineering Institute Carnegie...Acquiring Evolving Technologies: Web Services Standards 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form

  18. Recent advances in designing substrate-competitive protein kinase inhibitors.

    Science.gov (United States)

    Han, Ki-Cheol; Kim, So Yeon; Yang, Eun Gyeong

    2012-01-01

    Protein kinases play central roles in cellular signaling pathways and their abnormal phosphorylation activity is inseparably linked with various human diseases. Therefore, modulation of kinase activity using potent inhibitors is an attractive strategy for the treatment of human disease. While most protein kinase inhibitors in clinical development are mainly targeted to the highly conserved ATP-binding sites and thus likely promiscuously inhibit multiple kinases including kinases unrelated to diseases, protein substrate-competitive inhibitors are more selective and expected to be promising therapeutic agents. Most substrate-competitive inhibitors mimic peptides derived from substrate proteins, or from inhibitory domains within kinases or inhibitor proteins. In addition, bisubstrate inhibitors are generated by conjugating substrate-competitive peptide inhibitors to ATP-competitive inhibitors to improve affinity and selectivity. Although structural information on protein kinases provides invaluable guidance in designing substrate-competitive inhibitors, other strategies including bioinformatics, computational modeling, and high-throughput screening are often employed for developing specific substrate-competitive kinase inhibitors. This review focuses on recent advances in the design and discovery of substrate-competitive inhibitors of protein kinases.

  19. Two-dimensional gel electrophoresis analysis of mycelial cells treated with Tween 80: differentially expressed protein related to enhanced metabolite production.

    Science.gov (United States)

    Zhang, Bo-Bo; Chen, Lei; Cheung, Peter C K

    2012-10-24

    Two-dimensional gel electrophoresis identified 40 differentially expressed proteins which explained the mechanisms underlying the stimulatory effect of Tween 80 for exopolysaccharide production in the mycelium of an edible mushroom Pleurotus tuber-regium. The up-regulation of fatty acid synthase alpha subunit FasA might promote the synthesis of long-chain fatty acids and their incorporation into the mycelial cell membranes, increasing the membrane permeability. A down-regulation of Phospholipase D1 and an up-regulation of Hypothetical protein PGUG_02954 might mediate signal transduction between the mycelial cells and the extracellular stimulus (Tween 80). The down-regulated ATP-binding cassette transporter protein might function as pumps to extrude exopolysaccharide out of the cells that lead to a significant increase in its production. The present results explained how stimulatory agents like Tween 80 can increase mycelial cell membrane permeability to enhance the production of useful extracellular metabolites by submerged fermentation.

  20. Effects of ATP-binding cassette exporters on virulence factors in Streptococcus mutans%三磷酸腺苷结合盒外排子对变异链球菌毒力因子影响的研究进展

    Institute of Scientific and Technical Information of China (English)

    曾荟荟; 凌均棨

    2015-01-01

    ABC transporters have been proved to be integral membrane proteins that actively transported a diverse range of substrates across cell membranes. ABC transporters had varied functions, and took part in gene competence, (p)ppGpp accumulation, bacteriocin secretion and immunity in Streptococcus mutans. The structures, functions, mechanisms and inhibitors of the known ABC exporters in Streptococcus mutans were summarized.%三磷酸腺苷结合盒(ABC)转运子是膜蛋白的一部分,透过细胞膜转运各种生物分子,参与多种生理功能。在变异链球菌中,ABC外排子与基因感受态、四(五)磷酸鸟苷[(p)ppGpp]累积、细菌素分泌与免疫密切相关。本文就变异链球菌ABC外排子的结构、生理功能、作用机制和抑制剂作一综述。

  1. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongshan [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom); College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Xiang, Quanju [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); Department of Microbiology, College of Resource and Environment Science, Sichuan Agriculture University, Yaan 625000 (China); Zhu, Xiaofeng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Dong, Haohao [Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST (United Kingdom); He, Chuan [School of Electronics and Information, Wuhan Technical College of Communications, No. 6 Huangjiahu West Road, Hongshan District, Wuhan, Hubei 430065 (China); Wang, Haiyan; Zhang, Yizheng [College of Life Sciences, Sichuan University, Chengdu 610065 (China); Wang, Wenjian, E-mail: Wenjian166@gmail.com [Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong 510080 (China); Dong, Changjiang, E-mail: C.Dong@uea.ac.uk [Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ (United Kingdom)

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  2. Mammals evolve faster on smaller islands.

    Science.gov (United States)

    Millien, Virginie

    2011-07-01

    Island mammals often display remarkable evolutionary changes in size and morphology. Both theory and empirical data support the hypothesis that island mammals evolve at faster rates than their mainland congeners. It is also often assumed that the island effect is stronger and that evolution is faster on the smallest islands. I used a dataset assembled from the literature to test these assumptions for the first time. I show that mammals on smaller islands do indeed evolve more rapidly than mammals on larger islands, and also evolve by a greater amount. These results fit well the theory of an evolutionary burst due to the opening of new ecological opportunities on islands. This evolutionary burst is expected to be the strongest on the smallest islands where the contrast between the island and the mainland environments is the most dramatic.

  3. Quantifying evolvability in small biological networks

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Mugler, Andrew [COLUMBIA UNIV; Ziv, Etay [COLUMBIA UNIV; Wiggins, Chris H [COLUMBIA UNIV

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  4. Reliability of genetic networks is evolvable

    Science.gov (United States)

    Braunewell, Stefan; Bornholdt, Stefan

    2008-06-01

    Control of the living cell functions with remarkable reliability despite the stochastic nature of the underlying molecular networks—a property presumably optimized by biological evolution. We ask here to what extent the ability of a stochastic dynamical network to produce reliable dynamics is an evolvable trait. Using an evolutionary algorithm based on a deterministic selection criterion for the reliability of dynamical attractors, we evolve networks of noisy discrete threshold nodes. We find that, starting from any random network, reliability of the attractor landscape can often be achieved with only a few small changes to the network structure. Further, the evolvability of networks toward reliable dynamics while retaining their function is investigated and a high success rate is found.

  5. Evolution of evolvability in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Anton Crombach

    Full Text Available Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question. An individual-oriented evolutionary model is used to shed light on this matter. Each individual has a genome from which its gene regulatory network is derived. Mutations, such as gene duplications and deletions, alter the genome, while the resulting network determines the gene expression pattern and hence fitness. With this protocol we let a population of individuals evolve under Darwinian selection in an environment that changes through time. Our work demonstrates that long-term evolution of complex gene regulatory networks in a changing environment can lead to a striking increase in the efficiency of generating beneficial mutations. We show that the population evolves towards genotype-phenotype mappings that allow for an orchestrated network-wide change in the gene expression pattern, requiring only a few specific gene indels. The genes involved are hubs of the networks, or directly influencing the hubs. Moreover, throughout the evolutionary trajectory the networks maintain their mutational robustness. In other words, evolution in an alternating environment leads to a network that is sensitive to a small class of beneficial mutations, while the majority of mutations remain neutral: an example of evolution of evolvability.

  6. Self-Adaptation in Evolving Systems

    CERN Document Server

    Stephens, C R; Mora, J; Waelbroeck, H

    1997-01-01

    A theoretical and experimental analysis is made of the effects of self-adaptation in a simple evolving system. Specifically, we consider the effects of coding the mutation and crossover probabilities of a genetic algorithm evolving in certain model fitness landscapes. The resultant genotype-phenotype mapping is degenerate, there being no direct selective advantage for one probability versus another. We show that the action of mutation and crossover breaks this degeneracy leading to an induced symmetry breaking among the genotypic synonyms. We demonstrate that this induced symmetry breaking allows the system to self-adapt in a time dependent environment.

  7. Evolving Intelligent Systems Methodology and Applications

    CERN Document Server

    Angelov, Plamen; Kasabov, Nik

    2010-01-01

    From theory to techniques, the first all-in-one resource for EIS. There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on th

  8. The sound of an evolving floating sculpture

    CERN Document Server

    Seibold, Benjamin

    2012-01-01

    Commissioned by MIT's in-house artist Jane Philbrick, we evolve an abstract 2D surface (resembling Marta Pan's 1961 "Sculpture Flottante I") under mean curvature, all the while calculating the eigenmodes and eigenvalues of the Laplace-Beltrami operator on the resulting shapes. These are then synthesized into a sound-wave embodying the "swan song" of the surfaces as the evolve to points and vanish. The surface is approximated by a triangulation, and we present a robust approach to approximate the normal directions and the mean curvature. The resulting video and sound-track were parts in the Jane Philbrick's exhibition "Everything Trembles" in Lund, Sweden, 2009.

  9. Information Spreading in Stationary Markovian Evolving Graphs

    CERN Document Server

    Clementi, Andrea; Pasquale, Francesco; Silvestri, Riccardo

    2011-01-01

    Markovian evolving graphs are dynamic-graph models where the links among a fixed set of nodes change during time according to an arbitrary Markovian rule. They are extremely general and they can well describe important dynamic-network scenarios. We study the speed of information spreading in the "stationary phase" by analyzing the completion time of the "flooding mechanism". We prove a general theorem that establishes an upper bound on flooding time in any stationary Markovian evolving graph in terms of its node-expansion properties. We apply our theorem in two natural and relevant cases of such dynamic graphs. "Geometric Markovian evolving graphs" where the Markovian behaviour is yielded by "n" mobile radio stations, with fixed transmission radius, that perform independent random walks over a square region of the plane. "Edge-Markovian evolving graphs" where the probability of existence of any edge at time "t" depends on the existence (or not) of the same edge at time "t-1". In both cases, the obtained upper...

  10. Mass Loss and Variability in Evolved Stars

    OpenAIRE

    Marengo, Massimo

    2014-01-01

    Mass loss and variability are two linked, fundamental properties of evolved stars. In this paper I review our current understanding of these processes, with a particular focus on how observations and models are used to constrain reliable mass loss prescriptions for stellar evolution and population synthesis models.

  11. Thermal and Evolved-Gas Analyzer Illustration

    Science.gov (United States)

    2008-01-01

    This is a computer-aided drawing of the Thermal and Evolved-Gas Analyzer, or TEGA, on NASA's Phoenix Mars Lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Toward an Evolved Concept of Landrace.

    Science.gov (United States)

    Casañas, Francesc; Simó, Joan; Casals, Joan; Prohens, Jaime

    2017-01-01

    The term "landrace" has generally been defined as a cultivated, genetically heterogeneous variety that has evolved in a certain ecogeographical area and is therefore adapted to the edaphic and climatic conditions and to its traditional management and uses. Despite being considered by many to be inalterable, landraces have been and are in a constant state of evolution as a result of natural and artificial selection. Many landraces have disappeared from cultivation but are preserved in gene banks. Using modern selection and breeding technology tools to shape these preserved landraces together with the ones that are still cultivated is a further step in their evolution in order to preserve their agricultural significance. Adapting historical landraces to present agricultural conditions using cutting-edge breeding technology represents a challenging opportunity to use them in a modern sustainable agriculture, as an immediate return on the investment is highly unlikely. Consequently, we propose a more inclusive definition of landraces, namely that they consist of cultivated varieties that have evolved and may continue evolving, using conventional or modern breeding techniques, in traditional or new agricultural environments within a defined ecogeographical area and under the influence of the local human culture. This includes adaptation of landraces to new management systems and the unconscious or conscious selection made by farmers or breeders using available technology. In this respect, a mixed selection system might be established in which farmers and other social agents develop evolved landraces from the variability generated by public entities.

  13. Systems of Accumulation and the Evolving MEC

    NARCIS (Netherlands)

    S. Ashman (Sam); B. Fine (Ben); S.A. Newman (Susan)

    2013-01-01

    textabstractThe limitations of the Developmental State Paradigm were discussed in the introductory chapter to this volume. This chapter offers an alternative approach to the DSP through use of the notion of systems of (capital) accumulation and its specific application to South Africa’s evolving pol

  14. Satcom access in the Evolved Packet Core

    NARCIS (Netherlands)

    Cano Soveri, M.D.; Norp, A.H.J.; Popova, M.P.

    2011-01-01

    Satellite communications (Satcom) networks are increasingly integrating with terrestrial communications networks, namely Next Generation Networks (NGN). In the area of NGN the Evolved Packet Core (EPC) is a new network architecture that can support multiple access technologies. When Satcom is consid

  15. Satcom access in the evolved packet core

    NARCIS (Netherlands)

    Cano, M.D.; Norp, A.H.J.; Popova, M.P.

    2012-01-01

    Satellite communications (Satcom) networks are increasingly integrating with terrestrial communications networks, namely Next Generation Networks (NGN). In the area of NGN the Evolved Packet Core (EPC) is a new network architecture that can support multiple access technologies. When Satcom is consid

  16. Market theories evolve, and so do markets

    OpenAIRE

    Friedman, Daniel

    2007-01-01

    Responding to Mirowski's target article, this paper discusses some intellectual currents of 1970s-1990s and offers suggestions on measuring market performance, on including automated agents as market participants, on evolving new market formats, and on dealing with highly differentiated goods. (c) 2006 Elsevier B.V. All rights reserved.

  17. Views on Evolvability of Embedded Systems

    NARCIS (Netherlands)

    Laar, P. van de; Punter, T.

    2011-01-01

    Evolvability, the ability to respond effectively to change, represents a major challenge to today's high-end embedded systems, such as those developed in the medical domain by Philips Healthcare. These systems are typically developed by multi-disciplinary teams, located around the world, and are in

  18. Benzimidazole inhibitors of the protein kinase CHK2: Clarification of the binding mode by flexible side chain docking and protein–ligand crystallography

    Science.gov (United States)

    Matijssen, Cornelis; Silva-Santisteban, M. Cris; Westwood, Isaac M.; Siddique, Samerene; Choi, Vanessa; Sheldrake, Peter; van Montfort, Rob L.M.; Blagg, Julian

    2012-01-01

    Two closely related binding modes have previously been proposed for the ATP-competitive benzimidazole class of checkpoint kinase 2 (CHK2) inhibitors; however, neither binding mode is entirely consistent with the reported SAR. Unconstrained rigid docking of benzimidazole ligands into representative CHK2 protein crystal structures reveals an alternative binding mode involving a water-mediated interaction with the hinge region; docking which incorporates protein side chain flexibility for selected residues in the ATP binding site resulted in a refinement of the water-mediated hinge binding mode that is consistent with observed SAR. The flexible docking results are in good agreement with the crystal structures of four exemplar benzimidazole ligands bound to CHK2 which unambiguously confirmed the binding mode of these inhibitors, including the water-mediated interaction with the hinge region, and which is significantly different from binding modes previously postulated in the literature. PMID:23058106

  19. The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins.

    Science.gov (United States)

    van Herwaarden, Antonius E; Schinkel, Alfred H

    2006-01-01

    The breast cancer resistance protein [BCRP (also known as ABCG2)] belongs to the ATP binding cassette (ABC) family of transmembrane drug transporters. BCRP has a broad substrate specificity and actively extrudes a wide variety of drugs, carcinogens and dietary toxins from cells. Situated in the apical plasma membrane of epithelial cells of the small and large intestine and renal proximal tubules and in the bile canalicular membrane of hepatocytes, BCRP decreases the oral availability and systemic exposure of its substrates. In several blood-tissue barriers BCRP reduces tissue penetration of its substrates and it protects haematopoietic stem cells from cytotoxic substrates. Moreover, BCRP is expressed in mammary gland alveolar epithelial cells during pregnancy and lactation, where it actively secretes a variety of drugs, toxins and carcinogens into milk. In apparent contradiction with the detoxifying role of BCRP in mothers, this contamination of milk exposes suckling infants and dairy consumers to xenotoxins. BCRP thus affects many important aspects of pharmacology and toxicology.

  20. Convergent Signaling Pathways Controlled by LRP1 (Receptor-related Protein 1) Cytoplasmic and Extracellular Domains Limit Cellular Cholesterol Accumulation.

    Science.gov (United States)

    El Asmar, Zeina; Terrand, Jérome; Jenty, Marion; Host, Lionel; Mlih, Mohamed; Zerr, Aurélie; Justiniano, Hélène; Matz, Rachel L; Boudier, Christian; Scholler, Estelle; Garnier, Jean-Marie; Bertaccini, Diego; Thiersé, Danièle; Schaeffer, Christine; Van Dorsselaer, Alain; Herz, Joachim; Bruban, Véronique; Boucher, Philippe

    2016-03-04

    The low density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitously expressed cell surface receptor that protects from intracellular cholesterol accumulation. However, the underlying mechanisms are unknown. Here we show that the extracellular (α) chain of LRP1 mediates TGFβ-induced enhancement of Wnt5a, which limits intracellular cholesterol accumulation by inhibiting cholesterol biosynthesis and by promoting cholesterol export. Moreover, we demonstrate that the cytoplasmic (β) chain of LRP1 suffices to limit cholesterol accumulation in LRP1(-/-) cells. Through binding of Erk2 to the second of its carboxyl-terminal NPXY motifs, LRP1 β-chain positively regulates the expression of ATP binding cassette transporter A1 (ABCA1) and of neutral cholesterol ester hydrolase (NCEH1). These results highlight the unexpected functions of LRP1 and the canonical Wnt5a pathway and new therapeutic potential in cholesterol-associated disorders including cardiovascular diseases.

  1. Characterization of the universal stress protein F from atypical enteropathogenic Escherichia coli and its prevalence in Enterobacteriaceae.

    Science.gov (United States)

    de Souza, Cristiane S; Torres, Alfredo G; Caravelli, Andressa; Silva, Anderson; Polatto, Juliana M; Piazza, Roxane M F

    2016-12-01

    Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous strains in terms of serotypes, adherence patterns and the presence of novel virulence factors. This heterogeneity is intriguing, promoting studies trying to characterize these novel proteins and to better comprehend this pathotype group. In a previous study analyzing low-molecular mass proteomes of four representative aEPEC strains of three different adhesion phenotypes, we classified proteins according to their annotated function, with most of them being involved in metabolism and transport; while some of them were classified as hypothetical proteins. The majority of the hypothetical proteins were homologue products of genes identified in the genome of enterohemorrhagic E. coli. One of the hypothetical proteins was annotated as Z2335, with orthologue in EPEC, and by bioinformatics analysis, this protein was revealed to be the universal stress protein F (UspF). Thus, herein we successfully obtained a recombinant UspF protein from aEPEC, which is a α/β, ATP-binding protein involved in stress response, with comparable protein production among the four studied strains, but showing noteworthy differences when cultivated in different stress conditions, also present in other enterobacterial species, such as Shigella sonnei and Citrobacter freundii. Furthermore, our results confirm that the Usp protein superfamily encompasses a conserved group of proteins involved in stress resistance in aEPEC and other Enterobacteriaceae.

  2. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus.

    Science.gov (United States)

    Yu, Fang; De Luca, Vincenzo

    2013-09-24

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine-vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface.

  3. ATP binding cassette transporters modulate both coelenterazine- and D-luciferin- based bioluminescence imaging

    OpenAIRE

    Huang, Ruimin; Vider, Jelena; Serganova, Inna; Blasberg, Ronald G.

    2011-01-01

    Bioluminescence imaging (BLI) of luciferase reporters provides a cost-effective and sensitive means to image biological processes. However, transport of luciferase substrates across the cell membrane does affect BLI-readout-intensity from intact living cells.

  4. Evolvement Complexity in an Artificial Stock Market

    Institute of Scientific and Technical Information of China (English)

    YANG Chun-Xia; ZHOU Tao; ZHOU Pei-Ling; LIU Jun; TANG Zi-Nan

    2005-01-01

    @@ An artificial stock market is established based on the multi-agent model.Each agent has a limited memory of the history of stock price, and will choose an action according to its memory and trading strategy.The trading strategy of each agent evolves ceaselessly as a result of a self-teaching mechanism.The simulation results exhibit that large events are frequent in the fluctuation of the stock price generated by the present model when compared with a normal process, and the price returns distribution is a L関y distribution in the central part followed by an approximately exponential truncation.In addition, by defining a variable to gauge the evolvement complexity of this system, we have found a phase cross-over from simple-phase to complex-phase along with the increase of the number of individuals, which may be a ubiquitous phenomenon in multifarious real-life systems.

  5. Architecture for Pseudo Acausal Evolvable Embedded Systems

    CERN Document Server

    Abubakr, Mohd

    2007-01-01

    Advances in semiconductor technology are contributing to the increasing complexity in the design of embedded systems. Architectures with novel techniques such as evolvable nature and autonomous behavior have engrossed lot of attention. This paper demonstrates conceptually evolvable embedded systems can be characterized basing on acausal nature. It is noted that in acausal systems, future input needs to be known, here we make a mechanism such that the system predicts the future inputs and exhibits pseudo acausal nature. An embedded system that uses theoretical framework of acausality is proposed. Our method aims at a novel architecture that features the hardware evolability and autonomous behavior alongside pseudo acausality. Various aspects of this architecture are discussed in detail along with the limitations.

  6. Dust obscuration by an evolving galaxy population

    Science.gov (United States)

    Najita, Joan; Silk, Joseph; Wachter, Kenneth W.

    1990-01-01

    The effect of an evolving luminosity function (LF) on the ability of foreground galaxies to obscure background sources is discussed, using the Press-Schechter/CDM standard evolving LF model. Galaxies are modeled as simplified versions of local spirals and Poisson statistics are used to estimate the fraction of sky covered by intervening dusty galaxies and the mean optical depths due to these galaxies. The results are compared to those obtained in the case of nonevolving luminosity function in a low-density universe. It is found that evolution of the galaxy LF does not allow the quasar dust obscuration hypothesis to be sustained for dust disks with plausible sizes. Even in a low-density universe, where evolution at z = less than 10 is unimportant, large disk radii are needed to achieve the desired obscuring effect. The mean fraction of sky covered is presented as a function of the redshift z along with adequate diagram illustrations.

  7. Interactively Evolving Compositional Sound Synthesis Networks

    DEFF Research Database (Denmark)

    Jónsson, Björn Þór; Hoover, Amy K.; Risi, Sebastian

    2015-01-01

    While the success of electronic music often relies on the uniqueness and quality of selected timbres, many musicians struggle with complicated and expensive equipment and techniques to create their desired sounds. Instead, this paper presents a technique for producing novel timbres that are evolved...... by the musician through interactive evolutionary computation. Each timbre is produced by an oscillator, which is represented by a special type of artificial neural network (ANN) called a compositional pattern producing network (CPPN). While traditional ANNs compute only sigmoid functions at their hidden nodes......, CPPNs can theoretically compute any function and can build on those present in traditional synthesizers (e.g. square, sawtooth, triangle, and sine waves functions) to produce completely novel timbres. Evolved with NeuroEvolution of Augmenting Topologies (NEAT), the aim of this paper is to explore...

  8. A novel evolving model for power grids

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,a novel power grid evolving model,which can well describe the evolving property of power grids,is presented. Based on the BA model,motivated by the fact that in real power grids,connectivity of node not only depends on its degree,but also is influenced by many uncertain factors,so we introduce the subconnection factor K for each node. Using the mean-field theory,we get the analytical expression of power-law degree distribution with the exponent γ∈ (3,∞ ). Finally,simulation results show that the new model can provide a satisfactory description for empirical characteristics of power network,and power network falls somewhere in between scale-free network and uncertain network.

  9. Evolving Quantum Circuits using Genetic Algorithms

    CERN Document Server

    Prashant

    2005-01-01

    This paper describes an application of genetic algorithm for evolving quantum computing circuits. The circuits use reversible one qubit and two qubit gates which are applied on a multi-qubit system having some initial state. The genetic algorithm automatically searches the space and comes out with the appropriate circuit design, which yields desired output state. The fitness function used matches the output with desired output and the search stops when it is found. The fitness value becomes higher if the output is close to the desired output. The paper briefly discusses the operation of a quantum gate over the multi-qubit system. The paper also demonstrates some examples of the evolved circuits using the algorithm.

  10. Evolving economic architecture in East Asia

    OpenAIRE

    Kawai, Masahiro

    2007-01-01

    This paper examines how East Asia's economic architecture has been evolving over the last ten years and how it will shape itself in the future. With the progress of market-driven economic integration, East Asian economies have developed various cooperative initiatives for trade and finance, including free trade agreements (FTAs), the Chiang Mai Initiative, the Economic Review and Policy Dialogue, and the Asian Bond Markets Initiative. The paper suggests policy directions for greater regional ...

  11. Evolving Information Filtering for Personalized Information Service

    Institute of Scientific and Technical Information of China (English)

    田范江; 李丛蓉; 王鼎兴

    2001-01-01

    Information filtering (IF) systems are important for personalized information service. However, most current IF systems suffer from low quality and long training time. In this paper, a refined evolving information filtering method is presented. This method describes user's information need from multi-aspects and improves filtering quality through a process like natural selection. Experimental result shows this method can shorten training time, improve filtering quality, and reduce the relevance between filtering results and training sequence.

  12. Circumstellar Molecular Spectra towards Evolved Stars

    CERN Document Server

    Bakker, E J

    1997-01-01

    In this paper we discuss the relevance of, and possible scientific gains which can be acquired from studying circumstellar molecular spectra toward evolved stars. Where can we expect circumstellar molecular spectra, why would we want to study these spectra, which molecules might be present, and what can we learn from these studies? We present an overview of reported detections, and discuss some of the results.

  13. The evolving epidemiology of inflammatory bowel disease.

    LENUS (Irish Health Repository)

    Shanahan, Fergus

    2009-07-01

    Epidemiologic studies in inflammatory bowel disease (IBD) include assessments of disease burden and evolving patterns of disease presentation. Although it is hoped that sound epidemiologic studies provide aetiological clues, traditional risk factor-based epidemiology has provided limited insights into either Crohn\\'s disease or ulcerative colitis etiopathogenesis. In this update, we will summarize how the changing epidemiology of IBD associated with modernization can be reconciled with current concepts of disease mechanisms and will discuss studies of clinically significant comorbidity in IBD.

  14. Quantum games on evolving random networks

    Science.gov (United States)

    Pawela, Łukasz

    2016-09-01

    We study the advantages of quantum strategies in evolutionary social dilemmas on evolving random networks. We focus our study on the two-player games: prisoner's dilemma, snowdrift and stag-hunt games. The obtained result show the benefits of quantum strategies for the prisoner's dilemma game. For the other two games, we obtain regions of parameters where the quantum strategies dominate, as well as regions where the classical strategies coexist.

  15. Quantum games on evolving random networks

    CERN Document Server

    Pawela, Łukasz

    2015-01-01

    We study the advantages of quantum strategies in evolutionary social dilemmas on evolving random networks. We focus our study on the two-player games: prisoner's dilemma, snowdrift and stag-hunt games. The obtained result show the benefits of quantum strategies for the prisoner's dilemma game. For the other two games, we obtain regions of parameters where the quantum strategies dominate, as well as regions where the classical strategies coexist.

  16. Evolving networks:from topology to dynamics

    Institute of Scientific and Technical Information of China (English)

    Zhengping FAN; Guanrong CHEN; King Tim KO

    2004-01-01

    A multi-local-world model is introduced to describe the evolving networks that have a localization property such as the Intemet. Based on this model, we show that the traffic load defined by "betweenness centrality" on the multi-local-world scale-free networks' model also follows a power law form. In this kind of network, a few vertices have heavier loads and so play more important roles than the others in the network.

  17. Breast cancer management: Past, present and evolving

    Directory of Open Access Journals (Sweden)

    M Akram

    2012-01-01

    Full Text Available Breast cancer is known from ancient time,and the treatment strategy evolved as our understanding of the disease changed with time. In 460 BC Hippocrates described breast cancer as a humoral disease and presently after a lot of studies breast cancer is considered as a local disease with systemic roots. For most of the twentieth century Halsted radical mastectomy was the "established and standardized operation for cancer of the breast in all stages, early or late". New information about tumor biology and its behavior suggested that less radical surgery might be just as effective as the more extensive one. Eventually, with the use of adjuvant therapy likeradiation and systemic therapy, the extent of surgical resection in the breast and axilla got reduced further and led to an era of breast conservation. The radiation treatment of breast cancer has evolved from 2D to 3D Conformal and to accelarated partial breast irradiation, aiming to reduce normal tissue toxicity and overall treatment time. Systemic therapy in the form of hormone therapy, chemotherapy and biological agents is now a well-established modality in treatment of breast cancer. The current perspective of breast cancer management is based on the rapidly evolving and increasingly integrated study on the genetic, molecular , biochemical and cellular basis of disease. The challenge for the future is to take advantage of this knowledge for the prediction of therapeutic outcome and develop therapies and rapidly apply more novel biologic therapeutics.

  18. Continuous evaluation of evolving behavioral intervention technologies.

    Science.gov (United States)

    Mohr, David C; Cheung, Ken; Schueller, Stephen M; Hendricks Brown, C; Duan, Naihua

    2013-10-01

    Behavioral intervention technologies (BITs) are web-based and mobile interventions intended to support patients and consumers in changing behaviors related to health, mental health, and well-being. BITs are provided to patients and consumers in clinical care settings and commercial marketplaces, frequently with little or no evaluation. Current evaluation methods, including RCTs and implementation studies, can require years to validate an intervention. This timeline is fundamentally incompatible with the BIT environment, where technology advancement and changes in consumer expectations occur quickly, necessitating rapidly evolving interventions. However, BITs can routinely and iteratively collect data in a planned and strategic manner and generate evidence through systematic prospective analyses, thereby creating a system that can "learn." A methodologic framework, Continuous Evaluation of Evolving Behavioral Intervention Technologies (CEEBIT), is proposed that can support the evaluation of multiple BITs or evolving versions, eliminating those that demonstrate poorer outcomes, while allowing new BITs to be entered at any time. CEEBIT could be used to ensure the effectiveness of BITs provided through deployment platforms in clinical care organizations or BIT marketplaces. The features of CEEBIT are described, including criteria for the determination of inferiority, determination of BIT inclusion, methods of assigning consumers to BITs, definition of outcomes, and evaluation of the usefulness of the system. CEEBIT offers the potential to collapse initial evaluation and postmarketing surveillance, providing ongoing assurance of safety and efficacy to patients and consumers, payers, and policymakers.

  19. Transistor Level Circuit Experiments using Evolvable Hardware

    Science.gov (United States)

    Stoica, A.; Zebulum, R. S.; Keymeulen, D.; Ferguson, M. I.; Daud, Taher; Thakoor, A.

    2005-01-01

    The Jet Propulsion Laboratory (JPL) performs research in fault tolerant, long life, and space survivable electronics for the National Aeronautics and Space Administration (NASA). With that focus, JPL has been involved in Evolvable Hardware (EHW) technology research for the past several years. We have advanced the technology not only by simulation and evolution experiments, but also by designing, fabricating, and evolving a variety of transistor-based analog and digital circuits at the chip level. EHW refers to self-configuration of electronic hardware by evolutionary/genetic search mechanisms, thereby maintaining existing functionality in the presence of degradations due to aging, temperature, and radiation. In addition, EHW has the capability to reconfigure itself for new functionality when required for mission changes or encountered opportunities. Evolution experiments are performed using a genetic algorithm running on a DSP as the reconfiguration mechanism and controlling the evolvable hardware mounted on a self-contained circuit board. Rapid reconfiguration allows convergence to circuit solutions in the order of seconds. The paper illustrates hardware evolution results of electronic circuits and their ability to perform under 230 C temperature as well as radiations of up to 250 kRad.

  20. Markov Chain-based Degree Distributions of Evolving Networks

    Institute of Scientific and Technical Information of China (English)

    Xiang Xing KONG; Zhen Ting HOU; Ding Hua SHI; Quan Rong CHEN; Qing Gui ZHAO

    2012-01-01

    In this paper,we study a class of stochastic processes,called evolving network Markov chains,in evolving networks. Our approach is to transform the degree distribution problem of an evolving network to a corresponding problem of evolving network Markov chains.We investigate the evolving network Markov chains,thereby obtaining some exact formulas as well as a precise criterion for determining whether the steady degree distribution of the evolving network is a power-law or not.With this new method,we finally obtain a rigorous,exact and unified solution of the steady degree distribution of the evolving network.

  1. Altered protein expression in gestational diabetes mellitus placentas provides insight into insulin resistance and coagulation/fibrinolysis pathways.

    Directory of Open Access Journals (Sweden)

    Bin Liu

    Full Text Available OBJECTIVE: To investigate the placental proteome differences between pregnant women complicated with gestational diabetes mellitus (GDM and those with normal glucose tolerance (NGT. METHODS: We used two-dimensional electrophoresis (2DE to separate and compare placental protein levels from GDM and NGT groups. Differentially expressed proteins between the two groups were identified by MALDI-TOF/TOF mass spectrometry and further confirmed by Western blotting. The mRNA levels of related proteins were measured by realtime RT-PCR. Immunohistochemistry (IHC was performed to examine the cellular location of the proteins expressed in placenta villi. RESULTS: Twenty-one protein spots were differentially expressed between GDM and NGT placenta villi in the tested samples, fifteen of which were successfully identified by mass spectrometry. The molecular functions of these differentially expressed proteins include blood coagulation, signal transduction, anti-apoptosis, ATP binding, phospholipid binding, calcium ion binding, platelet activation, and tryptophan-tRNA ligase activity. Both protein and mRNA levels of Annexin A2, Annexin A5 and 14-3-3 protein ζ/δ were up-regulated, while the expression of the Ras-related protein Rap1A was down-regulated in the GDM placenta group. CONCLUSION: Placenta villi derived from GDM pregnant women exhibit significant proteome differences compared to those of NGT mothers. The identified differentially expressed proteins are mainly associated with the development of insulin resistance, transplacental transportation of glucose, hyperglucose-mediated coagulation and fibrinolysis disorders in the GDM placenta villi.

  2. Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding

    Directory of Open Access Journals (Sweden)

    M. Anaul Kabir

    2011-01-01

    Full Text Available Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stacked back to back. Each ring is composed of eight different but similar subunits and each subunit has three distinct domains. CCT assists folding of actin, tubulin, and numerous other cellular proteins in an ATP-dependent manner. The catalytic cooperativity of ATP binding/hydrolysis in CCT occurs in a sequential manner different from concerted cooperativity as shown for GroEL. Unlike GroEL, CCT does not have GroES-like cofactor, rather it has a built-in lid structure responsible for closing the central cavity. The CCT complex recognizes its substrates through diverse mechanisms involving hydrophobic or electrostatic interactions. Upstream factors like Hsp70 and Hsp90 also work in a concerted manner to transfer the substrate to CCT. Moreover, prefoldin, phosducin-like proteins, and Bag3 protein interact with CCT and modulate its function for the fine-tuning of protein folding process. Any misregulation of protein folding process leads to the formation of misfolded proteins or toxic aggregates which are linked to multiple pathological disorders.

  3. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection

    Science.gov (United States)

    Janković, Srdja; Ćirković, Milan M.

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.

  4. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection.

    Science.gov (United States)

    Janković, Srdja; Ćirković, Milan M

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.

  5. Evolving NoSQL Databases Without Downtime

    OpenAIRE

    Saur, Karla; Dumitraş, Tudor; Hicks, Michael

    2015-01-01

    NoSQL databases like Redis, Cassandra, and MongoDB are increasingly popular because they are flexible, lightweight, and easy to work with. Applications that use these databases will evolve over time, sometimes necessitating (or preferring) a change to the format or organization of the data. The problem we address in this paper is: How can we support the evolution of high-availability applications and their NoSQL data online, without excessive delays or interruptions, even in the presence of b...

  6. Logistic Regression for Evolving Data Streams Classification

    Institute of Scientific and Technical Information of China (English)

    YIN Zhi-wu; HUANG Shang-teng; XUE Gui-rong

    2007-01-01

    Logistic regression is a fast classifier and can achieve higher accuracy on small training data. Moreover,it can work on both discrete and continuous attributes with nonlinear patterns. Based on these properties of logistic regression, this paper proposed an algorithm, called evolutionary logistical regression classifier (ELRClass), to solve the classification of evolving data streams. This algorithm applies logistic regression repeatedly to a sliding window of samples in order to update the existing classifier, to keep this classifier if its performance is deteriorated by the reason of bursting noise, or to construct a new classifier if a major concept drift is detected. The intensive experimental results demonstrate the effectiveness of this algorithm.

  7. The tree length of an evolving coalescent

    CERN Document Server

    Pfaffelhuber, Peter; Weisshaupt, Heinz

    2009-01-01

    A well-established model for the genealogy of a large population in equilibrium is Kingman's coalescent. For the population together with its genealogy evolving in time, this gives rise to a time-stationary tree-valued process. We study the sum of the branch lengths, briefly denoted as tree length, and prove that the (suitably compensated) sequence of tree length processes converges, as the population size tends to infinity, to a limit process with cadlag paths, infinite infinitesimal variance, and a Gumbel distribution as its equilibrium.

  8. Mobile computing acceptance grows as applications evolve.

    Science.gov (United States)

    Porn, Louis M; Patrick, Kelly

    2002-01-01

    Handheld devices are becoming more cost-effective to own, and their use in healthcare environments is increasing. Handheld devices currently are being used for e-prescribing, charge capture, and accessing daily schedules and reference tools. Future applications may include education on medications, dictation, order entry, and test-results reporting. Selecting the right handheld device requires careful analysis of current and future applications, as well as vendor expertise. It is important to recognize the technology will continue to evolve over the next three years.

  9. SALT spectroscopy of evolved massive stars

    CERN Document Server

    Kniazev, A Y; Berdnikov, L N

    2016-01-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fibre-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  10. Machine Learning Optimization of Evolvable Artificial Cells

    DEFF Research Database (Denmark)

    Caschera, F.; Rasmussen, S.; Hanczyc, M.

    2011-01-01

    An evolvable artificial cell is a chemical or biological complex system assembled in laboratory. The system is rationally designed to show life-like properties. In order to achieve an optimal design for the emergence of minimal life, a high dimensional space of possible experimental combinations...... that artificial cells requires. In addition a replication cycle of oil in water emulsions is presented. They represent the container for the artificial cells. (C) Selection and peer-review under responsibility of FET11 conference organizers and published by Elsevier B.V....

  11. Strength dynamics of weighted evolving networks

    Institute of Scientific and Technical Information of China (English)

    Wu Jian-Jun; Gao Zi-You; Sun Hui-Jun

    2007-01-01

    In this paper, a simple model for the strength dynamics of weighted evolving networks is proposed to characterize the weighted networks. By considering the congestion effects, this approach can yield power law strength distribution appeared on the many real weighted networks, such as traffic networks, internet networks. Besides, the relationship between strength and degree is given. Numerical simulations indicate that the strength distribution is strongly related to the strength dynamics decline. The model also provides us with a better description of the real weighted networks.

  12. Evolving Networks with Nonlinear Assignment of Weight

    Institute of Scientific and Technical Information of China (English)

    TANG Chao; TANG Yi

    2006-01-01

    We propose a weighted evolving network model in which the underlying topological structure is still driven by the degree according to the preferential attachment rule while the weight assigned to the newly established edges is dependent on the degree in a nonlinear form. By varying the parameter α that controls the function determining the assignment of weight, a wide variety of power-law behaviours of the total weight distributions as well as the diversity of the weight distributions of edges are displayed. Variation of correlation and heterogeneity in the network is illustrated as well.

  13. Insect sex determination: it all evolves around transformer.

    Science.gov (United States)

    Verhulst, Eveline C; van de Zande, Louis; Beukeboom, Leo W

    2010-08-01

    Insects exhibit a variety of sex determining mechanisms including male or female heterogamety and haplodiploidy. The primary signal that starts sex determination is processed by a cascade of genes ending with the conserved switch doublesex that controls sexual differentiation. Transformer is the doublesex splicing regulator and has been found in all examined insects, indicating its ancestral function as a sex-determining gene. Despite this conserved function, the variation in transformer nucleotide sequence, amino acid composition and protein structure can accommodate a multitude of upstream sex determining signals. Transformer regulation of doublesex and its taxonomic distribution indicate that the doublesex-transformer axis is conserved among all insects and that transformer is the key gene around which variation in sex determining mechanisms has evolved.

  14. Development of new highly potent imidazo[1,2-b]pyridazines targeting Toxoplasma gondii calcium-dependent protein kinase 1.

    Science.gov (United States)

    Moine, Espérance; Dimier-Poisson, Isabelle; Enguehard-Gueiffier, Cécile; Logé, Cédric; Pénichon, Mélanie; Moiré, Nathalie; Delehouzé, Claire; Foll-Josselin, Béatrice; Ruchaud, Sandrine; Bach, Stéphane; Gueiffier, Alain; Debierre-Grockiego, Françoise; Denevault-Sabourin, Caroline

    2015-11-13

    Using a structure-based design approach, we have developed a new series of imidazo[1,2-b]pyridazines, targeting the calcium-dependent protein kinase-1 (CDPK1) from Toxoplasma gondii. Twenty derivatives were thus synthesized. Structure-activity relationships and docking studies confirmed the binding mode of these inhibitors within the ATP binding pocket of TgCDPK1. Two lead compounds (16a and 16f) were then identified, which were able to block TgCDPK1 enzymatic activity at low nanomolar concentrations, with a good selectivity profile against a panel of mammalian kinases. The potential of these inhibitors was confirmed in vitro on T. gondii growth, with EC50 values of 100 nM and 70 nM, respectively. These best candidates also displayed low toxicity to mammalian cells and were selected for further in vivo investigations on murine model of acute toxoplasmosis.

  15. Meiosis evolves: adaptation to external and internal environments.

    Science.gov (United States)

    Bomblies, Kirsten; Higgins, James D; Yant, Levi

    2015-10-01

    306 I. 306 II. 307 III. 312 IV. 317 V. 318 319 References 319 SUMMARY: Meiosis is essential for the fertility of most eukaryotes and its structures and progression are conserved across kingdoms. Yet many of its core proteins show evidence of rapid or adaptive evolution. What drives the evolution of meiosis proteins? How can constrained meiotic processes be modified in response to challenges without compromising their essential functions? In surveying the literature, we found evidence of two especially potent challenges to meiotic chromosome segregation that probably necessitate adaptive evolutionary responses: whole-genome duplication and abiotic environment, especially temperature. Evolutionary solutions to both kinds of challenge are likely to involve modification of homologous recombination and synapsis, probably via adjustments of core structural components important in meiosis I. Synthesizing these findings with broader patterns of meiosis gene evolution suggests that the structural components of meiosis coevolve as adaptive modules that may change in primary sequence and function while maintaining three-dimensional structures and protein interactions. The often sharp divergence of these genes among species probably reflects periodic modification of entire multiprotein complexes driven by genomic or environmental changes. We suggest that the pressures that cause meiosis to evolve to maintain fertility may cause pleiotropic alterations of global crossover rates. We highlight several important areas for future research.

  16. BOOK REVIEW: OPENING SCIENCE, THE EVOLVING GUIDE ...

    Science.gov (United States)

    The way we get our funding, collaborate, do our research, and get the word out has evolved over hundreds of years but we can imagine a more open science world, largely facilitated by the internet. The movement towards this more open way of doing and presenting science is coming, and it is not taking hundreds of years. If you are interested in these trends, and would like to find out more about where this is all headed and what it means to you, consider downloding Opening Science, edited by Sönke Bartling and Sascha Friesike, subtitled The Evolving Guide on How the Internet is Changing Research, Collaboration, and Scholarly Publishing. In 26 chapters by various authors from a range of disciplines the book explores the developing world of open science, starting from the first scientific revolution and bringing us to the next scientific revolution, sometimes referred to as “Science 2.0”. Some of the articles deal with the impact of the changing landscape of how science is done, looking at the impact of open science on Academia, or journal publishing, or medical research. Many of the articles look at the uses, pitfalls, and impact of specific tools, like microblogging (think Twitter), social networking, and reference management. There is lots of discussion and definition of terms you might use or misuse like “altmetrics” and “impact factor”. Science will probably never be completely open, and Twitter will probably never replace the journal article,

  17. Collapse of cooperation in evolving games.

    Science.gov (United States)

    Stewart, Alexander J; Plotkin, Joshua B

    2014-12-09

    Game theory provides a quantitative framework for analyzing the behavior of rational agents. The Iterated Prisoner's Dilemma in particular has become a standard model for studying cooperation and cheating, with cooperation often emerging as a robust outcome in evolving populations. Here we extend evolutionary game theory by allowing players' payoffs as well as their strategies to evolve in response to selection on heritable mutations. In nature, many organisms engage in mutually beneficial interactions and individuals may seek to change the ratio of risk to reward for cooperation by altering the resources they commit to cooperative interactions. To study this, we construct a general framework for the coevolution of strategies and payoffs in arbitrary iterated games. We show that, when there is a tradeoff between the benefits and costs of cooperation, coevolution often leads to a dramatic loss of cooperation in the Iterated Prisoner's Dilemma. The collapse of cooperation is so extreme that the average payoff in a population can decline even as the potential reward for mutual cooperation increases. Depending upon the form of tradeoffs, evolution may even move away from the Iterated Prisoner's Dilemma game altogether. Our work offers a new perspective on the Prisoner's Dilemma and its predictions for cooperation in natural populations; and it provides a general framework to understand the coevolution of strategies and payoffs in iterated interactions.

  18. Netgram: Visualizing Communities in Evolving Networks.

    Directory of Open Access Journals (Sweden)

    Raghvendra Mall

    Full Text Available Real-world complex networks are dynamic in nature and change over time. The change is usually observed in the interactions within the network over time. Complex networks exhibit community like structures. A key feature of the dynamics of complex networks is the evolution of communities over time. Several methods have been proposed to detect and track the evolution of these groups over time. However, there is no generic tool which visualizes all the aspects of group evolution in dynamic networks including birth, death, splitting, merging, expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolution of communities over 2 consecutive time-stamps in tables which are used to create a query database using the sql outer-join operation. It uses a line-based visualization technique which adheres to certain design principles and aesthetic guidelines. Netgram uses a greedy solution to order the initial community information provided by the evolutionary clustering technique such that we have fewer line cross-overs in the visualization. This makes it easier to track the progress of individual communities in time evolving graphs. Netgram is a generic toolkit which can be used with any evolutionary community detection algorithm as illustrated in our experiments. We use Netgram for visualization of topic evolution in the NIPS conference over a period of 11 years and observe the emergence and merging of several disciplines in the field of information processing systems.

  19. Novel cooperation experimentally evolved between species.

    Science.gov (United States)

    Harcombe, William

    2010-07-01

    Cooperation violates the view of "nature red in tooth and claw" that prevails in our understanding of evolution, yet examples of cooperation abound. Most work has focused on maintenance of cooperation within a single species through mechanisms such as kin selection. The factors necessary for the evolutionary origin of aiding unrelated individuals such as members of another species have not been experimentally tested. Here, I demonstrate that cooperation between species can be evolved in the laboratory if (1) there is preexisting reciprocation or feedback for cooperation, and (2) reciprocation is preferentially received by cooperative genotypes. I used a two species system involving Salmonella enterica ser. Typhimurium and an Escherichia coli mutant unable to synthesize an essential amino acid. In lactose media Salmonella consumes metabolic waste from E. coli, thus creating a mechanism of reciprocation for cooperation. Growth in a spatially structured environment assured that the benefits of cooperation were preferentially received by cooperative genotypes. Salmonella evolved to aid E. coli by excreting a costly amino acid, however this novel cooperation disappeared if the waste consumption or spatial structure were removed. This study builds on previous work to demonstrate an experimental origin of interspecific cooperation, and to test the factors necessary for such interactions to arise.

  20. Early formation of evolved asteroidal crust.

    Science.gov (United States)

    Day, James M D; Ash, Richard D; Liu, Yang; Bellucci, Jeremy J; Rumble, Douglas; McDonough, William F; Walker, Richard J; Taylor, Lawrence A

    2009-01-08

    Mechanisms for the formation of crust on planetary bodies remain poorly understood. It is generally accepted that Earth's andesitic continental crust is the product of plate tectonics, whereas the Moon acquired its feldspar-rich crust by way of plagioclase flotation in a magma ocean. Basaltic meteorites provide evidence that, like the terrestrial planets, some asteroids generated crust and underwent large-scale differentiation processes. Until now, however, no evolved felsic asteroidal crust has been sampled or observed. Here we report age and compositional data for the newly discovered, paired and differentiated meteorites Graves Nunatak (GRA) 06128 and GRA 06129. These meteorites are feldspar-rich, with andesite bulk compositions. Their age of 4.52 +/- 0.06 Gyr demonstrates formation early in Solar System history. The isotopic and elemental compositions, degree of metamorphic re-equilibration and sulphide-rich nature of the meteorites are most consistent with an origin as partial melts from a volatile-rich, oxidized asteroid. GRA 06128 and 06129 are the result of a newly recognized style of evolved crust formation, bearing witness to incomplete differentiation of their parent asteroid and to previously unrecognized diversity of early-formed materials in the Solar System.

  1. Novel protein kinase signaling systems regulating lifespan identified by small molecule library screening using Drosophila.

    Directory of Open Access Journals (Sweden)

    Stephen R Spindler

    Full Text Available Protein kinase signaling cascades control most aspects of cellular function. The ATP binding domains of signaling protein kinases are the targets of most available inhibitors. These domains are highly conserved from mammals to flies. Herein we describe screening of a library of small molecule inhibitors of protein kinases for their ability to increase Drosophila lifespan. We developed an assay system which allowed screening using the small amounts of materials normally present in commercial chemical libraries. The studies identified 17 inhibitors, the majority of which targeted tyrosine kinases associated with the epidermal growth factor receptor (EGFR, platelet-derived growth factor (PDGF/vascular endothelial growth factor (VEGF receptors, G-protein coupled receptor (GPCR, Janus kinase (JAK/signal transducer and activator of transcription (STAT, the insulin and insulin-like growth factor (IGFI receptors. Comparison of the protein kinase signaling effects of the inhibitors in vitro defined a consensus intracellular signaling profile which included decreased signaling by p38MAPK (p38, c-Jun N-terminal kinase (JNK and protein kinase C (PKC. If confirmed, many of these kinases will be novel additions to the signaling cascades known to regulate metazoan longevity.

  2. Novel protein kinase signaling systems regulating lifespan identified by small molecule library screening using Drosophila.

    Science.gov (United States)

    Spindler, Stephen R; Li, Rui; Dhahbi, Joseph M; Yamakawa, Amy; Sauer, Frank

    2012-01-01

    Protein kinase signaling cascades control most aspects of cellular function. The ATP binding domains of signaling protein kinases are the targets of most available inhibitors. These domains are highly conserved from mammals to flies. Herein we describe screening of a library of small molecule inhibitors of protein kinases for their ability to increase Drosophila lifespan. We developed an assay system which allowed screening using the small amounts of materials normally present in commercial chemical libraries. The studies identified 17 inhibitors, the majority of which targeted tyrosine kinases associated with the epidermal growth factor receptor (EGFR), platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF) receptors, G-protein coupled receptor (GPCR), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), the insulin and insulin-like growth factor (IGFI) receptors. Comparison of the protein kinase signaling effects of the inhibitors in vitro defined a consensus intracellular signaling profile which included decreased signaling by p38MAPK (p38), c-Jun N-terminal kinase (JNK) and protein kinase C (PKC). If confirmed, many of these kinases will be novel additions to the signaling cascades known to regulate metazoan longevity.

  3. Structure of the P{sub II} signal transduction protein of Neisseria meningitidis at 1.85 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Charles E. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Sainsbury, Sarah; Berrow, Nick S.; Alderton, David [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [The Bacterial Pathogenesis and Functional Genomics Group, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Stammers, David K. [Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2006-06-01

    The structure of the P{sub II} signal transduction protein of N. meningitidis at 1.85 Å resolution is described. The P{sub II} signal transduction proteins GlnB and GlnK are implicated in the regulation of nitrogen assimilation in Escherichia coli and other enteric bacteria. P{sub II}-like proteins are widely distributed in bacteria, archaea and plants. In contrast to other bacteria, Neisseria are limited to a single P{sub II} protein (NMB 1995), which shows a high level of sequence identity to GlnB and GlnK from Escherichia coli (73 and 62%, respectively). The structure of the P{sub II} protein from N. meningitidis (serotype B) has been solved by molecular replacement to a resolution of 1.85 Å. Comparison of the structure with those of other P{sub II} proteins shows that the overall fold is tightly conserved across the whole population of related proteins, in particular the positions of the residues implicated in ATP binding. It is proposed that the Neisseria P{sub II} protein shares functions with GlnB/GlnK of enteric bacteria.

  4. Evolving Random Forest for Preference Learning

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Shaker, Noor

    2015-01-01

    This paper introduces a novel approach for pairwise preference learning through a combination of an evolutionary method and random forest. Grammatical evolution is used to describe the structure of the trees in the Random Forest (RF) and to handle the process of evolution. Evolved random forests ...... obtained for predicting pairwise self-reports of users for the three emotional states engagement, frustration and challenge show very promising results that are comparable and in some cases superior to those obtained from state-of-the-art methods....... of 1560 sessions with detail information about user behaviour and their self-reported preferences while interacting with a game is used for training and evaluation. The method demonstrates ability to construct accurate models of user experience from preferences, behavioural and context data. The results...

  5. Epidemic spreading on evolving signed networks

    CERN Document Server

    Saeedian, M; Jafari, G R; Kertesz, J

    2016-01-01

    Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences peoples willingness to contact others: A friendly contact may be turned to unfriendly to avoid infection. We study the susceptible-infected (SI) disease spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heiders theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte-Carlo simulations on complete networks to test the energy landscape, where we find loc...

  6. The Evolving Structure of Galactic Disks

    CERN Document Server

    Martel, H; McGee, S; Gibson, B; Kawata, D; Martel, Hugo; Brook, Chris; Gee, Sean Mc; Gibson, Brad

    2005-01-01

    Observations suggest that the structural parameters of disk galaxies have not changed greatly since redshift 1. We examine whether these observations are consistent with a cosmology in which structures form hierarchically. We use SPH/N-body galaxy-scale simulations to simulate the formation and evolution of Milky-Way-like disk galaxies by fragmentation, followed by hierarchical merging. The simulated galaxies have a thick disk, that forms in a period of chaotic merging at high redshift, during which a large amount of alpha-elements are produced, and a thin disk, that forms later and has a higher metallicity. Our simulated disks settle down quickly and do not evolve much since redshift z~1, mostly because no major mergers take place between z=1 and z=0. During this period, the disk radius increases (inside-out growth) while its thickness remains constant. These results are consistent with observations of disk galaxies at low and high redshift.

  7. Regulatory mechanisms link phenotypic plasticity to evolvability.

    Science.gov (United States)

    van Gestel, Jordi; Weissing, Franz J

    2016-04-18

    Organisms have a remarkable capacity to respond to environmental change. They can either respond directly, by means of phenotypic plasticity, or they can slowly adapt through evolution. Yet, how phenotypic plasticity links to evolutionary adaptability is largely unknown. Current studies of plasticity tend to adopt a phenomenological reaction norm (RN) approach, which neglects the mechanisms underlying plasticity. Focusing on a concrete question - the optimal timing of bacterial sporulation - we here also consider a mechanistic approach, the evolution of a gene regulatory network (GRN) underlying plasticity. Using individual-based simulations, we compare the RN and GRN approach and find a number of striking differences. Most importantly, the GRN model results in a much higher diversity of responsive strategies than the RN model. We show that each of the evolved strategies is pre-adapted to a unique set of unseen environmental conditions. The regulatory mechanisms that control plasticity therefore critically link phenotypic plasticity to the adaptive potential of biological populations.

  8. THE J STRUCTURE IN ECONOMIC EVOLVING PROCESS

    Institute of Scientific and Technical Information of China (English)

    FANG Fukang; CHEN Qinghua

    2003-01-01

    The economic evolution exhibits complexity. Behind the variable and fiuctuant economic data there exists basic characters and rules. One basic structure in economic evolving process called as "J" structure is studied by us. This kind of structure exists in a wide area, such as economic growth, technology innovation, international trade, education, human capital, ecology and environment etc. From the view of economic evolution, J structure has the character that system should suffer the pressure of initial investment with profit decreasing but get larger return afterwards. It is a kind of adaptation in complex economic systems; it reflects the adaptive and reformative ability of the system under the surrounding change. We illustrate the J structure by discussing economic growth. Based on a two-dimension dynamic system the geometric character and mechanism of J structure are studied, also the phase graphs with its condition are given. Also some further works are discussed.

  9. Design of Evolvable Hardware for Robotic Navigation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents an integrated on-line learning system toevolve programmabl e logic array (PLA) controllers for navigating an autonomous robot in a two-dime n sional environment. The integrated on-line learning system consists of two lear n ing modules: one is the module of reinforcement learning based on temporal-diff e rence learning based on genetic algorithms, and the other is the module of evolu tionary learning based on genetic algorithms. The control rules extracted from t he module of reinforcement learning can be used as input to the module of evolut ionary learning, and quickly implemented by the PLA through on-line evolution. T he on-line evolution has shown promise as a method of learning systems in compl e x environment. The evolved PLA controllers can successfully navigate the robot t o a target in the two-dimensional environment while avoiding collisions with ra ndomly positioned obstacles.

  10. Ensuring Query Compatibility with Evolving XML Schemas

    CERN Document Server

    Genevès, Pierre; Quint, Vincent

    2008-01-01

    During the life cycle of an XML application, both schemas and queries may change from one version to another. Schema evolutions may affect query results and potentially the validity of produced data. Nowadays, a challenge is to assess and accommodate the impact of theses changes in rapidly evolving XML applications. This article proposes a logical framework and tool for verifying forward/backward compatibility issues involving schemas and queries. First, it allows analyzing relations between schemas. Second, it allows XML designers to identify queries that must be reformulated in order to produce the expected results across successive schema versions. Third, it allows examining more precisely the impact of schema changes over queries, therefore facilitating their reformulation.

  11. Properties of evolving e-mail networks

    Science.gov (United States)

    Wang, Juan; de Wilde, Philippe

    2004-12-01

    Computer viruses spread by attaching to an e-mail message and sending themselves to users whose addresses are in the e-mail address book of the recipients. Here we investigate a simple model of an evolving e-mail network, with nodes as e-mail address books of users and links as the records of e-mail addresses in the address books. Within specific periods, some new links are generated and some old links are deleted. We study the statistical properties of this e-mail network and observe the effect of the evolution on the structure of the network. We also find that the balance between the generation procedure and deletion procedure is dependent on different parameters of the model.

  12. Production and decay of evolving horizons

    CERN Document Server

    Visser, M; Nielsen, Alex; Visser, Matt

    2006-01-01

    We consider a simple physical model for an evolving horizon that is strongly interacting with its environment, exchanging arbitrarily large quantities of matter with its environment in the form of both infalling material and outgoing Hawking radiation. We permit fluxes of both lightlike and timelike particles to cross the horizon, and ask how the horizon grows and shrinks in response to such flows. We place a premium on providing a clear and straightforward exposition with simple formulae. To be able to handle such a highly dynamical situation in a simple manner we make one significant physical restriction, that of spherical symmetry, and two technical mathematical restrictions: (1) We choose to slice the spacetime in such a way that the space-time foliations (and hence the horizons) are always spherically symmetric. (2) Furthermore we adopt Painleve-Gullstrand coordinates (which are well suited to the problem because they are nonsingular at the horizon) in order to simplify the relevant calculations. We find...

  13. Resiliently evolving supply-demand networks

    CERN Document Server

    Rubido, Nicolás; Baptista, Murilo S

    2013-01-01

    The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for nowadays distribution systems. In this Letter, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations. The perturbations we consider are the evolution of the connecting topology, the decentralisation of hub sources or sinks, and the intermittence of suppliers/consumers characteristics. We analyse these conditions and the impact of our results, both on the current UK power-grid structure and on numerically generated evolving archetypal network topologies.

  14. Resiliently evolving supply-demand networks.

    Science.gov (United States)

    Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S

    2014-01-01

    The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations, i.e., without overloading. The perturbations we consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results, both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal network topologies.

  15. Quantum mechanics in an evolving Hilbert space

    CERN Document Server

    Artacho, Emilio

    2016-01-01

    Many basis sets for electronic structure calculations evolve with varying external parameters, such as moving atoms in dynamic simulations, giving rise to extra derivative terms in the dynamical equations. Here we revisit these derivatives in the context of differential geometry, thereby obtaining a more transparent formalisation, and a geometrical perspective for better understanding the resulting equations. The effect of the evolution of the basis set within the spanned Hilbert space separates explicitly from the effect of the turning of the space itself when moving in parameter space, as the tangent space turns when moving in a curved space. New insights are obtained using familiar concepts in that context such as the Riemann curvature. The differential geometry is not strictly that for curved spaces as in general relativity, a more adequate mathematical framework being provided by fibre bundles. The language used here, however, will be restricted to tensors and basic quantum mechanics. The local gauge imp...

  16. Evolving Classifiers: Methods for Incremental Learning

    CERN Document Server

    Hulley, Greg

    2007-01-01

    The ability of a classifier to take on new information and classes by evolving the classifier without it having to be fully retrained is known as incremental learning. Incremental learning has been successfully applied to many classification problems, where the data is changing and is not all available at once. In this paper there is a comparison between Learn++, which is one of the most recent incremental learning algorithms, and the new proposed method of Incremental Learning Using Genetic Algorithm (ILUGA). Learn++ has shown good incremental learning capabilities on benchmark datasets on which the new ILUGA method has been tested. ILUGA has also shown good incremental learning ability using only a few classifiers and does not suffer from catastrophic forgetting. The results obtained for ILUGA on the Optical Character Recognition (OCR) and Wine datasets are good, with an overall accuracy of 93% and 94% respectively showing a 4% improvement over Learn++.MT for the difficult multi-class OCR dataset.

  17. Evolved Mechanisms Versus Underlying Conditional Relations

    Directory of Open Access Journals (Sweden)

    Astorga Miguel López

    2015-03-01

    Full Text Available The social contracts theory claims that, in social exchange circumstances, human reasoning is not necessarily led by logic, but by certain evolved mental mechanisms that are useful for catching offenders. An emblematic experiment carried out with the intention to prove this thesis is the first experiment described by Fiddick, Cosmides, and Tooby in their paper of 2000. Lopez Astorga has questioned that experiment claiming that its results depend on an underlying conditional logical form not taken into account by Fiddick, Cosmides, and Tooby. In this paper, I propose an explanation alternative to that of Lopez Astorga, which does not depend on logical forms and is based on the mental models theory. Thus, I conclude that this other alternative explanation is one more proof that the experiment in question does not demonstrate the fundamental thesis of the social contracts theory.

  18. Language as a coordination tool evolves slowly

    Science.gov (United States)

    2016-01-01

    Social living ultimately depends on coordination between group members, and communication is necessary to make this possible. We suggest that this might have been the key selection pressure acting on the evolution of language in humans and use a behavioural coordination model to explore the impact of communication efficiency on social group coordination. We show that when language production is expensive but there is an individual benefit to the efficiency with which individuals coordinate their behaviour, the evolution of efficient communication is selected for. Contrary to some views of language evolution, the speed of evolution is necessarily slow because there is no advantage in some individuals evolving communication abilities that much exceed those of the community at large. However, once a threshold competence has been achieved, evolution of higher order language skills may indeed be precipitate. PMID:28083091

  19. A local-world evolving hypernetwork model

    Science.gov (United States)

    Yang, Guang-Yong; Liu, Jian-Guo

    2014-01-01

    Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mechanisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is γ = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypernetwork model shares the scale-free and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.

  20. Evolving circuits in seconds: experiments with a stand-alone board-level evolvable system

    Science.gov (United States)

    Stoica, A.; Zebulum, R. S.; Ferguson, M. I.; Keymeulen, D.; Duong, V.; Guo, X.

    2002-01-01

    The purpose of this paper is twofold: first, to illustrate a stand-alone board-level evolvable system (SABLES) and its performance, and second to illustrate some problems that occur during evolution with real hardware in the loop, or when the intention of the user is not completely reflected in the fitness function.

  1. A possible molecular metric for biological evolvability

    Indian Academy of Sciences (India)

    Aditya Mittal; B Jayaram

    2012-07-01

    Proteins manifest themselves as phenotypic traits, retained or lost in living systems via evolutionary pressures. Simply put, survival is essentially the ability of a living system to synthesize a functional protein that allows for a response to environmental perturbations (adaptation). Loss of functional proteins leads to extinction. Currently there are no universally applicable quantitative metrics at the molecular level for either measuring ‘evolvability’ of life or for assessing the conditions under which a living system would go extinct and why. In this work, we show emergence of the first such metric by utilizing the recently discovered stoichiometric margin of life for all known naturally occurring (and functional) proteins. The constraint of having well-defined stoichiometries of the 20 amino acids in naturally occurring protein sequences requires utilization of the full scope of degeneracy in the genetic code, i.e. usage of all codons coding for an amino acid, by only 11 of the 20 amino acids. This shows that the non-availability of individual codons for these 11 amino acids would disturb the fine stoichiometric balance resulting in non-functional proteins and hence extinction. Remarkably, these amino acids are found in close proximity of any given amino acid in the backbones of thousands of known crystal structures of folded proteins. On the other hand, stoichiometry of the remaining 9 amino acids, found to be farther/distal from any given amino acid in backbones of folded proteins, is maintained independent of the number of codons available to synthesize them, thereby providing some robustness and hence survivability.

  2. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins.

    Science.gov (United States)

    Hollenstein, Kaspar; Comellas-Bigler, Mireia; Bevers, Loes E; Feiters, Martin C; Meyer-Klaucke, Wolfram; Hagedoorn, Peter-Leon; Locher, Kaspar P

    2009-06-01

    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteria.

  3. Characterisation of the salmon cystic fibrosis transmembrane conductance regulator protein for structural studies

    Directory of Open Access Journals (Sweden)

    Naomi L. Pollock

    2014-11-01

    Full Text Available The cystic fibrosis transmembrane conductance regulator protein (CFTR is a chloride channel highly expressed in the gills of Salmo salar, with a role in osmoregulation. It shares 60% identity with the human CFTR channel, mutations to which can cause the common genetic disorder cystic fibrosis CF. The expression and localisation of salmon CFTR have been investigated, but the isolated protein has not been extensively characterised. Here we present a protocol for the purification of recombinant salmon CFTR, along with biophysical and structural characterisation of the purified protein. Salmon CFTR was overexpressed in Saccharomyces cerevisiae, solubilised in the detergent LPG-14 and chromatographically purified by nickel-affinity and size-exclusion chromatography methods. Prior to size-exclusion chromatography samples of salmon CFTR had low purity, and contained large quantities of aggregated protein. Compared to size-exclusion chromatography profiles of other orthologues of CFTR, which had less evidence of aggregation, salmon CFTR appeared to have lower intrinsic stability than human and platypus CFTR. Nonetheless, repeated size-exclusion chromatography allowed monodisperse salmon CFTR to be isolated, and multi-angle light scattering was used to determine its oligomeric state. The monodispersity of the sample and its oligomeric state were confirmed using cryo-electron microscopy and small-angle X-ray scattering (SAXS. These data were also processed to calculate a low-resolution structure of the salmon CFTR, which showed similar architecture to other ATP-binding cassette proteins.

  4. Competitive interactions of ligands and macromolecular crowders with maltose binding protein.

    Directory of Open Access Journals (Sweden)

    Andrew C Miklos

    Full Text Available Cellular signaling involves a cascade of recognition events occurring in a complex environment with high concentrations of proteins, polysaccharides, and other macromolecules. The influence of macromolecular crowders on protein binding affinity through hard-core repulsion is well studied, and possible contributions of protein-crowder soft attraction have been implicated recently. Here we present direct evidence for weak association of maltose binding protein (MBP with a polysaccharide crowder Ficoll, and that this association effectively competes with the binding of the natural ligand, maltose. Titration data over wide ranges of maltose and Ficoll concentrations fit well with a three-state competitive binding model. Broadening of MBP (1H-(15N TROSY spectra by the addition of Ficoll indicates weak protein-crowder association, and subsequent recovery of sharp NMR peaks upon addition of maltose indicates that the interactions of the crowder and the ligand with MBP are competitive. We hypothesize that, in the Escherichia coli periplasm, the competitive interactions of polysaccharides and maltose with MBP could allow MBP to shuttle between the peptidoglycan attached to the outer membrane and the ATP-binding cassette transporter in the inner membrane.

  5. Comparative proteomic analysis of differentially expressed proteins between peripheral sensory and motor nerves.

    Science.gov (United States)

    He, Qianru; Man, Lili; Ji, Yuhua; Zhang, Shuqiang; Jiang, Maorong; Ding, Fei; Gu, Xiaosong

    2012-06-01

    Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.

  6. ATP-dependent transcriptional activation by bacterial PspF AAA+protein.

    Science.gov (United States)

    Schumacher, Jörg; Zhang, Xiaodong; Jones, Susan; Bordes, Patricia; Buck, Martin

    2004-05-14

    Transcription activation by bacterial sigma(54)-dependent enhancer-binding proteins (EBPs) requires their tri-nucleotide hydrolysis to restructure the sigma(54) RNA polymerase (RNAP). EBPs share sequence similarity with guanine nucleotide binding-proteins and ATPases associated with various cellular activities (AAA) proteins, especially in the mononucleotide binding P-loop fold. Using the phage shock protein F (PspF) EBP, we identify P-loop residues responsible for nucleotide binding and hydrolysis, consistent with their roles in other P-loop NTPases. We show the refined low-resolution structure of an EBP, PspF, revealing a hexameric ring organisation characteristic of AAA proteins. Functioning of EBPs involves ATP binding, higher oligomer formation and ATP hydrolysis coupled to the restructuring of the RNAP. This is thought to be a highly coordinated multi-step process, but the nucleotide-driven mechanism of oligomerisation and ATP hydrolysis is little understood. Our kinetic and structural data strongly suggest that three PspF dimers assemble to form a hexamer upon nucleotide binding. During the ATP hydrolysis cycle, both ATP and ADP are bound to oligomeric PspF, in line with a sequential hydrolysis cycle. We identify a putative R-finger, and show its involvement in ATP hydrolysis. Substitution of this arginine residue results in nucleotide-independent formation of hexameric rings, structurally linking the putative R-finger and, by inference, a specific nucleotide interaction to the control of PspF oligomerisation.

  7. Sequence analysis of the large polymerase (L) protein of the US strain of avian metapneumovirus indicates a close resemblance to that of the human metapneumovirus.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Samal, Siba K

    2004-09-15

    The complete nucleotide sequence of the large polymerase (L) protein of the avian metapneumovirus subgroup C strain Colorado was determined. The L protein gene of avian pneumovirus Colorado isolate (APV-C) was 6173 nucleotides in length from the gene-start to the gene-end and encoded a polypeptide of 2005 amino acids in length. The length of the L protein of APV-C was exactly the same as that of human metapneumovirus (hMPV) and one amino acid longer than the L protein of APV subgroup A. The L protein of APV-C showed 80% amino acid identity with the L protein of hMPV, but only 64% amino acid identity with the L protein of APV-A. The nucleotide and deduced amino acid sequences were compared with the corresponding sequences of eleven other paramyxoviruses. All six domains characteristic of paramyxovirus L proteins were also observed in the L protein of APV-C. All the polymerase core motifs in domain III were conserved to nearly 100% in the metapneumoviruses. Similarly, the putative ATP-binding motif in domain VI was completely conserved among the metapneumoviruses and differed in length, by one intermediate residue, from other paramyxoviruses. Phylogenetic analysis of the different L proteins also revealed a closer relationship between APV-C and hMPV.

  8. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    Science.gov (United States)

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition.

  9. The evolved pulsating CEMP star HD112869

    CERN Document Server

    Začs, L; Grankina, A; Deveikis, V; Kaminskyi, B; Pavlenko, Y; Musaev, F

    2015-01-01

    Radial velocity measurements, $BVR_C$ photometry, and high-resolution spectroscopy in the wavelength region from blue to near infrared are employed in order to clarify the evolutionary status of the carbon-enhanced metal-poor star HD112869 with unique ratio of carbon isotopes in the atmosphere. An LTE abundance analysis was carried out using the method of spectral synthesis and new self consistent 1D atmospheric models. The radial velocity monitoring confirmed semiregular variations with a peak-to-peak amplitude of about 10 km $s^{-1}$ and a dominating period of about 115 days. The light, color and radial velocity variations are typical of the evolved pulsating stars. The atmosphere of HD112869 appears to be less metal-poor than reported before, [Fe/H] = -2.3 $\\pm$0.2 dex. Carbon to oxygen and carbon isotope ratios are found to be extremely high, C/O $\\simeq$ 12.6 and $^{12}C/^{13}C \\gtrsim$ 1500, respectively. The s-process elements yttrium and barium are not enhanced, but neodymium appears to be overabundan...

  10. Evolving Galaxies in a Hierachical Universe

    Science.gov (United States)

    Hahn, Changhoon

    2017-01-01

    Observations of galaxies using large surveys (SDSS, COSMOS, PRIMUS, etc.) have firmly established a global view of galaxy properties out to z~1. Galaxies are broadly divided into two classes: blue, typically disk-like star forming galaxies and red, typically elliptical quiescent ones with little star formation. The star formation rates (SFR) and stellar masses of star forming galaxies form an empirical relationship referred to as the "star formation main sequence". Over cosmic time, this sequence undergoes significant decline in SFR and causes the overall cosmic star formation decline. Simultaneously, physical processes cause significant fractions of star forming galaxies to "quench" their star formation. Hierarchical structure formation and cosmological models provide precise predictions of the evolution of the underying dark matter, which serve as the foundation for these detailed trends and their evolution. Whatever trends we observe in galaxy properties can be interpreted within the narrative of the underlying dark matter and halo occupation framework. More importantly, through careful statistical treatment and precise measurements, this connection can be utilized to better constrain and understand key elements of galaxy evolution. In this spirit, for my dissertation I connect observations of evolving galaxy properties to the framework of the hierarchical Universe and use it to better understand physical processes responsible for the cessation of star formation in galaxies. For instance, through this approach, I constrain the quenching timescale of central galaxies and find that they are significantly longer than the quenching timescale of satellite galaxies.

  11. The Evolving Luminosity Function of Red Galaxies

    CERN Document Server

    Brown, M J I; Jannuzi, B T; Brand, K; Benson, A J; Brodwin, M; Croton, D J; Eisenhardt, P R M; Brown, Michael J. I.; Dey, Arjun; Jannuzi, Buell T.; Brand, Kate; Benson, Andrew J.; Brodwin, Mark; Croton, Darren J.; Eisenhardt, Peter R.

    2006-01-01

    We trace the assembly history of red galaxies since z=1, by measuring their evolving space density with the B-band luminosity function. Our sample of 39599 red galaxies, selected from 6.96 square degrees of imaging from the NOAO Deep Wide-Field and Spitzer IRAC Shallow surveys, is an order of magnitude larger, in size and volume, than comparable samples in the literature. We measure a higher space density of z=0.9 red galaxies than some of the recent literature, in part because we account for the faint yet significant galaxy flux which falls outside of our photometric aperture. The B-band luminosity density of red galaxies, which effectively measures the evolution of ~L* galaxies, increases by only 36 percent from z=0 to z=1. If red galaxy stellar populations have faded by 1.24 B-band magnitudes since z=1, the stellar mass contained within the red galaxy population has roughly doubled over the past 8 Gyr. This is consistent with star-forming galaxies being transformed into ~L* red galaxies after a decline in ...

  12. Stability of Evolving Multi-Agent Systems

    CERN Document Server

    De Wilde, Philippe; 10.1109/TSMCB.2011.2110642

    2011-01-01

    A Multi-Agent System is a distributed system where the agents or nodes perform complex functions that cannot be written down in analytic form. Multi-Agent Systems are highly connected, and the information they contain is mostly stored in the connections. When agents update their state, they take into account the state of the other agents, and they have access to those states via the connections. There is also external, user-generated input into the Multi-Agent System. As so much information is stored in the connections, agents are often memory-less. This memory-less property, together with the randomness of the external input, has allowed us to model Multi-Agent Systems using Markov chains. In this paper, we look at Multi-Agent Systems that evolve, i.e. the number of agents varies according to the fitness of the individual agents. We extend our Markov chain model, and define stability. This is the start of a methodology to control Multi-Agent Systems. We then build upon this to construct an entropy-based defi...

  13. The Role of Trends in Evolving Networks

    CERN Document Server

    Mokryn, Osnat; Shavitt, Yuval

    2013-01-01

    Modeling complex networks has been the focus of much research for over a decade. Preferential attachment (PA) is considered a common explanation to the self organization of evolving networks, suggesting that new nodes prefer to attach to more popular nodes. The PA model results in broad degree distributions, found in many networks, but cannot explain other common properties such as: The growth of nodes arriving late and Clustering (community structure). Here we show that when the tendency of networks to adhere to trends is incorporated into the PA model, it can produce networks with such properties. Namely, in trending networks, newly arriving nodes may become central at random, forming new clusters. In particular, we show that when the network is young it is more susceptible to trends, but even older networks may have trendy new nodes that become central in their structure. Alternatively, networks can be seen as composed of two parts: static, governed by a power law degree distribution, and a dynamic part go...

  14. How does cognition evolve? Phylogenetic comparative psychology.

    Science.gov (United States)

    MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria

    2012-03-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

  15. Epidemic spreading on evolving signed networks

    Science.gov (United States)

    Saeedian, M.; Azimi-Tafreshi, N.; Jafari, G. R.; Kertesz, J.

    2017-02-01

    Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences people's willingness to contact others: A "friendly" contact may be turned to "unfriendly" to avoid infection. We study the susceptible-infected disease-spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heider's theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte Carlo simulations on complete networks to test the energy landscape, where we find local minima corresponding to the so-called jammed states. We study the effect of the ratio of initial friendly to unfriendly connections on the propagation of disease. The steady state can be balanced or a jammed state such that a coexistence occurs between susceptible and infected nodes in the system.

  16. Consensus in evolving networks of mobile agents

    Science.gov (United States)

    Baronchelli, Andrea; Díaz-Guilera, Albert

    2012-02-01

    Populations of mobile and communicating agents describe a vast array of technological and natural systems, ranging from sensor networks to animal groups. Here, we investigate how a group-level agreement may emerge in the continuously evolving networks defined by the local interactions of the moving individuals. We adopt a general scheme of motion in two dimensions and we let the individuals interact through the minimal naming game, a prototypical scheme to investigate social consensus. We distinguish different regimes of convergence determined by the emission range of the agents and by their mobility, and we identify the corresponding scaling behaviors of the consensus time. In the same way, we rationalize also the behavior of the maximum memory used during the convergence process, which determines the minimum cognitive/storage capacity needed by the individuals. Overall, we believe that the simple and general model presented in this talk can represent a helpful reference for a better understanding of the behavior of populations of mobile agents.

  17. Evolving Decision Rules to Predict Investment Opportunities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is motivated by the interest in finding significant movements in financial stock prices. However, when the number of profitable opportunities is scarce, the prediction of these cases is difficult. In a previous work, we have introduced evolving decision rules (EDR) to detect financial opportunities. The objective of EDR is to classify the minority class (positive cases) in imbalanced environments. EDR provides a range of classifications to find the best balance between not making mistakes and not missing opportunities. The goals of this paper are: 1) to show that EDR produces a range of solutions to suit the investor's preferences and 2) to analyze the factors that benefit the performance of EDR. A series of experiments was performed. EDR was tested using a data set from the London Financial Market. To analyze the EDR behaviour, another experiment was carried out using three artificial data sets, whose solutions have different levels of complexity. Finally, an illustrative example was provided to show how a bigger collection of rules is able to classify more positive cases in imbalanced data sets. Experimental results show that: 1) EDR offers a range of solutions to fit the risk guidelines of different types of investors, and 2) a bigger collection of rules is able to classify more positive cases in imbalanced environments.

  18. THE EVOLVING CONCEPT OF SUSTAINABLE AGRICULTURE

    Directory of Open Access Journals (Sweden)

    PETRONELA-SONIA NEDEA

    2012-11-01

    Full Text Available Over the years, the definition of sustainability in development literature has varied widely and broadened in scope. The concept arose in response to economic growth models that characterized development approaches over the last half century. It was eventually recognized that such models did not adequately address social inequalities and led to environmental degradation. The concept gained wider use after the World Commission on Environment and Development published "Our common future" (Brundtland 1987. The economic, social, political and ecological dimensions of the rural environment are complex and have multiple implications, starting with theoretical and practical reasons. The process of urbanization that takes place at world-wide level has become one of the global problems of mankind, because of the disparities created between the countryside and the city, which arematerialized in the cultural, economical and social aspects that are synthesized in the terms of urban and rural civilizations, which define the different realities of the geographical space. Because the concept of sustainable agriculture is still evolving, this paper reviews the ideas, practices and policies that make the basis ofsustainable agriculture concept, in order to suggest to others practical steps that may be appropriate for them in moving toward sustainable agriculture.

  19. UKAEA'S evolving contract philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, R. D. [UK Atomic Energy Authority, UKAEA, Harwell, Oxfordshire (United Kingdom)

    2003-07-01

    The United Kingdom Atomic Energy Authority (UKAEA) has gone through fundamental change over the last ten years. At the heart of this change has been UKAEA's relationship with the contracting and supply market. This paper describes the way in which UKAEA actively developed the market to support the decommissioning programme, and how the approach to contracting has evolved as external pressures and demands have changed. UKAEA's pro-active approach to industry has greatly assisted the development of a healthy, competitive market for services supporting decommissioning in the UK. There have been difficult changes and many challenges along the way, and some retrenchment was necessary to meet regulatory requirements. Nevertheless, UKAEA has sustained a high level of competition - now measured in terms of competed spend as a proportion of competable spend - with annual out-turns consistently over 80%. The prime responsibility for market development will pass to the new Nuclear Decommissioning Authority (NDA) in 2005, as the owner, on behalf of the Government, of the UK's civil nuclear liabilities. The preparatory work for the NDA indicates that the principles established by UKAEA will be carried forward. (author)

  20. An evolving model of online bipartite networks

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  1. Evolving concepts in primary sclerosing cholangitis.

    Science.gov (United States)

    Krones, Elisabeth; Graziadei, Ivo; Trauner, Michael; Fickert, Peter

    2012-03-01

    Patients suffering from primary sclerosing cholangitis (PSC) show considerable differences regarding clinical manifestations (i.e. large duct versus small-duct PSC, presence or absence of concomitant inflammatory bowel disease), disease progression, risk for malignancy and response to therapy, raising the question whether PSC may represent a mixed bag of diseases of different aetiologies. The growing list of secondary causes and diseases 'mimicking' or even overlapping with PSC (e.g. IgG4-associated sclerosing cholangitis), which frequently causes problems in clear-cut discrimination from classic PSC and the emerging knowledge about potential disease modifier genes (e.g. variants of CFTR, TGR5 and MDR3) support such a conceptual view. In addition, PSC in children differs significantly from PSC in adults in several aspects resulting in distinct therapeutic concepts. From a clinical perspective, appropriate categorization and careful differential diagnosis are essential for the management of concerned patients. Therefore, the aim of the current review is to summarize current and evolving pathophysiological concepts and to provide up-to-date perspectives including future treatment strategies for PSC.

  2. Evolving role of MRI in Crohn's disease.

    Science.gov (United States)

    Yacoub, Joseph H; Obara, Piotr; Oto, Aytekin

    2013-06-01

    MR enterography is playing an evolving role in the evaluation of small bowel Crohn's disease (CD). Standard MR enterography includes a combination of rapidly acquired T2 sequence, balanced steady-state acquisition, and contrast enhanced T1-weighted gradient echo sequence. The diagnostic performance of these sequences has been shown to be comparable, and in some respects superior, to other small bowel imaging modalities. The findings of CD on MR enterography have been well described in the literature. New and emerging techniques such as diffusion-weighted imaging (DWI), dynamic contrast enhanced MRI (DCE-MRI), cinematography, and magnetization transfer, may lead to improved accuracy in characterizing the disease. These advanced techniques can provide quantitative parameters that may prove to be useful in assessing disease activity, severity, and response to treatment. In the future, MR enterography may play an increasing role in management decisions for patients with small bowel CD; however, larger studies are needed to validate these emerging MRI parameters as imaging biomarkers.

  3. Evolving paradigms in multifocal breast cancer.

    Science.gov (United States)

    Salgado, Roberto; Aftimos, Philippe; Sotiriou, Christos; Desmedt, Christine

    2015-04-01

    The 7th edition of the TNM defines multifocal breast cancer as multiple simultaneous ipsilateral and synchronous breast cancer lesions, provided they are macroscopically distinct and measurable using current traditional pathological and clinical tools. According to the College of American Pathologists (CAP), the characterization of only the largest lesion is considered sufficient, unless the grade and/or histology are different between the lesions. Here, we review three potentially clinically relevant aspects of multifocal breast cancers: first, the importance of a different intrinsic breast cancer subtype of the various lesions; second, the emerging awareness of inter-lesion heterogeneity; and last but not least, the potential introduction of bias in clinical trials due to the unrecognized biological diversity of these cancers. Although the current strategy to assess the lesion with the largest diameter has clearly its advantages in terms of costs and feasibility, this recommendation may not be sustainable in time and might need to be adapted to be compliant with new evolving paradigms in breast cancer.

  4. Properties of asymmetrically evolved community networks

    Institute of Scientific and Technical Information of China (English)

    Cui Di; Gao Zi-You; Zheng Jian-Feng

    2009-01-01

    This paper studies a simple asymmetrically evolved community network with a combination of preferential at-tachment and random properties. An important issue about community networks is to discover the different utility increments of two nodes, where the utility is introduced to investigate the asymmetrical effect of connecting two nodes. On the other hand, the connection of two nodes in community networks can be classified as two nodes belonging to the same or to different communities. The simulation results show that the model can reproduce a power-law utility distribution P(u)~ u-σ,σ=2+ 1/p, which can be obtained by using mean-field approximation methods. Furthermore, the model exhibits exponential behaviour with respect to small values of a parameter denoting the random effect in our model at the low-utility region and a power-law feature with respect to big values of this parameter at the high-utility region, which is in good agreement with theoretical analysis. This kind of community network can reproduce a unique utility distribution by theoretical and numerical analysis.

  5. Women's oral health: the evolving science.

    Science.gov (United States)

    Sinkford, Jeanne C; Valachovic, Richard W; Harrison, Sonja G

    2008-02-01

    The evidence base for women's oral health is emerging from legislative action, clinical research, and survey documentation. The Women's Health in the Dental School Curriculum study (1999) followed a similar study (1996) of medical school curricula. Both of these major efforts resulted from statutory mandates in the National Institutes of Health Revitalization Act of 1993 (updated October 2000). A major study of the Institute of Medicine (IOM) National Academy of Sciences in 2001 concluded that "the study of sex differences is evolving into a mature science." This IOM study documented the scientific basis for gender-related policy and research and challenged the dental research enterprise to conduct collaborative, cross-disciplinary research on gender-related issues in oral health, disease, and disparities. This report chronicles some of the factors that have and continue to influence concepts of women's oral health in dental education, research, and practice. Gender issues related to women's health are no longer restricted to reproductive issues but are being considered across the life span and include psychosocial factors that impact women's health and treatment outcomes.

  6. Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids.

    Science.gov (United States)

    Tan, Kemin; Chang, Changsoo; Cuff, Marianne; Osipiuk, Jerzy; Landorf, Elizabeth; Mack, Jamey C; Zerbs, Sarah; Joachimiak, Andrzej; Collart, Frank R

    2013-10-01

    Lignin comprises 15-25% of plant biomass and represents a major environmental carbon source for utilization by soil microorganisms. Access to this energy resource requires the action of fungal and bacterial enzymes to break down the lignin polymer into a complex assortment of aromatic compounds that can be transported into the cells. To improve our understanding of the utilization of lignin by microorganisms, we characterized the molecular properties of solute binding proteins of ATP-binding cassette transporter proteins that interact with these compounds. A combination of functional screens and structural studies characterized the binding specificity of the solute binding proteins for aromatic compounds derived from lignin such as p-coumarate, 3-phenylpropionic acid and compounds with more complex ring substitutions. A ligand screen based on thermal stabilization identified several binding protein clusters that exhibit preferences based on the size or number of aromatic ring substituents. Multiple X-ray crystal structures of protein-ligand complexes for these clusters identified the molecular basis of the binding specificity for the lignin-derived aromatic compounds. The screens and structural data provide new functional assignments for these solute-binding proteins which can be used to infer their transport specificity. This knowledge of the functional roles and molecular binding specificity of these proteins will support the identification of the specific enzymes and regulatory proteins of peripheral pathways that funnel these compounds to central metabolic pathways and will improve the predictive power of sequence-based functional annotation methods for this family of proteins.

  7. Emergent spacetime in stochastically evolving dimensions

    Directory of Open Access Journals (Sweden)

    Niayesh Afshordi

    2014-12-01

    Full Text Available Changing the dimensionality of the space–time at the smallest and largest distances has manifold theoretical advantages. If the space is lower dimensional in the high energy regime, then there are no ultraviolet divergencies in field theories, it is possible to quantize gravity, and the theory of matter plus gravity is free of divergencies or renormalizable. If the space is higher dimensional at cosmological scales, then some cosmological problems (including the cosmological constant problem can be attacked from a completely new perspective. In this paper, we construct an explicit model of “evolving dimensions” in which the dimensions open up as the temperature of the universe drops. We adopt the string theory framework in which the dimensions are fields that live on the string worldsheet, and add temperature dependent mass terms for them. At the Big Bang, all the dimensions are very heavy and are not excited. As the universe cools down, dimensions open up one by one. Thus, the dimensionality of the space we live in depends on the energy or temperature that we are probing. In particular, we provide a kinematic Brandenberger–Vafa argument for how a discrete causal set, and eventually a continuum (3+1-dim spacetime along with Einstein gravity emerges in the Infrared from the worldsheet action. The (3+1-dim Planck mass and the string scale become directly related, without any compactification. Amongst other predictions, we argue that LHC might be blind to new physics even if it comes at the TeV scale. In contrast, cosmic ray experiments, especially those that can register the very beginning of the shower, and collisions with high multiplicity and density of particles, might be sensitive to the dimensional cross-over.

  8. Emergent spacetime in stochastically evolving dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Afshordi, Niayesh [Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); HEPCOS, Department of Physics, SUNY at Buffalo, Buffalo, NY 14260-1500 (United States); Stojkovic, Dejan, E-mail: ds77@buffalo.edu [Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); HEPCOS, Department of Physics, SUNY at Buffalo, Buffalo, NY 14260-1500 (United States)

    2014-12-12

    Changing the dimensionality of the space–time at the smallest and largest distances has manifold theoretical advantages. If the space is lower dimensional in the high energy regime, then there are no ultraviolet divergencies in field theories, it is possible to quantize gravity, and the theory of matter plus gravity is free of divergencies or renormalizable. If the space is higher dimensional at cosmological scales, then some cosmological problems (including the cosmological constant problem) can be attacked from a completely new perspective. In this paper, we construct an explicit model of “evolving dimensions” in which the dimensions open up as the temperature of the universe drops. We adopt the string theory framework in which the dimensions are fields that live on the string worldsheet, and add temperature dependent mass terms for them. At the Big Bang, all the dimensions are very heavy and are not excited. As the universe cools down, dimensions open up one by one. Thus, the dimensionality of the space we live in depends on the energy or temperature that we are probing. In particular, we provide a kinematic Brandenberger–Vafa argument for how a discrete causal set, and eventually a continuum (3+1)-dim spacetime along with Einstein gravity emerges in the Infrared from the worldsheet action. The (3+1)-dim Planck mass and the string scale become directly related, without any compactification. Amongst other predictions, we argue that LHC might be blind to new physics even if it comes at the TeV scale. In contrast, cosmic ray experiments, especially those that can register the very beginning of the shower, and collisions with high multiplicity and density of particles, might be sensitive to the dimensional cross-over.

  9. PROTEOMICS: AN EVOLVING TECHNOLOGY IN LABORATORY MEDICINE

    Directory of Open Access Journals (Sweden)

    Dr. D J Venter

    2010-01-01

    Full Text Available The rapid developments in both genomics and proteomics will allow scientists to define the molecular pathways in normal and diseased cells. With these models, researchers will have the ability to predict previously unknown interactions and verify such predictions experimentally. Novel proteins, cellular functions, and pathways will also be unravelled. It is hoped that understanding the connections between cellular pathways and the ability to identify their associated biomarkers will greatly reduce the suffering and loss of life due to diseases.

  10. Further characterization of the cathepsin L-associated protein and its gene in two species of the brine shrimp, Artemia.

    Science.gov (United States)

    Liu, Liqian; Warner, Alden H

    2006-12-01

    The major cysteine protease in embryos and larvae of the brine shrimp Artemia franciscana is a heterodimer composed of a cathepsin L-like polypeptide of 28.5 kDa and a 31.5 kDa polypeptide called the cathepsin L-associated protein or CLAP. In a previous study, CLAP was shown to be a cell adhesion protein containing two Fas I domains and two GTP/ATP binding sites known as Walker A and B motifs. Here, we have characterized CLAP and its genes to better understand the role of this protein in Artemia development. The polymerase chain reaction was used to investigate the structure of the CLAP gene in two species of Artemia, the New World bisexual diploid A. franciscana and the Old World parthenogenetic tetraploid Artemia parthenogenetica. The protein coding region of the CLAP gene from each species was 99.5% identical for a protein of 332 amino acids, while the 3' non-coding region, representing nearly 45% of the gene, was only 86% identical between the two related species. However, while the CLAP gene is intronless in A. franciscana, in A. parthenogenetica the gene contained a mini-intron of 30 base pairs in the 3' non-coding region. The sequences representing the CLAP gene in A. franciscana and A. parthenogenetica have been entered into the NCBI database as AY757920 and DQ100385, respectively. Northern blot analysis showed that while the cathepsin L gene is expressed constitutively in Artemia franciscana embryos and young larvae, the CLAP gene is not expressed in late embryos and young larvae. In contrast, Western blots indicated that CLAP is present in developing embryos and young larvae, at least to the first larval molt, supporting results obtained previously showing CLAP's resistance to degradation by its dimeric partner, cathepsin L. At the protein level we showed that the GTP/ATP binding sites in CLAP are functional with rate constants of 0.024 and 0.022 for GTP and ATP hydrolase activity, respectively. GTP but not ATP also had a slight stimulatory effect on

  11. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system.

    Science.gov (United States)

    Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L

    2015-01-01

    Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.

  12. Protein (Cyanobacteria): 199795 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available HREVVCLLGASGCGKSSLLMAIAGLKSANKGQIYLEGRPLTSPHPQIGLVFQQAALLPWLSVRQNIGFGLQFTRMDSLSKAELESRINLAITSVNLDKFEQAYPHQLS...ZP_06305797.1 1117:3837 1161:255 1162:536 244599:33 668331:33 533247:33 Nitrate tra...nsport ATP-binding subunits C and D Raphidiopsis brookii D9 MDYHTTVTRSRLTSVGSEPLLKVEGLQMNYKTRRGTYTAFANINLDVC

  13. Fitness costs associated with evolved herbicide resistance alleles in plants.

    Science.gov (United States)

    Vila-Aiub, Martin M; Neve, Paul; Powles, Stephen B

    2009-12-01

    Predictions based on evolutionary theory suggest that the adaptive value of evolved herbicide resistance alleles may be compromised by the existence of fitness costs. There have been many studies quantifying the fitness costs associated with novel herbicide resistance alleles, reflecting the importance of fitness costs in determining the evolutionary dynamics of resistance. However, many of these studies have incorrectly defined resistance or used inappropriate plant material and methods to measure fitness. This review has two major objectives. First, to propose a methodological framework that establishes experimental criteria to unequivocally evaluate fitness costs. Second, to present a comprehensive analysis of the literature on fitness costs associated with herbicide resistance alleles. This analysis reveals unquestionable evidence that some herbicide resistance alleles are associated with pleiotropic effects that result in plant fitness costs. Observed costs are evident from herbicide resistance-endowing amino acid substitutions in proteins involved in amino acid, fatty acid, auxin and cellulose biosynthesis, as well as enzymes involved in herbicide metabolism. However, these resistance fitness costs are not universal and their expression depends on particular plant alleles and mutations. The findings of this review are discussed within the context of the plant defence trade-off theory and herbicide resistance evolution.

  14. Gastric cancer:current and evolving treatment landscape

    Institute of Scientific and Technical Information of China (English)

    Weijing Sun; Li Yan

    2016-01-01

    Gastric (including gastroesophageal junction) cancer is the third leading cause of cancer-related death in the world. In China, an estimated 420,000 patients were diagnosed with gastric cancer in 2011, ranking this malignancy the second most prevalent cancer type and resulting in near 300,000 deaths. The treatment landscape of gastric cancer has evolved in recent years. Although systemic chemotherapy is still the mainstay treatment of metastatic disease, the introduction of agents targeting human epidermal growth factor receptor 2 and vascular endothelial growth factor/vascular endothelia growth factor receptor has brought this disease into the molecular and personalized medicine era. The preliminary yet encouraging clinical effcacy observed with immune checkpoint inhibitors, e.g., anti-pro-grammed cell death protein 1/programmed death-ligand 1, will further shape the treatment landscape for gastric cancer. Molecular characterization of patients will play a critical role in developing new agents, as well as in imple-menting new treatment options for this disease.

  15. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    A Bagaria; D Kumaran; S Burley; S Swaminathan

    2011-12-31

    The APT-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and nontransport related processes such as translation of RNA and DNA repair. typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport, and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP), and Ribose binding protein (RBP). Each of these proteins consits of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations hafve been reported and so for MBP. The closed/active form of the protein interacts with the ingral membrane component of the system in both transport and chemotaxis. Herein, they report 1.9 {angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound

  16. Protein export through the bacterial flagellar type III export pathway.

    Science.gov (United States)

    Minamino, Tohru

    2014-08-01

    For construction of the bacterial flagellum, which is responsible for bacterial motility, the flagellar type III export apparatus utilizes both ATP and proton motive force across the cytoplasmic membrane and exports flagellar proteins from the cytoplasm to the distal end of the nascent structure. The export apparatus consists of a membrane-embedded export gate made of FlhA, FlhB, FliO, FliP, FliQ, and FliR and a water-soluble ATPase ring complex consisting of FliH, FliI, and FliJ. FlgN, FliS, and FliT act as substrate-specific chaperones that do not only protect their cognate substrates from degradation and aggregation in the cytoplasm but also efficiently transfer the substrates to the export apparatus. The ATPase ring complex facilitates the initial entry of the substrates into the narrow pore of the export gate. The export gate by itself is a proton-protein antiporter that uses the two components of proton motive force, the electric potential difference and the proton concentration difference, for different steps of the export process. A specific interaction of FlhA with FliJ located in the center of the ATPase ring complex allows the export gate to efficiently use proton motive force to drive protein export. The ATPase ring complex couples ATP binding and hydrolysis to its assembly-disassembly cycle for rapid and efficient protein export cycle. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

  17. Clinical and Molecular Evidence of ABCC11 Protein Expression in Axillary Apocrine Glands of Patients with Axillary Osmidrosis

    Science.gov (United States)

    Toyoda, Yu; Takada, Tappei; Gomi, Tsuneaki; Nakagawa, Hiroshi; Ishikawa, Toshihisa; Suzuki, Hiroshi

    2017-01-01

    Accumulating evidence suggests that the risk of axillary osmidrosis is governed by a non-synonymous single nucleotide polymorphism (SNP) 538G>A in human ATP-binding cassette C11 (ABCC11) gene. However, little data are available for the expression of ABCC11 protein in human axillary apocrine glands that produce apocrine sweat—a source of odor from the armpits. To determine the effect of the non-synonymous SNP ABCC11 538G>A (G180R) on the ABCC11 in vivo, we generated transiently ABCC11-expressing transgenic mice with adenovirus vector, and examined the protein levels of each ABCC11 in the mice with immunoblotting using an anti-ABCC11 antibody we have generated in the present study. Furthermore, we examined the expression of ABCC11 protein in human axillary apocrine glands extracted from axillary osmidrosis patients carrying each ABCC11 genotype: 538GG, GA, and AA. Analyses of transiently ABCC11-expressing transgenic mice showed that ABCC11 538G>A diminishes the ABCC11 protein levels in vivo. Consistently, ABCC11 protein was detected in the human axillary apocrine glands of the 538GG homozygote or 538GA heterozygote, not in the 538AA homozygote. These findings would contribute to a better understanding of the molecular basis of axillary osmidrosis. PMID:28212277

  18. Functional Characterization of the Canine Heme-Regulated eIF2α Kinase: Regulation of Protein Synthesis

    Directory of Open Access Journals (Sweden)

    Kimon C. Kanelakis

    2009-01-01

    Full Text Available The heme-regulated inhibitor (HRI negatively regulates protein synthesis by phosphorylating eukaryotic initiation factor-2α (eIF2α thereby inhibiting protein translation. The importance of HRI in regulating hemoglobin synthesis in erythroid cells makes it an attractive molecular target in need of further characterization. In this work, we have cloned and expressed the canine form of the HRI kinase. The canine nucleotide sequence has 86%, 82%, and 81% identity to the human, mouse, and rat HRI, respectively. It was noted that an isoleucine residue in the ATP binding site of human, rat, and mouse HRI is replaced by a valine in the canine kinase. The expression of canine HRI protein by in vitro translation using wheat germ lysate or in Sf9 cells using a baculovirus expression system was increased by the addition of hemin. Following purification, the canine protein was found to be 72 kD and showed kinase activity determined by its ability to phosphorylate a synthetic peptide substrate. Quercetin, a kinase inhibitor known to inhibit mouse and human HRI, inhibits canine HRI in a concentration-dependent manner. Additionally, quercetin is able to increase de novo protein synthesis in canine reticulocytes. We conclude that the canine is a suitable model species for studying the role of HRI in erythropoiesis.

  19. A putative amino acid ABC transporter substrate-binding protein, NMB1612, from Neisseria meningitidis, induces murine bactericidal antibodies against meningococci expressing heterologous NMB1612 proteins.

    Science.gov (United States)

    Hung, Miao-Chiu; Humbert, María Victoria; Laver, Jay R; Phillips, Renee; Heckels, John E; Christodoulides, Myron

    2015-08-26

    The nmb1612 (NEIS1533) gene encoding the ~27-kDa putative amino acid ATP-binding cassette (ABC) transporter, periplasmic substrate-binding protein from Neisseria meningitidis serogroup B (MenB) strain MC58 was cloned and expressed in Escherichia coli, and the purified recombinant (r)NMB1612 was used for animal immunization studies. Immunization of mice with rNMB1612 adsorbed to Al(OH)3 and in liposomes with and without MPLA, induced antiserum with bactericidal activity in an assay using baby rabbit complement, against the homologous strain MC58 (encoding protein representative of Allele 62) and killed heterologous strains encoding proteins of three other alleles (representative of Alleles 1, 64 and 68), with similar SBA titres. However, strain MC58 was not killed (titre protein was killed (median titres of 16-64 in the hSBA). Analysis of the NMB1612 amino acid sequences from 4351 meningococcal strains in the pubmlst.org/Neisseria database and a collection of 13 isolates from colonized individuals and from patients, showed that antibodies raised against rNMB1612 could potentially kill at least 72% of the MenB strains in the complete sequence database. For MenB disease occurring specifically in the UK from 2013 to 2015, >91% of the isolates causing disease in this recent period expressed NMB1612 protein encoded by Allele 1 and could be potentially killed by sera raised to the recombinant antigen in the current study. The NMB1612 protein was surface-accessible and expressed by different meningococcal strains. In summary, the properties of (i) NMB1612 protein conservation and expression, (ii) limited amino acid sequence variation between proteins encoded by different alleles, and (iii) the ability of a recombinant protein to induce cross-strain bactericidal antibodies, would all suggest a promising antigen for consideration for inclusion in new meningococcal vaccines.

  20. A Novel Mode of Protein Kinase Inhibition Exploiting Hydrophobic Motifs of Autoinhibited Kinases

    Energy Technology Data Exchange (ETDEWEB)

    S Eathiraj; R Palma; M Hirschi; E Volckova; E Nakuci; J Castro; C Chen; T Chan; D France; M Ashwell

    2011-12-31

    Protein kinase inhibitors with enhanced selectivity can be designed by optimizing binding interactions with less conserved inactive conformations because such inhibitors will be less likely to compete with ATP for binding and therefore may be less impacted by high intracellular concentrations of ATP. Analysis of the ATP-binding cleft in a number of inactive protein kinases, particularly in the autoinhibited conformation, led to the identification of a previously undisclosed non-polar region in this cleft. This ATP-incompatible hydrophobic region is distinct from the previously characterized hydrophobic allosteric back pocket, as well as the main pocket. Generalized hypothetical models of inactive kinases were constructed and, for the work described here, we selected the fibroblast growth factor receptor (FGFR) tyrosine kinase family as a case study. Initial optimization of a FGFR2 inhibitor identified from a library of commercial compounds was guided using structural information from the model. We describe the inhibitory characteristics of this compound in biophysical, biochemical, and cell-based assays, and have characterized the binding mode using x-ray crystallographic studies. The results demonstrate, as expected, that these inhibitors prevent activation of the autoinhibited conformation, retain full inhibitory potency in the presence of physiological concentrations of ATP, and have favorable inhibitory activity in cancer cells. Given the widespread regulation of kinases by autoinhibitory mechanisms, the approach described herein provides a new paradigm for the discovery of inhibitors by targeting inactive conformations of protein kinases.

  1. The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2003-09-01

    Full Text Available Abstract Background The naturally occurring benzoquinone ansamycin compound, geldanamycin (GA, is a specific inhibitor of heat shock protein 90 (Hsp90 and is a potential anticancer agent. Since Plasmodium falciparum has been reported to have an Hsp90 ortholog, we tested the possibility that GA might inhibit it and thereby display antiparasitic activity. Results We provide direct recombinant DNA evidence for the Hsp90 protein of Plasmodium falciparum, the causative agent of fatal malaria. While the mRNA of Hsp90 was mainly expressed in ring and trophozoite stages, the protein was found in all stages, although schizonts contained relatively lower amounts. In vitro the parasitic Hsp90 exhibited an ATP-binding activity that could be specifically inhibited by GA. Plasmodium growth in human erythrocyte culture was strongly inhibited by GA with an IC50 of 20 nM, compared to the IC50 of 15 nM for chloroquine (CQ under identical conditions. When used in combination, the two drugs acted synergistically. GA was equally effective against CQ-sensitive and CQ-resistant strains (3D7 and W2, respectively and on all erythrocytic stages of the parasite. Conclusions Together, these results suggest that an active and essential Hsp90 chaperone cycle exists in Plasmodium and that the ansamycin antibiotics will be an important tool to dissect its role in the parasite. Additionally, the favorable pharmacology of GA, reported in human trials, makes it a promising antimalarial drug.

  2. SwissProt search result: AK103774 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103774 J033143M23 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 5e-25 ...

  3. SwissProt search result: AK061417 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061417 006-306-E07 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 2e-13 ...

  4. SwissProt search result: AK120269 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120269 J013047J23 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 6e-17 ...

  5. SwissProt search result: AK064325 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064325 002-107-F05 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 2e-26 ...

  6. SwissProt search result: AK072699 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK072699 J023139I17 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 4e-14 ...

  7. SwissProt search result: AK101194 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101194 J033030J11 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 2e-25 ...

  8. SwissProt search result: AK121690 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121690 J033071F24 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 7e-18 ...

  9. SwissProt search result: AK242094 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242094 J075142E09 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 1e-22 ...

  10. SwissProt search result: AK106518 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106518 002-107-C02 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 3e-25 ...

  11. SwissProt search result: AK058263 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058263 001-012-H08 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 1e-13 ...

  12. SwissProt search result: AK102879 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102879 J033112G11 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 2e-32 ...

  13. SwissProt search result: AK106698 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106698 002-114-D11 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 9e-20 ...

  14. SwissProt search result: AK064221 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064221 002-104-G01 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 1e-21 ...

  15. SwissProt search result: AK109687 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109687 002-145-D12 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 6e-33 ...

  16. SwissProt search result: AK119849 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119849 002-178-F06 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 1e-10 ...

  17. SwissProt search result: AK064342 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064342 002-107-H07 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 4e-35 ...

  18. SwissProt search result: AK240921 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK240921 J065038F05 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 3e-24 ...

  19. SwissProt search result: AK099941 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099941 J013121A05 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 1e-24 ...

  20. SwissProt search result: AK099809 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099809 J013099A18 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 1e-12 ...

  1. SwissProt search result: AK242277 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242277 J075187L21 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 3e-16 ...

  2. SwissProt search result: AK069799 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069799 J023030H03 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 3e-24 ...

  3. SwissProt search result: AK119895 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119895 002-180-C05 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 3e-17 ...

  4. SwissProt search result: AK120122 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120122 J013026A05 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 2e-23 ...

  5. SwissProt search result: AK119880 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119880 002-179-G08 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 7e-21 ...

  6. SwissProt search result: AK065863 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065863 J013043D07 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 6e-22 ...

  7. SwissProt search result: AK121451 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121451 J023142K21 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 4e-28 ...

  8. SwissProt search result: AK067140 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067140 J013094I22 (Q9X2W0) Microcin J25 export ATP-binding/permease protein mcjD (Micro...cin J25 secretion ATP-binding protein mcjD) (Microcin J25 immunity protein) MCJD_ECOLI 3e-24 ...

  9. Adaptation of Escherichia coli to glucose promotes evolvability in lactose.

    Science.gov (United States)

    Phillips, Kelly N; Castillo, Gerardo; Wünsche, Andrea; Cooper, Tim F

    2016-02-01

    The selective history of a population can influence its subsequent evolution, an effect known as historical contingency. We previously observed that five of six replicate populations that were evolved in a glucose-limited environment for 2000 generations, then switched to lactose for 1000 generations, had higher fitness increases in lactose than populations started directly from the ancestor. To test if selection in glucose systematically increased lactose evolvability, we started 12 replay populations--six from a population subsample and six from a single randomly selected clone--from each of the six glucose-evolved founder populations. These replay populations and 18 ancestral populations were evolved for 1000 generations in a lactose-limited environment. We found that replay populations were initially slightly less fit in lactose than the ancestor, but were more evolvable, in that they increased in fitness at a faster rate and to higher levels. This result indicates that evolution in the glucose environment resulted in genetic changes that increased the potential of genotypes to adapt to lactose. Genome sequencing identified four genes--iclR, nadR, spoT, and rbs--that were mutated in most glucose-evolved clones and are candidates for mediating increased evolvability. Our results demonstrate that short-term selective costs during selection in one environment can lead to changes in evolvability that confer longer term benefits.

  10. Tv-RIO1 – an atypical protein kinase from the parasitic nematode Trichostrongylus vitrinus

    Directory of Open Access Journals (Sweden)

    Sternberg Paul W

    2008-09-01

    Full Text Available Abstract Background Protein kinases are key enzymes that regulate a wide range of cellular processes, including cell-cycle progression, transcription, DNA replication and metabolic functions. These enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing functional roles in reversible protein phosphorylation. There are two main groups, namely eukaryotic protein kinases (ePKs and atypical protein kinases (aPKs; RIO kinases belong to the latter group. While there is some information about RIO kinases and their roles in animals, nothing is known about them in parasites. This is the first study to characterise a RIO1 kinase from any parasite. Results A full-length cDNA (Tv-rio-1 encoding a RIO1 protein kinase (Tv-RIO1 was isolated from the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida. The uninterrupted open reading frame (ORF of 1476 nucleotides encoded a protein of 491 amino acids, containing the characteristic RIO1 motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the highest level in the third-stage larva (L3, and a higher level in adult females than in males. Comparison with homologues from other organisms showed that protein Tv-RIO1 had significant homology to related proteins from a range of metazoans and plants. Amino acid sequence identity was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic analyses of selected amino acid sequence data revealed Tv-RIO1 to be most closely related to the proteins in the species of Caenorhabditis. A structural model of Tv-RIO1 was constructed and compared with the published crystal structure of RIO1 of Archaeoglobus fulgidus (Af-Rio1. Conclusion This study provides the first insights into the RIO1 protein kinases of nematodes, and a foundation for further investigations into the biochemical and functional roles of this molecule in biological processes in parasitic nematodes.

  11. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    Directory of Open Access Journals (Sweden)

    Yilun Shang

    Full Text Available Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  12. Homophyly/Kinship Model: Naturally Evolving Networks

    Science.gov (United States)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  13. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    Science.gov (United States)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  14. The role of multidrug resistance-associated protein in the blood-brain barrier and opioid analgesia.

    Science.gov (United States)

    Su, Wendy; Pasternak, Gavril W

    2013-09-01

    The blood-brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance-associated protein (MRP), a 190 kDa protein, similar to Pgp is also ABC transporter that has been implicated in the blood-brain barrier. The current study explores its role in opioid action. Immunohistochemically, it is localized in the choroid plexus in rats and can be selectively downregulated by antisense treatment at both the level of mRNA, as shown by RT-PCR, and protein, as demonstrated immunohistochemically. Behaviorally, downregulation of MRP significantly enhances the analgesic potency of systemic morphine in MRP knockout mice and in antisense-treated rats by lowering the blood-brain barrier. Following intracerebroventricular administration, a number of compounds, including some opioids, are rapidly secreted from the brain into the blood where they contribute to the overall analgesic effects by activating peripheral systems. MRP plays a role in this efflux. Downregulating MRP expression leads to a corresponding decrease in the transport and a diminished analgesic response from opioids administered intracerebroventricularly. Thus, the transporter protein MRP plays a role in maintaining the blood-brain barrier and modulates the activity of opioids.

  15. Crystal Structure of the Zinc-Binding Transport Protein ZnuA from Escherichia coli Reveals an Unexpected Variation in Metal Coordination

    Energy Technology Data Exchange (ETDEWEB)

    Li,H.; Jogl, G.

    2007-01-01

    Bacterial ATP-binding cassette transport systems for high-affinity uptake of zinc and manganese use a cluster 9 solute-binding protein. Structures of four cluster 9 transport proteins have been determined previously. However, the structural determinants for discrimination between zinc and manganese remain under discussion. To further investigate the variability of metal binding sites in bacterial transporters, we have determined the structure of the zinc-bound transport protein ZnuA from Escherichia coli to 1.75 {angstrom} resolution. The overall structure of ZnuA is similar to other solute-binding transporters. A scaffolding {alpha}-helix forms the backbone for two structurally related globular domains. The metal-binding site is located at the domain interface. The bound zinc ion is coordinated by three histidine residues (His78, His161 and His225) and one glutamate residue (Glu77). The functional role of Glu77 for metal binding is unexpected, because this residue is not conserved in previously determined structures of zinc and manganese-specific transport proteins. The observed metal coordination by four protein residues differs significantly from the zinc-binding site in the ZnuA transporter from Synechocystis 6803, which binds zinc via three histidine residues. In addition, the E. coli ZnuA structure reveals the presence of a disulfide bond in the C-terminal globular domain that is not present in previously determined cluster 9 transport protein structures.

  16. Export of recombinant proteins in Escherichia coli using ABC transporter with an attached lipase ABC transporter recognition domain (LARD

    Directory of Open Access Journals (Sweden)

    Moon Yuseok

    2009-01-01

    Full Text Available Abstract Background ATP binding cassette (ABC transporter secretes the protein through inner and outer membranes simultaneously in gram negative bacteria. Thermostable lipase (TliA of Pseudomonas fluorescens SIK W1 is secreted through the ABC transporter. TliA has four glycine-rich repeats (GGXGXD in its C-terminus, which appear in many ABC transporter-secreted proteins. From a homology model of TliA derived from the structure of P. aeruginosa alkaline protease (AprA, lipase ABC transporter domains (LARDs were designed for the secretion of fusion proteins. Results The LARDs included four glycine-rich repeats comprising a β-roll structure, and were added to the C-terminus of test proteins. Either Pro-Gly linker or Factor Xa site was added between fusion proteins and LARDs. We attached different length of LARDs such as LARD0, LARD1 or whole TliA (the longest LARD to three types of proteins; green fluorescent protein (GFP, epidermal growth factor (EGF and cytoplasmic transduction peptide (CTP. These fusion proteins were expressed in Escherichia coli together with ABC transporter of either P. fluorescens or Erwinia chrysanthemi. Export of fusion proteins with the whole TliA through the ABC transporter was evident on the basis of lipase enzymatic activity. Upon supplementation of E. coli with ABC transporter, GFP-LARDs and EGF-LARDs were excreted into the culture supernatant. Conclusion The LARDs or whole TliA were attached to C-termini of model proteins and enabled the export of the model proteins such as GFP and EGF in E. coli supplemented with ABC transporter. These results open the possibility for the extracellular production of recombinant proteins in Pseudomonas using LARDs or TliA as a C-terminal signal sequence.

  17. [Characterization of a putative S locus encoded receptor protein kinase and its role in self-incompatibility

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The serine/threonine protein kinase (SRK) protein was predicted to be similar to the growth factor receptor tyrosine kinases in animals but its amino acid sequence of the catalytic domain is more similar to that of the catalytic domains of protein serine/threonine kinases than to protein tyrosine kinases. We have shown that the SRK protein has intrinsic scrine/threonine kinase activity. We subcloned the protein kinase-homologous domain of the SRK[sub 6] cDNA into the bacterial expression vector pGEX-3X and we have constructed a second plasmid identical to the first except that it carried a conservative mutation that substituted Arg for the Lys[sup 524] codon of SRK6 This lysine corresponds to the ATP-binding site, is essential in protein kinases, and is a common target for site-directed mutagenesis as a means to obtain kinase-defective proteins. Cultures bearing the wild-type and mutant SRK catalytic domains each produced an approximately 64 kD protein that reacted with anti-SRK6 antibodies. Following pulse-labeling with [sup 32]P we found that the wild-type SRK6 protein but not the mutant form was detectably phosphorylated. Phosphoamino acid analysis of the affinity purified [sup 32]p-labeled GST-SRK6 fusion protein demonstrated that SRK was phosphorylated predominantly on semine and to a lesser extent on threonine, but not on tyrosine. Thus, SRK6 is a functional serine/threonine protein kinase.

  18. Proteins: Form and function

    OpenAIRE

    Roy D Sleator

    2012-01-01

    An overwhelming array of structural variants has evolved from a comparatively small number of protein structural domains; which has in turn facilitated an expanse of functional derivatives. Herein, I review the primary mechanisms which have contributed to the vastness of our existing, and expanding, protein repertoires. Protein function prediction strategies, both sequence and structure based, are also discussed and their associated strengths and weaknesses assessed.

  19. Self-Evolvable Systems Machine Learning in Social Media

    CERN Document Server

    Iordache, Octavian

    2012-01-01

    This monograph presents key method to successfully manage the growing  complexity of systems  where conventional engineering and scientific methodologies and technologies based on learning and adaptability come to their limits and new ways are nowadays required. The transition from adaptable to evolvable and finally to self-evolvable systems is highlighted, self-properties such as self-organization, self-configuration, and self-repairing are introduced and challenges and limitations of the self-evolvable engineering systems are evaluated.

  20. Evolving role of pharmaceutical physicians in the industry: Indian perspective

    Directory of Open Access Journals (Sweden)

    Anant Patil

    2012-01-01

    Full Text Available The Indian pharmaceutical industry, like any other industry, has undergone significant change in the last decade. The role of a Medical advisor has always been of paramount importance in the pharmaceutical companies in India. On account of the evolving medical science and the competitive environment, the medical advisor′s role is also increasingly becoming critical. In India, with changes in regulatory rules, safety surveillance, and concept of medical liaisons, the role of the medical advisor is evolving continuously and is further likely to evolve in the coming years in important areas like health economics, public private partnerships, and strategic planning.

  1. Heterogeneous edge weights promote epidemic diffusion in weighted evolving networks

    Science.gov (United States)

    Duan, Wei; Song, Zhichao; Qiu, Xiaogang

    2016-08-01

    The impact that the heterogeneities of links’ weights have on epidemic diffusion in weighted networks has received much attention. Investigating how heterogeneous edge weights affect epidemic spread is helpful for disease control. In this paper, we study a Reed-Frost epidemic model in weighted evolving networks. Our results indicate that a higher heterogeneity of edge weights leads to higher epidemic prevalence and epidemic incidence at earlier stage of epidemic diffusion in weighted evolving networks. In addition, weighted evolving scale-free networks come with a higher epidemic prevalence and epidemic incidence than unweighted scale-free networks.

  2. Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters.

    Science.gov (United States)

    Leslie, E M; Deeley, R G; Cole, S P

    2001-10-05

    The 190 kDa multidrug resistance protein 1 (MRP1/ABCC1) is a founding member of a subfamily of the ATP binding cassette (ABC) superfamily of transport proteins and was originally identified on the basis of its elevated expression in multidrug resistant lung cancer cells. In addition to its ability to confer resistance in tumour cells, MRP1 is ubiquitously expressed in normal tissues and is a primary active transporter of GSH, glucuronate and sulfate conjugated and unconjugated organic anions of toxicological relevance. Substrates include lipid peroxidation products, herbicides, tobacco specific nitrosamines, mycotoxins, heavy metals, and natural product and antifolate anti-cancer agents. MRP1 also transports unmodified xenobiotics but often requires GSH to do so. Active efflux is generally an important aspect of cellular detoxification since it prevents the accumulation of conjugated and unconjugated compounds that have the potential to be directly toxic. The related transporters MRP2 and MRP3 have overlapping substrate specificities with MRP1 but different tissue distributions, and evidence that they also have chemoprotective functions are discussed. Finally, MRP homologues have been described in other species including yeast and nematodes. Those isolated from the vascular plant Arabidopsis thaliana (AtMRPs) decrease the cytoplasmic concentration of conjugated toxins through sequestration in vacuoles and are implicated in providing herbicide resistance to plants.

  3. A role for multidrug resistance protein 4 (MRP4; ABCC4) in human dendritic cell migration.

    Science.gov (United States)

    van de Ven, Rieneke; Scheffer, George L; Reurs, Anneke W; Lindenberg, Jelle J; Oerlemans, Ruud; Jansen, Gerrit; Gillet, Jean-Pierre; Glasgow, Joel N; Pereboev, Alexander; Curiel, David T; Scheper, Rik J; de Gruijl, Tanja D

    2008-09-15

    The capacity of dendritic cells (DCs) to migrate from peripheral organs to lymph nodes (LNs) is important in the initiation of a T cell-mediated immune response. The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; ABCB1) and the multidrug resistance protein 1 (MRP1; ABCC1) have been shown to play a role in both human and murine DC migration. Here we show that a more recently discovered family member, MRP4 (ABCC4), is expressed on both epidermal and dermal human skin DCs and contributes to the migratory capacity of DCs. Pharmacological inhibition of MRP4 activity or down-regulation through RNAi in DCs resulted in reduced migration of DCs from human skin explants and of in vitro generated Langerhans cells. The responsible MRP4 substrate remains to be identified as exogenous addition of MRP4's known substrates prostaglandin E(2), leukotriene B(4) and D(4), or cyclic nucleotides (all previously implicated in DC migration) could not restore migration. This notwithstanding, our data show that MRP4 is an important protein, significantly contributing to human DC migration toward the draining lymph nodes, and therefore relevant for the initiation of an immune response and a possible target for immunotherapy.

  4. Analysis of Hsp90 cochaperone interactions reveals a novel mechanism for TPR protein recognition.

    Science.gov (United States)

    Chadli, Ahmed; Bruinsma, Elizabeth S; Stensgard, Bridget; Toft, David

    2008-03-01

    The chaperone Hsp90 is required for the appropriate regulation of numerous key signaling molecules, including the progesterone receptor (PR). Many important cochaperones bind Hsp90 through their tetratricopeptide repeat (TPR) domains. Two such proteins, GCUNC45 and FKBP52, assist PR chaperoning and are thought to interact sequentially with PR-Hsp90 complexes. TPR proteins bind to the C-terminal MEEVD sequence of Hsp90, but GCUNC45 has been shown also to bind to a novel site near the N-terminus. We now show that FKBP52 is also able to bind to this site, and that these two cochaperones act competitively, through Hsp90, to modulate PR activity. The N-terminal site involves noncontiguous amino acids within or near the ATP binding pocket of Hsp90. TPR interactions at this site are thus strongly regulated by nucleotide binding and Hsp90 conformation. We propose an expanded model for client chaperoning in which the coordinated use of TPR recognition sites at both N- and C-terminal ends of Hsp90 enhances its ability to coordinate interactions with multiple TPR partners.

  5. Multiple, but Concerted Cellular Activities of the Human Protein Hap46/BAG-1M and Isoforms

    Directory of Open Access Journals (Sweden)

    Ulrich Gehring

    2009-03-01

    Full Text Available The closely related human and murine proteins Hap46/BAG-1M and BAG-1, respectively, were discovered more than a decade ago by molecular cloning techniques. These and the larger isoform Hap50/BAG-1L, as well as shorter isoforms, have the ability to interact with a seemingly unlimited array of proteins of completely unrelated structures. This problem was partially resolved when it was realized that molecular chaperones of the hsp70 heat shock protein family are major primary association partners, binding being mediated by the carboxy terminal BAG-domain and the ATP-binding domain of hsp70 chaperones. The latter, in turn, can associate with an almost unlimited variety of proteins through their substrate-binding domains, so that ternary complexes may result. The protein folding activity of hsp70 chaperones is affected by interactions with Hap46/BAG-1M or isoforms. However, there also exist several proteins which bind to Hap46/BAG-1M and isoforms independent of hsp70 mediation. Moreover, Hap46/BAG-1M and Hap50/BAG-1L, but not the shorter isoforms, can bind to DNA in a sequence-independent manner by making use of positively charged regions close to their amino terminal ends. This is the molecular basis for their effects on transcription which are of major physiological relevance, as discussed here in terms of a model. The related proteins Hap50/BAG-1L and Hap46/BAG-1M may thus serve as molecular links between such diverse bioactivities as regulation of gene expression and protein quality control. These activities are coordinated and synergize in helping cells to cope with conditions of external stress. Moreover, they recently became markers for the aggressiveness of several cancer types.

  6. NCBI nr-aa BLAST: CBRC-OLAT-26-0102 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OLAT-26-0102 ref|YP_634760.1| molybdate ABC transporter, ATP-binding protein [...Myxococcus xanthus DK 1622] gb|ABF91211.1| molybdate ABC transporter, ATP-binding protein [Myxococcus xanthus DK 1622] YP_634760.1 0.26 28% ...

  7. NCBI nr-aa BLAST: CBRC-DRER-26-0282 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-26-0282 ref|NP_325897.1| ABC TRANSPORTER ATP-BINDING PROTEIN [Mycoplasma ...pulmonis UAB CTIP] emb|CAC13239.1| ABC TRANSPORTER ATP-BINDING PROTEIN [Mycoplasma pulmonis] NP_325897.1 0.20 24% ...

  8. NCBI nr-aa BLAST: CBRC-CINT-01-0025 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CINT-01-0025 ref|NP_692020.1| ABC transporter ATP-binding protein [Oceanobacil...lus iheyensis HTE831] dbj|BAC13055.1| ABC transporter ATP-binding protein [Oceanobacillus iheyensis HTE831] NP_692020.1 0.013 24% ...

  9. NCBI nr-aa BLAST: CBRC-CINT-01-0024 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CINT-01-0024 ref|NP_692020.1| ABC transporter ATP-binding protein [Oceanobacil...lus iheyensis HTE831] dbj|BAC13055.1| ABC transporter ATP-binding protein [Oceanobacillus iheyensis HTE831] NP_692020.1 0.008 24% ...

  10. NCBI nr-aa BLAST: CBRC-CINT-01-0088 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CINT-01-0088 ref|ZP_00997731.1| ABC transporter, ATP binding/permease protein [Oceanicola bats...ensis HTCC2597] gb|EAQ04798.1| ABC transporter, ATP binding/permease protein [Oceanicola batsensis HTCC2597] ZP_00997731.1 0.040 24% ...

  11. NCBI nr-aa BLAST: CBRC-DDIS-04-0000 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DDIS-04-0000 ref|NP_889639.1| ABC transporter, ATP-binding protein [Bordetella bronchiseptic...a RB50] emb|CAE33595.1| ABC transporter, ATP-binding protein [Bordetella bronchiseptica RB50] NP_889639.1 4e-68 38% ...

  12. NCBI nr-aa BLAST: CBRC-DRER-26-0538 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-26-0538 ref|ZP_01955371.1| hemolysin secretion ATP-binding protein, putative [Vibrio cholera...e MZO-3] gb|EAY42359.1| hemolysin secretion ATP-binding protein, putative [Vibrio cholerae MZO-3] ZP_01955371.1 6.8 19% ...

  13. NCBI nr-aa BLAST: CBRC-DRER-26-0538 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-26-0538 ref|YP_001218458.1| putative hemolysin secretion ATP-binding protein [Vibrio cholera...e O395] gb|ABQ21068.1| putative hemolysin secretion ATP-binding protein [Vibrio cholerae O395] YP_001218458.1 6.8 19% ...

  14. NCBI nr-aa BLAST: CBRC-DRER-26-0538 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-26-0538 ref|ZP_01950258.1| hemolysin secretion ATP-binding protein, putative [Vibrio cholera...e 1587] gb|EAY33280.1| hemolysin secretion ATP-binding protein, putative [Vibrio cholerae 1587] ZP_01950258.1 6.8 19% ...

  15. Dynamics of the evolving Bolthausen-Sznitman coalescent

    CERN Document Server

    Schweinsberg, Jason

    2011-01-01

    Consider a population of fixed size that evolves over time. At each time, the genealogical structure of the population can be described by a coalescent tree whose branches are traced back to the most recent common ancestor of the population. As time goes forward, the genealogy of the population evolves, leading to what is known as an evolving coalescent. We will study the evolving coalescent for populations whose genealogy can be described by the Bolthausen-Sznitman coalescent. We obtain the limiting behavior of the evolution of the time back to the most recent common ancestor and the total length of the branches in the tree. By similar methods, we also obtain a new result concerning the number of blocks in the Bolthausen-Sznitman coalescent.

  16. Evolutionary genetics: you are what you evolve to eat.

    Science.gov (United States)

    Dworkin, Ian; Jones, Corbin D

    2015-04-20

    The evolution of host specialization can potentially limit future evolutionary opportunities. A new study now shows how Drosophila sechellia, specialized on the toxic Morinda fruit, has evolved new nutritional needs influencing its reproduction.

  17. Orthogonally Evolved AI to Improve Difficulty Adjustment in Video Games

    DEFF Research Database (Denmark)

    Hintze, Arend; Olson, Randal; Lehman, Joel Anthony

    2016-01-01

    (i.e. agents subject to fewer generations of evolution) make for easier opponents, while highly-evolved agents are more challenging to overcome. In this publication we test a new approach for difficulty adjustment in games: orthogonally evolved AI, where the player receives support from collaborating...... agents that are co-evolved with opponent agents (where collaborators and opponents have orthogonal incentives). The advantage is that game difficulty can be adjusted more granularly by manipulating two independent axes: by having more or less adept collaborators, and by having more or less adept...... opponents. Furthermore, human interaction can modulate (and be informed by) the performance and behavior of collaborating agents. In this way, orthogonally evolved AI both facilitates smoother difficulty adjustment and enables new game experiences....

  18. Degree distribution of a new model for evolving networks

    Indian Academy of Sciences (India)

    Xuan Zhang; Qinggui Zhao

    2010-03-01

    We propose and study an evolving network model with both preferential and random attachments of new links, incorporating the addition of new nodes, new links, and the removal of links. We first show that the degree evolution of a node follows a nonhomogeneous Markov chain. Based on the concept of Markov chain, we provide the exact solution of the degree distribution of this model and show that the model can generate scale-free evolving network.

  19. Evolving understanding of the evolution of herbicide resistance.

    Science.gov (United States)

    Gressel, Jonathan

    2009-11-01

    A greater number of, and more varied, modes of resistance have evolved in weeds than in other pests because the usage of herbicides is far more extensive than the usage of other pesticides, and because weed seed output is so great. The discovery and development of selective herbicides are more problematic than those of insecticides and fungicides, as these must only differentiate between plant and insect or pathogen. Herbicides are typically selective between plants, meaning that before deployment there are already some crops possessing natural herbicide resistance that weeds could evolve. The concepts of the evolution of resistance and the mechanisms of delaying resistance have evolved as nature has continually evolved new types of resistance. Major gene target-site mutations were the first types to evolve, with initial consideration devoted mainly to them, but slowly 'creeping' resistance, gradually accruing increasing levels of resistance, has become a major force owing to an incremental accumulation of genetic changes in weed populations. Weeds have evolved mechanisms unknown even in antibiotic as well as other drug and pesticide resistances. It is even possible that cases of epigenetic 'remembered' resistances may have appeared.

  20. An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems.

    Science.gov (United States)

    Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Koumoto, Yasuko; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko

    2016-01-01

    A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.

  1. Arabidopsis thaliana AUCSIA-1 regulates auxin biology and physically interacts with a kinesin-related protein.

    Directory of Open Access Journals (Sweden)

    Barbara Molesini

    Full Text Available Aucsia is a green plant gene family encoding 44-54 amino acids long miniproteins. The sequenced genomes of most land plants contain two Aucsia genes. RNA interference of both tomato (Solanum lycopersicum Aucsia genes (SlAucsia-1 and SlAucsia-2 altered auxin sensitivity, auxin transport and distribution; it caused parthenocarpic development of the fruit and other auxin-related morphological changes. Here we present data showing that the Aucsia-1 gene of Arabidopsis thaliana alters, by itself, root auxin biology and that the AtAUCSIA-1 miniprotein physically interacts with a kinesin-related protein. The AtAucsia-1 gene is ubiquitously expressed, although its expression is higher in roots and inflorescences in comparison to stems and leaves. Two allelic mutants for AtAucsia-1 gene did not display visible root morphological alterations; however both basipetal and acropetal indole-3-acetic acid (IAA root transport was reduced as compared with wild-type plants. The transcript steady state levels of the auxin efflux transporters ATP BINDING CASSETTE subfamily B (ABCB ABCB1, ABCB4 and ABCB19 were reduced in ataucsia-1 plants. In ataucsia-1 mutant, lateral root growth showed an altered response to i exogenous auxin, ii an inhibitor of polar auxin transport and iii ethylene. Overexpression of AtAucsia-1 inhibited primary root growth. In vitro and in vivo protein-protein interaction experiments showed that AtAUCSIA-1 interacts with a 185 amino acids long fragment belonging to a 2712 amino acids long protein of unknown function (At4g31570. Bioinformatics analysis indicates that the AtAUCSIA-1 interacting protein (AtAUCSIA-1IP clusters with a group of CENP-E kinesin-related proteins. Gene ontology predictions for the two proteins are consistent with the hypothesis that the AtAUCSIA-1/AtAUCSIA-1IP complex is involved in the regulation of the cytoskeleton dynamics underlying auxin biology.

  2. 乳腺癌耐药蛋白与糖尿病%Breast Cancer Resistance Protein and Diabetes

    Institute of Scientific and Technical Information of China (English)

    刘海艳; 顾红梅; 俞森; 张喜全

    2013-01-01

    Diabetes is a group of systematic metabolic diseases. In addition to cytochromes P450s, some ATP-binding cassette drug transporters are also under diabetic conditions. Breast cancer resistance protein ( BCRP ), an important member of ATP-binding cassette drug transporters, expressed in most of the tissues, is thought to play an important protective role in normal tissues. It was reported that BCRP function and expression were impaired in intestine of diabetes rats, which affects the absorption and efflux of some drugs. Therefore, the alteration of BCRP expression and activity could be of critical importance for the treatment of diabetes mellitus. In this article, we reviewed the relationship between diabetes and BCRP in order to provide some new ideas for the study of diabetes.%糖尿病是一种常见的全身性慢性代谢障碍性疾病.在糖尿病状态下,不仅细胞色素P450酶会发生改变,也伴随着许多ABC外排转运体的变化.乳腺癌耐药蛋白(breast cancer resistance protein,BCRP)是一种重要的ABC外排转运体,在大多数组织和器官中都有表达,发挥对机体组织的保护作用.糖尿病患者体内BCRP表达和活性会发生改变,通过作用于药物的吸收和外排,影响药物的疗效.因此,BCRP表达和活性的改变在糖尿病的治疗进程中有着重要的作用.本文就糖尿病状态下BCRP表达和功能的改变及引起这些改变的相关影响因素做一综述,以期为糖尿病研究和治疗提供新思路.

  3. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng

    2012-09-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users\\' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users\\' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  4. A slowly evolving host moves first in symbiotic interactions

    Science.gov (United States)

    Damore, James; Gore, Jeff

    2011-03-01

    Symbiotic relationships, both parasitic and mutualistic, are ubiquitous in nature. Understanding how these symbioses evolve, from bacteria and their phages to humans and our gut microflora, is crucial in understanding how life operates. Often, symbioses consist of a slowly evolving host species with each host only interacting with its own sub-population of symbionts. The Red Queen hypothesis describes coevolutionary relationships as constant arms races with each species rushing to evolve an advantage over the other, suggesting that faster evolution is favored. Here, we use a simple game theoretic model of host- symbiont coevolution that includes population structure to show that if the symbionts evolve much faster than the host, the equilibrium distribution is the same as it would be if it were a sequential game where the host moves first against its symbionts. For the slowly evolving host, this will prove to be advantageous in mutualisms and a handicap in antagonisms. The model allows for symbiont adaptation to its host, a result that is robust to changes in the parameters and generalizes to continuous and multiplayer games. Our findings provide insight into a wide range of symbiotic phenomena and help to unify the field of coevolutionary theory.

  5. Attack resilience of the evolving scientific collaboration network.

    Directory of Open Access Journals (Sweden)

    Xiao Fan Liu

    Full Text Available Stationary complex networks have been extensively studied in the last ten years. However, many natural systems are known to be continuously evolving at the local ("microscopic" level. Understanding the response to targeted attacks of an evolving network may shed light on both how to design robust systems and finding effective attack strategies. In this paper we study empirically the response to targeted attacks of the scientific collaboration networks. First we show that scientific collaboration network is a complex system which evolves intensively at the local level--fewer than 20% of scientific collaborations last more than one year. Then, we investigate the impact of the sudden death of eminent scientists on the evolution of the collaboration networks of their former collaborators. We observe in particular that the sudden death, which is equivalent to the removal of the center of the egocentric network of the eminent scientist, does not affect the topological evolution of the residual network. Nonetheless, removal of the eminent hub node is exactly the strategy one would adopt for an effective targeted attack on a stationary network. Hence, we use this evolving collaboration network as an experimental model for attack on an evolving complex network. We find that such attacks are ineffectual, and infer that the scientific collaboration network is the trace of knowledge propagation on a larger underlying social network. The redundancy of the underlying structure in fact acts as a protection mechanism against such network attacks.

  6. Identification and characterization of functionally important elements in the multidrug resistance protein 1 COOH-terminal region.

    Science.gov (United States)

    Westlake, Christopher J; Payen, Lea; Gao, Mian; Cole, Susan P C; Deeley, Roger G

    2004-12-17

    The ATP binding cassette (ABC) transporter, multidrug resistance protein 1 (MRP1/ABCC1), transports a broad spectrum of conjugated and unconjugated compounds, including natural product chemotherapeutic agents. In this study, we have investigated the importance of the COOH-terminal region of MRP1 for transport activity and basolateral plasma membrane trafficking. The COOH-terminal regions of some ABCC proteins have been implicated in protein trafficking, but the function of this region of MRP1 has not been defined. In contrast to results obtained with other ABCC proteins, we found that the COOH-proximal 30 amino acids of MRP1 can be removed without affecting trafficking to basolateral membranes. However, the truncated protein is inactive. Furthermore, removal of as few as 4 COOH-terminal amino acids profoundly decreases transport activity. Although amino acid sequence conservation of the COOH-terminal regions of ABC proteins is low, secondary structure predictions indicate that they consist of a broadly conserved helix-sheet-sheet-helix-helix structure. Consistent with a conservation of secondary and tertiary structure, MRP1 hybrids containing the COOH-terminal regions of either the homologous MRP2 or the distantly related P-glycoprotein were fully active and trafficked normally. Using mutated proteins, we have identified structural elements containing five conserved hydrophobic amino acids that are required for activity. We show that these are important for binding and hydrolysis of ATP by nucleotide binding domain 2. Based on crystal structures of several ABC proteins, we suggest that the conserved amino acids may stabilize a helical bundle formed by the COOH-terminal three helices and may contribute to interactions between the COOH-terminal region and the protein's two nucleotide binding domains.

  7. Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors.

    Science.gov (United States)

    Machón, Cristina; Fothergill, Timothy J G; Barillà, Daniela; Hayes, Finbarr

    2007-11-16

    The segrosome is the nucleoprotein complex that mediates accurate segregation of bacterial plasmids. The segrosome of plasmid TP228 comprises ParF and ParG proteins that assemble on the parH centromere. ParF, which exemplifies one clade of the ubiquitous ParA superfamily of segregation proteins, polymerizes extensively in response to ATP binding. Polymerization is modulated by the ParG centromere binding factor (CBF). The segrosomes of plasmids pTAR, pVT745 and pB171 include ParA homologues of the ParF subgroup, as well as diverse homodimeric CBFs with no primary sequence similarity to ParG, or each other. Centromere binding by these analogues is largely specific. Here, we establish that the ParF homologues of pTAR and pB171 filament modestly with ATP, and that nucleotide hydrolysis is not required for this polymerization, which is more prodigious when the cognate CBF is also present. By contrast, the ParF homologue of plasmid pVT745 did not respond appreciably to ATP alone, but polymerized extensively in the presence of both its cognate CBF and ATP. The co-factors also stimulated nucleotide-independent polymerization of cognate ParF proteins. Moreover, apart from the CBF of pTAR, the disparate ParG analogues promoted polymerization of non-cognate ParF proteins suggesting that filamentation of the ParF proteins is enhanced by a common mechanism. Like ParG, the co-factors may be modular, possessing a centromere-specific interaction domain linked to a flexible region containing determinants that promiscuously stimulate ParF polymerization. The CBFs appear to function as bacterial analogues of formins, microtubule-associated proteins or related ancillary factors that regulate eucaryotic cytoskeletal dynamics.

  8. Two molybdate/tungstate ABC transporters that interact very differently with their substrate binding proteins.

    Science.gov (United States)

    Vigonsky, Elena; Ovcharenko, Elena; Lewinson, Oded

    2013-04-02

    In all kingdoms of life, ATP Binding Cassette (ABC) transporters participate in many physiological and pathological processes. Despite the diversity of their functions, they have been considered to operate by a largely conserved mechanism. One deviant is the vitamin B12 transporter BtuCD that has been shown to operate by a distinct mechanism. However, it is unknown if this deviation is an exotic example, perhaps arising from the nature of the transported moiety. Here we compared two ABC importers of identical substrate specificity (molybdate/tungstate), and find that their interactions with their substrate binding proteins are utterly different. One system forms a high-affinity, slow-dissociating complex that is destabilized by nucleotide and substrate binding. The other forms a low-affinity, transient complex that is stabilized by ligands. The results highlight significant mechanistic divergence among ABC transporters, even when they share the same substrate specificity. We propose that these differences are correlated with the different folds of the transmembrane domains of ABC transporters.

  9. DBD dyes as fluorescence lifetime probes to study conformational changes in proteins.

    Science.gov (United States)

    Wawrzinek, Robert; Ziomkowska, Joanna; Heuveling, Johanna; Mertens, Monique; Herrmann, Andreas; Schneider, Erwin; Wessig, Pablo

    2013-12-16

    Previously, [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD)-based fluorophores used as highly sensitive fluorescence lifetime probes reporting on their microenvironmental polarity have been described. Now, a new generation of DBD dyes has been developed. Although they are still sensitive to polarity, in contrast to the former DBD dyes, they have extraordinary spectroscopic properties even in aqueous surroundings. They are characterized by long fluorescence lifetimes (10-20 ns), large Stokes shifts (≈100 nm), high photostabilities, and high quantum yields (>0.56). Here, the spectroscopic properties and synthesis of functionalized derivatives for labeling biological targets are described. Furthermore, thio-reactive maleimido derivatives of both DBD generations show strong intramolecular fluorescence quenching. This mechanism has been investigated and is found to undergo a photoelectron transfer (PET) process. After reaction with a thiol group, this fluorescence quenching is prevented, indicating successful bonding. Being sensitive to their environmental polarity, these compounds have been used as powerful fluorescence lifetime probes for the investigation of conformational changes in the maltose ATP-binding cassette transporter through fluorescence lifetime spectroscopy. The differing tendencies of the fluorescence lifetime change for both DBD dye generations promote their combination as a powerful toolkit for studying microenvironments in proteins.

  10. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    Science.gov (United States)

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-03-09

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.

  11. Evolving Systems: An Outcome of Fondest Hopes and Wildest Dreams

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.

    2012-01-01

    New theory is presented for evolving systems, which are autonomously controlled subsystems that self-assemble into a new evolved system with a higher purpose. Evolving systems of aerospace structures often require additional control when assembling to maintain stability during the entire evolution process. This is the concept of Adaptive Key Component Control that operates through one specific component to maintain stability during the evolution. In addition, this control must often overcome persistent disturbances that occur while the evolution is in progress. Theoretical results will be presented for Adaptive Key Component control for persistent disturbance rejection. An illustrative example will demonstrate the Adaptive Key Component controller on a system composed of rigid body and flexible body modes.

  12. Cold Dust in Three Massive Evolved Stars in the LMC

    CERN Document Server

    Boyer, M L; van Loon, J Th; Srinivasan, S; Clayton, G C; Kemper, F; Smith, L J; Matsuura, M; Woods, Paul M; Marengo, M; Meixner, M; Engelbracht, C; Gordon, K D; Hony, S; Indebetouw, R; Misselt, K; Okumura, K; Panuzzo, P; Riebel, D; Roman-Duval, J; Sauvage, M; Sloan, G C

    2010-01-01

    Massive evolved stars can produce large amounts of dust, and far-infrared (IR) data are essential for determining the contribution of cold dust to the total dust mass. Using Herschel, we search for cold dust in three very dusty massive evolved stars in the Large Magellanic Cloud: R71 is a Luminous Blue Variable, HD36402 is a Wolf-Rayet triple system, and IRAS05280-6910 is a red supergiant. We model the spectral energy distributions using radiative transfer codes and find that these three stars have mass-loss rates up to 10^-3 solar masses/year, suggesting that high-mass stars are important contributors to the life-cycle of dust. We found far-IR excesses in two objects, but these excesses appear to be associated with ISM and star-forming regions. Cold dust (T < 100 K) may thus not be an important contributor to the dust masses of evolved stars.

  13. Angular Momentum Transport via Internal Gravity Waves in Evolving Stars

    CERN Document Server

    Fuller, Jim; Cantiello, Matteo; Brown, Ben

    2014-01-01

    Recent asteroseismic advances have allowed for direct measurements of the internal rotation rates of many sub-giant and red giant stars. Unlike the nearly rigidly rotating Sun, these evolved stars contain radiative cores that spin faster than their overlying convective envelopes, but slower than they would in the absence of internal angular momentum transport. We investigate the role of internal gravity waves in angular momentum transport in evolving low mass stars. In agreement with previous results, we find that convectively excited gravity waves can prevent the development of strong differential rotation in the radiative cores of Sun-like stars. As stars evolve into sub-giants, however, low frequency gravity waves become strongly attenuated and cannot propagate below the hydrogen burning shell, allowing the spin of the core to decouple from the convective envelope. This decoupling occurs at the base of the sub-giant branch when stars have surface temperatures of roughly 5500 K. However, gravity waves can s...

  14. A sensitive search for methanol line emission toward evolved stars

    CERN Document Server

    Gomez, J F; Suarez, O; Rizzo, J R; de Gregorio-Monsalvo, I

    2014-01-01

    We present a sensitive search for methanol line emission in evolved stars at 1 cm, aiming to detect, for the first time, methanol masers in this type of objects. Our sample comprised post-AGB stars and young planetary nebulae (PNe), whose mass-loss processes and circumstellar structures resemble those of young stellar objects (YSOs), where methanol masers are detected. Class I masers were searched for in 73 objects, whereas Class II ones were searched in 16. No detection was obtained. The non-detection of Class I methanol masers indicated that methanol production in dust grains and/or the enhancement of its gas-phase abundance in the shocked regions of evolved objects are not as efficient as in YSOs. We suggest that relatively more evolved PNe might have a better probability of harboring Class II masers.

  15. Cosmic Biology How Life Could Evolve on Other Worlds

    CERN Document Server

    Irwin, Louis Neil

    2011-01-01

    It is very unlikely that little green humanoids are living on Mars. But what are the possible life forms that might exist in our Solar System and how might they have evolved? This uniquely authoritative and imaginative book on the possibilties for alien life addresses the intrinsic interest that we have about life on other worlds - reinforcing some of our assumptions and reshaping others. It introduces new possibilties that will enlarge our understanding of the issue overall, in particular the enormous range of environments and planetary conditions within which life might evolve. Cosmic Biology -discusses a broad range of possible environments where alien life might have evolved; -explains why carbon-based, water-borne life is more likely that its alternatives, but is not the only possiblity; -applies the principles of planetary science and modern biology to evolutionary scenarios on other worlds; -looks at the future fates of living systems, including those on Earth.

  16. Evolving mobile robots able to display collective behaviors.

    Science.gov (United States)

    Baldassarre, Gianluca; Nolfi, Stefano; Parisi, Domenico

    2003-01-01

    We present a set of experiments in which simulated robots are evolved for the ability to aggregate and move together toward a light target. By developing and using quantitative indexes that capture the structural properties of the emerged formations, we show that evolved individuals display interesting behavioral patterns in which groups of robots act as a single unit. Moreover, evolved groups of robots with identical controllers display primitive forms of situated specialization and play different behavioral functions within the group according to the circumstances. Overall, the results presented in the article demonstrate that evolutionary techniques, by exploiting the self-organizing behavioral properties that emerge from the interactions between the robots and between the robots and the environment, are a powerful method for synthesizing collective behavior.

  17. Evolving Chart Pattern Sensitive Neural Network Based Forex Trading Agents

    CERN Document Server

    Sher, Gene I

    2011-01-01

    Though machine learning has been applied to the foreign exchange market for quiet some time now, and neural networks have been shown to yield good results, in modern approaches neural network systems are optimized through the traditional methods, and their input signals are vectors containing prices and other indicator elements. The aim of this paper is twofold, the presentation and testing of the application of topology and weight evolving artificial neural network (TWEANN) systems to automated currency trading, and the use of chart images as input to a geometrical regularity aware indirectly encoded neural network systems. This paper presents the benchmark results of neural network based automated currency trading systems evolved using TWEANNs, and compares the generalization capabilities of these direct encoded neural networks which use the standard price vector inputs, and the indirect (substrate) encoded neural networks which use chart images as input. The TWEANN algorithm used to evolve these currency t...

  18. Topology of Coronal Fields from Evolving Magnetofrictional Models

    Science.gov (United States)

    DeRosa, Marc L.; Cheung, M.

    2012-05-01

    The evolving magnetofrictional (MF) scheme enables the construction of time-dependent models of the active region coronal magnetic field in response to photospheric driving. When advancing such models, only the magnetic induction is solved, during which the velocity at each point is assumed to be oriented parallel to the Lorentz force. This leads to the field to evolve toward a force-free state. We present results from an evolving MF model of NOAA AR11158 using driving from time sequences of SDO/HMI data. Utilizing this simulation, we investigate changes in magnetic configurations and topology, including the number of null points, evolution of quasi-separatrix layers, and the time-history of total and free magnetic energies as well as relative helicity. This work seeks to elucidate the relation(s) between topological and energetic properties of the AR.

  19. Synthesis of Evolving Cells for Reconfigurable Manufacturing Systems

    Science.gov (United States)

    Padayachee, J.; Bright, G.

    2014-07-01

    The concept of Reconfigurable Manufacturing Systems (RMSs) was formulated due to the global necessity for production systems that are able to economically evolve according to changes in markets and products. Technologies and design methods are under development to enable RMSs to exhibit transformable system layouts, reconfigurable processes, cells and machines. Existing factory design methods and software have not yet advanced to include reconfigurable manufacturing concepts. This paper presents the underlying group technology framework for the design of manufacturing cells that are able to evolve according to a changing product mix by mechanisms of reconfiguration. The framework is based on a Norton- Bass forecast and time variant BOM models. An adaptation of legacy group technology methods is presented for the synthesis of evolving cells and two optimization problems are presented within this context.

  20. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  1. [Characterization of a putative S locus encoded receptor protein kinase and its role in self-incompatibility]. Progress report, January 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The serine/threonine protein kinase (SRK) protein was predicted to be similar to the growth factor receptor tyrosine kinases in animals but its amino acid sequence of the catalytic domain is more similar to that of the catalytic domains of protein serine/threonine kinases than to protein tyrosine kinases. We have shown that the SRK protein has intrinsic scrine/threonine kinase activity. We subcloned the protein kinase-homologous domain of the SRK{sub 6} cDNA into the bacterial expression vector pGEX-3X and we have constructed a second plasmid identical to the first except that it carried a conservative mutation that substituted Arg for the Lys{sup 524} codon of SRK6 This lysine corresponds to the ATP-binding site, is essential in protein kinases, and is a common target for site-directed mutagenesis as a means to obtain kinase-defective proteins. Cultures bearing the wild-type and mutant SRK catalytic domains each produced an approximately 64 kD protein that reacted with anti-SRK6 antibodies. Following pulse-labeling with {sup 32}P we found that the wild-type SRK6 protein but not the mutant form was detectably phosphorylated. Phosphoamino acid analysis of the affinity purified {sup 32}p-labeled GST-SRK6 fusion protein demonstrated that SRK was phosphorylated predominantly on semine and to a lesser extent on threonine, but not on tyrosine. Thus, SRK6 is a functional serine/threonine protein kinase.

  2. Evidence that viral RNAs have evolved for efficient, two-stage packaging.

    Science.gov (United States)

    Borodavka, Alexander; Tuma, Roman; Stockley, Peter G

    2012-09-25

    Genome packaging is an essential step in virus replication and a potential drug target. Single-stranded RNA viruses have been thought to encapsidate their genomes by gradual co-assembly with capsid subunits. In contrast, using a single molecule fluorescence assay to monitor RNA conformation and virus assembly in real time, with two viruses from differing structural families, we have discovered that packaging is a two-stage process. Initially, the genomic RNAs undergo rapid and dramatic (approximately 20-30%) collapse of their solution conformations upon addition of cognate coat proteins. The collapse occurs with a substoichiometric ratio of coat protein subunits and is followed by a gradual increase in particle size, consistent with the recruitment of additional subunits to complete a growing capsid. Equivalently sized nonviral RNAs, including high copy potential in vivo competitor mRNAs, do not collapse. They do support particle assembly, however, but yield many aberrant structures in contrast to viral RNAs that make only capsids of the correct size. The collapse is specific to viral RNA fragments, implying that it depends on a series of specific RNA-protein interactions. For bacteriophage MS2, we have shown that collapse is driven by subsequent protein-protein interactions, consistent with the RNA-protein contacts occurring in defined spatial locations. Conformational collapse appears to be a distinct feature of viral RNA that has evolved to facilitate assembly. Aspects of this process mimic those seen in ribosome assembly.

  3. Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme.

    Science.gov (United States)

    Hung, Hui-Chih; Chien, Yu-Ching; Hsieh, Ju-Yi; Chang, Gu-Gang; Liu, Guang-Yaw

    2005-09-27

    Human mitochondrial NAD(P)+-dependent malic enzyme is inhibited by ATP. The X-ray crystal structures have revealed that two ATP molecules occupy both the active and exo site of the enzyme, suggesting that ATP might act as an allosteric inhibitor of the enzyme. However, mutagenesis studies and kinetic evidences indicated that the catalytic activity of the enzyme is inhibited by ATP through a competitive inhibition mechanism in the active site and not in the exo site. Three amino acid residues, Arg165, Asn259, and Glu314, which are hydrogen-bonded with NAD+ or ATP, are chosen to characterize their possible roles on the inhibitory effect of ATP for the enzyme. Our kinetic data clearly demonstrate that Arg165 is essential for catalysis. The R165A enzyme had very low enzyme activity, and it was only slightly inhibited by ATP and not activated by fumarate. The values of K(m,NAD) and K(i,ATP) to both NAD+ and malate were elevated. Elimination of the guanidino side chain of R165 made the enzyme defective on the binding of NAD+ and ATP, and it caused the charge imbalance in the active site. These effects possibly caused the enzyme to malfunction on its catalytic power. The N259A enzyme was less inhibited by ATP but could be fully activated by fumarate at a similar extent compared with the wild-type enzyme. For the N259A enzyme, the value of K(i,ATP) to NAD+ but not to malate was elevated, indicating that the hydrogen bonding between ATP and the amide side chain of this residue is important for the binding stability of ATP. Removal of this side chain did not cause any harmful effect on the fumarate-induced activation of the enzyme. The E314A enzyme, however, was severely inhibited by ATP and only slightly activated by fumarate. The values of K(m,malate), K(m,NAD), and K(i,ATP) to both NAD+ and malate for E314A were reduced to about 2-7-folds compared with those of the wild-type enzyme. It can be concluded that mutation of Glu314 to Ala eliminated the repulsive effects between Glu314 and malate, NAD+, or ATP, and thus the binding affinities of malate, NAD+, and ATP in the active site of the enzyme were enhanced.

  4. Fluorescence competition assay for the assessment of ATP binding to an isolated domain of Na+, K(+)-ATPase.

    Science.gov (United States)

    Kubala, M; Plásek, J; Amler, E

    2004-01-01

    An equation allowing estimation of the dissociation constant for binding of a non-fluorescent ligand to the enzyme is presented that is based on the competitive replacement of the ligand by its fluorescent analog. We derived an explicit formula for the probe fluorescence intensity, which is suitable for nonlinear least-squares analysis. We used this formula to evaluate the binding of ATP to the large cytoplasmic loop of Na+,K(+)-ATPase. The estimated value of KD (6.2+/- 0.7 mM) is comparable with the results from other laboratories for similar constructs obtained by a different method.

  5. Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis.

    Science.gov (United States)

    Li, Meng; Chen, Zhi; Zhang, Xuan; Song, Yuan; Wen, Ying; Li, Jilun

    2010-12-01

    We investigated the function of maltose ABC transporter system encoded by malEFG-a and the effect of its overexpression on antibiotic production in Streptomyces avermitilis. A malEFG-a deletion mutant was unable to grow in a minimal medium with maltose as sole carbon source and produce avermectin. Maltose utilization and avermectin production were restored by introduction of a single copy of malEFG-a. RT-PCR analysis showed that the expression of malE-a was induced by maltose, and was strongly repressed by glucose. When multi-copy, integrative malEFG-a gene expression vectors were introduced into wild-type strain ATCC31267 and ivermectin-producer OI-31, antibiotic production increased by 2.6- to 3.3-fold and the time required for fermentation decreased by about 10%. The overexpression of malEFG-a improved the utilization rate of starch, and thereby enhanced avermectin production. Such an approach would be useful for the improvement of commercial antibiotic production using starch as the main carbon source in the fermentation process.

  6. Linoleic acid suppresses cholesterol efflux and ATP-binding cassette transporters in murine bone marrow-derived macrophages

    Science.gov (United States)

    Individuals with type 2 diabetes mellitus (T2DM) are at increased risk of developing cardiovascular disease (CVD), possibly associated with elevated plasma free fatty acid concentrations. Paradoxically, evidence suggests that unsaturated, compared to saturated fatty acids, suppress macrophage chole...

  7. Structures of the Multidrug Transporter P-glycoprotein Reveal Asymmetric ATP Binding and the Mechanism of Polyspecificity.

    Science.gov (United States)

    Esser, Lothar; Zhou, Fei; Pluchino, Kristen M; Shiloach, Joseph; Ma, Jichun; Tang, Wai-Kwan; Gutierrez, Camilo; Zhang, Alex; Shukla, Suneet; Madigan, James P; Zhou, Tongqing; Kwong, Peter D; Ambudkar, Suresh V; Gottesman, Michael M; Xia, Di

    2017-01-13

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancer; it plays important roles in determining the pharmacokinetics of many drugs. Understanding the structural basis of P-gp, substrate polyspecificity has been hampered by its intrinsic flexibility, which is facilitated by a 75-residue linker that connects the two halves of P-gp. Here we constructed a mutant murine P-gp with a shortened linker to facilitate structural determination. Despite dramatic reduction in rhodamine 123 and calcein-AM transport, the linker-shortened mutant P-gp possesses basal ATPase activity and binds ATP only in its N-terminal nucleotide-binding domain. Nine independently determined structures of wild type, the linker mutant, and a methylated P-gp at up to 3.3 Å resolution display significant movements of individual transmembrane domain helices, which correlated with the opening and closing motion of the two halves of P-gp. The open-and-close motion alters the surface topology of P-gp within the drug-binding pocket, providing a mechanistic explanation for the polyspecificity of P-gp in substrate interactions.

  8. Structures of the Multidrug Transporter P-glycoprotein Reveal Asymmetric ATP Binding and the Mechanism of Polyspecificity*♦

    Science.gov (United States)

    Esser, Lothar; Zhou, Fei; Pluchino, Kristen M.; Shiloach, Joseph; Ma, Jichun; Tang, Wai-kwan; Gutierrez, Camilo; Zhang, Alex; Shukla, Suneet; Madigan, James P.; Zhou, Tongqing; Kwong, Peter D.; Ambudkar, Suresh V.; Gottesman, Michael M.; Xia, Di

    2017-01-01

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancer; it plays important roles in determining the pharmacokinetics of many drugs. Understanding the structural basis of P-gp, substrate polyspecificity has been hampered by its intrinsic flexibility, which is facilitated by a 75-residue linker that connects the two halves of P-gp. Here we constructed a mutant murine P-gp with a shortened linker to facilitate structural determination. Despite dramatic reduction in rhodamine 123 and calcein-AM transport, the linker-shortened mutant P-gp possesses basal ATPase activity and binds ATP only in its N-terminal nucleotide-binding domain. Nine independently determined structures of wild type, the linker mutant, and a methylated P-gp at up to 3.3 Å resolution display significant movements of individual transmembrane domain helices, which correlated with the opening and closing motion of the two halves of P-gp. The open-and-close motion alters the surface topology of P-gp within the drug-binding pocket, providing a mechanistic explanation for the polyspecificity of P-gp in substrate interactions. PMID:27864369

  9. Ectoine-induced proteins in Sinorhizobium meliloti include an Ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism.

    Science.gov (United States)

    Jebbar, Mohamed; Sohn-Bösser, Linda; Bremer, Erhard; Bernard, Théophile; Blanco, Carlos

    2005-02-01

    To understand the mechanisms of ectoine-induced osmoprotection in Sinorhizobium meliloti, a proteomic examination of S. meliloti cells grown in minimal medium supplemented with ectoine was undertaken. This revealed the induction of 10 proteins. The protein products of eight genes were identified by using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Five of these genes, with four other genes whose products were not detected on two-dimensional gels, belong to the same gene cluster, which is localized on the pSymB megaplasmid. Four of the nine genes encode the characteristic components of an ATP-binding cassette transporter that was named ehu, for ectoine/hydroxyectoine uptake. This transporter was encoded by four genes (ehuA, ehuB, ehuC, and ehuD) that formed an operon with another gene cluster that contains five genes, named eutABCDE for ectoine utilization. On the basis of sequence homologies, eutABCDE encode enzymes with putative and hypothetical functions in ectoine catabolism. Analysis of the properties of ehuA and eutA mutants suggests that S. meliloti possesses at least one additional ectoine catabolic pathway as well as a lower-affinity transport system for ectoine and hydroxyectoine. The expression of ehuB, as determined by measurements of UidA activity, was shown to be induced by ectoine and hydroxyectoine but not by glycine betaine or by high osmolality.

  10. Enzyme kinetics and distinct modulation of the protein kinase N family of kinases by lipid activators and small molecule inhibitors

    Science.gov (United States)

    Falk, Matthew D.; Liu, Wei; Bolaños, Ben; Unsal-Kacmaz, Keziban; Klippel, Anke; Grant, Stephan; Brooun, Alexei; Timofeevski, Sergei

    2014-01-01

    The PKN (protein kinase N) family of Ser/Thr protein kinases regulates a diverse set of cellular functions, such as cell migration and cytoskeletal organization. Inhibition of tumour PKN activity has been explored as an oncology therapeutic approach, with a PKN3-targeted RNAi (RNA interference)-derived therapeutic agent in Phase I clinical trials. To better understand this important family of kinases, we performed detailed enzymatic characterization, determining the kinetic mechanism and lipid sensitivity of each PKN isoform using full-length enzymes and synthetic peptide substrate. Steady-state kinetic analysis revealed that PKN1–3 follows a sequential ordered Bi–Bi kinetic mechanism, where peptide substrate binding is preceded by ATP binding. This kinetic mechanism was confirmed by additional kinetic studies for product inhibition and affinity of small molecule inhibitors. The known lipid effector, arachidonic acid, increased the catalytic efficiency of each isoform, mainly through an increase in kcat for PKN1 and PKN2, and a decrease in peptide KM for PKN3. In addition, a number of PKN inhibitors with various degrees of isoform selectivity, including potent (Ki<10 nM) and selective PKN3 inhibitors, were identified by testing commercial libraries of small molecule kinase inhibitors. This study provides a kinetic framework and useful chemical probes for understanding PKN biology and the discovery of isoform-selective PKN-targeted inhibitors. PMID:27919031

  11. Complex polymorphisms in the Plasmodium falciparum multidrug resistance protein 2 gene and its contribution to antimalarial response.

    Science.gov (United States)

    Veiga, Maria Isabel; Osório, Nuno S; Ferreira, Pedro Eduardo; Franzén, Oscar; Dahlstrom, Sabina; Lum, J Koji; Nosten, Francois; Gil, José Pedro

    2014-12-01

    Plasmodium falciparum has the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including the Apicomplexa parasites. P. falciparum genome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters: Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studied Pfmrp2. The role of Pfmrp2 polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of the Pfmrp2 genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found that Pfmrp2 harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identified Pfmrp2 polymorphisms with altered in vitro susceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggested Pfmrp2 polymorphisms modulate the parasite's in vitro response to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association with in vivo parasite clearance. In conclusion, our study reveals that the Pfmrp2 gene is the most diverse ABC transporter known in P. falciparum with a potential role in antimalarial drug resistance.

  12. Evolving spherical boson stars on a 3D Cartesian grid

    Science.gov (United States)

    Guzmán, F. Siddhartha

    2004-08-01

    A code to evolve boson stars in 3D is presented as the starting point for the evolution of scalar field systems with arbitrary symmetries. It was possible to reproduce the known results related to perturbations discovered with 1D numerical codes in the past, which include evolution of stable and unstable equilibrium configurations. In addition, the apparent and event horizons masses of a collapsing boson star are shown for the first time. The present code is expected to be useful at evolving possible sources of gravitational waves related to scalar field objects and to handle toy models of systems perturbed with scalar fields in 3D.

  13. Evolving spherical boson stars on a 3D cartesian grid

    CERN Document Server

    Guzman, F S

    2004-01-01

    A code to evolve boson stars in 3D is presented as the starting point for the evolution of scalar field systems with arbitrary symmetries. It was possible to reproduce the known results related to perturbations discovered with 1D numerical codes in the past, which include evolution of stable and unstable equilibrium configurations. In addition, the apparent and event horizons masses of a collapsing boson star are shown for the first time. The present code is expected to be useful at evolving possible sources of gravitational waves related to scalar field objects and to handle toy models of systems perturbed with scalar fields in 3D.

  14. Interaction-free evolving states of a bipartite system

    Science.gov (United States)

    Napoli, A.; Guccione, M.; Messina, A.; Chruściński, D.

    2014-06-01

    We show that two interacting physical systems may admit entangled pure or nonseparable mixed states evolving in time as if the mutual interaction Hamiltonian were absent. In this paper we define these interaction-free evolving (IFE) states and characterize their existence for a generic binary system described by a time-independent Hamiltonian. A comparison between IFE subspace and the decoherence-free subspace is reported. The set of all pure IFE states is explicitly constructed for a nonhomogeneous spin-star-system model

  15. Perturbation propagation in random and evolved Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Fretter, Christoph [Instistut fuer Informatik, Martin-Luther-Universitaet Halle-Wittenberg, Von-Seckendorffplatz 1, 06120 Halle (Germany); Szejka, Agnes; Drossel, Barbara [Institut fuer Festkoerperphysik, Technische Universitaet Darmstadt, Hochschulstrasse 6, 64289 Darmstadt (Germany)], E-mail: Christoph.Fretter@informatik.uni-halle.de

    2009-03-15

    In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.

  16. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Sun Xuan

    2010-10-01

    Full Text Available Abstract Background The pathological hallmarks of Parkinson's disease (PD include the presence of alpha-synuclein (α-syn rich Lewy bodies and neurites and the loss of dopaminergic (DA neurons of the substantia nigra (SN. Animal models of PD based on viral vector-mediated over-expression of α-syn have been developed and show evidence of DA toxicity to varying degrees depending on the type of virus used, its concentration, and the serotype of vector employed. To date these models have been variable, difficult to reproduce, and slow in their evolution to achieve a desired phenotype, hindering their use as a model for testing novel therapeutics. To address these issues we have taken a novel vector in this context, that can be prepared in high titer and which possesses an ability to produce neuronally-directed expression, with expression dynamics optimised to provide a rapid rise in gene product expression. Thus, in the current study, we have used a high titer chimeric AAV1/2 vector, to express human A53T α-syn, an empty vector control (EV, or green fluorescent protein (GFP, the latter to control for the possibility that high levels of protein in themselves might contribute to damage. Results We show that following a single 2 μl injection into the rat SN there is near complete coverage of the structure and expression of A53T α-syn or GFP appears throughout the striatum. Within 3 weeks of SN delivery of their respective vectors, aggregations of insoluble α-syn were observed in SN DA neurons. The numbers of DA neurons in the SN were significantly reduced by expression of A53T α-syn (52%, and to a lesser extent by GFP (24%, compared to EV controls (both P P Conclusions In the current implementation of the model, we recapitulate the primary pathological hallmarks of PD, although a proportion of the SN damage may relate to general protein overload and may not be specific for A53T α-syn. Future studies will thus be required to optimise the dose of

  17. Expression and characterization of a new valosin-containing protein from silkworm

    Institute of Scientific and Technical Information of China (English)

    Ping Chen; Ruo-Ran Wang; Zhen Peng; Qiong Liu; Jia-Zuan Ni

    2012-01-01

    Valosin-containing protein (VCP) is a type-Ⅱ adenosine triphosphatase (ATPase) wih extensive biological function in organisms.Silkworm is the second insect model for genetic studies and a bioreactor for proteinaceous drugs and biomaterials.In this paper,a new VCP-like gene was amplified from the fat body of silkworm following genome prediction and spliced expressed sequence tag sequences,using both reverse transcription polymerase chain reaction (RT-PCR) and 3′-RACE (rapid amplification of complementary DNA ends) methods.Bioinformatical analysis showed that the translated amino acid scqucnce containcd a highly conserved domain of VCPs similar to that of many insects.This domain consists of the conserved structure motifs of the ATP binding site and the catalytical center,which is closely related to the insect VCPs in a phylogenetic tree.The silkworm VCP-like gene was successfully inserted into the plasmid and transformed into Escherichia coli cells to express VCP-like protein with ATPase activity.The expression of silkworm VCP-like protein was also confirmed by Western blotting and mass spectrometric analyses.Distribution of the VCP-like gene in various tissues of the silkworm was also studied by real-time PCR.Results showed that the messenger RNA (mRNA) of VCP-like protein is widely expressed in fat body,reproductive organs (testis or ovary),silk gland,head,Malpighian tubule,epidermis and midgut.Among them,fat body has the highest mRNA expression level of the VCP-like gene,while the midgut has the lowest expression level.This study provides groundwork for further study on the structure and function of the new VCP-like protein.

  18. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    Science.gov (United States)

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.

  19. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    Full Text Available Molecular dynamics (MD simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a "Motion Tree", to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory.

  20. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression

    Institute of Scientific and Technical Information of China (English)

    Takeo Nakanishi; Douglas D. Ross

    2012-01-01

    Breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2) is an ATP-binding cassette (ABC) transporter identified as a molecular cause of multidrug resistance (MDR) in diverse cancer cells.BCRP physiologically functions as a part of a self-defense mechanism for the organism; it enhances elimination of toxic xenobiotic substances and harmful agents in the gut and biliary tract,as well as through the blood-brain,placental,and possibly blood-testis barriers.BCRP recognizes and transports numerous anticancer drugs including conventional chemotherapeutic and targeted small therapeutic molecules relatively new in clinical use.Thus,BCRP expression in cancer cells directly causes MDR by active efflux of anticancer drugs.Because BCRP is also known to be a stem cell marker,its expression in cancer cells could be a manifestation of metabolic and signaling pathways that confer multiple mechanisms of drug resistance,self-renewal (stemness),and invasiveness (aggressiveness),and thereby impart a poor prognosis.Therefore,blocking BCRP-mediated active efflux may provide a therapeutic benefit for cancers.Delineating the precise molecular mechanisms for BCRP gene expression may lead to identification of a novel molecular target to modulate BCRP-mediated MDR.Current evidence suggests that BCRP gene transcription is regulated by a number of trans-acting elements including hypoxia inducible factor 1α, estrogen receptor, and peroxisome proliferator-activated receptor.Furthermore,alternative promoter usage,demethylation of the BCRP promoter,and histone modificationare likely associated with drug-induced BCRP overexpression in cancer cells.Finally,PI3K/AKT signaling may play a critical role in modulating BCRP function under a variety of conditions.These biological events seem involved in a complicated manner.Untangling the events would be an essential first step to developing a method to modulate BCRP function to aid patients with cancer.This review will