WorldWideScience

Sample records for atp sensitive potassium

  1. Differential effects of sulfonylurea derivatives on vascular ATP-sensitive potassium channels.

    NARCIS (Netherlands)

    Engbersen, R.H.G.; Masereeuw, R.; Gestel, M.A. van; Siero, H.L.M.; Moons, M.M.; Smits, P.; Russel, F.G.M.

    2012-01-01

    Sulfonylurea drugs exert their insulinotropic action by inhibiting ATP-sensitive potassium channels in the pancreas. However, these channels are also expressed in myocardial and vascular smooth muscle, implicating possible detrimental cardiovascular effects. Aim of the present study was to investiga

  2. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect.

    Science.gov (United States)

    Slocinska, Malgorzata; Lubawy, Jan; Jarmuszkiewicz, Wieslawa; Rosinski, Grzegorz

    2013-11-01

    In the present study, we describe the existence of mitochondrial ATP-dependent K(+) channel (mitoKATP) in two different insect tissues, fat body and muscle of cockroach Gromphadorhina coquereliana. We found that pharmacological substances known to modulate potassium channel activity influenced mitochondrial resting respiration. In isolated mitochondria oxygen consumption increased by about 13% in the presence of potassium channel openers (KCOs) such as diazoxide and pinacidil. The opening of mitoKATP was reversed by glibenclamide (potassium channel blocker) and 1 mM ATP. Immunological studies with antibodies raised against the Kir6.1 and SUR1 subunits of the mammalian ATP-sensitive potassium channel, indicated the existence of mitoKATP in insect mitochondria. MitoKATP activation by KCOs resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of mitochondrial ATP-sensitive potassium channel in insects.

  3. Development of New Openers of ATP-Sensitive Potassium Channels of the Cell Membranes

    Directory of Open Access Journals (Sweden)

    Strutynskyi, R.B.

    2016-07-01

    Full Text Available Two innovative libraries (413 cyclosulfamides and 709 orthopyridine sulfamides of potential new openers of ATP-sensitive potassium channels of cell membranes were developed. It is shown experimentally that at least ten new original compounds have properties of pharmacological openers of the channels. Seven compounds, namely Z851154982, Z56762024, Z1269122570, Z31153162, Z45679561, Z756371174 and Z649723638, open channels of both types — sarcoplasmic as well as mitochondrial membranes: Simultaneously, Z734043408 compound is a potent activator of aforementioned channels of sarcolemmal membrane only. Z31197374 and Z666664306 compounds show the affinity onlyto КATP-channels of mitochondrial type. The results of the work can be used by pharmaceutical companies and scientific research institutes.

  4. Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Hong-shuo SUN; Zhong-ping FENG

    2013-01-01

    ATP-sensitive potassium (KATP) channels are weak,inward rectifiers that couple metabolic status to cell membrane electrical activity,thus modulating many cellular functions.An increase in the ADP/ATP ratio opens KATP channels,leading to membrane hyperpolarization.KATP channels are ubiquitously expressed in neurons located in different regions of the brain,including the hippocampus and cortex.Brief hypoxia triggers membrane hyperpolarization in these central neurons.In vivo animal studies confirmed that knocking out the Kir6.2 subunit of the KATP channels increases ischemic infarction,and overexpression of the Kir6.2 subunit reduces neuronal injury from ischemic insults.These findings provide the basis for a practical strategy whereby activation of endogenous KATP channels reduces cellular damage resulting from cerebral ischemic stroke.KATP channel modulators may prove to be clinically useful as part of a combination therapy for stroke management in the future.

  5. Altered ATP-sensitive potassium channels may underscore obesity-triggered increase in blood pressure

    Institute of Scientific and Technical Information of China (English)

    Li-hong FAN; Hong-yan TIAN; Ai-qun MA; Zhi HU; Jian-hua HUO; Yong-xiao CAO

    2008-01-01

    Aim:To determine whether ATP-sensitive potassium channels are altered in VSMC from arotas and mesenteric arteries of obese rat,and their association with obesity-triggered increase in blood pressure.Methods:Obesity was induced by 24 weeks of high-fat diet feeding in male Sprague-Dawley rats.Control rats were fed with standard laboratory rat chow.Blood pressure and body weight of these rats were measured every 4 weeks.At the end of 24 weeks,KATP channel-mediated relaxation responses in the aortas and mesenteric arteries,KATP channel current,and gene expression were examined,respectively.Results:Blood pres-sure and body weight were increased in rats fed with high-fat diet.KATP channel-mediated relaxation responses,currents,and KATP expression in VSMC of both aortas and mesenteric arteries were inhibited in these rats.Conclusion:Altered ATP-sensitive potassium channels in obese rats may underscore obesity-triggered increase in blood pressure.

  6. Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Nirmal; Jindal, Seema

    2007-12-01

    The present study has been designed to investigate the effect of piracetam on morphine/ buprenorphine-induced antinociception in rats and effect of piracetam on morphine or minoxidil induced relaxation in KCl-precontracted isolated rat aortic ring preparation. Nociceptive threshold was measured by the tail flick test in rats. The cumulative dose responses of morphine or minoxidil were recorded in KCl-precontracted isolated rat aortic ring preparation. Piracetam attenuated buprenorphine-induced antinociception in rats. Piracetam significantly reduced the morphine and minoxidil induced relaxation in KCl precontracted isolated rat aortic ring preparation suggesting that piracetam interferes with opioid receptor and ATP-sensitive potassium channel (KATP) opener mediated responses in vitro. Thus, it may be suggested that piracetam attenuates opioid effects by an opioid receptor-KATP channel linked mechanism.

  7. The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes

    Directory of Open Access Journals (Sweden)

    Veronica Lang

    2010-11-01

    Full Text Available Veronica Lang, Peter E LightDepartment of Pharmacology and Alberta Diabetes Institute, Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, CanadaAbstract: Neonatal diabetes mellitus (NDM is a monogenic disorder caused by mutations in genes involved in regulation of insulin secretion from pancreatic β-cells. Mutations in the KCNJ11 and ABCC8 genes, encoding the adenosine triphosphate (ATP-sensitive potassium (KATP channel Kir6.2 and SUR1 subunits, respectively, are found in ~50% of NDM patients. In the pancreatic β-cell, KATP channel activity couples glucose metabolism to insulin secretion via cellular excitability and mutations in either KCNJ11 or ABCC8 genes alter KATP channel activity, leading to faulty insulin secretion. Inactivation mutations decrease KATP channel activity and stimulate excessive insulin secretion, leading to hyperinsulinism of infancy. In direct contrast, activation mutations increase KATP channel activity, resulting in impaired insulin secretion, NDM, and in severe cases, developmental delay and epilepsy. Many NDM patients with KCNJ11 and ABCC8 mutations can be successfully treated with sulfonylureas (SUs that inhibit the KATP channel, thus replacing the need for daily insulin injections. There is also strong evidence indicating that SU therapy ameliorates some of the neurological defects observed in patients with more severe forms of NDM. This review focuses on the molecular and cellular mechanisms of mutations in the KATP channel that underlie NDM. SU pharmacogenomics is also discussed with respect to evaluating whether patients with certain KATP channel activation mutations can be successfully switched to SU therapy.Keywords: neonatal diabetes, KCNJ11, ABCC8, ATP-sensitive potassium channels

  8. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels

    Directory of Open Access Journals (Sweden)

    Gregory M. Martin

    2013-12-01

    Full Text Available ATP-sensitive potassium (KATP channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationship and therapeutic implications from these studies are discussed.

  9. Inhibition of mitochondrial permeability transition pore contributes to the neuroprotection induced by activation of mitochondrial ATP-sensitive potassium channel

    Institute of Scientific and Technical Information of China (English)

    Li-pingWU; FangSHEN; QiangXIA

    2004-01-01

    AIM: To investigate whether the neuroprotection via activating mitochondrial ATP-sensitive potassium channel (mitoKTP) is mediated by the inhibition of mitochondrial permeability transition pore (MPTP). METHODS: Adult male Sprague-Dawleyrats were undergoing 90 min of middle cerebral artery occlusion(MCAO) by introducing a nylon monofilament through the external

  10. Sarcolemmal ATP-sensitive potassium channels modulate skeletal muscle function under low-intensity workloads.

    Science.gov (United States)

    Zhu, Zhiyong; Sierra, Ana; Burnett, Colin M-L; Chen, Biyi; Subbotina, Ekaterina; Koganti, Siva Rama Krishna; Gao, Zhan; Wu, Yuejin; Anderson, Mark E; Song, Long-Sheng; Goldhamer, David J; Coetzee, William A; Hodgson-Zingman, Denice M; Zingman, Leonid V

    2014-01-01

    ATP-sensitive potassium (KATP) channels have the unique ability to adjust membrane excitability and functions in accordance with the metabolic status of the cell. Skeletal muscles are primary sites of activity-related energy consumption and have KATP channels expressed in very high density. Previously, we demonstrated that transgenic mice with skeletal muscle-specific disruption of KATP channel function consume more energy than wild-type littermates. However, how KATP channel activation modulates skeletal muscle resting and action potentials under physiological conditions, particularly low-intensity workloads, and how this can be translated to muscle energy expenditure are yet to be determined. Here, we developed a technique that allows evaluation of skeletal muscle excitability in situ, with minimal disruption of the physiological environment. Isometric twitching of the tibialis anterior muscle at 1 Hz was used as a model of low-intensity physical activity in mice with normal and genetically disrupted KATP channel function. This workload was sufficient to induce KATP channel opening, resulting in membrane hyperpolarization as well as reduction in action potential overshoot and duration. Loss of KATP channel function resulted in increased calcium release and aggravated activity-induced heat production. Thus, this study identifies low-intensity workload as a trigger for opening skeletal muscle KATP channels and establishes that this coupling is important for regulation of myocyte function and thermogenesis. These mechanisms may provide a foundation for novel strategies to combat metabolic derangements when energy conservation or dissipation is required.

  11. ATP-sensitive inwardly rectifying potassium channel modulators alter cardiac function in honey bees.

    Science.gov (United States)

    O'Neal, Scott T; Swale, Daniel R; Bloomquist, Jeffrey R; Anderson, Troy D

    2017-05-01

    ATP-sensitive inwardly rectifying potassium (KATP) channels couple cellular metabolism to the membrane potential of the cell and play an important role in a variety of tissue types, including the insect dorsal vessel, making them a subject of interest not only for understanding invertebrate physiology, but also as a potential target for novel insecticides. Most of what is known about these ion channels is the result of work performed in mammalian systems, with insect studies being limited to only a few species and physiological systems. The goal of this study was to investigate the role that KATP channels play in regulating cardiac function in a model social insect, the honey bee (Apis mellifera), by examining the effects that modulators of these ion channels have on heart rate. Heart rate decreased in a concentration-dependent manner, relative to controls, with the application of the KATP channel antagonist tolbutamide and KATP channel blockers barium and magnesium, whereas heart rate increased with the application of a low concentration of the KATP channel agonist pinacidil, but decreased at higher concentrations. Furthermore, pretreatment with barium magnified the effects of tolbutamide treatment and eliminated the effects of pinacidil treatment at select concentrations. The data presented here confirm a role for KATP channels in the regulation of honey bee dorsal vessel contractions and provide insight into the underlying physiology that governs the regulation of bee cardiac function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mepivacaine attenuates vasodilation induced by ATP-sensitive potassium channels in rat aorta.

    Science.gov (United States)

    Baik, Jiseok; Ok, Seong-Ho; Kim, Eun-Jin; Kang, Dawon; Hong, Jeong-Min; Shin, Il-Woo; Lee, Heon Keun; Chung, Young-Kyun; Cho, Youngil; Lee, Soo Hee; Kang, Sebin; Sohn, Ju-Tae

    2016-07-05

    The goal of this in vitro study was to investigate the effect of mepivacaine on vasodilation induced by the ATP-sensitive potassium (KATP) channel opener levcromakalim in isolated endothelium-denuded rat aortas. The effects of mepivacaine and the KATP channel inhibitor glibenclamide, alone or in combination, on levcromakalim-induced vasodilation were assessed in the isolated aortas. The effects of mepivacaine or combined treatment with a protein kinase C (PKC) inhibitor, GF109203X, and mepivacaine on this vasodilation were also investigated. Levcromakalim concentration-response curves were generated for isolated aortas precontracted with phenylephrine or a PKC activator, phorbol 12,13-dibutyrate (PDBu). Further, the effects of mepivacaine and glibenclamide on levcromakalim-induced hyperpolarization were assessed in rat aortic vascular smooth muscle cells. Mepivacaine attenuated levcromakalim-induced vasodilation, whereas it had no effect on this vasodilation in isolated aortas pretreated with glibenclamide. Combined treatment with GF109203X and mepivacaine enhanced levcromakalim-induced vasodilation compared with pretreatment with mepivacaine alone. This vasodilation was attenuated in aortas precontracted with PDBu compared with those precontracted with phenylephrine. Mepivacaine and glibenclamide, alone or in combination, attenuated levcromakalim-induced membrane hyperpolarization. Taken together, these results suggest that mepivacaine attenuates vasodilation induced by KATP channels, which appears to be partly mediated by PKC.

  13. Increase of ATP-sensitive potassium (KATP channels in the heart of type-1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Chen Zhih-Cherng

    2012-01-01

    Full Text Available Abstract Background An impairment of cardiovascular function in streptozotocin (STZ-diabetic rats has been mentioned within 5 days-to-3 months of induction. ATP-sensitive potassium (KATP channels are expressed on cardiac sarcolemmal membranes. It is highly responsive to metabolic fluctuations and can have effects on cardiac contractility. The present study attempted to clarify the changes of cardiac KATP channels in diabetic disorders. Methods Streptozotocin-induced diabetic rats and neonatal rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr were used to examine the effect of hyperglycemia on cardiac function and the expression of KATP channels. KATP channels expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of KATP channels by Western blot and Northern blot analysis. Results The result shows diazoxide produced a marked reduction of heart rate in control group. Furthermore, the methods of Northern blotting and Western blotting were employed to identify the gene expression of KATP channel. Two subunits of cardiac KATP channel (SUR2A and kir 6.2 were purchased as indicators and showed significantly decreased in both diabetic rats and high glucose treated rat cardiac myocytes. Correction of hyperglycemia by insulin or phlorizin restored the gene expression of cardiac KATP in these diabetic rats. Conclusions Both mRNA and protein expression of cardiac KATP channels are decreased in diabetic rats induced by STZ for 8 weeks. This phenomenon leads to result in desensitization of some KATP channel drugs.

  14. Localization and function of ATP-sensitive potassium channels in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva

    2003-01-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique...

  15. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Gao, Zhan, E-mail: zhan-gao@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Koganti, Siva Rama Krishna, E-mail: sivaramakrishna.koganti@ttuhc.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Coetzee, William A., E-mail: william.coetzee@nyumc.org [Department of Pediatrics, NYU School of Medicine, New York, NY 10016 (United States); Goldhamer, David J., E-mail: david.goldhamer@uconn.edu [Center for Regenerative Biology, Department of Molecular and Cell Biology, Advanced Technology Laboratory, University of Connecticut, 1392 Storrs Road Unit 4243, Storrs, Connecticut 06269 (United States); Hodgson-Zingman, Denice M., E-mail: denice-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Zingman, Leonid V., E-mail: leonid-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Veterans Affairs, Medical Center, Iowa City, IA 52242 (United States)

    2016-02-26

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal muscle.

  16. Mouth breathing increases the pentylenetetrazole-induced seizure threshold in mice: a role for ATP-sensitive potassium channels.

    Science.gov (United States)

    Niaki, Seyed Esfandiar Akhavan; Shafaroodi, Hamed; Ghasemi, Mehdi; Shakiba, Bijan; Fakhimi, Ali; Dehpour, Ahamd Reza

    2008-08-01

    Nasal obstruction and consequent mouth breathing have been shown to change the acid-base balance, producing respiratory acidosis. Additionally, there exists a large body of evidence maintaining that acidosis affects the activity of ATP-sensitive potassium (K(ATP)) channels, which play a crucial role in the function of the central nervous system (CNS), for example, in modulating seizure threshold. Thus, in the study described here, we examined whether mouth breathing, induced by surgical ligation of nostrils, could affect the seizure threshold induced by pentylenetetrazole in male NMRI mice. Using the selective K(ATP) channel opener (diazoxide) and blocker (glibenclamide), we also evaluated the possible role of K(ATP) channels in this process. Our data revealed that seizure threshold was increased 6 to 72 hours after nasal obstruction, reaching a peak 48 hours afterward, compared with either control or sham-operated mice (Pmouth breathing, which could result in respiratory acidosis, increases seizure threshold in mice and K(ATP) channels may play a role in this effect.

  17. Phosphorylation of the mitochondrial ATP-sensitive potassium channel occurs independently of PKCε in turtle brain.

    Science.gov (United States)

    Hawrysh, Peter John; Miles, Ashley Rebecca; Buck, Leslie Thomas

    2016-10-01

    Neurons from the western painted turtle (Chrysemys picta bellii) are remarkably resilient to anoxia. This is partly due to a reduction in the permeability of excitatory glutamatergic ion channels, initiated by mitochondrial ATP-sensitive K(+) (mK(+)ATP) channel activation. The aim of this study was to determine if: 1) PKCε, a kinase associated with hypoxic stress tolerance, is more highly expressed in turtle brain than the anoxia-intolerant rat brain; 2) PKCε translocates to the mitochondrial membrane during anoxia; 3) PKCε modulates mK(+)ATP channels at the Thr-224 phosphorylation site on the Kir6.2 subunit; and 4) Thr-224 phosphorylation sensitises mK(+)ATP channels to anoxia. Soluble and mitochondrial-rich particulate fractions of turtle and rat cerebral cortex were isolated and PKCε expression was determined by Western blot, which revealed that turtle cortical PKCε expression was half that of the rat. Following the transition to anoxia, no changes in PKCε expression in either the soluble or particulate fraction of the turtle cortex were observed. Furthermore, incubation of tissue with tat-conjugated activator or inhibitor peptides had no effect on the amount of PKCε in either fraction. However, we observed a 2-fold increase in Thr-224 phosphorylation following 1h of anoxia. The increased Thr-224 phosphorylation was blocked by the general kinase inhibitor staurosporine but this did not affect the latency or magnitude of mK(+)ATP channel-mediated mitochondrial depolarization following anoxia, as indicated by rhodamine-123. We conclude that PKCε does not play a role in the onset of mitochondrial depolarization and therefore glutamatergic channel arrest in turtle cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Actions of hydrogen sulfide and ATP-sensitive potassium channels on colonic hypermotility in a rat model of chronic stress.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    Full Text Available OBJECTIVE: To investigate the potential role of hydrogen sulphide (H(2S and ATP-sensitive potassium (K(ATP channels in chronic stress-induced colonic hypermotility. METHODS: Male Wistar rats were submitted daily to 1 h of water avoidance stress (WAS or sham WAS (SWAS for 10 consecutive days. Organ bath recordings, H(2S production, immunohistochemistry and western blotting were performed on rat colonic samples to investigate the role of endogenous H(2S in repeated WAS-induced hypermotility. Organ bath recordings and western blotting were used to detect the role of K(ATP channels in repeated WAS. RESULTS: Repeated WAS increased the number of fecal pellets per hour and the area under the curve of the spontaneous contractions of colonic strips, and decreased the endogenous production of H(2S and the expression of H(2S-producing enzymes in the colon devoid of mucosa and submucosa. Inhibitors of H(2S-producing enzymes increased the contractile activity of colonic strips in the SWAS rats. NaHS concentration-dependently inhibited the spontaneous contractions of the strips and the NaHS IC(50 for the WAS rats was significantly lower than that for the SWAS rats. The inhibitory effect of NaHS was significantly reduced by glybenclamide. Repeated WAS treatment resulted in up-regulation of Kir6.1 and SUR2B of K(ATP channels in the colon devoid of mucosa and submucosa. CONCLUSION: The colonic hypermotility induced by repeated WAS may be associated with the decreased production of endogenous H(2S. The increased expression of the subunits of K(ATP channels in colonic smooth muscle cells may be a defensive response to repeated WAS. H(2S donor may have potential clinical utility in treating chronic stress-induced colonic hypermotility.

  19. Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation

    Science.gov (United States)

    Zingman, Leonid V.; Zhu, Zhiyong; Sierra, Ana; Stepniak, Elizabeth; Burnett, Colin M-L.; Maksymov, Gennadiy; Anderson, Mark E.; Coetzee, William A.; Hodgson-Zingman, Denice M.

    2011-01-01

    Physical activity is one of the most important determinants of cardiac function. The ability of the heart to increase delivery of oxygen and metabolic fuels relies on an array of adaptive responses necessary to match bodily demand while avoiding exhaustion of cardiac resources. The ATP-sensitive potassium (KATP) channel has the unique ability to adjust cardiac membrane excitability in accordance with ATP and ADP levels, and up-regulation of its expression that occurs in response to exercise could represent a critical element of this adaption. However, the mechanism by which KATP channel expression changes result in a beneficial effect on cardiac excitability and function remains to be established. Here, we demonstrate that an exercise-induced rise in KATP channel expression enhanced the rate and magnitude of action potential shortening in response to heart rate acceleration. This adaptation in membrane excitability promoted significant reduction in cardiac energy consumption under escalating workloads. Genetic disruption of normal KATP channel pore function abolished the exercise-related changes in action potential duration adjustment and caused increased cardiac energy consumption. Thus, an expression-driven enhancement in the KATP channel-dependent membrane response to alterations in cardiac workload represents a previously unrecognized mechanism for adaptation to physical activity and a potential target for cardioprotection. PMID:21439969

  20. Gap-junction coupling and ATP-sensitive potassium channels in human β -cell clusters: Effects on emergent dynamics

    Science.gov (United States)

    Loppini, A.; Pedersen, M. G.; Braun, M.; Filippi, S.

    2017-09-01

    The importance of gap-junction coupling between β cells in pancreatic islets is well established in mouse. Such ultrastructural connections synchronize cellular activity, confine biological heterogeneity, and enhance insulin pulsatility. Dysfunction of coupling has been associated with diabetes and altered β -cell function. However, the role of gap junctions between human β cells is still largely unexplored. By using patch-clamp recordings of β cells from human donors, we previously estimated electrical properties of these channels by mathematical modeling of pairs of human β cells. In this work we revise our estimate by modeling triplet configurations and larger heterogeneous clusters. We find that a coupling conductance in the range 0.005 -0.020 nS/pF can reproduce experiments in almost all the simulated arrangements. We finally explore the consequence of gap-junction coupling of this magnitude between β cells with mutant variants of the ATP-sensitive potassium channels involved in some metabolic disorders and diabetic conditions, translating studies performed on rodents to the human case. Our results are finally discussed from the perspective of therapeutic strategies. In summary, modeling of more realistic clusters with more than two β cells slightly lowers our previous estimate of gap-junction conductance and gives rise to patterns that more closely resemble experimental traces.

  1. Hypoxic pulmonary hypertension and novel ATP-sensitive potassium channel opener: the new hope on the horizon

    Institute of Scientific and Technical Information of China (English)

    Yu JIN; Wei-ping XIE; Hong WANG

    2012-01-01

    Hypoxic pulmonary hypertension (HPH) is a syndrome characterized by the increase of pulmonary vascular tone and the structural remodeling of peripheral pulmonary arteries.The aim of specific therapies for hypoxic pulmonary hypertension is to reduce pulmonary vascular resistance,reverse pulmonary vascular remodeling,and thereby improving right ventricular function.Iptakalim,a lipophilic para-amino compound with a low molecular weight,has been demonstrated to be a new selective ATP-sensitive potassium (KATP) channel opener via pharmacological,electrophysiological,biochemical studies,and receptor binding tests.In hypoxia-induced animal models,iptakalim decreases the elevated mean pressure in pulmonary arteries,and attenuates remodeling in the right ventricle,pulmonary arteries and airways.Furthermore,iptakalim has selective antihypertensive effects,selective vasorelaxation effects on smaller arteries,and protective effects on endothelial cells,but no effects on the central nervous,respiratory,digestive or endocrine systems at therapeutic dose.Our previous studies demonstrated that iptakalim inhibited the effects of endothelin-1,reduced the intracellular calcium concentration and inhibited the proliferation of pulmonary artery smooth muscle cells.Since iptakalim has been shown safe and effective in both experimental animal models and phase I clinical trials,it can be a potential candidate of HPH in the future.

  2. Effect of Gαq/11 Protein and ATP-sensitive Potassium Channels on Ischemic Preconditioning in Rat Hearts

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objectives To investigate the effect of Gαq/11 signaling pathway and ATP-sensitive potassium channel ( KATP channel ) on ischemic preconditioning (IPC) protection in rat hearts.Methods Two series of experiments were performed in Wistar rat hearts. In the first series of experiment,ischemic preconditioning was induced by left anterior descending occlusion (three, 5 min episodes separated by 5 min of reperfusion), ischemia-reperfusion injury was induced by 30 min coronary artery occlusion followed by 90 min reperfusion. Hemodynamics,infarct size and scores of ventricular arrhythmias were measured. The expression of Gαq/11 protein in the heart was measured by Western blot analysis in the second series. Results Ischemic preconditioning rats showed decreased infarct size and scores of ventricular arrhythmia vs non-IP control rats. The effect of IPC was significantly attenuated by glibenclamide (1 mg/kg, ip), a nonselective KATP channel inhibitor. IPC caused a significant increase in the expression of Gαq/11 protein. Conclusions Activations of Gαq/11 signal pathway and KATP channel played significant roles in the classical cardioprotection of ischemic preconditioning rat heart and might be an important mechanism of signal transduction pathway during the ischemic preconditioning.

  3. Role of ATP-sensitive potassium channels in modulating nociception in rat model of bone cancer pain.

    Science.gov (United States)

    Xia, Hui; Zhang, Dengwen; Yang, Shijie; Wang, Yu; Xu, Lin; Wu, Jinjing; Ren, Jing; Yao, Wenlong; Fan, Longchang; Zhang, Chuanhan; Tian, Yuke; Pan, Hui-Lin; Wang, Xueren

    2014-03-20

    Bone cancer pain is a major clinical problem and remains difficult to treat. ATP-sensitive potassium (KATP) channels may be involved in regulating nociceptive transmission at the spinal cord level. We determined the role of spinal KATP channels in the control of mechanical hypersensitivity in a rat model of bone cancer pain. The rat model of bone cancer pain was induced by implanting rat mammary gland carcinoma cells (Walker256) into the tibias. KATP modulators (pinacidil and glibenclamide) or the specific Kir6.2-siRNA were injected via an intrathecal catheter. The mechanical withdrawal threshold of rats was tested using von Frey filaments. The Kir6.2 mRNA and protein levels were measured by quantitative PCR and western blots, respectively. Intrathecal injection of pinacidil, a KATP channel opener, significantly increased the tactile withdrawal threshold of cancer cell-injected rats in a dose-dependent manner. In contrast, intrathecal delivery of glibenclamide, a KATP channel blocker, or the specific Kir6.2-siRNA significantly reduced the tactile withdrawal threshold of cancer cell-injected rats. The mRNA and protein levels of Kir6.2 in the spinal cord of cancer cell-injected rats were significantly lower than those in control rats. Our findings suggest that the KATP channel expression level in the spinal cord is reduced in bone cancer pain. Activation of KATP channels at the spinal level reduces pain hypersensitivity associated with bone cancer pain.

  4. Sevoflurane postconditioning affects post-ischaemic myocardial mitochondrial ATP-sensitive potassium channel function and apoptosis in ageing rats.

    Science.gov (United States)

    Jiang, Jing-Jing; Li, Chao; Li, Heng; Zhang, Lei; Lin, Zong-Hang; Fu, Bao-Jun; Zeng, Yin-Ming

    2016-05-01

    This study investigated the effect of sevoflurane postconditioning on post-ischaemic cardiac function, infarct size, myocardial mitochondrial ATP-sensitive potassium channel (mitoKATP) function and apoptosis in ageing rats to determine the possible mechanism underlying the cardioprotective property of sevoflurane. Ageing rat hearts were isolated and attached to a Langendorff apparatus. The hearts were then exposed or not to sevoflurane postconditioning in the presence or absence of 100 μmol/L 5-hydroxydecanoate (5-HD), a selective mitoKATP inhibitor. The infarct size was measured by triphenyltetrazolium chloride (TTC) staining. Mitochondrial morphology was observed by electron microscopy and scored using FlaMeng semiquantitative analysis. In addition, the expression levels of Bax, Bcl-2, and cytochrome-C (Cyt-C) were determined by Western blot analysis at the end of reperfusion. Sevoflurane postconditioning increased coronary flow, improved functional recovery, reduced Bax/Bcl-2 and Cyt-C phosphorylation levels, and decreased mitochondrial lesion severity and the extent of apoptosis. The protective effects of sevoflurane postconditioning were prevented by the mitoKATP inhibitor 5-HD. Sevoflurane postconditioning significantly protected the function of ageing hearts that were subjected to ischaemia and reperfusion, and these protective effects were mediated by mitoKATP opening. © 2016 John Wiley & Sons Australia, Ltd.

  5. Activation of Mitochondrial Uncoupling Protein 4 and ATP-Sensitive Potassium Channel Cumulatively Decreases Superoxide Production in Insect Mitochondria.

    Science.gov (United States)

    Slocińska, Malgorzata; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa

    2016-01-01

    It has been evidenced that mitochondrial uncoupling protein 4 (UCP4) and ATP-regulated potassium channel (mKATP channel) of insect Gromphadorhina coqereliana mitochondria decrease superoxide anion production. We elucidated whether the two energy-dissipating systems work together on a modulation of superoxide level in cockroach mitochondria. Our data show that the simultaneous activation of UCP4 by palmitic acid and mKATP channel by pinacidil revealed a cumulative effect on weakening mitochondrial superoxide formation. The inhibition of UCP4 by GTP (and/or ATP) and mKATP channel by ATP elevated superoxide production. These results suggest a functional cooperation of both energy-dissipating systems in protection against oxidative stress in insects.

  6. Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation

    Directory of Open Access Journals (Sweden)

    Kwok Wai-Meng

    2009-03-01

    Full Text Available Abstract Background ATP-sensitive potassium (KATP channels in neurons regulate excitability, neurotransmitter release and mediate protection from cell-death. Furthermore, activation of KATP channels is suppressed in DRG neurons after painful-like nerve injury. NO-dependent mechanisms modulate both KATP channels and participate in the pathophysiology and pharmacology of neuropathic pain. Therefore, we investigated NO modulation of KATP channels in control and axotomized DRG neurons. Results Cell-attached and cell-free recordings of KATP currents in large DRG neurons from control rats (sham surgery, SS revealed activation of KATP channels by NO exogenously released by the NO donor SNAP, through decreased sensitivity to [ATP]i. This NO-induced KATP channel activation was not altered in ganglia from animals that demonstrated sustained hyperalgesia-type response to nociceptive stimulation following spinal nerve ligation. However, baseline opening of KATP channels and their activation induced by metabolic inhibition was suppressed by axotomy. Failure to block the NO-mediated amplification of KATP currents with specific inhibitors of sGC and PKG indicated that the classical sGC/cGMP/PKG signaling pathway was not involved in the activation by SNAP. NO-induced activation of KATP channels remained intact in cell-free patches, was reversed by DTT, a thiol-reducing agent, and prevented by NEM, a thiol-alkylating agent. Other findings indicated that the mechanisms by which NO activates KATP channels involve direct S-nitrosylation of cysteine residues in the SUR1 subunit. Specifically, current through recombinant wild-type SUR1/Kir6.2 channels expressed in COS7 cells was activated by NO, but channels formed only from truncated isoform Kir6.2 subunits without SUR1 subunits were insensitive to NO. Further, mutagenesis of SUR1 indicated that NO-induced KATP channel activation involves interaction of NO with residues in the NBD1 of the SUR1 subunit. Conclusion NO

  7. SENSITIVE EFFECTS OF POTASSIUM AND CALCIUM CHANNEL BLOCKING AND ATP-SENSITIVE POTASSIUM CHANNEL ACTIVATORS ON SEMINAL VESICLE SMOOTH MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    H SADRAEI

    2000-12-01

    Full Text Available Background. Seminal vesicle smooth muscle contraction is mediated through sympathetic and parasympathetic neurons activity. Although seminal vesicle plays an important role in male fertility, but little attention is given to mechanism involved in contraction of this organ.
    Methods. In this study effects of drugs which activate ATP - sensitive K channels and blockers of K and Ca channels were examined on contraction of guinea - pig isolated seminal vesicle due to electrical filled stimulation (EFS, noradrenaline, carbachol and KCI.
    Results. The K channel blocker tetraethyl ammonium potentate the EFS responses at all frequencies, while, the ATP - sensitive K channel inhibitor glibenclamide and the K channel opener levcromakalim, diazoxide, minoxidil and Ca channel blocker nifedipine all had relaxant effect on guinea - pig seminal vesicle.
    Discussion. This study indicate that activities of K and Ca channels is important in regulation of seminal vesicle contraction due to nerve stimulation, noradrenaline or carbachol.

  8. Mitochondrial ATP-sensitive potassium channel activity and hypoxic preconditioning are independent of an inwardly rectifying potassium channel subunit in Caenorhabditis elegans.

    Science.gov (United States)

    Wojtovich, Andrew P; DiStefano, Peter; Sherman, Teresa; Brookes, Paul S; Nehrke, Keith

    2012-02-17

    Hypoxic preconditioning (HP) is an evolutionarily-conserved mechanism that protects an organism against stress. The mitochondrial ATP-sensitive K(+) channel (mK(ATP)) plays an essential role in the protective signaling, but remains molecularly undefined. Several lines of evidence suggest that mK(ATP) may arise from an inward rectifying K(+) channel (Kir). The genetic model organism Caenorhabditis elegans exhibits HP and displays mK(ATP) activity. Here, we investigate the tissue expression profile of the three C. elegans Kir genes and demonstrate that mutant strains where the irk genes have been deleted either individually or in combination can be protected by HP and exhibit robust mK(ATP) channel activity in purified mitochondria. These data suggest that the mK(ATP) in C. elegans does not arise from a Kir derived channel.

  9. Quantitative autoradiography of the binding sites for ( sup 125 I) iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.; Robertson, D.W. (Eli Lilly and Co., Indianapolis, IN (USA))

    1991-05-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with ({sup 125}I)iodoglyburide (N-(2-((((cyclohexylamino)carbonyl)amino)sulfonyl)ethyl)-5-{sup 125}I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific ({sup 125}I)iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of ({sup 125}I)iodoglyburide binding indicated a broad distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels.

  10. Activation of mitochondrial ATP-sensitive potassium channels delays ischemia-induced cellular uncoupling in rat heart

    Institute of Scientific and Technical Information of China (English)

    Yue-liangSHEN; Ying-yingCHEN; Xun-dongWU; IainCBRUCE; QiangXIA

    2004-01-01

    AIM: To test the hypothesis that cellular uncoupling induced by myocardial ischemia is mediated by activation of mitochondrial ATP-sensitive potassium channels (mitoKATP). METHODS: Rat hearts were perfused on a Langendorff apparatus and subjected to 40-min ischemia followed by 30-min reperfusion (I/R). Changes in cellular coupling were monitored by measuring whole-tissue resistance. RESULTS: (1) In hearts subjected to I/R, the onset of uncoupling started at (13.3± 1.0) min of ischemia; (2) Ischemic preconditioning (IPC) delayed the onset of uncoupling until (22.7±1.3) min. Blocking mitoKATP channels with 5-hydroxydecanoate (5-HD) before the IPC abolishedthe uncoupling delay [(12.6±1.6)min]; (3) Calcium preconditioning (CPC) had the same effect as IPC. And this effect was reversed by blocking the mitoKATP channel again. In the CPC group the onset of uncoupling occurred after (20.6±1.3) min, and this was canceled by 5-HD [(13.6±0.8) min]; (4) In hearts pretreated with the specific mitoKATP channel opener diazoxide before sustained ischemia, the onset was delayed to (18.4±1.4) min; (5) 5-HD canceled the protective effects of diazoxide (12.6±1.0) min; and both the L-type Ca2+ channel inhibitor verapamiland the free radical scavenger N-(2-mercaptopropionyl)glycine, reduced the extended onset time induced by diazoxide[to (13.3±1.8) min and (13.4±2.1) min, respectively]. CONCLUSION: IPC and CPC delay the onset of cellular uncoupling induced by acute ischemia in rat heart, and the underlying mechanism involves activation of the mitoKATP channels.

  11. Sevoflurane Preconditioning Reduces Intestinal Ischemia-Reperfusion Injury: Role of Protein Kinase C and Mitochondrial ATP-Sensitive Potassium Channel.

    Directory of Open Access Journals (Sweden)

    Chuiliang Liu

    Full Text Available Ischemic preconditioning (IPC has been considered to be a potential therapy to reduce ischemia-reperfusion injury (IRI since the 1980s. Our previous study indicated that sevoflurane preconditioning (SPC also reduced intestinal IRI in rats. However, whether the protective effect of SPC is similar to IPC and the mechanisms of SPC are unclear. Thus, we compared the efficacy of SPC and IPC against intestinal IRI and the role of protein kinase C (PKC and mitochondrial ATP-sensitive potassium channel (mKATP in SPC. A rat model of intestinal IRI was used in this study. The superior mesenteric artery (SMA was clamped for 60 min followed by 120 min of reperfusion. Rats with IPC underwent three cycles of SMA occlusion for 5 min and reperfusion for 5 min before intestinal ischemia. Rats with SPC inhaled sevoflurane at 0.5 minimum alveolar concentration (MAC for 30 min before the intestinal ischemic insult. Additionally, the PKC inhibitor Chelerythrine (CHE or mKATP inhibitor 5-Hydroxydecanoic (5-HD was injected intraperitoneally before sevoflurane inhalation. Both SPC and IPC ameliorated intestinal IRI-induced histopathological changes, decreased Chiu's scores, reduced terminal deoxyribonucleotide transferase-mediated dUTP nick end labeling (TUNEL positive cells in the epithelium, and inhibited the expression of malondialdehyde (MDA and tumor necrosis factor-α (TNF-α. These protective effects of SPC were similar to those of IPC. Pretreatment with PKC or mKATP inhibitor abolished SPC-induced protective effects by increasing Chiu's scores, down-regulated the expression of Bcl-2 and activated caspase-3. Our results suggest that pretreatment with 0.5 MAC sevoflurane is as effective as IPC against intestinal IRI. The activation of PKC and mKATP may be involved in the protective mechanisms of SPC.

  12. Metamizol acts as an ATP sensitive potassium channel opener to inhibit the contracting response induced by angiotensin II but not to norepinephrine in rat thoracic aorta smooth muscle.

    Science.gov (United States)

    Valenzuela, Fermín; García-Saisó, Sebastián; Lemini, Cristina; Ramírez-Solares, Rafael; Vidrio, Horacio; Mendoza-Fernández, Víctor

    2005-08-01

    Clinically metamizol (MZ) has been related to alteration on haemodynamic parameters and modifications on blood pressure in humans when administered intravenously. These effects have been observed at MZ therapeutic doses. Experimentally, MZ is able to induce relaxation on several types of vascular smooth muscles and modulates the contraction induced by phenylephrine. However, the mechanism underlying the MZ effects on vascular reactivity is not clear. Potassium channels (K) present on vascular smooth muscle cells closely regulate the vascular reactivity and membrane potential. There are four described types of K in vascular tissue: K voltage sensitive (K(V)), K calcium sensitive (K(Ca)2+), K ATP sensitive (K(ATP) and K inward rectification (K(IR), voltage sensitive). The aim of this work was to investigate MZ effects on angiotensin II (AT II) and noradrenaline (NA) induced contraction and to evaluate the K participation on MZ modulating effect on vascular smooth muscle contraction, using isometric and patch clamp techniques. MZ induces relaxation in a concentration dependent manner. Furthermore, MZ strongly inhibits in a concentration dependent fashion the contraction induced by AT II. However, MZ inhibition on NA induced contraction was moderated compared with that observed on AT II. MZ effects on AT II induced contraction was blocked by glybenclamide (a specific K(ATP) blocker, 3 microM, *p < 0.01). In patch clamp experiments, MZ (3 mM) induces an increase on potassium current (K+) mediated by K(ATP) in similar way as diazoxide (a specific K(ATP) opener, 3 microM). Our results suggest that MZ induces relaxation and inhibits contraction induced by AT II acting as a K(ATP) opener.

  13. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating

    Science.gov (United States)

    Martin, Gregory M; Yoshioka, Craig; Rex, Emily A; Fay, Jonathan F; Xie, Qing; Whorton, Matthew R; Chen, James Z; Shyng, Show-Ling

    2017-01-01

    KATP channels are metabolic sensors that couple cell energetics to membrane excitability. In pancreatic β-cells, channels formed by SUR1 and Kir6.2 regulate insulin secretion and are the targets of antidiabetic sulfonylureas. Here, we used cryo-EM to elucidate structural basis of channel assembly and gating. The structure, determined in the presence of ATP and the sulfonylurea glibenclamide, at ~6 Å resolution reveals a closed Kir6.2 tetrameric core with four peripheral SUR1s each anchored to a Kir6.2 by its N-terminal transmembrane domain (TMD0). Intricate interactions between TMD0, the loop following TMD0, and Kir6.2 near the proposed PIP2 binding site, and where ATP density is observed, suggest SUR1 may contribute to ATP and PIP2 binding to enhance Kir6.2 sensitivity to both. The SUR1-ABC core is found in an unusual inward-facing conformation whereby the two nucleotide binding domains are misaligned along a two-fold symmetry axis, revealing a possible mechanism by which glibenclamide inhibits channel activity. DOI: http://dx.doi.org/10.7554/eLife.24149.001 PMID:28092267

  14. Adenosine activates ATP-sensitive potassium channels in arterial myocytes via A2 receptors and cAMP-dependent protein kinase.

    Science.gov (United States)

    Kleppisch, T; Nelson, M T

    1995-01-01

    The mechanism by which the endogenous vasodilator adenosine causes ATP-sensitive potassium (KATP) channels in arterial smooth muscle to open was investigated by the whole-cell patch-clamp technique. Adenosine induced voltage-independent, potassium-selective currents, which were inhibited by glibenclamide, a blocker of KATP currents. Glibenclamide-sensitive currents were also activated by the selective adenosine A2-receptor agonist 2-p-(2-carboxethyl)-phenethylamino-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680), whereas 2-chloro-N6-cyclopentyladenosine (CCPA), a selective adenosine A1-receptor agonist, failed to induce potassium currents. Glibenclamide-sensitive currents induced by adenosine and CGS-21680 were largely reduced by blockers of the cAMP-dependent protein kinase (Rp-cAMP[S], H-89, protein kinase A inhibitor peptide). Therefore, we conclude that adenosine can activate KATP currents in arterial smooth muscle through the following pathway: (i) Adenosine stimulates A2 receptors, which activates adenylyl cyclase; (ii) the resulting increase intracellular cAMP stimulates protein kinase A, which, probably through a phosphorylation step, opens KATP channels. PMID:8618917

  15. Mitochondrial ATP-sensitive potassium channel activity and hypoxic preconditioning are independent of an inwardly rectifying potassium channel subunit in C. elegans

    Science.gov (United States)

    Wojtovich, Andrew P.; DiStefano, Peter; Sherman, Teresa; Brookes, Paul S.; Nehrke, Keith

    2012-01-01

    Hypoxic preconditioning (HP) is an evolutionarily-conserved mechanism that protects an organism against stress. The mitochondrial ATP-sensitive K+ channel (mKATP) plays an essential role in the protective signaling, but remains molecularly undefined. Several lines of evidence suggest that mKATP may arise from an inward rectifying K+ channel (Kir). The genetic model organism C. elegans exhibits HP and displays mKATP activity. Here, we investigate the tissue expression profile of the three C. elegans Kir genes and demonstrate that mutant strains where the irk genes have been deleted either individually or in combination can be protected by HP and exhibit robust mKATP channel activity in purified mitochondria. These data suggest that the mKATP in C. elegans does not arise from a Kir derived channel. PMID:22281198

  16. Hydrogen sulfide augments neutrophil migration through enhancement of adhesion molecule expression and prevention of CXCR2 internalization: role of ATP-sensitive potassium channels.

    Science.gov (United States)

    Dal-Secco, Daniela; Cunha, Thiago M; Freitas, Andressa; Alves-Filho, José Carlos; Souto, Fabrício O; Fukada, Sandra Y; Grespan, Renata; Alencar, Nylane M N; Neto, Alberto F; Rossi, Marcos A; Ferreira, Sérgio H; Hothersall, John S; Cunha, Fernando Q

    2008-09-15

    In this study, we have addressed the role of H(2)S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H(2)S synthesis inhibitors, dl-propargylglycine (PAG) or beta-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H(2)S donors, NaHS or Lawesson's reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-alpha, keratinocyte-derived chemokine, and LTB(4). Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (K(ATP)(+)) channel blocker, glybenclamide. Conversely, diazoxide, a K(ATP)(+) channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H(2)S augments neutrophil adhesion and locomotion, by a mechanism dependent on K(ATP)(+) channels.

  17. Dopamine midbrain neurons in health and Parkinson's disease: emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels.

    Science.gov (United States)

    Dragicevic, E; Schiemann, J; Liss, B

    2015-01-22

    Dopamine (DA) releasing midbrain neurons are essential for multiple brain functions, such as voluntary movement, working memory, emotion and cognition. DA midbrain neurons within the substantia nigra (SN) and the ventral tegmental area (VTA) exhibit a variety of distinct axonal projections and cellular properties, and are differentially affected in diseases like schizophrenia, attention deficit hyperactivity disorder, and Parkinson's disease (PD). Apart from having diverse functions in health and disease states, DA midbrain neurons display distinct electrical activity patterns, crucial for DA release. These activity patterns are generated and modulated by specific sets of ion channels. Recently, two ion channels have been identified, not only contributing to these activity patterns and to functional properties of DA midbrain neurons, but also seem to render SN DA neurons particularly vulnerable to degeneration in PD and its animal models: L-type calcium channels (LTCCs) and ATP-sensitive potassium channels (K-ATPs). In this review, we focus on the emerging physiological and pathophysiological roles of these two ion channels (and their complex interplay with other ion channels), particularly in highly vulnerable SN DA neurons, as selective degeneration of these neurons causes the major motor symptoms of PD.

  18. A Kir6.2 pore mutation causes inactivation of ATP-sensitive potassium channels by disrupting PIP2-dependent gating.

    Directory of Open Access Journals (Sweden)

    Jeremy D Bushman

    Full Text Available In the absence of intracellular nucleotides, ATP-sensitive potassium (KATP channels exhibit spontaneous activity via a phosphatidylinositol-4,5-bisphosphate (PIP2-dependent gating process. Previous studies show that stability of this activity requires subunit-subunit interactions in the cytoplasmic domain of Kir6.2; selective mutagenesis and disease mutations at the subunit interface result in time-dependent channel inactivation. Here, we report that mutation of the central glycine in the pore-lining second transmembrane segment (TM2 to proline in Kir6.2 causes KATP channel inactivation. Unlike C-type inactivation, a consequence of selectivity filter closure, in many K(+ channels, the rate of inactivation in G156P channels was insensitive to changes in extracellular ion concentrations or ion species fluxing through the pore. Instead, the rate of G156P inactivation decreased with exogenous application of PIP2 and increased when PIP2-channel interaction was inhibited with neomycin or poly-L-lysine. These findings indicate the G156P mutation reduces the ability of PIP2 to stabilize the open state of KATP channels, similar to mutations in the cytoplasmic domain that produce inactivation. Consistent with this notion, when PIP2-dependent open state stability was substantially increased by addition of a second gain-of-function mutation, G156P inactivation was abolished. Importantly, bath application and removal of Mg(2+-free ATP or a nonhydrolyzable analog of ATP, which binds to the cytoplasmic domain of Kir6.2 and causes channel closure, recover G156P channel from inactivation, indicating crosstalk between cytoplasmic and transmembrane domains. The G156P mutation provides mechanistic insight into the structural and functional interactions between the pore and cytoplasmic domains of Kir6.2 during gating.

  19. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-02-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus.

  20. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro

    Science.gov (United States)

    Du, Xixun; Xu, Huamin; Shi, Limin; Jiang, Zhifeng; Song, Ning; Jiang, Hong; Xie, Junxia

    2016-01-01

    Iron importer divalent metal transporter 1 (DMT1) plays a crucial role in the nigal iron accumulation in Parkinson’s disease (PD). Membrane hyperpolarization is one of the factors that could affect its iron transport function. Besides iron, selective activation of the ATP-sensitive potassium (KATP) channels also contributes to the vulnerability of dopaminergic neurons in PD. Interestingly, activation of KATP channels could induce membrane hyperpolarization. Therefore, it is of vital importance to study the effects of activation of KATP channels on DMT1-mediated iron uptake function. In the present study, activation of KATP channels by diazoxide resulted in the hyperpolarization of the membrane potential and increased DMT1-mediated iron uptake in SK-N-SH cells. This led to an increase in intracellular iron levels and a subsequent decrease in the mitochondrial membrane potential and an increase in ROS production. Delayed inactivation of the Fe2+-evoked currents by diazoxide was recorded by patch clamp in HEK293 cells, which demonstrated that diazoxide could prolonged DMT1-facilitated iron transport. While inhibition of KATP channels by glibenclamide could block ferrous iron influx and the subsequent cell damage. Overexpression of Kir6.2/SUR1 resulted in an increase in iron influx and intracellular iron levels, which was markedly increased after diazoxide treatment. PMID:27646472

  1. Adenosine Triphosphate (ATP) Inhibits Voltage-Sensitive Potassium Currents in Isolated Hensen's Cells and Nifedipine Protects Against Noise-Induced Hearing Loss in Guinea Pigs.

    Science.gov (United States)

    Ye, Rui; Liu, Jun; Jia, Zhiying; Wang, Hongyang; Wang, YongAn; Sun, Wei; Wu, Xuan; Zhao, Zhifei; Niu, Baolong; Li, Xingqi; Dai, Guanghai; Li, Jianxiong

    2016-06-13

    BACKGROUND There is increasing evidence that adenosine triphosphate (ATP), a well-known neurotransmitter and neuromodulator in the central nervous system, plays an important role as an extracellular chemical messenger in the cochlea. MATERIAL AND METHODS Using a whole-cell recording technique, we studied the effects of ATP on isolated Hensen's cells, which are supporting cells in the cochlea, to determine if they are involved in the transduction of ions with hair cells. RESULTS ATP (0.1-10 µM) reduced the potassium current (IK+) in the majority of the recorded Hensen's cells (21 out of 25 cells). An inward current was also induced by high concentrations of ATP (100 µM to 10 mM), which was reversibly blocked by 100 µM suramin (a purinergic antagonist) and blocked by nifedipine (an L-type calcium channel blocker). After the cochleas were perfused with artificial perilymph solutions containing nifedipine and exposed to noise, the amplitude increase in the compound action potential (CAP) threshold and the reduction in cochlear microphonics was lower than when they were exposed to noise alone. CONCLUSIONS Our results suggest that ATP can block IK+ channels at a low concentration and induce an inward Ca2+ current at high concentrations, which is reversed by purinergic receptors. Nifedipine may have a partially protective effect on noise-induced hearing loss (NIHL).

  2. The novel ATP-sensitive potassium channel opener iptakalim prevents insulin resistance associated with hypertension via restoring endothelial function

    Institute of Scientific and Technical Information of China (English)

    Yu WANG; Fu-hu ZENG; Chao-liang LONG; Zhi-yuan PAN; Wen-yu CUI; Ru-huan WANG; Guo-shu LIU; Hai WANG

    2011-01-01

    To investigate the effects of iptakalim on endothelial dysfunction induced by insulin resistance (IR) and to determine whether iptakalim improved IR associated with hypertension in fructose-fed rats (FFRs) and spontaneously hypertensive rats (SHRs).Methods:Human umbilical vein endothelial cells (HUVECs) were used for in vitro study.The levels of endothelial vasoactive mediators and eNOS protein expression were determined using radioimmunoassays,ELISAs,colorimetric assays or Western blotting.Sprague-Dawley rats were fed with a high-fructose diet.In both FFRs and SHRs,tail-cuff method was used to measure systolic blood pressure (SBP),and hyperinsulinemic-euglycemic clamp was used to evaluate IR states.Results:(1) Cultured HUVECs incubated with the PI3-kinase inhibitor wortmannin (50 nmol/L) and insulin (100 nmol/L) induced endothelial dysfunction characterized by significantly reduced release of NO and expression of eNOS protein,and significantly increased production of ET-1.Pretreatment with iptakalim (0.1-10 μmol/L) could prevent the endothelial dysfunction.(2) In FFRs,the levels of SBP,fasting plasma glucose and insulin were significantly elevated,whereas the glucose infusion rate (GIR) and insulin sensitive index (ISI) were significantly decreased,and the endothelium-dependent vascular relaxation response to ACh was impaired.These changes could be prevented by oral administration of iptakalim (1,3,or 9 mg-kg-1-d-1,for 4 weeks).The imbalance between serum NO and ET-1 was also ameliorated by iptakalim.(3) In 2-4 month-old SHRs (IR was established at the age of 4 months),oral administration of iptakalim (1,3,or 9 mg.kg-1.d-1,for 8 weeks) significantly ameliorated hypertension and increased the GIR to the normal level.Conclusion:These results demonstrate that iptakalim could protect against IR-induced endothelial dysfunction,and ameliorate IR associated with hypertension,possibly via restoring the balance between NO and ET-1 signaling.

  3. Activation of ATP-sensitive potassium channels facilitates the function of human endothelial colony-forming cells via Ca(2+) /Akt/eNOS pathway.

    Science.gov (United States)

    Wu, Yan; He, Meng-Yu; Ye, Jian-Kui; Ma, Shu-Ying; Huang, Wen; Wei, Yong-Yue; Kong, Hui; Wang, Hong; Zeng, Xiao-Ning; Xie, Wei-Ping

    2017-03-01

    Accumulating data, including those from our laboratory, have shown that the opening of ATP-sensitive potassium channels (KATP ) plays a protective role in pulmonary vascular diseases (PVD). As maintainers of the endothelial framework, endothelial colony-forming cells (ECFCs) are considered excellent candidates for vascular regeneration in cases of PVD. Although KATP openers (KCOs) have been demonstrated to have beneficial effects on endothelial cells, the impact of KATP on ECFC function remains unclear. Herein, this study investigated whether there is a distribution of KATP in ECFCs and what role KATP play in ECFC modulation. By human ECFCs isolated from adult peripheral blood, KATP were confirmed for the first time to express in ECFCs, comprised subunits of Kir (Kir6.1, Kir6.2) and SUR2b. KCOs such as the classical agent nicorandil (Nico) and the novel agent iptakalim (Ipt) notably improved the function of ECFCs, promoting cell proliferation, migration and angiogenesis, which were abolished by a non-selective KATP blocker glibenclamide (Gli). To determine the underlying mechanisms, we investigated the impacts of KCOs on CaMKII, Akt and endothelial nitric oxide synthase pathways. Enhanced levels were detected by western blotting, which were abrogated by Gli. This suggested an involvement of Ca(2+) signalling in the regulation of ECFCs by KATP . Our findings demonstrated for the first time that there is a distribution of KATP in ECFCs and KATP play a vital role in ECFC function. The present work highlighted a novel profile of KATP as a potential target for ECFC modulation, which may hold the key to the treatment of PVD. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Minoxidil prevents 3,4-methylenedioxymethamphetamine-induced serotonin depletions: role of mitochondrial ATP-sensitive potassium channels, Akt and ERK.

    Science.gov (United States)

    Goñi-Allo, Beatriz; Puerta, Elena; Ramos, María; Lasheras, Berta; Jordán, Joaquín; Aguirre, Norberto

    2008-02-01

    Preconditioning has emerged as a valid strategy against different neurotoxic insults. Although the mechanisms underlying preconditioning are not fully understood, the activation of ATP-sensitive potassium (KATP) channels has been proposed to play a pivotal role in neuronal preconditioning. In the present work we examine whether minoxidil a KATP channel activator protects against the long-term toxicity caused by the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) in rats. Our data show that intrastriatal administration of minoxidil prevents MDMA-induced long-term indole depletions in the rat striatum. This effect was not related to an effect on core temperature, as pre-treatment with minoxidil did not significantly alter MDMA-induced hyperthermia. Taking into account that minoxidil opens both sarcolemmal and mitochondrial KATP channels, we examined the role of each type of channels in the protective effects of minoxidil using specific inhibitors. The administration of HMR-1098, a blocker of the sarcolemmal KATP channels, along with minoxidil did not affect the protection afforded by the latter. On the contrary the selective mitochondrial KATP channel blocker 5-hydroxydecanoic acid completely reversed the protection afforded by minoxidil, thereby implicating the involvement of mitochondrial (but not sarcolemmal) KATP channels. Furthermore our data show the participation of Akt and extracellular signal-regulated kinases in minoxidil-afforded protection. Intrastriatal administration of wortmannin or PD98059 (inhibitors of phosphatidylinositol-3-kinase and mitogen-activated protein kinase/extracellular regulated protein kinase, respectively), along with minoxidil abolished the protective effect of minoxidil against the serotonergic toxicity caused by MDMA. These results demonstrate that minoxidil by opening mitochondrial KATP channels completely prevents MDMA toxicity and that Akt and MAP kinases are involved in minoxidil-afforded neuroprotection.

  5. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels.

    Science.gov (United States)

    Purves, Gregor I; Kamishima, Tomoko; Davies, Lowri M; Quayle, John M; Dart, Caroline

    2009-07-15

    Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2'-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 +/- 4.7% inhibition (mean +/- S.E.M.; n = 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2'-O-Me-cAMP caused a transient 171.0 +/- 18.0 nM (n = 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2'-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow.

  6. Involvement of nitric oxide and ATP-sensitive potassium channels in the peripheral antinoceptive action of a tramadol-dexketoprofen combination in the formalin test.

    Science.gov (United States)

    Isiordia-Espinoza, Mario A; Pozos-Guillén, Amaury; Pérez-Urizar, José; Chavarría-Bolaños, Daniel

    2014-11-01

    Systemic coadministration of tramadol and dexketoprofen can produce antinociceptive synergism in animals. There has been only limited evaluation of this drug combination in the peripheral nervous system in terms of the antinociceptive interaction and its mechanisms. The aim of the present study was to evaluate the peripheral antinociceptive interaction between tramadol and dexketoprofen in the formalin test and the involvement of the nitric oxide (NO)-cyclic guanosine monophosphate pathway and ATP-sensitive K(+) channels. Different doses of tramadol or dexketoprofen were administered locally to the formalin-injured mouse paw and the antinociceptive effect evaluated. ED50 values were calculated for both drugs alone and in combination. Coadministration of tramadol and dexketoprofen produced an antinociceptive synergistic interaction during the second phase of the formalin test. Pretreatment with NO antagonists, including l-NG-nitroarginine methyl ester and 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, or the ATP-sensitive K(+) channel antagonist glibenclamide reversed the antinociceptive synergistic effect of the tramadol-dexketoprofen combination, suggesting that NO and ATP-sensitive K(+) channels were involved.

  7. 运动与ATP-敏感型钾离子通道%Exercise and adenosine triphosphate-sensitive potassium channel

    Institute of Scientific and Technical Information of China (English)

    张如江; 宋永晶

    2014-01-01

    背景:在运动生理状态下,KATP 在调节冠状动脉张力、运动诱导心肌保护效应和延缓骨骼肌疲劳等多个方面具有重要作用。目的:对KATP在运动中的作用进行了综述和探讨,以期为深入了解运动调节机体代谢提供理论参考。方法:检索1991年1月至2014年6月 PubMed数据库及维普中文科技数据库文献。英文检索词为“KATP Channels;Adenosine Triphosphate;Sports;Myocardium;Ion Channels”,中文检索词为“KATP通道;三磷酸腺苷;运动;心肌;离子通道”。选择与KATP分子结构、生物学功能及调控相关,以及KATP与冠状动脉、心肌、骨骼肌疲劳及运动能力相关的文献42篇文献进行探讨。结果与结论:ATP敏感性钾离子通道可以偶联细胞内能量代谢和细胞膜兴奋性,在应对各种生理和病理应激时是保护心肌的效应器之一。长期的耐力训练则会增加骨骼肌和心肌KATP的表达,可能是心肌和骨骼肌对运动应激产生的一种适应性表现。KATP 可能参与冠状动脉血流量的调节。在运动诱导的减轻心肌缺血再灌注损伤的保护效应中,心肌KATP具有重要作用。当骨骼肌疲劳发生时,KATP的激活有利于防止ATP的过度消耗而造成肌纤维损伤和细胞死亡,有利于疲劳的快速恢复。关于KATP与运动能力的关系仍需进一步的研究。%BACKGROUND:In the condition of exercise physiology, adenosine triphosphate-sensitive potassium (KATP) channel plays an important role in many aspects, such as regulation of coronary artery tension, exercise-induced myocardial protection effect and delay of skeletal muscle fatigue. OBJECTIVE:To review and investigate the role of KATP in exercise in order to provide theoretical reference for understanding mechanism underlying exercise regulation of body’s metabolism. METHODS: A computer-based online search of PubMed and VIP databases was performed for articles

  8. ATP敏感钾通道参与大鼠前脂肪细胞增殖和分化%Involvement of ATP-sensitive potassium channels in proliferation and differentiation of rat preadipocytes

    Institute of Scientific and Technical Information of China (English)

    王曜晖; 郑海燕; 秦娜琳; 余上斌; 刘声远

    2007-01-01

    为了探讨ATP敏感钾通道在前脂肪细胞增殖分化中作用,本实验用逆转录实时定量PCR方法检测大鼠前脂肪细胞和诱导5 d获得的脂肪细胞中该通道磺脲类受体2(sulphonylurea receptor 2,SUR2)mRNA表达,探讨该通道阻滞剂格列本脲和激动剂二氮嗪对前脂肪细胞中SUR2 mRNA表达的影响;MTT检测前脂肪细胞增殖;流式细胞仪检测细胞周期;油红O染色法检测细胞内脂质含量;Image-Pro Plus 5.0软件测量细胞直径;逆转录PCR检测过氧化物酶体增殖物激活受体-γ(peroxisome proliferator-activated receptor-γ,PPAR-γ)mRNA表达.结果显示:前脂肪细胞及诱导5 d获得的脂肪细胞均有SUR2 mRNA表达,且后者明显高于前者;格列本脲抑制前脂肪细胞SUR2 mRNA表达,剂量依赖性地促进前脂肪细胞增殖,增加G2/M+S期细胞百分比,增加细胞脂质含量,使脂肪细胞直径增大,增加PPAR-γ mRNA的表达;二氮嗪在这些方面的作用与格列本脲相反.以上结果提示,ATP敏感钾通道在前脂肪细胞增殖和分化中可能起调节作用,PPAR-γ可能参与这些作用.%This paper was aimed to investigate the effects of ATP-sensitive potassium channels on the proliferation and differentiation of rat preadipocytes. We examined the expression of sulphonylurea receptor 2 (SUR2) mRNA in preadipocytes and adipocytes obtained by inducing for 5 d and the effects of the inhibitor (glibenclamide) and opener (diazoxide) of ATP-sensitive potassium channels on the expression of SUR2 mRNA in preadipocytes by real-time PCR. Preadipocyte proliferation and cell cycle were measured by MTT spectrophotometry and flow cytometer. The content of intracellular lipid was measured by oil red O staining, cell diameter was determined by Image-Pro Plus 5.0 software and the expression of peroxisome proliferator-activated receptor-γ(PPAR-γ) mRNA was estimated by RT-PCR. SUR2 mRNA was expressed in both preadipocytes and adipocytes obtained by inducing for 5

  9. ATP and potassium ions: a deadly combination for astrocytes

    Science.gov (United States)

    Jackson, David G.; Wang, Junjie; Keane, Robert W.; Scemes, Eliana; Dahl, Gerhard

    2014-04-01

    The ATP release channel Pannexin1 (Panx1) is self-regulated, i.e. the permeant ATP inhibits the channel from the extracellular space. The affinity of the ATP binding site is lower than that of the purinergic P2X7 receptor allowing a transient activation of Panx1 by ATP through P2X7R. Here we show that the inhibition of Panx1 by ATP is abrogated by increased extracellular potassium ion concentration ([K+]o) in a dose-dependent manner. Since increased [K+]o is also a stimulus for Panx1 channels, it can be expected that a combination of ATP and increased [K+]o would be deadly for cells. Indeed, astrocytes did not survive exposure to these combined stimuli. The death mechanism, although involving P2X7R, does not appear to strictly follow a pyroptotic pathway. Instead, caspase-3 was activated, a process inhibited by Panx1 inhibitors. These data suggest that Panx1 plays an early role in the cell death signaling pathway involving ATP and K+ ions. Additionally, Panx1 may play a second role once cells are committed to apoptosis, since Panx1 is also a substrate of caspase-3.

  10. ATP sensitive potassium channels in the skeletal muscle functions : involvement of the KCNJ11(Kir6.2 gene in the determination of Warner Bratzer shear force

    Directory of Open Access Journals (Sweden)

    Domenico eTricarico

    2016-05-01

    Full Text Available The ATP-sensitive K+-channels (KATP are distributed in the tissues coupling metabolism with K+ ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1, KCNJ11 (Kir6.2, ABCC8 (SUR1 and ABCC9 (SUR2 genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibres is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.

  11. Role of mitochondrial ATP-sensitive potassium channel-mediated PKC-ε in delayed protection against myocardial ischemia/reperfusion injury in isolated hearts of sevoflurane-preconditioned rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. [Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou (China); Institute of Neuroscience, Soochow University, Suzhou (China); Hu, S.M. [Institute of Neuroscience, Soochow University, Suzhou (China); Xie, H.; Qiao, S.G. [Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou (China); Liu, H. [Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Davis, CA (United States); Liu, C.F. [Institute of Neuroscience, Soochow University, Suzhou (China)

    2015-03-27

    This study aimed to determine the role of mitochondrial adenosine triphosphate-sensitive potassium (mitoK{sub ATP}) channels and protein kinase C (PKC)-ε in the delayed protective effects of sevoflurane preconditioning using Langendorff isolated heart perfusion models. Fifty-four isolated perfused rat hearts were randomly divided into 6 groups (n=9). The rats were exposed for 60 min to 2.5% sevoflurane (the second window of protection group, SWOP group) or 33% oxygen inhalation (I/R group) 24 h before coronary occlusion. The control group (CON) and the sevoflurane group (SEVO) group were exposed to 33% oxygen and 2.5% sevoflurane for 60 min, respectively, without coronary occlusion. The mitoK{sub ATP} channel inhibitor 5-hydroxydecanoate (5-HD) was given 30 min before sevoflurane preconditioning (5-HD+SWOP group). Cardiac function indices, infarct sizes, serum cardiac troponin I (cTnI) concentrations, and the expression levels of phosphorylated PKC-ε (p-PKC-ε) and caspase-8 were measured. Cardiac function was unchanged, p-PKC-ε expression was upregulated, caspase-8 expression was downregulated, cTnI concentrations were decreased, and the infarcts were significantly smaller (P<0.05) in the SWOP group compared with the I/R group. Cardiac function was worse, p-PKC-ε expression was downregulated, caspase-8 expression was upregulated, cTnI concentration was increased and infarcts were larger in the 5-HD+SWOP group (P<0.05) compared with the SWOP group. The results suggest that mitoK{sub ATP} channels are involved in the myocardial protective effects of sevoflurane in preconditioning against I/R injury, by regulating PKC-ε phosphorylation before ischemia, and by downregulating caspase-8 during reperfusion.

  12. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury.

    Directory of Open Access Journals (Sweden)

    Zhan Gao

    Full Text Available The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB model of heart failure is coupled with a 35-40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of Ca

  13. ATP-dependent potassium channels and type 2 diabetes mellitus.

    Science.gov (United States)

    Bonfanti, Dianne Heloisa; Alcazar, Larissa Pontes; Arakaki, Priscila Akemi; Martins, Laysa Toschi; Agustini, Bruna Carla; de Moraes Rego, Fabiane Gomes; Frigeri, Henrique Ravanhol

    2015-05-01

    Diabetes mellitus is a public health problem, which affects a millions worldwide. Most diabetes cases are classified as type 2 diabetes mellitus, which is highly associated with obesity. Type 2 diabetes is considered a multifactorial disorder, with both environmental and genetic factors contributing to its development. An important issue linked with diabetes development is the failure of the insulin releasing mechanism involving abnormal activity of the ATP-dependent potassium channel, KATP. This channel is a transmembrane protein encoded by the KCNJ11 and ABCC8 genes. Furthermore, polymorphisms in these genes have been linked to type 2 diabetes because of the role of KATP in insulin release. While several genetic variations have been reported to be associated with this disease, the E23K polymorphism is most commonly associated with this pathology, as well as to obesity. Here, we review the molecular genetics of the potassium channel and discusses its most described polymorphisms and their associations with type 2 diabetes mellitus.

  14. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in beta TC3 cells and rat pancreatic beta cells

    DEFF Research Database (Denmark)

    Gromada, J; Dissing, S; Kofod, Hans

    1995-01-01

    The present study demonstrates the action of the hypoglycaemic drugs repaglinide and glibenclamide in cultured newborn rat islet cells and mouse beta TC3 cells. In cell-attached membrane patches of newborn rat islet cells repaglinide (10 nmol/l) and glibenclamide (20 nmol/l) decrease the open...... probability of single ATP-sensitive K(+)-channels to approximately 10% of the activity prior to addition of the drugs in short-term experiments (cell patch clamp configuration. A half......-maximal steady-state inhibition of the ATP-sensitive K+ currents is observed at 89 pmol/l repaglinide and at 47 pmol/l glibenclamide in whole-cell experiments of longer duration (30 min). Applying digital Ca2+ imaging on single beta TC3 cells we found that repaglinide and glibenclamide induced a concentration...

  15. A conserved residue cluster that governs kinetics of ATP-dependent gating of Kir6.2 potassium channels

    DEFF Research Database (Denmark)

    Zhang, Roger S; Wright, Jordan; Pless, Stephan Alexander;

    2015-01-01

    that these residues play a role in lowering the transition state energy barrier between open and closed channel states. Using unnatural amino acid incorporation, we demonstrate the requirement for a planar amino acid at Kir6.2 position 68 for normal channel gating, potentially necessary to localize the ε-amine of Lys......ATP-sensitive potassium (KATP) channels are heteromultimeric complexes of an inwardly-rectifying Kir channel (Kir6.x) and sulfonylurea receptors (SUR). Their regulation by intracellular ATP and ADP generates electrical signals in response to changes in cellular metabolism. We investigated channel...... elements that control the kinetics of ATP-dependent regulation of KATP (Kir6.2 + SUR1) channels using rapid concentration jumps. WT Kir6.2 channels re-open after rapid washout of ATP with a time constant of approximately 60 ms. Extending similar kinetic measurements to numerous mutants revealed fairly...

  16. Clinical relevance of ATP-dependent potassium channels

    NARCIS (Netherlands)

    Ligtenberg, JJM; vanHaeften, TW; Links, TP; Smit, AJ

    1995-01-01

    Many cells are equipped with so-called potassium (K+) channels which have an important role in maintaining transmembrane potential. Closure of these channels leads to membrane depolarization, which can be followed by cell-specific activity such as contraction of vascular smooth muscle, or secretion

  17. Role of mitochondrial ATP-sensitive potassium channel-mediated PKC-ε in delayed protection against myocardial ischemia/reperfusion injury in isolated hearts of sevoflurane-preconditioned rats

    Directory of Open Access Journals (Sweden)

    C. Wang

    2015-06-01

    Full Text Available This study aimed to determine the role of mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP channels and protein kinase C (PKC-ε in the delayed protective effects of sevoflurane preconditioning using Langendorff isolated heart perfusion models. Fifty-four isolated perfused rat hearts were randomly divided into 6 groups (n=9. The rats were exposed for 60 min to 2.5% sevoflurane (the second window of protection group, SWOP group or 33% oxygen inhalation (I/R group 24 h before coronary occlusion. The control group (CON and the sevoflurane group (SEVO group were exposed to 33% oxygen and 2.5% sevoflurane for 60 min, respectively, without coronary occlusion. The mitoKATP channel inhibitor 5-hydroxydecanoate (5-HD was given 30 min before sevoflurane preconditioning (5-HD+SWOP group. Cardiac function indices, infarct sizes, serum cardiac troponin I (cTnI concentrations, and the expression levels of phosphorylated PKC-ε (p-PKC-ε and caspase-8 were measured. Cardiac function was unchanged, p-PKC-ε expression was upregulated, caspase-8 expression was downregulated, cTnI concentrations were decreased, and the infarcts were significantly smaller (P<0.05 in the SWOP group compared with the I/R group. Cardiac function was worse, p-PKC-ε expression was downregulated, caspase-8 expression was upregulated, cTnI concentration was increased and infarcts were larger in the 5-HD+SWOP group (P<0.05 compared with the SWOP group. The results suggest that mitoKATP channels are involved in the myocardial protective effects of sevoflurane in preconditioning against I/R injury, by regulating PKC-ε phosphorylation before ischemia, and by downregulating caspase-8 during reperfusion.

  18. Place of Mitochondrial Potassium-ATP Channels in The Mechanism of Effect of Ischemic Conditionings

    Directory of Open Access Journals (Sweden)

    İlker Şengül

    2012-07-01

    Full Text Available Ischemia-reperfusion episodes in a short interval “just before” ischemia performed experimentally have been called preconditioning, where as “just after” ischemia have been called postconditioning and tissue protective effects of these endogenous mechanisms have been shown in various organs via various studies. Although multipl mechanisms have been being propounded about these phenomenons which have been found area of usage from hearth surgery to organ transplantation, mitochondrial potassium ATP-channels have been maintaining its importance.

  19. [Determination of the antioxidant properties of activators of mitochondrial ATP-dependent potassium channels with the Amplex Red fluorescent indicator].

    Science.gov (United States)

    Murzaeva, S V; Belova, S P; Mironova, G D

    2013-01-01

    The effect of adaptogens-antihypoxants that participate in the activation of mitochondrial ATP-dependent potassium channels (mitoK(ATP)) at the oxidation of the Amplex Red (AR) fluorescent indicator in a peroxidase system was tested. It was shown that Extralife, Hypoxen, taurine, and synthetic antioxidant ionol can be arranged in the following row, according to the fluorescence inhibition activity: Extralife > Hypoxen > > ionol > taurine; their effect was shown to be concentration-dependent. The calculated K(i) value of fluorescence indicators demonstrate fast and slow phases of inhibition of the AR oxidation by Extralife and Hypoxen. The fast phase occurs in the presence of microdoses (0.05-3 microg/mL) of adaptogens and is related to the competition for H2O2, which is in agreement with our previous data on the mitoK(ATP) activation by doses of adaptogens related to the H2O2 consumption. The slow phase is characteristic of high adaptogen and ionol concentrations and is related to the competition for phenoxyl radicals of resorufin formed during AR oxidation. The obtained results allow one to suggest the application of a highly sensitive model peroxidase system with AR for the preliminary testing of compounds activating mitoK(ATP) channels.

  20. ATP and sulfonylurea sensitivity of mutant ATP-sensitive K+ channels in neonatal diabetes: implications for pharmacogenomic therapy.

    Science.gov (United States)

    Koster, Joseph C; Remedi, Maria S; Dao, Crystal; Nichols, Colin G

    2005-09-01

    The prediction that overactivity of the pancreatic ATP-sensitive K(+) channel (K(ATP) channel) underlies reduced insulin secretion and causes a diabetic phenotype in humans has recently been borne out by genetic studies implicating "activating" mutations in the Kir6.2 subunit of K(ATP) as causal in both permanent and transient neonatal diabetes. Here we characterize the channel properties of Kir6.2 mutations that underlie transient neonatal diabetes (I182V) or more severe forms of permanent neonatal diabetes (V59M, Q52R, and I296L). In all cases, the mutations result in a significant decrease in sensitivity to inhibitory ATP, which correlates with channel "overactivity" in intact cells. Mutations can be separated into those that directly affect ATP affinity (I182V) and those that stabilize the open conformation of the channel and indirectly reduce ATP sensitivity (V59M, Q52R, and I296L). With respect to the latter group, alterations in channel gating are also reflected in a functional "uncoupling" of sulfonylurea (SU) block: SU sensitivity of I182V is similar to that of wild-type mutants, but the SU sensitivity of all gating mutants is reduced, with the I296L mutant being resistant to block by tolbutamide (

  1. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels.

    Science.gov (United States)

    Ainscow, Edward K; Mirshamsi, Shirin; Tang, Teresa; Ashford, Michael L J; Rutter, Guy A

    2002-10-15

    Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K(+) (K(ATP)) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP](c)) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role for ATP in the closure of K(ATP) channels in GR neurons, glucose (3 or 15 mM) caused no detectable increase in [ATP](c), monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma membrane, monitored with a SNAP25-luciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded to glucose (3 and 15 mM) with a significant increase in [ATP](c). Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 mM glucose with increases in [ATP](c). Further implicating an ATP-independent mechanism of K(ATP) channel closure in hypothalamic neurons, removal of extracellular glucose (10 mM) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 mM) of intracellular ATP. Neurons from both brain regions responded to 5 mM lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP](c). High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous lactate efficiently closed K(ATP) channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells.

  2. Activation of mitochondrial ATP-sensitive potassium channels delays ischemia-induced cellular uncoupling in rat heart%线粒体ATP敏感性钾通道激活延缓大鼠心肌缺血引起的细胞间电脱耦联

    Institute of Scientific and Technical Information of China (English)

    沈岳良; 陈莹莹; 吴迅冬; 夏强

    2004-01-01

    AIM: To test the hypothesis that cellular uncoupling induced by myocardial ischemia is mediated by activation of mitochondrial ATP-sensitive potassium channels (mitoKATP). METHODS: Rat hearts were perfused on a Langendorff apparatus and subjected to 40-min ischemia followed by 30-min reperfusion (I/R). Changes in cellular coupling were monitored by measuring whole-tissue resistance. RESULTS: (1) In hearts subjected to I/R, the onset of uncoupling started at (13.3±1.0) min of ischemia; (2) Ischemic preconditioning (IPC) delayed the onset of uncoupling until (22.7± 1.3) min. Blocking mitoKATP channels with 5-hydroxydecanoate (5-HD) before the IPC abolished the uncoupling delay [(12.6+1.6) min]; (3) Calcium preconditioning (CPC) had the same effect as IPC. And this effect was reversed by blocking the mitoKATP channel again. In the CPC group the onset of uncoupling occurred after (20.6±1.3) min, and this was canceled by 5-HD [(13.6±0.8) min]; (4) In hearts pretreated with the specific mitoKATP channel opener diazoxide before sustained ischemia, the onset was delayed to (18.4+ 1.4) min; (5) 5-HD canceled the protective effects of diazoxide (12.6±1.0) min; and both the L-type Ca2+ channel inhibitor verapamil and the free radical scavenger N-(2-mercaptopropionyl)glycine, reduced the extended onset time induced by diazoxide [to (13.3± 1.8) min and (13.4±2.1) min, respectively]. CONCLUSION: IPC and CPC delay the onset of cellular uncoupling induced by acute ischemia in rat heart, and the underlying mechanism involves activation of the mitoKATP channels.

  3. 线粒体ATP敏感性钾通道在七氟醚预处理减轻大鼠脑缺血再灌注损伤中的作用%Role of mitochondrial ATP-sensitive potassium channel in sevoflurane preconditioning-reduced focal cerebral ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    叶治; 王锷; 潘韫丹; 郭曲练

    2009-01-01

    目的 探讨线粒体ATP敏感性钾通道(mito-K_(ATP)通道)在七氟醚预处理减轻大鼠脑缺血再灌注损伤中的作用.方法 健康雄性SD大鼠100只,体重250~300 g,随机分为5组(n=20):假手术组(S组)、缺血再灌注组(I/R组)、七氟醚预处理组(Sevo组)、mito-K_(ATP)通道阻断剂5-羟基葵酸(5-HD)组及5-HD+七氟醚预处理组(5-HD+Sevo组).采用线栓法制备大鼠局灶性脑缺血再灌注模型,七氟醚预处理方法:吸入2.4%七氟醚60 min后吸入纯氧洗脱15 min,停止吸入七氟醚后24 h时制备脑缺血再灌注模型.分别于再灌注6、24 h时进行神经功能损伤评分,计算脑梗死体积百分比,采用Western blot法测定蛋白激酶Cε(PKCε)膜转位水平.结果 与S组比较,其余各组大鼠再灌注6、24 h时神经功能损伤评分升高,脑梗死体积百分比及脑组织PKCε膜转位水平升高(P<0.05);与I/R组、5-HD组及5-HD+Sevo组比较,Sevo组大鼠再灌注6、24 h时神经功能损伤评分降低,脑梗死体积百分比降低,再灌注6 h时脑组织PKCε膜转位水平升高(P<0.05).结论 mito-K_(ATP)通道介导了七氟醚预处理减轻大鼠局灶性脑缺血再灌注损伤的作用,其机制可能与调控PKCε膜转位有关.%Objective To investigate the role of the mitochondrial ATP-sensitive potassium (mito-K_(ATP)) channel in sevoflurane preconditioning-reduced focal cerebral ischemia-reperfnsion (I/R) injury in rats. Methods One hundred healthy 3-4 month old male SD rats 250-300 g were randomly assigned into 5 groups (n = 20 each) : group Ⅰ sham operatiun (group S); group Ⅱ I/R; group Ⅲ sevoflurane preconditioning (group Sevo); group Ⅳ 5-hydroxydecannate (5-HD) and group Ⅴ 5-HD + Sevo. Focal cerebral I/R was produced by mid-cerebral artery occlusion (MCAO) in group Ⅱ-Ⅴ . Cerebral ischemia was maintained for 2 h followed by 6 and 24 h reporfnsiun. In group Ⅲ and Ⅴ 2.4% sevoflurane in 97.6% O_2 was inhaled for 60 min at 24 h before MCAO. In

  4. Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels

    Science.gov (United States)

    Ainscow, Edward K; Mirshamsi, Shirin; Tang, Teresa; Ashford, Michael L J; Rutter, Guy A

    2002-01-01

    Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K+ (KATP) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP]c) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role for ATP in the closure of KATP channels in GR neurons, glucose (3 or 15 mm) caused no detectable increase in [ATP]c, monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma membrane, monitored with a SNAP25–luciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded to glucose (3 and 15 mm) with a significant increase in [ATP]c. Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 mm glucose with increases in [ATP]c. Further implicating an ATP-independent mechanism of KATP channel closure in hypothalamic neurons, removal of extracellular glucose (10 mm) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 mm) of intracellular ATP. Neurons from both brain regions responded to 5 mm lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP]c. High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous lactate efficiently closed KATP channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells. PMID:12381816

  5. A continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay

    OpenAIRE

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-01-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear...

  6. Continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay.

    Science.gov (United States)

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-08-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of a quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear correlations between amplified luminescence and initial ATP concentration were observed. When performing four cycles of continuous-flow ATP amplification, the gradient of amplification was 1.87(N). Whereas the lower quantifiable level was 500 pM without amplification, values as low as 50 pM ATP could be measured after amplification. The sensitivity thus increased 10-fold, with further improvements expected with additional amplification cycles. The continuous-flow system thus effectively increased the sensitivity of the quantitative bioluminescence assay.

  7. Role of mitochondrial ATP sensitive potassium channel in delayed preconditioning with sevofiurane reducing myocardial ischemia-reperfusion injury in rats%ATP敏感性钾通道在七氟醚预处理延迟相减轻大鼠心肌缺血-再灌注损伤中的作用

    Institute of Scientific and Technical Information of China (English)

    肖艳英; 常业恬; 冉珂; 李双凤

    2011-01-01

    Objective To investigate the role of mitochondrial ATP sensitive potassium channel (mitoKATP) in the delayed cardioprotection produced by sevoflurane in ischemia-reperfusion(l-R) injured mts Methods Eighty male Sprague-Dawley rats were randomly divided into five groups: a sham operation group (group A); an ischemia-reperfusion injury group (group B), occlusion of left anterior descending coronary artery for 30 min and followed by 120rain of reperfusion; a sevoflurane preconditioning group (group C),breathing 2.5% sevoflurane for one hour 24 h before IR; a sevoflutane preconditioning+5-hydroxydecanoate (5-HD, a mito-KATP inhibitor) group (group D), 5-HD 5mg/kg was given before sevofiurane preconditioning;and a 5-HD group (group E). After 120 min of reperfusion, myocardial area at risk in ischemia and infarcted size (IS) were measured by double stain with evans blue and TTC Serum cTnl levels were detected with ELISA. The expression of Bcl-2 and Bax was measured with immunoblotting. Results Preconditioning with sevoflurane decreased the IS induced by I-R, reduced cTnI level, upregulated Bcl-2 protein and downregulated Bax expression (all P<0.05), but this effect was inhibited by 5-HD. Conclusion Delayed preconditioning with sevoflurane protects myocardial ischeaia-reperfusion injury by regulating Bcl-2 and Bax expression that may be associated with mito-KATP channel activation.%目的 探讨线粒体ATP敏感性钾通道(mito-KAar)在七氟醚预处理延迟相减轻大鼠心肌缺血-再灌注(I-R)损伤中的作用.方法 雄性SD大鼠80只随机均分为五组:假手术组(A组);I-R组(B组),左冠状动脉前降支结扎30 min后再灌注120 min;七氟醚预处理组(C组),I-R前24 h吸人2.5%七氟醚1 h;七氟醚预处理+mito-K抑制剂5-羟基癸酸(5-HD)组(D组),七氟醚预处理前尾静脉注射5-HD 5 mg/kg;单纯5-HD组(E组).再灌注120 min后各组取10只大鼠测定心肌缺血危险面积与梗死面积,酶联免疫吸附(ELISA)法检测血

  8. Activation of ATP-dependent potassium channels is a trigger but not a mediator of ischaemic preconditioning in pigs.

    Science.gov (United States)

    Schulz, Rainer; Gres, Petra; Heusch, Gerd

    2003-05-01

    1. Activation of ATP-dependent potassium channels (K(ATP)) is involved in ischaemic preconditioning (IP). In isolated buffer-perfused rabbit hearts, activation of mitochondrial K(ATP)--through a generation of free radicals--acted as a trigger rather than a mediator of IP; the isolated buffer-perfused heart preparation, however, favours free radical generation. In contrast, in vivo studies in rats and dogs suggested that activation of K(ATP) acts as a mediator of IP's protection. A detailed analysis on the role of K(ATP) in IP's protection in vivo by varying the time and dose of K(ATP) blocker administration is, however, lacking. 2. In 54 enflurane-anaesthetized pigs, the left anterior descending coronary artery was perfused by an extracorporeal circuit. Infarct size (IS, %, TTC) following 90 min sustained low-flow ischaemia and 120 min reperfusion was 26.6+/-3.5 (s.e.m.) (n=8). IP with one cycle of 10 min ischaemia and 15 min reperfusion reduced IS to 6.5+/-2.1 (n=7, P<0.05). Blockade of K(ATP) with glibenclamide (0.5 mg kg(-1) i.v., 50 microg min(-1) continuous infusion) starting 10 min before or immediately following the preconditioning ischaemia abolished IS reduction by IP (20.7+/-2.7, n=7 and 21.9+/-6.6, n=6, respectively) while having no effect on IS per se (22.2+/-5.2, n=7), supporting a trigger role of K(ATP) in IP. In contrast, starting glibenclamide following the preconditioning ischaemia 10 min prior to the sustained ischaemia did not prevent IS reduction by IP (3.7+/-2.3, n=6), even when its bolus dose was increased to 1.5 mg kg(-1) (26.6+/-3.8 with IP vs 37.5+/-2.9 without IP; n=7 and 6 respectively, P<0.05), thereby refuting a mediator role of K(ATP) in IP. 3. In conclusion, activation of K(ATP) in the immediate reperfusion following the preconditioning ischaemia is pivotal for triggering IP.

  9. Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal's adaptation to hypoxia.

    Science.gov (United States)

    Mironova, Galina D; Shigaeva, Maria I; Gritsenko, Elena N; Murzaeva, Svetlana V; Gorbacheva, Olga S; Germanova, Elena L; Lukyanova, Ludmila D

    2010-12-01

    The mechanism of tissue protection from ischemic damage by activation of the mitochondrial ATP-dependent K(+) channel (mitoK(ATP)) remains unexplored. In this work, we have measured, using various approaches, the ATP-dependent mitochondrial K(+) transport in rats that differed in their resistance to hypoxia. The transport was found to be faster in the hypoxia-resistant rats as compared to that in the hypoxia-sensitive animals. Adaptation of animals to the intermittent normobaric hypoxia increased the rate of transport. At the same time, the intramitochondrial concentration of K(+) in the hypoxia-sensitive rats was higher than that in the resistant and adapted animals. This indicates that adaptation to hypoxia stimulates not only the influx of potassium into mitochondria, but also K(+)/H(+) exchange. When mitoK(ATP) was blocked, the rate of the mitochondrial H(2)O(2) production was found to be significantly higher in the hypoxia-resistant rats than that in the hypoxia-sensitive animals. The natural flavonoid-containing adaptogen Extralife, which has an evident antihypoxic effect, increased the rate of the mitochondrial ATP-dependent K(+) transport in vitro and increased the in vivo tolerance of hypoxia-sensitive rats to acute hypoxia 5-fold. The involvement of the mitochondrial K(+) transport in the mechanism of cell adaptation to hypoxia is discussed.

  10. Role of mitochondrial ATP-sensitive potassium channels in attenuation of cerebral ischemia-reperfusion injury by dexmedetomidine in rats%线粒体ATP敏感性钾通道在右美托咪定减轻大鼠脑缺血再灌注损伤中的作用

    Institute of Scientific and Technical Information of China (English)

    袁峰; 付红光; 孙凯; 董铁立

    2014-01-01

    Objective To evaluate the role of mitochondrial ATP-sensitive potassium (mito-KATe) channels in attenuation of cerebral ischemia-reperfusion (I/R) injury by dexmedetomidine in rats.Methods One hundred and twenty healthy male Wistar rats,weighing 290-340 g,were randomly assigned into 5 groups (n =24 each) using a random number table:sham operation group (group S) ; group I/R; dexmedetomidine group (group D) ; 5-HD (a specific blocker of mito-KATPchannel) group and 5-HD + dexmedetomidine group (group 5-HD + D).The rats were anesthetized with intraperitoneal chloral hydrate.Focal cerebral I/R was produced by 2 h middle cerebral artery occlusion followed by reperfusion.In group D,dexmedetomidine 50 μg/kg was injected intraperitoneally before ischemia and after onset of reperfusion.In group 5-HD,5-HD 30 mg/kg was injected intraperitoneally at 1 h before ischemia.In 5-HD + D group,5-HD 30 mg/kg was injected intraperitoneally at 1 h before ischemia and the other procedures were similar to those previously described in group D.Twelve rats were chosen at 24 and 48 h of reperfusion to assess the neurological deficit score (NDS).The animals were then sacrificed and brains were removed for determination of cerebral infarct size by TTC staining.Results Compared with S group,NDS and cerebral infarct size were significantly increased at each time point in the other four groups (P < 0.05).Compared with group I/R,NDS and cerebral infarct size were significantly decreased in D and 5-HD + D groups (P < 0.05),and no significant change was found in the parameters mentioned above in 5-HD group (P > 0.05).Compared with group D,NDS and infarct size were significantly increased in group 5-HD + D (P < 0.05).Conclusion Mito-KATP channels are involved in reduction of I/R-induced cerebral injury by dexmedetomidine in rats.%目的 评价线粒体ATP敏感性钾通道(mito-KATP通道)在右美托咪定减轻大鼠脑缺血再灌注损伤中的作用.方法

  11. The Methanolic Extract from Murraya koenigii L. Inhibits Glutamate-Induced Pain and Involves ATP-Sensitive K+ Channel as Antinociceptive Mechanism

    Science.gov (United States)

    Sharmin Ani, Nushrat; Chakraborty, Sudip

    2016-01-01

    Murraya koenigii L. is a perennial shrub, belonging to the family Rutaceae. Traditionally, the leaves of this plant are extensively used in treatment of a wide range of diseases and disorders including pain and inflammation. Although researchers have revealed the antinociceptive effects of this plant's leaves during past few years, the mechanisms underlying these effects are still unknown. Therefore, the present study evaluated some antinociceptive mechanisms of the methanolic extract of M. koenigii (MEMK) leaves along with its antinociceptive potential using several animal models. The antinociceptive effects of MEMK were evaluated using formalin-induced licking and acetic acid-induced writhing tests at the doses of 50, 100, and 200 mg/kg. In addition, we also justified the possible participations of glutamatergic system and ATP-sensitive potassium channels in the observed activities. Our results demonstrated that MEMK significantly (p < 0.01) inhibited the pain thresholds induced by formalin and acetic acid in a dose-dependent manner. MEMK also significantly (p < 0.01) suppressed glutamate-induced pain. Moreover, pretreatment with glibenclamide (an ATP-sensitive potassium channel blocker) at 10 mg/kg significantly (p < 0.05) reversed the MEMK-mediated antinociception. These revealed that MEMK might have the potential to interact with glutamatergic system and the ATP-sensitive potassium channels to exhibit its antinociceptive activities. Therefore, our results strongly support the antinociceptive effects of M. koenigii leaves and provide scientific basis of their analgesic uses in the traditional medicine. PMID:27812367

  12. ATP-sensitive potassium channel and mitochondrial permeability transition pore involve in cardioprotection of polydatin%ATP敏感性钾通道和线粒体通透转换孔参与白藜芦醇苷的心肌保护作用

    Institute of Scientific and Technical Information of China (English)

    张利萍; 杨长瑛; 王莹萍; 关玥; 徐瑛; 张翼

    2009-01-01

    -dependent manner. After 60 min of reperfusion, the values of LVDP, ±dp/dtmax and CF in polydatin groups were much higher, but LVEDP was lower than those in model group. Polydatin (50 μmol·L-1) also significantly reduced myocardial infarct size and relieved the I-R injury of myocardial ultrastructure. The protective effects of polydatin (50 μmol·L-1) on LVDP, LVEDP, ±dp/dtmax and CF, as well as the inhibitory effect on infarct size after I-R were abolished by Gli, 5-HD and Atr. CONCLUSION Polydatin has protective effect against I-R injury in rat hearts, which may be related with the opening of ATP-sensitive potassium channel located in both cell membrane and mitochondrial membrane, as well as inhibition of mitochondrial permeability transition pore opening.%目的 探讨白藜芦醇苷(Poly)对大鼠缺血再灌注(I-R)心肌损伤的保护作用及其机制.方法 应用Langendorff室技术制备离体大鼠心脏I-R损伤模型.雄性SD大鼠随机分为对照组、模型组、Poly(25, 50和75 μmol·L-1)组、格列本脲(Gli)+Poly组、5-羟基癸酸(5-HD)+Poly组和苍术苷(Atr)+Poly组.对照组心脏由K-H液灌流110 min;模型组由K-H液灌流20 min后, 停灌30 min, 复灌60 min;Poly组在I-R处理前用含不同浓度Poly的K-H液灌流10 min;Gli+Poly和5-HD+Poly组在I-R前分别用含Gli (10 μmol·L-1)和5-HD(100 μmol·L-1)的K-H液灌流5 min,再加入Poly (50 μmol·L-1)灌流10 min;Atr+Poly组用含Poly(50 μmol·L-1)K-H液灌流10 min及停灌30 min后,先用含Atr(20 μmol·L-1)的K-H液灌流15 min, 然后改用K-H液灌流.分别记录各组停灌前、停灌30 min和复灌60 min内的左心室舒张末压(LVEDP)、左心室舒张压(LVDP)、左心室等容期压力最大变化速率(±dp/dtmax)和冠脉流量(CF)等心功能指标.心脏复灌60 min后,用氯化三苯基四氮唑染色法测定心肌梗死面积,透射电镜下检测心肌超微结构变化.结果 缺血前各组心功能参数无明显变化.与模型组相比,Poly可浓度依赖性

  13. Role of mitochondrial ATP-sensitive potassium channels in attenuation of renal ischemia-reperfusion injury by lidocaine pretreatment in rats%mito-KATP通道在利多卡因预先给药减轻大鼠肾脏缺血再灌注损伤中的作用

    Institute of Scientific and Technical Information of China (English)

    朱小兵; 刘志群; 吴论; 刘志龙; 卫毅; 石翊飒; 张喜洋

    2013-01-01

    Objective To evaluate the role of mitochondrial ATP-sensitive potassium (mito-KATP) channels in attenuation of renal ischemia-reperfusion (I/R) injury by lidocaine pretreatment in rats.Methods Sixty healthy male Wistar rats,weighing 300-350 g,were randomly assigned into 5 groups (n =12 each) using a random number table:sham operation group (group S); renal I/R group (group I/R); lidocaine pretreatment group (group L) ; 5-HD (a specific blocker of the mito-KATP channel) group and 5-HD + lidocaine pretreatment group (group 5-HD + L).Renal ischemia was induced by occlusion of bilateral renal arteries for 60 min with atraumatic microclips followed by 4 h reperfusion.At 60 min before renal ischemia,lidocaine 5 mg/kg was intravenously injected followed by continuous infusion at 2 mg· kg-1 · h-1 in group L.5-HD 10 mg/kg was injected intraperitoneally at 65 min before ischemia in group 5-HD.In 5-HD + L groups,5-HD 10 mg/kg was injected intraperitoneally at 65 min before ischemia and the other procedures were similar to those previously described in group L.In S and I/R groups,the animals received equal volumes of normal saline instead of lidocaine.Blood samples were obtained at 6 h of reperfusion for determination of serum creatinine (Cr) and urea mitrogen (BUN) concentrations.Bilateral kidneys were removed for determination of mitochondrial membrane potential in the renal tubular epidural cells,malondialdehyde (MDA) content,and superoxide dismutase (SOD) activity and for microscopic examination.Results Compared with group S,the serum Cr and BUN concentrations and MDA content were significantly increased,and SOD activity and mitochondrial membrane potential were decreased in I/R,L,5-HD and 5-HD + L groups (P < 0.05).Compared with group I/R,the serum Cr and BUN concentrations and MDA content were significantly decreased,and SOD activity and mitochondrial membrane potential were increased in L and 5-HD + L groups (P < 0.05),and no significant changes were found in the

  14. Rebaudioside A directly stimulates insulin secretion from pancreatic beta cells: a glucose-dependent action via inhibition of ATP-sensitive K-channels.

    Science.gov (United States)

    Abudula, R; Matchkov, V V; Jeppesen, P B; Nilsson, H; Aalkjaer, C; Hermansen, K

    2008-11-01

    Recently, we showed that rebaudioside A potently stimulates the insulin secretion from isolated mouse islets in a dose-, glucose- and Ca(2+)-dependent manner. Little is known about the mechanisms underlying the insulinotropic action of rebaudioside A. The aim of this study was to define the signalling system by which, rebaudioside A acts. Isolated mouse islets were used in the cAMP[(125)I] scintillation proximity assay to measure total cAMP level, and in a luminometric method to measure intracellular ATP and ADP concentrations. Conventional and permeabilized whole-cell configuration of the patch-clamp technique was used to verify the effect of rebaudioside A on ATP-sensitive K(+)-channels from dispersed single beta cells from isolated mouse islets. Insulin was measured by radioimmunoassay from insulinoma MIN6 cells. In the presence of 16.7 mM glucose, the addition of the maximally effective concentration of rebaudioside A (10(-9) M) increased the ATP/ADP ratio significantly, while it did not change the intracellular cAMP level. Rebaudioside A (10(-9) M) and stevioside (10(-6) M) reduced the ATP-sensitive potassium channel (K(ATP)) conductance in a glucose-dependent manner. Moreover, rebaudioside A stimulated the insulin secretion from MIN6 cells in a dose- and glucose-dependent manner. In conclusion, the insulinotropic effect of rebaudioside A is mediated via inhibition of ATP-sensitive K(+)-channels and requires the presence of high glucose. The inhibition of ATP-sensitive K(+)-channels is probably induced by changes in the ATP/ADP ratio. The results indicate that rebaudioside A may offer a distinct therapeutic advantage over sulphonylureas because of less risk of causing hypoglycaemia.

  15. ATP sensitizes H460 lung carcinoma cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Swennen, Els L R; Ummels, Vanessa; Buss, Irina; Jaehde, Ulrich; Bast, Aalt; Dagnelie, Pieter C

    2010-03-30

    Platinum resistance of cancer cells may evolve due to a decrease in intracellular drug accumulation, decreased cell permeability or by an increased deactivation of the drug by glutathione (GSH). The aim of this study was (1) to investigate the effect of adenosine 5'-triphosphate (ATP) on the cytotoxicity of cisplatin in a large cell lung carcinoma cell line (H460), and (2) to examine the potential involvement of increased cisplatin uptake, GSH depletion and pyrimidine starvation by ATP in this effect. H460 cells were harvested and seeded (5% CO(2); 37 degrees C). Subsequently, cells were incubated with medium or ATP followed by an incubation with cisplatin. Cytotoxicity screening was analyzed by the sulforhodamine B (SRB) colorimetric assay, lactate dehydrogenase and caspase-3/7 activity. Pre-incubation for 72h with 0.3 and 3mM ATP strongly enhanced the anti-proliferative potency of cisplatin 2.9- and 7.6-fold, respectively. Moreover, after incubation of H460 cells with 0.3mM ATP the intracellular platinum concentration increased, indicating increased cisplatin uptake by ATP. ATP, despite lowering the LD(50) of cisplatin, did not modulate GSH levels in H460 cells. ATP itself showed a biphasic effect on H460 cell growth: 0.3mM inhibited H460 cell growth via the pyrimidine starvation effect, activation of caspase-3/7 and LDH leakage, while 3mM ATP showed no effect on cell growth. In conclusion, ATP sensitizes the H460 cells to cisplatin-induced apoptosis. The effect of 0.3mM ATP is not due to GSH depletion but involves increased cisplatin uptake and pyrimidine starvation due to ATP conversion to adenosine followed by cellular uptake.

  16. OBSERVATIONS ON AN ATP-SENSITIVE PROTEIN SYSTEM FROM THE PLASMODIA OF A MYXOMYCETE

    Science.gov (United States)

    Ts'o, Paul O. P.; Bonner, James; Eggman, Luther; Vinograd, Jerome

    1956-01-01

    1. Extracts of the plasmodia of the myxomycete, Physarum polycephalum, exhibit reversible decreases in viscosity in response to the addition of ATP under appropriate conditions. The protoplasm material prepared by extraction with KCl solution can apparently exist in either a high or a low viscosity state. As prepared, it is in the low viscosity condition. Rapid and extensive increases in viscosity of the extract are brought about by addition of AMP, inorganic phosphate, or, under certain conditions, of ATP. Only after the high viscosity state has been attained does addition of appropriate quantities of ATP cause a reversible decrease in viscosity. 2. The active principle of crude plasmodial extracts may be concentrated by fractional precipitation with ammonium sulfate and is found in the fraction precipitated between 30 and 40 per cent saturation. This material possesses a higher viscosity than does the original crude extract and is apparently in the high viscosity state since the addition of ATP causes an immediate reversible decrease in viscosity. 3. The ATP-sensitive fraction of myxomycete plasmodia possesses a viscosity which is dependent upon its previous thermal treatment. Extracts incubated at 0° for a period of a few hours increase greatly in viscosity when they are returned to 24.5°. This increased viscosity is structural in nature, is destroyed by mechanical agitation of the solution, and may be reversibly destroyed by addition of ATP. 4. It is suggested that the ATP-responsive protein of myxomycete plasmodia may be related to sol-gel transformations which have been observed in intact plasmodia and may participate in the protoplasmic streaming of the intact organism. This suggestion is based upon the following facts: (a) the protoplasmic streaming of myxomycete plasmodia is increased by microinjection of ATP; (b) the gel portion of the cytoplasm at the site of the microinjection of ATP is extensively converted to the sol state. The changes in structure

  17. The ATP-sensitive K + channel and membrane potential in the pathogenesis of vascular hyporeactivity in severe hemorrhagic shock

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To elucidate the mechanism of vascular hyporeactivity following severe hemorrhagic shock (HS) by studying the changes of ATP-sensitive potassium channels'(KATP) properties and membrane potential of mesenteric arteriolar smooth muscle cells. Methods: Single channel currents were studied on cell-attached and inside-out patches of enzymatically isolated mesenteric arteriolar smooth muscle cells (ASMCs). Membrane potentials of arteriolar strips and ASMCs were recorded by intracellular membrane potential recording method and confocal microscopy, respectively. Results: KATP channels in ASMCs were activated,which induced smooth muscle hyperpolarization following vsscular hyporeactivity in HS. Conclusions: Hyperpolarizing effect of KATP channel activation plays an important role in low vasoreactivity during severe hemorrhagic shock.

  18. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria - An amazing defence tool against hyperosmotic stress

    Directory of Open Access Journals (Sweden)

    Daniela eTrono

    2015-12-01

    Full Text Available In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about fifteen years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP. Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous and tissues/organs (etiolated and green have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane towards the matrix, so collapsing membrane potential (ΔΨ, the main component of the protonmotive force (Δp in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate

  19. Bioluminometric assay of ATP in mouse brain: Determinant factors for enhanced test sensitivity

    Indian Academy of Sciences (India)

    Haseeb Ahmad Khan

    2003-06-01

    Firefly luciferase bioluminescence (FLB) is a highly sensitive and specific method for the analysis of adenosine-5-triphosphate (ATP) in biological samples. Earlier attempts to modify the FLB test for enhanced sensitivity have been typically based on in vitro cell systems. This study reports an optimized FLB procedure for the analysis of ATP in small tissue samples. The results showed that the sensitivity of the FLB test can be enhanced several fold by using ultraturax homogenizer, perchloric acid extraction, neutralization of acid extract and its optimal dilution, before performing the assay reaction.

  20. Potassium

    Science.gov (United States)

    ... blackberries Root vegetables, such as carrots and potatoes Citrus fruits, such as oranges and grapefruit Your kidneys help to keep the right amount of potassium in your body. If you have chronic kidney disease, your kidneys may not remove extra potassium from ...

  1. Role of ATP in the sensitivity to heat and the induction of apoptosis in mammalian cells.

    Science.gov (United States)

    Miyazaki, N; Kurihara, K; Nakano, H; Shinohara, K

    2002-01-01

    Heat-induced cell death and apoptosis were studied with respect to intracellular ATP. Studies on the relationship between hyperthermic cell-killing at 44 degrees C and cellular ATP levels in four cell lines grown as monolayers and six cell lines grown in suspension showed good correlations between cellular ATP levels and the sensitivity to heat. D(0) values (the dose required to reduce survival in the linear portion of the response by 63%) linearly increased with an increase in cellular ATP levels. No such changes in sensitivity to heat were observed between the cells cultured at different cell densities, regardless of the change in the cellular ATP level. These results suggest that cellular intrinsic ability to supply ATP rather than the level of pooled ATP per se is responsible for the thermal response. Heat-induced apoptosis in L5178Y cells was observed following treatment at 42 degrees C for 70 min, 44 degrees C for 20 min or 47 degrees C for 3 min, which corresponded to surviving fractions of 25, 0.6 and 0.8%, respectively, but not at 47 degrees C for 20 min, indicating that mild heat shock induced apoptosis. 2-deoxyglucose (2DG) and 2,4-dinitrophenol (DNP) increased the sensitivity to heat and affected the mode of cell death. Cells treated with 2DG and DNP (2DG/DNP) were heated at 42 degrees C for 20 min, and then incubated at 37 degrees C for up to 2h in the presence or absence of 2DG/DNP. In the absence of 2DG/DNP, the cellular ATP level recovered to 76% of the control level and DNA ladder formation was observed, whereas in the presence of 2DG/DNP, the cellular ATP level was further decreased (3-7% of the control) and no DNA fragmentation was detected. These results suggest that the inhibition of ATP synthesis is closely associated with the enhancement of sensitivity to heat and that ATP is required for the induction of apoptosis.

  2. Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection.

    Science.gov (United States)

    Santangelo, M F; Libertino, S; Turner, A P F; Filippini, D; Mak, W C

    2018-01-15

    Bioluminescence has been widely used for important biosensing applications such as the measurement of adenosine triphosphate (ATP), the energy unit in biological systems and an indicator of vital processes. The current technology for detection is mainly based on large equipment such as readers and imaging systems, which require intensive and time-consuming procedures. A miniaturised bioluminescence sensing system, which would allow sensitive and continuous monitoring of ATP, with an integrated and low-cost disposable microfluidic chamber for handling of biological samples, is highly desirable. Here, we report the design, fabrication and testing of 3D printed microfluidics chips coupled with silicon photomultipliers (SiPMs) for high sensitive real-time ATP detection. The 3D microfluidic chip reduces reactant consumption and facilitates solution delivery close to the SiPM to increase the detection efficiency. Our system detects ATP with a limit of detection (LoD) of 8nM and an analytical dynamic range between 15nM and 1µM, showing a stability error of 3%, and a reproducibility error below of 20%. We demonstrate the dynamic monitoring of ATP in a continuous-flow system exhibiting a fast response time, ~4s, and a full recovery to the baseline level within 17s. Moreover, the SiPM-based bioluminescence sensing system shows a similar analytical dynamic range for ATP detection to that of a full-size PerkinElmer laboratory luminescence reader. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Potassium

    Science.gov (United States)

    ... high in potassium include bananas, cantaloupe, grapefruit, oranges, tomato or prune juice, honeydew melons, prunes, molasses and ... of a Heart Attack 10 Angina (Chest Pain) *Red Dress ™ DHHS, Go Red ™ AHA ; National Wear Red ...

  4. Phentolamine and yohimbine inhibit ATP-sensitive K+ channels in mouse pancreatic beta-cells.

    OpenAIRE

    Plant, T D; Henquin, J C

    1990-01-01

    1. The effects of phentolamine and yohimbine on adenosine 5'-triphosphate (ATP)-sensitive K+ channels were studied in normal mouse beta-cells. 2. In the presence of 3 mM glucose, many ATP-sensitive K+ channels are open in the beta-cell membrane. Under these conditions, phentolamine inhibited 86Rb efflux from the islets. This inhibition was faster with 100 than with 20 microM phentolamine but its steady-state magnitude was similar with both concentrations. Yohimbine (20-100 microM) also inhibi...

  5. Target-protecting dumbbell molecular probe against exonucleases digestion for sensitive detection of ATP and streptavidin.

    Science.gov (United States)

    Chen, Jinyang; Liu, Yucheng; Ji, Xinghu; He, Zhike

    2016-09-15

    In this work, a versatile dumbbell molecular (DM) probe was designed and employed in the sensitively homogeneous bioassay. In the presence of target molecule, the DM probe was protected from the digestion of exonucleases. Subsequently, the protected DM probe specifically bound to the intercalation dye and resulted in obvious fluorescence signal which was used to determine the target molecule in return. This design allows specific and versatile detection of diverse targets with easy operation and no sophisticated fluorescence labeling. Integrating the idea of target-protecting DM probe with adenosine triphosphate (ATP) involved ligation reaction, the DM probe with 5'-end phosphorylation was successfully constructed for ATP detection, and the limitation of detection was found to be 4.8 pM. Thanks to its excellent selectivity and sensitivity, this sensing strategy was used to detect ATP spiked in human serum as well as cellular ATP. Moreover, the proposed strategy was also applied in the visual detection of ATP in droplet-based microfluidic platform with satisfactory results. Similarly, combining the principle of target-protecting DM probe with streptavidin (SA)-biotin interaction, the DM probe with 3'-end biotinylation was developed for selective and sensitive SA determination, which demonstrated the robustness and versatility of this design.

  6. ATP-modulated K+ channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release

    OpenAIRE

    Bernardi, H; de Weille, J.R.; Epelbaum, J; Mourre, C; Amoroso, S.; Slama, A; Fosset, M; Lazdunski, M

    1993-01-01

    The adenohypophysis contains high-affinity binding sites for antidiabetic sulfonylureas that are specific blockers of ATP-sensitive K+ channels. The binding protein has a M(r) of 145,000 +/- 5000. The presence of ATP-sensitive K+ channels (26 pS) has been demonstrated by electrophysiological techniques. Intracellular perfusion of adenohypophysis cells with an ATP-free medium to activate ATP-sensitive K+ channels induces a large hyperpolarization (approximately 30 mV) that is antagonized by an...

  7. Synchronized fission yeast meiosis using an ATP analog-sensitive Pat1 protein kinase

    OpenAIRE

    Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W.; Smith, Gerald R.; Gregan, Juraj

    2014-01-01

    Synchronous cultures are often indispensable for studying meiosis. Here, we present an optimized protocol for induction of synchronous meiosis in the fission yeast Schizosaccharomyces pombe. Chemical inactivation of an ATP analog-sensitive form of the Pat1 kinase (pat1-as2) by adding the ATP-analog 1-NM-PP1 in G1-arrested cells allows induction of synchronous meiosis at optimal temperature (25 °C). Importantly, this protocol eliminates detrimental effects of elevated temperature (34 °C) which...

  8. Clemastine Potentiates the Human P2X7 Receptor by Sensitizing It to Lower ATP Concentrations*

    OpenAIRE

    Nörenberg, Wolfgang; Hempel, Christoph; Urban, Nicole; Sobottka, Helga; Illes, Peter; Schaefer, Michael

    2011-01-01

    P2X7 receptors have emerged as potential drug targets for the treatment of medical conditions such as e.g. rheumatoid arthritis and neuropathic pain. To assess the impact of pharmaceuticals on P2X7, we screened a compound library comprising approved or clinically tested drugs and identified several compounds that augment the ATP-triggered P2X7 activity in a stably transfected HEK293 cell line. Of these, clemastine markedly sensitized Ca2+ entry through P2X7 to lower ATP concentrations. Extrac...

  9. ATP-sensitive K+ channel signaling in glucokinase-deficient diabetes.

    Science.gov (United States)

    Remedi, Maria S; Koster, Joseph C; Patton, Brian L; Nichols, Colin G

    2005-10-01

    As the rate-limiting controller of glucose metabolism, glucokinase represents the primary beta-cell "glucose sensor." Inactivation of both glucokinase (GK) alleles results in permanent neonatal diabetes; inactivation of a single allele causes maturity-onset diabetes of the young type 2 (MODY-2). Similarly, mice lacking both alleles (GK(-/-)) exhibit severe neonatal diabetes and die within a week, whereas heterozygous GK(+/-) mice exhibit markedly impaired glucose tolerance and diabetes, resembling MODY-2. Glucose metabolism increases the cytosolic [ATP]-to-[ADP] ratio, which closes ATP-sensitive K(+) channels (K(ATP) channels), leading to membrane depolarization, Ca(2+) entry, and insulin exocytosis. Glucokinase insufficiency causes defective K(ATP) channel regulation, which may underlie the impaired secretion. To test this prediction, we crossed mice lacking neuroendocrine glucokinase (nGK(+/-)) with mice lacking K(ATP) channels (Kir6.2(-/-)). Kir6.2 knockout rescues perinatal lethality of nGK(-/-), although nGK(-/-)Kir6.2(-/-) animals are postnatally diabetic and still die prematurely. nGK(+/-) animals are diabetic on the Kir6.2(+/+) background but only mildly glucose intolerant on the Kir6.2(-/-) background. In the presence of glutamine, isolated nGK(+/-)Kir6.2(-/-) islets show improved insulin secretion compared with nGK(+/-)Kir6.2(+/+). The significant abrogation of nGK(-/-) and nGK(+/-) phenotypes in the absence of K(ATP) demonstrate that a major factor in glucokinase deficiency is indeed altered K(ATP) signaling. The results have implications for understanding and therapy of glucokinase-related diabetes.

  10. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    Science.gov (United States)

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).

  11. High Sensitivity Detection of ATP Using Bioluminescence at An Optical Fiber End

    Science.gov (United States)

    Iinuma, Masataka; Ushio, Yasuaki; Kuroda, Akio; Kadoya, Yutaka

    We investigated the sensitivity of ATP detection based on bioluminescence at an optical fiber end where luciferase molecules were immobilized via silica-binding protein molecules. Luminescence was detected by an avalanche photo diode (APD), with coupling optics to make full use of the merit of compactness, high quantum efficiency and low noise of the APD. The core diameter and the numerical aperture of the optical fiber, as well as the design of the coupling optics, were optimized so as to realize high photon-collection efficiency. A detection limit of about 10-10 M was obtained, which corresponds to 10-15 mol of ATP. A rough estimation shows that the photon count rate is still two orders of magnitude lower than that limited by diffusion or reaction processes, implying a possibility of further improvement of the sensitivity.

  12. Intractable hyperkalemia due to nicorandil induced potassium channel syndrome

    Directory of Open Access Journals (Sweden)

    Vivek Chowdhry

    2015-01-01

    Full Text Available Nicorandil is a commonly used antianginal agent, which has both nitrate-like and ATP-sensitive potassium (K ATP channel activator properties. Activation of potassium channels by nicorandil causes expulsion of potassium ions into the extracellular space leading to membrane hyperpolarization, closure of voltage-gated calcium channels and finally vasodilatation. However, on the other hand, being an activator of K ATP channel, it can expel K + ions out of the cells and can cause hyperkalemia. Here, we report a case of nicorandil induced hyperkalemia unresponsive to medical treatment in a patient with diabetic nephropathy.

  13. Imaging extracellular potassium dynamics in brain tissue using a potassium-sensitive nanosensor.

    Science.gov (United States)

    Wellbourne-Wood, Joel; Rimmele, Theresa S; Chatton, Jean-Yves

    2017-01-01

    Neuronal activity results in the release of [Formula: see text] into the extracellular space (ECS). Classically, measurements of extracellular [Formula: see text] ([Formula: see text]) are carried out using [Formula: see text]-sensitive microelectrodes, which provide a single point measurement with undefined spatial resolution. An imaging approach would enable the spatiotemporal mapping of [Formula: see text]. Here, we report on the design and characterization of a fluorescence imaging-based [Formula: see text]-sensitive nanosensor for the ECS based on dendrimer nanotechnology. Spectral characterization, sensitivity, and selectivity of the nanosensor were assessed by spectrofluorimetry, as well as in both wide-field and two-photon microscopy settings, demonstrating the nanosensor efficacy over the physiologically relevant ion concentration range. Spatial and temporal kinetics of the nanosensor responses were assessed using a localized iontophoretic [Formula: see text] application on a two-photon imaging setup. Using acute mouse brain slices, we demonstrate that the nanosensor is retained in the ECS for extended periods of time. In addition, we present a ratiometric version of the nanosensor, validate its sensitivity in brain tissue in response to elicited neuronal activity and correlate the responses to the extracellular field potential. Together, this study demonstrates the efficacy of the [Formula: see text]-sensitive nanosensor approach and validates the possibility of creating multimodal nanosensors.

  14. Potassium Aspartate Attenuates Brain Injury Induced by Controlled Cortical Impact in Rats Through Increasing Adenosine Triphosphate (ATP) Levels, Na+/K+-ATPase Activity and Reducing Brain Edema.

    Science.gov (United States)

    Gu, Yi; Zhang, Jie; Zhao, Yumei; Su, Yujin; Zhang, Yazhuo

    2016-12-13

    BACKGROUND Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). MATERIAL AND METHODS TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. RESULTS We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (pATP (pATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA.

  15. POTASSIUM CHANNELS IN HYPOKALEMIC PERIODIC PARALYSIS - A KEY TO THE PATHOGENESIS

    NARCIS (Netherlands)

    LINKS, TP; SMIT, AJ; OOSTERHUIS, HJGH; REITSMA, WD

    1993-01-01

    1. A possible role for the ATP-sensitive potassium channels in the pathogenesis of hypokalaemic periodic paralysis was investigated. 2. We assessed insulin release and muscle strength after intravenous glucose loading with and without the potassium channel opener pinacidil and the potassium channel

  16. POTASSIUM CHANNELS IN HYPOKALEMIC PERIODIC PARALYSIS - A KEY TO THE PATHOGENESIS

    NARCIS (Netherlands)

    LINKS, TP; SMIT, AJ; OOSTERHUIS, HJGH; REITSMA, WD

    1993-01-01

    1. A possible role for the ATP-sensitive potassium channels in the pathogenesis of hypokalaemic periodic paralysis was investigated. 2. We assessed insulin release and muscle strength after intravenous glucose loading with and without the potassium channel opener pinacidil and the potassium channel

  17. Synchronized fission yeast meiosis using an ATP analog-sensitive Pat1 protein kinase.

    Science.gov (United States)

    Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W; Smith, Gerald R; Gregan, Juraj

    2014-01-01

    Synchronous cultures are often indispensable for studying meiosis. Here we present an optimized protocol for induction of synchronous meiosis in the fission yeast Schizosaccharomyces pombe. Chemical inactivation of an ATP analog-sensitive form of the Pat1 kinase (pat1-as2) by adding the ATP analog 1-NM-PP1 in G1-arrested cells allows the induction of synchronous meiosis at optimal temperature (25°C). Importantly, this protocol eliminates detrimental effects of elevated temperature (34°C), which is required to inactivate the commonly used temperature-sensitive Pat1 kinase mutant (pat1-114). The addition of the mat-Pc gene to a mat1-M strain further improves chromosome segregation and spore viability. Thus, our protocol offers highly synchronous meiosis at optimal temperature, with most characteristics similar to those of wild-type meiosis. The synchronization protocol can be completed in 5 d (not including strain production, which may take as long as 2 or 3 months).

  18. Low glucose-induced ghrelin secretion is mediated by an ATP-sensitive potassium channel.

    Science.gov (United States)

    Oya, Manami; Kitaguchi, Tetsuya; Harada, Kazuki; Numano, Rika; Sato, Takahiro; Kojima, Masayasu; Tsuboi, Takashi

    2015-07-01

    Ghrelin is synthesized in X/A-like cells of the gastric mucosa, which plays an important role in the regulation of energy homeostasis. Although ghrelin secretion is known to be induced by neurotransmitters or hormones or by nutrient sensing in the ghrelin-secreting cells themselves, the mechanism of ghrelin secretion is not clearly understood. In the present study, we found that changing the extracellular glucose concentration from elevated (25  mM) to optimal (10 mM) caused an increase in the intracellular Ca2+ concentration ([Ca2+]i) in ghrelin-secreting mouse ghrelinoma 3-1 (MGN3-1) cells (n=32, Pghrelin secretion (n≥3, Pghrelin secretion (n≥3, Pghrelin secretion (n≥5, Pghrelin secretion in MGN3-1 cells.

  19. Brushing with a potassium nitrate dentifrice to reduce bleaching sensitivity.

    Science.gov (United States)

    Haywood, Van B; Cordero, Rafael; Wright, Kellie; Gendreau, Linda; Rupp, Ronald; Kotler, Mitchell; Littlejohn, Sonya; Fabyanski, Joyce; Smith, Stuart

    2005-01-01

    This research systematically evaluated the use of a clinically proven desensitizing dentifrice prior to a bleaching regimen in a randomized, multi-center, parallel group, open label clinical study following Good Clinical Practice guidelines. Fourteen dental offices in West Palm Beach, Florida participated in the study during April/May 2004. Fourteen days prior to bleaching, impressions and oral soft tissue assessments were performed, and patients were randomized to either a KNO3 plus fluoride dentifrice (Sensodyne Fresh Mint), or a standard fluoride dentifrice (Crest Regular), brushing 2x per day. On Day 14, patients returned to the dental office for their custom tray and the dispensation of a bleaching kit (Day White Excel 3; 9.5% hydrogen peroxide and KNO3). This was used daily according to the manufacturer's instructions for 30 minutes, and normal oral hygiene continued to be performed using the assigned toothbrush and dentifrice, brushing 2x per day. At the end of each bleaching day, patients answered diary questions about the occurrence and intensity of sensitivity. At the conclusion of the 14-day bleaching period (Day 28), patients returned to their dental office for re-examination, returning all products and diaries. Within seven days of completing the study, patients answered a telephone patient satisfaction survey. A total of 202 patients in fourteen (14) dental offices completed all aspects of the study and were used for the analysis. The professionally dispensed bleaching product provided an improvement of approximately 4.4 Vita shades, regardless of whether it was used with the KNO3 plus fluoride (Sensodyne) or a standard fluoride (Crest) dentifrice. The patient perception of increased sensitivity caused by the bleaching treatment was low but measurable. In the first week of the bleaching, significantly more patients using the KNO3 plus fluoride dentifrice were free from sensitivity (58%) than the standard fluoride dentifrice group (42%). During the 14

  20. Hydrostatic pressure activates ATP-sensitive K+ channels in lung epithelium by ATP release through pannexin and connexin hemichannels.

    Science.gov (United States)

    Richter, Katrin; Kiefer, Kevin P; Grzesik, Benno A; Clauss, Wolfgang G; Fronius, Martin

    2014-01-01

    Lungs of air-breathing vertebrates are constantly exposed to mechanical forces and therefore are suitable for investigation of mechanotransduction processes in nonexcitable cells and tissues. Freshly dissected Xenopus laevis lungs were used for transepithelial short-circuit current (ISC) recordings and were exposed to increased hydrostatic pressure (HP; 5 cm fluid column, modified Ussing chamber). I(SC) values obtained under HP (I(5cm)) were normalized to values before HP (I(0cm)) application (I(5cm)/I(0cm)). Under control conditions, HP decreased I(SC) (I(5cm)/I(0cm)=0.84; n=68; Plung. These data show an activation of KATP in pulmonary epithelial cells in response to HP that is induced by ATP release through mechanosensitive pannexin and connexin hemichannels. These findings represent a novel mechanism of mechanotransduction in nonexcitable cells.

  1. New mutations of SCN4A cause a potassium-sensitive normokalemic periodic paralysis.

    Science.gov (United States)

    Vicart, S; Sternberg, D; Fournier, E; Ochsner, F; Laforet, P; Kuntzer, T; Eymard, B; Hainque, B; Fontaine, B

    2004-12-14

    Periodic paralysis is classified into hypokalemic (hypoPP) and hyperkalemic (hyperPP) periodic paralysis according to variations of blood potassium levels during attacks. To describe new mutations in the muscle sodium channel gene SCN4A that cause periodic paralysis. A thorough clinical, electrophysiologic, and molecular study was performed of four unrelated families who presented with periodic paralysis. The nine affected members had episodes of muscle weakness reminiscent of both hyperPP and hypoPP. A provocative test with potassium chloride was positive in two patients. However, repeated and carefully performed tests of blood potassium levels during attacks resulted in normal potassium levels. Remarkably, two patients experienced hypokalemic episodes of paralysis related to peculiar provocative factors (corticosteroids and thyrotoxicosis). Similarly to hyperPP, electromyography in nine patients revealed increased compound muscle action potentials after short exercise and a delayed decline during rest after long exercise as well as myotonic discharges in one patient. With use of molecular genetic analysis of the gene SCN4A, three new mutations were found affecting codon 675. They resulted in an amino acid substitution of a highly conserved arginine (R) to either a glycine (G), a glutamine (Q), or a tryptophan (W). Interestingly, hypoPP is caused by both mutations affecting nearby codons as well as the change of an arginine into another amino acid. A potassium-sensitive and normokalemic type of periodic paralysis caused by new SCN4A mutations at codon 675 is reported.

  2. Age-dependent variations in potassium sensitivity of A-currents in rat hippocampal neurons.

    Science.gov (United States)

    Klee, R; Eder, C; Ficker, E; Heinemann, U

    1997-09-01

    Hippocampal pyramidal neurons were either cultured from prenatal rats or acutely isolated from the brain of newborn and juvenile rats. The influence of lowering the concentration of the extracellular potassium concentration ([K+]o) on isolated fast transient outward K+ currents (I(A)) was studied in these neurons using the patch clamp technique in the whole cell configuration. With respect to the response of I(A) to lowering [K+]o, three types of cells were observed. The first subpopulation of neurons was characterized by a complete suppression of I(A) over the whole voltage range under potassium-free solutions (type A neurons). A second proportion of cells showed an increase of I(A) at test pulses below -0 mV and a decrease of I(A) at voltages above -0 mV (type B neurons). In a third group of neurons, amplitudes of I(A) increased at all potentials tested during omission of potassium ions from the extracellular superfusate (type C neurons). Whereas type A and type B neurons were preferentially found in freshly plated cultures and newborn rats, the majority of type C cells was detected in long-term cultures and in animals of older ages. Thus, hippocampal A-currents lose their sensitivity to extracellular potassium ions during early ontogenesis.

  3. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles.

    Science.gov (United States)

    Huo, Yuan; Qi, Liang; Lv, Xiao-Jun; Lai, Ting; Zhang, Jing; Zhang, Zhi-Qi

    2016-04-15

    Adenosine triphosphate (ATP) is the most direct source of energy in organisms. This study is the first to demonstrate that ATP-aptamer complexes provide greater protection for unmodified gold nanoparticles (AuNPs) against salt-induced aggregation than either aptamer or ATP alone. This protective effect was confirmed using transmission electron microscopy, dynamic light scattering, Zeta potential measurement, and fluorescence polarization techniques. Utilizing controlled particle aggregation/dispersion as a gauge, a sensitive and selective aptasensor for colorimetric detection of ATP was developed using ATP-binding aptamers as the identification element and unmodified AuNPs as the probe. This aptasensor exhibited a good linear relationship between the absorbance and the logarithm concentration of ATP within a 50-1000 nM range. ATP analogs such as guanosine triphosphate, uridine triphosphate and cytidine triphosphate resulted in little or no interference in the determination of ATP.

  4. Regulation of adenosine triphosphate-sensitive potassium channels suppresses the toxic effects of amyloid-beta peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Min Kong; Maowen Ba; Hui Liang; Peng Shao; Tianxia Yu; Ying Wang

    2013-01-01

    In this study, we treated PC12 cells with 0-20 μM amyloid-β peptide (25-35) for 24 hours to induce cytotoxicity, and found that 5-20 μM amyloid-β peptide (25-35) decreased PC12 cell viability, but adenosine triphosphate-sensitive potassium channel activator diazoxide suppressed the decrease reactive oxygen species levels. These protective effects were reversed by the selective mitochondrial adenosine triphosphate-sensitive potassium channel blocker 5-hydroxydecanoate. An inducible nitric oxide synthase inhibitor, Nω-nitro-L-arginine, also protected PC12 cells from intracellular reactive oxygen species levels. However, the H2O2-degrading enzyme catalase could that the increases in both mitochondrial membrane potential and reactive oxygen species levels adenosine triphosphate-sensitive potassium channels and nitric oxide. Regulation of adenosine triphosphate-sensitive potassium channels suppresses PC12 cell cytotoxicity induced by amyloid-β

  5. Sensitivity of small myosin II ensembles from different isoforms to mechanical load and ATP concentration

    Science.gov (United States)

    Erdmann, Thorsten; Bartelheimer, Kathrin; Schwarz, Ulrich S.

    2016-11-01

    Based on a detailed crossbridge model for individual myosin II motors, we systematically study the influence of mechanical load and adenosine triphosphate (ATP) concentration on small myosin II ensembles made from different isoforms. For skeletal and smooth muscle myosin II, which are often used in actomyosin gels that reconstitute cell contractility, fast forward movement is restricted to a small region of phase space with low mechanical load and high ATP concentration, which is also characterized by frequent ensemble detachment. At high load, these ensembles are stalled or move backwards, but forward motion can be restored by decreasing ATP concentration. In contrast, small ensembles of nonmuscle myosin II isoforms, which are found in the cytoskeleton of nonmuscle cells, are hardly affected by ATP concentration due to the slow kinetics of the bound states. For all isoforms, the thermodynamic efficiency of ensemble movement increases with decreasing ATP concentration, but this effect is weaker for the nonmuscle myosin II isoforms.

  6. Sensitivity of P-glycoprotein tryptophan residues to benzodiazepines and ATP interaction.

    Science.gov (United States)

    Lima, Sofia A C; Cordeiro-da-Silva, Anabela; de Castro, Baltazar; Gameiro, Paula

    2007-01-01

    Plasma membrane P-glycoprotein is a member of the ATP-binding cassette family of membrane transporters. In the present study tryptophan intrinsic fluorescence was used to understand the P-glycoprotein response to three benzodiazepines (bromazepam, chlordiazepoxide and flurazepam) in the presence and absence of ATP. Fluorescence emission spectra showed a red shift on the maximal emission wavelength upon interaction of P-glycoprotein with all benzodiazepines. Benzodiazepine association with nucleotide-bound P-glycoprotein also showed this trend and the quenching profile was attributed to a sphere-of-action model, for static fluorescence. Furthermore, quenching data of benzodiazepine-bound P-glycoprotein with ATP were concentration dependent and saturable, indicating that nucleotide binds to P-glycoprotein whether drug is present or not. These results seems in agreement with the proposal of the ATP-switch model by Higgins and Linton, where substrate binding to the transporters initiates the transport cycle by increasing the ATP binding affinity.

  7. Cardiac specific ATP-sensitive K+ channel (KATP) overexpression results in embryonic lethality.

    Science.gov (United States)

    Toib, Amir; Zhang, Hai Xia; Broekelmann, Thomas J; Hyrc, Krzysztof L; Guo, Qiusha; Chen, Feng; Remedi, Maria S; Nichols, Colin G

    2012-09-01

    Transgenic mice overexpressing SUR1 and gain of function Kir6.2[∆N30, K185Q] K(ATP) channel subunits, under cardiac α-myosin heavy chain (αMHC) promoter control, demonstrate arrhythmia susceptibility and premature death. Pregnant mice, crossed to carry double transgenic progeny, which harbor high levels of both overexpressed subunits, exhibit the most extreme phenotype and do not deliver any double transgenic pups. To explore the fetal lethality and embryonic phenotype that result from K(ATP) overexpression, wild type (WT) and K(ATP) overexpressing embryonic cardiomyocytes were isolated, cultured and voltage-clamped using whole cell and excised patch clamp techniques. Whole mount embryonic imaging, Hematoxylin and Eosin (H&E) and α smooth muscle actin (αSMA) immunostaining were used to assess anatomy, histology and cardiac development in K(ATP) overexpressing and WT embryos. Double transgenic embryos developed in utero heart failure and 100% embryonic lethality by 11.5 days post conception (dpc). K(ATP) currents were detectable in both WT and K(ATP)-overexpressing embryonic cardiomyocytes, starting at early stages of cardiac development (9.5 dpc). In contrast to adult cardiomyocytes, WT and K(ATP)-overexpressing embryonic cardiomyocytes exhibit basal and spontaneous K(ATP) current, implying that these channels may be open and active under physiological conditions. At 9.5 dpc, live double transgenic embryos demonstrated normal looping pattern, although all cardiac structures were collapsed, probably representing failed, non-contractile chambers. In conclusion, K(ATP) channels are present and active in embryonic myocytes, and overexpression causes in utero heart failure and results in embryonic lethality. These results suggest that the K(ATP) channel may have an important physiological role during early cardiac development.

  8. Green synthesis of fluorescence carbon nanoparticles from yum and application in sensitive and selective detection of ATP.

    Science.gov (United States)

    Zhan, Zixuan; Cai, Jiao; Wang, Qi; Su, Yingying; Zhang, Lichun; Lv, Yi

    2016-05-01

    Fluorescent carbon nanoparticles (CPs), a fascinating class of recently discovered nanocarbons, have been widely known as some of the most promising sensing probes in biological or chemical analysis. In this study, we demonstrate a green synthetic methodology for generating water-soluble CPs with a quantum yield of approximately 24% via a simple heating process using yum mucilage as a carbon source. The prepared carbon nanoparticles with an ~10 nm size possessed excellent fluorescence properties, and the fluorescence of the CPs was strongly quenched by Fe(3+), and recovered by adenosine triphosphate (ATP), thus, an 'off' and 'on' system can be easily established. This 'CPs-Fe(3+)-ATP' strategy was sensitive and selective at detecting ATP with the linear range of 0.5 µmol L(-1) to 50 µmol L(-1) and with a detection limit of 0.48 µmol L(-1). Copyright © 2015 John Wiley & Sons, Ltd.

  9. The role of potassium channels in the nitric oxide-induced relaxation of human airway smooth muscle of passively sensitization by serum from allergic asthmatic patients

    Institute of Scientific and Technical Information of China (English)

    Tao Ye; Yongjian Xu; Zhenxiang Zhang; Xiansheng Liu; Zhao Yang; Baoan Gao

    2006-01-01

    Objective: To investigate the role of large Ca2+-activated, delayed-rectifier and ATP-sensitive potassium channel in regulating the relaxation induced by nitric oxide (NO) in normal and passively sensitized human airway smooth muscle (HASM) with serum from asthmatic patients. Methods: The effects of NO or/and potassium channel blockers on the tensions of normal and passively sensitized HASM were measured by using nitric oxide donor and potassium blockers, with the isometric tension recording technique. Results: Showed that (1)In the control group and passively sensitized group, Kv blocker (4-AP) cause concentration-dependent augmentation in the contraction induced by histamine (1 ×10-4 mol/L), (P < 0.05), but Glib (1 × 10-2 mol/L)and TEA (1×10-3 mol/L) have no significant effects on the contraction induced by histamine (1×10-4 mol/L). The maximum tension induced by histamine in passively sensitized group is higher than that in the control group (P < 0.05). (2) NO-donor Sodium Nitroprusside (SNP) bring about significant relaxation in normal and passively sensitized HASM rings (P < 0.05). Relaxations of passively sensitized airway rings [ (29.4 ± 3.3)% ] were significant less than those of normal HASM rings [ (44.1 ± 10.2)% ], (P <0.05).(3) Glib(1×10-2 mol/L)have no significant effect on the relaxations induced by SNP(1×10-4 mol/L). 4-AP(1×10-2 mol/L) inhibited relaxation induced by SNP (1×10-4 mol/L), (P < 0.01). TEA (1×10-3 mol/L) inhibited relaxation induced by SNP (1×10-4mol/L) (P < 0.05), and the inhibiting effect in passively sensitized HASM rings were significant less than in normal HASM, (P <0.05). Conclusion: It was concluded that SNP(NO-donor) relaxed the contraction of HASM partly via BKca channel opening. In passively sensitized HASM in vitro, the relaxation of SNP decreased compared with control group, which might be associated with the down-regulating activity of BKca in passively sensitized HASM.

  10. Human MCG measurements with a high-sensitivity potassium atomic magnetometer.

    Science.gov (United States)

    Kamada, K; Ito, Y; Kobayashi, T

    2012-06-01

    Measuring biomagnetic fields, such as magnetocardiograms (MCGs), is important for investigating biological functions. To address to this need, we developed an optically pumped atomic magnetometer. In this study, human MCGs were acquired using a potassium atomic magnetometer without any modulating systems. The sensitivity of the magnetometer is comparable to that of high-T(c) superconducting quantum interference devices (SQUIDs) and is sufficient for acquiring human MCGs. The activity of a human heart estimated from the MCG maps agrees well with that measured with SQUID magnetometers. Thus, our magnetometer produces reliable results, which demonstrate the potential of our atomic magnetometer for biomagnetic measurements.

  11. Randomised clinical efficacy trial of potassium oxalate mouthrinse in relieving dentinal sensitivity.

    Science.gov (United States)

    Sharma, Deepak; McGuire, James A; Gallob, John T; Amini, Pejmon

    2013-07-01

    The study aimed to determine the efficacy in relieving dentinal sensitivity of 4 weeks' treatment with an alcohol-free mouthrinse comprising 1.4% potassium oxalate (KO) (Listerine® Advanced Defence Sensitive; LADS), compared with negative and positive controls. Subjects were randomised to one of three treatments: LADS mouthrinse - twice-daily toothbrushing with Crest® Cavity Protection Regular toothpaste, rinsing with water and then 10 mL LADS mouthrinse, followed by expectoration; negative control (twice-daily brushing with Crest Cavity Protection Regular toothpaste); or positive control (twice-daily brushing with Sensodyne® Original desensitising toothpaste). Dentine sensitivity was assessed at baseline and after 2 and 4 weeks by Yeaple probe (tactile pressure; patient-reported discomfort by visual analogue scale [VAS]), air blast (VAS) and global subjective sensitivity (VAS). Oral tolerance was monitored throughout the study. At 2 weeks, subjects treated with the positive control and LADS mouthrinse showed significant reductions (pSensodyne Original) significantly reduced sensitivity compared with the negative control (Crest toothpaste alone), thus validating the study. The LADS mouthrinse (1.4% KO mouthrinse) significantly reduced sensitivity compared with the negative control, suggesting that LADS mouthrinse was responsible for the clinical effect observed. The treatments were well tolerated. To our knowledge, this is the first randomised clinical study to demonstrate the efficacy of a KO-containing mouthrinse (LADS) in relieving dentinal sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Double-gating mechanism and diversity of an adenosine triphosphate (ATP)-sensitive K~+ channel in neurons acutely dissociated from rat neocortex

    Institute of Scientific and Technical Information of China (English)

    佟振清; 唐向东; 杨文俊

    1997-01-01

    Classically, ion channels are classified into 2 groups: chemical-sensitive (ligand-gated) and voltage-sensitive channels. Single ATP-sensitive K+ (K-ATP) channel currents were recorded in acutely dissociated rat neo-cortical neurons using patch clamp technique. A type of K-ATP channel has been found to be gated not only by intra-cellular ATP, but also by membrane potential ( Vm) , and proved to be a novel mechanism underlying the gating of ion channels, namely bi-gating mechanism. The results also show that the K-ATP channels possess heterogeneity and di-versity. These types of K-ATP channels have been identified in 40.12% of all patches, which are different in activa-tion-threshold and voltage-sensitivity. The present experiment studied the type-3 K-ATP channel with a unitary con-ductance of about 80 pS in detail ( n = 15). Taking account of all the available data, a variety of K-ATP channels are suggested to exist in body, and one type of them is bi-gated by both chemical substances and membrane poten

  13. Leucine regulation of glucokinase and ATP synthase sensitizes glucose-induced insulin secretion in pancreatic beta-cells.

    Science.gov (United States)

    Yang, Jichun; Wong, Ryan K; Park, MieJung; Wu, Jianmei; Cook, Joshua R; York, David A; Deng, Shaoping; Markmann, James; Naji, Ali; Wolf, Bryan A; Gao, Zhiyong

    2006-01-01

    We have recently shown that leucine culture upregulates ATP synthase beta-subunit (ATPSbeta) and increases ATP level, cytosolic Ca(2+), and glucose-induced insulin secretion in rat islets. The aim is to test whether glucokinase expression is also affected in rat islets and its role in glucose sensitization during leucine culture. Leucine culture increased glucose-induced NAD(P)H level at 1 and 2 days but not at 1 week. The half-maximal effective concentration of the glucose response curve for NAD(P)H was left-shifted from 5-7 to 2-3 mmol/l. The effect was dose dependent and rapamycin insensitive. Leucine culture did not affect glyceraldehyde effects on NAD(P)H. Leucine pretreatment for 30 min had no effects on NAD(P)H levels. Leucine culture for 2 days also increased glucose-induced cytosolic Ca(2+) elevation, ATP level, and insulin secretion. Leucine increase of glucokinase mRNA levels occurred as early as day 1 and lasted through 1 week. That of ATPSbeta did not occur until day 2 and lasted through 1 week. Leucine effects on both mRNAs were dose dependent. The upregulation of both genes was confirmed by Western blotting. Leucine culture also increased glucose-induced insulin secretion, ATP level, glucokinase, and ATPSbeta levels of type 2 diabetic human islets. In conclusion, leucine culture upregulates glucokinase, which increases NAD(P)H level, and ATPSbeta, which increases oxidation of NADH and production of ATP. The combined upregulation of both genes increases glucose-induced cytosolic Ca(2+) and insulin secretion.

  14. Electrophysiological effects of ATP on brain neurones.

    Science.gov (United States)

    Illes, P; Nieber, K; Nörenberg, W

    1996-12-01

    1. The electrophysiological effects of ATP on brain neurones are either due to the direct activation of P2 purinoceptors by the unmetabolized nucleotide or to the indirect activation of P1. purinoceptors by the degradation product adenosine. 2. Two subtypes of P2 purinoceptors are involved, a ligand-activated ion channel (P2X) and a G protein-coupled receptor (P2Y). Hence, the stimulation of P2X purinoceptors leads to a cationic conductance increase, while the stimulation of P2Y purinoceptors leads to a G protein-mediated opening or closure of potassium channels. 3. ATP may induce a calcium-dependent potassium current by increasing the intracellular Ca2+ concentration. This is due either to the entry of Ca2+ via P2X purinoceptors or to the activation of metabotropic P2Y purinoceptors followed by signaling via the G protein/phospholipase C/inositol 1,4,5-trisphosphate (IP3) cascade. Eventually, IP3 releases Ca2+ from its intracellular pools. 4. There is no convincing evidence for the presence of P2U purinoceptors sensitive to both ATP and UTP, or pyrimidinoceptors sensitive to UTP only, in the central nervous system (CNS). 5. ATP-sensitive P2X and P2Y purinoceptors show a wide distribution in the CNS and appear to regulate important neuronal functions.

  15. Implication of potassium trimolybdate nanowires as highly sensitive and selective ammonia sensor at room temperature

    Science.gov (United States)

    Joshi, Aditee C.; Gangal, S. A.

    2016-09-01

    Potassium trimolybdate nanowires are demonstrated as unique and highly selective NH3 sensing materials at room temperature. The nanowires were synthesized by using chemical route under normal ambient conditions and subsequently characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). Gas sensors based on nanowires were fabricated by isolating and aligning nanowires between microspaced electrodes using dielectrophoresis. Room temperature gas sensing studies for different vapors indicated excellent selectivity for NH3 and capability to detect NH3 at concentrations down to ppb level. The sensors exhibited higher sensitivity for concentration range much below toxic limit of NH3 from 500 ppb up to 25 ppm. Since nanowires are isolated and aligned, the gas sensing reaction is rapid, and the availability of abundant oxide and hydroxyl surface groups on nanowires surface makes the reaction significantly prominent and selective with highly reducing nature of NH3.

  16. THE ISOLATION OF MYXOMYOSIN, AN ATP-SENSITIVE PROTEIN FROM THE PLASMODIUM OF A MYXOMYCETE

    Science.gov (United States)

    Ts'o, Paul O. P.; Eggman, Luther; Vinograd, Jerome

    1956-01-01

    1. A procedure has been developed for the preparation of an active concentrate from the myxomycete, Physarum polycephalum. This concentrate responds with a lowered viscosity to the addition of small amounts of ATP. The preparation recovers in viscosity, and the process may be repeated. 2. In the most active concentrates, 75 per cent of the non-dialyzable material moves as a single boundary both in the descending limb in electrophoresis and in the ultracentrifuge. It contains about 10 per cent ribonucleic acid, which is at least in part reversibly bound to the protein. 3. The active material has been designated myxomyosin because of its origin and its similarity to actomyosin in ATP response. PMID:13319663

  17. Diet-induced glucose intolerance in mice with decreased beta-cell ATP-sensitive K+ channels.

    Science.gov (United States)

    Remedi, Maria S; Koster, Joseph C; Markova, Kamelia; Seino, Susumu; Miki, Takashi; Patton, Brian L; McDaniel, Michael L; Nichols, Colin G

    2004-12-01

    ATP-sensitive K+ channels (K(ATP) channels) control electrical activity in beta-cells and therefore are key players in excitation-secretion coupling. Partial suppression of beta-cell K(ATP) channels in transgenic (AAA) mice causes hypersecretion of insulin and enhanced glucose tolerance, whereas complete suppression of these channels in Kir6.2 knockout (KO) mice leads to hyperexcitability, but mild glucose intolerance. To test the interplay of hyperexcitability and dietary stress, we subjected AAA and KO mice to a high-fat diet. After 3 months on the diet, both AAA and KO mice converted to an undersecreting and markedly glucose-intolerant phenotype. Although Kir6.2 is expressed in multiple tissues, its primary functional consequence in both AAA and KO mice is enhanced beta-cell electrical activity. The results of our study provide evidence that, when combined with dietary stress, this hyperexcitability is a causal diabetic factor. We propose an "inverse U" model for the response to enhanced beta-cell excitability: the expected initial hypersecretion can progress to undersecretion and glucose-intolerance, either spontaneously or in response to dietary stress.

  18. Effects of salt intake and potassium supplementation on renalase expression in the kidneys of Dahl salt-sensitive rats.

    Science.gov (United States)

    Zheng, Wen-Ling; Wang, Jing; Mu, Jian-Jun; Liu, Fu-Qiang; Yuan, Zu-Yi; Wang, Yang; Wang, Dan; Ren, Ke-Yu; Guo, Tong-Shuai; Xiao, Hong-Yu

    2016-02-01

    Renalase is currently the only known amine oxidase in the blood that can metabolize catecholamines and regulate sympathetic activity. High salt intake is associated with high blood pressure (BP), possibly through the modulation of renalase expression and secretion, whereas potassium can reverse the high salt-mediated increase in blood pressure. However, whether potassium could also modulate BP through renalase is unclear. In this study, we aim to investigate how salt intake and potassium supplementation affect the level of renalase in rats. Eighteen salt-sensitive (SS) and 18 SS-13BN rats were divided into six groups, receiving normal salt (0.3% NaCl), high salt (8% NaCl) and high salt/potassium (8% NaCl and 8% KCl) dietary intervention for four weeks. At the end of experiments, blood and kidneys were collected for analysis. mRNA level of renalase was measured by quantitative real-time PCR and protein level was determined by Western blot. We found that mRNA and protein levels of renalase in the kidneys of SS and SS-13BN rats were significantly decreased (P high salt intervention, whereas dopamine in plasma was increased (P high salt/potassium, compared with that of the high salt SS group. Taken together, the salt-induced increase and potassium-induced decrease in BP could be mediated through renalase. More studies are needed to confirm our findings and understand the underlying mechanisms.

  19. Modulation of the contractility of guinea pig papillary muscle by the activation of ATP-sensitive K+ channels.

    Science.gov (United States)

    Kocić, I

    1996-04-22

    The influence of activation of ATP-sensitive K+ channels on the positive inotropic action of I-isoproterenol d-bitartrate (isoprenaline), 12b-hydroxydigitoxin (digoxin), 5-amino-[3,4'-bipyridin]-6[1H]-one (amrinone), 1,6-dihydro-2-methyl-6-oxo 3,4-bipyridine-5-carbonitrile (milrinone) and UD-CG 115 BS; 4,5-dihydro-6[2-(4-methoxyphenyl)-1 H-benzimidazol-5-yl]-5-methyl-3(2H)pyridazinone (pimobendan) was investigated in guinea pig papillary muscle. The force of contraction (dF) and the rate of rise of force of contraction (dF/dt) were measured. After activation of ATP-sensitive K+ channels by 1 microM of (3S,4R)-3-hydroxy-2,2-dimethyl-4-(oxo-1 pyrrolidinyl)-6-phenyl-sulfonylchroman hemihydrate (HOE 234) the dose-response curves for isoprenaline were shifted to the right (about 9-fold). The positive inotropic action of digoxin and milrinone was significantly enhanced (about 5-fold). The inotropic action of amrinone and pimobendan before and after pretreatment with HOE 234 was not significantly different. HOE 234 pretreatment decreased irreversibly the maximum effect (Emax) of isoprenaline only for the amplitude of force of contraction, but not for the rate of rise of force. Opposite to this, activation of ATP-sensitive K+ channels evidently enhanced the positive inotropic effects of digoxin and milrinone. In the case of milrinone, the Emax for both parameters (dF and dF/dt) was greater after HOE 234 pretreatment. Only the Emax of digoxin for the amplitude of the force of contraction was significantly increased in the presence of HOE 234. The above mentioned results indicate that activation of ATP-sensitive K+ channels by HOE 234 modulates the positive inotropic action of cardiotonic drugs. This change may be expressed as potentiation (digoxin, milrinone) or attenuation (isoprenaline) of the positive inotropic effects, depending on the mechanism of action.

  20. Pharmacological and molecular comparison of K(ATP) channels in rat basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Ploug, Kenneth Beri; Edvinsson, Lars; Olesen, Jes;

    2006-01-01

    ATP-sensitive potassium (K(ATP)) channels play an important role in the regulation of cerebral vascular tone. In vitro studies using synthetic K(ATP) channel openers suggest that the pharmacological profiles differ between rat basilar arteries and rat middle cerebral arteries. To address this issue....... Densitometric measurements of the Western blot signals further showed higher expression levels of Kir6.1 and SUR2B proteins in rat middle cerebral arteries than was found in rat basilar arteries. In conclusion, our in vitro pharmacological studies showed no evidence for functional endothelial K(ATP) channels...

  1. Phentolamine relaxes human corpus cavernosum by a nonadrenergic mechanism activating ATP-sensitive K+ channel.

    Science.gov (United States)

    Silva, L F G; Nascimento, N R F; Fonteles, M C; de Nucci, G; Moraes, M E; Vasconcelos, P R L; Moraes, M O

    2005-01-01

    To investigate the pharmacodynamics of phentolamine in human corpus cavernosum (HCC) with special attention to the role of the K+ channels. Strips of HCC precontracted with nonadrenergic stimuli and kept in isometric organ bath immersed in a modified Krebs-Henseleit solution enriched with guanethidine and indomethacine were used in order to study the mechanism of the phentolamine-induced relaxation. Phentolamine caused relaxation (approximately 50%) in HCC strips precontracted with K+ 40 mM. This effect was not blocked by tetrodotoxin (1 microM) (54.6+/-4.6 vs 48.9+/-6.4%) or (atropine (10 microM) (52.7+/-6.5 vs 58.6+/-5.6%). However, this relaxation was significantly attenuated by L-NAME (100 microM) (59.7+/-5.8 vs 27.8+/-7.1%; Pphentolamine relaxations (54.6+/-4.6 vs 59.3+/-5.2%). Glibenclamide (100 microM), an inhibitor of K(ATP)-channel, caused a significant inhibition (56.7+/-6.3 vs 11.3+/-2.3%; Pphentolamine-induced relaxation. In addition, the association of glibenclamide and L-NAME almost abolished the phentolamine-mediated relaxation (54.6+/-5.6 vs 5.7+/-1.4%; Pphentolamine relaxes HCC by a nonadrenergic-noncholinergic mechanism dependent on nitric oxide synthase activity and activation of K(ATP)-channel.

  2. Phentolamine inhibits the pacemaker activity of mouse interstitial cells of Cajal by activating ATP-sensitive K+ channels.

    Science.gov (United States)

    Ahn, Seung Whan; Kim, Sang Hun; Kim, Jin Ho; Choi, Seok; Yeum, Cheol Ho; Wie, Hee Wook; Sun, Jae Myeong; So, Insuk; Jun, Jae Yeoul

    2010-03-01

    The aim of this study was to clarify if phentolamine has proven effects on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine involving the ATPsensitive K(+) channels and adrenergic receptor. The actions of phentolamine on pacemaker activities were investigated using whole-cell patch-clamp technique and intracellular Ca(2+) analysis at 30 degrees C in cultured mouse intestinal ICC. ICC generated spontaneous pacemaker currents at a holding potential of -70 mV. Treatment with phentolamine reduced the frequency and amplitude of the pacemaker currents and increased the resting outward currents. Moreover, under current clamping (I = 0), phentolamine hyperpolarized the ICC membrane and decreased the amplitude of the pacemaker potentials. We also observed that phentolamine inhibited spontaneous [Ca(2+)](i) oscillations in ICC. The alpha-adrenergic drugs prazosin, yohimbine, methoxamine, and clonidine had no effect on ICC intestinal pacemaker activity and did not block phentolamine-induced effects. Phentolamine-induced effects on the pacemaker currents and the pacemaker potentials were significantly inhibited by ATP sensitive K(+) channel blocker glibenclamide, but not by TEA, apamin, or 4-aminopyridine. In addition, the NO synthase inhibitor, L-NAME and the guanylate cyclase inhibitor, ODQ were incapable of blocking the phentolamine-induced effects. These results demonstrate that phentolamine regulates the pacemaker activity of ICC via ATP-sensitive K(+) channel activation. Phentolamine could act through an adrenergic receptor- and also through NO-independent mechanism that involves intracellular Ca(2+) signaling.

  3. Environment-Sensitive Fluorescent Probe for the Human Ether-a-go-go-Related Gene Potassium Channel

    OpenAIRE

    Liu, Zhenzhen; Jiang, Tianyu; Wang, Beilei; Ke, Bowen; Zhou, Yubin; Du, Lupei; Li, Minyong

    2016-01-01

    A novel environment-sensitive probe S2 with turn-on switch for Human Ether-a-go-go-Related Gene (hERG) potassium channel was developed herein. After careful evaluation, this fluorescent probe showed high binding affinity with hERG potassium channel with an IC50 value of 41.65 nM and can be well applied to hERG channel imaging or cellular distribution study for hERG channel blockers. Compared with other imaging techniques, such as immunofluorescence and fluorescent protein-based approaches, th...

  4. In vitro evaluation of flexible pH and potassium ion-sensitive organic field effect transistor sensors

    Science.gov (United States)

    Ji, Taeksoo; Rai, Pratyush; Jung, Soyoun; Varadan, Vijay K.

    2008-06-01

    Acute myocardial ischemia is a state of trauma of the heart muscle caused by occlusion of oxygenated blood supply. It is accompanied by an increase in potassium and hydrogen ion concentrations in the heart muscles. A flexible substrate based ion-sensitive field effect transistor (ISFET) has been designed to measure the concentration of potassium and hydrogen ions with high specificity. Double exponential smoothing technique was used to calculate background noise and explain the dependence of drain current on reference voltage and ion concentration in saturation mode of the ISFET.

  5. Adenine nucleotides and intracellular Ca2+ regulate a voltage-dependent and glucose-sensitive potassium channel in neurosecretory cells.

    Science.gov (United States)

    Onetti, C G; Lara, J; García, E

    1996-05-01

    Effects of membrane potential, intracellular Ca2+ and adenine nucleotides on glucose-sensitive channels from X organ (XO) neurons of the crayfish were studied in excised inside-out patches. Glucose- sensitive channels were selective to K+ ions; the unitary conductance was 112 pS in symmetrical K+, and the K+ permeability (PK) was 1.3 x 10(-13) cm x s(-1). An inward rectification was observed when intracellular K+ was reduced. Using a quasi-physiological K+ gradient, a non-linear K+ current/voltage relationship was found showing an outward rectification and a slope conductance of 51 pS. The open-state probability (Po) increased with membrane depolarization as a result of an enhancement of the mean open time and a shortening of the longer period of closures. In quasi-physio- logical K+ concentrations, the channel was activated from a threshold of about -60 mV, and the activation midpoint was -2 mV. Po decreased noticeably at 50 microM internal adenosine 5'-triphosphate (ATP), and single-channel activity was totally abolished at 1 mM ATP. Hill analysis shows that this inhibition was the result of simultaneous binding of two ATP molecules to the channel, and the half-blocking concentration of ATP was 174 microM. Internal application of 5'-adenylylimidodiphosphate (AMP-PNP) as well as glibenclamide also decreased Po. By contrast, the application of internal ADP (0.1 to 2 mM) activated this channel. An optimal range of internal free Ca2+ ions (0.1 to 10 microM) was required for the activation of this channel. The glucose--sensitive K+ channel of XO neurons could be considered as a subtype of ATP-sensitive K+ channel, contributing substantially to macroscopic outward current.

  6. Environment-Sensitive Fluorescent Probe for the Human Ether-a-go-go-Related Gene Potassium Channel.

    Science.gov (United States)

    Liu, Zhenzhen; Jiang, Tianyu; Wang, Beilei; Ke, Bowen; Zhou, Yubin; Du, Lupei; Li, Minyong

    2016-02-02

    A novel environment-sensitive probe S2 with turn-on switch for Human Ether-a-go-go-Related Gene (hERG) potassium channel was developed herein. After careful evaluation, this fluorescent probe showed high binding affinity with hERG potassium channel with an IC50 value of 41.65 nM and can be well applied to hERG channel imaging or cellular distribution study for hERG channel blockers. Compared with other imaging techniques, such as immunofluorescence and fluorescent protein-based approaches, this method is convenient and affordable, especially since a washing procedure is not needed. Meanwhile, this environment-sensitive turn-on design strategy may provide a good example for the probe development for these targets that have no reactive or catalytic activity.

  7. Ocular Hypotensive Effects of the ATP-Sensitive Potassium Channel Opener Cromakalim in Human and Murine Experimental Model Systems.

    Directory of Open Access Journals (Sweden)

    Uttio Roy Chowdhury

    Full Text Available Elevated intraocular pressure (IOP is the most prevalent and only treatable risk factor for glaucoma, a leading cause of irreversible blindness worldwide. Unfortunately, all current therapeutics used to treat elevated IOP and glaucoma have significant and sometimes irreversible side effects necessitating the development of novel compounds. We evaluated the IOP lowering ability of the broad spectrum KATP channel opener cromakalim. Cultured human anterior segments when treated with 2 μM cromakalim showed a decrease in pressure (19.33 ± 2.78 mmHg at 0 hours to 13.22 ± 2.64 mmHg at 24 hours; p<0.001 when compared to vehicle treated controls (15.89 ± 5.33 mmHg at 0 h to 15.56 ± 4.88 mmHg at 24 hours; p = 0.89. In wild-type C57BL/6 mice, cromakalim reduced IOP by 18.75 ± 2.22% compared to vehicle treated contralateral eyes (17.01 ± 0.32 mmHg at 0 hours to 13.82 ± 0.37 mmHg at 24 hours; n = 10, p = 0.002. Cromakalim demonstrated an additive effect when used in conjunction with latanoprost free acid, a common ocular hypotensive drug prescribed to patients with elevated IOP. To examine KATP channel subunit specificity, Kir6.2(-/- mice were treated with cromakalim, but unlike wild-type animals, no change in IOP was noted. Histologic analysis of treated and control eyes in cultured human anterior segments and in mice showed similar cell numbers and extracellular matrix integrity within the trabecular meshwork, with no disruptions in the inner and outer walls of Schlemm's canal. Together, these studies suggest that cromakalim is a potent ocular hypotensive agent that lowers IOP via activation of Kir6.2 containing KATP channels, its effect is additive when used in combination with the commonly used glaucoma drug latanoprost, and is not toxic to cells and tissues of the aqueous humor outflow pathway, making it a candidate for future therapeutic development.

  8. Adenosine triphosphate-sensitive potassium channel opener protects PC12 cells against hypoxia-induced apoptosis through PI3K/Akt and Bcl-2 signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Hong Zhang; Chunhong Jia; Danyang Zhao; Yang Lu; Runling Wang; Jia Li

    2010-01-01

    Although previous studies have shown the neuroprotective effects of the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener against ischemic neuronal damage, little is known about the mechanisms involved. Phosphatidylinositol-3 kinase (PI3K)/v-akt murine thy-moma viral oncogene homolog (Akt) and Bcl-2 are thought to be important factors that mediate neuroprotection. The present study investigated the effects of KATP openers on hypoxia-induced PC12 cell apoptosis, as well as mRNA and protein expression of Akt and Bcl-2. Results demon-strated that pretreatment of PC12 cells with pinacidil, a KATP opener, resulted in decreased PC12 cell apoptosis following hypoxia, as detected by Annexin-V fluorescein isothiocyanate/ propidium iodide double staining flow cytometry. In addition, mRNA and protein expression of phosphorylated Akt (p-Akt) and Bcl-2 increased, as detected by immunofluorescence, Western blot analysis, and reverse-transcription polymerase chain reaction. The protective effect of this preconditioning was attenuated by glipizide, a selective KATP blocker. These results demonstrate for the first time that the protective mechanisms of KATP openers on PC12 cell apoptosis following hypoxia could result from activation of the PI3K/Akt signaling pathway, which further activates expression of the downstream Bcl-2 gene.

  9. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    Science.gov (United States)

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-02-03

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach), a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  10. Normal insulin release during sustained hyperglycaemia in hypokalaemic periodic paralysis : Role of the potassium channel opener pinacidil in impaired muscle strength

    NARCIS (Netherlands)

    Ligtenberg, JJM; VanHaeften, TW; VanderKolk, LE; Smit, AJ; Sluiter, WJ; Links, TP

    1996-01-01

    1. Hypokalaemic periodic paralysis is characterized by attacks of muscle weakness, Glucose, insulin and an abnormal regulation of ATP-sensitive potassium channels may be involved in these attacks, We studied the effect of hyperglycaemia and of the potassium channel opener pinacidil on insulin releas

  11. The crustacean gill (Na+,K+)-ATPase: allosteric modulation of high- and low-affinity ATP-binding sites by sodium and potassium.

    Science.gov (United States)

    Masui, D C; Silva, E C C; Mantelatto, F L M; McNamara, J C; Barrabin, H; Scofano, H M; Fontes, C F L; Furriel, R P M; Leone, F A

    2008-11-15

    The blue crab, Callinectes danae, tolerates exposure to a wide salinity range employing mechanisms of compensatory ion uptake when in dilute media. Although the gill (Na+,K+)-ATPase is vital to hyperosmoregulatory ability, the interactions occurring at the sites of ATP binding on the molecule itself are unknown. Here, we investigate the modulation by Na+ and K+ of homotropic interactions between the ATP-binding sites, and of phosphoenzyme formation of the (Na+,K+)-ATPase from the posterior gills of this euryhaline crab. The contribution of the high- and low-affinity ATP-binding sites to maximum velocity was similar for both Na+ and K+. However, in contrast to Na+, a threshold K+ concentration triggers the appearance of the high-affinity binding sites, displacing the saturation curve to lower ATP concentrations.Further, a low-affinity site for phosphorylation is present on the enzyme. These findings reveal notable differences in the catalytic mechanism of the crustacean (Na+,K+)-ATPase compared to the vertebrate enzyme.

  12. Ion-sensitive field effect transistors for pH and potassium ion concentration sensing: towards detection of myocardial ischemia

    Science.gov (United States)

    Rai, Pratyush; Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2008-03-01

    Ion Sensitive Field Effect Transistors (ISFETs) for sensing change in ionic concentration in biological systems can be used for detecting critical conditions like Myocardial Ischemia. Having the ability to yield steady signal characteristics can be used to observe the ionic concentration gradients which mark the onset of ischemia. Two ionic concentrations, pH and [K +], have been considered as the indicator for Myocardial Ischemia in this study. The ISFETs in this study have an organic semi-conductor film as the electronically active component. Poly-3 hexylthiophene was chosen for its compatibility to the solution processing, which is a simple and economical method of thin film fabrication. The gate electrode, which regulates the current in the active layer, has been employed as the sensor element. The devices under study here were fabricated on a flexible substrate PEN. The pH sensor was designed with the Tantalum Oxide gate dielectric as the ion selective component. The charge accumulated on the surface of the metal oxide acts as the source of the effecter electric field. The device was tested for pH values between 6.5 and 7.5, which comprises the variation observed during ischemic attack. The potassium ion sensor has got a floating gate electrode which is functionalized to be selective to potassium ion. The device was tested for potassium ion concentration between 5 and 25 mM, which constitutes the variation in extra cellular potassium ion concentration during ischemic attack. The device incorporated a monolayer of Valinomycin, a potassium specific ionophore, on top of the gate electrode.

  13. Sorafenib and 2-Deoxyglucose Synergistically Inhibit Proliferation of both Sorafenib Sensitive and Resistant HCC Cells by Inhibiting ATP Production

    Science.gov (United States)

    Reyes, Ryan; Wani, Nissar A.; Ghoshal, Kalpana; Jacob, Samson T.; Motiwala, Tasneem

    2017-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally1,2. Sorafenib is the only first-line systemic drug for advanced HCC, but it has very limited survival benefits because patients treated with sorafenib either suffer from side effects or show disease progression after initial response. Thus, there is an urgent need to develop novel strategies for first-line and second-line therapy. The association between sorafenib resistance and glycolysis prompted us to screen several drugs with known anti-glycolytic activity to identify those that will sensitize cells to sorafenib. We demonstrate that the combination of glycolytic inhibitor 2-deoxy-D-glucose (2DG) and sorafenib drastically inhibits viability of sorafenib sensitive and resistant cells. However, the combination of other anti-glycolytic drugs like lonidamine, gossypol, 3-bromopyruvate and imatinib with sorafenib does not show synergistic effect. Cell cycle analysis revealed that the combination of 2DG and sorafenib induced cell cycle arrest at G0/G1. Mechanistic investigation suggests that the cell-cycle arrest is due to depletion of cellular ATP that activates AMP-activated protein kinase (AMPK), which, in turn, inhibits mammalian target of rapamycin (mTOR) to induce cell cycle arrest. This study provides strong evidence for the therapeutic potential of the combination of sorafenib and 2-deoxyglucose for HCC. PMID:27938509

  14. Quantitatively measured photorefractive sensitivity of proton-exchanged lithium niobate, proton-exchanged magnesium oxide-doped lithium niobate, and ion-exchanged potassium titanyl phosphate waveguides.

    Science.gov (United States)

    Kondo, Y; Miyaguchi, S; Onoe, A; Fujii, Y

    1994-06-01

    The photorefractive sensitivities of proton-exchanged lithium niobate waveguides and Rb-ion-exchanged potassium titanyl phosphate waveguides are quantitatively measured, and their influence on waveguide applications is estimated.

  15. miR-133a enhances the sensitivity of Hep-2 cells and vincristine-resistant Hep-2v cells to cisplatin by downregulating ATP7B expression.

    Science.gov (United States)

    Wang, Xurui; Zhu, Wei; Zhao, Xiaodong; Wang, Ping

    2016-06-01

    The expression levels of the copper transporter P-type adenosine triphosphatase (ATP7B) are known correlate with tumor cell sensitivity to cisplatin. However, the mechanisms underlying cisplatin resistance remained poorly understood. Therefore, in the present study, we treated Hep-2 cells and in-house-developed vincristine-resistant Hep-2v cells with 50, 100, or 200 µM cisplatin and assessed cell viability after 24 or 48 h. Hep-2v cells were shown to be resistant to 50-200 µM cisplatin. Furthermore, using immunofluorescence staining and western blot analysis, we noted that ATP7B, but not copper-transporting ATPase 1 (ATP7A), expression was significantly increased in Hep-2v cells, and this increase was maintained at a higher level compared with Hep-2 cells. As ATP7B is a target of microRNA 133a (miR‑133a), the ability of miR‑133a to influence cisplatin sensitivity in Hep-2v cells was then assessed by CCK-8 assay. We noted that miR‑133a expression was lower in both Hep-2 and Hep-2v cells compared with epithelial NP69 cells. Following treatment with 50 µM cisplatin, in Hep-2v cells expressing exogenous miR‑133a we noted reduced ATP7B expression, and these cells had a significantly lower survival rate compared with the control. The present study demonstrates that miR‑133a enhances the sensitivity of multidrug-resistant Hep-2v cells to cisplatin by downregulating ATP7B expression.

  16. The modulation of vascular ATP-sensitive K+ channel function via the phosphatidylinositol 3-kinase-Akt pathway activated by phenylephrine.

    Science.gov (United States)

    Haba, Masanori; Hatakeyama, Noboru; Kinoshita, Hiroyuki; Teramae, Hiroki; Azma, Toshiharu; Hatano, Yoshio; Matsuda, Naoyuki

    2010-08-01

    The present study examined the modulator role of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway activated by the alpha-1 adrenoceptor agonist phenylephrine in ATP-sensitive K(+) channel function in intact vascular smooth muscle. We evaluated the ATP-sensitive K(+) channel function and the activity of the PI3K-Akt pathway in the rat thoracic aorta without endothelium. The PI3K inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) (10(-5) M) augmented relaxation in response to the ATP-sensitive K(+) channel opener levcromakalim (10(-8) to 3 x 10(-6) M) in aortic rings contracted with phenylephrine (3 x 10(-7) M) but not with 9,11-dideoxy-11alpha,9alpha-epoxy-methanoprostaglandin F(2alpha) (U46619; 3 x 10(-8) M), although those agents induced similar contraction. ATP-sensitive K(+) channel currents induced by levcromakalim (10(-6) M) in the presence of phenylephrine (3 x 10(-7) M) were enhanced by the nonselective alpha-adrenoceptor antagonist phentolamine (10(-7) M) and LY294002 (10(-5) M). Levels of the regulatory subunits of PI3K p85-alpha and p55-gamma increased in the membrane fraction from aortas without endothelium treated with phenylephrine (3 x 10(-7) M) but not with U46619 (3 x 10(-8) M). Phenylephrine simultaneously augmented Akt phosphorylation at Ser473 and Thr308. Therefore, activation of the PI3K-Akt pathway seems to play a role in the impairment of ATP-sensitive K(+) channel function in vascular smooth muscle exposed to alpha-1 adrenergic stimuli.

  17. Changes of IK,ATP current density and allosteric modulation during chronic atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    WU Gang; HUANG Cong-xin; TANG Yan-hong; JIANG Hong; WAN Jun; CHEN Hui; XIE Qiang; HUANG Zheng-rong

    2005-01-01

    Background Atrial fibrillation (AF) is the most common supraventricular arrhythmia in clinical practice. Chronic atrial fibrillation (CAF) is associated with ionic remodeling. However, little is known about the activity of ATP-sensitive potassium current (IK,ATP) during CAF. So we studied the changes of IK,ATP density and allosteric modulation of ATP-sensitivity by intracellular pH during CAF.Methods Myocardium samples were obtained from the right auricular appendage of patients with rheumatic heart disease complicated with valvular disease in sinus rhythm (SR) or CAF. There were 14 patients in SR group and 9 patients in CAF group. Single atrial cells were isolated using an enzyme dispersion technique. IK,ATP was recorded using the whole-cell and inside-out configuration of voltage-clamp techniques. In whole-cell model, myocytes of SR and CAF groups were perfused with simulated ischemic solution to elicit IK,ATP. In inside-out configuration, the internal patch membranes were exposed to different ATP concentrations in pH 7.4 and 6.8.Results Under simulated ischemia, IK,ATP current density of CAF group was significantly higher than in SR group [(83.5±10.8) vs. (58.7±8.4) pA/pF, P<0.01]. IK,ATP of the two groups showed ATP concentration-dependent inhibition. The ATP concentration for 50% current inhibition (IC50) for the SR group was significantly different in pH 7.4 and pH 6.8 (24 vs. 74 μmol/L, P<0.01). The IC50 did not change significantly in CAF group when the pH decreased from 7.4 to 6.8.Conclusions During CAF, IK,ATP current density was increased and its allosteric modulation of ATP-sensitivity by intracellular pH was diminished.

  18. ATP signals

    DEFF Research Database (Denmark)

    Novak, Ivana

    2016-01-01

    The Department of Biology at the University of Copenhagen explains the function of ATP signalling in the pancreas......The Department of Biology at the University of Copenhagen explains the function of ATP signalling in the pancreas...

  19. Characterization and variation of a human inwardly-rectifying-K-channel gene (KCNJ6): a putative ATP-sensitive K-channel subunit.

    Science.gov (United States)

    Sakura, H; Bond, C; Warren-Perry, M; Horsley, S; Kearney, L; Tucker, S; Adelman, J; Turner, R; Ashcroft, F M

    1995-06-26

    The ATP-sensitive K-channel plays a central role in insulin release from pancreatic beta-cells. We report here the cloning of the gene (KCNJ6) encoding a putative subunit of a human ATP-sensitive K-channel expressed in brain and beta-cells, and characterisation of its exon-intron structure. Screening of a somatic cell mapping panel and fluorescent in situ hybridization place the gene on chromosome 21 (21q22.1-22.2). Analysis of single-stranded conformational polymorphisms revealed the presence of two silent polymorphisms (Pro-149: CCG-CCA and Asp-328: GAC-GAT) with similar frequencies in normal and non-insulin-dependent diabetic patients.

  20. Knowledge Representation of Ion-Sensitive Field-Effect Transistor Voltage Response for Potassium Ion Concentration Detection in Mixed Potassium/Ammonium Ion Solutions

    Directory of Open Access Journals (Sweden)

    Wan F.H. Abdullah

    2010-01-01

    Full Text Available Problem statement: The Ion-Sensitive Field-Effect Transistor (ISFET is a metal-oxide field-effect transistor-based sensor that reacts to ionic activity at the electrolye/membrane/gate interface. The ionic sensor faces issue of selectivity from interfering ions that contribute to the sensor electrical response in mixed solutions. Approach: We present the training data collection of ISFET voltage response for the purpose of post-processing stage neural network supervised learning. The role of the neural network is to estimate the main ionic activity from the interfering ion contribution in mixed solutions given time-independent input voltages. In this work, potassium ion (K+ and ammonium ion (NH4+ ISFET response data are collected with readout interface circuit that maintains constant voltage and current bias levels to the ISFET drain-source terminals. Sample solutions are prepared by keeping the main ion concentration fixed while the activity of an interfering ion varied based on the fixed interference method. Results: Sensor demonstrates linear relationship to the ion concentration within detection limit but has low repeatability of 0.52 regression factor and 0.16 mean squared error between similarly repeated measurements. We find that referencing the voltage response to the sensor response in DIW prior to measurement significantly improves the repeatability by 15.5% for correlation and 98.3% for MSE. Demonstration of multilayer perceptron feed-forward neural network estimation of ionic concentration from the data collection shows a recognition of >0.8 regression factor. Conclusion: Time-independent DC voltage response of ISFET of the proposed setup can be used as training data for neural network supervised learning for the estimation of K+ in mixed K+/NH4+ solutions.

  1. Ca++-sensitizing mutations in troponin, P(i), and 2-deoxyATP alter the depressive effect of acidosis on regulated thin-filament velocity.

    Science.gov (United States)

    Longyear, Thomas J; Turner, Matthew A; Davis, Jonathan P; Lopez, Joseph; Biesiadecki, Brandon; Debold, Edward P

    2014-05-01

    Repeated, intense contractile activity compromises the ability of skeletal muscle to generate force and velocity, resulting in fatigue. The decrease in velocity is thought to be due, in part, to the intracellular build-up of acidosis inhibiting the function of the contractile proteins myosin and troponin; however, the underlying molecular basis of this process remains poorly understood. We sought to gain novel insight into the decrease in velocity by determining whether the depressive effect of acidosis could be altered by 1) introducing Ca(++)-sensitizing mutations into troponin (Tn) or 2) by agents that directly affect myosin function, including inorganic phosphate (Pi) and 2-deoxy-ATP (dATP) in an in vitro motility assay. Acidosis reduced regulated thin-filament velocity (VRTF) at both maximal and submaximal Ca(++) levels in a pH-dependent manner. A truncated construct of the inhibitory subunit of Tn (TnI) and a Ca(++)-sensitizing mutation in the Ca(++)-binding subunit of Tn (TnC) increased VRTF at submaximal Ca(++) under acidic conditions but had no effect on VRTF at maximal Ca(++) levels. In contrast, both Pi and replacement of ATP with dATP reversed much of the acidosis-induced depression of VRTF at saturating Ca(++). Interestingly, despite producing similar magnitude increases in VRTF, the combined effects of Pi and dATP were additive, suggesting different underlying mechanisms of action. These findings suggest that acidosis depresses velocity by slowing the detachment rate from actin but also by possibly slowing the attachment rate.

  2. Ca++-sensitizing mutations in troponin, Pi, and 2-deoxyATP alter the depressive effect of acidosis on regulated thin-filament velocity

    Science.gov (United States)

    Longyear, Thomas J.; Turner, Matthew A.; Davis, Jonathan P.; Lopez, Joseph; Biesiadecki, Brandon

    2014-01-01

    Repeated, intense contractile activity compromises the ability of skeletal muscle to generate force and velocity, resulting in fatigue. The decrease in velocity is thought to be due, in part, to the intracellular build-up of acidosis inhibiting the function of the contractile proteins myosin and troponin; however, the underlying molecular basis of this process remains poorly understood. We sought to gain novel insight into the decrease in velocity by determining whether the depressive effect of acidosis could be altered by 1) introducing Ca++-sensitizing mutations into troponin (Tn) or 2) by agents that directly affect myosin function, including inorganic phosphate (Pi) and 2-deoxy-ATP (dATP) in an in vitro motility assay. Acidosis reduced regulated thin-filament velocity (VRTF) at both maximal and submaximal Ca++ levels in a pH-dependent manner. A truncated construct of the inhibitory subunit of Tn (TnI) and a Ca++-sensitizing mutation in the Ca++-binding subunit of Tn (TnC) increased VRTF at submaximal Ca++ under acidic conditions but had no effect on VRTF at maximal Ca++ levels. In contrast, both Pi and replacement of ATP with dATP reversed much of the acidosis-induced depression of VRTF at saturating Ca++. Interestingly, despite producing similar magnitude increases in VRTF, the combined effects of Pi and dATP were additive, suggesting different underlying mechanisms of action. These findings suggest that acidosis depresses velocity by slowing the detachment rate from actin but also by possibly slowing the attachment rate. PMID:24651988

  3. Fine-tuning of voltage sensitivity of the Kv1.2 potassium channel by interhelix loop dynamics.

    Science.gov (United States)

    Sand, Rheanna; Sharmin, Nazlee; Morgan, Carla; Gallin, Warren J

    2013-04-01

    Many proteins function by changing conformation in response to ligand binding or changes in other factors in their environment. Any change in the sequence of a protein, for example during evolution, which alters the relative free energies of the different functional conformations changes the conditions under which the protein will function. Voltage-gated ion channels are membrane proteins that open and close an ion-selective pore in response to changes in transmembrane voltage. The charged S4 transmembrane helix transduces changes in transmembrane voltage into a change in protein internal energy by interacting with the rest of the channel protein through a combination of non-covalent interactions between adjacent helices and covalent interactions along the peptide backbone. However, the structural basis for the wide variation in the V50 value between different voltage-gated potassium channels is not well defined. To test the role of the loop linking the S3 helix and the S4 helix in voltage sensitivity, we have constructed a set of mutants of the rat Kv1.2 channel that vary solely in the length and composition of the extracellular loop that connects S4 to S3. We evaluated the effect of these different loop substitutions on the voltage sensitivity of the channel and compared these experimental results with molecular dynamics simulations of the loop structures. Here, we show that this loop has a significant role in setting the precise V50 of activation in Kv1 family channels.

  4. KCNQ Potassium Channels Modulate Sensitivity of Skin Down-hair (D-hair) Mechanoreceptors.

    Science.gov (United States)

    Schütze, Sebastian; Orozco, Ian J; Jentsch, Thomas J

    2016-03-11

    M-current-mediating KCNQ (Kv7) channels play an important role in regulating the excitability of neuronal cells, as highlighted by mutations in Kcnq2 and Kcnq3 that underlie certain forms of epilepsy. In addition to their expression in brain, KCNQ2 and -3 are also found in the somatosensory system. We have now detected both KCNQ2 and KCNQ3 in a subset of dorsal root ganglia neurons that correspond to D-hair Aδ-fibers and demonstrate KCNQ3 expression in peripheral nerve endings of cutaneous D-hair follicles. Electrophysiological recordings from single D-hair afferents from Kcnq3(-/-) mice showed increased firing frequencies in response to mechanical ramp-and-hold stimuli. This effect was particularly pronounced at slow indentation velocities. Additional reduction of KCNQ2 expression further increased D-hair sensitivity. Together with previous work on the specific role of KCNQ4 in rapidly adapting skin mechanoreceptors, our results show that different KCNQ isoforms are specifically expressed in particular subsets of mechanosensory neurons and modulate their sensitivity directly in sensory nerve endings.

  5. Potassium-doped carbon nanotubes toward the direct electrochemistry of cholesterol oxidase and its application in highly sensitive cholesterol biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaorong [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Xu Jingjuan, E-mail: xujj@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen Hongyuan [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2011-10-30

    We demonstrate herein a newly developed serum total cholesterol biosensor by using the direct electron transfer of cholesterol oxidase (ChOx), which is based on the immobilization of cholesterol oxidase and cholesterol esterase (ChEt) on potassium-doped multi-walled carbon nanotubes (KMWNTs) modified electrodes. The KMWNTs accelerate the electron transfer from electrode surface to the immobilized ChOx, achieving the direct electrochemistry of ChOx and maintaining its bioactivity. As a new platform in cholesterol analysis, the resulting electrode (ChOx/KMWNTs/GCE) exhibits a sensitive response to free cholesterol, with a linear range of 0.050-16.0 {mu}mol L{sup -1} and a detection limit of 5.0 nmol L{sup -1} (S/N = 3). Coimmobilization of ChEt and ChOx (ChEt/ChOx/KMWNTs/GCE) allows the determination of both free cholesterol and esterified cholesterol. The resulting biosensor shows the same linear range of 0.050-16.0 {mu}mol L{sup -1} for free cholesterol and cholesteryl oleate, with the detection limit of 10.0 and 12.0 nmol L{sup -1} (S/N = 3), respectively. The concentrations of total (free and esterified) cholesterol in human serum samples, determined by using the techniques developed in the present study, are in good agreement with those determined by the well-established techniques using the spectrophotometry.

  6. A Highly Sensitive Resonance Rayleigh Scattering Method for the Determination of Penicillin Antibiotics with Potassium Ferricyanide

    Institute of Scientific and Technical Information of China (English)

    DUAN Hui; LIU Zhong-Fang; LIU Shao-Pu; KONG Ling

    2008-01-01

    Heated in a boiling water bath, penicillin antibiotics such as amoxicillin, ampicillin, sodium cloxacillin, sodium carbenicillin and sodium benzylpenicillin could react with K3[Fe(CN)6] to form combined products in a dilute HCl medium.As a result, resonance Rayleigh scattering (RRS) intensity was enhanced greatly and new RRS spectra appeared.The maximum scattering wavelengths of the five combined products are all located at 330 nm.The scattered intensity increments (△I) of the combined products are directly proportional to the concentrations of the antibiotics in a certain range.The methods exhibit high sensitivity, and the detection limits for the five penicillin antibiotics are between 4.61 and 5.62 ng·mL-1.The spectral characteristics of RRS and the optimum reaction conditions were investigated.The mechanism of reaction and the reasons for the enhancement of resonance light scattering were discussed.The effects of coexisting substances have been examined, and the results indicated that the method had a good selectivity.It can be applied to the determination of penicillin antibiotics in capsule, tablet, human serum and urine samples.

  7. HMR 1098 is not an SUR isotype specific inhibitor of heterologous or sarcolemmal K ATP channels.

    Science.gov (United States)

    Zhang, Hai Xia; Akrouh, Alejandro; Kurata, Harley T; Remedi, Maria Sara; Lawton, Jennifer S; Nichols, Colin G

    2011-03-01

    Murine ventricular and atrial ATP-sensitive potassium (K(ATP)) channels contain different sulfonylurea receptors (ventricular K(ATP) channels are Kir6.2/SUR2A complexes, while atrial K(ATP) channels are Kir6.2/SUR1 complexes). HMR 1098, the sodium salt of HMR 1883 {1-[[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl]-3-methylthiourea}, has been considered as a selective sarcolemmal (i.e. SUR2A-dependent) K(ATP) channel inhibitor. However, it is not clear whether HMR 1098 would preferentially inhibit ventricular K(ATP) channels over atrial K(ATP) channels. To test this, we used whole-cell patch clamp techniques on mouse atrial and ventricular myocytes as well as (86)Rb(+) efflux assays and excised inside-out patch clamp techniques on Kir6.2/SUR1 and Kir6.2/SUR2A channels heterologously expressed in COSm6 cells. In mouse atrial myocytes, both spontaneously activated and diazoxide-activated K(ATP) currents were effectively inhibited by 10 μM HMR 1098. By contrast, in ventricular myocytes, pinacidil-activated K(ATP) currents were inhibited by HMR 1098 at a high concentration (100 μM) but not at a low concentration (10 μM). Consistent with this finding, HMR 1098 inhibits (86)Rb(+) effluxes through Kir6.2/SUR1 more effectively than Kir6.2/SUR2A channels in COSm6 cells. In excised inside-out patches, HMR 1098 inhibited Kir6.2/SUR1 channels more effectively, particularly in the presence of MgADP and MgATP (mimicking physiological stimulation). Finally, dose-dependent enhancement of insulin secretion from pancreatic islets and decrease of blood glucose level confirm that HMR 1098 is an inhibitor of Kir6.2/SUR1-composed K(ATP) channels.

  8. Glucose deprivation activates diversity of potassium channels in cultured rat hippocampal neurons.

    Science.gov (United States)

    Velasco, Myrian; García, Esperanza; Onetti, Carlos G

    2006-05-01

    1. Glucose is one of the most important substrates for generating metabolic energy required for the maintenance of cellular functions. Glucose-mediated changes in neuronal firing pattern have been observed in the central nervous system of mammals. K(+) channels directly regulated by intracellular ATP have been postulated as a linkage between cellular energetic metabolism and excitability; the functional roles ascribed to these channels include glucose-sensing to regulate energy homeostasis and neuroprotection under energy depletion conditions. The hippocampus is highly sensitive to metabolic insults and is the brain region most sensitive to ischemic damage. Because the identity of metabolically regulated potassium channels present in hippocampal neurons is obscure, we decided to study the biophysical properties of glucose-sensitive potassium channels in hippocampal neurons. 2. The dependence of membrane potential and the sensitivity of potassium channels to glucose and ATP in rat hippocampal neurons were studied in cell-attached and excised inside-out membrane patches. 3. We found that under hypoglycemic conditions, at least three types of potassium channels were activated; their unitary conductance values were 37, 147, and 241 pS in symmetrical K(+), and they were sensitive to ATP. For K(+) channels with unitary conductance of 37 and 241, when the membrane potential was depolarized the longer closed time constant diminished and this produced an increase in the open-state probability; nevertheless, the 147-pS channels were not voltage-dependent. 4. We propose that neuronal glucose-sensitive K(+) channels in rat hippocampus include subtypes of ATP-sensitive channels with a potential role in neuroprotection during short-term or prolonged metabolic stress.

  9. Influence factors of salt-sensitive hypertension and responses of blood pressure and urinary sodium and potassium excretion to acute oral saline loading among essential hypertensive patients

    Institute of Scientific and Technical Information of China (English)

    刘叶舟

    2014-01-01

    Objective To explore the influence factors of saltsensitive hypertension and to observe changes of blood pressures and urinary sodium and potassium excretion in response to acute oral saline loading among essential hypertensive patients in China.Methods Essential hypertensive patients from Beijing Jinzhan second community were included in this study.Salt-sensitivity was determined via the improved Sullivan’s acute oral saline loading

  10. ATP敏感性钾通道在心肌缺血/再灌注损伤中的作用%Roles of ATPV sensitive Potassium Channels against Myocardial Ischemia/Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    李清

    2012-01-01

    心肌缺血/再灌注损伤是缺血性心脏病以及心脏手术后心功能不全的主要病理基础.寻找有效的心肌保护措施减轻心肌缺血/再灌注损伤具有重要意义.各种心肌保护措施,如心脏停搏液、缺血预处理和缺血后处理等成为人们研究的热点.ATP敏感性钾通道在缺血/再灌注心肌损伤的心肌保护策略中发挥了重要作用,是心肌保护的重要作用机制.%Ischemia/reperfusion injury is a major pathophysiologic mechanism leading to myocardial dysfunction after myocardial infarction or cardiac surgery. It is necessary to find effective methods to limit ischemia/reperfusion injury. Many effective methods,such as cardioplegia, ischemia preconditioning and ischemia postconditioning garners are drawing more and more attention. ATP-sensitive potassium channels play important roles in myocardial protection against ischemia/reperfusion injury,which are the important mechanisms for cardio-protection..

  11. The suppressor of AAC2 Lethality SAL1 modulates sensitivity of heterologously expressed artemia ADP/ATP carrier to bongkrekate in yeast.

    Science.gov (United States)

    Wysocka-Kapcinska, Monika; Torocsik, Beata; Turiak, Lilla; Tsaprailis, George; David, Cynthia L; Hunt, Andrea M; Vekey, Karoly; Adam-Vizi, Vera; Kucharczyk, Roza; Chinopoulos, Christos

    2013-01-01

    The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner.

  12. Transcriptomic analysis reveals how a lack of potassium ions increases Sulfolobus acidocaldarius sensitivity to pH changes.

    Science.gov (United States)

    Buetti-Dinh, Antoine; Dethlefsen, Olga; Friedman, Ran; Dopson, Mark

    2016-08-01

    Extremely acidophilic microorganisms (optimum growth pH of ≤3) maintain a near neutral cytoplasmic pH via several homeostatic mechanisms, including an inside positive membrane potential created by potassium ions. Transcriptomic responses to pH stress in the thermoacidophilic archaeon, Sulfolobus acidocaldarius were investigated by growing cells without added sodium and/or potassium ions at both optimal and sub-optimal pH. Culturing the cells in the absence of added sodium or potassium ions resulted in a reduced growth rate compared to full-salt conditions as well as 43 and 75 significantly different RNA transcript ratios, respectively. Differentially expressed RNA transcripts during growth in the absence of added sodium ions included genes coding for permeases, a sodium/proline transporter and electron transport proteins. In contrast, culturing without added potassium ions resulted in higher RNA transcripts for similar genes as a lack of sodium ions plus genes related to spermidine that has a general role in response to stress and a decarboxylase that potentially consumes protons. The greatest RNA transcript response occurred when S. acidocaldarius cells were grown in the absence of potassium and/or sodium at a sub-optimal pH. These adaptations included those listed above plus osmoregulated glucans and mechanosensitive channels that have previously been shown to respond to osmotic stress. In addition, data analyses revealed two co-expressed IclR family transcriptional regulator genes with a previously unknown role in the S. acidocaldarius pH stress response. Our study provides additional evidence towards the importance of potassium in acidophile growth at acidic pH.

  13. Sensitive detection of soy (Glycine max) by real-time polymerase chain reaction targeting the mitochondrial atpA gene.

    Science.gov (United States)

    Bauer, Tobias; Kirschbaum, Katja; Panter, Silvia; Kenk, Marion; Bergemann, Jörg

    2011-01-01

    Detection of trace amounts of allergens is essential for correct labeling of food products by the food industry. PCR-based detection methods currently used for this purpose are targeting sequences of DNA present in the cell nucleus. In addition to nuclear DNA, a substantial amount of mitochondrial DNA (mtDNA) copies are present in the cytoplasm of eukaryotic cells. The nuclear DNA usually consists of a set of DNA molecules present in two copies per cell, whereas mitochondrial DNA is present in a few hundred copies per cell. Thus, an increase in sensitivity can be expected when mtDNA is used as the target. In this study, we present a reporter probe-based real-time PCR method amplifying the mitochondrial gene of the alpha chain of adenosine triphosphate synthetase from soy. Increase in sensitivity was examined by determining the minimal amount of soy DNA detectable by mtDNA and nuclear DNA (nDNA) amplification. Additionally, the LOD of soy in a food matrix was determined for mtDNA amplification and compared to the LOD determined by nDNA amplification. As food matrix, a model spice spiked with soy flour was used. Sensitivity of PCR-based soy detection can be increased by using mtDNA as the target.

  14. Mitochondrial calcium-activated potassium channel:another potential target for neuroprotection?

    Institute of Scientific and Technical Information of China (English)

    FangSHEN; Li-pingWU; QianSHEN; QiangXIA

    2004-01-01

    AIM: It has recently been reported that large-conductance Ca2+activated potassium channel is present in the inner mitochondrial membrane (mitoKCa) of the neuron cell, which has been reported to have cardioprotective effect similar to that of mitochondrial ATP-sensitive K+ channel (mitoKATP). Hence the aim of this study was to clarify if mitoKCa is neuroprotective and compare thisnotantial affect with that of mitoK METHODS: Male

  15. Potassium Iodide

    Science.gov (United States)

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released ... damage the thyroid gland. You should only take potassium iodide if there is a nuclear radiation emergency and ...

  16. Simultaneous recording of ATP-sensitive K+ current and intracellular Ca2+ in anoxic rat ventricular myocytes. Effects of glibenclamide.

    Science.gov (United States)

    Russ, U; Englert, H; Schölkens, B A; Gögelein, H

    1996-05-01

    We investigated the temporal relationship between the adenosine triphosphate-sensitive K current (KATP current), hypoxic shortening and Ca accumulation in cardiomyocytes exposed to anoxia or metabolic inhibition. Whole-cell, patch-clamp experiments were performed with nonstimulated isolated rat heart ventricular muscle cells loaded with the Ca-sensitive fluorescent dye 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'- amino-5'-methylphenoxy) ethane-N,N,N',N'-tetraacetic acid (fura-2) via the patch pipette. After approximately 8 min anoxia, the KATP current started to rise and reached a maximum of 21.3 +/- 3.7 nA (n = 5, recorded at 0 mV clamp potential) within 1-3 min. At that time hypoxic contracture also occurred. Resting cytoplasmic free calcium (Cai) did not change significantly before hypoxic shortening. After hypoxic contracture, the KATP current decreased and Cai started to rise, reaching about 1 micromol/l. The presence of glibenclamide (10 micromol/l) in the bath reduced the anoxia-induced KATP current by more than 50%, but did not significantly influence the time dependence of current, hypoxic shortening and Cai, or the magnitude of Cai. Metabolic inhibition with 1.5 mmol/l CN resulted in KATP current increase and hypoxic shortening, occurring somewhat earlier than under anoxia, but all other parameters were comparable. In non-patch-clamped cells loaded with fura-2 AM ester and field-stimulated with 1 Hz, 1 micronol/l glibenclamide had no significant effect on the magnitude of the Cai increase caused by exposure of the cells to 1.5 mmol/l CN-. After CN- wash-out in non-patch-clamped cells, Cai declined, oscillated and finally returned to control values. It can be concluded that glibenclamide inhibits anoxia-induced KATP currents only partially and has no significant effect on anoxia-induced rise in resting Cai.

  17. Anti-allodynic effect of mangiferin in neuropathic rats: Involvement of nitric oxide-cyclic GMP-ATP sensitive K(+) channels pathway and serotoninergic system.

    Science.gov (United States)

    de Los Monteros-Zuñiga, Antonio Espinosa; Izquierdo, Teresa; Quiñonez-Bastidas, Geovanna Nallely; Rocha-González, Héctor Isaac; Godínez-Chaparro, Beatriz

    The neurobiology of neuropathic pain is caused by injury in the central or peripheral nervous system. Recent evidence points out that mangiferin shows anti-nociceptive effect in inflammatory pain. However, its role in inflammatory and neuropathic pain and the possible mechanisms of action are not yet established. The purpose of this study was to determine the possible anti-allodynic effect of mangiferin in rats with spinal nerve ligation (SNL). Furthermore, we sought to investigate the possible mechanisms of action that contribute to these effects. Mechanical allodynia to stimulation with the von Frey filaments was measured by the up and down method. Intrathecal administration of mangiferin prevented, in a dose-dependent fashion, SNL-induced mechanical allodynia. Mangiferin-induced anti-allodynia was prevented by the intrathecal administration of L-NAME (100μg/rat, non-selective nitric oxide synthase inhibitor), ODQ (10μg/rat, inhibitor of guanylate-cyclase) and glibenclamide (50μg/rat, channel blocker of ATP-sensitive K(+) channels). Moreover, methiothepin (30μg/rat, non-selective 5-HT receptor antagonist), WAY-100635 (6μg/rat, selective 5-HT1A receptor antagonist), SB-224289 (5μg/rat, selective 5-HT1B receptor antagonist), BRL-15572 (4μg/rat, selective 5-HT1D receptor antagonist) and SB-659551 (6μg/rat, selective 5-HT5A receptor antagonist), but not naloxone (50μg/rat, non-selective opioid receptor antagonist), were able to prevent mangiferin-induced anti-allodynic effect. These data suggest that the anti-allodynic effect induced by mangiferin is mediated at least in part by the serotoninergic system, involving the activation of 5-HT1A/1B/1D/5A receptors, as well as the nitric oxide-cyclic GMP-ATP-sensitive K(+) channels pathway, but not by the opioidergic system, in the SNL model of neuropathic pain in rats.

  18. Chronic Inhibition of Renal Outer Medullary Potassium Channel Not Only Prevented but Also Reversed Development of Hypertension and End-Organ Damage in Dahl Salt-Sensitive Rats.

    Science.gov (United States)

    Zhou, Xiaoyan; Forrest, Michael J; Sharif-Rodriguez, Wanda; Forrest, Gail; Szeto, Daphne; Urosevic-Price, Olga; Zhu, Yonghua; Stevenson, Andra S; Zhou, Yuchen; Stribling, Sloan; Dajee, Maya; Walsh, Shawn P; Pasternak, Alexander; Sullivan, Kathleen A

    2017-02-01

    The renal outer medullary potassium (ROMK) channel mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Evidence from the phenotype of humans and rodents with functional ROMK deficiency supports the contention that selective ROMK inhibitors (ROMKi) will represent a novel diuretic with potential of therapeutic benefit for hypertension. ROMKi have recently been synthesized by Merck & Co, Inc. The present studies were designed to examine the effects of ROMKi B on systemic hemodynamics, renal function and structure, and vascular function in Dahl salt-sensitive rats. Four experimental groups-control, high-salt diet alone; ROMKi B 3 mg·kg(-)(1)·d(-)(1); ROMKi B 10 mg·kg(-)(1)·d(-)(1); and hydrochlorothiazide 25 mg·kg(-)(1)·d(-)(1)-were included in prophylactic (from week 1 to week 9 on high-salt diet) and therapeutic studies (from week 5 to week 9 on high-salt diet), respectively. ROMKi B produced sustained blood pressure reduction and improved renal and vascular function and histological alterations induced by a high-salt diet. ROMKi B was superior to hydrochlorothiazide at reducing blood pressure. Furthermore, ROMKi B provided beneficial effects on both the plasma lipid profile and bone mineral density. Chronic ROMK inhibition not only prevented but also reversed the development of hypertension and end-organ damage in Dahl salt-sensitive rats. Our findings suggest a potential utility of ROMKi B as a novel antihypertensive agent, particularly for the treatment of the salt-sensitive hypertension patient population. © 2016 American Heart Association, Inc.

  19. Studies of ATP sensitive potassium channels on 6 - hydroxydopamine and haloperidol rat models of Parkinson' s disease: Implications for treating Parkinson' s disease?

    Institute of Scientific and Technical Information of China (English)

    WANGSen; YANGYong; DINGJian-Hua; HUGang

    2004-01-01

    Parkinson' s disease is a common neurodegenerative movement disease that affects more than 1% of the elderly population, characterized by a preferential loss of the dopaminergic neurons of the substantia nigra pars compacta. Although during the past score, major biochemistry process such as mitochondrial dysfunction, oxidative stress and glutamate toxicity

  20. Targeting at SUR2B/Kir6.1 subtype of ATP-sensitive potassium channel opener natakalim improves pressure overload-induced heart failure

    Institute of Scientific and Technical Information of China (English)

    TANG Yuan; LONG Chao-liang; WANG Hai

    2008-01-01

    Objective To explore the new stratigies targeting at SUR2B/Kir6.1 subtype against pressure overload-induced heart failure. Methods Pressure overload-induced heart failure was induced in Wistar rat by abdominal aortic banding (AAB) .The effects of natakalim (1,3, 9 mg·kg-1·d-1, 10 weeks) were assessed on myocardial hypertrophy and heart failure, cardiac histology, vasoactive compounds, and gene expression. Isolated working heart and isolated tail artery helical strips were used to examine the influence of natakalim on heart and resistant vessels. Results Ten weeks after the onset of pressure overload, natakalim therapy potently inhibited cardiac hypertrophy and prevented heart failure. Natakalim inhibited the changes of left ventricular haemodynamic parameters, reversed the increase of heart mass index, left ventricular weight index and lung weight index remarkably. Histological examination demonstrated that there were no significant hypertrophy and fibrosis in hearts of pressure overload rat treated with natakalim. Ultrastructural examination of heart revealed well-organized myofibrils with mitochondria grouped along the periphery of longitudinally oriented fibers in natakalim group rats. The content of serum NO and plasma PGI2 was increased, while that of plasma ET-1 and cardiac tissue hydroxyproline, ANP and BNP mRNA was down-regulated in natakalim-treated rats. Natakalim at concentrations ranging from 0.01-100 μM had no effects on isolated working heart derived from Wistar rats; however, natakalim had endothelium-dependent vasodilation effects on the isolated tail artery helical strips precontracted with NE. Conclusions These results indicate that natakalim improves heart failure due to pressure overload by activating KATP channel SUR2B/Kir6.1 subtype and reversing endothelial dysfunction.

  1. Selective precipitation of potassium in seawater samples for improving the sensitivity of plain γ-ray spectrometry

    Science.gov (United States)

    Ferrante, Marco; Nisi, Stefano; Laubenstein, Matthias; De Angelis, Francesco

    2015-08-01

    An analytical method is presented to reduce the amount of 40K in sea water samples, in order to lower its interference in γ-ray analysis below 1.4 MeV due to the Compton continuum. Sodium tetraphenylborate was used to successfully precipitate 40K in the samples. A custom procedure for precipitation of potassium was developed and it was evaluated for its selectivity, reproducibility and efficiency, using conventional analytical techniques such as atomic absorption spectrophotometry and inductively coupled plasma mass spectrometry (ICP-MS). This work has shown that the selective precipitation of potassium with sodium tetraphenylborate has led to a decrease of detection limit of radio nuclides such as 238U, 226Ra, 228Ra, 137Cs, 134Cs, 133I, 134I, 60Co in γ-analysis. In particular, the detection limit for nuclides with emissions in the energy window energy below 1400 keV is improved by almost one order of magnitude.

  2. Effects of potassium on expression of renal sodium transporters in salt-sensitive hypertensive rats induced by uninephrectomy.

    Science.gov (United States)

    Jung, Ji Yong; Kim, Sejoong; Lee, Jay Wook; Jung, Eun Sook; Heo, Nam Ju; Son, Min-Jeong; Oh, Yun Kyu; Na, Ki Young; Han, Jin Suk; Joo, Kwon Wook

    2011-06-01

    Dietary potassium is an important modulator of systemic blood pressure (BP). The purpose of this study was to determine whether dietary potassium is associated with an altered abundance of major renal sodium transporters that may contribute to the modulation of systemic BP. A unilateral nephrectomy (uNx) was performed in male Sprague-Dawley rats, and the rats were fed a normal-salt diet (0.3% NaCl) for 4 wk. Thereafter, the rats were fed a high-salt (HS) diet (3% NaCl) for the entire experimental period. The potassium-repleted (HS+KCl) group was given a mixed solution of 1% KCl as a substitute for drinking water. We examined the changes in the abundance of major renal sodium transporters and the expression of mRNA of With-No-Lysine (WNK) kinases sequentially at 1 and 3 wk. The systolic BP of the HS+KCl group was decreased compared with the HS group (140.3 ± 2.97 vs. 150.9 ± 4.04 mmHg at 1 wk; 180.3 ± 1.76 vs. 207.7 ± 6.21 mmHg at 3 wk). The protein abundances of type 3 Na(+)/H(+) exchanger (NHE3) and Na(+)-Cl(-) cotransporter (NCC) in the HS+KCl group were significantly decreased (53 and 45% of the HS group at 1 wk, respectively; 19 and 8% of HS group at 3 wk). WNK4 mRNA expression was significantly increased in the HS+KCl group (1.4-fold of control at 1 wk and 1.9-fold of control at 3 wk). The downregulation of NHE3 and NCC may contribute to the BP-attenuating effect of dietary potassium associated with increased urinary sodium excretion.

  3. Deficiency of ATP2C1, a golgi ion pump, induces secretory pathway defects in endoplasmic reticulum ( ER)-associated degradation and sensitivity to ER stress

    NARCIS (Netherlands)

    Ramos-Castaneda, J; Park, YN; Liu, M; Hauser, K; Rudolph, H; Shull, GE; Jonkman, MF; Mori, K; Ikeda, S; Ogawa, H; Arvan, P

    2005-01-01

    Relatively few clues have been uncovered to elucidate the cell biological role(s) of mammalian ATP2C1 encoding an inwardly directed secretory pathway Ca2+/Mn2+ pump that is ubiquitously expressed. Deficiency of ATP2C1 results in a human disease ( Hailey-Hailey), which primarily affects keratinocytes

  4. Sensitivity of the marine benthic copepod Tisbe biminiensis (copepoda, harpacticoida to potassium dichromate and sediment particle size

    Directory of Open Access Journals (Sweden)

    Cristiane M. V. Araújo-Castro

    2009-03-01

    Full Text Available For the future use of the marine benthic copepod Tisbe biminiensis in solid-phase sediment toxicological bioassays, the present study investigated the effect of muddy sediment from the Maracaípe estuary (northeastern Brazil, sediment particle size and the reference toxicant potassium dichromate on the species. Muddy sediment from Maracaípe can be used as control sediment, since it does not interfere in the copepod life-cycle and has metal contamination levels that are unlikely to produce any detrimental biological effects on benthic invertebrates. Neither survival nor fecundity was affected by grain size, suggesting that this species can be used with any kind of sediment from muddy to sandy. The sensitivity of T. biminiensis to K2Cr2O7 in acute tests was similar to that of other organisms. The LC50 (lethal concentration to 50% of the test organisms medium values for T. biminiensis were 7.51, 4.68 and 3.19 mg L-1 for Cr in 48, 72 and 96 h, respectively. These results suggest that T. biminiensis is a promising organism for use in solid-phase sediment toxicity assessments.Visando o uso futuro do copépodo marinho bentônico Tisbe biminiensis em bioensaios toxicológicos de sedimentos na fase sólida, o presente estudo investigou o efeito do sedimento lamoso do estuário de Maracaípe (Nordeste do Brasil. Foram considerados a granolometria e o tóxico de referência dicromato de potássio sobre a espécie. O sedimento lamoso de Maracaípe pode ser usado como controle, uma vez que não interfere no ciclo de vida do copépodo e possui níveis de contaminação de metais que não causariam efeitos biológicos em invertebrados bentônicos. Nem a sobrevivência ou fecundidade foi afetada pelo tamanho do grão, sugerindo que esta espécie pode ser usada com qualquer tipo de sedimento, de lama a areia. A sensibilidade de T. biminiensis ao K2Cr2O7 em testes agudos foi similar a de outros organismos. Os valores de CL50 (concentração letal a 50% dos

  5. Bidirectional effects of hydrogen sulfide via ATP-sensitive K(+) channels and transient receptor potential A1 channels in RIN14B cells.

    Science.gov (United States)

    Ujike, Ayako; Otsuguro, Ken-ichi; Miyamoto, Ryo; Yamaguchi, Soichiro; Ito, Shigeo

    2015-10-05

    Hydrogen sulfide (H2S) reportedly acts as a gasotransmitter because it mediates various cellular responses through several ion channels including ATP-sensitive K(+) (KATP) channels and transient receptor potential (TRP) A1 channels. H2S can activate both KATP and TRPA1 channels at a similar concentration range. In a single cell expressing both channels, however, it remains unknown what happens when both channels are simultaneously activated by H2S. In this study, we examined the effects of H2S on RIN14B cells that express both KATP and TRPA1 channels. RIN14B cells showed several intracellular Ca(2+) concentration ([Ca(2+)]i) responses to NaHS (300 µM), an H2S donor, i.e., inhibition of spontaneous Ca(2+) oscillations (37%), inhibition followed by [Ca(2+)]i increase (24%), and a rapid increase in [Ca(2+)]i (25%). KATP channel blockers, glibenclamide or tolbutamide, abolished any inhibitory effects of NaHS and enhanced NaHS-mediated [Ca(2+)]i increases, which were inhibited by extracellular Ca(2+) removal, HC030031 (a TRPA1 antagonist), and disulfide bond-reducing agents. NaHS induced 5-hydroxytryptamine (5-HT) release from RIN14B cells, which was also inhibited by TRPA1 antagonists. These results indicate that H2S has both inhibitory and excitatory effects by opening KATP and TRPA1 channels, respectively, in RIN14B cells, suggesting potential bidirectional modulation of secretory functions.

  6. Gastroprotective effects of thymol on acute and chronic ulcers in rats: The role of prostaglandins, ATP-sensitive K(+) channels, and gastric mucus secretion.

    Science.gov (United States)

    Ribeiro, Ana Roseli S; Diniz, Polyana B F; Pinheiro, Malone S; Albuquerque-Júnior, Ricardo L C; Thomazzi, Sara M

    2016-01-25

    Thymol, a monoterpene phenol derivative of cymene, is found in abundance in the essential oils of Thymus, Origanum, and Lippia species. The present study investigated the gastroprotective actions of thymol (10, 30, and 100 mg/kg, p.o.) in the acute (ethanol- and nonsteroidal anti-inflammatory drug-induced ulcers) and chronic (acetic acid-induced ulcers) ulcer models in rats. Some of the mechanisms underlying to the gastroprotective effect of thymol were investigated in the ethanol-induced ulcer model. Gastric secretion parameters (volume, pH, and total acidity) were also evaluated by the pylorus ligature model, and the mucus in the gastric content was determined. The anti-Helicobacter pylori activity of thymol was performed using the agar-well diffusion method. Thymol (10, 30, and 100 mg/kg) produced dose dependent reduction (P ulcer model. The gastroprotective response caused by thymol (30 mg/kg) was significantly attenuated (P ulcer index (P ulcer models, respectively. In the model pylorus ligature, the treatment with thymol failed to significantly change the gastric secretion parameters. However, after treatment with thymol (30 and 100 mg/kg), there was a significant increase (P ulcer models through mechanisms that involve increased in the amount of mucus, prostaglandins, and ATP-sensitive K(+) channels.

  7. Potassium physiology.

    Science.gov (United States)

    Thier, S O

    1986-04-25

    Potassium is the most abundant exchangeable cation in the body. It exists predominantly in the intracellular fluid at concentrations of 140 to 150 meq/liter and in the extracellular fluid at concentrations of 3.5 to 5 meq/liter. The maintenance of the serum potassium concentration is a complex bodily function and results from the balance between intake, excretion, and distribution between intracellular and extracellular space. Ingested potassium is virtually completely absorbed from and minimally excreted through the intestine under nonpathologic circumstances. Renal excretion of potassium, which is the major chronic protective mechanism against abnormalities in potassium balance, depends on filtration, reabsorption, and a highly regulated distal nephron secretory process. Factors regulating potassium secretion include prior potassium intake, intracellular potassium, delivery of sodium chloride and poorly reabsorbable anions to the distal nephron, the urine flow rate, hormones such as aldosterone and beta-catecholamines, and the integrity of the renal tubular cell. The maintenance of distribution between the inside and outside of cells depends on the integrity of the cell membrane and its pumps, osmolality, pH, and the hormones insulin, aldosterone, beta 2-catecholamines, alpha-catecholamines, and prostaglandins. Both distribution across cell membranes and/or renal excretion of potassium may be altered by pharmacologic agents such as diuretics, alpha- and beta-catechol antagonists and agonists, depolarizing agents, and digitalis. Problems with hypokalemia and hyperkalemia can be analyzed on the basis of potassium physiology and pharmacology; proper treatment depends on an accurate analysis.

  8. Facilitation of ß-cell K(ATP) channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac.

    Science.gov (United States)

    Leech, Colin A; Dzhura, Igor; Chepurny, Oleg G; Schwede, Frank; Genieser, Hans-G; Holz, George G

    2010-01-01

    Clinical studies demonstrate that combined administration of sulfonylureas with exenatide can induce hypoglycemia in type 2 diabetic subjects. Whereas sulfonylureas inhibit ß-cell K(ATP) channels by binding to the sulfonylurea receptor-1 (SUR1), exenatide binds to the GLP-1 receptor, stimulates ß-cell cAMP production and activates both PKA and Epac. In this study, we hypothesized that the adverse in vivo interaction of sulfonylureas and exenatide to produce hypoglycemia might be explained by Epac-mediated facilitation of K(ATP) channel sulfonylurea sensitivity. We now report that the inhibitory action of a sulfonylurea (tolbutamide) at K(ATP) channels was facilitated by 2’-O-Me-cAMP, a selective activator of Epac. Thus, under conditions of excised patch recording, the dose-response relationship describing the inhibitory action of tolbutamide at human ß-cell or rat INS-1 cell K(ATP) channels was left-shifted in the presence of 2’-O-Me-cAMP, and this effect was abolished in INS-1 cells expressing a dominant-negative Epac2. Using an acetoxymethyl ester prodrug of an Epac-selective cAMP analog (8-pCP T-2’-O-Me-cAMP-AM), the synergistic interaction of an Epac activator and tolbutamide to depolarize INS-1 cells and to raise [Ca²(+)](i) was also measured. This effect of 8-pCP T-2’-O-Me-cAMP-AM correlated with its ability to stimulate phosphatidylinositol 4,5-bisphosphate hydrolysis that might contribute to the changes in K(ATP) channel sulfonylurea-sensitivity reported here. On the basis of such findings, we propose that the adverse interaction of sulfonylureas and exenatide to induce hypoglycemia involves at least in part, a functional interaction of these two compounds to close K(ATP) channels, to depolarize ß-cells and to promote insulin secretion.

  9. Selective precipitation of potassium in seawater samples for improving the sensitivity of plain γ-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, Marco, E-mail: marco.ferrante@lngs.infn.it; De Angelis, Francesco, E-mail: francesco.deangelis@univaq.it [Dipartimento di Scienze Fisiche e Chimiche Università Dell' Aquila Via Vetoio, Coppito, 67100 (Italy); Nisi, Stefano, E-mail: stefano.nisi@lngs.infn.it; Laubenstein, Matthias, E-mail: matthias.laubenstein@lngs.infn.it [Laboratori Nazionali del Gran Sasso (LNGS) - Istituto Nazionale di Fisica Nucleare (INFN) Via G. Acitelli, 22 Assergi 67100 (Italy)

    2015-08-17

    An analytical method is presented to reduce the amount of {sup 40}K in sea water samples, in order to lower its interference in γ-ray analysis below 1.4 MeV due to the Compton continuum. Sodium tetraphenylborate was used to successfully precipitate {sup 40}K in the samples. A custom procedure for precipitation of potassium was developed and it was evaluated for its selectivity, reproducibility and efficiency, using conventional analytical techniques such as atomic absorption spectrophotometry and inductively coupled plasma mass spectrometry (ICP-MS). This work has shown that the selective precipitation of potassium with sodium tetraphenylborate has led to a decrease of detection limit of radio nuclides such as {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 137}Cs, {sup 134}Cs, {sup 133}I, {sup 134}I, {sup 60}Co in γ-analysis. In particular, the detection limit for nuclides with emissions in the energy window energy below 1400 keV is improved by almost one order of magnitude.

  10. The Sensitivity and Specificity of Potassium Hydroxide Smear and Fungal Culture Relative to Clinical Assessment in the Evaluation of Tinea Pedis: A Pooled Analysis

    Directory of Open Access Journals (Sweden)

    Jacob Oren Levitt

    2010-01-01

    Full Text Available Background. There are relatively few studies published examining the sensitivity and specificity of potassium hydroxide (KOH smear and fungal culture examination of tinea pedis. Objective. To evaluate the sensitivity and specificity of KOH smear and fungal culture for diagnosing tinea pedis. Methods. A pooled analysis of data from five similarly conducted bioequivalence trials for antifungal drugs was performed. Data from 460 patients enrolled in the vehicle arms of these studies with clinical diagnosis of tinea pedis supported by positive fungal culture were analyzed 6 weeks after initiation of the study to determine the sensitivity and specificity of KOH smear and fungal culture. Results. Using clinical assessment as the gold standard, the sensitivities for KOH smear and culture were 73.3% (95% CI: 66.3 to 79.5% and 41.7% (34.6 to 49.1%, respectively. The respective specificities for culture and KOH smear were 77.7% (72.2 to 82.5% and 42.5% (36.6 to 48.6%. Conclusion. KOH smear and fungal culture are complementary diagnostic tests for tinea pedis, with the former being the more sensitive test of the two, and the latter being more specific.

  11. Study of an automatic ATP detecting system with high sensitivity based on bioluminescence%基于生物发光的高灵敏度ATP自动测试系统研究

    Institute of Scientific and Technical Information of China (English)

    岳伟伟; 何保山; 周爱玉; 罗金平; 蔡新霞

    2009-01-01

    To meet the needs of automatic adenosine triphosphate (ATP) detection with high sensitivity and wide response range, an ATP detection system was designed based on bioluminescence. By recording the light intensity at the beginning of the bioluminescence reaction using the automatic injection technology, the system can detect samples automatically with high sensitivity. The photo-electronic detection unit was optimized to decrease the influence of stray light and electromagnetism and increase the efficiency of luminescence detection. The circuit and data processing algorithm was optimized to broaden the detection range. The ATP samples with the concentration of 10-15~10-6 M were measured and the correlation coefficient between the ATP concentration and the light intensity was 0.974. The detection range was over 9 magnitudes. Compared with the commercial products, the system in this paper has the virtues of automatization, high sensitivity and wide detection range. Therefore, the ATP system has a great potential in ATP measurement and the corresponding fields such as bacteria, toxicity and hygienic conditions, and so on.%针对高灵敏度、宽响应范围及自动检测三磷酸腺苷(ATP)的需求,设计了一种基于生物发光原理的ATP检测系统.系统采用自动加样技术,在发光反应的同时开始记录光强,使仪表检测自动化,且提高检测灵敏度;在优化光电检测单元设计和减小杂散光及电磁干扰的同时,提高荧光检测效率;通过电路和数据处理算法优化提高仪表检测范围.以浓度为10-15~10-6 M范围内的标准ATP溶液进行了实验,结果表明仪表测量光强与ATP实际浓度相关系数为0.974,检测范围达9个数量级.与市场相关仪器相比,该系统具有自动化测试,性能和灵敏度高、响应范围宽的特点,在ATP测量以及相关领域如细菌测量、毒性测试及卫生状况检测等方面具有广泛的应用前景.

  12. Potassium Channelopathies and Gastrointestinal Ulceration

    Science.gov (United States)

    Han, Jaeyong; Lee, Seung Hun; Giebisch, Gerhard; Wang, Tong

    2016-01-01

    Potassium channels and transporters maintain potassium homeostasis and play significant roles in several different biological actions via potassium ion regulation. In previous decades, the key revelations that potassium channels and transporters are involved in the production of gastric acid and the regulation of secretion in the stomach have been recognized. Drugs used to treat peptic ulceration are often potassium transporter inhibitors. It has also been reported that potassium channels are involved in ulcerative colitis. Direct toxicity to the intestines from nonsteroidal anti-inflammatory drugs has been associated with altered potassium channel activities. Several reports have indicated that the long-term use of the antianginal drug Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, increases the chances of ulceration and perforation from the oral to anal regions throughout the gastrointestinal (GI) tract. Several of these drug features provide further insights into the role of potassium channels in the occurrence of ulceration in the GI tract. The purpose of this review is to investigate whether potassium channelopathies are involved in the mechanisms responsible for ulceration that occurs throughout the GI tract. PMID:27784845

  13. Potassium Channelopathies and Gastrointestinal Ulceration.

    Science.gov (United States)

    Han, Jaeyong; Lee, Seung Hun; Giebisch, Gerhard; Wang, Tong

    2016-11-15

    Potassium channels and transporters maintain potassium homeostasis and play significant roles in several different biological actions via potassium ion regulation. In previous decades, the key revelations that potassium channels and transporters are involved in the production of gastric acid and the regulation of secretion in the stomach have been recognized. Drugs used to treat peptic ulceration are often potassium transporter inhibitors. It has also been reported that potassium channels are involved in ulcerative colitis. Direct toxicity to the intestines from nonsteroidal anti-inflammatory drugs has been associated with altered potassium channel activities. Several reports have indicated that the long-term use of the antianginal drug Nicorandil, an adenosine triphosphate-sensitive potassium channel opener, increases the chances of ulceration and perforation from the oral to anal regions throughout the gastrointestinal (GI) tract. Several of these drug features provide further insights into the role of potassium channels in the occurrence of ulceration in the GI tract. The purpose of this review is to investigate whether potassium channelopathies are involved in the mechanisms responsible for ulceration that occurs throughout the GI tract.

  14. Potassium dependent rescue of a myopathy with core-like structures in mouse.

    Science.gov (United States)

    Hanson, M Gartz; Wilde, Jonathan J; Moreno, Rosa L; Minic, Angela D; Niswander, Lee

    2015-01-07

    Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. In this study, we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calcium release and myoplasmic calcium levels, subsequently affecting mitochondrial calcium and ATP production. Mutant muscle shows a persistent potassium leak and disrupted expression of regulators of potassium homeostasis. Inhibition of KATP channels or increasing interstitial potassium by diet or FDA-approved drugs can reverse the muscle weakness, fatigue-like physiology and pathology. We identify regulators of potassium homeostasis as biomarkers of disease that may reveal therapeutic targets in human patients with myopathy of central core disease (CCD). Altogether, our results suggest that amelioration of potassium leaks through potassium homeostasis mechanisms may minimize muscle damage of myopathies due to certain RyR1 mutations.

  15. ATP-sensitive K/sup +/ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone

    Energy Technology Data Exchange (ETDEWEB)

    de Weille, J.; Schmid-Antomarchi, H.; Fosset, M.; Lazdunski, M.

    1988-02-01

    The action of the hyperglycemia-inducing hormone galanin, a 29-amino acid peptide names from its N-terminal glycine and C-terminal amidated alanine, was studied in rat insulinoma (RINm5F) cells using electrophysiological and /sup 86/Rb/sup +/ flux techniques. Galanin hyperpolarizes and reduces spontaneous electrical activity by activating a population of APT-sensitive K/sup +/ channels with a single-channel conductance of 30 pS (at -60 mV). Galanin-induced hyperpolarization and reduction of spike activity are reversed by the hypoglycemia-inducing sulfonylurea glibenclamine. Glibenclamide blocks the galanin-activated ATP-sensitive K/sup +/ channel. /sup 86/Rb/sup +/ efflux from insulinoma cells is stimulated by galanin in a dose-dependent manner. The half-maximum value of activation is found at 1.6 nM. Galanin-induced /sup 86/Rb/sup +/ efflux is abolished by glibenclamide. The half-maximum value of inhibition is found at 0.3 nM, which is close to the half-maximum value of inhibition of the ATP-dependent K/sup +/ channel reported earlier. /sup 86/Rb/sup +/ efflux studies confirm the electrophysiological demonstration that galanin activates and ATP-dependent K/sup +/ channel.

  16. Chronic fluoxetine treatment increases NO bioavailability and calcium-sensitive potassium channels activation in rat mesenteric resistance arteries.

    Science.gov (United States)

    Pereira, Camila A; Ferreira, Nathanne S; Mestriner, Fabiola L; Antunes-Rodrigues, José; Evora, Paulo R B; Resstel, Leonardo B M; Carneiro, Fernando S; Tostes, Rita C

    2015-10-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment.

  17. Dissolved inorganic carbon uptake in Thiomicrospira crunogena XCL-2 is Δp- and ATP-sensitive and enhances RubisCO-mediated carbon fixation.

    Science.gov (United States)

    Menning, Kristy J; Menon, Balaraj B; Fox, Gordon; Scott, Kathleen M

    2016-03-01

    The gammaproteobacterium Thiomicrospira crunogena XCL-2 is an aerobic sulfur-oxidizing hydrothermal vent chemolithoautotroph that has a CO2 concentrating mechanism (CCM), which generates intracellular dissolved inorganic carbon (DIC) concentrations much higher than extracellular, thereby providing substrate for carbon fixation at sufficient rate. This CCM presumably requires at least one active DIC transporter to generate the elevated intracellular concentrations of DIC measured in this organism. In this study, the half-saturation constant (K CO2) for purified carboxysomal RubisCO was measured (276 ± 18 µM) which was much greater than the K CO2 of whole cells (1.03 µM), highlighting the degree to which the CCM facilitates CO2 fixation under low CO2 conditions. To clarify the bioenergetics powering active DIC uptake, cells were incubated in the presence of inhibitors targeting ATP synthesis (DCCD) or proton potential (CCCP). Incubations with each of these inhibitors resulted in diminished intracellular ATP, DIC, and fixed carbon, despite an absence of an inhibitory effect on proton potential in the DCCD-incubated cells. Electron transport complexes NADH dehydrogenase and the bc 1 complex were found to be insensitive to DCCD, suggesting that ATP synthase was the primary target of DCCD. Given the correlation of DIC uptake to the intracellular ATP concentration, the ABC transporter genes were targeted by qRT-PCR, but were not upregulated under low-DIC conditions. As the T. crunogena genome does not include orthologs of any genes encoding known DIC uptake systems, these data suggest that a novel, yet to be identified, ATP- and proton potential-dependent DIC transporter is active in this bacterium. This transporter serves to facilitate growth by T. crunogena and other Thiomicrospiras in the many habitats where they are found.

  18. Adiponectin modulates excitability of rat paraventricular nucleus neurons by differential modulation of potassium currents.

    Science.gov (United States)

    Hoyda, Ted D; Ferguson, Alastair V

    2010-07-01

    The adipocyte-derived hormone adiponectin acts at two seven-transmembrane domain receptors, adiponectin receptor 1 and adiponectin receptor 2, present in the paraventricular nucleus of the hypothalamus to regulate neuronal excitability and endocrine function. Adiponectin depolarizes rat parvocellular preautonomic neurons that secrete either thyrotropin releasing hormone or oxytocin and parvocellular neuroendocrine corticotropin releasing hormone neurons, leading to an increase in plasma adrenocorticotropin hormone concentrations while also hyperpolarizing a subgroup of neurons. In the present study, we investigate the ionic mechanisms responsible for these changes in excitability in parvocellular paraventricular nucleus neurons. Patch clamp recordings of currents elicited from slow voltage ramps and voltage steps indicate that adiponectin inhibits noninactivating delayed rectifier potassium current (I(K)) in a majority of neurons. This inhibition produced a broadening of the action potential in cells that depolarized in the presence of adiponectin. The depolarizing effects of adiponectin were abolished in cells pretreated with tetraethyl ammonium (0/15 cells depolarize). Slow voltage ramps performed during adiponectin-induced hyperpolarization indicate the activation of voltage-independent potassium current. These hyperpolarizing responses were abolished in the presence of glibenclamide [an ATP-sensitive potassium (K(ATP)) channel blocker] (0/12 cells hyperpolarize). The results presented in this study suggest that adiponectin controls neuronal excitability through the modulation of different potassium conductances, effects which contribute to changes in excitability and action potential profiles responsible for peptidergic release into the circulation.

  19. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution......, since the method is very sensitive (detects 0.5 ng ATP/L) and results are obtained within minutes. When calculating the ATP value a number of parameters need to be considered. These were investigate by use of two different reagent kits (PCP-kit and Lumin(ATE)/Lumin(EX)-kit), internal standard...... and an Advance Coupe luminometer. The investigations showed a 60 times higher response of the PCP-kit, making it more suitable for measurement of samples with low ATP content. ATP-standard dilutions prepared in tap water were stable for at least 15 months when stored frozen at -80ºC, and storage of large...

  20. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    Adenosine Triphosphate (ATP) can be used as a relative measure of cell activity, and is measured by the light output from the reaction between luciferin and ATP catalyzed by firefly luciferase. The measurement has potential as a monitoring and surveillance tool within drinking water distribution......, since the method is very sensitive (detects 0.5 ng ATP/L) and results are obtained within minutes. When calculating the ATP value a number of parameters need to be considered. These were investigate by use of two different reagent kits (PCP-kit and Lumin(ATE)/Lumin(EX)-kit), internal standard...... and an Advance Coupe luminometer. The investigations showed a 60 times higher response of the PCP-kit, making it more suitable for measurement of samples with low ATP content. ATP-standard dilutions prepared in tap water were stable for at least 15 months when stored frozen at -80ºC, and storage of large...

  1. Reduced expression and abnormal localization of the K(ATP) channel subunit SUR2A in patients with familial hypokalemic periodic paralysis.

    Science.gov (United States)

    Kim, Sung-Jo; Lee, Yea-Jin; Kim, June-Bum

    2010-01-01

    Familial hypokalemic periodic paralysis is an autosomal-dominant channelopathy that features episodic attacks of flaccid paralysis with concomitant hypokalemia. Reduced activity of ATP-sensitive K(+) (K(ATP)) channels is suggested to be responsible for this disorder; however, the molecular mechanisms have not yet been elucidated. In this study, we investigated the molecular mechanism of reduced K(ATP) channel activity in skeletal muscle cells of patients with familial hypokalemic periodic paralysis. We examined the mRNA and protein levels of SUR2A, a K(ATP) channel subunit, in cells from patients (patient cells) and normal individuals (normal cells). Our results demonstrated that normal cells exposed to 50mM potassium buffer, which was used to induce depolarization, did not show significant change in the SUR2A mRNA levels; however, the protein level significantly increased in the cytosolic fraction. When the patient cells were exposed to 50mM potassium buffer, the SUR2A mRNA level significantly decreased. Further, the protein level of SUR2A significantly increased in the membrane fraction but decreased in the cytosolic fraction in patient cells. These findings suggest that abnormal localization of the SUR2A K(+) channel protein leads to reduced K(ATP) channel activity in familial hypokalemic periodic paralysis. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Crystal structure of the sodium-potassium pump

    DEFF Research Database (Denmark)

    Morth, J Preben; Pedersen, Bjørn Panyella; Toustrup-Jensen, Mads S;

    2007-01-01

    The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution of the...

  3. ATP as a peripheral mediator of pain.

    Science.gov (United States)

    Hamilton, S G; McMahon, S B

    2000-07-01

    This article reviews the extent to which recent studies substantiate the hypothesis that ATP functions as a peripheral pain mediator. The discovery of the P2X family of ion channels (for which ATP is a ligand) and, in particular, the highly selective distribution of the P2X(3) receptor within the rat nociceptive system has inspired a variety of approaches to elucidate the potential role of ATP as a pain mediator. ATP elicits excitatory inward currents in small diameter sensory ganglion cells. These currents resemble those elicited by ATP on recombinantly expressed heteromeric P2X(2/3) channels as well as homomultimers consisting of P2X(2) and P2X(3). In vivo behavioural models have characterised the algogenic properties of ATP in normal conditions and in models of peripheral sensitisation. In humans, iontophoresis of ATP induces modest pain. In rats and humans the response is dependent on capsaicin sensitive neurons and is augmented in the presence of inflammatory mediators. Since ATP can be released in the vicinity of peripheral nociceptive terminals under a variety of conditions, there exists a purinergic chain of biological processes linking tissue damage to pain perception. The challenge remains to prove a physiological role for endogenous ATP in activating this chain of events.

  4. Highly selective and sensitive electrochemical biosensor for ATP based on the dual strategy integrating the cofactor-dependent enzymatic ligation reaction with self-cleaving DNAzyme-amplified electrochemical detection.

    Science.gov (United States)

    Lu, Lu; Si, Jing Cao; Gao, Zhong Feng; Zhang, Yu; Lei, Jing Lei; Luo, Hong Qun; Li, Nian Bing

    2015-01-15

    A dual strategy that combines the adenosine triphosphate (ATP)-dependent enzymatic ligation reaction with self-cleaving DNAzyme-amplified electrochemical detection is employed to construct the biosensor. In this design, the methylene blue-labeled hairpin-structured DNA was self-assembled onto a gold electrode surface to prepare the modified electrode through the interaction of Au-S bond. In the procedure of ATP-dependent ligation reaction, when the specific cofactor ATP was added, the two split oligonucleotide fragments of 8-17 DNAzyme were linked by T4 DNA ligase and then released to hybridize with the labeled hairpin-structured DNA substrate. The linked 8-17 DNAzyme catalyzes the cleavage of the hairpin-structured substrate by the addition of Zn(2+), causing the methylene blue which contains high electrochemical activity to leave the surface of the gold electrode, therefore generating a dramatic decrease of electrochemical signal. The decrease of peak current was readily measured by square wave voltammetry and a relatively low detection limit (0.05 nM) was obtained with a linear response range from 0.1 to 1000 nM. By taking advantage of the highly specific cofactor dependence of the DNA ligation reaction, the proposed ligation-induced DNAzyme cascades demonstrate ultrahigh selectivity toward the target cofactor ATP. A catalytic and molecular beacons strategy is further adopted to amplify the electrochemical signal detection achieved by cycling and regenerating the 8-17 DNAzyme to realize enzymatic multiple turnover, thus one DNAzyme can catalyze the cleavage of several hairpin-structured substrates, which improves the sensitivity of the newly designed electrochemical sensing system.

  5. Potassium Iodide (KI)

    Science.gov (United States)

    ... Health Matters Information on Specific Types of Emergencies Potassium Iodide (KI) Language: English Español (Spanish) Recommend on Facebook ... can I get KI (potassium iodide)? What is Potassium Iodide (KI)? KI (potassium iodide) is a salt of ...

  6. Effects of glucose-insulin-potassium on baroreflex sensitivity, left ventricular function and ventricular arrhythmia in the subacute phase of myocardial infarction in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Guo; SHU He; SHEN Fu-Ming; MIAO Chao-Yu; SU Ding-Feng

    2004-01-01

    Objective:Glucose-insulin-potassium(GIK) is clinically used for reducing mortality in acute myocardial infarction(MI). It is known that ventricular arrhythmia, left ventricular dysfunction and impaired baroreflex sensitivity(BRS) are the three major determinants for predicting the mortality after acute MI. The present work was designed to study the effects of GIK on BRS, ventricular arrhythmia, and left ventricular function in rats with coronary artery ligature. Sprague-Dawley rats were used and the myocardial infarction was produced by ligature of the left anterior descending artery. Five weeks after coronary artery ligation, BRS was measured in conscious state with a computerized blood pressure monitoring system and left ventricular function and electrocardiogram were determined in the anaesthetized state in the subacute phase of myocardial infarction. It was found that GIK did not affect the blood pressure and heart period in both conscious and anaesthetized rats. GIK did not enhance BRS, but reduced ventricular arrhythmia and improved left ventricular function by reducing left ventricular end diastolic pressure in anaesthetized rats with MI. It is proposed that reducing ventricular arrhythmia and improving left ventricular function contribute to the effect of GIK on reducing the mortality after MI.

  7. Mdm31 protein mediates sensitivity to potassium ionophores but does not regulate mitochondrial morphology or phospholipid trafficking in Schizosaccharomyces pombe.

    Science.gov (United States)

    Ivan, Branislav; Lajdova, Dana; Abelovska, Lenka; Balazova, Maria; Nosek, Jozef; Tomaska, Lubomir

    2015-03-01

    Mdm31p is an inner mitochondrial membrane (IMM) protein with unknown function in Saccharomyces cerevisiae. Mutants lacking Mdm31p contain only a few giant spherical mitochondria with disorganized internal structure, altered phospholipid composition and disturbed ion homeostasis, accompanied by increased resistance to the electroneutral K+ /H+ ionophore nigericin. These phenotypes are interpreted as resulting from diverse roles of Mdm31p, presumably in linking mitochondrial DNA (mtDNA) to the machinery involved in segregation of mitochondria, in mediating cation transport across IMM and in phospholipid shuttling between mitochondrial membranes. To investigate which of the roles of Mdm31p are conserved in ascomycetous yeasts, we analysed the Mdm31p orthologue in Schizosaccharomyces pombe. Our results demonstrate that, similarly to its S. cerevisiae counterpart, SpMdm31 is a mitochondrial protein and its absence results in increased resistance to nigericin. However, in contrast to S. cerevisiae, Sz. pombe cells lacking SpMdm31 are also less sensitive to the electrogenic K+ ionophore valinomycin. Moreover, mitochondria of the fission yeast mdm31Δ mutant display no changes in morphology or phospholipid composition. Therefore, in terms of function, the two orthologous proteins appear to have considerably diverged between these two evolutionarily distant yeast species, possibly sharing only their participation in ion homeostasis.

  8. Sodium and potassium changes in blood bank stored human erythrocytes.

    Science.gov (United States)

    Wallas, C H

    1979-01-01

    Storage of red cells for three weeks at 4 C under blood bank conditions resulted in a rise in intracellular Na+ and a fall in intracellular K+ with concomitant opposite changes in Na+ and K+ levels in the suspending plasma. A decline in red blood cell ATP during the storage period did not appear to be contributing to the changes. Increasing red blood cell ATP to levels 2 to 3 times normal did not prevent the cation changes from occurring. When assayed at 37 C in the presence of added Mg++, ouabain-sensitive membrane ATPase activity and kinetics of activation by Na+ were unaffected by the three week period of cold storage. However, when assayed at 4 C without added Mg++, simulating the conditions of storage, ATPase activity was negligible. Sodium and potassium did not change when red blood cells with normal ATP content were stored at 20 to 24 C even in the absence of added Mg++. Thus, a major cause for the development of cation changes in the red blood cell during blood bank storage in the temperature which inhibits membrane ATPase, allowing cations to leak unopposed into and out of the red blood cells.

  9. Protein synthesis is the most sensitive process when potassium is substituted by sodium in the nutrition of sugar beet (Beta vulgaris).

    Science.gov (United States)

    Faust, Franziska; Schubert, Sven

    2016-10-01

    Potassium ions (K(+)) and sodium ions (Na(+)) share many physical and chemical similarities. However, their interchangeability in plant nutrition is restricted. Substitution studies showed that K(+) can be replaced by Na(+) to a large extent in the nutrition of Beta vulgaris L. However, the extent of substitution without negative impacts is not unlimited. The aim of the present study was to identify the process which is most sensitive during the substitution of K(+) by Na(+) in nutrition of young sugar beet plants. We focused on transpiration, growth, and net protein synthesis. Plants were grown under controlled environmental conditions. With transfer of seedlings into nutrient solution, plants were cultivated in different substitution treatments. For all treatments the sum of K(+) and Na(+) (applied as chloride) was fixed to 4 mM. The extent of substitution of K(+) by Na(+) in the nutrient solution was varied from low (0.25% substitution: 3.99 mM K(+), 0.01 mM Na(+)) to almost complete substitution (99.75% substitution: 0.01 mM K(+), 3.99 mM Na(+)). The supply of 3.99 mM K(+) in 0.25% substitution treatment guaranteed the absence of K(+) deficiency. Transpiration was not affected by the substitution. Growth was inhibited at a substitution level of 99.75%. Net protein synthesis was already affected at a substitution level of 97.50% (0.10 mM K(+), 3.90 mM Na(+)). Hence, net protein synthesis was most sensitive to the substitution and limited the extent of substitution of K(+) by Na(+) in the nutrition of young sugar beet plants.

  10. Possible Application of Raman Microspectroscopy to Verify the Interstitial Cystitis Diagnosis after Potassium Sensitivity Test: Phenylalanine or Tryptophan as a Biomarker

    Directory of Open Access Journals (Sweden)

    Tzu-Feng Hsieh

    2007-01-01

    Full Text Available There is lack of a worldwide standard technique for clinical diagnosis of interstitial cystitis (IC. Raman spectroscopy with higher specificity and sensitivity has been extensively used to act as a non-destructive analytical technique without special sample preparation. In this preliminary study, possible use of Raman microspectroscopy as an IC diagnostic tool was attempted. Twenty-two participants were screened by clinical features, history, urodynamic evaluations and potassium sensitivity test (PST. The freeze-dried water samples voided from all the participants after PST were directly determined by using a confocal Raman microspectroscopy to search the biomarker. Participants with or without IC symptom were separated into control and clinical groups, according to the above screening. The participants in the clinical group were further divided into mild and severe subgroups by PST. The symptom of urinary pain and urgency was significant difference between the mild and severe subgroups (p < 0.05. A significant increase in urinary frequency but a marked reduction in bladder capacity, maximum cystometric capacity and maximum voiding flow rate were obtained for clinical group of IC participants, as compared with the result of control group (p < 0.05. By using Raman microspectroscopic determination, the band near 1003 or 1005 cm−1 assigned to phenylalanine was respectively detected from the freeze-dried water sample of control group or mild subgroup, but the band at 1010 cm−1 due to tryptophan was found in the freeze-dried water sample of severe subgroup. The result of this preliminary study first suggests a possible application of Raman microspectroscopy to strongly certify the results of PST for IC diagnosis. Phenylalanine or tryptophan might be acted as a biomarker to assist the diagnosis of IC after PST. Particularly, the appearance of tryptophan might be used to discriminate the severity of IC symptom.

  11. Neuronal in vitro activity is more sensitive to valproate than intracellular ATP: Considerations on conversion problems of IC50 in vitro data for animal replacement.

    Science.gov (United States)

    Nissen, Matthias; Buehler, Sebastian M; Stubbe, Marco; Gimsa, Jan

    2016-06-01

    We investigated the effects of acute valproate (VPA) on mouse embryonic primary cortex cells (MEPCs). Intracellular ATP concentrations were compared with changes in the mean action potential (AP) frequencies of MEPC networks growing on microelectrode arrays. Our data implies biphasic reactions towards increasing VPA concentrations for both parameters. Intracellular ATP and mean AP frequencies increased around characteristic concentrations of 0.15 and 0.07mM to hormetic plateaus of approx. 120% and 160% of their controls, before fading around 17 and 1.7 mM, respectively. The biphasic in vitro behavior of the two parameters hinders a simple extraction of IC50 and Hillslope values. Different ways of data-fitting with single and double logistic functions are discussed. For a typical hormetic increase of 60% above control, IC50 and Hillslope were decreased by 37% and 15%, respectively. Despite these marginal effects at a logarithmic concentration scale, the hormetic and double logistic behavior of parameters may provide information on the mode of action of toxic compounds. Comparison of our values with the LD50 of mice, recalculated by normalization to body mass, suggests that a neurotoxic rather than a cytotoxic mechanism is killing the animals. The future use of cellular microsystems to replace animal experiments will motivate the development of new microsensors, as well as the consideration of newly accessible parameters in systems biology models.

  12. Potassium clavulanate

    Directory of Open Access Journals (Sweden)

    Kotaro Fujii

    2010-08-01

    Full Text Available The title salt, K+·C8H8NO5− [systematic name: potassium (2R,5R,Z-3-(2-hydroxyethylidene-7-oxo-4-oxa-1-azabicyclo[3.2.0]heptane-2-carboxylate], a widely used β-lactam antibiotic, is usually chemically unstable even in the solid state owing to its tendency to be hydrolysed. In the crystal structure, the potassium cations are arranged along the a axis, forming interactions to the carboxylate and hydroxy groups, resulting in one-dimensional ionic columns. These columns are arranged along the b axis, connected by O—H...O hydrogen bonds, forming a layer in the ab plane.

  13. Imaging Adenosine Triphosphate (ATP).

    Science.gov (United States)

    Rajendran, Megha; Dane, Eric; Conley, Jason; Tantama, Mathew

    2016-08-01

    Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.

  14. Dystrophin is required for the normal function of the cardio-protective K(ATP channel in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Laura Graciotti

    Full Text Available Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx, which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC. In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (K(ATP complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including K(ATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of K(ATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the K(ATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective K(ATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients.

  15. Substance P modulates sensory action potentials in the lamprey via a protein kinase C-mediated reduction of a 4-aminopyridine-sensitive potassium conductance.

    Science.gov (United States)

    Parker, D; Svensson, E; Grillner, S

    1997-10-01

    We have examined the effects of the tachykinin substance P on the action potential of lamprey mechanosensory dorsal cells. Substance P increased the spike duration and reduced the afterhyperpolarization. These effects were mimicked by stimulation of the dorsal root, which contains tachykinin-like immunoreactive fibres. The tachykinin antagonist spantide II blocked the effects of both substance P and dorsal root stimulation. The spike broadening was voltage-dependent, and was due to the reduction of a 4-aminopyridine-sensitive potassium conductance. The spike broadening was mimicked by G-protein activators and blocked by the G-protein inhibitor GDPbetaS. Pertussis toxin did not block the effects of substance P. The spike broadening was blocked by the protein kinase C and cAMP-dependent protein kinase inhibitor H7, and by the specific protein kinase C antagonist chelerythrine, but not by the cAMP and cGMP-dependent protein kinase inhibitor H8. The phorbol ester phorbol 12,13-dibutyrate mimicked and blocked the effects of substance P, supporting the role of protein kinase C in the spike modulation. The adenylate cyclase activator forskolin and the cAMP agonist SpcAMPs mimicked but did not block the effects of substance P on the spike duration, suggesting that protein kinase A also modulates the dorsal cell action potential, but that substance P acts independently of this pathway. Substance P also increased the excitability of the dorsal cells. This effect was blocked by 4-AP, PDBu and chelerythrine, but not by H8, suggesting that the increase in excitability shares the same intracellular and effector pathways as the spike broadening.

  16. Increased tolerance to stress in cardiac expressed gain-of-function of adenosine triphosphate-sensitive potassium channel subunit Kir6.1.

    Science.gov (United States)

    Henn, Matthew C; Janjua, M Burhan; Zhang, Haixia; Kanter, Evelyn M; Makepeace, Carol M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S

    2016-12-01

    The adenosine triphosphate-sensitive potassium (KATP) channel opener diazoxide (DZX) prevents myocyte volume derangement and reduced contractility secondary to stress. KATP channels are composed of pore-forming (Kir6.1 or Kir6.2) and regulatory (sulfonylurea receptor, SUR1 or SUR2) subunits. Gain of function (GOF) of Kir6.1 subunits has been implicated in cardiac pathology in Cantu syndrome in humans (cardiomegaly, lymphedema, and pericardial effusions). We hypothesized that GOF of Kir6.1 subunits would result in altered myocyte response to stress. Isolated cardiac myocytes from wild type (WT) and transgenic Kir6.1GOF mice were exposed to Tyrode's physiologic solution for 20 min, test solution (Tyrode's or stress [hyperkalemic cardioplegia {CPG, known myocyte stress}] +/- KATP channel opener DZX), followed by Tyrode's for 20 min. Myocyte volume and contractility were measured and compared. WT myocytes demonstrated significant swelling in response to stress, but significantly less swelling was seen in Kir6.1GOF myocytes. DZX prevented swelling secondary to CPG in WT but resulted in a nonsignificant reduction in swelling in Kir6.1GOF myocytes. Both WT and Kir6.1GOF myocytes demonstrated a reduction in contractility during stress, although this was only significant in Kir6.1GOF myocytes. DZX was not associated with an improvement in contractility in Kir6.1GOF myocytes following stress. Similar to previous results in Kir6.1(-/-) myocytes, Kir6.1GOF myocytes demonstrate resistance (less volume derangement) to stress of cardioplegia. Understanding the role of Kir6.1 in myocyte response to stress may aid in the treatment of patients with Cantu syndrome and warrants further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cardioprotección mediada por canales de potasio dependientes de ATP

    Directory of Open Access Journals (Sweden)

    Fernando Zeledón S

    2005-07-01

    Full Text Available La mitocondria juega un rol central en el mantenimiento del metabolismo del cardiomicito durante los fenómenos de isquemia y reperfusión. Esta "cardioprotección" parece estar ligada a la apertura de canales de potasio dependientes de ATP en la membrana mitocondrial, la que evita la apertura del poro transicional de permeabilidad (MPTP, la sobrecarga de calcio y la pérdida del volumen del espacio intermembrana mitocondrial, previniendo la muerte celular por necrosis o apoptosis. Diversos estudios clínicos sustentan el uso prometedor de fármacos que abren estos canales de potasio y que podrían ser una nueva arma terapéutica contra la enfermedad isquémica y sus consecuencias.Mitochondrial ATP-sensitive potassium channels play an important role preventing necrotic cell death and apoptsis during ischaemia/reperfusion fenomena by mean of preventing mitochondrial permeability transition pore (MPTP opening, intracellular calcium overload and loss of mitochondrial intermembrane space. There is clinical evidence of beneficial effects of a group of drugs called potassium channel openers that colud be a new therapeutic tool against cardiac ischaemic disease and its consequences.

  18. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  19. A receptor that is highly specific for extracellular ATP in developing chick skeletal muscle in vitro.

    OpenAIRE

    Thomas, S A; Zawisa, M. J.; X. Lin; Hume, R. I.

    1991-01-01

    1. Extracellular adenosine 5'-triphosphate (ATP) activated an early excitatory conductance followed by a late potassium conductance in developing chick skeletal muscle. A series of ATP analogues were tested for their ability to activate these two conductances. All compounds tested were either agonists for both responses or for neither. Furthermore, the potency of agonists was similar for the two responses. 2. The order of potency for agonists was ATP approximately adenosine 5'-O-(3-thiotripho...

  20. Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury.

    Science.gov (United States)

    Peng, Weiguo; Cotrina, Maria L; Han, Xiaoning; Yu, Hongmei; Bekar, Lane; Blum, Livnat; Takano, Takahiro; Tian, Guo-Feng; Goldman, Steven A; Nedergaard, Maiken

    2009-07-28

    Traumatic spinal cord injury is characterized by an immediate, irreversible loss of tissue at the lesion site, as well as a secondary expansion of tissue damage over time. Although secondary injury should, in principle, be preventable, no effective treatment options currently exist for patients with acute spinal cord injury (SCI). Excessive release of ATP by the traumatized tissue, followed by activation of high-affinity P2X7 receptors, has previously been implicated in secondary injury, but no clinically relevant strategy by which to antagonize P2X7 receptors has yet, to the best of our knowledge, been reported. Here we have tested the neuroprotective effects of a systemically administered P2X7R antagonist, Brilliant blue G (BBG), in a weight-drop model of thoracic SCI in rats. Administration of BBG 15 min after injury reduced spinal cord anatomic damage and improved motor recovery without evident toxicity. Moreover, BBG treatment directly reduced local activation of astrocytes and microglia, as well as neutrophil infiltration. These observations suggest that BBG not only protected spinal cord neurons from purinergic excitotoxicity, but also reduced local inflammatory responses. Importantly, BBG is a derivative of a commonly used blue food color (FD&C blue No. 1), which crosses the blood-brain barrier. Systemic administration of BBG may thus comprise a readily feasible approach by which to treat traumatic SCI in humans.

  1. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension

    DEFF Research Database (Denmark)

    Beuschlein, Felix; Boulkroun, Sheerazed; Osswald, Andrea

    2013-01-01

    Primary aldosteronism is the most prevalent form of secondary hypertension. To explore molecular mechanisms of autonomous aldosterone secretion, we performed exome sequencing of aldosterone-producing adenomas (APAs). We identified somatic hotspot mutations in the ATP1A1 (encoding an Na+/K+ ATPase α...... subunit) and ATP2B3 (encoding a Ca2+ ATPase) genes in three and two of the nine APAs, respectively. These ATPases are expressed in adrenal cells and control sodium, potassium and calcium ion homeostasis. Functional in vitro studies of ATP1A1 mutants showed loss of pump activity and strongly reduced...... affinity for potassium. Electrophysiological ex vivo studies on primary adrenal adenoma cells provided further evidence for inappropriate depolarization of cells with ATPase alterations. In a collection of 308 APAs, we found 16 (5.2%) somatic mutations in ATP1A1 and 5 (1.6%) in ATP2B3. Mutation...

  2. Transgenic overexpression of SUR1 in the heart suppresses sarcolemmal K(ATP).

    Science.gov (United States)

    Flagg, Thomas P; Remedi, Maria Sara; Masia, Ricard; Gomes, Jefferson; McLerie, Meredith; Lopatin, Anatoli N; Nichols, Colin G

    2005-10-01

    The lack of pathological consequences of cardiac ATP-sensitive potassium channel (K(ATP)) channel gene manipulation is in stark contrast to the effect of similar perturbations in the pancreatic beta-cell. Because the pancreatic and cardiac channel share the same pore-forming subunit (Kir6.2), the different effects of genetic manipulation likely reflect, at least in part, the tissue-specific expression of the regulatory subunit (SUR1 in pancreas vs. SUR2A in heart) of the bipartite channel complex. To examine this, we have generated transgenic (TG) mice that overexpress epitope-tagged SUR1 or SUR2A under the transcriptional control of the alpha-myosin heavy chain promoter. Western blot and real time RT-PCR analysis confirm transgene expression in the heart, and variable levels of SUR1 RNA and protein, in 16 viable founder lines. Surprisingly, activation of channels by either pharmacological agents (diazoxide and pinacidil) or metabolic inhibitors (oligomycin and 2-deoxyglucose) reveals a suppression of total K(ATP) conductance in high expressing TG mice. Moreover, K(ATP) channel activity was significantly reduced in excised cardiac patches from TG myocytes that overexpress either SUR1 or SUR2A. Using a recombinant cell system, we show that overexpression of either SUR1 or Kir6.2 suppresses the functional expression of K(ATP) from optimized dimeric SUR1-Kir6.2. Thus, the graded effect of SUR1 expression in the intact heart appears to demonstrate an in vivo requirement for 1:1 expression ratio of Kir6.2 and SURx.

  3. High potassium level

    Science.gov (United States)

    Hyperkalemia; Potassium - high; High blood potassium ... There are often no symptoms with a high level of potassium. When symptoms do occur, they may include: Nausea Slow, weak, or irregular pulse Sudden collapse, when the heartbeat gets too ...

  4. A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay.

    Science.gov (United States)

    Zhang, Libing; Wei, Hui; Li, Jing; Li, Tao; Li, Dan; Li, Yunhui; Wang, Erkang

    2010-04-15

    In this paper, a sensitive and selective fluorescent aptasensor for adenosine triphosphate (ATP) detection is constructed, based on the noncovalent assembly of dye-labeled ATP aptamer and single-walled carbon nanotubes (SWNTs). In the absence of ATP, the dye tethered to the ATP aptamer is close to SWNTs, which can effectively quench fluorescence of the dye. Upon adding ATP, the fluorophore keeps away from the quencher, since ATP specifically binds to the aptamer and competes with carbon nanotubes, resulting in an increase in the fluorescence intensity. This enables ATP to be detected down to 4.5nM. To the best of our knowledge, this is the most sensitive fluorescent ATP aptasensor. In addition, prominent fluorescence signals were obtained in cellular ATP assays, thus the aptasensor could be used to detect ATP in real samples.

  5. Effect of coriaria lactone on adenosine triphosphate-sensitive potassium channels in pyramidal neurons%马桑内酯对锥体神经元三磷酸腺苷敏感钾通道的作用

    Institute of Scientific and Technical Information of China (English)

    邹晓毅; 周华; 周树舜

    2005-01-01

    BACKGROUND: Abnormal neuronal discharge arose from the activation of cell membrane ion channels and transmembrane ion transport. The electric activity of the cells is associated with cell metabolism fundamentally through adenosine triphosphate (ATP)-sensitive potassium(KATP) channels.Currently the involvement of KATP channels in the pathogenesis of epilepsy and the regulation of KATP channels by coriaria lacton (EL) remain unknown.OBJETCIVE: To investigate the changes of cell membrane KATP channels in rat hippocampal neurons in response to CL as an epilepsy-inducing agent, and explore the role of KATP channels in the pathogenesis of epilepsy.DESIGN: Randomized controlled experiment.SETTING: Department of Neurology, West China Hospital Affiliated to Sichuan University, and Teaching and Research Section of Physiology,West China College of Preclinical Medicine and Forensic Medicine of Sichuan University.MATERIALS: This experiment was carried out at Luzhou Medical College between May and December 2000. Hippocampus pyramidal neurons were obtained from neonatal Wistar rats and randomized into normal control group, tetraethylammonium chloride (TEA) group, DNP group, CL group, and electric conductance and dynamics group.METHODS: The hippocampus of newborn Wistar rats was separated under aseptic condition and cultured for 24 hours prior to treatment with 10 μmol/L cytarabine for selective cell culture for 7-10 days. The cells in good growth exhibiting typical morphology of pyramidal neurons were then selected for patch-clamp experiment. The cells in the normal control group were treated with normal saline, which was replaced by 5 mmol/L TEA in TEA group, by 30 μmol/L DNP then 0.5 mol/L ATP in DNP group, and by 1.0 mL/L CL then 1 μmol/L glibenclamide in CL group. In electric conductance and dynamics group, the clamp voltage was firstly adjusted to investigate the channel opening before CL was added to the cells.MAIN OUTCOME MEASURES: ① Activity and curve of neuronal

  6. K(ATP channel opener diazoxide prevents neurodegeneration: a new mechanism of action via antioxidative pathway activation.

    Directory of Open Access Journals (Sweden)

    Noemí Virgili

    Full Text Available Pharmacological modulation of ATP-sensitive potassium channels has become a promising new therapeutic approach for the treatment of neurodegenerative diseases due to their role in mitochondrial and cellular protection. For instance, diazoxide, a well-known ATP-sensitive potassium channel activator with high affinity for mitochondrial component of the channel has been proved to be effective in animal models for different diseases such as Alzheimer's disease, stroke or multiple sclerosis. Here, we analyzed the ability of diazoxide for protecting neurons front different neurotoxic insults in vitro and ex vivo. Results showed that diazoxide effectively protects NSC-34 motoneurons from glutamatergic, oxidative and inflammatory damage. Moreover, diazoxide decreased neuronal death in organotypic hippocampal slice cultures after exicitotoxicity and preserved myelin sheath in organotypic cerebellar cultures exposed to pro-inflammatory demyelinating damage. In addition, we demonstrated that one of the mechanisms of actions implied in the neuroprotective role of diazoxide is mediated by the activation of Nrf2 expression and nuclear translocation. Nrf2 expression was increased in NSC-34 neurons in vitro as well as in the spinal cord of experimental autoimmune encephalomyelitis animals orally administered with diazoxide. Thus, diazoxide is a neuroprotective agent against oxidative stress-induced damage and cellular dysfunction that can be beneficial for diseases such as multiple sclerosis.

  7. Nandrolone decanoate negatively reverses the beneficial effects of exercise on cardiac muscle via sarcolemmal, but not mitochondrial K(ATP) channel.

    Science.gov (United States)

    Bayat, Gholamreza; Javan, Mohammad; Safari, Fatemeh; Khalili, Azadeh; Shokri, Saeed; Goudarzvand, Mahdi; Salimi, Mehdi; Hajizadeh, Sohrab

    2016-03-01

    ATP-sensitive potassium channels are supposed to have a substantial role in improvement of cardiac performance. This study was performed to evaluate whether nandrolone decanoate (ND) and (or) exercise training could affect the expression of cardiac K(ATP) channel subunits. Thirty-five male albino Wistar rats were randomly divided into 5 groups, including sedentary control (SC), sedentary vehicle (SV), sedentary ND (SND), exercise control (EC), and exercise and ND (E+ND). Exercise training was performed on a treadmill 5 times per week. ND was injected (10 mg/kg/week, i.m.) to the rats in the SND and E+ND groups. Following cardiac isolation, the expression of both sarcolemmal and mitochondrial subunits of K(ATP) channel was measured using Western blot method. The expression of sarcolemmal, but not mitochondrial, subunits of K(ATP) channel (Kir6.2 and SUR2) of EC group was significantly higher compared with SC group while ND administration (SND group) did not show any change in their expression. In the E+ND group, ND administration led to decrease of the over-expression of sarcolemmal Kir6.2 and SUR2 which was previously induced by exercise. There was no significant association between the mitochondrial expression of either Kir6.2 or SUR2 proteins and administration of ND or exercise. Supra-physiological dosage of ND negatively reverses the effects of exercise on the cardiac muscle expression of sarcolemmal, but not mitochondrial, K(ATP) channel subunits.

  8. Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Steffensen, Annette Buur; Grunnet, Morten;

    2011-01-01

    Kv7.1 (KCNQ1) channels are regulators of several physiological processes including vasodilatation, repolarization of cardiomyocytes, and control of secretory processes. A number of Kv7.1 pore mutants are sensitive to extracellular potassium. We hypothesized that extracellular potassium also...... modulates wild-type Kv7.1 channels. The Kv7.1 currents were measured in Xenopus laevis oocytes at different concentrations of extracellular potassium (1-50 mM). As extracellular potassium was elevated, Kv7.1 currents were reduced significantly more than expected from theoretical calculations based...... on the Goldman-Hodgkin-Katz flux equation. Potassium inhibited the steady-state current with an IC(50) of 6.0 ± 0.2 mM. Analysis of tail-currents showed that potassium increased the fraction of channels in the inactivated state. Similarly, the recovery from inactivation was slowed by potassium, suggesting...

  9. Real-time luminescence imaging of cellular ATP release.

    Science.gov (United States)

    Furuya, Kishio; Sokabe, Masahiro; Grygorczyk, Ryszard

    2014-03-15

    Extracellular ATP and other purines are ubiquitous mediators of local intercellular signaling within the body. While the last two decades have witnessed enormous progress in uncovering and characterizing purinergic receptors and extracellular enzymes controlling purinergic signals, our understanding of the initiating step in this cascade, i.e., ATP release, is still obscure. Imaging of extracellular ATP by luciferin-luciferase bioluminescence offers the advantage of studying ATP release and distribution dynamics in real time. However, low-light signal generated by bioluminescence reactions remains the major obstacle to imaging such rapid processes, imposing substantial constraints on its spatial and temporal resolution. We have developed an improved microscopy system for real-time ATP imaging, which detects ATP-dependent luciferin-luciferase luminescence at ∼10 frames/s, sufficient to follow rapid ATP release with sensitivity of ∼10 nM and dynamic range up to 100 μM. In addition, simultaneous differential interference contrast cell images are acquired with infra-red optics. Our imaging method: (1) identifies ATP-releasing cells or sites, (2) determines absolute ATP concentration and its spreading manner at release sites, and (3) permits analysis of ATP release kinetics from single cells. We provide instrumental details of our approach and give several examples of ATP-release imaging at cellular and tissue levels, to illustrate its potential utility.

  10. Large-conductance Ca2+-activated potassium channels in secretory neurons.

    Science.gov (United States)

    Lara, J; Acevedo, J J; Onetti, C G

    1999-09-01

    Large-conductance Ca2+-activated K+ channels (BK) are believed to underlie interburst intervals and contribute to the control of hormone release in several secretory cells. In crustacean neurosecretory cells, Ca2+ entry associated with electrical activity could act as a modulator of membrane K+ conductance. Therefore we studied the contribution of BK channels to the macroscopic outward current in the X-organ of crayfish, and their participation in electrophysiological activity, as well as their sensitivity toward intracellular Ca2+, ATP, and voltage, by using the patch-clamp technique. The BK channels had a conductance of 223 pS and rectified inwardly in symmetrical K+. These channels were highly selective to K+ ions; potassium permeability (PK) value was 2.3 x 10(-13) cm(3) s(-1). The BK channels were sensitive to internal Ca2+ concentration, voltage dependent, and activated by intracellular MgATP. Voltage sensitivity (k) was approximately 13 mV, and the half-activation membrane potentials depended on the internal Ca2+ concentration. Calcium ions (0.3-3 microM) applied to the internal membrane surface caused an enhancement of the channel activity. This activation of BK channels by internal calcium had a KD(0) of 0.22 microM and was probably due to the binding of only one or two Ca2+ ions to the channel. Addition of MgATP (0.01-3 mM) to the internal solution increased steady state-open probability. The dissociation constant for MgATP (KD) was 119 microM, and the Hill coefficient (h) was 0.6, according to the Hill analysis. Ca2+-activated K+ currents recorded from whole cells were suppressed by either adding Cd2+ (0.4 mM) or removing Ca2+ ions from the external solution. TEA (1 mM) or charybdotoxin (100 nM) blocked these currents. Our results showed that both BK and K(ATP) channels are present in the same cell. Even when BK and K(ATP) channels were voltage dependent and modulated by internal Ca2+ and ATP, the profile of sensitivity was quite different for each kind

  11. Firefly bioluminescent assay of ATP in the presence of ATP extractant by using liposomes.

    Science.gov (United States)

    Kamidate, Tamio; Yanashita, Kenji; Tani, Hirofumi; Ishida, Akihiko; Notani, Mizuyo

    2006-01-01

    Liposomes containing phosphatidylcholine (PC) and cholesterol (Chol) were applied to the enhancer for firefly bioluminescence (BL) assay for ATP in the presence of cationic surfactants using as an extractant for the release of ATP from living cells. Benzalkonium chloride (BAC) was used as an ATP extractant. However, BAC seriously inhibited the activity of luciferase, thus resulting in the remarkable decrease in the sensitivity of the BL assay for ATP. On the other hand, we found that BAC was associated with liposomes to form cationic liposomes containing BAC. The association rate of BAC with liposomes was faster than that of BAC with luciferase. As a result, the inhibitory effect of BAC on luciferase was eliminated in the presence of liposomes. In addition, cationic liposomes thus formed enhanced BL emission. BL measurement conditions were optimized in terms of liposome charge type, liposome size, and total concentration of PC and Chol. ATP can be sensitively determined without dilution of analytical samples by using liposomes. The detection limit of ATP with and without liposomes was 100 amol and 25 fmol in aqueous ATP standard solutions containing 0.06% BAC, respectively. The method was applied to the determination of ATP in Escherichia coli extracts. The BL intensity was linear from 4 x 10(4) to 1 x 10(7) cells mL(-1) in the absence of liposomes. On the other hand, the BL intensity was linear from 4 x 10(3) to 4 x 10(6) cells mL(-1) in the presence of liposomes. The detection limit of ATP in E. coli extracts was improved by a factor of 10 via use of liposomes.

  12. Application value of ATP based bioluminescence tumor chemo-sensitivity assay in the chemotherapy for ascites caused by recurrent ovarian cancer%ATP生物荧光肿瘤药敏在复发卵巢癌并腹水化疗中的应用价值

    Institute of Scientific and Technical Information of China (English)

    Kaijian Lei; Yuming Jia; Biao Wei; Yongxiang Xiong; Jing Wang

    2008-01-01

    Objective:To investigate the clinical value and application of ATP based bioluminescence tumor chemo-sensitivity assay (ATP-TCA) in the chemotherapy for ascites caused by recurrent ovarian cancer.Methods:More than 10 kinds of chemotherapeutic drugs or combinations were applied and 35 ascites specimens from recurrent ovarian cancer were analyzed by ATP-TCA.Sensitivity of chemotherapeutic drugs was assessed.After 2-4 chemotherapeutic cycles,clinical outcomes were analyzed,which were compared with those of 40 cases by empirical regimens.Results:32 of 35 specimens were evaluated with an overall evaluation rate of 91%.The assay results suggested that chemo-naive patients responded to chemotherapeutic drugs with individualized profiles.The sensitivity rates of GEM,EPI,OXA,DDP,CBP,ADM,VP-16,CTX,NVB,5-FU,PTX and TXT were 40%,30%,33%,29%,33%,38%,25%,33%,38%,33%,25% and 20%,respectively.While the sensitivity rates of combinations GEM + EPI,GEM + CBP,GEM + DDP,NVB + DDP,CTX + ADM + DDP,CTX + ADM,DDP + VP-18,OXA + 5-FU,VP-16 + IFO,PTX + DDP,TXT + CBP,VCR + CTX + MTX,DDP + CPT-11,OXA + CPT-11,and DTIC + CTX were 47%,50%,36%,44%,30%,33%,27%,33%,40%,27%,23%,14%,28%,30% and 17%,respectively.In vitro results correlated well with clinical outcomes.Objective response rate (RR) in chemo-sensitivity-guided group was of significance compared with that in empirical-regimen-guided group.Conclusion:ATP-TCA is a choice for the screening of chemotherapeutic drugs against ascites caused by recurrent ovarian cancer with excellent sensitivity and reliability.ATP-TCA assay results correlate well with clinical outcomes,suggesting its clinical value in the management of difficult-to-manage therapeutic situations such as ascites in recurrent ovarian cancer.

  13. ATP release, generation and hydrolysis in exocrine pancreatic duct cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Yegutkin, G.G.; Novak, Ivana

    2015-01-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our...... aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan......-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient...

  14. Effect of Potassium Channel Modulators on Morphine Withdrawal in Mice

    Directory of Open Access Journals (Sweden)

    Vikas Seth

    2010-01-01

    Full Text Available The present study was conducted to investigate the effect of potassium channel openers and blockers on morphine withdrawal syndrome. Mice were rendered dependent on morphine by subcutaneous injection of morphine; four hours later, withdrawal was induced by using an opioid antagonist, naloxone. Mice were observed for 30 minutes for the withdrawal signs ie, the characteristic jumping, hyperactivity, urination and diarrhea. ATP-dependent potassium (K + ATP channel modulators were injected intraperitoneally (i.p. 30 minutes before the naloxone. It was found that a K + ATP channel opener, minoxidil (12.5–50 mg/kg i.p., suppressed the morphine withdrawal significantly. On the other hand, the K + ATP channel blocker glibenclamide (12.5–50 mg/kg i.p. caused a significant facilitation of the withdrawal. Glibenclamide was also found to abolish the minoxidil's inhibitory effect on morphine withdrawal. The study concludes that K + ATP channels play an important role in the genesis of morphine withdrawal and K + ATP channel openers could be useful in the management of opioid withdrawal. As morphine opens K + ATP channels in neurons, the channel openers possibly act by mimicking the effects of morphine on neuronal K + currents.

  15. Application of ATP Assay in Vitro Bioluminescence Tumor Sensitivity to Neoadjuvant Chemotherapy for Nasopharyngeal Carcinoma%三磷酸腺苷法肿瘤药敏实验在筛选鼻咽癌新辅助化疗药物中的应用

    Institute of Scientific and Technical Information of China (English)

    何志坚; 钟睿; 刘海云; 敖帆

    2013-01-01

    Objective To investigate the drug sensitivity of nasopharyngeal carcinoma in vitro by ATP-TCA, and provide basis of neoadjuvant chemotherrap in nasopharyngeal carcinoma. Methods ATP-TCA was applied to determine the drug sensi-tivity of 84 nasopharyngeal carcinomas to eight common chemotherapeutics. Results The rate of evaluation of tissue samples was 100%. The drug with most sensitive efficiency was PXT (50%), followed by DDP (35.45%), 5-Fu (31.25%), NVB (23.53%), HCT (10.53%), MTX (10.53%), VP-16 (7.69%), THP (5.00%). The chemotherapy drugs showed strong individual difference in the killing effect on nasopharyngeal carcinoma. Conclusions The nasopharyngeal carcinoma tissues in vitro had significantly different sensitivity to eight kinds of chemotherapy drugs. ATP bioluminescence tumor drug sensitivity assay can be used in the clinical setting of individualized neoadjuvant chemotherapy for nasopharyngeal carcinoma (NPC) patients.%目的探讨肿瘤体外药敏实验 ATP 生物荧光法(ATP-TCA)在筛选鼻咽癌新辅助化疗药物中的应用。方法应用 ATP-TCA 法体外检测84例鼻咽癌活检组织对8种常用化疗药物的敏感性。结果组织标本的可评估率为100.0%。PXT 最敏感,体外有效率为50.00%,其次为 DDP (35.45%)、5-Fu (31.25%)、NVB(23.53%)、HCT (10.53%)、MTX(10.53%)、VP-16(7.69%)、THP(5.00%)。化疗药物对鼻咽癌的杀伤作用具有较强的个体差异性。结论体外鼻咽癌组织对8种化疗药物敏感性不同,存在明显差异性, ATP 生物荧光肿瘤体外药物敏感性检测法可用于临床制定个体化的鼻咽癌新辅助化疗方案。

  16. Potassium carbonate poisoning

    Science.gov (United States)

    Potassium carbonate is a white powder used to make soap, glass, and other items. This article discusses poisoning from swallowing or breathing in potassium carbonate. This article is for information only. Do ...

  17. Potassium maldistribution revisited

    African Journals Online (AJOL)

    distributor of 15% potassium chloride has printed instructions ... maldistribution of concentrated 15% potassium chloride after injection into one-liter, flexible, ... rates should be controlled, preferably using an electronic infusion controller.

  18. Genetic effects of ATP1A2 in familial hemiplegic migraine type II and animal models.

    Science.gov (United States)

    Gritz, Stephanie M; Radcliffe, Richard A

    2013-04-05

    Na(+)/K(+)-ATPase alpha 2 (Atp1a2) is an integral plasma membrane protein belonging to the P-type ATPase family that is responsible for maintaining the sodium (Na(+)) and potassium (K(+)) gradients across cellular membranes with hydrolysis of ATP. Atp1a2 contains two subunits, alpha and beta, with each having various isoforms and differential tissue distribution. In humans, mutations in ATP1A2 are associated with a rare form of hereditary migraines with aura known as familial hemiplegic migraine type II. Genetic studies in mice have revealed other neurological effects of Atp1a2 in mice including anxiety, fear, and learning and motor function disorders. This paper reviews the recent findings in the literature concerning Atp1a2.

  19. Application value of ATP based bioluminescence tumor chemo-sensitivity assay in the chemotherapy forhydrothorax caused by non-small cell lung cancer%肿瘤药敏指导下的化疗对非小细胞肺癌并恶性胸水治疗的有效性

    Institute of Scientific and Technical Information of China (English)

    雷开键; 林绍云; 贾钰铭; 王静; 江茂琼

    2012-01-01

    To investigate the clinical value and application of ATP based bioluminescence tumor chemo-sensitivity assay( ATP-TCA) in the chemotherapy for hydrothorax caused by non-small cell lung cancer(NSCLC) . Methods Hydrotho-rax specimens from 120 NSCLC patients were analyzed by ATP-TCA and the most sensitive chemotherapeutic drugs were used in NSCLC patients(treatment group). At the same time,56 NSCLC patients with hydrothorax were admitted in our department and were given chemotherapy without guidance of the ATP-TCA( control group) . Before the third chemotherapeutic cycle, clinical outcomes were analyzed in the two groups. Results Effective rate of hydrothorax in treatment group was 67% , while 46% in control group , P <0. 05. In refractory hydrothorax patients, it was 69% and 40% , P <0. 05, respectively. In vitro results correlated well with clinical outcomes(P <0. 01). Conclusion Effective rate of chemotherapy for hydrothorax in NSCLC is higher in treatment group than that in control group ATP-TCA is especially helpful for refractory hudrothorax.%目的 探讨ATP肿瘤药敏(ATP-TCA)指导下的化疗对非小细胞肺癌并恶性胸水治疗的有效性.方法 采用ATP-TCA检测120例非小细胞肺癌(NSCLC)患者的胸水标本,选择最敏感的化疗方案用于胸水治疗(治疗组);同期收治的56例非小细胞肺癌胸水患者,非药敏指导下的化疗(对照组).两者效果进行比较.结果 治疗组胸水治疗有效率67%,对照组46%,P<0.05.难治性胸水患者,治疗组中有效率69%,对照组40%,P<0.05.体外敏感与体内有效性之间有相关性(P<0.01).结论 ATP-TCA指导下的化疗对非小细胞肺癌并恶性胸水治疗的有效率较非药敏指导下的化疗有效率高.特别是对难治性胸水的治疗有指导价值.

  20. ATP release, generation and hydrolysis in exocrine pancreatic duct cells.

    Science.gov (United States)

    Kowal, J M; Yegutkin, G G; Novak, I

    2015-12-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide

  1. cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels.

    Science.gov (United States)

    Hein, T W; Kuo, L

    1999-10-01

    Adenosine is known to play an important role in the regulation of coronary blood flow during metabolic stress. However, there is sparse information on the mechanism of adenosine-induced dilation at the microcirculatory levels. In the present study, we examined the role of endothelial nitric oxide (NO), G proteins, cyclic nucleotides, and potassium channels in coronary arteriolar dilation to adenosine. Pig subepicardial coronary arterioles (50 to 100 microm in diameter) were isolated, cannulated, and pressurized to 60 cm H(2)O without flow for in vitro study. The arterioles developed basal tone and dilated dose dependently to adenosine. Disruption of endothelium, blocking of endothelial ATP-sensitive potassium (K(ATP)) channels by glibenclamide, and inhibition of NO synthase by N(G)-nitro-L-arginine methyl ester and of soluble guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one produced identical attenuation of vasodilation to adenosine. Combined administration of these inhibitors did not further attenuate the vasodilatory response. Production of NO from coronary arterioles was significantly increased by adenosine. Pertussis toxin, but not cholera toxin, significantly inhibited vasodilation to adenosine, and this inhibitory effect was only evident in vessels with an intact endothelium. Tetraethylammonium, glibenclamide, and a high concentration of extraluminal KCl abolished vasodilation of denuded vessels to adenosine; however, inhibition of calcium-activated potassium channels by iberiotoxin had no effect on this dilation. Rp-8-Br-cAMPS, a cAMP antagonist, inhibited vasodilation to cAMP analog 8-Br-cAMP but failed to block adenosine-induced dilation. Furthermore, vasodilations to 8-Br-cAMP and sodium nitroprusside were not inhibited by glibenclamide, indicating that cAMP- and cGMP-induced dilations are not mediated by the activation of K(ATP) channels. These results suggest that adenosine activates both endothelial and smooth muscle pathways to exert

  2. Potassium Secondary Batteries.

    Science.gov (United States)

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  3. Genetic Variations in the Kir6.2 Subunit (KCNJ11 of Pancreatic ATP-Sensitive Potassium Channel Gene Are Associated with Insulin Response to Glucose Loading and Early Onset of Type 2 Diabetes in Childhood and Adolescence in Taiwan

    Directory of Open Access Journals (Sweden)

    Yi-Der Jiang

    2014-01-01

    Full Text Available To investigate the role of E23K polymorphism of the KCNJ11 gene on early onset of type 2 diabetes in school-aged children/adolescents in Taiwan, we recruited 38 subjects with type 2 diabetes (ages 18.6 ± 6.6 years; body mass index percentiles 83.3 ± 15.4 and 69 normal controls (ages 17.3 ± 3.8 years; body mass index percentiles 56.7 ± 29.0 from a national surveillance for childhood/adolescent diabetes in Taiwan. We searched for the E23K polymorphism of the KCNJ11 gene. We found that type 2 diabetic subjects had higher carrier rate of E23K polymorphism of KCNJ11 gene than control subjects (P = 0.044. After adjusting for age, gender, body mass index percentiles, and fasting plasma insulin, the E23K polymorphism contributed to an increased risk for type 2 diabetes (P = 0.047. K23-allele-containing genotypes conferring increased plasma insulin level during OGTT in normal subjects. However, the diabetic subjects with the K23-allele-containing genotypes had lower fasting plasma insulin levels after adjustment of age and BMI percentiles. In conclusion, the E23K variant of the KCNJ11 gene conferred higher susceptibility to type 2 diabetes in children/adolescents. Furthermore, in normal glucose-tolerant children/adolescents, K23 allele carriers had a higher insulin response to oral glucose loading.

  4. Mitochondrial ATP sensitive potassium channel: a new target for brain protection in hypoxic/ischemic preconditioning%线粒体ATP敏感性钾通道:脑缺氧/缺血预适应保护的新焦点

    Institute of Scientific and Technical Information of China (English)

    任双来; 高天明; 范明

    2005-01-01

    脑缺氧/缺血及药物等多种因素预适应对脑缺氧/缺血损伤有明显的保护作用.自Noma 1983年发现心肌细胞膜上存在ATP敏感性钾通道(KATP)以来,KATP被认为是介导脑缺氧/缺血预适应重要的效应器.随着研究的深入,Inoue等于1991年在线粒体内膜发现了KATP,线粒体内膜ATP敏感性钾通道(mito-KATP)则成了人们新的关注焦点.虽然mito-KATP还没有被克隆出来,但现有相关领域的研究结果暗示mito- KATP将在脑缺血/缺氧预适应的脑保护中占有越来越重要的地位.

  5. 线粒体ATP敏感性钾通道对缺血性脑损伤的保护作用%Protective effects of mitochondrial ATP-sensitive potassium channels on ischemic cerebral injury

    Institute of Scientific and Technical Information of China (English)

    张俊杰; 李士通; 顾虎

    2003-01-01

    目的应用线粒体ATP敏感性钾通道(mito KATP)特异性的开放剂二氮嗪和阻断剂5-HD观察mito KATP对缺血性脑损伤的影响.方法成年健康雄性SD大鼠32只,随机分成四组:假手术组(n=8),行大脑中动脉栓塞(MCAO)的手术操作,但不插线;脑缺血组(n=8),MCAO前给予同等量生理盐水;二氮嗪组(n=8),MCAO前30 min二氮嗪5 mg/kg腹腔注射;5-HD复合二氮嗪组(n=8),5-HD 10 mg/kg静脉注射,15 min后二氮嗪5.0 mg/kg腹腔注射,30 min后再行MCAO.各组MCAO 2 h再灌注24 h后,应用Garcia评分法观察大鼠神经精神系统表现,大脑切片并行TTC染色,计算大脑梗死容积以及透射电镜观察线粒体超微结构的变化.结果应用二氮嗪后,相对脑缺血组大鼠的神经功能评分显著提高(P<0.01),大脑梗死容积明显减小(P<0.01).电镜下见脑缺血组线粒体肿胀混浊,呈空泡化,内嵴断裂,膜破损;二氮嗪组线粒体仅有轻度肿胀,基本结构完好,内膜间隙清晰.5-HD复合二氮嗪组表现与脑缺血组近似,二氮嗪的保护作用被取消.结论 mito KATP的开放可以对缺血性脑损伤产生保护作用.

  6. 刺五加叶皂苷对心肌ATP敏感性钾通道的作用%Effects of acanthopanax senticosus saponins on myocardial ATP sensitive potassium channel

    Institute of Scientific and Technical Information of China (English)

    周逸; 唐其柱; 史锡滕; 王滕

    2004-01-01

    目的:研究刺五加叶皂苷(ASS)对心肌线粒体ATP敏感性钾通道(mito KATP)和细胞膜ATP敏感性钾通道(sarcol KATP)的作用,探讨ASS对缺血心肌保护作用的机制.方法:用酶解法获取兔心室肌细胞,激光扫描共聚焦显微镜观察ASS对mito KATP的作用,全细胞膜片钳技术观察ASS对sarcol KATP的作用.结果:对照组观察 10min 线粒体荧光强度无明显变化.ASS 30、100和 300 mg·L-1 组均可见用药后线粒体荧光强度明显增加,分别增加(14.8±3.6)%、(30.4±4.3)%和(38.4±5.7)%.3 μmol·L-1格列本脲不影响线粒体荧光强度,但可以阻断ASS对线粒体荧光强度的作用.而对照组、ASS 10、100和 300μmol·L-1 组的IK-ATP峰值无明显差异.结论:ASS对mito KATP有开放作用,而对sarcol KATP没有作用.ASS通过开放mito KATP产生心肌保护作用.

  7. Effects of Taurine on ATP-sensitive Potassium Channel Activity during Hypoxia in Ventricular Muscle of Guinea Pig%牛磺酸对豚鼠心室肌细胞膜ATP敏感性钾电流的影响

    Institute of Scientific and Technical Information of China (English)

    祝芬; 张培华; 马季骅

    2002-01-01

    应用100%纯氮饱和灌流液建立低氧模型和膜片钳全细胞记录技术, 研究牛磺酸对单个豚鼠心室肌细胞膜上ATP敏感性钾电流IKATP的影响.结果表明:牛磺酸具有抑制豚鼠心室肌细胞膜上ATP敏感钾通道KATP开放的作用.从而推测出低氧心肌细胞内牛磺酸的耗竭,可能是促使KATP通道开放的机制之一.

  8. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in beta TC3 cells and rat pancreatic beta cells

    DEFF Research Database (Denmark)

    Gromada, J; Dissing, S; Kofod, Hans

    1995-01-01

    The present study demonstrates the action of the hypoglycaemic drugs repaglinide and glibenclamide in cultured newborn rat islet cells and mouse beta TC3 cells. In cell-attached membrane patches of newborn rat islet cells repaglinide (10 nmol/l) and glibenclamide (20 nmol/l) decrease the open pro...

  9. Selective extraction by dissolvable (nitriloacetic acid-nickel)-layered double hydroxide coupled with reaction with potassium thiocyanate for sensitive detection of iron(III).

    Science.gov (United States)

    Tang, Sheng; Chang, Yuepeng; Shen, Wei; Lee, Hian Kee

    2016-07-01

    A highly selective method has been proposed for the determination of iron cation (Fe(3+)). (Nitriloacetic acid-nickel)-layered double hydroxide ((NTA-Ni)-LDH) was successfully synthesized and used as dissolvable sorbent in dispersive solid-phase extraction to pre-concentrate and separate Fe(3+) from aqueous phase. Since Fe(3+) has a larger formation constant with NTA compared to Ni(2+), subsequently ion exchange occurred when (NTA-Ni)-LDH was added to the sample solution. The resultant (NTA-Fe)-LDH sol was isolated and transferred in an acidic medium containing potassium thiocyanate (KSCN). Since (NTA-Fe)-LDH could be dissolved in acidic conditions, Fe(3+)was released and reacted with SCN(-) to form an Fe-SCN complex. The resulting product was measured by ultraviolet-visible spectrometry for quantitative detection of Fe(3+). Extraction factors, including sample pH, reaction pH, extraction temperature, extraction time, reaction time and concentration of KSCN were optimized. This method achieved a low limit of detection of 15.2nM and a good linear range from 0.05 to 50μM (r(2)=0.9937). A nearly 18-fold enhancement of signal intensity was achieved after selective extraction. The optimized conditions were validated by applying the method to determine Fe(3+) in seawater samples.

  10. F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase

    OpenAIRE

    Rak, Malgorzata; Tzagoloff, Alexander

    2009-01-01

    The ATP synthase of yeast mitochondria is composed of 17 different subunit polypeptides. We have screened a panel of ATP synthase mutants for impaired expression of Atp6p, Atp8p, and Atp9p, the only mitochondrially encoded subunits of ATP synthase. Our results show that translation of Atp6p and Atp8p is activated by F1 ATPase (or assembly intermediates thereof). Mutants lacking the α or β subunits of F1, or the Atp11p and Atp12p chaperones that promote F1 assembly, have normal levels of the b...

  11. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    Science.gov (United States)

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  12. Optogenetic control of ATP release

    Science.gov (United States)

    Lewis, Matthew A.; Joshi, Bipin; Gu, Ling; Feranchak, Andrew; Mohanty, Samarendra K.

    2013-03-01

    Controlled release of ATP can be used for understanding extracellular purinergic signaling. While coarse mechanical forces and hypotonic stimulation have been utilized in the past to initiate ATP release from cells, these methods are neither spatially accurate nor temporally precise. Further, these methods cannot be utilized in a highly effective cell-specific manner. To mitigate the uncertainties regarding cellular-specificity and spatio-temporal release of ATP, we herein demonstrate use of optogenetics for ATP release. ATP release in response to optogenetic stimulation was monitored by Luciferin-Luciferase assay (North American firefly, photinus pyralis) using luminometer as well as mesoscopic bioluminescence imaging. Our result demonstrates repetitive release of ATP subsequent to optogenetic stimulation. It is thus feasible that purinergic signaling can be directly detected via imaging if the stimulus can be confined to single cell or in a spatially-defined group of cells. This study opens up new avenue to interrogate the mechanisms of purinergic signaling.

  13. K ATP channels in pig and human intracranial arteries

    DEFF Research Database (Denmark)

    Ploug, Kenneth Beri; Sørensen, Mette Aaskov; Strøbech, Lotte Bjørg

    2008-01-01

    Clinical trials suggest that synthetic ATP-sensitive K(+) (K(ATP)) channel openers may cause headache and migraine by dilating cerebral and meningeal arteries. We studied the mRNA expression profile of K(ATP) channel subunits in the pig and human middle meningeal artery (MMA) and in the pig middle...... cerebral artery (MCA). We determined the order of potency of four K(ATP) channel openers when applied to isolated pig MMA and MCA, and we examined the potential inhibitory effects of the Kir6.1 subunit specific K(ATP) channel blocker PNU-37883A on K(ATP) channel opener-induced relaxation of the isolated...... pig MMA and MCA. Using conventional RT-PCR, we detected the mRNA transcripts of the K(ATP) channel subunits Kir6.1 and SUR2B in all the examined pig and human intracranial arteries. Application of K(ATP) channel openers to isolated pig MMA and MCA in myographs caused a concentration...

  14. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2013-01-01

    Full Text Available This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, the neuronal NOS inhibitor Nω-propyl-L-arginine hydrochloride, the inducible NOS inhibitor 1400W dihydrochloride, the nitric oxide-sensitive guanylyl cyclase (GC inhibitor ODQ, the NOS and GC inhibitor methylene blue, the phosphoinositide-3 kinase inhibitor wortmannin, the cytochrome p450 epoxygenase inhibitor fluconazole, the voltage-dependent potassium channel inhibitor 4-aminopyridine (4-AP, the calcium-activated potassium channel inhibitor tetraethylammonium (TEA, the inward-rectifying potassium channel inhibitor barium chloride, and the ATP-sensitive potassium channel inhibitor glibenclamide. The effect of ropivacaine on endothelial nitric oxide synthase (eNOS phosphorylation in human umbilical vein endothelial cells was examined by western blotting. Ropivacaine-induced contraction was weaker in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, and methylene blue enhanced ropivacaine-induced contraction, whereas wortmannin, Nω-propyl-L-arginine hydrochloride, 1400W dihydrochloride, and fluconazole had no effect. 4-AP and TEA enhanced ropivacaine-induced contraction; however, barium chloride and glibenclamide had no effect. eNOS phosphorylation was induced by ropivacaine. These results suggest that ropivacaine-induced contraction is attenuated primarily by both endothelial nitric oxide and voltage-dependent potassium channels.

  15. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    Science.gov (United States)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  16. Potassium food supplement

    Science.gov (United States)

    Bourland, C. T.; Huber, C. S.; Rambaut, C.; Heidelbaugh, N. D.

    1973-01-01

    Potassium gluconate is considered best supplementary source for potassium. Gluconate consistently received highest taste rating and was indistinguishable from nonsupplemented samples. No unfavorable side effects were found during use, and none are reported in literature. Gluconate is normal intermediary metabolite that is readily adsorbed and produces no evidence of gastrointestinal ulcerations.

  17. Penicillin V Potassium Oral

    Science.gov (United States)

    V-Cillin K® ... Penicillin V potassium is an antibiotic used to treat certain infections caused by bacteria such as pneumonia, scarlet fever, ... Penicillin V potassium comes as a tablet and liquid to take by mouth. It is usually taken every 6 ...

  18. Apamin-Sensitive Small Conductance Calcium-Activated Potassium Channels were Negatively Regulated by Captopril in Volume-Overload Heart Failure Rats.

    Science.gov (United States)

    Hongyuan, Bai; Xin, Dong; Jingwen, Zhang; Li, Gao; Yajuan, Ni

    2016-08-01

    In heart failure (HF), the malignant arrhythmias occur frequently; a study demonstrated that upregulation of I KAS resulted in recurrent spontaneous ventricular fibrillation in HF. However, the regulation of SK channels was poorly understood. The activation of SK channels depended on [Ca(2+)]i and PP2A; studies suggested that angiotensin II can regulate them. So, we hypothesized that in HF, the excess of angiotensin may regulate the SK channels and result in the remodeling of SK channels. To test the hypothesis, we used volume-overload-induced HF rat model, treated with captopril, performed whole-cell patch clamp to record apamin-sensitive currents (I KAS), and I-V curve was studied. The sensitivity of I KAS to [Ca(2+)]i was also explored by setting various [Ca(2+)]i (10, 100, 500, 900, 1000, and 10,000 nM), and the steady-state Ca(2+) response of I KAS was attained and performed Hill fitting with the equation (y = 1/[1 + (EC50/x) (n) ]). Immunofluorescent staining, real-time PCR, Western blot were also carried out to furtherly investigate the underlying molecular mechanisms of the regulation. Captopril significantly decreased the mean density of I KAS when [Ca(2+)]i was 500, 900, 1000, and 10000 nM. The Hill fitting showed significantly different EC50 values and the Hill coefficients and showed captopril significantly shifted rightward the steady-state Ca(2+) response of I KAS. The results of real-time PCR and Western blot demonstrated captopril decreased the mRNA and protein expression of SK3 channels. Captopril significantly downregulated the sensitivity of SK channels to [Ca(2+)]i and the SK3 channels expression in HF, and reversed the SK channels remodeling.

  19. How reliable are ATP bioluminescence meters in assessing decontamination of environmental surfaces in healthcare settings?

    Directory of Open Access Journals (Sweden)

    Navid Omidbakhsh

    Full Text Available BACKGROUND: Meters based on adenosine triphosphate (ATP bioluminescence measurements in relative light units (RLU are often used to rapidly assess the level of cleanliness of environmental surfaces in healthcare and other settings. Can such ATP measurements be adversely affected by factors such as soil and cleaner-disinfectant chemistry? OBJECTIVE: This study tested a number of leading ATP meters for their sensitivity, linearity of the measurements, correlation of the readings to the actual microbial contamination, and the potential disinfectant chemicals' interference in their readings. METHODS: First, solutions of pure ATP in various concentrations were used to construct a standard curve and determine linearity and sensitivity. Serial dilutions of a broth culture of Staphylococcus aureus, as a representative nosocomial pathogen, were then used to determine if a given meter's ATP readings correlated with the actual CFUs. Next, various types of disinfectant chemistries were tested for their potential to interfere with the standard ATP readings. RESULTS: All four ATP meters tested herein demonstrated acceptable linearity and repeatability in their readings. However, there were significant differences in their sensitivity to detect the levels of viable microorganisms on experimentally contaminated surfaces. Further, most disinfectant chemistries tested here quenched the ATP readings variably in different ATP meters evaluated. CONCLUSIONS: Apart from their limited sensitivity in detecting low levels of microbial contamination, the ATP meters tested were also prone to interference by different disinfectant chemistries.

  20. Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Schubert,H.; Hill, C.

    2006-01-01

    Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B{sub 12}) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 {angstrom} crystal structure of ATP bound to hATR refined to an R{sub free} value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, thereby providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.

  1. The physical state of potassium in frog skeletal muscle studied by ion-sensitive microelectrodes and by electron microscopy: interpretation of seemingly incompatible results.

    Science.gov (United States)

    Edelmann, L

    2014-01-01

    According to the commonly accepted membrane pump theory most of cellular K+ ions are freely dissolved in free cellular water; the alternative association-induction hypothesis postulates that the bulk of cellular K+ is adsorbed (weakly bound) to cellular proteins that are maintained in a specific labile state in the cytoplasm of a living cell. K+ activities measured with ion-sensitive microelectrodes in the cytoplasm of frog skeletal muscle seem to confirm the claim that most of cellular K+ ions are free in cellular water. On the other hand, it is evident from electron microscopic ion binding studies that in frog skeletal muscle most of cellular K+ ions are adsorbed to cellular proteins. The conflicting results can be explained with the assumption that a damage of the cytoplasm caused by the impaling microelectrode leads to a liberation of adsorbed ions. Using the light microscope tests the possibility that microelectrodes damage the muscle cytoplasm. It is found that microelectrodes produce visible traumas that increase with time. Electron microscopic ion binding studies with damaged muscle support the view that monovalent cations are liberated in the disturbed area of a muscle fiber. It is concluded that a K(+)-sensitive microelectrode is not suited to determine the concentration of free K+ ions in intact frog skeletal muscle.

  2. Suppression of KCNQ/M (Kv7) potassium channels in the spinal cord contributes to the sensitization of dorsal horn WDR neurons and pain hypersensitivity in a rat model of bone cancer pain.

    Science.gov (United States)

    Cai, Jie; Fang, Dong; Liu, Xiao-Dan; Li, Song; Ren, Juan; Xing, Guo-Gang

    2015-03-01

    Primary and metastatic cancers that affect bones are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. In the present study, we investigated whether inhibition of KCNQ/M (Kv7) potassium channels in the spinal cord contributes to the development of bone cancer pain via sensitization of dorsal horn wide dynamic range (WDR) neurons. Using a rat model of bone cancer pain based on intratibial injection of MRMT-1 tumor cells, we observed a significant increase in C-fiber responses of dorsal horn WDR neurons in the MRMT-1 injected rats, indicating sensitization of spinal WDR neurons in bone cancer rats. Furthermore, we discovered that blockade of KCNQ/M channels in the spinal cord by local administration of XE-991, a specific KCNQ/M channel blocker, caused a robust increase in excitability of dorsal horn WDR neurons, while, producing obvious pain hypersensitivity in normal rats. On the contrary, activation of spinal KCNQ/M channels by retigabine, a selective KCNQ/M channel opener, not only inhibited the bone cancer‑induced hyperexcitability of dorsal horn WDR neurons, but also alleviated mechanical allodynia and thermal hyperalgesia in the bone cancer rats, while all of these effects of retigabine could be blocked by KCNQ/M-channel antagonist XE-991. All things considered, these results suggest that suppression of KCNQ/M channels in the spinal cord likely contributes to the development of bone cancer pain via sensitization of dorsal horn WDR neurons in rats following tumor cell inoculation.

  3. The role of DPO-1 and XE991-sensitive potassium channels in perivascular adipose tissue-mediated regulation of vascular tone

    Directory of Open Access Journals (Sweden)

    Dmitry Tsvetkov

    2016-08-01

    Full Text Available The anti-contractile effect of perivascular adipose tissue (PVAT is an important mechanism in the modulation of vascular tone in peripheral arteries. Recent evidence has implicated the XE991-sensitive voltage-gated Kv (KCNQ channels in the regulation of arterial tone by PVAT. However, until now the in vivo pharmacology of the involved vascular Kv channels with regard to XE991 remains undetermined, since XE991 effects may involve Ca2+ activated BKCa channels and/or voltage-dependent Kv1.5 channels sensitive to diphenyl phosphine oxide-1 (DPO-1. In this study, we tested whether Kv1.5 channels are involved in the control of mesenteric arterial tone and its regulation by PVAT. Our study was also aimed at extending our current knowledge on the in situ vascular pharmacology of DPO-1 and XE991 regarding Kv1.5 and BKCa channels, in helping to identify the nature of K+ channels that could contribute to PVAT-mediated relaxation. XE991 at 30 µM reduced the anti-contractile response of PVAT, but had no effects on vasocontraction induced by phenylephrine (PE in the absence of PVAT. Similar effects were observed for XE991 at 0.3 µM, which is known to almost completely inhibit mesenteric artery VSMC Kv currents. 30 µM XE991 did not affect BKCa currents in VSMCs. Kcna5-/- arteries and wild-type arteries incubated with 1 µM DPO-1 showed normal vasocontractions in response to PE in the presence and absence of PVAT. Kv current density and inhibition by 30 µM XE991 were normal in mesenteric artery VSMCs isolated from Kcna5-/- mice. We conclude that Kv channels are involved in the control of arterial vascular tone by PVAT. These channels are present in VSMCs and very potently inhibited by the KCNQ channel blocker XE991. BKCa channels and/or DPO-1 sensitive Kv1.5 channels in VSMCs are not the downstream mediators of the XE991 effects on PVAT-dependent arterial vasorelaxation. Further studies will need to be undertaken to examine the role of other Kv channels in

  4. Fullerene derived molecularly imprinted polymer for chemosensing of adenosine-5'-triphosphate (ATP).

    Science.gov (United States)

    Sharma, Piyush S; Dabrowski, Marcin; Noworyta, Krzysztof; Huynh, Tan-Phat; Kc, Chandra B; Sobczak, Janusz W; Pieta, Piotr; D'Souza, Francis; Kutner, Wlodzimierz

    2014-09-24

    For molecular imprinting of oxidatively electroactive analytes by electropolymerization, we used herein reductively electroactive functional monomers. As a proof of concept, we applied C60 fullerene adducts as such for the first time. For that, we derivatized C60 to bear either an uracil or an amide, or a carboxy addend for recognition of the adenosine-5'-triphosphate (ATP) oxidizable analyte with the ATP-templated molecularly imprinted polymer (MIP-ATP). Accordingly, the ATP complex with all of the functional monomers formed in solution was potentiodynamically electropolymerized to deposit an MIP-ATP film either on an Au electrode of the quartz crystal resonator or on a Pt disk electrode for the piezoelectric microgravimetry (PM) or capacitive impedimetry (CI) determination of ATP, respectively, under the flow-injection analysis (FIA) conditions. The apparent imprinting factor for ATP was ∼4.0. After extraction of the ATP template, analytical performance of the resulting chemosensors, including detectability, sensitivity, and selectivity, was characterized. The limit of detection was 0.3 and 0.03mM ATP for the PM and CI chemosensor, respectively. The MIP-ATP film discriminated structural analogues of ATP quite well. The Langmuir, Freundlich, and Langmuir-Freundlich isotherms were fitted to the experimental data of the ATP sorption and sorption stability constants appeared to be nearly independent of the adopted sorption model.

  5. Connexin 43 impacts on mitochondrial potassium uptake

    Directory of Open Access Journals (Sweden)

    Kerstin eBoengler

    2013-06-01

    Full Text Available In cardiomyocytes, connexin 43 (Cx43 forms gap junctions and unopposed hemichannels at the plasma membrane, but the protein is also present at the inner membrane of subsarcolemmal mitochondria. Both inhibition and genetic ablation of Cx43 reduce ADP-stimulated complex 1 respiration. Since mitochondrial potassium influx impacts on oxygen consumption, we investigated whether or not inhibition or ablation of mitochondrial Cx43 alters mitochondrial potassium uptake.Subsarcolemmal mitochondria were isolated from rat left ventricular (LV myocardium and loaded with the potassium-sensitive dye PBFI. Intramitochondrial potassium was replaced by TEA (tetraethylammonium. Mitochondria were incubated under control conditions or treated with 250 µM Gap19, a peptide that specifically inhibits Cx43-dependent hemichannels at plasma membranes. Subsequently, 140 mM KCl was added and the slope of the increase in PBFI fluorescence over time was calculated. The slope of the PBFI fluorescence of the control mitochondria was set to 100%. In the presence of Gap19, the mitochondrial potassium influx was reduced from 100±11.6 % in control mitochondria to 65.5±10.7 % (n=6, p<0.05. In addition to the pharmacological inhibition of Cx43, potassium influx was studied in mitochondria isolated from conditional Cx43 knockout mice. Here, the ablation of Cx43 was achieved by the injection of 4-hydroxytamoxifen (Cx43Cre-ER(T/fl + 4-OHT. The mitochondria of the Cx43Cre-ER(T/fl + 4-OHT mice contained 3±1% Cx43 (n=6 of that in control mitochondria (100±11%, n=8, p<0.05. The ablation of Cx43 (n=5 reduced the velocity of the potassium influx from 100±11.2 % in control mitochondria (n=9 to 66.6±5.5 % (p<0.05.Taken together, our data indicate that both pharmacological inhibition and genetic ablation of Cx43 reduce mitochondrial potassium influx.

  6. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    identified as being crucial mediators of this process in a variety of smooth muscle. Recently, KV7 channels have been shown to be involved in the pathogenesis of hypertension, as well as being implicated in other smooth muscle disorders, providing a new and inviting target for smooth muscle disorders.......Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  7. Transport of cisplatin by the copper efflux transporter ATP7B.

    Science.gov (United States)

    Safaei, Roohangiz; Otani, Shinji; Larson, Barrett J; Rasmussen, Michael L; Howell, Stephen B

    2008-02-01

    ATP7B is a P-type ATPase that mediates the efflux of copper. Recent studies have demonstrated that ATP7B regulates the cellular efflux of cisplatin (DDP) and controls sensitivity to the cytotoxic effects of this drug. To determine whether DDP is a substrate for ATP7B, DDP transport was assayed in vesicles isolated from Sf9 cells infected with a baculovirus that expressed either the wild-type ATP7B or a mutant ATP7B that was unable to transport copper as a result of conversion of the transmembrane metal binding CPC motif to CPA. Only the wild-type ATP7B-expressing vesicles exhibited copper-dependent ATPase activity, copper-induced acyl-phosphate formation, and ATP-dependent transport of copper. The amount of DDP that became bound was higher for vesicles expressing either type of ATP7B than for those not expressing either form of ATP7B, but only the vesicles expressing wild-type ATP7B mediated ATP-dependent accumulation of the drug. At pH 4.6, the vesicles expressing the wild-type ATP7B exhibited ATP-dependent accumulation of DDP with an apparent K(m) of 1.2 +/- 0.5 (S.E.M.) muM and V(max) of 0.03 +/- 0.002 (S.E.M.) nmol/mg of protein/min. DDP also induced the acyl-phosphorylation of ATP7B but at a much slower rate than copper. Copper and DDP each inhibited the ATP-dependent transport of the other. These results establish that DDP is a substrate for ATP7B but is transported at a much slower rate than copper.

  8. Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria.

    Science.gov (United States)

    Kennedy, H J; Pouli, A E; Ainscow, E K; Jouaville, L S; Rizzuto, R; Rutter, G A

    1999-05-01

    Increases in the concentration of free ATP within the islet beta-cell may couple elevations in blood glucose to insulin release by closing ATP-sensitive K+ (KATP) channels and activating Ca2+ influx. Here, we use recombinant targeted luciferases and photon counting imaging to monitor changes in free [ATP] in subdomains of single living MIN6 and primary beta-cells. Resting [ATP] in the cytosol ([ATP]c), in the mitochondrial matrix ([ATP]m), and beneath the plasma membrane ([ATP]pm) were similar ( approximately 1 mM). Elevations in extracellular glucose concentration (3-30 mM) increased free [ATP] in each domain with distinct kinetics. Thus, sustained increases in [ATP]m and [ATP]pm were observed, but only a transient increase in [ATP]c. However, detectable increases in [ATP]c and [ATP]pm, but not [ATP]m, required extracellular Ca2+. Enhancement of glucose-induced Ca2+ influx with high [K+] had little effect on the apparent [ATP]c and [ATP]m increases but augmented the [ATP]pm increase. Underlying these changes, glucose increased the mitochondrial proton motive force, an effect mimicked by high [K+]. These data support a model in which glucose increases [ATP]m both through enhanced substrate supply and by progressive Ca2+-dependent activation of mitochondrial enzymes. This may then lead to a privileged elevation of [ATP]pm, which may be essential for the sustained closure of KATP channels. Luciferase imaging would appear to be a useful new tool for dynamic in vivo imaging of free ATP concentration.

  9. Role of K(ATP)(+) channels in regulation of systemic, pulmonary, and coronary vasomotor tone in exercising swine

    NARCIS (Netherlands)

    D.J.G.M. Duncker (Dirk); H.H. Oei (Hok-Hay); F. Hu; R. Stubenitsky (René); P.D. Verdouw (Pieter)

    2001-01-01

    textabstractThe role of ATP-sensitive K(+) (K(ATP)(+)) channels in vasomotor tone regulation during metabolic stimulation is incompletely understood. Consequently, we studied the contribution of K(ATP)(+) channels to vasomotor tone regulation in the systemic, pulmonary,

  10. A1-adenosine acute withdrawal response and cholecystokinin-8 induced contractures are regulated by Ca(2+)- and ATP-activated K(+) channels.

    Science.gov (United States)

    Cascio, Maria Grazia; Valeri, Daniela; Tucker, Steven J; Marini, Pietro

    2015-01-01

    In isolated guinea-pig ileum (GPI), the A1-adenosine acute withdrawal response is under the control of several neuronal signalling systems, including the μ/κ-opioid and the cannabinoid CB1 systems. It is now well established that after the stimulation of the A1-adenosine system, the indirect activation of both μ/κ-opioid and CB1 systems is prevented by the peptide cholecystokinin-8 (CCk-8). In the present study, we have investigated the involvement of the Ca(2+)/ATP-activated K(+) channels in the regulation of both acute A1-withdrawal and CCk-8-induced contractures in the GPI preparation. Interestingly, we found that: (a) the A1-withdrawal contracture is inhibited by voltage dependent Ca(2+)-activated K(+) channels, Kv, while it is enhanced by the voltage independent Ca(2+)-activated K(+) channels, SKCa; (b) in the presence of CCk-8, the inhibitory effect of the A1 agonist, CPA, on the peptide induced contracture is significantly enhanced by the voltage independent Ca(2+)-activated K(+) channel, SKCa; and (c) the A1-withdrawal contracture precipitated in the presence of CCk-8 is controlled by the ATP-sensitive potassium channels, KATP. Our data suggest, for the first time, that both Ca(2+)- and ATP-activated K(+) channels are involved in the regulation of both A1-withdrawal precipitated and CCk-8 induced contractures.

  11. Potassium in diet

    Science.gov (United States)

    ... pills) to treat high blood pressure or heart failure Take too many laxatives Have severe or prolonged vomiting and diarrhea Have certain kidney or adrenal gland disorders Too much potassium in the blood ...

  12. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay.

  13. Design Optimization and Evaluation of a Bioluminescence Detection Part on a Microfluidic Device for in situ ATP Quantification

    Science.gov (United States)

    Aoki, Yusuke; Fukuba, Tatsuhiro; Yamamoto, Takatoki; Fujii, Teruo

    An integrated in situ analyzer for microbial ATP (IISA-ATP) has been developed with a microfluidic device as its core component to realize a compact and fully integrated system. In the system, a bioluminescence (luciferin—luciferase) reaction is conducted for ATP quantification. The microfluidic device has a coil-shaped microchannel for highly sensitive photo intensity measurement. In this paper, the concept of the IISA-ATP and optimization of the microchannel design to enhance sensitivity are presented. As a result of the optimization, linear correlation of the luminescence intensity with the ATP concentration in the range of 2 to 2 × 104 pM was achieved.

  14. Lys-[Leu8,des-Arg9]-bradykinin blocks lipopolysaccharide-induced SHR aorta hyperpolarization by inhibition of Ca(++)- and ATP-dependent K+ channels.

    Science.gov (United States)

    Farias, Nelson C; Feres, Teresa; Paiva, Antonio C M; Paiva, Therezinha B

    2004-09-13

    The mediators involved in the hyperpolarizing effects of lipopolysaccharide and of the bradykinin B1 receptor agonist des-Arg9-bradykinin on the rat aorta were investigated by comparing the responses of aortic rings of spontaneously hypertensive and normotensive Wistar rats. Endothelized rings from hypertensive rats were hyperpolarized by des-Arg9-bradykinin and lipopolysaccharide, whereas de-endothelized rings responded to lipopolysaccharide but not to des-Arg9-bradykinin. In endothelized preparations, the responses to des-Arg9-bradykinin were inhibited by Nomega-nitro-L-arginine and iberiotoxin. De-endothelized ring responses to lipopolysaccharide were inhibited by iberiotoxin, glibenclamide and B1 antagonist Lys-[Leu8,des-Arg9]-bradykinin. This antagonist also inhibited hyperpolarization by des-Arg9-bradykinin and by the á2-adrenoceptor agonist, brimonidine. Our results indicate that Ca(2+)-sensitive K+ channels are the final mediators of the responses to des-Arg9-bradykinin, whereas both Ca(2+)- and ATP-sensitive K+ channels mediate the responses to lipopolysaccharide. The inhibitory effects of Lys-[Leu8,des-Arg9]-bradykinin is due to a direct action on Ca(2+)- and ATP-sensitive potassium channels.

  15. K(ATP) channelopathies in the pancreas.

    Science.gov (United States)

    Remedi, Maria S; Koster, Joseph C

    2010-07-01

    Adenosine-triphosphate-sensitive potassium channels (KATP) are regulated by adenosine nucleotides, and, thereby, couple cellular metabolism with electrical activity in multiple tissues including the pancreatic beta-cell. The critical involvement of KATP in insulin secretion is confirmed by the demonstration that inactivating and activating mutations in KATP underlie persistent hyperinsulinemia and neonatal diabetes mellitus, respectively, in both animal models and humans. In addition, a common variant in KATP represents a risk factor in the etiology of type 2 diabetes. This review focuses on the mechanistic basis by which KATP mutations underlie insulin secretory disorders and the implications of these findings for successful clinical intervention.

  16. A1Ao-ATP synthase of Methanobrevibacter ruminantium couples sodium ions for ATP synthesis under physiological conditions.

    Science.gov (United States)

    McMillan, Duncan G G; Ferguson, Scott A; Dey, Debjit; Schröder, Katja; Aung, Htin Lin; Carbone, Vincenzo; Attwood, Graeme T; Ronimus, Ron S; Meier, Thomas; Janssen, Peter H; Cook, Gregory M

    2011-11-18

    An unresolved question in the bioenergetics of methanogenic archaea is how the generation of proton-motive and sodium-motive forces during methane production is used to synthesize ATP by the membrane-bound A(1)A(o)-ATP synthase, with both proton- and sodium-coupled enzymes being reported in methanogens. To address this question, we investigated the biochemical characteristics of the A(1)A(o)-ATP synthase (MbbrA(1)A(o)) of Methanobrevibacter ruminantium M1, a predominant methanogen in the rumen. Growth of M. ruminantium M1 was inhibited by protonophores and sodium ionophores, demonstrating that both ion gradients were essential for growth. To study the role of these ions in ATP synthesis, the ahaHIKECFABD operon encoding the MbbrA(1)A(o) was expressed in Escherichia coli strain DK8 (Δatp) and purified yielding a 9-subunit protein with an SDS-stable c oligomer. Analysis of the c subunit amino acid sequence revealed that it consisted of four transmembrane helices, and each hairpin displayed a complete Na(+)-binding signature made up of identical amino acid residues. The purified MbbrA(1)A(o) was stimulated by sodium ions, and Na(+) provided pH-dependent protection against inhibition by dicyclohexylcarbodiimide but not tributyltin chloride. ATP synthesis in inverted membrane vesicles lacking sodium ions was driven by a membrane potential that was sensitive to cyanide m-chlorophenylhydrazone but not to monensin. ATP synthesis could not be driven by a chemical gradient of sodium ions unless a membrane potential was imposed. ATP synthesis under these conditions was sensitive to monensin but not cyanide m-chlorophenylhydrazone. These data suggest that the M. ruminantium M1 A(1)A(o)-ATP synthase exhibits all the properties of a sodium-coupled enzyme, but it is also able to use protons to drive ATP synthesis under conditions that favor proton coupling, such as low pH and low levels of sodium ions.

  17. The downstream atpE cistron is efficiently translated via its own cis-element in partially overlapping atpB–atpE dicistronic mRNAs in chloroplasts

    OpenAIRE

    Suzuki, Haruka; Kuroda, Hiroshi; Yukawa, Yasushi; Sugiura, Masahiro

    2011-01-01

    The chloroplast atpB and atpE genes encode subunits β and ε of the ATP synthase, respectively. They are co-transcribed as dicistronic mRNAs in flowering plants. An unusual feature is an overlap (AUGA) of the atpB stop codon (UGA) with the atpE start codon (AUG). Hence, atpE translation has been believed to depend on atpB translation (i.e. translational coupling). Using an in vitro translation system from tobacco chloroplasts, we showed that both atpB and atpE cistrons are translated from the ...

  18. Potassium accumulation and translocation among rice genotypes in relation to internal potassium use efficiency (IKUE)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Abiotic stresses including potassium deficiency are limiting factors for increasing rice yield. Nine rice genotypes (Oryza Sativa L., indica) differing in sensitivity to low K stress selected from 200 volume-solution screening were used in this study to examine accumulation and translocation of K.

  19. Structural changes during ATP hydrolysis activity of the ATP synthase from Escherichia coli as revealed by fluorescent probes.

    Science.gov (United States)

    Turina, P

    2000-08-01

    F1F0-ATPase complexes undergo several changes in their tertiary and quaternary structure during their functioning. As a possible way to detect some of these different conformations during their activity, an environment-sensitive fluorescence probe was bound to cysteine residues, introduced by site-directed mutagenesis, in the gamma subunit of the Escherichia coli enzyme. Fluorescence changes and ATP hydrolysis rates were compared under various conditions in F1 and in reconstituted F1F0. The results are discussed in terms of possible modes of operation of the ATP synthases.

  20. Preservative efficacy screening of pharmaceutical formulations using ATP bioluminescence.

    Science.gov (United States)

    Kramer, Mateja; Suklje-Debeljak, Helena; Kmetec, Vojko

    2008-05-01

    The preservative challenge test is a method used to determine the efficacy of a preservation system in a pharmaceutical or cosmetic formulation. However, such testing is a labor-intensive, repetitive task often requiring days before results can be generated. Several alternatives to traditional colony-count techniques have been developed. A study using pure suspensions of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, Candida albicans, and Aspergillus niger showed that the accuracy, repeatability, and linearity of the Pallchek luminometer ATP bioluminescence (ATP-B) system was equivalent to the traditional colony-count method. In any case, the method proved sensitive enough to follow the effect of preservatives on a number of test microorganisms, indicating the applicability of the ATP-B method for preservative screening studies in various pharmaceutical formulations.

  1. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  2. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  3. ATP Release and Effects in Pancreas

    DEFF Research Database (Denmark)

    Novak, Ivana; Amstrup, Jan; Henriksen, Katrine Lütken

    2003-01-01

    ATP and other nucleotides are released from various cells, but the pathway and physiological stimulus for ATP release are often unclear. The focus of our studies is the understanding of ATP release and signaling in rat exocrine pancreas. In acinar suspension mechanical stimulation, hypotonic shock...... and, most importantly, cholinergic stimulation released 5-20nM ATP into the medium, as monitored by luminescence of the luciferin/luciferase reaction. ATP release was visualized at the single acinus level as luciferin consumption detected by confocal laser scanning microscopy (CLSM). The estimated ATP...... concentrations were higher, about 10µM, around acinar cells after cholinergic stimulation. Fluorescence of quinacrine and MANT-ATP indicated that some ATP is stored in secretory granules. Pancreatic acini have transcripts for P2X1, P2X4, P2Y2, and P2Y4 receptors, but measurements of Ca2+ signals in isolated...

  4. Regulation of serum potassium during insulin-induced hypoglycemia.

    Science.gov (United States)

    Petersen, K G; Schlüter, K J; Kerp, L

    1982-07-01

    Counterregulatory secretion of epinephrine occurs during severe insulin-induced hypoglycemia. Under these conditions (minimal plasma glucose 27.4 +/- 1 mg/dl) the decrease of serum potassium concentration (0.9 mVal/L) is mediated by two mechanisms: insulin-induced (0.48 mVal/L) and epinephrine-induced (0.42 mVal/L) cellular uptake of potassium. Epinephrine-induced serum potassium uptake appears to be more sensitive to beta-adrenoceptor blockade than glucose production. The intensification of insulin-induced hypokalemia by epinephrine is of clinical significance.

  5. Effects of spermine NONOate and ATP on the thermal stability of hemoglobin

    Directory of Open Access Journals (Sweden)

    Bassam Rasha

    2012-08-01

    Full Text Available Abstract Background Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate, ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb. The effect of these molecules was examined by means of circular dichroism spectrometry (CD in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml was estimated via ellipticity change measurements at a heating rate of 1°C/min. Results Major results were: 1 spermine NONOate persistently decreased the hemoglobin unfolding temperature Tuirrespectively of the Na + /K + environment, 2 ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and 3 mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature. Conclusion The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell.

  6. ATPase Activity Measurements Using Radiolabeled ATP

    NARCIS (Netherlands)

    Swarts, H.G.; Koenderink, J.B.

    2016-01-01

    ATP provides the energy that is essential for all P-type ATPases to actively transport their substrates against an existing gradient. This ATP hydrolysis can be measured using different methods. Here, we describe a method that uses radiolabeled [gamma-(32)P]ATP, which is hydrolyzed by P-type ATPases

  7. Extracellular ATP induces albuminuria in pregnant rats

    NARCIS (Netherlands)

    Faas, M.M.; van der Schaaf, G.; Borghuis, T.; Jongman, R.M.; van Pampus, Maria; de Vos, P.; van Goor, Harry; Bakker, W.W.

    2010-01-01

    BACKGROUND: As circulating plasma ATP concentrations are increased in pre-eclampsia, we tested whether increased plasma ATP is able to induce albuminuria during pregnancy. METHODS: Pregnant (day 14) and non-pregnant rats were infused with ATP (3000 microg/kg bw) via a permanent jugular vein cannula.

  8. [Diet low in potassium].

    Science.gov (United States)

    Sáez Rodríguez, Loreto; Meizoso Ameneiro, Ana; Pérez Paz, Ma Jesús; Valiño Pazos, Cristina

    2011-11-01

    After confirming the high prevalence rates in our hemodialysis unit of the following nursing diagnoses: nutritional imbalances--both excesses and shortages, willingness to improve nutrition and fear related to the consequences of excessive intake of potassium and manifested by the inhibition in some people towards the enjoyment of food, we decided to plan an educational strategy which later resulted in a nursing intervention for these diagnoses, with the objective of providing adequate resources for the monitoring of balanced diets with a restriction of potassium. Inspired by dietary rations, as well as recognized dietary programs of learning by points, we decided to incorporate these ideas to design an educational tool to facilitate advice to our patients on how to follow diet plans as well as the choice of appropriate foods. The result was a set of cards incorporating nutritional information of various kinds, aimed at our patients covering different aspects of the diet appropriate food rations using household measurements, promoting good food preparation, appropriate dietary advice for different chronic diseases and a scoring system of foods according to their potassium content. Together they form a board game available during the hemodialysis sessions that also takes into consideration other issues of importance related to conditions such as cognitive stimulation, coping with the disease, improving the therapeutic performance or resources to increase patient motivation. Although initially it was only an educational exercise, the result has turned out to be both enjoyable and entertaining.

  9. Metal-dependent regulation of ATP7A and ATP7B in fibroblast cultures

    DEFF Research Database (Denmark)

    Lenartowicz, Malgorzata; Moos, Torben; Ogórek, Mateusz

    2016-01-01

    Deficiency of one of the copper transporters ATP7A and ATP7B leads to the rare X-linked disorder Menkes Disease (MD) or the rare autosomal disorder Wilson disease (WD), respectively. In order to investigate whether the ATP7A and the ATP7B genes may be transcriptionally regulated, we measured...

  10. Metal-Dependent Regulation of ATP7A and ATP7B in Fibroblast Cultures

    DEFF Research Database (Denmark)

    Lenartowicz, Malgorzata; Moos, Torben; Ogórek, Mateusz;

    2016-01-01

    Deficiency of one of the copper transporters ATP7A and ATP7B leads to the rare X-linked disorder Menkes Disease (MD) or the rare autosomal disorder Wilson disease (WD), respectively. In order to investigate whether the ATP7A and the ATP7B genes may be transcriptionally regulated, we measured...

  11. Inflammasome activation in bovine monocytes by extracellular ATP does not require the purinergic receptor P2X7.

    Science.gov (United States)

    Hussen, Jamal; Düvel, Anna; Koy, Mirja; Schuberth, Hans-Joachim

    2012-10-01

    Extracellular adenosine triphosphate (ATP) is a second signal for the assembly of the NLR family, pyrin domain-containing 3 (NLRP3) inflammasome, which form a framework to activate caspase 1, leading to the processing and secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β). The aim of the present study was to investigate the role of the ATP-gated ion channel subtype P2X7 receptor in the inflammasome activation of bovine monocytes. ATP-induced inflammasome assembly in bovine monocytes was shown by caspase-1 activation and the release of IL-1β by LPS/ATP-stimulated bovine cells. The IL-1β release depended on potassium efflux but was independent of reactive oxygen generation of bovine monocytes. Unlike in the human system, a P2X7 receptor antagonist did not block the ATP-induced release of IL-1β of LPS-primed bovine cells. P2X7 mediated pore formation was observed in subsets of bovine T lymphocytes (CD4+>CD8+) but not in monocytes. In addition, ATP and 2-MeSATP but not the high affinity P2X7 agonist BzATP induced calcium influx in bovine monocytes. The data indicate that ROS generation plays no role in the ATP-induced activation of inflammasome in bovine monocytes and that P2X7-mediated pore formation is not necessary for the release of Interleukin-1β.

  12. Rapid antimicrobial susceptibility determination of uropathogens in clinical urine specimens by use of ATP bioluminescence.

    Science.gov (United States)

    Ivancic, Vesna; Mastali, Mitra; Percy, Neil; Gornbein, Jeffrey; Babbitt, Jane T; Li, Yang; Landaw, Elliot M; Bruckner, David A; Churchill, Bernard M; Haake, David A

    2008-04-01

    We describe the first direct testing of the antimicrobial susceptibilities of bacterial pathogens in human clinical fluid samples by the use of ATP bioluminescence. We developed an ATP bioluminescence assay that eliminates somatic sources of ATP to selectively quantify the bacterial load in clinical urine specimens with a sensitivity of ATP bioluminescence assay for determination of the antimicrobial susceptibilities of uropathogens in clinical urine specimens tested in a blinded manner. ATP bioluminescent bacterial density quantitation was used to determine the inoculation volume in growth medium with and without antibiotics. After incubation at 37 degrees C for 120 min, the ATP bioluminescence assay was repeated to evaluate the uropathogen response to antibiotics. The ability of the ATP bioluminescence assay to discriminate between antimicrobial susceptibility and resistance was determined by comparison of the results obtained by the ATP bioluminescence assay with the results obtained by standard clinical microbiology methods. Receiver operator characteristic curves were used to determine the optimal threshold for discriminating between susceptibility and resistance. Susceptibility and resistance were correctly predicted in 87% and 95% of cases, respectively, for an overall unweighted accuracy of 91%, when the results were stratified by antibiotic. For samples in which the pathogen was susceptible, the accuracy improved to 95% when the results for samples with less than a 25-fold increase in the amount of bacterial ATP in the medium without antibiotics were excluded. These data indicate that a rapid bioluminescent antimicrobial susceptibility assay may be useful for the management of urinary tract infections.

  13. Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique

    Science.gov (United States)

    Geer, M. Ariel; Fitzgerald, Michael C.

    2016-02-01

    The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the Saccharomyces cerevisiae proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the Saccharomyces Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins.

  14. Potassium toxicity at low serum potassium levels with refeeding syndrome.

    Science.gov (United States)

    Vemula, Praveen; Abela, Oliver G; Narisetty, Keerthy; Rhine, David; Abela, George S

    2015-01-01

    Refeeding syndrome is a life-threatening condition occurring in severely malnourished patients after initiating feeding. Severe hypophosphatemia with reduced adenosine triphosphate production has been implicated, but little data are available regarding electrolyte abnormalities. In this case, we report electrocardiographic changes consistent with hyperkalemia during potassium replacement after a serum level increase from 1.9 to 2.9 mEq/L. This was reversed by lowering serum potassium back to 2.0 mEq/L. In conclusion, the patient with prolonged malnutrition became adapted to low potassium levels and developed potassium toxicity with replacement.

  15. Relationship of potassium sensitivity test and PUF in interstitial cystitis%钾离子敏感试验与间质性膀胱炎PUF评分的相关性研究

    Institute of Scientific and Technical Information of China (English)

    李文广; 张卫; 韩瑞发

    2009-01-01

    Objective To discuss whether potassium sensitivity test(PST) is correlated with PUF in Interstitial Cystitis (IC). Methods The data of 14 IC patients (female 13, male 1) were an-alyzed. The mean age was 48 years (range 35-67 years). The clinical symptoms included urinary fre-quency, urgency, pelvic and peritoneal region pain after bladder filling. All the patients met the diag-nostic criteria of NIDDK for IC. Dilatations by hyponome were performed, medicine including heparin-sodium, lidocaine, NaHCO3 were used by intravesical instillation. PST and the pelvic pain and urgen-cy/frequency patient symptom (PUF) were used for evaluation. The relationship of the PST and PUF was assessed by statistics. Results PST median decreased from 4.0 to 1.0 (P<0.01). PUF medi-an decreased from 27.5 to 13.5(P<0.01). PST was directly correlated with PUF (rs=0. 868, t= 4.418, P= 0.001 before treatment, rs = 0.779, t=4.300, P = 0.001 after treatment). Conclusions PST and PUF are correlated. Both can be used as index in diagnosis, differential diagno-sis, symptom severity and treatment effectiveness evaluation of IC.%目的 探讨钾离子敏感试验(PST)与间质性膀胱炎(IC)盆腔疼痛和尿频、尿急症状(PUF)评分的相关性及意义.方法 IC患者14例.女13例,男1例.平均年龄48岁.临床表现主要为尿频、尿急、膀胱克盈后耻骨上及会阴区疼痛.14例均依据美国糖尿病、消化及肾病协会(NIDDK)IC诊断标准确诊.采用膀胱水囊扩张后碳酸氢钠、利多卡因及肝素钠灌注治疗.治疗前后均行PST评分和PUF评分,并分析二者之间的关系.结果 14例患者治疗前后PST评分中位数分别为4.0、1.0,PUF评分中位数分别为27.5、13.5,治疗前后差异均有统计学意义(P<0.01).PST评分与PUF评分呈正相关(治疗前rs=0.868,t=4.418,P=0.001;治疗后rs=0.779,t=4.300,P=0.001).结论 PST和PUF评分在IC中表现出一致性,可单独作为IC诊断、鉴别诊断、病情严重程度及治疗效果判定的重要指标.

  16. Migraine: Role of the TRESK two-pore potassium channel.

    Science.gov (United States)

    Lafrenière, Ronald G; Rouleau, Guy A

    2011-11-01

    Migraine is a severe episodic headache disorder affecting one in five people. Genetic studies have identified mutations in the CACNA1, ATP1A2 and SCN1A genes in the rare familial hemiplegic migraine. Recently, a mutation in the KCNK18 gene, encoding the TRESK two-pore domain potassium channel, was described in a large family with migraine with aura. This review will elaborate on the possible role of the TRESK channel in regulating neuronal excitability, its role in migraine pathogenesis, and on promising therapeutic opportunities targeting this channel. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  17. Development of cardioplegic solution without potassium: experimental study in rat.

    Science.gov (United States)

    Reichert, Karla; Carmo, Helison Rafael Pereira do; Lima, Fany; Torina, Anali Galluce; Vilarinho, Karlos Alexandre de Souza; Oliveira, Pedro Paulo Martins de; Silveira Filho, Lindemberg Mota; Severino, Elaine Soraya Barbosa de Oliveira; Petrucci, Orlando

    2013-01-01

    Myocardial preservation during open heart surgeries and harvesting for transplant are of great importance. The heart at the end of procedure has to resume its functions as soon as possible. All cardioplegic solutions are based on potassium for induction of cardioplegic arrest. To assess a cardioplegic solution with no potassium addition to the formula with two other commercially available cardioplegic solutions. The comparative assessment was based on cytotoxicity, adenosine triphosphate myocardial preservation, and caspase 3 activity. The tested solution (LIRM) uses low doses of sodium channel blocker (lidocaine), potassium channel opener (cromakalin), and actin/myosin cross bridge inhibitor (2,3-butanedione monoxime). Wistar rats underwent thoracotomy under mechanical ventilation and three different solutions were used for "in situ" perfusion for cardioplegic arrest induction: Custodiol (HTK), Braile (G/A), and LIRM solutions. After cardiac arrest, the hearts were excised and kept in cold storage for 4 hours. After this period, the hearts were assessed with optical light microscopy, myocardial ATP content and caspase 3 activity. All three solutions were evaluated for direct cytotoxicity with L929 and WEHI-164 cells. The ATP content was higher in the Custodiol group compared to two other solutions (P<0.05). The caspase activity was lower in the HTK group compared to LIRM and G/A solutions (P<0.01). The LIRM solution showed lower caspase activity compared to Braile solution (P<0.01). All solutions showed no cytotoxicity effect after 24 hours of cells exposure to cardioplegic solutions. Cardioplegia solutions without potassium are promised and aminoacid addition might be an interesting strategy. More evaluation is necessary for an optimal cardioplegic solution development.

  18. Development of cardioplegic solution without potassium: experimental study in rat

    Directory of Open Access Journals (Sweden)

    Karla Reichert

    2013-12-01

    Full Text Available INTRODUCTION: Myocardial preservation during open heart surgeries and harvesting for transplant are of great importance. The heart at the end of procedure has to resume its functions as soon as possible. All cardioplegic solutions are based on potassium for induction of cardioplegic arrest. OBJECTIVE: To assess a cardioplegic solution with no potassium addition to the formula with two other commercially available cardioplegic solutions. The comparative assessment was based on cytotoxicity, adenosine triphosphate myocardial preservation, and caspase 3 activity. The tested solution (LIRM uses low doses of sodium channel blocker (lidocaine, potassium channel opener (cromakalin, and actin/myosin cross bridge inhibitor (2,3-butanedione monoxime. METHODS: Wistar rats underwent thoracotomy under mechanical ventilation and three different solutions were used for "in situ" perfusion for cardioplegic arrest induction: Custodiol (HTK, Braile (G/A, and LIRM solutions. After cardiac arrest, the hearts were excised and kept in cold storage for 4 hours. After this period, the hearts were assessed with optical light microscopy, myocardial ATP content and caspase 3 activity. All three solutions were evaluated for direct cytotoxicity with L929 and WEHI-164 cells. RESULTS: The ATP content was higher in the Custodiol group compared to two other solutions (P<0.05. The caspase activity was lower in the HTK group compared to LIRM and G/A solutions (P<0.01. The LIRM solution showed lower caspase activity compared to Braile solution (P<0.01. All solutions showed no cytotoxicity effect after 24 hours of cells exposure to cardioplegic solutions. CONCLUSION: Cardioplegia solutions without potassium are promised and aminoacid addition might be an interesting strategy. More evaluation is necessary for an optimal cardioplegic solution development.

  19. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range.

    Science.gov (United States)

    Wei, Yanli; Chen, Yanxia; Li, Huanhuan; Shuang, Shaomin; Dong, Chuan; Wang, Gufeng

    2015-01-15

    A novel aptamer-based label-free assay for sensitive and selective detection of ATP was developed. This assay employs a new aptamer/fluorescent probe system that shows resistance to exonuclease I (Exo I) digestion upon binding to ATP molecules. In the absence of ATP, the complex between the ATP-binding aptamer (ATP-aptamer) and a DNA binding dye, berberine, is digested upon the addition of exonuclease I, leading to the release of berberine into solution and consequently, quenched berberine fluorescence. In the presence of ATP, the ATP-binding aptamer folds into a G-quadruplex structure that is resistant to Exo I digestion. Accordingly, berberine is protected in the G-quadruplex structure and high fluorescence intensity is observed. As such, based on the fluorescence signal change, a label-free fluorescence assay for ATP was developed. Factors affecting the analysis of ATP including the concentration of ATP-binding aptamer, reaction time, temperature and the concentration of Exo I were comprehensively investigated. Under optimal conditions, the fluorescence intensity of the sensing system displayed a response for ATP in a wide range up to 17.5 mM with a detection limit of 140 nM.

  20. Dietary potassium: a key mediator of the cardiovascular response to dietary sodium chloride.

    Science.gov (United States)

    Kanbay, Mehmet; Bayram, Yeter; Solak, Yalcin; Sanders, Paul W

    2013-01-01

    Potassium and sodium share a yin/yang relationship in the regulation of blood pressure (BP). BP is directly associated with the total body sodium and negatively correlated with the total body potassium. Epidemiologic, experimental, and clinical studies have shown that potassium is a significant regulator of BP and further improves cardiovascular outcomes. Hypertensive cardiovascular damage, stroke, and stroke-related death are accelerated by salt intake but might be curbed by increasing dietary potassium intake. The antihypertensive effect of potassium supplementation appears to occur through several mechanisms that include regulation of vascular sensitivity to catecholamines, promotion of natriuresis, limiting plasma renin activity, and improving endothelial function. In the absence of chronic kidney disease, the combined evidence suggests that a diet rich in potassium content serves a vasculoprotective function, particularly in the setting of salt-sensitive hypertension and prehypertension.

  1. Potassium oxalurate monohydrate

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title salt, poly[aqua-μ3-oxalurato-potassium(I], [K(C3H3N2O4(H2O]n, which was obtained from a water solution of oxaluric acid and KOH at room temperature, crystallizes as potassium and oxalurate ions along with a water molecule. The K+ cation lies on a crystallographic twofold rotation axis (site symmetry 2, Wyckoff position f, and the water and oxalurate molecules are located within different mirror planes (site symmetry m, Wyckoff position g. The K+ cation is eight-coordinated by six O atoms of six oxalurate ligands and two O atoms from two water molecules in a distorted square-antiprismatic geometry. All of the eight coordinated O atoms are in a monodentate bridging mode, with alternate bridged K...K distances of 3.5575 (12 and 3.3738 (12 Å. The oxalurate ligand shows a μ3-bridging coordination mode, which links the K+ cation into a three-dimensional network. The oxalurate ligands and the water molecules are involved in inter- and intramolecular N—H...O, and O—H...O hydrogen bonds, which stabilize the network.

  2. Urinary ATP may be a dynamic biomarker of detrusor overactivity in women with overactive bladder syndrome.

    Directory of Open Access Journals (Sweden)

    Miguel Silva-Ramos

    Full Text Available BACKGROUND: Nowadays, there is a considerable bulk of evidence showing that ATP has a prominent role in the regulation of human urinary bladder function and in the pathophysiology of detrusor overactivity. ATP mediates nonadrenergic-noncholinergic detrusor contractions in overactive bladders. In vitro studies have demonstrated that uroepithelial cells and cholinergic nerves from overactive human bladder samples (OAB release more ATP than controls. Here, we compared the urinary ATP concentration in samples collected non-invasively from OAB women with detrusor overactivity and age-matched controls. METHODS: Patients with neurologic diseases, history of malignancy, urinary tract infections or renal impairment (creatinine clearance <70 ml/min were excluded. All patients completed a 3-day voiding diary, a 24 h urine collection and blood sampling to evaluate creatinine clearance. Urine samples collected during voluntary voids were immediately freeze-preserved for ATP determination by the luciferin-luciferase bioluminescence assay; for comparison purposes, samples were also tested for urinary nerve growth factor (NGF by ELISA. RESULTS: The urinary content of ATP, but not of NGF, normalized to patients' urine creatinine levels (ATP/Cr or urinary volume (ATP.Vol were significantly (P<0.05 higher in OAB women with detrusor overactivity (n = 34 than in healthy controls (n = 30. Significant differences between the two groups were still observed by boosting urinary ATP/Cr content after water intake, but these were not detected for NGF/Cr. In OAB patients, urinary ATP/Cr levels correlated inversely with mean voided volumes determined in a 3-day voiding diary. CONCLUSION: A high area under the receiver operator characteristics (ROC curve (0.741; 95% CI 0.62-0.86; P<0.001 is consistent with urinary ATP/Cr being a highly sensitive dynamic biomarker for assessing detrusor overactivity in women with OAB syndrome.

  3. Expression of ATP-insensitive KATP channels in pancreatic beta-cells underlies a spectrum of diabetic phenotypes.

    Science.gov (United States)

    Koster, Joseph C; Remedi, Maria S; Masia, Ricard; Patton, Brian; Tong, Ailing; Nichols, Colin G

    2006-11-01

    Glucose metabolism in pancreatic beta-cells elevates cytoplasmic [ATP]/[ADP], causing closure of ATP-sensitive K(+) channels (K(ATP) channels), Ca(2+) entry through voltage-dependent Ca(2+) channels, and insulin release. Decreased responsiveness of K(ATP) channels to the [ATP]/[ADP] ratio should lead to decreased insulin secretion and diabetes. We generated mice expressing K(ATP) channels with reduced ATP sensitivity in their beta-cells. Previously, we described a severe diabetes, with nearly complete neonatal lethality, in four lines (A-C and E) of these mice. We have now analyzed an additional three lines (D, F, and G) in which the transgene is expressed at relatively low levels. These animals survive past weaning but are glucose intolerant and can develop severe diabetes. Despite normal islet morphology and insulin content, islets from glucose-intolerant animals exhibit reduced glucose-stimulated insulin secretion. The data demonstrate that a range of phenotypes can be expected for a reduction in ATP sensitivity of beta-cell K(ATP) channels and provide models for the corollary neonatal diabetes in humans.

  4. Setting the chaperonin timer: the effects of K+ and substrate protein on ATP hydrolysis.

    Science.gov (United States)

    Grason, John P; Gresham, Jennifer S; Widjaja, Lusiana; Wehri, Sarah C; Lorimer, George H

    2008-11-11

    The effects of potassium ion on the nested allostery of GroEL are due to increases in the affinity for nucleotide. Both positive allosteric transitions, TT-TR and TR-RR, occur at lower [ATP] as [K(+)] is increased. Negative cooperativity in the double-ringed system is also due to an increase in the affinity of the trans ring for the product ADP as [K(+)] is increased. Consequently, (i) rates of ATP hydrolysis are inversely proportional to [K(+)] and (ii) the residence time of GroES bound to the cis ring is prolonged and the hemicycle time extended. Substrate protein suppresses negative cooperativity by decreasing the affinity of the trans ring for ADP, reducing the hemicycle time to a constant minimum. The trans ring thus serves as a variable timer. ATP added to the asymmetric GroEL-GroES resting-state complex lacking trans ring ADP is hydrolyzed in the newly formed cis ring with a presteady-state burst of approximately 6 mol of Pi per mole of 14-mer. No burst is observed when the trans ring contains ADP. The amplitude and kinetics of ATP hydrolysis in the cis ring are independent of the presence or absence of encapsulated substrate protein and independent of K(+) at concentrations where there are profound effects on the linear steady-state rate. The hydrolysis of ATP by the cis ring constitutes a second, nonvariable timer of the chaperonin cycle.

  5. Characterization of the ATP-phosphohydrolase activity of bovine spermatozoa flagellar extracts.

    Science.gov (United States)

    Young, L G; Smithwick, E B

    1975-02-01

    The ATP-phosphohydrolase activity of extracts prepared from bovine spermatozoa flagella (BSFE), was characterized with respect to enzyme, substrate, activator ion and salt concentration, temperature dependence and time stability. BSFE required the presence of a divalent cation for activity: Mg++ or Ca++ could function as activator; Mn++, Zn++ and Cd++ could not. EDTA, but not EGTA, was inhibitory to enzymatic activity. Ca++ inhibited the Mg++ stimulated activity. ATP was dephosphorylated more rapidly than GTP greater than CTP greater than ITP, and ADP was dephosphorylated at 40% of the rate of ATP. The magnesium activated ATPase was stimulated by potassium and inhibited by sodium ions. Activation of BSFE ATP-phosphohydrolase was maximal in the presence of Mg++ and ATP in equimolar concentrations and K+ (0.05-0.3 M) at 30 degrees C. Although the enzymatic activity of the extract was found to decrease rapidly with time, it could be maintained for up to three days by the addition of 2-beta-mercaptoethanol to the bovine spermatozoa flagellar extracts.

  6. Neural synchronization via potassium signaling

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik

    2006-01-01

    Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...

  7. Potassium supplementation and heart rate

    NARCIS (Netherlands)

    Gijsbers, L.; Molenberg, Famke; Bakker, S.J.L.; Geleijnse, J.M.

    2016-01-01

    Background and aims: Increasing the intake of potassium has been shown to lower blood pressure, but whether it also affects heart rate (HR) is largely unknown. We therefore assessed the effect of potassium supplementation on HR in a meta-analysis of randomized controlled trials. Methods and resul

  8. Enhancing ATP-based bacteria and biofilm detection by enzymatic pyrophosphate regeneration.

    Science.gov (United States)

    Lee, Hui-Ju; Ho, Ming-Rong; Bhuwan, Manish; Hsu, Ching-Yi; Huang, Meng-Shun; Peng, Hwei-Ling; Chang, Hwan-You

    2010-04-15

    The manufacturing processes of many electronic and medical products demand the use of high-quality water. Hence the water supply systems for these processes are required to be examined regularly for the presence of microorganisms and microbial biofilms. Among commonly used bacteria detection approaches, the ATP luminescence assay is a rapid, sensitive, and easy to perform method. The aim of this study is to investigate whether ATP regeneration from inorganic pyrophosphate, a product of the ATP luminescence assay, can stabilize the bioluminescence signals in ATP detection. ADPglc pyrophosphorylase (AGPPase), which catalyzes the synthesis of ATP from PP(i) in the presence of ADPglc, was selected because the system yields much lower luminescence background than the commercially available ATP sulfurylase/adenosine 5'-phosphosulfate (APS) system which was broadly used in pyrosequencing technology. The AGPPase-based assay could be used to measure both PP(i) and ATP quantitatively and shows 1.5- to 4.0-fold slight increases in a 10-min assay. The method could also be used to stabilize the luminescence signals in detection of Escherichia coli, Pseudomonas aeruginosa, and Bacillus cereus in either broth or biofilm. These findings suggest that the AGPPase-based ATP regeneration system will find many practical applications such as detection of bacterial biofilm in water pipelines.

  9. Crystal structure of the potassium-importing KdpFABC membrane complex

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ching-Shin; Pedersen, Bjørn Panyella; Stokes, David L.

    2017-06-21

    Cellular potassium import systems play a fundamental role in osmoregulation, pH homeostasis and membrane potential in all domains of life. In bacteria, the kdp operon encodes a four-subunit potassium pump that maintains intracellular homeostasis, cell shape and turgor under conditions in which potassium is limiting1. This membrane complex, called KdpFABC, has one channel-like subunit (KdpA) belonging to the superfamily of potassium transporters and another pump-like subunit (KdpB) belonging to the superfamily of P-type ATPases. Although there is considerable structural and functional information about members of both superfamilies, the mechanism by which uphill potassium transport through KdpA is coupled with ATP hydrolysis by KdpB remains poorly understood. Here we report the 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA and a water molecule at a canonical cation site in the transmembrane domain of KdpB. The structure also reveals two structural elements that appear to mediate the coupling between these two subunits. Specifically, a protein-embedded tunnel runs between these potassium and water sites and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. On the basis of these observations, we propose a mechanism that repurposes protein channel architecture for active transport across biomembranes.

  10. Detecting ATP release by a biosensor method.

    Science.gov (United States)

    Hayashi, Seiji; Hazama, Akihiro; Dutta, Amal K; Sabirov, Ravshan Z; Okada, Yasunobu

    2004-11-09

    Cells release adenosine 5'-triphosphate (ATP) into the extracellular space in response to various stimuli. This released ATP plays an important physiological role in cell-to-cell signal transduction. The bulk ATP concentration can be detected using a conventional luciferin-luciferase assay. However, the ATP concentration in the vicinity of the cell surface is often different from the bulk concentration because of its rapid degradation by ecto-ATPases and because of delayed diffusion due to unstirred layer effects. Here, we describe a simple biosensor method to measure the local ATP concentration on the cell surface in real time. The method is based on the ATP-dependent opening of ligand-gated cation channels of purinergic P2X receptors expressed in undifferentiated pheochromocytoma (PC12) cells or in human embryonic kidney 293 (HEK293) cells stably transfected with recombinant P2X2 purinergic receptors. Under the whole-cell configuration of patch-clamp, a sensor PC12 cell or HEK293 is positioned within the proximity of a target cell, and the P2X-mediated currents induced by ATP released from a given site on the target cell surface is measured. The ATP release is quantified by a calibration procedure utilizing local puff applications of ATP at preset concentrations.

  11. A kinetic assay of mitochondrial ADP-ATP exchange rate in permeabilized cells.

    Science.gov (United States)

    Kawamata, Hibiki; Starkov, Anatoly A; Manfredi, Giovanni; Chinopoulos, Christos

    2010-12-01

    We previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg(2+)] reported by an Mg(2+)-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg(2+). In the current article, we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity, and myosin ATPase activity. Here we report that the addition of BeF(3)(-) and sodium orthovanadate (Na(3)VO(4)) to medium containing digitonin-permeabilized cells inhibits all ADP-ATP-using reactions except the adenine nucleotide translocase (ANT)-mediated mitochondrial ADP-ATP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F(1)F(o)-ATPase due to its sensitivity to BeF(3)(-) and Na(3)VO(4). With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler and expressed as a function of citrate synthase activity per total amount of protein. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure......About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...

  13. Glia-derived ATP inversely regulates excitability of pyramidal and CCK-positive neurons

    Science.gov (United States)

    Tan, Zhibing; Liu, Yu; Xi, Wang; Lou, Hui-fang; Zhu, Liya; Guo, Zhifei; Mei, Lin; Duan, Shumin

    2017-01-01

    Astrocyte responds to neuronal activity with calcium waves and modulates synaptic transmission through the release of gliotransmitters. However, little is known about the direct effect of gliotransmitters on the excitability of neuronal networks beyond synapses. Here we show that selective stimulation of astrocytes expressing channelrhodopsin-2 in the CA1 area specifically increases the firing frequency of CCK-positive but not parvalbumin-positive interneurons and decreases the firing rate of pyramidal neurons, phenomena mimicked by exogenously applied ATP. Further evidences indicate that ATP-induced increase and decrease of excitability are caused, respectively, by P2Y1 receptor-mediated inhibition of a two-pore domain potassium channel and A1 receptor-mediated opening of a G-protein-coupled inwardly rectifying potassium channel. Moreover, the activation of ChR2-expressing astrocytes reduces the power of kainate-induced hippocampal ex vivo gamma oscillation. Thus, through distinct receptor subtypes coupled with different K+ channels, astrocyte-derived ATP differentially modulates the excitability of different types of neurons and efficiently controls the activity of neuronal network. PMID:28128211

  14. ATP enhances spontaneous calcium activity in cultured suburothelial myofibroblasts of the human bladder.

    Directory of Open Access Journals (Sweden)

    Sheng Cheng

    Full Text Available BACKGROUND: Suburothelial myofibroblasts (sMF are located underneath the urothelium in close proximity to afferent nerves. They express purinergic receptors and show calcium transients in response to ATP. Therefore they are supposed to be involved in afferent signaling of the bladder fullness. Since ATP concentration is likely to be very low during the initial filling phase, we hypothesized that sMF Ca(2+ activity is affected even at very low ATP concentrations. We investigated ATP induced modulation of spontaneous activity, intracellular calcium response and purinergic signaling in cultured sMF. METHODOLOGY/PRINCIPAL FINDINGS: Myofibroblast cultures, established from cystectomies, were challenged by exogenous ATP in presence or absence of purinergic antagonist. Fura-2 calcium imaging was used to monitor ATP (10(-16 to 10(-4 mol/l induced alterations of calcium activity. Purinergic receptors (P2X1, P2X2, P2X3 were analysed by confocal immunofluorescence. We found spontaneous calcium activity in 55.18% ± 1.65 of the sMF (N = 48 experiments. ATP significantly increased calcium activity even at 10(-16 mol/l. The calcium transients were partially attenuated by subtype selective antagonist (TNP-ATP, 1 µM; A-317491, 1 µM, and were mimicked by the P2X1, P2X3 selective agonist α,β-methylene ATP. The expression of purinergic receptor subtypes in sMF was confirmed by immunofluorescence. CONCLUSIONS/SIGNIFICANCE: Our experiments demonstrate for the first time that ATP can modulate spontaneous activity and induce intracellular Ca(2+ response in cultured sMF at very low concentrations, most likely involving P2X receptors. These findings support the notion that sMF are able to register bladder fullness very sensitively, which predestines them for the modulation of the afferent bladder signaling in normal and pathological conditions.

  15. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts

    Science.gov (United States)

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury. PMID:28163685

  16. ATP and Presentation Service for Mizar Formalizations

    CERN Document Server

    Urban, Josef; Sitcliffe, Geoff

    2011-01-01

    This paper describes the Automated Reasoning for Mizar (MizAR) service, which integrates several automated reasoning, artificial intelligence, and presentation tools with Mizar and its authoring environment. The service provides ATP assistance to Mizar authors in finding and explaining proofs, and offers generation of Mizar problems as challenges to ATP systems. The service is based on a sound translation from the Mizar language to that of first-order ATP systems, and relies on the recent progress in application of ATP systems in large theories containing tens of thousands of available facts. We present the main features of MizAR services, followed by an account of initial experiments in finding proofs with the ATP assistance. Our initial experience indicates that the tool offers substantial help in exploring the Mizar library and in preparing new Mizar articles.

  17. [ATP in the metabolism of ruminants].

    Science.gov (United States)

    Bergner, H

    1991-10-01

    The ATP yield from the carbohydrates of anaerobically living microorganisms in the rumen amounts to only 5-10% of the ATP yield of the intermediary metabolism in the presence of oxygen. Vital functions and thus microbial protein synthesis are due to protein degradation in the rumen. The ATP yield in the intermediary metabolism of ruminants is mainly achieved from propionate and microbial protein by means of gluconeogenesis because the absorption of glucose from digested starch is very low. The relationships between ATP yield in the rumen and the processes of glucose provision for the production of lactose as well as the protein content of the milk are shown. As important processes of ATP production in microorganisms from easily soluble carbohydrates take place in silage preparations before feed intake, the corresponding consequences for the metabolism of high-performance cows fed with silage are shown.

  18. Bioluminescence microscopy: application to ATP measurements in single living cells

    Science.gov (United States)

    Brau, Frederic; Helle, Pierre; Bernengo, Jean C.

    1997-12-01

    Bioluminescence microscopy can be used to measure intracellular cofactors and ionic concentrations (Ca2+, K+, ATP, NADH), as an alternative to micro- spectrophotometry and micro-fluorimetry, due to the development of sensitive detectors (cooled photomultipliers tubes and CCD). The main limitation comes from the very small and brief intensity of the emitted light. Our instrumentation based on an inverted microscope, equipped with high aperture immersion lenses is presented. Light intensity measurements are carried out through a photomultiplier sorted for low dark current and cooled at -5 degree(s)C to reduce thermal noise. Our first aim is to quantify ATP on single living cells using the firefly luciferin-luciferase couple. Experimental and kinetic aspects are presented to emphasize the potentialities of the technique.

  19. Thermodynamics of proton transport coupled ATP synthesis.

    Science.gov (United States)

    Turina, Paola; Petersen, Jan; Gräber, Peter

    2016-06-01

    The thermodynamic H(+)/ATP ratio of the H(+)-ATP synthase from chloroplasts was measured in proteoliposomes after energization of the membrane by an acid base transition (Turina et al. 2003 [13], 418-422). The method is discussed, and all published data obtained with this system are combined and analyzed as a single dataset. This meta-analysis led to the following results. 1) At equilibrium, the transmembrane ΔpH is energetically equivalent to the transmembrane electric potential difference. 2) The standard free energy for ATP synthesis (reference reaction) is ΔG°(ref)=33.8±1.3kJ/mol. 3) The thermodynamic H(+)/ATP ratio, as obtained from the shift of the ATP synthesis equilibrium induced by changing the transmembrane ΔpH (varying either pH(in) or pH(out)) is 4.0±0.1. The structural H(+)/ATP ratio, calculated from the ratio of proton binding sites on the c-subunit-ring in F(0) to the catalytic nucleotide binding sites on the β-subunits in F(1), is c/β=14/3=4.7. We infer that the energy of 0.7 protons per ATP that flow through the enzyme, but do not contribute to shifting the ATP/(ADP·Pi) ratio, is used for additional processes within the enzyme, such as activation, and/or energy dissipation, due e.g. to internal uncoupling. The ratio between the thermodynamic and the structural H(+)/ATP values is 0.85, and we conclude that this value represents the efficiency of the chemiosmotic energy conversion within the chloroplast H(+)-ATP synthase.

  20. Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations

    OpenAIRE

    Junnan Xu; Dan Song; Qiufang Bai; Lijun Zhou; Liping Cai; Leif Hertz; Liang Peng

    2014-01-01

    This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+) after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosp...

  1. Extracellular ATP in the Exocrine Pancreas – ATP Release, Signalling and Metabolism

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena

    ATP plays an important role as an autocrine/paracrine signalling molecule, being released from a number of tissues, in response to physiological and pathophysiological stimuli. Released ATP induces Ca2+ - and/or cAMP - dependent cellular responses via activation of ubiquitously expressed P2X and P2......Y receptors. Previously, our group has shown that cholinergic stimulation of acini caused ATP release into ducts and ATP is an important regulator of ductal functions by being involved in ion and fluid secretion. Pancreatic duct cells are exposed to a number of stimuli, well known to induce ATP...... release. So far, the contribution of duct cells in purinergic signalling has never been studied. This work presents that both acinar and duct cells are sources of extracellular ATP in the exocrine pancreas. Here we show that duct cells release ATP in response to several physiological...

  2. Extracellular ATP in the Exocrine Pancreas – ATP Release, Signalling and Metabolism

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena

    ATP plays an important role as an autocrine/paracrine signalling molecule, being released from a number of tissues, in response to physiological and pathophysiological stimuli. Released ATP induces Ca2+ - and/or cAMP - dependent cellular responses via activation of ubiquitously expressed P2X and P2......Y receptors. Previously, our group has shown that cholinergic stimulation of acini caused ATP release into ducts and ATP is an important regulator of ductal functions by being involved in ion and fluid secretion. Pancreatic duct cells are exposed to a number of stimuli, well known to induce ATP...... release. So far, the contribution of duct cells in purinergic signalling has never been studied. This work presents that both acinar and duct cells are sources of extracellular ATP in the exocrine pancreas. Here we show that duct cells release ATP in response to several physiological...

  3. ACTIVATION OF THE PHOSPHOLIPASE-C PATHWAY BY ATP IS MEDIATED EXCLUSIVELY THROUGH NUCLEOTIDE TYPE P2-PURINOCEPTORS IN C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; DUIN, M; DENHERTOG, A; NELEMANS, A

    1993-01-01

    1 The presence of a nucleotide receptor and a discrete ATP-sensitive receptor on C2C12 myotubes has been shown by electrophysiological experiments. In this study, the ATP-sensitive receptors of C2C12 myotubes were further characterized by measuring the formation of inositol(1,4,5)trisphosphate

  4. ACTIVATION OF THE PHOSPHOLIPASE-C PATHWAY BY ATP IS MEDIATED EXCLUSIVELY THROUGH NUCLEOTIDE TYPE P2-PURINOCEPTORS IN C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; DUIN, M; DENHERTOG, A; NELEMANS, A

    1993-01-01

    1 The presence of a nucleotide receptor and a discrete ATP-sensitive receptor on C2C12 myotubes has been shown by electrophysiological experiments. In this study, the ATP-sensitive receptors of C2C12 myotubes were further characterized by measuring the formation of inositol(1,4,5)trisphosphate (Ins(

  5. 21 CFR 184.1635 - Potassium iodate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide....

  6. 21 CFR 172.375 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  7. 21 CFR 184.1634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  8. 21 CFR 184.1610 - Potassium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No... algae. Potassium alginate is prepared by the neutralization of purified alginic acid with appropriate...

  9. Metal Induced Inhibition of Photosynthesis,Photosynthetic Electron Transport Chain and ATP Content of Anabaena doliolum and Chlorella vulgaris:Interaction with Exogenous ATP

    Institute of Scientific and Technical Information of China (English)

    NIRUPAMAMALLICK; L.C.RAI

    1992-01-01

    This study demonstrates a concentration dependent inhibition of carbon fixation,O2 evolution,photosynthetic electron transport chain and ATP content of A.doliolum and C.vulgaris by Cu,Ni and Fe.Although the mode of inhibition of photosynthetic electron transport chain of both the algae was similar.PS Ⅱdepicted greater sensitivity to the test metals used.The toxicity in both organisms was Cu>Ni>Fe.A.doliolum was,however,more sensitive to Cu and Ni,and C.vulgaris to Fe.Toxicity was generally dependent on metal uptake,which in turn was dependent on their concentrations in the external medium.A partial restoration of nutrient uptake,carbon fixation,and enzyme activities following supplementation of exogenous ATP suggests that ATP regulates toxicity through chelation.

  10. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P.; Yi, Ling; Kaler, Stephen G.; Lutsenko, Svetlana; Ralle, Martina

    2016-05-16

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).

  11. Measurement of ADP–ATP Exchange in Relation to Mitochondrial Transmembrane Potential and Oxygen Consumption

    Science.gov (United States)

    Chinopoulos, Christos; Kiss, Gergely; Kawamata, Hibiki; Starkov, Anatoly A.

    2015-01-01

    We have previously described a fluorometric method to measure ADP–ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg2+ with the Mg2+-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg2+. In particular, cells are permeabilized with digitonin in the presence of BeF3− and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg2+ using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg2+] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations. PMID:24862274

  12. Measurement of ADP-ATP exchange in relation to mitochondrial transmembrane potential and oxygen consumption.

    Science.gov (United States)

    Chinopoulos, Christos; Kiss, Gergely; Kawamata, Hibiki; Starkov, Anatoly A

    2014-01-01

    We have previously described a fluorometric method to measure ADP-ATP exchange rates in mitochondria of permeabilized cells, in which several enzymes that consume substantial amounts of ATP and other competing reactions interconverting adenine nucleotides are present. This method relies on recording changes in free extramitochondrial Mg(2+) with the Mg(2+)-sensitive fluorescent indicator Magnesium Green (MgGr)™, exploiting the differential affinity of ADP and ATP for Mg(2+). In particular, cells are permeabilized with digitonin in the presence of BeF3(-) and Na3VO4, inhibiting all ATP- and ADP-utilizing reactions but mitochondrial exchange of ATP with ADP catalyzed by the adenine nucleotide translocase. The rate of ATP appearing in the medium upon the addition of ADP to energized mitochondria is then calculated from the rate of change in free extramitochondrial Mg(2+) using standard binding equations. Here, we describe a variant of this method involving an improved calibration step. This step minimizes errors that may be introduced during the conversion of the MgGr™ signal into free extramitochondrial [Mg(2+)] and ATP. Furthermore, we describe an approach for combining this methodology with the measurement of mitochondrial membrane potential and oxygen consumption in the same sample. The method described herein is useful for the study of malignant cells, which are known to thrive in hypoxic environments and to harbor mitochondria with profound functional alterations. © 2014 Elsevier Inc. All rights reserved.

  13. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production.

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-03-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis.

  14. Nitric oxide and Kir6.1 potassium channel mediate isoquercitrin-induced endothelium-dependent and independent vasodilation in the mesenteric arterial bed of rats.

    Science.gov (United States)

    Gasparotto Junior, Arquimedes; Dos Reis Piornedo, Renê; Assreuy, Jamil; Da Silva-Santos, José Eduardo

    2016-10-05

    The vascular effect of flavonoid isoquercitrin was investigated in the perfused mesenteric vascular bed of rats. In preparations with functional endothelium isoquercitrin (100, 300 and 1000nmol) dose-dependently reduced the perfusion pressure by 13±2.2, 33±3.9, and 58±3.7mm Hg, respectively. Endothelium removal or inhibition of the nitric oxide synthase enzymes by l-NAME did not change the effects of 100 and 300 nmol isoquercitrin, but reduced by 30-40% the vasodilation induced by 1000 nmol isoquercitrin. Perfusion with nutritive solution containing 40mM KCl abolished the vasodilatory effect of all isoquercitrin doses. Treatment with glibenclamide, a Kir6.1 (ATP-sensitive) potassium channel blocker, inhibited vasodilation induced by 100 and 300 nmol isoquercitrin, but only partially reduced the effect of 1000 nmol isoquercitrin. The non-selective KCa (calcium-activated) potassium channel blocker tetraethylammonium, but not the selective KCa1.1 channel blocker iberiotoxin, reduced by around 60% vasodilation induced by all isoquercitrin doses. In addition, association of tetraethylammonium and glibenclamide, or l-NAME and glibenclamide, fully inhibited isoquercitrin-induced vasodilation. Our study shows that isoquercitrin induces vasodilation in resistance arteries, an effect mediated by K(+) channel opening and endothelial nitric oxide production.

  15. mitoK(ATP)介导硫化氢预处理延迟相的心肌保护效应%mitoK(ATP) Mediates the Protective Effect of Late Phase of Hydrogen Sulfide Preconditioning on Myocardial Cells

    Institute of Scientific and Technical Information of China (English)

    李双凤; 王亚平; 冉珂; 唐正国; 王丹; 肖艳英

    2011-01-01

    Objective:To investigate the protective effect of hydrogen sulfide induced late phase preconditioning on rat myocardial cells with mitochondrial ATP sensitive potassium channel [mitoK (ATP)] activation. Methods: Thirty-two adult male SD rats were randomly divided into 4 groups including Sham group, ischemia and reperfusion (IR) group, hydrogen sulfide treatment (HS) group and 5-hydroxy decanoate (5HD) + HD group (n= 8 for each group). In Sham group, rats were threaded left anterior descending (LAD) coronary artery, but no blockage. In IR group, rats were tied LAD for 30 min, then reperfusion for 2 h. In HS group, rats were injected donor of hydrogen sulfide - sodium hydrosulfide 50μg/kg via vein, after 24 h with the same treatment with IR group. In HD group, rats were injected 5-HD (5 mg/kg) 15 rain before ligated LAD via vein, then with same treatment with other HS group. The ventricular area, myocardial ischemia and infarct area were determined, and the percentages of ischemic area and infarct area were calculated. The myocardial ultrastructure was observed by electron microscope. Results:There were no significant differences in the percentage of ischemic area between three groups (P > 0.05). Compared with IR group and HD group, the percentage of infarct area was reduced in HS group (P 0.05). The damage of myocardial ultrastructure was less severe in HS group than that of IR group, but no significant difference between IR group and HD group. Conclusion: Hydrogen sulfide delayed preconditioning can protect the cardiomyocytes by activating the mitoK(ATP) channel.%研究线粒体ATP敏感性钾通道[mitoK(ATP)]激活在硫化氧预处理延迟相对大鼠心肌细胞的保护效应.方法:将32只健康成年雄性SD大鼠随机分成假手术组(Sham组)、缺血再灌注组(IR组)、硫化氢预处理组(HS组)和5-羟葵酸(5-HD)+硫化氢预处理组(HD组),每组8只.Sham组仅穿线但不阻断左冠状动脉前降支(LAD);IR组结扎LAD 30 min

  16. Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells

    Directory of Open Access Journals (Sweden)

    Reedijk Jan

    2008-06-01

    Full Text Available Abstract Background Copper homeostasis proteins ATP7A and ATP7B are assumed to be involved in the intracellular transport of cisplatin. The aim of the present study was to assess the relevance of sub cellular localisation of these transporters for acquired cisplatin resistance in vitro. For this purpose, localisation of ATP7A and ATP7B in A2780 human ovarian carcinoma cells and their cisplatin-resistant variant, A2780cis, was investigated. Methods Sub cellular localisation of ATP7A and ATP7B in sensitive and resistant cells was investigated using confocal fluorescence microscopy after immunohistochemical staining. Co-localisation experiments with a cisplatin analogue modified with a carboxyfluorescein-diacetate residue were performed. Cytotoxicity of the fluorescent cisplatin analogue in A2780 and A2780cis cells was determined using an MTT-based assay. The significance of differences was analysed using Student's t test or Mann-Whitney test as appropriate, p values of Results In the sensitive cells, both transporters are mainly localised in the trans-Golgi network, whereas they are sequestrated in more peripherally located vesicles in the resistant cells. Altered localisation of ATP7A and ATP7B in A2780cis cells is likely to be a consequence of major abnormalities in intracellular protein trafficking related to a reduced lysosomal compartment in this cell line. Changes in sub cellular localisation of ATP7A and ATP7B may facilitate sequestration of cisplatin in the vesicular structures of A2780cis cells, which may prevent drug binding to genomic DNA and thereby contribute to cisplatin resistance. Conclusion Our results indicate that alterations in sub cellular localisation of transport proteins may contribute to cisplatin resistance in vitro. Investigation of intracellular protein localisation in primary tumour cell cultures and tumour tissues may help to develop markers of clinically relevant cisplatin resistance. Detection of resistant tumours

  17. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...

  18. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...

  19. A heme-binding domain controls regulation of ATP-dependent potassium channels.

    Science.gov (United States)

    Burton, Mark J; Kapetanaki, Sofia M; Chernova, Tatyana; Jamieson, Andrew G; Dorlet, Pierre; Santolini, Jérôme; Moody, Peter C E; Mitcheson, John S; Davies, Noel W; Schmid, Ralf; Raven, Emma L; Storey, Nina M

    2016-04-01

    Heme iron has many and varied roles in biology. Most commonly it binds as a prosthetic group to proteins, and it has been widely supposed and amply demonstrated that subtle variations in the protein structure around the heme, including the heme ligands, are used to control the reactivity of the metal ion. However, the role of heme in biology now appears to also include a regulatory responsibility in the cell; this includes regulation of ion channel function. In this work, we show that cardiac KATP channels are regulated by heme. We identify a cytoplasmic heme-binding CXXHX16H motif on the sulphonylurea receptor subunit of the channel, and mutagenesis together with quantitative and spectroscopic analyses of heme-binding and single channel experiments identified Cys628 and His648 as important for heme binding. We discuss the wider implications of these findings and we use the information to present hypotheses for mechanisms of heme-dependent regulation across other ion channels.

  20. A facile label-free G-quadruplex based fluorescent aptasensor method for rapid detection of ATP

    Science.gov (United States)

    Liu, Haisheng; Ma, Changbei; Ning, Feng; Chen, Hanchun; He, Hailun; Wang, Kemin; Wang, Jun

    2017-03-01

    The present work demonstrates a simple, rapid and label-free ATP detection method using a fluorescent aptasensor that is based on G-quadruplex formation. In the absence of ATP, the Thioflavin T (ThT) dye binds to the G-rich ATP aptamer and forms an ATP aptamer/ThT G-quadruplex complex, which results in high fluorescence intensity. Upon addition of ATP, the ATP aptamer/ThT complex will be replaced by the formation of an ATP aptamer/ATP complex. During this process, separation of the ThT dye from the ATP aptamer/ThT complex decreases the fluorescence intensity of the reaction mixture dramatically. This fluorescence aptasensor is highly sensitive and rapid, with a detection limit of 18 nM and a total reaction time of only 10 min. Furthermore, this method is cost-effective and simple, removing the requirement for labeling the detection reagents with a fluorophore-quencher pair.

  1. P2X7 receptors contribute to the currents induced by ATP in guinea pig intestinal myenteric neurons.

    Science.gov (United States)

    Valdez-Morales, Eduardo; Guerrero-Alba, Raquel; Liñán-Rico, Andrómeda; Espinosa-Luna, Rosa; Zarazua-Guzman, Sergio; Miranda-Morales, Marcela; Montaño, Luis M; Barajas-López, Carlos

    2011-10-15

    The whole-cell configuration, several pharmacological tools, and single-cell RT-PCR were used to investigate the contribution of P2X7 subunits to the ATP-induced currents (I(ATP)) in guinea pig myenteric neurons. I(ATP) was recorded in the great majority of tested neurons. ATP concentration-response curve (0.01-10mM) showed two phases, the first mediated by high-sensitive P2X receptors (hsP2X receptors), observed between 0.01-0.3mM and the second mediated by low-sensitive P2X receptors (lsP2X receptors). The calculated EC(50) values of these phases were 38 and 1759 μM, respectively. 2'-3'-O-(4-benzoylbenzoyl)-ATP (BzATP) concentration-response curve was monophasic (0.01-1mM), and less potent (EC(50) 142 μM) than ATP to activate hsP2X receptors. A strong inward rectification was noticed when hsP2X receptors were activated with ATP (0.1mM) and for BzATP-induced currents (0.1mM; I(BzATP)) but a significant lower rectification was noticed when lsP2X receptors were activated (5mM). Brilliant blue G (BBG) at a concentration of 0.3 μM (known to inhibit only P2X7 receptors) reduced I(ATP) when lsP2X receptors contributed to it but neither affect hsP2X receptors nor I(BzATP). However, hsP2X receptors and I(BzATP) were both inhibited by concentrations ≥ 1 μM of this antagonist. BzATP inhibited hsP2X receptors and therefore, it behaves as partial agonist on these receptors. Using the single-cell RT-PCR technique P2X7 mRNA was detectable in 7 out of 13 myenteric neurons exhibiting P2X2 mRNA. Altogether, our results show that low-sensitive P2X receptors are likely P2X7, whereas, the high-sensitive P2X channels are probably constituted, at least in part, by P2X2 subunits.

  2. Customized ATP towpreg. [Automated Tow Placement

    Science.gov (United States)

    Sandusky, Donald A.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    1992-01-01

    Automated tow placement (ATP) utilizes robotic technology to lay down adjacent polymer-matrix-impregnated carbon fiber tows on a tool surface. Consolidation and cure during ATP requires that void elimination and polymer matrix adhesion be accomplished in the short period of heating and pressure rolling that follows towpreg ribbon placement from the robot head to the tool. This study examined the key towpreg ribbon properties and dimensions which play a significant role in ATP. Analysis of the heat transfer process window indicates that adequate heating can be achieved at lay down rates as high as 1 m/sec. While heat transfer did not appear to be the limiting factor, resin flow and fiber movement into tow lap gaps could be. Accordingly, consideration was given to towpreg ribbon having uniform yet non-rectangular cross sections. Dimensional integrity of the towpreg ribbon combined with customized ribbon architecture offer great promise for processing advances in ATP of high performance composites.

  3. An RNA motif that binds ATP

    Science.gov (United States)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  4. BK channels reveal novel phosphate sensitivity in SNr neurons.

    Directory of Open Access Journals (Sweden)

    Juan Juan Ji

    Full Text Available Whether large conductance Ca(2+-activated potassium (BK channels are present in the substantia nigra pars reticulata (SNr is a matter of debate. Using the patch-clamp technique, we examined the functional expression of BK channels in neurons of the SNr and showed that the channels were activated or inhibited by internal high-energy phosphates (IHEPs at positive and negative membrane potentials, respectively. SNr neurons showed membrane potential hyperpolarization under glucose-deprivation conditions which was attenuated by paxilline, a specific BK channel blocker. In addition, Fluo-3 fluorescence recording detected an increase in the level of internal free calcium ([Ca(2+](i during ischemic hyperpolarization. These results confirm that BK channels are present in SNr neurons and indicate that their unique IHEP sensitivity is requisite in neuronal ischemic responses. Bearing in mind that the K(ATP channel blocker tolbutamide also attenuated the hyperpolarization, we suggest that BK channels may play a protective role in the basal ganglia by modulating the excitability of SNr neurons along with K(ATP channels under ischemic stresses.

  5. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion

    DEFF Research Database (Denmark)

    Mortensen, Stefan P.; Gonzalez-Alonso, Jose; Nielsen, Jens Jung

    2009-01-01

    ATP has been proposed to play multiple roles in local skeletal muscle blood flow regulation by inducing vasodilation and modulating sympathetic vasoconstrictor activity, but the mechanism remain unclear. Here we evaluated the effects of arterial ATP infusion and exercise on limb muscle interstitial...... ATP and NE concentrations to gain insight into the interstitial and intravascular mechanisms by which ATP causes muscle vasodilation and sympatholysis. Leg hemodynamics and muscle interstitial nucleotide and norepinephrine (NE) concentrations were measured during: 1) femoral arterial ATP infusion (0.......42+/-0.04 and 2.26+/-0.52 mumol/min; mean+/-SEM) and 2) one-leg knee-extensor exercise (18+/-0 and 37+/-2W) in 10 healthy, male subjects. Arterial ATP infusion and exercise increased leg blood flow (LBF) in the experimental leg from ~0.3 L/min at baseline to 4.2+/-0.3 and 4.6+/-0.5 L/min, respectively, whereas...

  6. Vascular potassium channels in NVC.

    Science.gov (United States)

    Yamada, K

    2016-01-01

    It has long been proposed that the external potassium ion ([K(+)]0) works as a potent vasodilator in the dynamic regulation of local cerebral blood flow. Astrocytes may play a central role for producing K(+) outflow possibly through calcium-activated potassium channels on the end feet, responding to a rise in the intracellular Ca(2+) concentration, which might well reflect local neuronal activity. A mild elevation of [K(+)]0 in the end feet/vascular smooth muscle space could activate Na(+)/K(+)-ATPase concomitant with inwardly rectifying potassium (Kir) channels in vascular smooth muscle cells, leading to a hyperpolarization of vascular smooth muscle and relaxation of smooth muscle actin-positive vessels. Also proposed notion is endothelial calcium-activated potassium channels and/or inwardly rectifying potassium channel-mediated hyperpolarization of vascular smooth muscle. A larger elevation of [K(+)]0, which may occur pathophysiologically in such as spreading depression or stroke, can trigger a depolarization of vascular smooth muscle cells and vasoconstriction instead.

  7. Electrophysiology of autonomic neuromuscular transmission involving ATP.

    Science.gov (United States)

    Sneddon, P

    2000-07-01

    Electrophysiological investigations of autonomic neuromuscular transmission have provided great insights into the role of ATP as a neurotransmitter. Burnstock and Holman made the first recordings of excitatory junction potentials (e.j.p.s) produced by sympathetic nerves innervating the smooth muscle of the guinea-pig vas deferens. This led to the identification of ATP as the mediator of e.j.p.s in this tissue, where ATP acts as a cotransmitter with noradrenaline. The e.j.p.s are mediated solely by ATP acting on P2X(1) receptors leading to action potentials and a rapid phasic contraction, whilst noradrenaline mediates a slower, tonic contraction which is not dependent on membrane depolarisation. Subsequent electrophysiological studies of the autonomic innervation of smooth muscles of the urogenital, gastrointestinal and cardiovascular systems have revealed a similar pattern of response, where ATP mediates a fast electrical and mechanical response, whilst another transmitter such as noradrenaline, acetylcholine, nitric oxide or a peptide mediates a slower response. The modulation of junction potentials by a variety of pre-junctional receptors and the mechanism of inactivation of ATP as a neurotransmitter will also be described.

  8. Inhibition of the ATP Synthase Eliminates the Intrinsic Resistance of Staphylococcus aureus towards Polymyxins.

    Science.gov (United States)

    Vestergaard, Martin; Nøhr-Meldgaard, Katrine; Bojer, Martin Saxtorph; Krogsgård Nielsen, Christina; Meyer, Rikke Louise; Slavetinsky, Christoph; Peschel, Andreas; Ingmer, Hanne

    2017-09-05

    Staphylococcus aureus is intrinsically resistant to polymyxins (polymyxin B and colistin), an important class of cationic antimicrobial peptides used in treatment of Gram-negative bacterial infections. To understand the mechanisms underlying intrinsic polymyxin resistance in S. aureus, we screened the Nebraska Transposon Mutant Library established in S. aureus strain JE2 for increased susceptibility to polymyxin B. Nineteen mutants displayed at least 2-fold reductions in MIC, while the greatest reductions (8-fold) were observed for mutants with inactivation of either graS, graR, vraF, or vraG or the subunits of the ATP synthase (atpA, atpB, atpG, or atpH), which during respiration is the main source of energy. Inactivation of atpA also conferred hypersusceptibility to colistin and the aminoglycoside gentamicin, whereas susceptibilities to nisin, gallidermin, bacitracin, vancomycin, ciprofloxacin, linezolid, daptomycin, and oxacillin were unchanged. ATP synthase activity is known to be inhibited by oligomycin A, and the presence of this compound increased polymyxin B-mediated killing of S. aureus Our results demonstrate that the ATP synthase contributes to intrinsic resistance of S. aureus towards polymyxins and that inhibition of the ATP synthase sensitizes S. aureus to this group of compounds. These findings show that by modulation of bacterial metabolism, new classes of antibiotics may show efficacy against pathogens towards which they were previously considered inapplicable. In light of the need for new treatment options for infections with serious pathogens like S. aureus, this approach may pave the way for novel applications of existing antibiotics.IMPORTANCE Bacterial pathogens that cause disease in humans remain a serious threat to public health, and antibiotics are still our primary weapon in treating bacterial diseases. The ability to eradicate bacterial infections is critically challenged by development of resistance to all clinically available

  9. Equatorial potassium currents in lenses.

    Science.gov (United States)

    Wind, B E; Walsh, S; Patterson, J W

    1988-02-01

    Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K

  10. ATP Synthesis in the Extremely Halophilic Bacteria

    Science.gov (United States)

    Hochstein, Lawrence I.; Morrison, David (Technical Monitor)

    1994-01-01

    The proton-translocating ATPases are multimeric enzymes that carry out a multitude of essential functions. Their origin and evolution represent a seminal event in the early evolution of life. Amino acid sequences of the two largest subunits from archaeal ATPases (A-ATPases), vacuolar ATPases (V-ATPases), and FOF1-ATP syntheses (FATPases) suggest these ATPases evolved from an ancestral vacuolar-like ATP syntheses. A necessary consequence of this notion is that the A-ATPases are ATP syntheses. With the possible exception of the A-ATPase from Halobacterium salinarium. no A-ATPase has been demonstrated to synthesize ATP. The evidence for this case is dubious since ATP synthesis occurs only when conditions are distinctively unphysiological. We demonstrated that ATP synthesis in H.saccharovorum is inconsistent with the operation of an A-type ATPase. In order to determine if this phenomenon was unique to H. saccharovorum, ATP synthesis was examined in various extremely halophilic bacteria with the goal of ascertaining if it resembled what occurred in a. saccharovorum, or was consistent with the operation of an A-type ATPase. A-, V-, and F-type ATPases respond singularly to certain inhibitors. Therefore, the effect of these inhibitors on ATP synthesis in several extreme halophiles was determined. Inhibitors that either blocked or collapsed proton-gradients inhibited the steady state synthesis of ATP thus verifying that synthesis took place at the expense of a proton gradient. Azide, an inhibitor of F-ATPases inhibited ATP synthesis. Since the arginine-dependent synthesis of ATP, which occurs by way of substrate-level phosphorylation, was unaffected by azide, it was unlikely that azide acted as an "uncoupler." N -ethylmaleimide and nitrate, which inhibit V- and A-ATPases, either did not inhibit ATP synthesis or resulted in higher steady-state levels of ATP. These results suggest there are two types of proton-motive ATPases in the extreme halophiles (and presumably in other

  11. ATP as a signaling molecule: the exocrine focus

    DEFF Research Database (Denmark)

    Novak, Ivana

    2003-01-01

    Why and how do cells release ATP? It is not spilled energy. ATP becomes an extracellular regulator. Various cellular responses are initiated by purinergic receptors and signaling processes and are terminated by breakdown of ATP by ectonucleotidases. In epithelia, ATP regulates salt and water...

  12. ATP as a signaling molecule: the exocrine focus

    DEFF Research Database (Denmark)

    Novak, Ivana

    2003-01-01

    Why and how do cells release ATP? It is not spilled energy. ATP becomes an extracellular regulator. Various cellular responses are initiated by purinergic receptors and signaling processes and are terminated by breakdown of ATP by ectonucleotidases. In epithelia, ATP regulates salt and water tran...

  13. ATP measurement as method to monitor the quality of reprocessing flexible endoscopes

    Directory of Open Access Journals (Sweden)

    Hansen, Dorothea

    2004-04-01

    Full Text Available Insufficient performance of cleaning and disinfection of flexible endoscopes can pose an infection risk to patients. Actually quality of reprocessing is checked by performing microbiological cultures. Unfortunately, their results are not available on the same day so that more rapid methods are desirable. We compared the ATP (adenosine triphosphate bioluminescence for hygiene checking of the reprocessing procedures of 108 flexible endoscopes with routine microbiological culture technics. Sensitivity and specifity of ATP bioluminescence was calculated. 28 endoscopes showed bacterial growth of at least one sample. Depending on the applied threshold of bioluminescence between 67 and 28 endoscopes were positive. Sensitivity varied between 0.46 and 0.75 and specifity between 0.43 and 0.81. ATP bioluminescence does not replace routine microbiologic methods but it can indicate the need of immediate check of reprocessing.

  14. Application of bioluminescence ATP measurement for evaluation of fungal viability of foxing spots on old documents.

    Science.gov (United States)

    Rakotonirainy, Malalanirina Sylvia; Dubar, Pauline

    2013-01-01

    An adenosine triphosphate (ATP) bioluminescence-based protocol was tested to assess the viability of fungal species in old documents damaged by foxing. Foxing appears as scattered yellow brownish-red stains, damaging the aesthetics of documents and their long-term readability. In the field of cultural heritage conservation, the debate over the mechanism of foxing is ongoing. Previous studies found evidence of mold-like structures in some coloured areas; however, many species have not yet been identified and their role in the phenomenon is not understood. To better understand their involvement in this type of paper decay, we focused our attention first on their viability. We demonstrated the reliability and sensitivity of the ATP bioluminescence assay compared with conventional methods based on cultivation, which has rarely given rise to in vitro growth from foxed papers. From nine books dating back from the 19th and 20th centuries, the mean ATP amount of foxed spots ranged from 0.29 to 3.63 ng/cm(2), suggesting the presence of strains inside the brownish spots and providing evidence of their viability. Outside the spots, ATP content was considered negligible, with a mean ATP amount of 0 to 0.03 ng/cm(2). ATP assay appears to be a useful and robust method for the detection and quantification of viable elements in foxing spots.

  15. Frequently Asked Questions on Potassium Iodide (KI)

    Science.gov (United States)

    ... Bioterrorism and Drug Preparedness Frequently Asked Questions on Potassium Iodide (KI) Share Tweet Linkedin Pin it More sharing ... Drug Administration (FDA) issued a final Guidance on Potassium Iodide as a Thyroid Blocking Agent in Radiation Emergencies) ( ...

  16. Can Diuretics Decrease Your Potassium Level?

    Science.gov (United States)

    ... and Conditions High blood pressure (hypertension) Can diuretics decrease your potassium level? Answers from Sheldon G. Sheps, ... D. Yes, some diuretics — also called water pills — decrease potassium in the blood. Diuretics are commonly used ...

  17. Luminescent Immunoprecipitation System (LIPS) for Detection of Autoantibodies Against ATP4A and ATP4B Subunits of Gastric Proton Pump H+,K+-ATPase in Atrophic Body Gastritis Patients

    Science.gov (United States)

    Lahner, Edith; Brigatti, Cristina; Marzinotto, Ilaria; Carabotti, Marilia; Scalese, Giulia; Davidson, Howard W; Wenzlau, Janet M; Bosi, Emanuele; Piemonti, Lorenzo; Annibale, Bruno; Lampasona, Vito

    2017-01-01

    Objectives: Circulating autoantibodies targeting the H+/K+-ATPase proton pump of gastric parietal cells are considered markers of autoimmune gastritis, whose diagnostic accuracy in atrophic body gastritis, the pathological lesion of autoimmune gastritis, remains unknown. This study aimed to assess autoantibodies against ATP4A and ATP4B subunits of parietal cells H+, K+-ATPase in atrophic body gastritis patients and controls. Methods: One-hundred and four cases with atrophic body gastritis and 205 controls were assessed for serological autoantibodies specific for ATP4A or ATP4B subunits using luminescent immunoprecipitation system (LIPS). Recombinant luciferase-reporter-fused-antigens were expressed by in vitro transcription-translation (ATP4A) or after transfection in Expi293F cells (ATP4B), incubated with test sera, and immune complexes recovered using protein-A-sepharose. LIPS assays were compared with a commercial enzyme immunoassay (EIA) for parietal cell autoantibodies. Results: ATP4A and ATP4B autoantibody titers were higher in cases compared to controls (Pgastritis. Both assays had the highest sensitivity, at the cost of diagnostic accuracy (89 and 90% specificity), outperforming traditional EIA. Once validated, these LIPS assays should be valuable screening tools for detecting biomarkers of damaged atrophic oxyntic mucosa. PMID:28102858

  18. Synthetic peptides target ATP translocase of ‘Candidatus Liberibacter asiaticus’ to block ATP uptake

    Science.gov (United States)

    As an obligate intracellular pathogen, ‘Candidatus Liberibacter asiaticus’ (Las) may act as an “energy parasite” by importing ATP from its host’s cells. We previously demonstrated that the Las translocase NttA (gb|ACX71867.1) is functional in Escherichia coli and enables the direct import of ATP/ADP...

  19. ATP-consuming and ATP-generating enzymes secreted by pancreas

    DEFF Research Database (Denmark)

    Yegutkin, Gennady G; Samburski, Sergei S; Jalkanen, Sirpa

    2006-01-01

    Pancreatic acini release ATP in response to various stimuli, including cholecystokinin octapeptide (CCK-8), as we show in the present study. There were indications that pancreatic juice also contains enzymes that could hydrolyze ATP during its passage through the ductal system. The aim of this st......Pancreatic acini release ATP in response to various stimuli, including cholecystokinin octapeptide (CCK-8), as we show in the present study. There were indications that pancreatic juice also contains enzymes that could hydrolyze ATP during its passage through the ductal system. The aim...... of this study was to determine which ATP-degrading and possibly ATP-generating enzymes were present in pancreatic secretion. For this purpose, pancreatic juice was collected from anesthetized rats stimulated with infusion of CCK-8. Purine-converting activities in juice samples were assayed by TLC using either...... release of both ATP-consuming and ATP-generating enzymes into pancreatic juice. This newly discovered richness of secreted enzymes underscores the importance of purine signaling between acini and pancreatic ducts lumen and implies regulation of the purine-converting enzymes release....

  20. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU).

    Science.gov (United States)

    Zhao, Ronglan; Liang, Dongchun; Sun, Deming

    2016-01-01

    Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP) functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU). Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs), T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases.

  1. Arecoline improves vascular endothelial function in high fructose-fed rats via increasing cystathionine-γ-lyase expression and activating K(ATP) channels.

    Science.gov (United States)

    Ling, Hong-yan; Wang, Guang; Zhang, Wei; Li, Xing; Zhou, Shou-hong; Hu, Bi

    2012-08-01

    To investigate the effect of arecoline, a major component of betel nut, on vascular endothelial function in high fructose-fed rats and the potential mechanisms underlying the effect. Male Wistar rats were fed a high-fructose or control diet for 16 weeks. At the beginning of week 13, the rats were injected ip with low (0.5 mg·kg(-1)·d(-1)), medium (1.0 mg·kg(-1)·d(-1)) or high (5.0 mg·kg(-1)·d(-1)) doses of arecoline for 4 weeks. At the termination of the treatments, blood was collected, fasting blood glucose (FBG) and serum insulin (FSI) levels were measured, and insulin sensitivity index (ISI) was calculated. The thoracic aortas were isolated and aortic rings were prepared for studying ACh-induced endothelium-dependent vasorelaxation (EDVR). The mRNA and protein expression of cystathionine-γ-lyase (CSE) in the thoracic aortas was analyzed using RT-PCR and Western blot analysis, respectively. In high fructose-fed rats, the levels of FBG and FSI were remarkably increased, whereas the ISI and the mRNA and protein expression of CSE were significantly decreased. ACh-induced EDVR in the aortic rings from high fructose-fed rats was remarkably reduced. These changes were reversed by treatment with high dose arecoline. Pretreatment of the aortic rings rings from high fructose-fed rats with the CSE inhibitor propargylglycine (10 mmol/L) or the ATP-sensitive potassium (K(ATP)) channel blocker glibenclamide (10 mmol/L) abolished the restoration of ACh-induced EDVR by high dose arecoline. On the contrary, treatment with high dose arecoline significantly impaired ACh-induced EDVR in the aortic rings from control rats, and pretreatment with propargylglycine or glibenclamide did not cause further changes. Arecoline treatment improves ACh-induced EDVR in high fructose-fed rats, and the potential mechanism of action might be associated with increase of CSE expression and activation of K(ATP) channels by arecoline.

  2. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Iowa State Univ., Ames, IA (United States)

    2008-12-18

    The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with the firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification

  3. Clusterin and COMMD1 Independently Regulate Degradation of the Mammalian Copper ATPases ATP7A and ATP7B

    NARCIS (Netherlands)

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2012-01-01

    ATP7A and ATP7B are copper-transporting P-1B-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and C

  4. Clusterin and COMMD1 Independently Regulate Degradation of the Mammalian Copper ATPases ATP7A and ATP7B

    NARCIS (Netherlands)

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2012-01-01

    ATP7A and ATP7B are copper-transporting P-1B-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and C

  5. Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations

    Directory of Open Access Journals (Sweden)

    Junnan Xu

    2014-01-01

    Full Text Available This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+ after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosphorylation to ATP and release of some astrocytic ATP, located in vesicles, as an important transmitter has also become to be realized. Among the procedures stimulating Ca2+-dependent release of vesicular ATP are exposure to such transmitters as glutamate and adenosine, which raise intra-astrocytic Ca2+ concentration, or increase of extracellular K+ to a depolarizing level that opens astrocytic L-channels for Ca2+ and thereby also increase intra-astrocytic Ca2+ concentration, a prerequisite for glycogenolysis. The present study has confirmed and quantitated stimulated ATP release from well differentiated astrocyte cultures by glutamate, adenosine or elevated extracellular K+ concentrations, measured by a luciferin/luciferase reaction. It has also shown that this release is virtually abolished by an inhibitor of glycogenolysis as well as by inhibitors of transmitter-mediated signaling or of L-channel opening by elevated K+ concentrations.

  6. Role of Glycogenolysis in Stimulation of ATP Release from Cultured Mouse Astrocytes by Transmitters and High K+ Concentrations

    Directory of Open Access Journals (Sweden)

    Junnan Xu

    2013-12-01

    Full Text Available This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+ after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosphorylation to ATP and release of some astrocytic ATP, located in vesicles, as an important transmitter has also become to be realized. Among the procedures stimulating Ca2+ -dependent release of vesicular ATP are exposure to such transmitters as glutamate and adenosine, which raise intra-astrocytic Ca2+ concentration, or increase of extracellular K+ to a depolarizing level that opens astrocytic L-channels for Ca2+ and thereby also increase intra-astrocytic Ca2+ concentration, a prerequisite for glycogenolysis. The present study has confirmed and quantitated stimulated ATP release from well differentiated astrocyte cultures by glutamate, adenosine or elevated extracellular K+ concentrations, measured by a luciferin/luciferase reaction. It has also shown that this release is virtually abolished by an inhibitor of glycogenolysis as well as by inhibitors of transmitter-mediated signaling or of L-channel opening by elevated K+ concentrations.

  7. Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations.

    Science.gov (United States)

    Xu, Junnan; Song, Dan; Bai, Qiufang; Zhou, Lijun; Cai, Liping; Hertz, Leif; Peng, Liang

    2014-01-13

    This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+) after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosphorylation to ATP and release of some astrocytic ATP, located in vesicles, as an important transmitter has also become to be realized. Among the procedures stimulating Ca2+-dependent release of vesicular ATP are exposure to such transmitters as glutamate and adenosine, which raise intra-astrocytic Ca2+ concentration, or increase of extracellular K+ to a depolarizing level that opens astrocytic L-channels for Ca2+ and thereby also increase intra-astrocytic Ca2+ concentration, a prerequisite for glycogenolysis. The present study has confirmed and quantitated stimulated ATP release from well differentiated astrocyte cultures by glutamate, adenosine or elevated extracellular K+ concentrations, measured by a luciferin/luciferase reaction. It has also shown that this release is virtually abolished by an inhibitor of glycogenolysis as well as by inhibitors of transmitter-mediated signaling or of L-channel opening by elevated K+ concentrations.

  8. Increased serum potassium affects renal outcomes

    DEFF Research Database (Denmark)

    Miao, Y; Dobre, D; Heerspink, H J Lambers;

    2011-01-01

    To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy.......To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy....

  9. 21 CFR 184.1639 - Potassium lactate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  10. [Biochemical mechanisms of the cardioprotective effect of the K(ATP) channels opener flocalin (medicinal form) in ischemia-reperfusion of myocardium].

    Science.gov (United States)

    Strutyns'kyĭ, R B; Kotsiuruba, A V; Rovenets', R A; Strutyns'ka, N A; Iagupols'kyĭ, Iu L; Sagach, V F; Moĭbenko, O O

    2013-01-01

    In experiments on the anaesthetized dogs with modeling of experimental ischemia (90 min) and reperfusion (180 min) of myocardium it was investigated changes of biochemical processes in arterial blood at intragastric introduction of medicinal form (tablets) of flocalin (the fluorine-containing opener of ATP-sensitive potassium channels) in a dose 2,2 mg/kg. The data analysis allowed to define a few possible mechanisms of cardioprotective action offlocalin, which prevented the opening of a mitochondrial permeability transition pore (MPTP) and inhibition of apoptosis induced by it. They consist, from one side, in activating of the constitutive de novo biosynthesis of nitric oxide by cNOS, from other side, in suppression of inducible nitric oxide de novo synthesis by iNOS in such way to prevent the formation of toxic peroxynitrite by co-operation of surplus nitric oxide with superoxide anion, thereby limits the generation of toxic active forms of nitrogen (*NO2) and oxygen (*OH). The first effect of flocalin takes place due to limitation the degradation of L-arginine by arginase which keeps substrat for cNOS, second--due to the inhibition of superoxide generation, in particular, by xanthine oxidase (marker uric acid), lipoxigenase (marker LTC4) and cyclooxygenase (marker TxB2). Because LTC4 have coronaroconstrictory, arrhythmogenic and chemoattractory properties in the conditions of myocardial ischemia, inhibition of its production both with superoxide generation (markers H2O2 and diene conjugates) may be the another mechanisms of flocalin's cardioprotection. Powerful antiischemic action of flocalin (marker nitrite anion) as the mechanisms of cardioprotection is possible as well as inhibition of ATP and GTP degradation (marker hypoxanthine+xanthine+inosine levels in the blood) and, possibly, stimulation ofhaem degradation by haem oxygenase (markers total bilirubin and Fe in the blood). Diminishing content of free arachidonic acid in arterial blood can testify

  11. 21 CFR 182.3640 - Potassium sorbate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  12. 21 CFR 582.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  13. 21 CFR 172.730 - Potassium bromate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bromate. 172.730 Section 172.730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Specific Usage Additives § 172.730 Potassium bromate. The food additive potassium bromate may be...

  14. 21 CFR 582.6625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  15. 21 CFR 582.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  16. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  17. 21 CFR 582.3640 - Potassium sorbate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  18. 21 CFR 582.5634 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  19. 21 CFR 582.7610 - Potassium alginate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  20. 21 CFR 172.160 - Potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a...

  1. Remodeling of excitation-contraction coupling in transgenic mice expressing ATP-insensitive sarcolemmal KATP channels.

    Science.gov (United States)

    Flagg, Thomas P; Charpentier, Flavien; Manning-Fox, Jocelyn; Remedi, Maria Sara; Enkvetchakul, Decha; Lopatin, Anatoli; Koster, Joseph; Nichols, Colin

    2004-04-01

    Reducing the ATP sensitivity of the sarcolemmal ATP-sensitive K(+) (K(ATP)) channel is predicted to lead to active channels in normal metabolic conditions and hence cause shortened ventricular action potentials and reduced myocardial inotropy. We generated transgenic (TG) mice that express an ATP-insensitive K(ATP) channel mutant [Kir6.2(deltaN2-30,K185Q)] under transcriptional control of the alpha-myosin heavy chain promoter. Strikingly, myocyte contraction amplitude was increased in TG myocytes (15.68 +/- 1.15% vs. 10.96 +/- 1.49%), even though K(ATP) channels in TG myocytes are very insensitive to inhibitory ATP. Under normal metabolic conditions, steady-state outward K(+) currents measured under whole cell voltage clamp were elevated in TG myocytes, consistent with threshold K(ATP) activation, but neither the monophasic action potential measured in isolated hearts nor transmembrane action potential measured in right ventricular muscle preparations were shortened at physiological pacing cycles. Taken together, these results suggest that there is a compensatory remodeling of excitation-contraction coupling in TG myocytes. Whereas there were no obvious differences in other K(+) conductances, peak L-type Ca(2+) current (I(Ca)) density (-16.42 +/- 2.37 pA/pF) in the TG was increased compared with the wild type (-8.43 +/- 1.01 pA/pF). Isoproterenol approximately doubled both I(Ca) and contraction amplitude in wild-type myocytes but failed to induce a significant increase in TG myocytes. Baseline and isoproterenol-stimulated cAMP concentrations were not different in wild-type and TG hearts, suggesting that the enhancement of I(Ca) in the latter does not result from elevated cAMP. Collectively, the data demonstrate that a compensatory increase in I(Ca) counteracts a mild activation of ATP-insensitive K(ATP) channels to maintain the action potential duration and elevate the inotropic state of TG hearts.

  2. [Effects of fertilization on aquic brown soil potassium budget and crop potassium allocation].

    Science.gov (United States)

    Jiang, Zishao; Yu, Wantai; Zhang, Lu

    2006-12-01

    Through a consecutive 15 years field trial on the aquic brown soil in Shenyang suburb of Northeast China, this paper studied the soil potassium budget and crop potassium allocation under effects of different fertilization systems. The results indicated that applying nitrogen or nitrogen plus phosphorous without potassium application accelerated the deficit of soil potassium. The potassium concentration in soybean grain and stalk was higher under potassium application than with no potassium supply, while that in maize grain had no significant difference in different fertilization treatments. The reutilization of recycled nutrients in farming system could mitigate the deficit of soil potassium budget, and such reutilization assorted with appropriate amount of potassium fertilization could not only produce high crop yield, but also balance soil potassium budget.

  3. Pathogenic Candida species differ in the ability to grow at limiting potassium concentrations.

    Science.gov (United States)

    Hušeková, B; Elicharová, H; Sychrová, H

    2016-05-01

    A high intracellular concentration of potassium (200-300 mmol/L) is essential for many yeast cell functions, such as the regulation of cell volume and pH, maintenance of membrane potential, and enzyme activation. Thus, cells use high-affinity specific transporters and expend a lot of energy to acquire the necessary amount of potassium from their environment. In Candida genomes, genes encoding 3 types of putative potassium uptake systems were identified: Trk uniporters, Hak symporters, and Acu ATPases. Tests of the tolerance and sensitivity of C. albicans, C. dubliniensis, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis to various concentrations of potassium showed significant differences among the species, and these differences were partly dependent on external pH. The species most tolerant to potassium-limiting conditions were C. albicans and C. krusei, while C. parapsilosis tolerated the highest KCl concentrations. Also, the morphology of cells changed with the amount of potassium available, with C. krusei and C. tropicalis being the most influenced. Taken together, our results confirm potassium uptake and accumulation as important factors for Candida cell growth and suggest that the sole (and thus probably indispensable) Trk1 potassium uptake system in C. krusei and C. glabrata may serve as a target for the development of new antifungal drugs.

  4. Detection of culprit lesion in patients with unstable angina pectoris by using ATP thallium-201 myocardial SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Tokuo; Mori, Yutaka [Jikei Univ., Tokyo (Japan). School of Medicine; Yamashina, Akira; Kubo, Toru; Usui, Yasuhiro

    1999-10-01

    The purpose of this study is to determine the diagnostic accuracy for detection of culprit lesions in patients with unstable angina. Both ATP {sup 201}Tl SPECT and coronary angiography were performed in 51 patients with unstable angina pectoris within a week since the last attack. SPECT images were divided into 17 segments and the regional uptakes were scored semiquantitatively (0=normal to 3=no activity) and compared with the coronary angiographic findings. ATP {sup 201}Tl SPECT revealed decreased uptakes in 54 of 56 culprit lesions. The sensitivity, specificity and accuracy for detection of culprit lesions were 96.4%, 89.5% and 92.4%, respectively. Although adverse effects during ATP administration were complicated in 28 (54.9%) patients, all the complications were mild and resolved within two minutes. ATP {sup 201}Tl SPECT is sensitive and reliable method for detecting culprit lesions and can be performed safely even at acute phase in patients with unstable angina pectoris. (author)

  5. Potassium channel agonists cause penile erection in cats

    Science.gov (United States)

    Hellstrom, Wayne J.G.; Wang, Run; Kadowitz, Philip J.; Domer, Floyd R.

    2013-01-01

    Using a feline model, erections caused by a new class of vasodilator agents that specifically activate potassium (K+-ATP) channels (lemakalim, nicorandil, and pinacidil) were compared to baseline and maximal erections induced by a standard drug combination (1.65 mg papaverine, 25 μg phentolamine and 0.5 μg PGE1) injected intracavernosally. The responses were characterized by the maximal intracavernosal pressure, the duration of maximal pressure, the total duration of drug effect, the change in penile length, and alterations in systemic arterial blood pressure. All three K+-ATP channel openers caused erections in a dose-dependent manner. All agents caused similar increases in penile length with full erection, but the duration of maximal pressure and duration of action were significantly shorter (P<0.01) than with the standard drug combination. Lemakalim did not decrease systemic blood pressure as did nicorandil, pinacidil, and the standard drug combination. This study supports the use of an in-vivo feline model for the evaluation of vasoactive agents and suggests that a new class of agents can pharmacologically activate the erectile response selectively by an alternate pathway. PMID:25530677

  6. Thanatochemistry: Study of vitreous humor potassium

    Directory of Open Access Journals (Sweden)

    Nilesh Keshav Tumram

    2014-12-01

    Full Text Available This study has been carried out to determine the death interval from the biochemical parameter of vitreous potassium. In 308 medicolegal cases vitreous humor was taken and analyzed for potassium with known time of death. There was a linear rise in potassium concentration with increasing death interval. Regression equation was calculated for the same. The study indicates that potassium levels in vitreous for determining death interval are useful and can afford a good method of determining the death interval along with other traditional methods. Also the previously established formulae for estimating death interval from vitreous potassium were also studied.

  7. Monitoring enzymatic ATP hydrolysis by EPR spectroscopy.

    Science.gov (United States)

    Hacker, Stephan M; Hintze, Christian; Marx, Andreas; Drescher, Malte

    2014-07-14

    An adenosine triphosphate (ATP) analogue modified with two nitroxide radicals is developed and employed to study its enzymatic hydrolysis by electron paramagnetic resonance spectroscopy. For this application, we demonstrate that EPR holds the potential to complement fluorogenic substrate analogues in monitoring enzymatic activity.

  8. Torque generation mechanism of ATP synthase

    Science.gov (United States)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  9. Calcium and ATP control multiple vital functions

    Science.gov (United States)

    Verkhratsky, Alexei

    2016-01-01

    Life on Planet Earth, as we know it, revolves around adenosine triphosphate (ATP) as a universal energy storing molecule. The metabolism of ATP requires a low cytosolic Ca2+ concentration, and hence tethers these two molecules together. The exceedingly low cytosolic Ca2+ concentration (which in all life forms is kept around 50–100 nM) forms the basis for a universal intracellular signalling system in which Ca2+ acts as a second messenger. Maintenance of transmembrane Ca2+ gradients, in turn, requires ATP-dependent Ca2+ transport, thus further emphasizing the inseparable links between these two substances. Ca2+ signalling controls the most fundamental processes in the living organism, from heartbeat and neurotransmission to cell energetics and secretion. The versatility and plasticity of Ca2+ signalling relies on cell specific Ca2+ signalling toolkits, remodelling of which underlies adaptive cellular responses. Alterations of these Ca2+ signalling toolkits lead to aberrant Ca2+ signalling which is fundamental for the pathophysiology of numerous diseases from acute pancreatitis to neurodegeneration. This paper introduces a theme issue on this topic, which arose from a Royal Society Theo Murphy scientific meeting held in March 2016. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377728

  10. Determination of Potassium Ferrocyanide in Foods by Resonance Rayleigh Scattering Method with Basic Triaminotriphenylmethane Dyes

    Institute of Scientific and Technical Information of China (English)

    Yong Li LI; Zhong Fang LIU; Li Sha XIE; Ling KONG; Shao Pu LIU

    2006-01-01

    In this work, a sensitive, rapid and simple method for the determination of trace amounts of potassium ferrocyanide in salinized foods and table salt using EV as a RRS probe is established. The detection limit (3σ) of the EV system is 7.8 ng/mL. This new method is more suitable for the determination of the trace amounts of potassium ferrocyanide in colour salinized foods and it can not be disturbed by the color of salinized foods.

  11. Palmitate-induced changes in energy demand cause reallocation of ATP supply in rat and human skeletal muscle cells.

    Science.gov (United States)

    Nisr, Raid B; Affourtit, Charles

    2016-09-01

    Mitochondrial dysfunction has been associated with obesity-related muscle insulin resistance, but the causality of this association is controversial. The notion that mitochondrial oxidative capacity may be insufficient to deal appropriately with excessive nutrient loads is for example disputed. Effective mitochondrial capacity is indirectly, but largely determined by ATP-consuming processes because skeletal muscle energy metabolism is mostly controlled by ATP demand. Probing the bioenergetics of rat and human myoblasts in real time we show here that the saturated fatty acid palmitate lowers the rate and coupling efficiency of oxidative phosphorylation under conditions it causes insulin resistance. Stearate affects the bioenergetic parameters similarly, whereas oleate and linoleate tend to decrease the rate but not the efficiency of ATP synthesis. Importantly, we reveal that palmitate influences how oxidative ATP supply is used to fuel ATP-consuming processes. Direct measurement of newly made protein demonstrates that palmitate lowers the rate of de novo protein synthesis by more than 30%. The anticipated decrease of energy demand linked to protein synthesis is confirmed by attenuated cycloheximide-sensitivity of mitochondrial respiratory activity used to make ATP. This indirect measure of ATP turnover indicates that palmitate lowers ATP supply reserved for protein synthesis by at least 40%. This decrease is also provoked by stearate, oleate and linoleate, albeit to a lesser extent. Moreover, palmitate lowers ATP supply for sodium pump activity by 60-70% and, in human cells, decreases ATP supply for DNA/RNA synthesis by almost three-quarters. These novel fatty acid effects on energy expenditure inform the 'mitochondrial insufficiency' debate.

  12. Gain-of-function mutations in the K(ATP channel (KCNJ11 impair coordinated hand-eye tracking.

    Directory of Open Access Journals (Sweden)

    James S McTaggart

    Full Text Available Gain-of-function mutations in the ATP-sensitive potassium channel can cause permanent neonatal diabetes mellitus (PNDM or neonatal diabetes accompanied by a constellation of neurological symptoms (iDEND syndrome. Studies of a mouse model of iDEND syndrome revealed that cerebellar Purkinje cell electrical activity was impaired and that the mice exhibited poor motor coordination. In this study, we probed the hand-eye coordination of PNDM and iDEND patients using visual tracking tasks to see if poor motor coordination is also a feature of the human disease.Control participants (n = 14, patients with iDEND syndrome (n = 6 or 7, and patients with PNDM (n = 7 completed three computer-based tasks in which a moving target was tracked with a joystick-controlled cursor. Patients with PNDM and iDEND were being treated with sulphonylurea drugs at the time of testing.No differences were seen between PNDM patients and controls. Patients with iDEND syndrome were significantly less accurate than controls in two of the three tasks. The greatest differences were seen when iDEND patients tracked blanked targets, i.e. when predictive tracking was required. In this task, iDEND patients incurred more discrepancy errors (p = 0.009 and more velocity errors (p= 0.009 than controls.These results identify impaired hand-eye coordination as a new clinical feature of iDEND. The aetiology of this feature is likely to involve cerebellar dysfunction. The data further suggest that sulphonylurea doses that control the diabetes of these patients may be insufficient to fully correct their neurological symptoms.

  13. mito-KATP通道在利多卡因减轻肾缺血再灌注心肌损伤的作用%Role of mitochondrial ATP-sensitive potassium channels in myocardial damage induced by renal ischemia-reperfusion by lidocaine pretreatment in rats

    Institute of Scientific and Technical Information of China (English)

    朱小兵; 吴论; 刘志群; 王根宝

    2015-01-01

    目的 评价线粒体ATP敏感性钾(mito-KATP)通道在利多卡因预先给药减轻肾脏缺血再灌注致大鼠心肌损伤中的作用.方法 健康雄性Wistar大鼠60只,体重300~350 g,采用随机数字表法分为5组(n=12):假手术组(S组)、肾脏缺血再灌注组(I/R组)、利多卡因组(L组)、mito-KATP通道阻断剂5-羟葵酸组(5-HD组)和mito-KATP通道阻断剂5-羟葵酸+L组(5-HD+L组).夹闭双侧肾动脉60 min、恢复灌注4h建立大鼠肾脏缺血再灌注损伤模型,术后再灌注4h时,取心脏血样,测定血清Cr和BUN浓度,测定心肌肌钙蛋白I(cTnI)水平,取心肌组织,分别采用黄嘌呤氧化酶法、硫代巴比妥法测定超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量.结果 与S组比较,I/R组、L组、5-HD组和5-HD+L组血清Cr、BUN浓度和MDA含量升高,SOD活性降低、cTnI浓度升高(P<0.05);与I/R组比较,L组和5-HD+L组血清Cr、BUN浓度和MDA含量降低,SOD活性升高、cTnI浓度降低(P<0.05),5-HD组血清Cr、BUN浓度和MDA含量,SOD活性、cTnI浓度差异无统计学意义(P>0.05);与L组比较,5-HD+L组血清Cr、BUN浓度和肾组织MDA浓度升高,SOD活性降低、cTnI浓度升高(P<0.05);L组心肌组织病理学损伤较I/R组和5-HD+L组减轻.结论 线粒体ATP敏感性钾通道参与了利多卡因预先给药减轻肾脏缺血再灌注致大鼠心肌损伤的过程.

  14. Restoration of the response of the middle cerebral artery of the rat to acidosis in hyposmotic hyponatremia by the opener of large-conductance calcium sensitive potassium channels (BKCa).

    Science.gov (United States)

    Aleksandrowicz, Marta; Dworakowska, Beata; Dolowy, Krzysztof; Kozniewska, Ewa

    2017-09-01

    Hyposmotic hyponatremia (the decrease of extracellular concentration of sodium ions from 145 to 121 mM and the decrease of hyposmolality from 300 to 250 mOsm/kg H2O) impairs response of the middle cerebral artery (MCA) to acetylcholine and NO donor (S-nitroso-N-acetyl-DL-penicillamine). Since acidosis activates a similar intracellular signaling pathway, the present study was designed to verify the hypothesis that the response of the MCA to acidosis is impaired during acute hyposmotic hyponatremia due to abnormal NO-related signal transduction in vascular smooth muscle cells. Studies performed on isolated, cannulated, and pressurized rat MCA revealed that hyposmotic hyponatremia impaired the response of the MCA to acidosis and this was associated with hyposmolality rather than with decreased sodium ion concentration. Response to acidosis was restored by the BKCa but not by the KATP channel activator. Patch-clamp electrophysiology performed on myocytes freshly isolated from MCAs, demonstrated that hyposmotic hyponatremia does not affect BKCa currents but decreases the voltage-dependency of the activation of the BKCa channels in the presence of a specific opener of these channels. Our study suggests that reduced sensitivity of BKCa channels in the MCA to agonists results in the lack of response of this artery to acidosis during acute hyposmotic hyponatremia.

  15. How the nucleus and mitochondria communicate in energy production during stress: nuclear MtATP6, an early-stress responsive gene, regulates the mitochondrial F₁F₀-ATP synthase complex.

    Science.gov (United States)

    Moghadam, Ali Asghar; Ebrahimie, Eemaeil; Taghavi, Seyed Mohsen; Niazi, Ali; Babgohari, Mahbobeh Zamani; Deihimi, Tahereh; Djavaheri, Mohammad; Ramezani, Amin

    2013-07-01

    A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.

  16. An IMS/ATP Assay for the Detection of Mycobacterium tuberculosis in Urine

    Directory of Open Access Journals (Sweden)

    Dawn M. Hunter

    2012-01-01

    Full Text Available Background. Although sputum smears are the gold standard for diagnosis of tuberculosis, sensitivity in HIV/TB coinfection cases is low, indicating a need for alternative methods. Urine is being increasingly evaluated. Materials and Methods. A novel method for detecting Mycobacterium tuberculosis (MTB in synthetic urine using a combined IMS/ATP assay was evaluated. Preliminary work established standard ATP conditions and the sensitivity and specificity of the MTB antibody. Eighty-four blinded samples in four replicate assays were evaluated for the presence of MTB using labeled immunomagnetic beads for capture. Beads were separated, washed, and resuspended in broth and added to a microtiter plate. Bioluminescent output was measured and signal-to-noise ratios were calculated. All samples were plated on Middlebrook 7H10 agar or trypticase soy agar to determine limit of detection and recoveries. Results and Conclusions. MTB was distinguished from common bacteriuria isolates and other nontarget bacteria by its ATP results. IMS/ATP successfully detected 19 of 28 samples of MTB in synthetic urine with a limit of detection of 104 CFU/ml. Sensitivity and specificity were 67.9% and 82.1%, respectively. This assay offers a possible rapid screening method for HIV-positive patients with suspected coinfection to improve MTB diagnosis.

  17. Plasma Potassium Levels in Healthy Prehypertension Subjects and the Role of A High Potassium Drink.

    Science.gov (United States)

    Farapti, Farapti; Sayogo, Savitri; Siregar, Parlindungan

    2017-02-24

    Most populations around the world consume less than the recommended levels of potassium. Long term low potassium intake could lead to decreased plasma potassium levels and induce hypokalemia. The increasing of plasma potassium levels 0,2-0,4 mmol/L by improving potassium intake decreased significantly blood pressure (BP). Assessing plasma potassium levels in healthy people related to potassium intake have not been studied. In this study, we analysed plasma potassium levels in prehypertension (PHT) subjects and to evaluate the effect of tender coconut water (TCW) as a high potassium drink on plasma potassium levels in PHT adults. Thirthy-two female aged 25-44 years were randomly allocated to 14 days on TCW or water in a parallel randomized clinical trial . The treatment (T) group received TCW 300 ml twice daily and the control (C) group received water 300 ml twice daily too. At baseline, plasma potassium levels was 3.71±0.41 mmol/L, and 22.58% were categorized as hypokalemia. After 14 days treatment, potassium plasma level between T and C groups were not significantly different (p=0,247). The change of plasma potassium levels in both groups showed tendency to increase but not statistically significant (p=0.166). In healthy prehypertension women, the low levels of potassium plasma may be caused by low potassium intake for long time and intervension with TCW 300 ml twice daily for 14 consecutive days has not proven yet to increase plasma potassium levels. It is necessary to give higher dose and longer time to increase potassium plasma in low potassium plasma level subjects.

  18. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    Science.gov (United States)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis.

    Science.gov (United States)

    Sipos, Arnold; Vargas, Sarah L; Toma, Ildikó; Hanner, Fiona; Willecke, Klaus; Peti-Peterdi, János

    2009-08-01

    In the renal tubule, ATP is an important regulator of salt and water reabsorption, but the mechanism of ATP release is unknown. Several connexin (Cx) isoforms form mechanosensitive, ATP-permeable hemichannels. We localized Cx30 to the nonjunctional apical membrane of cells in the distal nephron and tested whether Cx30 participates in physiologically important release of ATP. We dissected, partially split open, and microperfused cortical collecting ducts from wild-type and Cx30-deficient mice in vitro. We used PC12 cells as ATP biosensors by loading them with Fluo-4/Fura Red to measure cytosolic calcium and positioning them in direct contact with the apical surface of either intercalated or principal cells. ATP biosensor responses, triggered by increased tubular flow or by bath hypotonicity, were approximately three-fold greater when positioned next to intercalated cells than next to principal cells. In addition, these responses did not occur in preparations from Cx30-deficient mice or with purinergic receptor blockade. After inducing step increases in mean arterial pressure by ligating the distal aorta followed by the mesenteric and celiac arteries, urine output increased 4.2-fold in wild-type mice compared with 2.6-fold in Cx30-deficient mice, and urinary Na(+) excretion increased 5.2-fold in wild-type mice compared with 2.8-fold in Cx30-deficient mice. Furthermore, Cx30-deficient mice developed endothelial sodium channel-dependent, salt-sensitive elevations in mean arterial pressure. Taken together, we suggest that mechanosensitive Cx30 hemichannels have an integral role in pressure natriuresis by releasing ATP into the tubular fluid, which inhibits salt and water reabsorption.

  20. AMP kinase regulates ligand-gated K-ATP channels in substantia nigra dopamine neurons.

    Science.gov (United States)

    Shen, Ke-Zhong; Wu, Yan-Na; Munhall, Adam C; Johnson, Steven W

    2016-08-25

    AMP-activated protein kinase (AMPK) is a master enzyme that regulates ATP-sensitive K(+) (K-ATP) channels in pancreatic beta-cells and cardiac myocytes. We used patch pipettes to record currents and potentials to investigate effects of AMPK on K-ATP currents in substantia nigra compacta (SNC) dopamine neurons in slices of rat midbrain. When slices were superfused repeatedly with the K-ATP channel opener diazoxide, we were surprised to find that diazoxide currents gradually increased in magnitude, reaching 300% of the control value 60min after starting whole-cell recording. However, diazoxide current increased significantly more, to 472% of control, when recorded in the presence of the AMPK activator A769662. Moreover, superfusing the slice with the AMPK blocking agent dorsomorphin significantly reduced diazoxide current to 38% of control. Control experiments showed that outward currents evoked by the K-ATP channel opener NN-414 also increased over time, but not currents evoked by the GABAB agonist baclofen. Delaying the application of diazoxide after starting whole-cell recording correlated with augmentation of current. Loose-patch recording showed that diazoxide produced a 34% slowing of spontaneous firing rate that did not intensify with repeated applications of diazoxide. However, superfusion with A769662 significantly augmented the inhibitory effect of diazoxide on firing rate. We conclude that K-ATP channel function is augmented by AMPK, which is activated during the process of making whole-cell recordings. Our results suggest that AMPK and K-ATP interactions may play an important role in regulating dopamine neuronal excitability.

  1. The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria.

    Science.gov (United States)

    Bhattacharjee, Ashima; Yang, Haojun; Duffy, Megan; Robinson, Emily; Conrad-Antoville, Arianrhod; Lu, Ya-Wen; Capps, Tony; Braiterman, Lelita; Wolfgang, Michael; Murphy, Michael P; Yi, Ling; Kaler, Stephen G; Lutsenko, Svetlana; Ralle, Martina

    2016-08-05

    Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A two-hour antibiotic susceptibility test by ATP-bioluminescence.

    Science.gov (United States)

    March Rosselló, Gabriel Alberto; García-Loygorri Jordán de Urries, María Cristina; Gutiérrez Rodríguez, María Purificación; Simarro Grande, María; Orduña Domingo, Antonio; Bratos Pérez, Miguel Ángel

    2016-01-01

    The antibiotic susceptibility test (AST) in Clinical Microbiology laboratories is still time-consuming, and most procedures take 24h to yield results. In this study, a rapid antimicrobial susceptibility test using ATP-bioluminescence has been developed. The design of method was performed using five ATCC collection strains of known susceptibility. This procedure was then validated against standard commercial methods on 10 strains of enterococci, 10 staphylococci, 10 non-fermenting gram negative bacilli, and 13 Enterobacteriaceae from patients. The agreement obtained in the sensitivity between the ATP-bioluminescence method and commercial methods (E-test, MicroScan and VITEK2) was 100%. In summary, the preliminary results obtained in this work show that the ATP-bioluminescence method could provide a fast and reliable AST in two hours.

  3. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Directory of Open Access Journals (Sweden)

    Michael S. Stone

    2016-07-01

    Full Text Available Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+ ATPase pump. Approximately 90% of potassium consumed (60–100 mEq is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN is the leading cause of cardiovascular disease (CVD and a major financial burden ($50.6 billion to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  4. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Science.gov (United States)

    Stone, Michael S.; Martyn, Lisa; Weaver, Connie M.

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60–100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  5. Adenosine 5′-triphosphate (ATP supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    Directory of Open Access Journals (Sweden)

    Arts Ilja CW

    2012-04-01

    Full Text Available Abstract Background Nutritional supplements designed to increase adenosine 5′-triphosphate (ATP concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity exercise. Oral ATP supplements have beneficial effects in some but not all studies examining physical performance. One of the remaining questions is whether orally administered ATP is bioavailable. We investigated whether acute supplementation with oral ATP administered as enteric-coated pellets led to increased concentrations of ATP or its metabolites in the circulation. Methods Eight healthy volunteers participated in a cross-over study. Participants were given in random order single doses of 5000 mg ATP or placebo. To prevent degradation of ATP in the acidic environment of the stomach, the supplement was administered via two types of pH-sensitive, enteric-coated pellets (targeted at release in the proximal or distal small intestine, or via a naso-duodenal tube. Blood ATP and metabolite concentrations were monitored by HPLC for 4.5 h (naso-duodenal tube or 7 h (pellets post-administration. Areas under the concentration vs. time curve were calculated and compared by paired-samples t-tests. Results ATP concentrations in blood did not increase after ATP supplementation via enteric-coated pellets or naso-duodenal tube. In contrast, concentrations of the final catabolic product of ATP, uric acid, were significantly increased compared to placebo by ~50% after administration via proximal-release pellets (P = 0.003 and naso-duodenal tube (P = 0.001, but not after administration via distal-release pellets. Conclusions A single dose of orally administered ATP is not bioavailable, and this may explain why several studies did not find ergogenic effects of oral ATP supplementation. On the other hand, increases in uric acid after release of

  6. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    Science.gov (United States)

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  7. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    Science.gov (United States)

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  8. The amplitude and inactivation properties of the delayed potassium currents are regulated by protein kinase activity in hair cells of the frog semicircular canals.

    Directory of Open Access Journals (Sweden)

    Marta Martini

    Full Text Available In hair cells dissected from the frog crista ampullaris, the combination of a calcium-dependent (IKCa and a purely voltage-dependent component (IKV gives rise to the delayed potassium current complex (IKD. These currents have been recently reported to display slow depolarization-induced inactivation and biphasic inactivation removal by hyperpolarization. The amplitude and inactivation kinetics of both IKCa and IKV are drastically modulated by a previously unrecognized mechanism of protein phosphorylation (sensitive to kinase inhibitors H89 and KT5823, which does not interfere with the transient potassium current (IA or the calcium current (ICa. IKD amplitude was stable in cells patched with pipettes containing 8 mM ATP or under perforated-patch; under these conditions, a 10 min treatment with 10 µM H89 or 1-10 µM KT5823 reduced IKD amplitude by a mean of 67% at +40 mV. Similarly affected was the isolated IKV component (ICa blocked with Cd(2+. Thus, a large potassium conductance can be activated by depolarization, but it is made available to the cell to a variable extent that depends on membrane potential and protein kinase activity. The total gKD ranged 4.6-44.0 nS in control cells, according to the level of steady-state inactivation, and was reduced to 1.4-2.7 nS after protein kinase inhibition. When sinusoidal membrane potential changes in the -70/-10 mV range were applied, to mimic receptor response to hair bundle deflection, IKD proved the main current dynamically activated and the only one regulated by PK: H89 decreased the total outward charge during each cycle by 60%. Phosphorylation appears to control both the amount of IKCa and IKV conductance activated by depolarization and the fraction thereof which can be rescued by removal of inactivation. The balance between the depolarizing transduction current and the repolarizing potassium current, and eventually the transmitter release at the cytoneural junction, are therefore modulated by a

  9. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    methods are vital for an improved surveillance and distribution of clean and safe drinking water. One of these rapid methods is the ATP assay. This thesis encompasses various methodological aspects of the ATP assay describing the principal and theory of the ATP assay measurement. ATP is the main energy...... carrying molecule in living cells, thus ATP can be used as a parameter for microbial activity. ATP is extracted from cells through cell lysis and subsequently assayed with the luciferase enzyme and its substrate luciferin, resulting in bioluminescence, i.e. light emission which can be quantified....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP...

  10. The Role of ATP in the Regulation of NCAM Function

    DEFF Research Database (Denmark)

    Hübschmann, Martin; Skladchikova, Galina

    2008-01-01

    Extracellular ATP is an abundant signaling molecule that has a number of functions in the nervous system. It is released by both neurons and glial cells, activates purinergic receptors and acts as a trophic factor as well as a neurotransmitter. In this review, we summarize the evidence for a direct...... ATP-NCAM interaction and discuss its functional implications. The ectodomain of NCAM contains the ATP binding Walker motif A and has intrinsic ATPase activity, which could modulate NCAM-dependent signaling processes. NCAM interacts directly with and signals through FGFR. The NCAM binding site to ATP...... overlaps with the site of NCAM-FGFR interaction, and ATP is capable of disrupting NCAM-FGFR binding. This implies that NCAM signaling through FGFR can be regulated by ATP, which is supported by the observation that ATP can abrogate NCAM-induced neurite outgrowth. Finally, ATP can induce NCAM ectodomain...

  11. Ischemic preconditioning in the hippocampus of a knockout mouse lacking SUR1-based K(ATP) channels.

    Science.gov (United States)

    Muñoz, Alvaro; Nakazaki, Mitsuhiro; Goodman, J Clay; Barrios, Roberto; Onetti, Carlos G; Bryan, Joseph; Aguilar-Bryan, Lydia

    2003-01-01

    ATP-sensitive K+ (K(ATP)) channels have been implicated in the mechanism of neuronal ischemic preconditioning. To evaluate the role of neuronal/beta-cell-type K(ATP) channels, SUR1 null (Sur1KO) mice lacking (K(IR)6.x/SUR1)(4) K(ATP) channels were subjected to a preconditioning protocol with the use of double carotid occlusion. Wild-type C57BL/6 and Sur1KO mice were subjected to a double carotid block for 40 minutes with or without a 20-minute preconditioning block. After a 10-day reperfusion period, damage was assessed histologically in the hippocampal CA1, CA2, and CA3 areas and in the dentate gyrus. The neuroprotective effects of intracerebroventricular injections of diazoxide, which selectively affects mitochondria versus opening SUR1-type K(ATP) channels, and 5-hydroxydecanoate, a selective blocker of mitoK(ATP) channels, were evaluated with the same protocol. Neurons in the CA1 region of both Sur1KO and wild-type animals subjected to a 20-minute ischemic insult were protected equally from neuronal damage produced by a subsequent 40-minute ischemic period. Pretreatment with diazoxide protected both Sur1KO and wild-type neurons, while 5-hydroxydecanoate augmented neurodegeneration in both strains of animals when administered before a 20-minute bout of ischemia. SUR1-based K(ATP) channels are not obligatory for neuronal preconditioning or augmentation of neurodegeneration by 5-hydroxydecanoate.

  12. An accessible hydrophobic surface is a key element of the molecular chaperone action of Atp11p.

    Science.gov (United States)

    Sheluho, D; Ackerman, S H

    2001-10-26

    Atp11p is a soluble protein of mitochondria that binds unassembled beta subunits of the F(1)-ATPase and prevents them from aggregating in the matrix. In this report, we show that Atp11p protects the insulin B chain from aggregating in vitro and therefore acts as a molecular chaperone. The chaperone action of Atp11p is mediated by hydrophobic interactions. An accessible hydrophobic surface in Atp11p was identified with the environment-sensitive fluorescent probe 1,1'-bis(4-anilino-5-napththalenesulfonic acid (bis-ANS). The spectral changes of bis-ANS in the presence of Atp11p indicate that the probe binds to a nonpolar region of the protein. Furthermore, the dye quenches the fluorescence of Atp11p tryptophan residues in a concentration-dependent manner. Although up to three molecules of bis-ANS can bind cooperatively to Atp11p, the binding of only one dye molecule is sufficient to virtually eliminate the chaperone activity of the protein.

  13. The involvement of ATP sulfurylase in Se(VI) and Cr(VI) reduction processes in the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Raspor, P; Fujs, S; Banszky, L; Maraz, A; Batic, M

    2003-11-01

    The response of Schizosaccharomyces pombe towards the oxyanions selenate [Se(VI)] and dichromate [Cr(VI)] was investigated in order to establish the involvement of the yeast ATP sulfurylase in their reduction. An ATP sulfurylase-defective/selenate-resistant mutant of S. pombe (B-579 Se(R) -2) and an ATP sulfurylase-active/selenate-sensitive strain of S. pombe (B-579 Se(S)) were included in this study. The inhibitory effect of Se(VI) and Cr(VI) oxyanions on growth and bioaccumulation was measured. The sensitive strain showed natural sensitivity to selenate while the resistant mutant tolerated a 100-fold higher concentration of selenate. These results indicate that selenate toxicity to microorganisms is connected with the reduction of selenate to selenite. Both strains showed similar sensitivity to Cr(VI) and in this study there was no evidence that ATP sulfurylase participates in the reduction process of Cr(VI).

  14. External Dentin Stimulation Induces ATP Release in Human Teeth.

    Science.gov (United States)

    Liu, X; Wang, C; Fujita, T; Malmstrom, H S; Nedergaard, M; Ren, Y F; Dirksen, R T

    2015-09-01

    ATP is involved in neurosensory processing, including nociceptive transduction. Thus, ATP signaling may participate in dentin hypersensitivity and dental pain. In this study, we investigated whether pannexins, which can form mechanosensitive ATP-permeable channels, are present in human dental pulp. We also assessed the existence and functional activity of ecto-ATPase for extracellular ATP degradation. We further tested if ATP is released from dental pulp upon dentin mechanical or thermal stimulation that induces dentin hypersensitivity and dental pain and if pannexin or pannexin/gap junction channel blockers reduce stimulation-dependent ATP release. Using immunofluorescence staining, we demonstrated immunoreactivity of pannexin 1 and 2 in odontoblasts and their processes extending into the dentin tubules. Using enzymatic histochemistry staining, we also demonstrated functional ecto-ATPase activity within the odontoblast layer, subodontoblast layer, dental pulp nerve bundles, and blood vessels. Using an ATP bioluminescence assay, we found that mechanical or cold stimulation to the exposed dentin induced ATP release in an in vitro human tooth perfusion model. We further demonstrated that blocking pannexin/gap junction channels with probenecid or carbenoxolone significantly reduced external dentin stimulation-induced ATP release. Our results provide evidence for the existence of functional machinery required for ATP release and degradation in human dental pulp and that pannexin channels are involved in external dentin stimulation-induced ATP release. These findings support a plausible role for ATP signaling in dentin hypersensitivity and dental pain.

  15. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    NARCIS (Netherlands)

    Nina, Praveen Balabaskaran; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.; Eisen, Jonathan A.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are highl

  16. An ATP synthase harboring an atypical γ–subunit is involved in ATP synthesis in tomato fruit chromoplasts

    National Research Council Canada - National Science Library

    Pateraki, Irini; Renato, Marta; Azcón‐Bieto, Joaquín; Boronat, Albert

    2013-01-01

    ... and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP , and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources...

  17. ATP Maintenance via Two Types of ATP Regulators Mitigates Pathological Phenotypes in Mouse Models of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Masaki Nakano

    2017-08-01

    Full Text Available Parkinson's disease is assumed to be caused by mitochondrial dysfunction in the affected dopaminergic neurons in the brain. We have recently created small chemicals, KUSs (Kyoto University Substances, which can reduce cellular ATP consumption. By contrast, agonistic ligands of ERRs (estrogen receptor-related receptors are expected to raise cellular ATP levels via enhancing ATP production. Here, we show that esculetin functions as an ERR agonist, and its addition to culture media enhances glycolysis and mitochondrial respiration, leading to elevated cellular ATP levels. Subsequently, we show the neuroprotective efficacies of KUSs, esculetin, and GSK4716 (an ERRγ agonist against cell death in Parkinson's disease models. In the surviving neurons, ATP levels and expression levels of α-synuclein and CHOP (an ER stress-mediated cell death executor were all rectified. We propose that maintenance of ATP levels, by inhibiting ATP consumption or enhancing ATP production, or both, would be a promising therapeutic strategy for Parkinson's disease.

  18. 21 CFR 184.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O,...

  19. [Rare, severe hypersensitivity reaction to potassium iodide].

    Science.gov (United States)

    Korsholm, Anne Sofie; Ebbehøj, Eva; Richelsen, Bjørn

    2014-07-07

    The literature reports a large variety of adverse reactions to potassium iodide. A severe hypersensitivity reaction to potassium iodide in a 51-year-old woman with Graves' thyrotoxicosis is described. Following administration the patient developed sialadenitis, conjunctivitis, stomatitis and acneiform iododerma that responded dramatically to withdrawal of the potassium iodide and administration with corticosteroids. Awareness of these adverse reactions may prevent prolonged hospitalization and unnecessary tests and treatments.

  20. RADIOACTIVITY AND PHYSIOLOGICAL ACTION OF POTASSIUM.

    Science.gov (United States)

    Loeb, R F

    1920-11-20

    1. The non-radioactive cesium ion can replace the potassium ion almost quantitatively in solutions required for the development of the egg of the sea urchin into swimming blastulae. 2. Thorium chloride and uranium acetate cannot replace the potassium chloride in the solutions required for the development of the egg. 3. Thorium chloride and uranium acetate do not antagonize the action of the potassium contained in sea water upon the development of eggs.

  1. Inward-rectifying potassium channelopathies: new insights into disorders of sodium and potassium homeostasis.

    Science.gov (United States)

    Cheng, Chih-Jen; Sung, Chih-Chien; Huang, Chou-Long; Lin, Shih-Hua

    2015-03-01

    Inward-rectifying potassium (Kir) channels allow more inward than outward potassium flux when channels are open in mammalian cells. At physiological resting membrane potentials, however, they predominantly mediate outward potassium flux and play important roles in regulating the resting membrane potential in diverse cell types and potassium secretion in the kidneys. Mutations of Kir channels cause human hereditary diseases collectively called Kir channelopathies, many of which are characterized by disorders of sodium and potassium homeostasis. Studies on these genetic Kir channelopathies have shed light on novel pathophysiological mechanisms, including renal sodium and potassium handling, potassium shifting in skeletal muscles, and aldosterone production in the adrenal glands. Here, we review several recent advances in Kir channels and their clinical implications in sodium and potassium homeostasis.

  2. Yeast ADP/ATP Carrier Isoform 2

    Science.gov (United States)

    Clémençon, Benjamin; Rey, Martial; Trézéguet, Véronique; Forest, Eric; Pelosi, Ludovic

    2011-01-01

    The mitochondrial ADP/ATP carrier, or Ancp, is a member of the mitochondrial carrier family responsible for exchanging ADP and ATP across the mitochondrial inner membrane. ADP/ATP transport involves Ancp switching between two conformational states. These can be analyzed using specific inhibitors, carboxyatractyloside (CATR) and bongkrekic acid (BA). The high resolution three-dimensional structure of bovine Anc1p (bAnc1p), as a CATR-carrier complex, has been solved. However, because the structure of the BA-carrier complex has not yet been determined, the detailed mechanism of transport remains unknown. Recently, sample processing for hydrogen/deuterium exchange experiments coupled to mass spectrometry was improved, providing novel insights into bAnc1p conformational transitions due to inhibitor binding. In this work we performed both hydrogen/deuterium exchange-mass spectrometry experiments and genetic manipulations. Because these are very difficult to apply with bovine Anc1p, we used Saccharomyces cerevisiae Anc isoform 2 (ScAnc2p). Significant differences in solvent accessibility were observed throughout the amino acid sequence for ScAnc2p complexed to either CATR or BA. Interestingly, in detergent solution, the conformational dynamics of ScAnc2p were dissimilar to those of bAnc1p, in particular for the upper half of the cavity, toward the intermembrane space, and the m2 loop, which is thought to be easily accessible to the solvent from the matrix in bAnc1p. Our study then focused on the methionyl residues of the Ancp signature sequence, RRRMMM. All our results indicate that the methionine cluster is involved in the ADP/ATP transport mechanism and confirm that the Ancp cavity is a highly dynamic structure. PMID:21868387

  3. Genetic Control of Potassium Channels.

    Science.gov (United States)

    Amin, Ahmad S; Wilde, Arthur A M

    2016-06-01

    Approximately 80 genes in the human genome code for pore-forming subunits of potassium (K(+)) channels. Rare variants (mutations) in K(+) channel-encoding genes may cause heritable arrhythmia syndromes. Not all rare variants in K(+) channel-encoding genes are necessarily disease-causing mutations. Common variants in K(+) channel-encoding genes are increasingly recognized as modifiers of phenotype in heritable arrhythmia syndromes and in the general population. Although difficult, distinguishing pathogenic variants from benign variants is of utmost importance to avoid false designations of genetic variants as disease-causing mutations.

  4. H+/ATP ratio during ATP hydrolysis by mitochondria: modification of the chemiosmotic theory.

    Science.gov (United States)

    Brand, M D; Lehninger, A L

    1977-05-01

    The stoichiometry of H+ ejection by mitochondria during hydrolysis of a small pulse of ATP (the H+/ATP ratio) has been reexamined in the light of our recent observation that the stoichiometry of H+ ejection during mitochondrial electron transport (the H+/site ratio) was previously underestimated. We show that earlier estimates of the H+/ATP ratio in intact mitochondria were based upon an invalid correction for scaler H+ production and describe a modified method for determination of this ratio which utilizes mersalyl or N-ethylmaleimide to prevent complicating transmembrane movements of phosphate and H+. This method gives a value for the H+/ATP ratio of 2.0 without the need for questionable corrections, compared with a value of 3.0 for the H+/site ratio also obtained by pulse methods. A modified version of the chemiosmotic theory is presented, in which 3 H+ are ejected per pair of electrons traversing each energy-conserving site of the respiratory chain. Of these, 2 H+ return to the matrix through the ATPase to form ATP from ADP and phosphate, and 1 H+ returns through the combined action of the phosphate and adenine nucleotide exchange carriers of the inner membrane to allow the energy-requiring influx of Pi and ADP3- and efflux of ATP4-. Thus, up to one-third of the energy input into synthesis of extramitochondrial ATP may be required for transport work. Since other methods suggest that the H+/site significantly exceeds 3.0, an alternative possibility is that 4 h+ are ejected per site, followed by return of 3 H+ through the ATPase and 1 H+ through the operation of the proton-coupled membrane transport systems.

  5. No effect of aluminium upon the hydrolysis of ATP in the coronary circulation of the isolated working rat heart.

    Science.gov (United States)

    Korchazhkina, O; Wright, G; Exley, C

    1999-08-30

    Adenosine 5'-triphosphate (ATP) is now recognised as an important extracellular signalling molecule. Its action at a number of specific receptors is mediated by the activity of ectonucleotidases. We have optimised a high performance liquid chromatography (HPLC) method to allow the simultaneous determination of ATP, and the products of its hydrolysis, in the coronary effluent of an isolated working rat heart. The method is extremely sensitive allowing picomolar quantities of product to be determined. We have used this method to investigate the influence of aluminium on the hydrolysis of ATP by an ecto-ATPase located in the luminal surface of the coronary endothelium of the rat heart. Aluminium did not influence the hydrolysis of ATP by this enzyme.

  6. Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells

    Science.gov (United States)

    Salvestrini, Valentina; Orecchioni, Stefania; Talarico, Giovanna; Reggiani, Francesca; Mazzetti, Cristina; Bertolini, Francesco; Orioli, Elisa; Adinolfi, Elena; Virgilio, Francesco Di; Pezzi, Annalisa; Cavo, Michele

    2017-01-01

    Recent studies have shown that high ATP levels exhibit direct cytotoxic effects on several cancer cells types. Among the receptors engaged by ATP, P2×7R is the most consistently expressed by tumors. P2×7R is an ATP-gated ion channel that could drive the opening of a non-selective pore, triggering cell-death signal. We previously demonstrated that acute myeloid leukemia (AML) cells express high level of P2×7R. Here, we show that P2×7R activation with high dose ATP induces AML blast cells apoptosis. Moreover, P2×7R is also expressed on leukemic stem/progenitor cells (LSCs) which are sensitive to ATP-mediated cytotoxicity. Conversely, this cytotoxic effect was not observed on normal hematopoietic stem/progenitor cells (HSCs). Notably, the antileukemic activity of ATP was also observed in presence of bone marrow stromal cells and its addition to the culture medium enhanced cytosine arabinoside cytotoxicity despite stroma-induced chemoresistance. Xenotransplant experiments confirmed ATP antineoplastic activity in vivo. Overall, our results demonstrate that P2×7R stimulation by ATP induced a therapeutic response in AML at the LSC level while the normal stem cell compartment was not affected. These results provide evidence that ATP would be promising for developing innovative therapy for AML. PMID:27980223

  7. Sodium metabisulfite modulation of potassium channels in pain-sensing dorsal root ganglion neurons.

    Science.gov (United States)

    Nie, Aifang; Wei, Cailing; Meng, Ziqiang

    2009-12-01

    The effects of sodium metabisulfite (SMB), a general food preservative, on potassium currents in rat dorsal root ganglion (DRG) neurons were investigated using the whole-cell patch-clamp technique. SMB increased the amplitudes of both transient outward potassium currents and delayed rectifier potassium current in concentration- and voltage-dependent manner. The transient outward potassium currents (TOCs) include a fast inactivating (A-current or IA) current and a slow inactivating (D-current or ID) current. SMB majorly increased IA, and ID was little affected. SMB did not affect the activation process of transient outward currents (TOCs), but the inactivation curve of TOCs was shifted to more positive potentials. The inactivation time constants of TOCs were also increased by SMB. For delayed rectifier potassium current (IK), SMB shifted the activation curve to hyperpolarizing direction. SMB differently affected TOCs and IK, its effects major on A-type K+ channels, which play a role in adjusting pain sensitivity in response to peripheral redox conditions. SMB did not increase TOCs and IK when adding DTT in pipette solution. These results suggested that SMB might oxidize potassium channels, which relate to adjusting pain sensitivity in pain-sensing DRG neurons.

  8. The distribution of ATP within tomato (Lycopersicon esculentum Mill.) embryos correlates with germination whee as total ATP concentration does not

    NARCIS (Netherlands)

    Spoelstra, P.; Joosen, R.V.L.; Hilhorst, H.W.M.

    2002-01-01

    The distribution of ATP in tomato seeds was visualized by monitoring the luminescence of frozen sections on top of a gel containing all the components of the luciferase reaction, but excluding ATP. ATP was imaged in germinating tomato seeds at intervals of 3, 6, 17, 24 and 48 h and in seeds with pri

  9. The distribution of ATP within tomato (Lycopersicon esculentum Mill.) embryos correlates with germination whee as total ATP concentration does not

    NARCIS (Netherlands)

    Spoelstra, P.; Joosen, R.V.L.; Hilhorst, H.W.M.

    2002-01-01

    The distribution of ATP in tomato seeds was visualized by monitoring the luminescence of frozen sections on top of a gel containing all the components of the luciferase reaction, but excluding ATP. ATP was imaged in germinating tomato seeds at intervals of 3, 6, 17, 24 and 48 h and in seeds with

  10. A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems.

    Science.gov (United States)

    Vanegas, Diana C; Clark, Greg; Cannon, Ashley E; Roux, Stanley; Chaturvedi, Prachee; McLamore, Eric S

    2015-12-15

    The objective of this study was to develop a self-referencing electrochemical biosensor for the direct measurement of ATP flux into the extracellular matrix by living cells/organisms. The working mechanism of the developed biosensor is based on the activity of glycerol kinase and glycerol-3-phosphate oxidase. A stratified bi-enzyme nanocomposite was created using a protein-templated silica sol gel encapsulation technique on top of graphene-modified platinum electrodes. The biosensor exhibited excellent electrochemical performance with a sensitivity of 2.4±1.8 nA/µM, a response time of 20±13 s and a lower detection limit of 1.3±0.7 nM. The self-referencing biosensor was used to measure exogenous ATP efflux by (i) germinating Ceratopteris spores and (ii) growing Zea mays L. roots. This manuscript demonstrates the first development of a non-invasive ATP micro-biosensor for the direct measurement of eATP transport in living tissues. Before this work, assays of eATP have not been able to record the temporally transient movement of ATP at physiological levels (nM and sub-nM). The method demonstrated here accurately measured [eATP] flux in the immediate vicinity of plant cells. Although these proof of concept experiments focus on plant tissues, the technique developed herein is applicable to any living tissue, where nanomolar concentrations of ATP play a critical role in signaling and development. This tool will be invaluable for conducting hypothesis-driven life science research aimed at understanding the role of ATP in the extracellular environment.

  11. Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y1 receptors in the hippocampal slice.

    Science.gov (United States)

    Kawamura, Masahito; Gachet, Christian; Inoue, Kazuhide; Kato, Fusao

    2004-12-01

    ATP is an important cell-to-cell signaling molecule mediating the interactions between astrocytes and neurons in the CNS. In the hippocampal slices, ATP suppresses excitatory transmission mostly through activation of adenosine A1 receptors, because the ectoenzyme activity for the extracellular breakdown of ATP to adenosine is high in slice preparations in contrast to culture environments. Because the hippocampus is also rich in the expression of P2 receptors activated specifically by ATP, we examined whether ATP modulates neuronal excitability in the acute slice preparations independently of adenosine receptors. Although ATP decreased the frequency of spontaneously occurring EPSCs in the CA3 pyramidal neurons through activation of adenosine A1 receptors, ATP concurrently increased the frequency of IPSCs in a manner dependent on action potential generation. This effect was mediated by P2Y1 receptors because (1) 2-methylthio-ATP (2meSATP) was the most potent agonist, (2) 2'-deoxy-N6-methyladenosine-3',5'-bisphosphate diammonium (MRS2179) abolished this effect, and (3) this increase in IPSC frequency was not observed in the transgenic mice lacking P2Y1 receptor proteins. Application of 2meSATP elicited MRS2179-sensitive time- and voltage-dependent inward currents in the interneurons, which depolarized the cell to firing threshold. Also, it increased [Ca2+]i in both astrocytes and interneurons, but, unlike the former effect, the latter was entirely dependent on Ca2+ entry. Thus, in hippocampal slices, in addition to activating A1 receptors of the excitatory terminals after being converted to adenosine, ATP activates P2Y1 receptors in the interneurons, which is linked to activation of unidentified excitatory conductance, through mechanisms distinct from those in the astrocytes.

  12. Mapping the interactions between ATP and the sarcoplasmic reticulum Ca 2 + -ATPase with ATP and ATP analogs studied by Fourier transform infrared spectroscopy

    OpenAIRE

    Liu, Man

    2004-01-01

    Die Infrarotspektroskopie in Verbindung mit photoaktivierbaren Substraten wurde zur Untersuchung von Substrat-Protein-Wechselwirkungen eingesetzt. Dabei wurden Konformationsänderungen der Ca2+-ATPase des Sarkoplasmatischen Retikulums bei Bindung des Nukleotids, der Phosphorylierung der ATPase und der Hydrolyse des Phosphoenzyms beobachtet. Verwender wurden das native Substrat ATP und seine Analoga ADP, AMPPNP, 2'-deoxyATP, 3'-deoxyATP, ITP, AMP, Pyrophosphat, Ribosetriphosphat und TNP-AMP beo...

  13. Microglial migration mediated by ATP-induced ATP release from lysosomes

    Institute of Scientific and Technical Information of China (English)

    Ying Dou; Qing-ming Luo; Shumin Duan; Hang-jun Wu; Hui-quan Li; Song Qin; Yin-er Wang; Jing Li; Hui-fang Lou; Zhong Chen; Xiao-ming Li

    2012-01-01

    Microglia are highly motile cells that act as the main form of active immune defense in the central nervous system.Attracted by factors released from damaged cells,microglia are recruited towards the damaged or infected site,where they are involved in degenerative and regenerative responses and phagocytotic clearance of cell debris.ATP release from damaged neural tissues has been suggested to mediate the rapid extension of microglial process towards the site of injury.However,the mechanisms of the long-range migration of microglia remain to be clarified.Here,we found that lysosomes in microglia contain abundant ATP and exhibit Ca2+-dependent exocytosis in response to various stimuli.By establishing an efficient in vitro chemotaxis assay,we demonstrated that endogenously-released ATP from microglia triggered by local microinjection of ATPγS is critical for the long-range chemotaxis of microglia,a response that was significantly inhibited in microglia treated with an agent inducing iysosome osmodialysis or in cells derived from mice deficient in Rab 27a (ashen mice),a small GTPase required for the trafficking and exocytosis of secretory iysosomes.These results suggest that microglia respond to extracellular ATP by releasing ATP themselves through lysosomal exocytosis,thereby providing a positive feedback mechanism to generate a long-range extracellular signal for attracting distant microglia to migrate towards and accumulate at the site of injury.

  14. Clostridium pasteurianum F1Fo ATP Synthase: Operon, Composition, and Some Properties

    OpenAIRE

    2003-01-01

    The atp operon encoding F1Fo ATP synthase in the fermentative obligate anaerobic bacterium Clostridium pasteurianum was sequenced. It consisted of nine genes arranged in the order atpI(i), atpB(a), atpE(c), atpF(b), atpH(δ), atpA(α), atpG(γ), atpD(β), and atpC(ɛ), which was identical to that found in many bacteria. Reverse transcription-PCR confirmed the presence of the transcripts of all nine genes. The amount of ATPase activity in the membranes of C. pasteurianum was low compared to what ha...

  15. TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection.

    Directory of Open Access Journals (Sweden)

    Jesus Segovia

    Full Text Available Human respiratory syncytial virus (RSV constitute highly pathogenic virus that cause severe respiratory diseases in newborn, children, elderly and immuno-compromised individuals. Airway inflammation is a critical regulator of disease outcome in RSV infected hosts. Although "controlled" inflammation is required for virus clearance, aberrant and exaggerated inflammation during RSV infection results in development of inflammatory diseases like pneumonia and bronchiolitis. Interleukin-1β (IL-1β plays an important role in inflammation by orchestrating the pro-inflammatory response. IL-1β is synthesized as an immature pro-IL-1β form. It is cleaved by activated caspase-1 to yield mature IL-1β that is secreted extracellularly. Activation of caspase-1 is mediated by a multi-protein complex known as the inflammasome. Although RSV infection results in IL-1β release, the mechanism is unknown. Here in, we have characterized the mechanism of IL-1β secretion following RSV infection. Our study revealed that NLRP3/ASC inflammasome activation is crucial for IL-1β production during RSV infection. Further studies illustrated that prior to inflammasome formation; the "first signal" constitutes activation of toll-like receptor-2 (TLR2/MyD88/NF-κB pathway. TLR2/MyD88/NF-κB signaling is required for pro-IL-1β and NLRP3 gene expression during RSV infection. Following expression of these genes, two "second signals" are essential for triggering inflammasome activation. Intracellular reactive oxygen species (ROS and potassium (K(+ efflux due to stimulation of ATP-sensitive ion channel promote inflammasome activation following RSV infection. Thus, our studies have underscored the requirement of TLR2/MyD88/NF-κB pathway (first signal and ROS/potassium efflux (second signal for NLRP3/ASC inflammasome formation, leading to caspase-1 activation and subsequent IL-1β release during RSV infection.

  16. Macula densa cell signaling involves ATP release through a maxi anion channel.

    Science.gov (United States)

    Bell, Phillip Darwin; Lapointe, Jean-Yves; Sabirov, Ravshan; Hayashi, Seiji; Peti-Peterdi, Janos; Manabe, Ken-Ichi; Kovacs, Gergely; Okada, Yasunobu

    2003-04-01

    Macula densa cells are unique renal biosensor cells that detect changes in luminal NaCl concentration ([NaCl](L)) and transmit signals to the mesangial cellafferent arteriolar complex. They are the critical link between renal salt and water excretion and glomerular hemodynamics, thus playing a key role in regulation of body fluid volume. Since identification of these cells in the early 1900s, the nature of the signaling process from macula densa cells to the glomerular contractile elements has remained unknown. In patch-clamp studies of macula densa cells, we identified an [NaCl](L)-sensitive ATP-permeable large-conductance (380 pS) anion channel. Also, we directly demonstrated the release of ATP (up to 10 microM) at the basolateral membrane of macula densa cells, in a manner dependent on [NaCl](L), by using an ATP bioassay technique. Furthermore, we found that glomerular mesangial cells respond with elevations in cytosolic Ca(2+) concentration to extracellular application of ATP (EC(50) 0.8 microM). Importantly, we also found increases in cytosolic Ca(2+) concentration with elevations in [NaCl](L), when fura-2-loaded mesangial cells were placed close to the basolateral membrane of macula densa cells. Thus, cell-to-cell communication between macula densa cells and mesangial cells, which express P2Y(2) receptors, involves the release of ATP from macula densa cells via maxi anion channels at the basolateral membrane. This mechanism may represent a new paradigm in cell-to-cell signal transduction mediated by ATP.

  17. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation.

    Science.gov (United States)

    Xu, Jiaona; Wei, Chunying

    2017-01-15

    Two general and reliable fluorescence sensors were proposed in this work utilizing aptamer DNA-templated silver nanoclusters (Ag NCs). Both DNA-AgNCs could be used for label-free detecting of ATP with the limits of detection of 0.44 and 0.65mM. One of them was further applied to monitor the activity of adenosine deaminase (ADA). In our effort to elucidate the light-up mechanism, we studied a total of six Ag NCs prepared by different DNA sequences, and found that they showed different sensitivity to ATP. Both BT3T3- and BT3T3(R)-templated Ag NCs were chose to make particular studies by UV-vis, TEM, fluorescence, and TCSPC methods. The results showed that when DNA-Ag NCs was kept for 1.5h and presented a strong fluorescence, the addition of ATP failed to cause a large change of fluorescence intensity; on the contrary, after Ag NCs was kept for 24h and emitted a weak fluorescence, adding ATP was able to result in the large fluorescence enhanced of 43 and 33 times for BT3T3- and BT3T3(R)-templated Ag NCs, respectively. The possible mechanism was also suggested that ATP binding to aptamer segment of template induced the change of the DNA secondary structure, which made the aggregated Ag nanoparticles disperse into Ag NCs with an average diameter of about 2nm that were responsible for the large fluorescence increase. Moreover, ATP could protect the fluorescence intensity of BT3T3(R)-templated Ag NCs from quenching for at least 9h.

  18. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  19. Light- and metabolism-related regulation of the chloroplast ATP synthase has distinct mechanisms and functions.

    Science.gov (United States)

    Kohzuma, Kaori; Dal Bosco, Cristina; Meurer, Jörg; Kramer, David M

    2013-05-01

    The chloroplast CF0-CF1-ATP synthase (ATP synthase) is activated in the light and inactivated in the dark by thioredoxin-mediated redox modulation of a disulfide bridge on its γ subunit. The activity of the ATP synthase is also fine-tuned during steady-state photosynthesis in response to metabolic changes, e.g. altering CO2 levels to adjust the thylakoid proton gradient and thus the regulation of light harvesting and electron transfer. The mechanism of this fine-tuning is unknown. We test here the possibility that it also involves redox modulation. We found that modifying the Arabidopsis thaliana γ subunit by mutating three highly conserved acidic amino acids, D211V, E212L, and E226L, resulted in a mutant, termed mothra, in which ATP synthase which lacked light-dark regulation had relatively small effects on maximal activity in vivo. In situ equilibrium redox titrations and thiol redox-sensitive labeling studies showed that the γ subunit disulfide/sulfhydryl couple in the modified ATP synthase has a more reducing redox potential and thus remains predominantly oxidized under physiological conditions, implying that the highly conserved acidic residues in the γ subunit influence thiol redox potential. In contrast to its altered light-dark regulation, mothra retained wild-type fine-tuning of ATP synthase activity in response to changes in ambient CO2 concentrations, indicating that the light-dark- and metabolic-related regulation occur through different mechanisms, possibly via small molecule allosteric effectors or covalent modification.

  20. Walker-A Motif Acts to Coordinate ATP Hydrolysis with Motor Output in Viral DNA Packaging.

    Science.gov (United States)

    delToro, Damian; Ortiz, David; Ordyan, Mariam; Sippy, Jean; Oh, Choon-Seok; Keller, Nicholas; Feiss, Michael; Catalano, Carlos E; Smith, Douglas E

    2016-07-03

    During the assembly of many viruses, a powerful ATP-driven motor translocates DNA into a preformed procapsid. A Walker-A "P-loop" motif is proposed to coordinate ATP binding and hydrolysis with DNA translocation. We use genetic, biochemical, and biophysical techniques to survey the roles of P-loop residues in bacteriophage lambda motor function. We identify 55 point mutations that reduce virus yield to below detectable levels in a highly sensitive genetic complementation assay and 33 that cause varying reductions in yield. Most changes in the predicted conserved residues K76, R79, G81, and S83 produce no detectable yield. Biochemical analyses show that R79A and S83A mutant proteins fold, assemble, and display genome maturation activity similar to wild-type (WT) but exhibit little ATPase or DNA packaging activity. Kinetic DNA cleavage and ATPase measurements implicate R79 in motor ring assembly on DNA, supporting recent structural models that locate the P-loop at the interface between motor subunits. Single-molecule measurements detect no translocation for K76A and K76R, while G81A and S83A exhibit strong impairments, consistent with their predicted roles in ATP binding. We identify eight residue changes spanning A78-K84 that yield impaired translocation phenotypes and show that Walker-A residues play important roles in determining motor velocity, pausing, and processivity. The efficiency of initiation of packaging correlates strongly with motor velocity. Frequent pausing and slipping caused by changes A78V and R79K suggest that these residues are important for ATP alignment and coupling of ATP binding to DNA gripping. Our findings support recent structural models implicating the P-loop arginine in ATP hydrolysis and mechanochemical coupling.

  1. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension.

    Science.gov (United States)

    Katori, Makoto; Majima, Masataka

    2014-01-01

    A large variety of antihypertensive drugs, such as angiotensin converting enzyme inhibitors, diuretics, and others, are prescribed to hypertensive patients, with good control of the condition. In addition, all individuals are generally believed to be salt sensitive and, thus, severe restriction of salt intake is recommended to all. Nevertheless, the physiological defense mechanisms in the kidney against excess salt intake have not been well clarified. The present review article demonstrated that the renal (tissue) kallikrein-kinin system (KKS) is ideally situated within the nephrons of the kidney, where it functions to inhibit the reabsorption of NaCl through the activation of bradykinin (BK)-B2 receptors localized along the epithelial cells of the collecting ducts (CD). Kinins generated in the CD are immediately inactivated by two kidney-specific kinin-inactivating enzymes (kininases), carboxypeptidase Y-like exopeptidase (CPY), and neutral endopeptidase (NEP). Our work demonstrated that ebelactone B and poststatin are selective inhibitors of these kininases. The reduced secretion of the urinary kallikrein is linked to the development of salt-sensitive hypertension, whereas potassium ions and ATP-sensitive potassium channel blockers ameliorate salt-sensitive hypertension by accelerating the release of renal kallikrein. On the other hand, ebelactone B and poststatin prolong the life of kinins in the CD after excess salt intake, thereby leading to the augmentation of natriuresis and diuresis, and the ensuing suppression of salt-sensitive hypertension. In conclusion, accelerators of the renal kallikrein release and selective renal kininase inhibitors are both novel types of antihypertensive agents that may be useful for treatment of salt-sensitive hypertension.

  2. METHODS OF AVAILABLE POTASSIUM ASSESSMENT IN ...

    African Journals Online (AJOL)

    AGROSEARCH UIL

    Soil potassium (K+) exists in solution, exchangeable, and non-exchangeable ... evaluating K availability under intensive cropping; as those soils considered sufficient in ... response to potassium, soil test methods should have a high correlation with .... loamy sand to sandy loam in texture with kaolinite being the dominant.

  3. Thanatochemistry: Study of synovial fluid potassium

    African Journals Online (AJOL)

    Nilesh Keshav Tumram

    2014-03-28

    Mar 28, 2014 ... sion equations, but these may be useless when dealing with eye trauma, ocular disorders or in muti- lated remains. .... potassium concentration which rises more rapidly in the first .... postmortem interval based on differential behaviour of vitreous ... course of potassium ion activity in cadaveric synovial fluid.

  4. Potassium in hypertension and cardiovascular disease.

    Science.gov (United States)

    Castro, Hector; Raij, Leopoldo

    2013-05-01

    The increased prevalence of hypertension and cardiovascular disease in industrialized societies undoubtedly is associated with the modern high-sodium/low-potassium diet. Extensive experimental and clinical data strongly link potassium intake to cardiovascular outcome. Most studies suggest that the sodium-to-potassium intake ratio is a better predictor of cardiovascular outcome than either nutrient individually. A high-sodium/low-potassium environment results in significant abnormalities in central hemodynamics, leading to potential target organ damage. Altered renal sodium handling, impaired endothelium-dependent vasodilatation, and increased oxidative stress are important mediators of this effect. It remains of paramount importance to reinforce consumption of a low-sodium/high-potassium diet as a critical strategy for prevention and treatment of hypertension and cardiovascular disease.

  5. Influence of the temperature and type of salt on the phase equilibrium of peg 1500 + potassium phosphate and peg 1500 + sodium citrate aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    Carolina P. Carvalho

    2008-01-01

    Full Text Available The present work analyzed the effect of the temperature and type of salt on the phase equilibrium of aqueous two-phase systems (ATPS formed by poly (ethylene glycol (PEG 1500 + potassium phosphate, from (278.15 to 318.15 K, and PEG 1500 + sodium citrate, from (278.15 to 298.15 K. The rise of the temperature normally increased the slope of the tie line (STL. With respect to the influence of the type of salt, sodium citrate showed better capability to induce phase separation, when compared to potassium phosphate.

  6. ATP Cofactor energético

    OpenAIRE

    Granados Moreno, Jairo Enrique

    2014-01-01

    El documento explica la importancia de la adenosín trifosfato ó trifosfato de adenosina (ATP). Presenta los flujos y tipos de energía en animales. Estos conceptos son muy útiles a la hora de entender el flujo energético en la naturaleza pues permite comprender que en el paso de los compuestos por todos los procesos metabólicos, por ejemplo de la glucosa al CO2 hay unas 21 reacciones, se va liberando energía en forma de calor e incrementando la entropía, en definitiva

  7. Sea Anemone Toxins Affecting Potassium Channels

    Science.gov (United States)

    Diochot, Sylvie; Lazdunski, Michel

    The great diversity of K+ channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K+ channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K+ channels. Short (35-37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58-59 amino acids) SAK-II peptides display both enzymatic and K+ channel inhibitory activities. Medium size (42-43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.

  8. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Jason Alan Gruenhagen

    2003-12-12

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca{sup 2+} imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca{sup 2+} signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K{sup +} and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol functionalized Cd

  9. Cloning of the cDNA for the human ATP synthase OSCP subunit (ATP5O) by exon trapping and mapping to chromosome 21q22.1-q22.2

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiming [Geneva Univ. Medical School (Switzerland); Morris, M.A.; Rossier, C. [Cantonal Hospital, Geneva (Switzerland)] [and others

    1995-08-10

    Exon trapping was used to clone portions of potential genes from human chromosome 21. One trapped sequence showed striking homology with the bovine and rat ATP synthase OSCP (oligomycin sensitivity conferring protein) subunit. We subsequently cloned the full-length human ATP synthase OSCP cDNA (GDB/HGMW approved name ATP50) from infant brain and muscle libraries and determined its nucleotide and deduced amino acid sequence (EMBL/GenBank Accession No. X83218). The encoded polypeptide contains 213 amino acids, with more than 80% identity to bovine and murine ATPase OSCP subunits and over 35% identity to Saccharomyces cerevisiae and sweet potato sequences. The human ATP5O gene is located at 21q22.1-q22.2, just proximal to D21S17, in YACs 860G11 and 838C7 of the Chumakov et al. YAC contig. The gene is expressed in all human tissues examined, most strongly in muscle and heart. This ATP5O subunit is a key structural component of the stalk of the mitochondrial respiratory chain F{sub 1}F{sub 0}-ATP synthase and as such may contribute in a gene dosage-dependent manner to the phenotype of Down syndrome (trisomy 21). 39 refs., 5 figs.

  10. Mitochondrial flashes regulate ATP homeostasis in the heart.

    Science.gov (United States)

    Wang, Xianhua; Zhang, Xing; Wu, Di; Huang, Zhanglong; Hou, Tingting; Jian, Chongshu; Yu, Peng; Lu, Fujian; Zhang, Rufeng; Sun, Tao; Li, Jinghang; Qi, Wenfeng; Wang, Yanru; Gao, Feng; Cheng, Heping

    2017-07-10

    The maintenance of a constant ATP level ('set-point') is a vital homeostatic function shared by eukaryotic cells. In particular, mammalian myocardium exquisitely safeguards its ATP set-point despite 10-fold fluctuations in cardiac workload. However, the exact mechanisms underlying this regulation of ATP homeostasis remain elusive. Here we show mitochondrial flashes (mitoflashes), recently discovered dynamic activity of mitochondria, play an essential role for the auto-regulation of ATP set-point in the heart. Specifically, mitoflashes negatively regulate ATP production in isolated respiring mitochondria and, their activity waxes and wanes to counteract the ATP supply-demand imbalance caused by superfluous substrate and altered workload in cardiomyocytes. Moreover, manipulating mitoflash activity is sufficient to inversely shift the otherwise stable ATP set-point. Mechanistically, the Bcl-xL-regulated proton leakage through F1Fo-ATP synthase appears to mediate the coupling between mitoflash production and ATP set-point regulation. These findings indicate mitoflashes appear to constitute a digital auto-regulator for ATP homeostasis in the heart.

  11. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis

    Science.gov (United States)

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K.; Dean, Dennis R.; Hoffman, Brian M.; Antony, Edwin; Seefeldt, Lance C.

    2013-01-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s−1, 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein–protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  12. The Effect of ATP Sulphurylase on the Prooxidant Properties of Selenate in Yeast Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Štefan Fujs

    2009-01-01

    Full Text Available Selenium is an essential microelement in human and animal nutrition, whose intake can be in inorganic (e.g. selenite, selenate or organic form (e.g. selenomethionine. The prooxidant effect of inorganic selenium sources in the animal nutrition has been found as a great disadvantage. Therefore, in this study the effect of the ATP sulphurylase on the prooxidant properties and toxicity of selenate in the fission yeast model organism Schizosaccharomyces pombe has been studied. Two strains of yeast Schizosaccharomyces pombe were used, selenate resistant (SeR ZIM 1889 and selenate sensitive (SeS ZIM 1878 strains, with inactive and active ATP sulphurylase, respectively. During the yeasts’ exposure to selenate growth, intracellular oxidation, cell viability and antioxidative defence systems were determined. Also, activities of antioxidative enzymes (catalase, superoxide dismutases, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase and intracellular content of reduced glutathione were measured. The results show altered enzymatic activities and decreased intracellular content of reduced form of glutathione in the selenate sensitive strain as a consequence of active ATP sulphurylase, which enables selenate reduction leading to oxidative stress. During the selenate reduction, reactive oxygen species (ROS are generated and therefore antioxidative defence systems are induced. In contrast, in the selenate resistant strain with inactive ATP sulphurylase, where selenate reduction does not occur, no induction of antioxidative defence systems was found. Consequently, the active ATP sulphurylase is the key enzyme for the prooxidant properties of selenate and it seems to be the main reason for selenate toxicity and ROS formation during the selenate reduction.

  13. Structural Basis of GLUT1 Inhibition by Cytoplasmic ATP

    Science.gov (United States)

    Blodgett, David M.; De Zutter, Julie K.; Levine, Kara B.; Karim, Pusha; Carruthers, Anthony

    2007-01-01

    Cytoplasmic ATP inhibits human erythrocyte glucose transport protein (GLUT1)–mediated glucose transport in human red blood cells by reducing net glucose transport but not exchange glucose transport (Cloherty, E.K., D.L. Diamond, K.S. Heard, and A. Carruthers. 1996. Biochemistry. 35:13231–13239). We investigated the mechanism of ATP regulation of GLUT1 by identifying GLUT1 domains that undergo significant conformational change upon GLUT1–ATP interaction. ATP (but not GTP) protects GLUT1 against tryptic digestion. Immunoblot analysis indicates that ATP protection extends across multiple GLUT1 domains. Peptide-directed antibody binding to full-length GLUT1 is reduced by ATP at two specific locations: exofacial loop 7–8 and the cytoplasmic C terminus. C-terminal antibody binding to wild-type GLUT1 expressed in HEK cells is inhibited by ATP but binding of the same antibody to a GLUT1–GLUT4 chimera in which loop 6–7 of GLUT1 is substituted with loop 6–7 of GLUT4 is unaffected. ATP reduces GLUT1 lysine covalent modification by sulfo-NHS-LC-biotin by 40%. AMP is without effect on lysine accessibility but antagonizes ATP inhibition of lysine modification. Tandem electrospray ionization mass spectrometry analysis indicates that ATP reduces covalent modification of lysine residues 245, 255, 256, and 477, whereas labeling at lysine residues 225, 229, and 230 is unchanged. Exogenous, intracellular GLUT1 C-terminal peptide mimics ATP modulation of transport whereas C-terminal peptide-directed IgGs inhibit ATP modulation of glucose transport. These findings suggest that transport regulation involves ATP-dependent conformational changes in (or interactions between) the GLUT1 C terminus and the C-terminal half of GLUT1 cytoplasmic loop 6–7. PMID:17635959

  14. Role of ATP-bound divalent metal ion in the conformation and function of actin. Comparison of Mg-ATP, Ca-ATP, and metal ion-free ATP-actin.

    Science.gov (United States)

    Valentin-Ranc, C; Carlier, M F

    1991-04-25

    The fluorescence of N-acetyl-N'-(sulfo-1-naphthyl)ethylenediamine (AEDANS) covalently bound to Cys-374 of actin is used as a probe for different conformational states of G-actin according to whether Ca-ATP, Mg-ATP, or unchelated ATP is bound to the nucleotide site. Upon addition of large amounts (greater than 10(2)-fold molar excess) of EDTA to G-actin, metal ion-free ATP-G-actin is obtained with EDTA bound. Metal ion free ATP-G-actin is characterized by a higher AEDANS fluorescence than Mg-ATP-G-actin, which itself has a higher fluorescence than Ca-ATP-G-actin. Evidence for EDTA binding to G-actin is shown using difference spectrophotometry. Upon binding of EDTA, the rate of dissociation of the divalent metal ion from G-actin is increased (2-fold for Ca2+, 10-fold for Mg2+) in a range of pH from 7.0 to 8.0. A model is proposed that quantitatively accounts for the kinetic data. The affinity of ATP is weakened 10(6)-fold upon removal of the metal ion. Metal ion-free ATP-G-actin is in a partially open conformation, as indicated by the greater accessibility of -SH residues, yet it retains functional properties of polymerization and ATP hydrolysis that appear almost identical to those of Ca-ATP-actin, therefore different from those of Mg-ATP-actin. These results are discussed in terms of the role of the ATP-bound metal ion in actin structure and function.

  15. Effects of fractal gating of potassium channels on neuronal behaviours

    Science.gov (United States)

    Zhao, De-Jiang; Zeng, Shang-You; Zhang, Zheng-Zhen

    2010-10-01

    The classical model of voltage-gated ion channels assumes that according to a Markov process ion channels switch among a small number of states without memory, but a bunch of experimental papers show that some ion channels exhibit significant memory effects, and this memory effects can take the form of kinetic rate constant that is fractal. Obviously the gating character of ion channels will affect generation and propagation of action potentials, furthermore, affect generation, coding and propagation of neural information. However, there is little previous research on this series of interesting issues. This paper investigates effects of fractal gating of potassium channel subunits switching from closed state to open state on neuronal behaviours. The obtained results show that fractal gating of potassium channel subunits switching from closed state to open state has important effects on neuronal behaviours, increases excitability, rest potential and spiking frequency of the neuronal membrane, and decreases threshold voltage and threshold injected current of the neuronal membrane. So fractal gating of potassium channel subunits switching from closed state to open state can improve the sensitivity of the neuronal membrane, and enlarge the encoded strength of neural information.

  16. Hg(Ⅱ)催化亚铁氰化钾配位交换番红花红T增敏显色动力学光度法测定痕量汞%Determination of trace mercury with Hg (Ⅱ) catalyzing the sensitization color of potassium ferrocyanide ligand exchanging safranine* T kinetic spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    王洪福; 苏智先; 张素兰; 罗英; 冯秀君

    2011-01-01

    When heated in a dilute sulfuric acid medium, the color reaction of the potassium ferrocyanide-safranine T ligand can be enhanced by the activation agent thiourea. Also, Hg(II) catalyzing the color reaction of potassium ferrocyanide ligand exchanging safranine T can be greatly enhanced. Based on this, a new method for the determination of trace Mercury (Ⅱ) with ion catalyzing ligand exchange sensitized color kinetic spectrophotometry was established. The optimum experimental conditions were studied. The absorbency difference A A between non-catalytic reaction (absorbency A0) and catalytic reaction (absorbency A) remained good linear relationship with the mass concentration p of Hg(Ⅱ) in the range of 0.0055 ~2 50 ug/25 mL. The detection limit was 1.39 x 10-10g/mL. The kinetic parameters were determined, and the results showed that the reaction was the first order to Hg(II) and pseudo first order to the total reaction. The apparent rate constant was 4.32 × 10-4/s and the apparent activation energy was 57.4kJ/mol. This method has been applied to the determination of trace Hg( Ⅱ) in water samples and human hair with the recoveries of 98% -101% , which fulfilled the trace analysis requirements.%基于在H2SO4介质中及加热的条件下,加入活化剂硫脲对亚铁氰化钾-番红花红T配位显色反应具有增敏作用.痕量Hg(Ⅱ)催化亚铁氰化钾配位交换番红花红T增敏显色反应显著增强,据此,建立了离子催化配位交换增敏显色反应动力学光度法测定痕量汞(Hg)的新光度分析法.研究了反应的最佳实验条件.催化反应(吸光度A)与非催化反应(吸光度A0)吸光度差值△A与Hg(Ⅱ)的质量浓度在0.0055~2.50 μg/25 mL范围内呈良好的线性关系,检出限为1.39×10-10g/mL.测定了动力学参数,反应对Hg(Ⅱ)为一级反应,总反应为准一级反应.表现速率常数为4.32×10-4/s,表观活化能为57.4kJ/moL.该方法用于水样和人发中痕量汞Hg(

  17. Development of a rapid ATP bioluminescence assay for biocidal susceptibility testing of rapidly growing mycobacteria.

    Science.gov (United States)

    Kapoor, Renuka; Yadav, Jagjit S

    2010-10-01

    An ATP-based biocide susceptibility assay for mycobacteria was developed by optimizing the cell lysis and assay conditions. Compared to the conventional agar plating method, the assay was rapid (1.5 h) and showed high sensitivity and specificity as determined by receiver operating characteristic (ROC) analysis. The test species, Mycobacterium immunogenum, M. chelonae, and M. abscessus, showed various susceptibilities to the glutaraldehyde- and isothiazolone-based test biocides.

  18. Analgesic effect of intrathecal bumetanide is accompanied by changes in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain

    Institute of Scientific and Technical Information of China (English)

    Yanbing He; Shiyuan Xu; Junjie Huang; Qingjuan Gong

    2014-01-01

    Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chloride regulation in the pain pathway and by effecting neuronal excitability and pain sensitization. The present study aimed to investigate the analgesic effect of the speciifc sodium-potassium-chloride co-transporter 1 inhibitor bumetanide, and the change in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain. Results showed that intrathecal bumetanide could decrease cumulative pain scores, and could increase thermal and mechanical pain thresholds in a rat model of incisional pain. Sodium-potassium-chloride co-transporter 1 expression in-creased in neurons from dorsal root ganglion and the deep laminae of the ipsilateral dorsal horn following incision. By contrast, potassium-chloride co-transporter 2 expression decreased in neurons of the deep laminae from the ipsilateral dorsal horn. These ifndings suggest that spinal sodium-potassium-chloride co-transporter 1 expression was up-regulated and spinal potassi-um-chloride co-transporter 2 expression was down-regulated following incision. Intrathecal bumetanide has analgesic effects on incisional pain through inhibition of sodium-potassi-um-chloride co-transporter 1.

  19. Rate of hydrolysis in ATP synthase is fine-tuned by  -subunit motif controlling active site conformation

    KAUST Repository

    Beke-Somfai, T.

    2013-01-23

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.

  20. ATP sensitive K+ channel may be involved in the protective effects of preconditioning in isolated guinea pig cardiomyocytes%ATP敏感性钾通道可能参与对经预处理的离体豚鼠心肌细胞的保护作用

    Institute of Scientific and Technical Information of China (English)

    刘华军; 陈灏珠; 杨学义; 程介士

    2001-01-01

    目的 对离体豚鼠心肌细胞予以短时间的低氧建立细胞预处理模型,并以此判定ATP敏感性钾通道是否参与此缺氧(模拟缺血)的预处理。 方法 从成年豚鼠的心室分离出单个心肌细胞,进行实验的灌流槽容许这些细胞暴露于低氧灌流液从而处于低氧分压状态。在低氧预处理过程中,细胞先在正常溶液中平衡10分钟然后暴露于低氧灌流液中5分钟,随后给予10分钟的复氧。对这些经预处理的细胞给予低氧20-180分钟并再复氧。用斑片钳技术进行全细胞和单通道记录研究其离子流变化。 结果 5分钟的低氧预处理可对细胞低氧复氧所引起的损伤提供显著的保护作用。经15分钟以上的延迟后,低氧诱导出非时间依赖性的钾外流,此外向性电流可被5 μmol/L的格列本脲所阻断。在除极化至10 mV时,此电流从78±15 pA增至1581±153 pA(P<0.01,n=18)。然而,产生ATP敏感性钾通道电流的延迟时间在经预处理的细胞中大为缩短,并增高更快。在10 mV时超过4 nA。在单通道记录中,从第一个通道开放到最大开放的时距在预处理细胞中大为缩短。 结论 分离的豚鼠心肌细胞可用短时间的低氧作预处理。此低氧预处理可改变ATP敏感性钾通道,使之在再次低氧时更快开放。%Objective To develop a cellular model of preconditioning by a brief period of hypoxia in isolated guinea pig cardiomyocytes and to determine whether or not an ATP sensitive K+ (KATP) channel is involved in ischemic preconditioning. Methods Single myocytes were isolated from the ventricle of adult guinea pigs. The experimental chamber allowed the cells to be exposed to low O2 pressure. During hypoxic preconditioning, the cells were equilibrated with normaxic solution for 10 minutes and then exposed to hypoxia for 5 minutes, followed by 10 minutes of reoxygenation. The cells were then subjected to 20

  1. Cloning, characterization and mapping of the human ATP5E gene, identification of pseudogene ATP5EP1, and definition of the ATP5E motif.

    Science.gov (United States)

    Tu, Q; Yu, L; Zhang, P; Zhang, M; Zhang, H; Jiang, J; Chen, C; Zhao, S

    2000-04-01

    A cDNA encoding the epsilon subunit of human ATP synthase, ATP5E, was isolated from heart, skeletal muscle and spleen cDNA libraries respectively. Its genome structure was characterized as comprising three exons and two introns within a stretch of 5 kb, according to the genomic sequence AL109840. The gene was mapped to human chromosome 20q13.3 between marker D20S173 and 20qter using the radiation hybrid GB4 panel. Northern blot analysis showed that the ATP5E gene was expressed as a single 0.6 kb transcript in all 16 human tissues tested, with a high level present in heart and skeletal muscle. A new conserved motif composed of 24 residues, termed the ATP5E motif [W(R/K)X(5)YX(2)(Y/F)X(3)(C/A)X(4)RX(3)K], was defined on the basis of sequences of ATP synthase epsilon subunits from ten different organisms. In addition, a pseudogene ATP5EP1 was also identified on the basis of genomic sequence AC004066, localized on human chromosome 4q25. By analysing these results combined with the Southern blot patterns of human DNA hybridized with bovine ATP5E cDNA reported previously [Vinas, Powell, Runswick, Iacobazzi and Walker (1990) Biochem. J. 265, 321-326], we provide evidence of yet further homologous sequences (either gene or pseudogene) of ATP5E, in addition to ATP5E and ATP5EP1 in the human genome.

  2. Evidence for Nuclear Control of the Expression of the atpA and atpB Chloroplast Genes in Chlamydomonas.

    Science.gov (United States)

    Drapier, D.; Girard-Bascou, J.; Wollman, F. A.

    1992-03-01

    We analyzed three nuclear mutants of Chlamydomonas reinhardtii altered in the expression of the chloroplast genes atpA or atpB coding for the [alpha] or [beta] subunit of the chloroplast ATP synthase. These mutants revealed the existence of three nuclear products controlling the expression of the two chloroplast genes: the first one acts on the translation of the atpA transcript, and the two others act specifically on the stability of either the atpB or the atpA mRNAs. The nuclear mutation responsible for the decreased stability of the atpB mRNA prevented translation of the corresponding polypeptide. In contrast, the mutation responsible for the decreased stability of the atpA mRNA had limited effect on the translation of the [alpha] subunit, thereby allowing its accumulation and assembly in an active ATP synthase. Although acting originally on the expression of only one of the two main coupling factor 1 subunits, the three mutations caused a change in the translation rate of the other subunit, as viewed in 5-min pulse labeling experiments. This is indicative of a concerted expression of the [alpha] and [beta] subunits at an early post-translational step, or during translation, that may be critical for the assembly of the chloroplast ATP synthase.

  3. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  4. Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet beta-cells: evidence for a Ca2+-dependent mechanism.

    Science.gov (United States)

    Ainscow, Edward K; Rutter, Guy A

    2002-02-01

    Normal glucose-stimulated insulin secretion is pulsatile, but the molecular mechanisms underlying this pulsatility are poorly understood. Oscillations in the intracellular free [ATP]/[ADP] ratio represent one possible mechanism because they would be expected to cause fluctuations in ATP-sensitive K(+) channel activity and hence oscillatory Ca(2+) influx. After imaging recombinant firefly luciferase, expressed via an adenoviral vector in single human or mouse islet beta-cells, we report here that cytosolic free ATP concentrations oscillate and that these oscillations are affected by glucose. In human beta-cells, oscillations were observed at both 3 and 15 mmol/l glucose, but the oscillations were of a longer wavelength at the higher glucose concentration (167 vs. 66 s). Mouse beta-cells displayed oscillations in both cytosolic free [Ca(2+)] and [ATP] only at elevated glucose concentrations, both with a period of 120 s. To explore the causal relationship between [Ca(2+)] and [ATP] oscillations, the regulation of each was further investigated in populations of MIN6 beta-cells. Incubation in Ca(2+)-free medium lowered cytosolic [Ca(2+)] but increased [ATP] in MIN6 cells at both 3 and 30 mmol/l glucose. Removal of external Ca(2+) increased [ATP], possibly by decreasing ATP consumption by endoplasmic reticulum Ca(2+)-ATPases. These results allow a model to be constructed of the beta-cell metabolic oscillator that drives nutrient-induced insulin secretion.

  5. The action of selenite on ATP synthesis in rat lens

    OpenAIRE

    Adamchak, Marsha Ann

    1986-01-01

    A subcutaneous injection of sodium selenite (30 umol/kg body weight) in 10â day old rats produced a cataract within 72 hours. Lens opacification was preceded by a 15% decrease in ATP content. Lens ATP did not fully recover to control concentrations by 11 days postâ injection. A moderate correlation existed between lens weight and total ATP content in control lenses

  6. Serum potassium concentrations: Importance of normokalaemia.

    Science.gov (United States)

    Heras, Manuel; Fernández-Reyes, María José

    2017-06-21

    Abnormalities in potassium concentrations are associated with morbidity and mortality. In recent years it has been considered that small variations in serum potassium concentrations within normal intervals may also be associated with mortality. Strategies for achieving normokalaemia include dietary measures, limiting the use of potassium retaining drugs, and use of conventional cation exchange resins (calcium/sodium polystyrene sulfonate) and/or the new non-absorbed cation exchange polymer (patiromer). Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  7. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells.

    Science.gov (United States)

    Song, Shanshan; Jacobson, Krista N; McDermott, Kimberly M; Reddy, Sekhar P; Cress, Anne E; Tang, Haiyang; Dudek, Steven M; Black, Stephen M; Garcia, Joe G N; Makino, Ayako; Yuan, Jason X-J

    2016-01-15

    Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca(2+) signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca(2+)] ([Ca(2+)]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca(2+) eliminated the plateau phase increase of [Ca(2+)]cyt in lung cancer cells, indicating that the plateau phase of [Ca(2+)]cyt increase is due to Ca(2+) influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca(2+) or chelating intracellular Ca(2+) with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca(2+)]cyt through Ca(2+) influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression. Copyright

  8. Variants in Genes Controlling Oxidative Metabolism Contribute to Lower Hepatic ATP Independent of Liver Fat Content in Type 1 Diabetes.

    Science.gov (United States)

    Gancheva, Sofiya; Bierwagen, Alessandra; Kaul, Kirti; Herder, Christian; Nowotny, Peter; Kahl, Sabine; Giani, Guido; Klueppelholz, Birgit; Knebel, Birgit; Begovatz, Paul; Strassburger, Klaus; Al-Hasani, Hadi; Lundbom, Jesper; Szendroedi, Julia; Roden, Michael

    2016-07-01

    Type 1 diabetes has been recently linked to nonalcoholic fatty liver disease (NAFLD), which is known to associate with insulin resistance, obesity, and type 2 diabetes. However, the role of insulin resistance and hyperglycemia for hepatic energy metabolism is yet unclear. To analyze early abnormalities in hepatic energy metabolism, we examined 55 patients with recently diagnosed type 1 diabetes. They underwent hyperinsulinemic-normoglycemic clamps with [6,6-(2)H2]glucose to assess whole-body and hepatic insulin sensitivity. Hepatic γATP, inorganic phosphate (Pi), and triglyceride concentrations (hepatocellular lipid content [HCL]) were measured with multinuclei magnetic resonance spectroscopy ((31)P/(1)H-MRS). Glucose-tolerant humans served as control (CON) (n = 57). Whole-body insulin sensitivity was 44% lower in patients than in age- and BMI-matched CON. Hepatic γATP was 15% reduced (2.3 ± 0.6 vs. 2.7 ± 0.6 mmol/L, P < 0.001), whereas hepatic Pi and HCL were similar in patients when compared with CON. Across all participants, hepatic γATP correlated negatively with glycemia and oxidized LDL. Carriers of the PPARG G allele (rs1801282) and noncarriers of PPARGC1A A allele (rs8192678) had 21 and 13% lower hepatic ATP concentrations. Variations in genes controlling oxidative metabolism contribute to a reduction in hepatic ATP in the absence of NAFLD, suggesting that alterations in hepatic mitochondrial function may precede diabetes-related liver diseases.

  9. Intracellular Assessment of ATP Levels in Caenorhabditis elegans

    Science.gov (United States)

    Palikaras, Konstantinos; Tavernarakis, Nektarios

    2017-01-01

    Eukaryotic cells heavily depend on adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS) within mitochondria. ATP is the major energy currency molecule, which fuels cell to carry out numerous processes, including growth, differentiation, transportation and cell death among others (Khakh and Burnstock, 2009). Therefore, ATP levels can serve as a metabolic gauge for cellular homeostasis and survival (Artal-Sanz and Tavernarakis, 2009; Gomes et al., 2011; Palikaras et al., 2015). In this protocol, we describe a method for the determination of intracellular ATP levels using a bioluminescence approach in the nematode Caenorhabditis elegans. PMID:28194429

  10. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    Directory of Open Access Journals (Sweden)

    Ting Xu

    2015-03-01

    Full Text Available The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.

  11. PCR-cloning of tilapia ATP7A cDNA and its mRNA levels in tissues of tilapia following copper administrations.

    Science.gov (United States)

    Chen, Dong Shi; Chan, King Ming

    2011-10-01

    We are studying the toxicity of copper to tilapia and zebrafish and have found that the copper tolerance of tilapia and the sensitivity of zebrafish were due to several proteins' regulation mechanisms that were related to the effects of reactive oxygen species, mitochondrion copper transport, and stress response. To further reveal the mechanism of copper tolerance and sensitivity in tilapia and zebrafish, a full length cDNA of ATP7A was obtained in tilapia. Using real time quantitative PCR, the differential regulations of ATP7A in tilapia and zebrafish were studied. It was found that Cu(2+) gave a higher induction of ATP7A in tilapia than zebrafish, both in vivo and in vitro. These results suggest that the copper tolerance of tilapia may be due to higher expression level of ATP7A.

  12. Evidence for the Synthesis of ATP by an F0F1 ATP Synthase in Membrane Vesicles from Halorubrum Saccharovorum

    Science.gov (United States)

    Faguy, David; Lawson, Darion; Hochstein, Lawrence I.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Vesicles prepared in a buffer containing ADP, Mg(2+) and Pi synthesized ATP at an initial rate of 2 nmols/min/mg protein after acidification of the bulk medium (pH 8 (right arrow) 4). The intravesicular ATP concentration reached a steady state after about 30 seconds and slowly declined thereafter. ATP synthesis was inhibited by low concentrations of dicyclohexylcarbodiimide and m-chlorophenylhydrazone indicating that synthesis took place in response to the proton gradient. NEM and PCMS, which inhibit vacuolar ATPases and the vacuolar-like ATPases of extreme halophiles, did not affect ATP synthesis, and, in fact, produced higher steady state levels of ATP. This suggested that two ATPase activities were present, one which catalyzed ATP synthesis and one that caused its hydrolysis. Azide, a specific inhibitor of F0F1 ATP Synthases, inhibited halobacterial ATP synthesis. The distribution of acridine orange as imposed by a delta pH demonstrated that azide inhibition was not due to the collapse of the proton gradient due to azide acting as a protonophore. Such an effect was observed, but only at azide concentrations higher than those that inhibited ATP synthesis. These results confirm the earler observations with cells of H. saccharovorum and other extreme halophiles that ATP synthesis is inconsistent with the operation of a vacuolar-like ATPase. Therefore, the observation that a vacuolar-like enzyme is responsible for ATP synthesis (and which serves as the basis for imputing ATP synthesis to the vacuolar-like ATPases of the extreme halophiles, and the Archaea in general) should be taken with some degree of caution.

  13. THE IDENTIFICATION OF MONOETHANOLAMINE IN THE ATMOSPHERE USING TWO SENSORS ON THE BASE OF POTASSIUM FLUORIDE MICROPHASE

    OpenAIRE

    T. A. Kuchmenko; S. E. Chernyshova

    2015-01-01

    The possibility of potassium fluoride microphase application as a modifier of a piezoelectric quartz crystal resonator, which is selective to vapour of based volatile organic compounds in the presence of water vapour, is studied. As an additional progressive impact on the system to increase the sensitivity of the microbalance, it is suggested to form the modifier layers of different thickness (mass). It is founded out that the increase in mass of potassium fluoride microphase changes the sens...

  14. Potassium fertilization mitigates the adverse effects of drought on selected Zea mays cultivars

    Science.gov (United States)

    In the present study, the role of potassium (K) in mitigating the adverse effects of drought stress (DS) on 2 maize (Zea mays L.) cultivars, ‘Shaandan 9’ (S9; drought-tolerant) and ‘Shaandan 911’ (S911; drought-sensitive), was assessed. K application increased dry matter (DM) across all growth stage...

  15. Designing Robust Process Analytical Technology (PAT) Systems for Crystallization Processes: A Potassium Dichromate Crystallization Case Study

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli Bin; Sin, Gürkan

    2013-01-01

    The objective of this study is to test and validate a Process Analytical Technology (PAT) system design on a potassium dichromate crystallization process in the presence of input uncertainties using uncertainty and sensitivity analysis. To this end a systematic framework for managing uncertaintie...

  16. Modelling the ATP production in mitochondria

    CERN Document Server

    Saa, Alberto

    2012-01-01

    We revisit here the mathematical model for ATP production in mitochondria introduced recently by Bertram, Pedersen, Luciani, and Sherman (BPLS) as a simplification of the more complete but intricate Magnus and Keizer's model. We correct some inaccuracies in the BPLS original approximations and then analyze some of the dynamical properties of the model. We infer from exhaustive numerical explorations that the enhanced BPLS equations have a unique attractor fixed point for physiologically acceptable ranges of mitochondrial variables and respiration inputs. We determine, in the stationary regime, the dependence of the mitochondrial variables on the respiration inputs, namely the cytosolic concentration of calcium ${\\rm Ca}_{\\rm c}$ and the substrate fructose 1,6-bisphosphate FBP. The same effect of calcium saturation reported for the original BPLS model is observed here. We find out, however, an interesting non-stationary effect: the inertia of the model tends to increase considerably for high concentrations of ...

  17. Substantia nigra osmoregulation: taurine and ATP involvement.

    Science.gov (United States)

    Morales, Ingrid; Dopico, Jose G; Sabate, Magdalena; Gonzalez-Hernandez, Tomas; Rodriguez, Manuel

    2007-05-01

    An extracellular nonsynaptic taurine pool of glial origin was recently reported in the substantia nigra (SN). There is previous evidence showing taurine as an inhibitory neurotransmitter in the SN, but the physiological role of this nonsynaptic pool of taurine has not been explored. By using microdialysis methods, we studied the action of local osmolarity on the nonsynaptic taurine pool in the SN of the rat. Hypoosmolar pulses (285-80 mosM) administered in the SN by the microdialysis probe increased extrasynaptic taurine in a dose-dependent way, a response that was counteracted by compensating osmolarity with choline. The opposite effect (taurine decrease) was observed when osmolarity was increased. Under basal conditions, the blockade of either the AMPA-kainate glutamate receptors with 6-cyano-7-nitroquinoxaline-2,3-dionine disodium or the purinergic receptors with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid modified the taurine concentration, suggesting that both receptors modulate the extrasynaptic pool of taurine. In addition, these drugs decreased the taurine response to hypoosmolar pulses, suggesting roles for glutamatergic and purinergic receptors in the taurine response to osmolarity. The participation of purinergic receptors was also supported by the fact that ATP (which, under basal conditions, increased the extrasynaptic taurine in a dose-dependent way) administered in doses saturating purinergic receptors also decreased the taurine response to hypoosmolarity. Taken together, present data suggest osmoregulation as a role of the nonsynaptic taurine pool of the SN, a function that also involves glutamate and ATP and that could influence the nigral cell vulnerability in Parkinson's disease.

  18. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  19. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase

    Science.gov (United States)

    Hochstein, L. I.

    1992-01-01

    Halobacterium saccharovorum synthesized ATP in response to a pH shift from 8 to 6.2. Synthesis was inhibited by carbonyl cyanide m-chloro-phenylhydrazone, dicyclohexylcarbodiimide, and azide. Nitrate, an inhibitor of the membrane-bound ATPase previously isolated from this organism, did not inhibit ATP synthesis. N-Ethymaleimide, which also inhibited this ATPase, stimulated the production of ATP. These observations suggested that H. saccharovorum synthesized and hydrolysed ATP using different enzymes and that the vacuolar-like ATPase activity previously described in H. saccharovorum was an ATPase whose function is yet to be identified.

  20. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    Science.gov (United States)

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems.

  1. The Ketogenic Diet and Potassium Channel Function

    Science.gov (United States)

    2014-10-01

    The overall objective of this Discovery Award is to explore the hypothesis the ketogenic diet regulates neuronal excitability by influencing...potassium channel activity via the auxiliary potassium channel subunit Kv Beta 2. To test this hypothesis we have examining the impact of the ketogenic diet on...vitro bursting activity (seizures) which is reversed by treatment with the ketogenic diet (KD). Conversely, the latency to the first in vitro burst

  2. Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2014-08-05

    Fast-scan cyclic voltammetry (FSCV) is an electrochemistry technique which allows subsecond detection of neurotransmitters in vivo. Adenosine detection using FSCV has become increasingly popular but can be difficult because of interfering agents which oxidize at or near the same potential as adenosine. Triangle shaped waveforms are traditionally used for FSCV, but modified waveforms have been introduced to maximize analyte sensitivity and provide stability at high scan rates. Here, a modified sawhorse waveform was used to maximize the time for adenosine oxidation and to manipulate the shapes of cyclic voltammograms (CVs) of analytes which oxidize at the switching potential. The optimized waveform consists of scanning at 400 V/s from -0.4 to 1.35 V and holding briefly for 1.0 ms followed by a ramp back down to -0.4 V. This waveform allows the use of a lower switching potential for adenosine detection. Hydrogen peroxide and ATP also oxidize at the switching potential and can interfere with adenosine measurements in vivo; however, their CVs were altered with the sawhorse waveform and they could be distinguished from adenosine. Principal component analysis (PCA) was used to determine that the sawhorse waveform was better than the triangle waveform at discriminating between adenosine, hydrogen peroxide, and ATP. In slices, mechanically evoked adenosine was identified with PCA and changes in the ratio of ATP to adenosine were observed after manipulation of ATP metabolism by POM-1. The sawhorse waveform is useful for adenosine, hydrogen peroxide, and ATP discrimination and will facilitate more confident measurements of these analytes in vivo.

  3. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  4. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Directory of Open Access Journals (Sweden)

    Emri Zsuzsa

    2011-10-01

    concluded, therefore, that ATP- and SUC-sensitive Ca2+ transients appear to represent a signalling layer independent of NAc neurons. This previously unrecognised glial action of SUC, a major cellular energy metabolite, may play a role in linking metabolism to Ca2+ signalling in astrocytic networks under physiological and pathological conditions such as exercise and metabolic diseases.

  5. Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli.

    Science.gov (United States)

    Cheng, Yuxiao; Liu, Yajun; Huang, Jingjing; Li, Kang; Zhang, Wen; Xian, Yuezhong; Jin, Litong

    2009-02-15

    A rapid, specific and sensitive method for assay of Escherichia coli (E. coli) using biofunctional magnetic nanoparticles (BMNPs) in combination with adenosine triphosphate (ATP) bioluminescence was proposed. The BMNPs were fabricated by immobilizing a specific anti-E. coli antibody on the surface of amine-functionalized magnetic nanoparticles (about 20nm in diameter), and then was applied to capture the target bacteria E. coli from samples. The BMNPs exhibited high capture efficiency to E. coli. Transmission electron microscope (TEM) images showed that the BMNPs were bound to the surface of entire E. coli cells. The target bacteria became magnetic so that could be isolated easily from the sample solution by employing an external magnetic field. The concentration of E. coli captured by the BMNPs was then detected by an ATP bioluminescence method. The optimization of ATP measurement was carried out to improve the detection sensitivity. The proposed method was applied to detect the E. coli inoculated into pasteurized milk with low detection limit (20 cfu/mL) and short detection time (about 1h).

  6. Subunit movements in single membrane-bound H+-ATP synthases from chloroplasts during ATP synthesis.

    Science.gov (United States)

    Bienert, Roland; Rombach-Riegraf, Verena; Diez, Manuel; Gräber, Peter

    2009-12-25

    Subunit movements within the H(+)-ATP synthase from chloroplasts (CF(0)F(1)) are investigated during ATP synthesis. The gamma-subunit (gammaCys-322) is covalently labeled with a fluorescence donor (ATTO532). A fluorescence acceptor (adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP)-ATTO665) is noncovalently bound to a noncatalytic site at one alpha-subunit. The labeled CF(0)F(1) is integrated into liposomes, and a transmembrane pH difference is generated by an acid base transition. Single-pair fluorescence resonance energy transfer is measured in freely diffusing proteoliposomes with a confocal two-channel microscope. The fluorescence time traces reveal a repetitive three-step rotation of the gamma-subunit relative to the alpha-subunit during ATP synthesis. Some traces show splitting into sublevels with fluctuations between the sublevels. During catalysis the central stalk interacts, with equal probability, with each alphabeta-pair. Without catalysis the central stalk interacts with only one specific alphabeta-pair, and no stepping between FRET levels is observed. Two inactive states of the enzyme are identified: one in the presence of AMPPNP and one in the presence of ADP.

  7. Common pathogenic effects of missense mutations in the P-type ATPase ATP13A2 (PARK9 associated with early-onset parkinsonism.

    Directory of Open Access Journals (Sweden)

    Agata Podhajska

    Full Text Available Mutations in the ATP13A2 gene (PARK9 cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS, a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and

  8. ATP storage and uptake by isolated pancreatic zymogen granules

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund; Novak, Ivana

    2010-01-01

    ATP is released from pancreatic acini in response to cholinergic and hormonal stimulation. The same stimuli cause exocytosis of ZG (zymogen granules) and release of digestive enzymes. The aim of the present study was to determine whether ZG stored ATP and to characterize the uptake mechanism...... for ATP transport into the ZG. ZG were isolated and the ATP content was measured using luciferin/luciferase assays and was related to protein in the sample. The estimate of ATP concentration in freshly isolated granules was 40-120 µM. The ATP uptake had an apparent Km value of 4.9±2.1 mM when granules...... were incubated without Mg2+ and a Km value of 0.47±0.05 mM in the presence of Mg2+, both in pH 6.0 buffers. The uptake of ATP was significantly higher at pH 7.2 compared with pH 6.0 solutions. The anion transport blockers DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate) and Evans Blue inhibited ATP...

  9. ATP release and purinergic signaling in NLRP3 inflammasome activation

    Directory of Open Access Journals (Sweden)

    Isabelle eCOUILLIN

    2013-01-01

    Full Text Available The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing that senses pathogen- and danger-associated molecular patterns. One step- or two step- models have been proposed to explain the tight regulation of IL-1β production during inflammation. Moreover, cellular stimulation triggers ATP release and subsequent activation of purinergic receptors at the cell surface. Importantly some studies have reported roles for extracellular ATP (eATP, in NLRP3 inflammasome activation in response to PAMPs and DAMPs. In this mini review, we will discuss the link between active ATP release, purinergic signaling and NLRP3 inflammasome activation. We will focus on the role of autocrine or paracrine ATP export in particle-induced NLRP3 inflammasome activation and discuss how particle activators are competent to induce maturation and secretion of IL-1β through a process that involves, as a first event, extracellular release of endogenous ATP through hemichannel opening, and as a second event, signaling through purinergic receptors that trigger NLRP3 inflammasome activation. Finally, we will review the evidence for ATP as a key proinflammatory mediator released by dying cells. In particular we will discuss how cancer cells dying via autophagy trigger ATP-dependent NLRP3 inflammasome activation in the macrophages engulfing them, eliciting an immunogenic response against tumors.

  10. Exon duplications in the ATP7A gene

    DEFF Research Database (Denmark)

    Mogensen, Mie; Skjørringe, Tina; Kodama, Hiroko

    2011-01-01

    BACKGROUND: Menkes disease (MD) is an X-linked, fatal neurodegenerative disorder of copper metabolism, caused by mutations in the ATP7A gene. Thirty-three Menkes patients in whom no mutation had been detected with standard diagnostic tools were screened for exon duplications in the ATP7A gene...

  11. Cellular ATP release in the lung and airway

    Directory of Open Access Journals (Sweden)

    Satoru Ito

    2016-11-01

    Full Text Available Adenosine triphosphate (ATP is a universal energy source synthesized by mitochondrial oxidative phosphorylation and cytosolic glycolysis and transported by the vesicular nucleotide transporter for storage in secretory vesicles. Extracellular ATP regulates physiological functions and homeostasis of the respiratory system and is associated with pathogenesis of respiratory diseases. Thus, modulation of ATP and purinergic signaling may be a novel therapeutic approach to pulmonary disease. ATP is released from alveolar epithelial cells, airway epithelial cells, airway smooth muscle cells, fibroblasts and endothelial cells in response to various chemical and mechanical stimuli. In addition to conductive pathways such as connexins and pannexins, vesicular exocytosis is involved in the mechanisms of ATP release from the cells. Imaging approaches enable us to visualize ATP release from not only cultured cells but also lung tissue ex vivo. Extracellular vesicles, exosomes and membrane-derived microvesicles, containing cytoplasmic proteins, mRNA and microRNA, represent important mediators of cell-to-cell communication and the intercellular microenvironment. However, it is not known whether extracellular vesicles contain ATP as an intercellular messenger. Future studies are necessary to elucidate the mechanisms of cellular ATP release and purinergic signaling in the respiratory system.

  12. Critical roles for the COOH terminus of the Cu-ATPase ATP7B in protein stability, trans-Golgi network retention, copper sensing, and retrograde trafficking.

    Science.gov (United States)

    Braiterman, L; Nyasae, L; Leves, F; Hubbard, A L

    2011-07-01

    ATP7A and ATP7B are copper-transporting P-type ATPases that are essential to eukaryotic copper homeostasis and must traffic between intracellular compartments to carry out their functions. Previously, we identified a nine-amino acid sequence (F37-E45) in the NH(2) terminus of ATP7B that is required to retain the protein in the Golgi when copper levels are low and target it apically in polarized hepatic cells when copper levels rise. To understand further the mechanisms regulating the intracellular dynamics of ATP7B, using multiple functional assays, we characterized the protein phenotypes of 10 engineered and Wilson disease-associated mutations in the ATP7B COOH terminus in polarized hepatic cells and fibroblasts. We also examined the behavior of a chimera between ATP7B and ATP7A. Our results clearly demonstrate the importance of the COOH terminus of ATP7B in the protein's copper-responsive apical trafficking. L1373 at the end of transmembrane domain 8 is required for protein stability and Golgi retention in low copper, the trileucine motif (L1454-L1456) is required for retrograde trafficking, and the COOH terminus of ATP7B exhibits a higher sensitivity to copper than does ATP7A. Importantly, our results demonstrating that four Wilson disease-associated missense mutations behaved in a wild-type manner in all our assays, together with current information in the literature, raise the possibility that several may not be disease-causing mutations.

  13. The role of Kv3-type potassium channels in cerebellar physiology and behavior.

    Science.gov (United States)

    Joho, Rolf H; Hurlock, Edward C

    2009-09-01

    Different subunits of the Kv3 subfamily of voltage-gated potassium (Kv) channels (Kv3.1-Kv3.4) are expressed in distinct neuronal subpopulations in the cerebellum. Behavioral phenotypes in Kv3-null mutant mice such as ataxia with prominent hypermetria and heightened alcohol sensitivity are characteristic of cerebellar dysfunction. Here, we review how the unique biophysical properties of Kv3-type potassium channels, fast activation and fast deactivation that enable cerebellar neurons to generate brief action potentials at high frequencies, affect firing patterns and influence cerebellum-mediated behavior.

  14. Optical detection of potassium chloride vapor using collinear photofragmentation and atomic absorption spectroscopy.

    Science.gov (United States)

    Sorvajärvi, Tapio; Saarela, Jaakko; Toivonen, Juha

    2012-10-01

    A sensitive and selective optical technique to detect potassium chloride (KCl) vapor is introduced. The technique is based on the photofragmentation of KCl molecules, using a pulsed UV laser, and optical probing of the temporarily increased amount of potassium atoms with a near-infrared laser. The two laser beams are aligned to go through the sample volume along the same optical path. The performance of the technique is demonstrated by detecting KCl concentrations from 25 ppb to 30 ppm in a temperature-controlled cell.

  15. Electrochemical sensing of ATP with synthetic cyclophane as recognition element

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new electrochemical sensor for ATP with synthetic cyclophane stably attached onto single-walled carbon nanotubes (SWNTs) as the recognition elements is described. UV-vis and cyclic voltammetric results demonstrate that ATP may interact with the synthetic cyclophane recognition elements to form a stable adduct mainly through electrostatic, π-π stacking and donor-acceptor interactions. Such interactions eventually lead to a decrease in the peak currents of the cyclophane recognition elements attached onto the SWNT electronic transducer, which could be used for electrochemical sensing of ATP. Under the conditions employed here, the ratio of the decrease in the anodic peak current is linear with ATP concentration within a concentration range from 10 to 120 μM with a linear coefficiency of 0.993. This study may offer a new and simple electrochemical approach for effective sensing of ATP.

  16. Comparison of traditional and low sensitivity whiteners.

    Science.gov (United States)

    Browning, William D; Chan, Daniel C; Myers, Michael L; Brackett, William W; Brackett, Martha G; Pashley, David H

    2008-01-01

    This placebo-controlled, double-blind randomized clinical trial compared five 10% carbamide peroxide tooth whitening formulations. Three products contained varying concentrations of potassium nitrate as desensitizers. One contained no desensitizers and one was a placebo. During the two weeks of active bleaching, participants used a daily diary to record the number of days of sensitivity from hot, cold, gums, tongue and/or throat. The total number of days of sensitivity experienced by the participants in each group was compared. Participants using the agent with no desensitizers did not experience any more sensitivity than those using the agent containing 3% potassium nitrate. The products that included 0.5% potassium nitrate and 0.5% potassium nitrate and 0.25% sodium fluoride were not associated with any more sensitivity than the placebo group. In addition, the shade tab change from baseline to 11 weeks following cessation of bleaching was compared. Using an active bleaching agent, no difference in color change was noted among the four groups. All four groups were associated with significantly higher color change than the placebo. The addition of a small percentage of potassium nitrate to a 10% carbamide peroxide tooth whitener was shown to significantly reduce postoperative sensitivity without reducing efficacy.

  17. ATP-sulfurylase, sulfur-compounds and plant stress tolerance

    Directory of Open Access Journals (Sweden)

    Naser A. Anjum

    2015-04-01

    Full Text Available Sulfur (S stands fourth in the list of major plant nutrients after N, P and K. Sulfate (SO42-, a form of soil-S taken up by plant roots is metabolically inert. As the first committed step of S-assimilation, ATP-sulfurylase (ATP-S catalyzes SO42--activation and yields activated high-energy compound adenosine-5′-phosphosulfate (APS that is reduced to sulfide (S2- and incorporated into cysteine (Cys. In turn, Cys acts as a precursor or donor of reduced S for a range of S-compounds such as methionine (Met, glutathione (GSH, homo-GSH (h-GSH and phytochelatins (PCs. Among S-compounds, GSH, h-GSH and PCs are known for their involvement in plant tolerance to varied abiotic stresses, Cys is a major component of GSH, h-GSH and PCs; whereas, several key stress-metabolites such as ethylene, are controlled by Met through its first metabolite S-adenosylmethionine. With the major aim of briefly highlighting S-compound-mediated role of ATP-S in plant stress tolerance, this paper: (a overviews ATP-S structure/chemistry and occurrence, (b appraises recent literature available on ATP-S roles and regulations, and underlying mechanisms in plant abiotic and biotic stress tolerance, (c summarizes ATP-S-intrinsic regulation by major S-compounds, and (d highlights major open-questions in the present context. Future research in the current direction can be devised based on the outcomes of the discussion.

  18. Nanomolar ambient ATP decelerates P2X3 receptor kinetics.

    Science.gov (United States)

    Grote, Alexander; Hans, Michael; Boldogkoi, Zsolt; Zimmer, Andreas; Steinhäuser, Christian; Jabs, Ronald

    2008-12-01

    Homomeric P2X receptors differ in their electrophysiological and pharmacological profiles. The rapidly activating and desensitizing P2X3 receptors are known for their involvement in pain signalling pathways. Modulatory effects on P2X3 receptors have been reported for low concentrations of ATP ([ATP]). This includes both, enhancement and reduction of receptor currents. The first has been reported to be mediated by activation of ectoprotein kinases and high affinity desensitization (HAD), respectively. Both processes influence receptor current amplitudes. Here we describe a new phenomenon, the modulatory influence of ambient low [ATP] on P2X3 receptor kinetics. First, we studied in HEK cells whether persistent ATP affects current decay. To this end, P2X3 receptor mediated currents, elicited by pressure application of saturating [ATP], were analyzed after pre-application of low [ATP]. Second, UV-flash photolysis of ATP was employed to investigate whether submicromolar [ATP] affects receptor activation. Finally we confirmed the action of nanomolar [ATP] on native P2X3 receptors of neurons freshly isolated from rat dorsal root ganglia. We found that persistent low [ATP] caused pronounced deceleration of receptor current activation and decay. This priming effect indicates a mechanism different from HAD. It could be explained by a pre-opening receptor isomerization, induced by the occupation of a high affinity binding site already at the resting state. The observed modulation of the receptor kinetics could be considered as a physiological fine tuning mechanism of the nociceptive system, driven by the actual ambient agonist concentration.

  19. [Evaluation of renal damage using urinary ATP analysis].

    Science.gov (United States)

    Uehara, Yuki; Yanai, Mitsuru; Kumasaka, Kazunari

    2004-10-01

    It is reported that urinary ATP concentration analysis is useful for determining urinary tract infection and renal damage caused by drugs. By means of the firefly luciferin-luciferase method, we determined the reference value of urinary free ATP and evaluated the effects of urine sediments and conditions of storage. The reference value was established as 1.77 x 10(-10) to approximately 7.70 x 10(-9)M using urine samples obtained from 63 outpatients who seemed to have no renal disease. There was no significant difference in ATP concentration between 33 males and 30 females. No significant changes were observed in 11 healthy volunteers during a 1-year period. Within-run reproducibility of ATP was satisfying (8.28% and 11.4% of coefficient value in low and high concentration samples, respectively). ATP concentration was significantly decreased after centrifugation (p < 0.05) and after filtration (p < 0.01). The amounts of the red blood cells (RBC) and white blood cells (WBC) in samples whose ATP concentration was decreased after centrifugation or filtration were significantly higher than those in samples whose concentration did not decrease (p < 0.05). Urine containing many RBCs and/or WBCs might show an artificially higher ATP concentration if no preparations has been performed. There were significant positive correlations between the ATP concentrations before and after refrigeration, but no correlations before and after freezing. It is concluded that the reference value of urinary free ATP concentration was 1.77 x 10(-10) to approximately 7.70 x 10(-9) M and that care is required in the estimation of urinary ATP concentrations in samples containing many sediments, especially with WBC and RBC.

  20. Expression of ATP7B in normal human liver

    Directory of Open Access Journals (Sweden)

    D Fanni

    2009-06-01

    Full Text Available ATP7B is a copper transporting P-type ATPase, also known as Wilson disease protein, which plays a key role in copper distribution inside cells. Recent experimental data in cell culture have shown that ATP7B putatively serves a dual function in hepatocytes: when localized to the Golgi apparatus, it has a biosynthetic role, delivering copper atoms to apoceruloplasmin; when the hepatocytes are under copper stress, ATP7B translocates to the biliary pole to transport excess copper out of the cell and into the bile canaliculus for subsequent excretion from the body via the bile. The above data on ATP7B localization have been mainly obtained in tumor cell systems in vitro. The aim of the present work was to assess the presence and localization of the Wilson disease protein in the human liver. We tested immunoreactivity for ATP7B in 10 human liver biopsies, in which no significant pathological lesion was found using a polyclonal antiserum specific for ATP7B. In the normal liver, immunoreactivity for ATP7B was observed in hepatocytes and in biliary cells. In the hepatocytes, immunoreactivity for ATP7B was observed close to the plasma membrane, both at the sinusoidal and at the biliary pole. In the biliary cells, ATP7B was localized close to the cell membrane, mainly concentrated at the basal pole of the cells. The data suggest that, in human liver, ATP7B is localized to the plasma membrane of both hepatocytes and biliary epithelial cells.

  1. Chemokines (CCL3, CCL4, and CCL5 Inhibit ATP-Induced Release of IL-1β by Monocytic Cells

    Directory of Open Access Journals (Sweden)

    Anca-Laura Amati

    2017-01-01

    Full Text Available Chemokines and ATP are among the mediators of inflammatory sites that can enter the circulation via damaged blood vessels. The main function of chemokines is leukocyte mobilization, and ATP typically triggers inflammasome assembly. IL-1β, a potent inflammasome-dependent cytokine of innate immunity, is essential for pathogen defense. However, excessive IL-1β may cause life-threatening systemic inflammation. Here, we hypothesize that chemokines control ATP-dependent secretion of monocytic IL-1β. Lipopolysaccharide-primed human monocytic U937 cells were stimulated with the P2X7 agonist BzATP for 30 min to induce IL-1β release. CCL3, CCL4, and CCL5 dose dependently inhibited BzATP-stimulated release of IL-1β, whereas CXCL16 was ineffective. The effect of CCL3 was confirmed for primary mononuclear leukocytes. It was blunted after silencing CCR1 or calcium-independent phospholipase A2 (iPLA2 by siRNA and was sensitive to antagonists of nicotinic acetylcholine receptors containing subunits α7 and α9. U937 cells secreted small factors in response to CCL3 that mediated the inhibition of IL-1β release. We suggest that CCL chemokines inhibit ATP-induced release of IL-1β from U937 cells by a triple-membrane-passing mechanism involving CCR, iPLA2, release of small mediators, and nicotinic acetylcholine receptor subunits α7 and α9. We speculate that whenever chemokines and ATP enter the circulation concomitantly, systemic release of IL-1β is minimized.

  2. Inhibition of the ATPase activity of the catalytic portion of ATP synthases by cationic amphiphiles.

    Science.gov (United States)

    Datiles, Manuel J; Johnson, Eric A; McCarty, Richard E

    2008-04-01

    Melittin, a cationic, amphiphilic polypeptide, has been reported to inhibit the ATPase activity of the catalytic portions of the mitochondrial (MF1) and chloroplast (CF1) ATP synthases. Gledhill and Walker [J.R. Gledhill, J.E. Walker. Inhibition sites in F1-ATPase from bovine heart mitochondria, Biochem. J. 386 (2005) 591-598.] suggested that melittin bound to the same site on MF1 as IF1, the endogenous inhibitor polypeptide. We have studied the inhibition of the ATPase activity of CF1 and of F1 from Escherichia coli (ECF1) by melittin and the cationic detergent, cetyltrimethylammonium bromide (CTAB). The Ca2+- and Mg2+-ATPase activities of CF1 deficient in its inhibitory epsilon subunit (CF1-epsilon) are sensitive to inhibition by melittin and by CTAB. The inhibition of Ca2+-ATPase activity by CTAB is irreversible. The Ca2+-ATPase activity of F1 from E. coli (ECF1) is inhibited by melittin and the detergent, but Mg2+-ATPase activity is much less sensitive to both reagents. The addition of CTAB or melittin to a solution of CF1-epsilon or ECF1 caused a large increase in the fluorescence of the hydrophobic probe, N-phenyl-1-naphthylamine, indicating that the detergent and melittin cause at least partial dissociation of the enzymes. ATP partially protects CF1-epsilon from inhibition by CTAB. We also show that ATP can cause the aggregation of melittin. This result complicates the interpretation of experiments in which ATP is shown to protect enzyme activity from inhibition by melittin. It is concluded that melittin and CTAB cause at least partial dissociation of the alpha/beta heterohexamer.

  3. Differential expression of ATP7A, ATP7B and CTR1 in adult rat dorsal root ganglion tissue

    Directory of Open Access Journals (Sweden)

    Ip Virginia

    2010-09-01

    Full Text Available Abstract Background ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg or drug vehicle twice weekly for 8 weeks. Results In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated heavy neurofilament subunit (pNF-H. High levels of CTR1 mRNA were detected in all tissues from healthy control animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them. Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals. Conclusions In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or ATP7B. The neuron subtype-specific and largely non

  4. Desensitizing efficacy of a new toothpaste containing 5.5% potassium citrate: a 4-week clinical study.

    Science.gov (United States)

    Docimo, Rafaella; Montesani, Luigi; Maturo, Paolo; Costacurta, Micaela; Bartolino, Martina; DeVizio, William; Zhang, Yun Po; Dibart, Serge

    2007-08-01

    To evaluate the desensitizing capabilities of a new toothpaste containing 5.5% potassium citrate (Colgate Sensitive Multi Protection Toothpaste) to another toothpaste containing 3.75% potassium chloride (Sensodyne Total Care F Toothpaste). A 4-week clinical study was conducted in 75 subjects at the University of Rome, at Tor Vergata, in Rome, Italy, using a double blind, stratified, two treatment design. Tactile sensitivity as well as air blast sensitivity assessment was used to compare the efficacy of the two products. There was no statistically significant difference in tactile sensitivity scores and air blast sensitivity scores between the tested toothpastes at baseline, 2 weeks and 4 weeks. Both toothpastes provided statistically significant improvement in tactile sensitivity scores and air blast sensitivity scores after 2 weeks of use and 4 weeks of use as compared to baseline scores.

  5. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    Science.gov (United States)

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  6. An ATP synthase harboring an atypical γ-subunit is involved in ATP synthesis in tomato fruit chromoplasts

    DEFF Research Database (Denmark)

    Pateraki, Irini; Renato, Marta; Azcõn-Bieto, Joaquín

    2013-01-01

    synthesis and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP, and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources. It is widely accepted that the ATP used for biosynthetic processes...... in non-photosynthetic plastids is imported from the cytosol or is obtained through glycolysis. In this work, however, we show that isolated tomato (Solanum lycopersicum) fruit chromoplasts are able to synthesize ATP de novo through a respiratory pathway using NADPH as an electron donor. We also report...... the involvement of a plastidial ATP synthase harboring an atypical γ-subunit induced during ripening, which lacks the regulatory dithiol domain present in plant and algae chloroplast γ-subunits. Silencing of this atypical γ-subunit during fruit ripening impairs the capacity of isolated chromoplast to synthesize...

  7. Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery

    Science.gov (United States)

    Tsang, F. Y.

    1974-01-01

    Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.

  8. The F(0F(1-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Alena Zíková

    2009-05-01

    Full Text Available The mitochondrial F(0F(1 ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F(0F(1 ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F(1 subunits, three to F(0 subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F(1 alpha subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage cells and are important for the structural integrity of the F(0F(1-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the