WorldWideScience

Sample records for atp hydrolysis energy

  1. Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis.

    Science.gov (United States)

    Meurer, Florian; Do, Hoang Tam; Sadowski, Gabriele; Held, Christoph

    2017-04-01

    ATP (adenosine triphosphate) is a key reaction for metabolism. Tools from systems biology require standard reaction data in order to predict metabolic pathways accurately. However, literature values for standard Gibbs energy of ATP hydrolysis are highly uncertain and differ strongly from each other. Further, such data usually neglect the activity coefficients of reacting agents, and published data like this is apparent (condition-dependent) data instead of activity-based standard data. In this work a consistent value for the standard Gibbs energy of ATP hydrolysis was determined. The activity coefficients of reacting agents were modeled with electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT). The Gibbs energy of ATP hydrolysis was calculated by combining the standard Gibbs energies of hexokinase reaction and of glucose-6-phosphate hydrolysis. While the standard Gibbs energy of hexokinase reaction was taken from previous work, standard Gibbs energy of glucose-6-phosphate hydrolysis reaction was determined in this work. For this purpose, reaction equilibrium molalities of reacting agents were measured at pH7 and pH8 at 298.15K at varying initial reacting agent molalities. The corresponding activity coefficients at experimental equilibrium molalities were predicted with ePC-SAFT yielding the Gibbs energy of glucose-6-phosphate hydrolysis of -13.72±0.75kJ·mol(-1). Combined with the value for hexokinase, the standard Gibbs energy of ATP hydrolysis was finally found to be -31.55±1.27kJ·mol(-1). For both, ATP hydrolysis and glucose-6-phosphate hydrolysis, a good agreement with own and literature values were obtained when influences of pH, temperature, and activity coefficients were explicitly taken into account in order to calculate standard Gibbs energy at pH7, 298.15K and standard state. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The effect of pH and free Mg2+ on ATP linked enzymes and the calculation of Gibbs free energy of ATP hydrolysis.

    Science.gov (United States)

    Bergman, Christian; Kashiwaya, Yoshihiro; Veech, Richard L

    2010-12-16

    The apparent equilibrium constants, K′, of biochemical reactions containing substrates which bind [Mg2+] unequally can be significantly altered by changes in free intracellular [Mg2+]. Intracellular free [Mg2+] can be estimated by measurements of [citrate]/[isocitrate], a ratio known to vary with tissue free [Mg2+]. The combined equilibrium constant for glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and triose phosphate isomerase for the three reactions (K(GG-TPI)′) was corrected using new binding constants for dihydroxyacetone-phosphate and 3-phosphoglycerate. The result of this calculation is demonstrated in the calculation of the free energy of ATP hydrolysis. In addition, the dependence of the equilibrium constant for the glutamine synthetase reaction on pH and free [Mg2+] was demonstrated. Furthermore, a theory linking the ΔG′ value of mitochondrial complex I−II and the cytosolic ΔG′ value of ATP hydrolysis is discussed with evidence from previous publications.

  3. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis

    Science.gov (United States)

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K.; Dean, Dennis R.; Hoffman, Brian M.; Antony, Edwin; Seefeldt, Lance C.

    2013-01-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s−1, 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein–protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  4. ATP hydrolysis assists phosphate release and promotes reaction ordering in F1-ATPase

    Science.gov (United States)

    Li, Chun-Biu; Ueno, Hiroshi; Watanabe, Rikiya; Noji, Hiroyuki; Komatsuzaki, Tamiki

    2015-01-01

    F1-ATPase (F1) is a rotary motor protein that can efficiently convert chemical energy to mechanical work of rotation via fine coordination of its conformational motions and reaction sequences. Compared with reactant binding and product release, the ATP hydrolysis has relatively little contributions to the torque and chemical energy generation. To scrutinize possible roles of ATP hydrolysis, we investigate the detailed statistics of the catalytic dwells from high-speed single wild-type F1 observations. Here we report a small rotation during the catalytic dwell triggered by the ATP hydrolysis that is indiscernible in previous studies. Moreover, we find in freely rotating F1 that ATP hydrolysis is followed by the release of inorganic phosphate with low synthesis rates. Finally, we propose functional roles of the ATP hydrolysis as a key to kinetically unlock the subsequent phosphate release and promote the correct reaction ordering. PMID:26678797

  5. Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1.

    Science.gov (United States)

    Elnatan, Daniel; Betegon, Miguel; Liu, Yanxin; Ramelot, Theresa; Kennedy, Michael A; Agard, David A

    2017-07-25

    Hsp90 is a homodimeric ATP-dependent molecular chaperone that remodels its substrate 'client' proteins, facilitating their folding and activating them for biological function. Despite decades of research, the mechanism connecting ATP hydrolysis and chaperone function remains elusive. Particularly puzzling has been the apparent lack of cooperativity in hydrolysis of the ATP in each protomer. A crystal structure of the mitochondrial Hsp90, TRAP1, revealed that the catalytically active state is closed in a highly strained asymmetric conformation. This asymmetry, unobserved in other Hsp90 homologs, is due to buckling of one of the protomers and is most pronounced at the broadly conserved client-binding region. Here, we show that rather than being cooperative or independent, ATP hydrolysis on the two protomers is sequential and deterministic. Moreover, dimer asymmetry sets up differential hydrolysis rates for each protomer, such that the buckled conformation favors ATP hydrolysis. Remarkably, after the first hydrolysis, the dimer undergoes a flip in the asymmetry while remaining in a closed state for the second hydrolysis. From these results, we propose a model where direct coupling of ATP hydrolysis and conformational flipping rearranges client-binding sites, providing a paradigm of how energy from ATP hydrolysis can be used for client remodeling.

  6. A Reconsideration of the Link between the Energetics of Water and of ATP Hydrolysis Energy in the Power Strokes of Molecular Motors in Protein Structures

    Directory of Open Access Journals (Sweden)

    Wilfred F. Widdas

    2008-09-01

    Full Text Available Mechanical energy from oxygen metabolism by mammalian tissues has been studied since 1837. The production of heat by mechanical work was studied by Fick in about 1860. Prior to Fick’s work, energetics were revised by Joule’s experiments which founded the First Law of Thermodynamics. Fenn in 1923/24 found that frog muscle contractions generated extra heat proportional to the amount of work done in shortening the muscle. This was fully consistent with the Joule, Helmholtz concept used for the First Law of Thermodynamics. The link between the energetics of water and ATP hydrolysis in molecular motors is recommended for reconsideration.

  7. H+/ATP ratio during ATP hydrolysis by mitochondria: modification of the chemiosmotic theory.

    Science.gov (United States)

    Brand, M D; Lehninger, A L

    1977-01-01

    The stoichiometry of H+ ejection by mitochondria during hydrolysis of a small pulse of ATP (the H+/ATP ratio) has been reexamined in the light of our recent observation that the stoichiometry of H+ ejection during mitochondrial electron transport (the H+/site ratio) was previously underestimated. We show that earlier estimates of the H+/ATP ratio in intact mitochondria were based upon an invalid correction for scaler H+ production and describe a modified method for determination of this ratio which utilizes mersalyl or N-ethylmaleimide to prevent complicating transmembrane movements of phosphate and H+. This method gives a value for the H+/ATP ratio of 2.0 without the need for questionable corrections, compared with a value of 3.0 for the H+/site ratio also obtained by pulse methods. A modified version of the chemiosmotic theory is presented, in which 3 H+ are ejected per pair of electrons traversing each energy-conserving site of the respiratory chain. Of these, 2 H+ return to the matrix through the ATPase to form ATP from ADP and phosphate, and 1 H+ returns through the combined action of the phosphate and adenine nucleotide exchange carriers of the inner membrane to allow the energy-requiring influx of Pi and ADP3- and efflux of ATP4-. Thus, up to one-third of the energy input into synthesis of extramitochondrial ATP may be required for transport work. Since other methods suggest that the H+/site significantly exceeds 3.0, an alternative possibility is that 4 h+ are ejected per site, followed by return of 3 H+ through the ATPase and 1 H+ through the operation of the proton-coupled membrane transport systems. PMID:17116

  8. Treatment of heterotopic ossification through remote ATP hydrolysis.

    Science.gov (United States)

    Peterson, Jonathan R; De La Rosa, Sara; Eboda, Oluwatobi; Cilwa, Katherine E; Agarwal, Shailesh; Buchman, Steven R; Cederna, Paul S; Xi, Chuanwu; Morris, Michael D; Herndon, David N; Xiao, Wenzhong; Tompkins, Ronald G; Krebsbach, Paul H; Wang, Stewart C; Levi, Benjamin

    2014-09-24

    Heterotopic ossification (HO) is the pathologic development of ectopic bone in soft tissues because of a local or systemic inflammatory insult, such as burn injury or trauma. In HO, mesenchymal stem cells (MSCs) are inappropriately activated to undergo osteogenic differentiation. Through the correlation of in vitro assays and in vivo studies (dorsal scald burn with Achilles tenotomy), we have shown that burn injury enhances the osteogenic potential of MSCs and causes ectopic endochondral heterotopic bone formation and functional contractures through bone morphogenetic protein-mediated canonical SMAD signaling. We further demonstrated a prevention strategy for HO through adenosine triphosphate (ATP) hydrolysis at the burn site using apyrase. Burn site apyrase treatment decreased ATP, increased adenosine 3',5'-monophosphate, and decreased phosphorylation of SMAD1/5/8 in MSCs in vitro. This ATP hydrolysis also decreased HO formation and mitigated functional impairment in vivo. Similarly, selective inhibition of SMAD1/5/8 phosphorylation with LDN-193189 decreased HO formation and increased range of motion at the injury site in our burn model in vivo. Our results suggest that burn injury-exacerbated HO formation can be treated through therapeutics that target burn site ATP hydrolysis and modulation of SMAD1/5/8 phosphorylation. Copyright © 2014, American Association for the Advancement of Science.

  9. ATP Hydrolysis Induced Conformational Changes in the Vitamin B12 Transporter BtuCD Revealed by MD Simulations.

    Science.gov (United States)

    Pan, Chao; Weng, Jingwei; Wang, Wenning

    2016-01-01

    ATP binding cassette (ABC) transporters utilize the energy of ATP hydrolysis to uni-directionally transport substrates across cell membrane. ATP hydrolysis occurs at the nucleotide-binding domain (NBD) dimer interface of ABC transporters, whereas substrate translocation takes place at the translocation pathway between the transmembrane domains (TMDs), which is more than 30 angstroms away from the NBD dimer interface. This raises the question of how the hydrolysis energy released at NBDs is "transmitted" to trigger the conformational changes at TMDs. Using molecular dynamics (MD) simulations, we studied the post-hydrolysis state of the vitamin B12 importer BtuCD. Totally 3-μs MD trajectories demonstrate a predominantly asymmetric arrangement of the NBD dimer interface, with the ADP-bound site disrupted and the ATP-bound site preserved in most of the trajectories. TMDs response to ATP hydrolysis by separation of the L-loops and opening of the cytoplasmic gate II, indicating that hydrolysis of one ATP could facilitate substrate translocation by opening the cytoplasmic end of translocation pathway. It was also found that motions of the L-loops and the cytoplasmic gate II are coupled with each other through a contiguous interaction network involving a conserved Asn83 on the extended stretch preceding TM3 helix plus the cytoplasmic end of TM2/6/7 helix bundle. These findings entail a TMD-NBD communication mechanism for type II ABC importers.

  10. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers*

    Science.gov (United States)

    Zoghbi, Maria E.; Altenberg, Guillermo A.

    2013-01-01

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we used luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation. PMID:24129575

  11. ATP Binding and Hydrolysis Properties of ABCB10 and Their Regulation by Glutathione

    Science.gov (United States)

    Qiu, Wei; Liesa, Marc; Carpenter, Elizabeth P.; Shirihai, Orian S.

    2015-01-01

    ABCB10 (ATP binding cassette sub-family B10) is a mitochondrial inner-membrane ABC transporter. ABCB10 has been shown to protect the heart from the impact of ROS during ischemia-reperfusion and to allow for proper hemoglobin synthesis during erythroid development. ABC transporters are proteins that increase ATP binding and hydrolysis activity in the presence of the transported substrate. However, molecular entities transported by ABCB10 and its regulatory mechanisms are currently unknown. Here we characterized ATP binding and hydrolysis properties of ABCB10 by using the 8-azido-ATP photolabeling technique. This technique can identify potential ABCB10 regulators, transported substrates and amino-acidic residues required for ATP binding and hydrolysis. We confirmed that Gly497 and Lys498 in the Walker A motif, Glu624 in the Walker B motif and Gly602 in the C-Loop motif of ABCB10 are required for proper ATP binding and hydrolysis activity, as their mutation changed ABCB10 8-Azido-ATP photo-labeling. In addition, we show that the potential ABCB10 transported entity and heme precursor delta-aminolevulinic acid (dALA) does not alter 8-azido-ATP photo-labeling. In contrast, oxidized glutathione (GSSG) stimulates ATP hydrolysis without affecting ATP binding, whereas reduced glutathione (GSH) inhibits ATP binding and hydrolysis. Indeed, we detectABCB10 glutathionylation in Cys547 and show that it is one of the exposed cysteine residues within ABCB10 structure. In all, we characterize essential residues for ABCB10 ATPase activity and we provide evidence that supports the exclusion of dALA as a potential substrate directly transported by ABCB10. Last, we show the first molecular mechanism by which mitochondrial oxidative status, through GSH/GSSG, can regulate ABCB10. PMID:26053025

  12. ATP release, generation and hydrolysis in exocrine pancreatic duct cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Yegutkin, G.G.; Novak, Ivana

    2015-01-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, ou...

  13. Bile acids stimulate ATP hydrolysis in the purified cholesterol transporter ABCG5/G8.

    Science.gov (United States)

    Johnson, Brandy J Harvey; Lee, Jyh-Yeuan; Pickert, Amanda; Urbatsch, Ina L

    2010-04-27

    ABCG5 and ABCG8 are half-size ABC transporters that function as heterodimers (ABCG5/G8) to reduce sterol absorption in the intestines and increase sterol excretion from the liver. Previous studies demonstrated that bile acids increased ABCG5/G8 specific cholesterol efflux in cell models. In this study we tested the effects of bile acids on ATP hydrolysis in Pichia pastoris purified ABCG5/G8 and found that they stimulated hydrolysis approximately 20-fold in wild-type ABCG5/G8 but not in a hydrolysis-deficient mutant. Nonconjugated cholate supported the highest ATPase activity in ABCG5/G8 (256 +/- 9 nmol min(-1) mg(-1)). ATP hydrolysis was also stimulated by other conjugated bile acids and a mixture of bile acids resembling human bile with activities ranging from 129 +/- 4 to 147 +/- 14 nmol min(-1) mg(-1). The kinetic parameters, inhibitor profiles, and lipid requirements of bile acid stimulated ATP hydrolysis were characterized. Cholate-stimulated ATP hydrolysis was maximal at concentrations of >or=10 mM MgATP and had a relatively high K(M) (MgATP) of approximately 1 mM. Orthovanadate, BeFx, and AlFx effectively inhibited ABCG5/G8 at concentrations of 1 mM. Various lipid mixtures supported bile acid-stimulated ATP hydrolysis, which increased when cholesterol was present. The data demonstrate that bile acids together with lipids and cholesterol increase ATP hydrolysis in purified ABCG5/G8. Bile acids may promote an active conformation of purified ABCG5/G8 either by global stabilization of the transporter or by binding to a specific site on ABCG5/G8.

  14. Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids.

    Directory of Open Access Journals (Sweden)

    Yoan Ah-Seng

    Full Text Available Hydrolysis of ATP by partition ATPases, although considered a key step in the segregation mechanism that assures stable inheritance of plasmids, is intrinsically very weak. The cognate centromere-binding protein (CBP, together with DNA, stimulates the ATPase to hydrolyse ATP and to undertake the relocation that incites plasmid movement, apparently confirming the need for hydrolysis in partition. However, ATP-binding alone changes ATPase conformation and properties, making it difficult to rigorously distinguish the substrate and cofactor roles of ATP in vivo. We had shown that mutation of arginines R36 and R42 in the F plasmid CBP, SopB, reduces stimulation of SopA-catalyzed ATP hydrolysis without changing SopA-SopB affinity, suggesting the role of hydrolysis could be analyzed using SopA with normal conformational responses to ATP. Here, we report that strongly reducing SopB-mediated stimulation of ATP hydrolysis results in only slight destabilization of mini-F, although the instability, as well as an increase in mini-F clustering, is proportional to the ATPase deficit. Unexpectedly, the reduced stimulation also increased the frequency of SopA relocation over the nucleoid. The increase was due to drastic shortening of the period spent by SopA at nucleoid ends; average speed of migration per se was unchanged. Reduced ATP hydrolysis was also associated with pronounced deviations in positioning of mini-F, though time-averaged positions changed only modestly. Thus, by specifically targeting SopB-stimulated ATP hydrolysis our study reveals that even at levels of ATPase which reduce the efficiency of splitting clusters and the constancy of plasmid positioning, SopB still activates SopA mobility and plasmid positioning, and sustains near wild type levels of plasmid stability.

  15. Cation Transport Coupled to ATP Hydrolysis by the (Na, K)-ATPase: An Integrated, Animated Model

    Science.gov (United States)

    Leone, Francisco A.; Furriel, Rosa P. M.; McNamara, John C.; Horisberger, Jean D.; Borin, Ivana A.

    2010-01-01

    An Adobe[R] animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na[superscript +] and K[superscript +] translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P[subscript 2c]-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also…

  16. Synthesis and hydrolysis of ATP and the phosphate-ATP exchange reaction in soluble mitochondrial F1 in the presence of dimethylsulfoxide.

    Science.gov (United States)

    Tuena de Gómez-Puyou, M; Pérez-Hernández, G; Gómez-Puyou, A

    1999-12-01

    In medium containing 40% dimethylsulfoxide, soluble F1 catalyzes the hydrolysis of ATP introduced at concentrations lower than that of the enzyme [Al-Shawi, M.K. & Senior, A.E. (1992), Biochemistry 31, 886-891]. At this concentration of dimethylsulfoxide, soluble F1 also catalyzes the spontaneous synthesis of a tightly bound ATP to a level of approximately 0.15 mol per mol F1 [Gómez-Puyou, A., Tuena de Gómez-Puyou, M. & de Meis, L. (1986) Eur. J. Biochem. 159, 133-140]. The mechanisms that allow soluble F1 to carry out these apparently opposing reactions were studied. The rate of hydrolysis of ATP bound to F1 under uni-site conditions and that of synthesis of ATP were markedly similar, indicating that the two ATP molecules lie in equivalent high affinity catalytic sites. The number of enzyme molecules that have ATP at the high affinity catalytic site under conditions of synthesis or uni-site hydrolysis is less than the total number of enzyme molecules. Therefore, it was hypothesized that when the enzyme was treated with dimethylsulfoxide, a fraction of the F1 population carried out synthesis and another hydrolysis. Indeed, measurements of the two reactions under identical conditions showed that different fractions of the F1 population carried out simultaneously synthesis and hydrolysis of ATP. The reactions continued until an equilibrium level between F1.ADP + Pi F1.ATP was established. At equilibrium, about 15% of the enzyme population was in the form F1.ATP. The DeltaG degrees of the reaction with 0.54 microM F1, 2 mM Pi and 10 mM Mg2+ at pH 6.8 was -2.7 kcal.mol-1 in favor of F1.ATP. The DeltaG degrees of the reaction did not exhibit important variations with Pi concentration; thus, the reaction was in thermodynamic equilibrium. In contrast, DeltaG degrees became significantly less negative as the concentration of dimethylsulfoxide was decreased. In water, the reaction was far to the left. The equilibrium constant of the reaction diminished linearly with an

  17. Hydrolysis of ATP at only one GyrB subunit is sufficient to promote supercoiling by DNA gyrase

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1998-01-01

    Mutation of Glu42 to Ala in the B subunit of DNA gyrase abolishes ATP hydrolysis but not nucleotide binding. Gyrase complexes that contain one wild-type and one Ala42 mutant B protein were formed, and the ability of such complexes to hydrolyze ATP was investigated. We found that ATP hydrolysis...

  18. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  19. ATP synthase from slow and fast growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  20. Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Nomata, Jiro [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan); Terauchi, Kazuki [Department of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 (Japan); Fujita, Yuichi, E-mail: fujita@agr.nagoya-u.ac.jp [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan)

    2016-02-12

    Dark-operative protochlorophyllide (Pchlide) oxidoreductase (DPOR) is a nitrogenase-like enzyme catalyzing a reduction of the C17 = C18 double bond of Pchlide to form chlorophyllide a (Chlide) in bacteriochlorophyll biosynthesis. DPOR consists of an ATP-dependent reductase component, L-protein (a BchL dimer), and a catalytic component, NB-protein (a BchN–BchB heterotetramer). The L-protein transfers electrons to the NB-protein to reduce Pchlide, which is coupled with ATP hydrolysis. Here we determined the stoichiometry of ATP hydrolysis and the Chlide formation of DPOR. The minimal ratio of ATP to Chlide (ATP/2e{sup –}) was 4, which coincides with that of nitrogenase. The ratio increases with increasing molar ratio of L-protein to NB-protein. This profile differs from that of nitrogenase. These results suggest that DPOR has a specific intrinsic property, while retaining the common features shared with nitrogenase. - Highlights: • The stoichiometry of nitrogenase-like protochlorophyllide reductase was determined. • The minimal ATP/2e{sup –} ratio was 4, which coincides with that of nitrogenase. • The ATP/2e{sup –} ratio increases with increasing L-protein/NB-protein molar ratio. • DPOR has an intrinsic property, but retains features shared with nitrogenase.

  1. The DNA gyrase-quinolone complex. ATP hydrolysis and the mechanism of DNA cleavage

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1998-01-01

    Quinolone binding to the gyrase-DNA complex induces a conformational change that results in the blocking of supercoiling. Under these conditions gyrase is still capable of ATP hydrolysis which now proceeds through an alternative pathway involving two different conformations of the enzyme (Kampranis......, S. C., and Maxwell, A. (1998) J. Biol. Chem. 269, 22606-22614). The kinetics of ATP hydrolysis via this pathway have been studied and found to differ from those of the reaction of the drug-free enzyme. The quinolone-characteristic ATPase rate is DNA-dependent and can be induced in the presence...... of DNA fragments as small as 20 base pairs. By observing the conversion of the ATPase rate to the quinolone characteristic rate, the formation and dissociation of the gyrase-DNA-quinolone complex can be monitored. Comparison of the time dependence of the conversion of the gyrase ATPase with that of DNA...

  2. A Transient Rise in Free Mg2+Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation.

    Science.gov (United States)

    Maeshima, Kazuhiro; Matsuda, Tomoki; Shindo, Yutaka; Imamura, Hiromi; Tamura, Sachiko; Imai, Ryosuke; Kawakami, Syoji; Nagashima, Ryosuke; Soga, Tomoyoshi; Noji, Hiroyuki; Oka, Kotaro; Nagai, Takeharu

    2018-02-05

    For cell division, negatively charged chromatin, in which nucleosome fibers (10 nm fibers) are irregularly folded [1-5], must be condensed into chromosomes and segregated. While condensin and other proteins are critical for organizing chromatin into the appropriate chromosome shape [6-17], free divalent cations such as Mg 2+ and Ca 2+ , which condense chromatin or chromosomes in vitro [18-28], have long been considered important, especially for local condensation, because the nucleosome fiber has a net negative charge and is by itself stretched like "beads on a string" by electrostatic repulsion. For further folding, other positively charged factors are required to decrease the charge and repulsion [29]. However, technical limitations to measure intracellular free divalent cations, but not total cations [30], especially Mg 2+ , have prevented us from elucidating their function. Here, we developed a Förster resonance energy transfer (FRET)-based Mg 2+ indicator that monitors free Mg 2+ dynamics throughout the cell cycle. By combining this indicator with Ca 2+ [31] and adenosine triphosphate (ATP) [32] indicators, we demonstrate that the levels of free Mg 2+ , but not Ca 2+ , increase during mitosis. The Mg 2+ increase is coupled with a decrease in ATP, which is normally bound to Mg 2+ in the cell [33]. ATP inhibited Mg 2+ -dependent chromatin condensation in vitro. Chelating Mg 2+ induced mitotic cell arrest and chromosome decondensation, while ATP reduction had the opposite effect. Our results suggest that ATP-bound Mg 2+ is released by ATP hydrolysis and contributes to mitotic chromosome condensation with increased rigidity, suggesting a novel regulatory mechanism for higher-order chromatin organization by the intracellular Mg 2+ -ATP balance. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Uncovering the basis of ATP hydrolysis activity in purified human p53 protein: a reinvestigation.

    Directory of Open Access Journals (Sweden)

    Shalini Verma

    Full Text Available p53 is one of the most well studied tumor suppressor proteins and regarded as the guardian of the genome. The protein mediates cell-cycle arrest, apoptosis in response to myriads of cellular stresses including DNA damage via its transcriptional as well as non-transcriptional roles. ATP binding/hydrolysis by p53 had been implicated in its DNA binding functions. However, till date, no ATP binding/hydrolysis domains have been mapped in p53. In the current study, we have reinvestigated the ATP hydrolysis activity associated with recombinant human p53 protein expressed and purified from E.coli. We confirmed the source of ATPase activity using various deletion constructs of p53 and an In-gel ATPase assay followed by LC-ESI-MS/MS analysis of the activity band. The activity was associated with Hsp70 homologue in E.coli, DnaK, a known interactor of p53. We clarify that wildtype human p53, expressed in E. coli BL21 (DE3 strain, carries no ATPase activity.

  4. Primuline Derivatives That Mimic RNA to Stimulate Hepatitis C Virus NS3 Helicase-catalyzed ATP Hydrolysis*

    Science.gov (United States)

    Sweeney, Noreena L.; Shadrick, William R.; Mukherjee, Sourav; Li, Kelin; Frankowski, Kevin J.; Schoenen, Frank J.; Frick, David N.

    2013-01-01

    ATP hydrolysis fuels the ability of helicases and related proteins to translocate on nucleic acids and separate base pairs. As a consequence, nucleic acid binding stimulates the rate at which a helicase catalyzes ATP hydrolysis. In this study, we searched a library of small molecule helicase inhibitors for compounds that stimulate ATP hydrolysis catalyzed by the hepatitis C virus (HCV) NS3 helicase, which is an important antiviral drug target. Two compounds were found that stimulate HCV helicase-catalyzed ATP hydrolysis, both of which are amide derivatives synthesized from the main component of the yellow dye primuline. Both compounds possess a terminal pyridine moiety, which was critical for stimulation. Analogs lacking a terminal pyridine inhibited HCV helicase catalyzed ATP hydrolysis. Unlike other HCV helicase inhibitors, the stimulatory compounds differentiate between helicases isolated from various HCV genotypes and related viruses. The compounds only stimulated ATP hydrolysis catalyzed by NS3 purified from HCV genotype 1b. They inhibited helicases from other HCV genotypes (e.g. 1a and 2a) or related flaviviruses (e.g. Dengue virus). The stimulatory compounds interacted with HCV helicase in the absence of ATP with dissociation constants of about 2 μm. Molecular modeling and site-directed mutagenesis studies suggest that the stimulatory compounds bind in the HCV helicase RNA-binding cleft near key residues Arg-393, Glu-493, and Ser-231. PMID:23703611

  5. Estimation of Viable Biomass In Wastewater And Activated Sludge By Determination of ATP, Oxygen Utilization Rate And FDA Hydrolysis

    DEFF Research Database (Denmark)

    Jørgensen, Poul-Erik; Eriksen, T.; Jensen, B.K.

    1992-01-01

    ATP content, oxygen utilization rate (OUR) and fluorescein diacetate (FDA) hydrolysis were tested for the ability to express the amount of viable biomass in wastewater and activated sludge. The relationship between biomass and these activity parameters was established in growth cultures made...... with biomass, while FDA hydrolysis in the sludge failed to show any such correlation. Conversion factors of 3 mg ATP/g dw, 300 mg O2/h g dw and 0.4 A/h (mg dw/ml) for ATP, OUR and FDA methods, respectively, were calculated. When the methods were applied for in situ determinations in four different wastewater...... plants, it was found that ATP content and respiration rate estimated viable biomass to range from 81 to 293 mg dw/g SS for raw wastewater and from 67 to 187 mg dw/g SS for activated sludge with a rather weak correlation between ATP and respiration measurements. The FDA hydrolysis estimated viable biomass...

  6. Transmurally differentiated measurement of ATP hydrolysis rates in the in vivo porcine hearts.

    Science.gov (United States)

    Jang, Albert; Xiong, Qiang; Zhang, Pengyuan; Zhang, Jianyi

    2016-05-01

    Compare the transmural distribution of forward creatine kinase reaction (kf,CK ) and ATP hydrolysis rate (kr,ATPase ) in the myocardium of normal porcine heart. Rate constants were extracted from partially relaxed spectra by applying the T1nom method, effectively reducing data acquisition time by up to an order of magnitude. T1nom method for double saturation of PCr and Pi is introduced and validated through simulations. Bioenergetics was measured in vivo utilizing one-dimensional chemical shift imaging (1D-CSI) magnetic resonance (31) P spectroscopy. At basal conditions, there was no significant difference between subepicardial layers (EPI) vs. the subendocardial layers (ENDO) for both fluxf,CK and fluxr,ATPase . At high cardiac workload (HWL), where the rate pressure product increased 2.6-fold, PCr/ATP ratio and fluxf,CK showed no significant change in both EPI and ENDO layers, while fluxr,ATPase increased significantly (baseline: 1.11 ± 0.12 and 1.12 ± 0.13 μmol/g/s, EPI and ENDO, respectively; to HWL: 2.35 ± 0.27 and 2.21 ± 0.08 μmol/g/s, EPI and ENDO, respectively, each P heart, increase of cardiac work state is accompanied by an increase in ATP hydrolysis rate with no changes in CK flux rate. There are no significant differences between EPI vs. ENDO concerning the ATP hydrolysis rate or CK flux rate in both baseline and high cardiac work states. © 2016 Wiley Periodicals, Inc.

  7. Drastic Compensation of Electronic and Solvation Effects on ATP Hydrolysis Revealed through Large-Scale QM/MM Simulations Combined with a Theory of Solutions.

    Science.gov (United States)

    Takahashi, Hideaki; Umino, Satoru; Miki, Yuji; Ishizuka, Ryosuke; Maeda, Shu; Morita, Akihiro; Suzuki, Makoto; Matubayasi, Nobuyuki

    2017-03-16

    Hydrolysis of adenosine triphosphate (ATP) is the "energy source" for a variety of biochemical processes. In the present work, we address key features of ATP hydrolysis: the relatively moderate value (about -10 kcal/mol) of the standard free energy, ΔGhyd, of reaction and the insensitivity of ΔGhyd to the number of excess electrons on ATP. We conducted quantum mechanical/molecular mechanical simulation combined with the energy-representation theory of solutions to analyze the electronic-state and solvation contributions to ΔGhyd. It was revealed that the electronic-state contribution in ΔGhyd is largely negative (favorable) upon hydrolysis, due to the reduction of electrostatic repulsion accompanying the breakage of the P-O bond. In contrast, the solvation effect was found to be strongly more favorable on the reactant side. Thus, we showed that a drastic compensation of the two opposite effects takes place, leading to the modest value of ΔGhyd at each number of excess electrons examined. The computational analyses were also conducted for pyrophosphate ions (PPi), and the parallelism between the ATP and PPi hydrolyses was confirmed. Classical molecular dynamics simulation was further carried out to discuss the effect of the solvent environment; the insensitivity of ΔGhyd to the number of excess electrons was seen to hold in solvent water and ethanol.

  8. Differential scanning calorimetry study of glycerinated rabbit psoas muscle fibres in intermediate state of ATP hydrolysis

    Directory of Open Access Journals (Sweden)

    Farkas Nelli

    2007-06-01

    Full Text Available Abstract Background Thermal denaturation experiments were extended to study the thermal behaviour of the main motor proteins (actin and myosin in their native environment in striated muscle fibres. The interaction of actin with myosin in the highly organized muscle structure is affected by internal forces; therefore their altered conformation and interaction may differ from those obtained in solution. The energetics of long functioning intermediate states of ATP hydrolysis cycle was studied in muscle fibres by differential scanning calorimetry (DSC. Results SETARAM Micro DSC-II was used to monitor the thermal denaturation of the fibre system in rigor and in the presence of nucleotide and nucleotide analogues. The AM.ADP.Pi state of the ATP hydrolysis cycle has a very short lifetime therefore, we mimicked the different intermediate states with AMP.PNP and/or inorganic phosphate analogues Vi and AlF4 or BeFx. Studying glycerol-extracted muscle fibres from the rabbit psoas muscle by DSC, three characteristic thermal transitions were detected in rigor. The thermal transitions can be assigned to myosin heads, myosin rods and actin with transition temperatures (Tm of 52.9 ± 0.7°C, 57.9 ± 0.7°C, 63.7 ± 1.0°C. In different intermediate states of the ATP hydrolysis mimicked by nucleotide analogues a fourth thermal transition was also detected which is very likely connected with nucleotide binding domain of myosin and/or actin filaments. This transition temperature Tm4 depended on the mimicked intermediate states, and varied in the range of 66°C – 77°C. Conclusion According to DSC measurements, strongly and weakly binding states of myosin to actin were significantly different. In the presence of ADP only a moderate change of the DSC pattern was detected in comparison with rigor, whereas in ADP.Pi state trapped by Vi, AlF4 or BeFx a remarkable stabilization was detected on the myosin head and actin filament which is reflected in a 3.0 – 10.0

  9. Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft.

    Directory of Open Access Journals (Sweden)

    Rozan Vroman

    2014-05-01

    Full Text Available Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms, highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca²⁺ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form

  10. Arp2/3 complex ATP hydrolysis promotes lamellipodial actin network disassembly but is dispensable for assembly

    Science.gov (United States)

    Ingerman, Elena; Hsiao, Jennifer Ying

    2013-01-01

    We examined the role of ATP hydrolysis by the Arp2/3 complex in building the leading edge of a cell by studying the effects of hydrolysis defects on the behavior of the complex in the lamellipodial actin network of Drosophila S2 cells and in a reconstituted, in vitro, actin-based motility system. In S2 cells, nonhydrolyzing Arp2 and Arp3 subunits expanded and delayed disassembly of lamellipodial actin networks and the effect of mutant subunits was additive. Arp2 and Arp3 ATP hydrolysis mutants remained in lamellipodial networks longer and traveled greater distances from the plasma membrane, even in networks still containing wild-type Arp2/3 complex. In vitro, wild-type and ATP hydrolysis mutant Arp2/3 complexes each nucleated actin and built similar dendritic networks. However, networks constructed with Arp2/3 hydrolysis-defective mutants were more resistant to disassembly by cofilin. Our results indicate that ATP hydrolysis on both Arp2 and Arp3 contributes to dissociation of the complex from the actin network but is not strictly necessary for lamellipodial network disassembly. PMID:23439681

  11. Intra- And Inter-Monomer Interactions are Required to Synergistically Facilitate ATP Hydrolysis in HSP90

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, C.N.; Krukenberg, K.A.; Agard, D.A.

    2009-05-12

    Nucleotide-dependent conformational changes of the constitutively dimeric molecular chaperone Hsp90 are integral to its molecular mechanism. Recent full-length crystal structures (Protein Data Bank codes 2IOQ, 2CG9, AND 2IOP) of Hsp90 homologs reveal large scale quaternary domain rearrangements upon the addition of nucleotides. Although previous work has shown the importance of C-terminal domain dimerization for efficient ATP hydrolysis, which should imply cooperativity, other studies suggest that the two ATPases function independently. Using the crystal structures as a guide, we examined the role of intra- and intermonomer interactions in stabilizing the ATPase activity of a single active site within an intact dimer. This was accomplished by creating heterodimers that allow us to differentially mutate each monomer, probing the context in which particular residues are important for ATP hydrolysis. Although the ATPase activity of each monomer can function independently, we found that the activity of one monomer could be inhibited by the mutation of hydrophobic residues on the trans N-terminal domain (opposite monomer). Furthermore, these trans interactions are synergistically mediated by a loop on the cis middle domain. This loop contains hydrophobic residues as well as a critical arginine that provides a direct linkage to the {gamma}-phosphate of bound ATP. Small angle x-ray scattering demonstrates that deleterious mutations block domain closure in the presence of AMPPNP (5{prime}-adenylyl-{beta},{gamma}-imidodiphosphate), providing a direct linkage between structural changes and functional consequences. Together, these data indicate that both the cis monomer and the trans monomer and the intradomain and interdomain interactions cooperatively stabilize the active conformation of each active site and help explain the importance of dimer formation.

  12. Rate of hydrolysis in ATP synthase is fine-tuned by  -subunit motif controlling active site conformation

    KAUST Repository

    Beke-Somfai, T.

    2013-01-23

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.

  13. Nucleotide-induced asymmetry within ATPase activator ring drives σ54-RNAP interaction and ATP hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; Nixon, B. Tracy [IIT; (Penn)

    2013-12-10

    It is largely unknown how the typical homomeric ring geometry of ATPases associated with various cellular activities enables them to perform mechanical work. Small-angle solution X-ray scattering, crystallography, and electron microscopy (EM) reconstructions revealed that partial ATP occupancy caused the heptameric closed ring of the bacterial enhancer-binding protein (bEBP) NtrC1 to rearrange into a hexameric split ring of striking asymmetry. The highly conserved and functionally crucial GAFTGA loops responsible for interacting with σ54–RNA polymerase formed a spiral staircase. We propose that splitting of the ensemble directs ATP hydrolysis within the oligomer, and the ring's asymmetry guides interaction between ATPase and the complex of σ54 and promoter DNA. Similarity between the structure of the transcriptional activator NtrC1 and those of distantly related helicases Rho and E1 reveals a general mechanism in homomeric ATPases whereby complex allostery within the ring geometry forms asymmetric functional states that allow these biological motors to exert directional forces on their target macromolecules.

  14. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes.

    Science.gov (United States)

    Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D

    2015-12-15

    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This 'DNA sliding' is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Superstoichiometric Ca2+ uptake supported by hydrolysis of endogenous ATP in rat liver mitochondria.

    Science.gov (United States)

    Brand, M D; Lehninger, A L

    1975-10-10

    The nature of the energy store causing rapid superstoichiometric leads to H+/2e minus ejection and leads to Ca2+/2e minus uptake ratios in rat liver mitochondria pulsed with Ca2+ has been investigated. The extent and the rate of the initial fast superstoichiometric phase of H plus ejection were greatly reduced by oligomycin and other ATPase inhibitors; the subsequent shoichiometric phase was unaffected. No such inhibition was seen with atractyloside. Similarly, the initial fast phase of Ca2+ uptake was reduced in extent by oligomycin, whereas the slower stoichiometric phase was unaffected. Moreover, the ATP content of mitochondria previously incubated with succinate decreased by about 80% within 5 s after pulsing with Ca2+. The energy store for superstoichiometric Ca2+ uptake and H plus injection is thus identified as endogenous ATP.

  16. Luminescence resonance energy transfer spectroscopy of ATP-binding cassette proteins.

    Science.gov (United States)

    Zoghbi, Maria E; Altenberg, Guillermo A

    2018-04-01

    The ATP-binding cassette (ABC) superfamily includes regulatory and transport proteins. Most human ABC exporters pump substrates out of cells using energy from ATP hydrolysis. Although major advances have been made toward understanding the molecular mechanism of ABC exporters, there are still many issues unresolved. During the last few years, luminescence resonance energy transfer has been used to detect conformational changes in real time, with atomic resolution, in isolated ABC nucleotide binding domains (NBDs) and full-length ABC exporters. NBDs are particularly interesting because they provide the power stroke for substrate transport. Luminescence resonance energy transfer (LRET) is a spectroscopic technique that can provide dynamic information with atomic-resolution of protein conformational changes under physiological conditions. Using LRET, it has been shown that NBD dimerization, a critical step in ABC proteins catalytic cycle, requires binding of ATP to two nucleotide binding sites. However, hydrolysis at just one of the sites can drive dissociation of the NBD dimer. It was also found that the NBDs of the bacterial ABC exporter MsbA reconstituted in a lipid bilayer membrane and studied at 37°C never separate as much as suggested by crystal structures. This observation stresses the importance of performing structural/functional studies of ABC exporters under physiologic conditions. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates.

    Science.gov (United States)

    Kumar, Charanya; Eichmiller, Robin; Wang, Bangchen; Williams, Gregory M; Bianco, Piero R; Surtees, Jennifer A

    2014-06-01

    In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3' non-homologous tail removal (3'NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3'NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3'NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3'NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by Mismatch and Double-strand Break Repair DNA substrates

    Science.gov (United States)

    Kumar, Charanya; Eichmiller, Robin; Wang, Bangchen; Williams, Gregory M.; Bianco, Piero R.; Surtees, Jennifer A.

    2014-01-01

    In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3′ non-homologous tail removal (3′NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3′ NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3′ NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3′ NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype. PMID:24746922

  19. [Kinetic regularities of the proceeding and possible reaction mechanism of Mg2+-dependent enzymatic hydrolysis of ATP in the fraction of plasmatic membranes of the smooth muscle].

    Science.gov (United States)

    Danylovych, H V; Kosterin, S O

    2004-01-01

    Kinetic regularities of the reaction of Ca2+-independent Mg2+-dependent enzymatic hydrolysis of ATP catalyzed by the so-called "basal" Mg2+-ATPase localized in the plasmatic membrane of the uterus smooth-muscle cells have been studied using the methods of kinetic analysis performed under the equilibrium conditions. The analysis was based on the study of the concentration dependence of initial velocity of nucleoside triphosphate hydrolysis in EGTA-containing medium under the change of general concentrations of ATP [ATP]o and Mg2+[Mg2+]o in conditions of their equimolar ratio ([ATP]o/ [Mg2+]o)= 1; here the ratio between the concentrations of free reagents ([ATP4-]o/[Mg2+]o) was equal to 1.25. The obtained concentration dependence was interpreted in terms of two practically possible alternative mechanisms of Mg2+-dependent ATP-hydrolase enzymatic reaction. Mechanism I. Two separate independent centres of Mg ions and ATP binding by the enzymatic protein are supposed to exist, while Mg2+-dependent ATP-hydrolase enzymatic reaction proceeds independent of the equilibrium reaction of Mg ions chelatization of muscleside triphosphate. Mechanism II. The existence of the only centre of the chelate complex Mg2+ATP2- binding is postulated on the enzymatic protein; this process is also realized independent of the binding of Mg2+ and ATP-hydralase reaction catalized by it.

  20. Reaction heats and heat capacity changes for intermediate steps of the ATP hydrolysis catalyzed by myosin subfragment 1.

    Science.gov (United States)

    Kodama, T

    1981-03-25

    The interaction of myosin Subfragment 1 with ATP in 0.1 M KCl containing 0.01 M MgCl2 and 0.02 M Tris/HCl (pH 8.0) was studied by microcalorimetry at temperatures of 4, 12, and 23 degrees C so that values of the heat capacity change (delta Cp) could be obtained for intermediate steps of the ATPase cycle. The delta Cp values are large compared to the value for the overall cycle, indicating that large changes in the hydrophobic effect are involved in transitions between different intermediate states. However, the heat capacity changes themselves show peculiar temperature dependences. Thus bindings of ATP and ADP to Subfragment 1, both of which are strongly exothermic processes, take place with large negative delta Cp of about -3 kJK-1 mol-1 between 4 and 12 degrees C but with very small delta Cp of 0.3-0.4 kJ K-1 mol-1 between 12 and 23 degrees C. On the contrary, the delta Cp for the endothermic hydrolysis of ATP bound to Subfragment 1 is positive (congruent to kJK-1 mol-1) in the lower temperature range but strongly negative (congruent to -4 kJK-1 mol-1) in the higher temperature range. The magnitude of delta Cp for the slow Pi dissociation process is similar but its sign is just opposite to that for the hydrolysis. These anomalous changes in the heat capacity may be due to the temperature-induced changes in a balance between large opposing effects which result from distinct, local conformation changes within the Subfragment 1 molecule.

  1. Carbon and energy metabolism of atp mutants of Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole

    1992-01-01

    The membrane-bound H+-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth...

  2. Orientation and mobility of actin in different intermediate states of the ATP hydrolysis cycle.

    Science.gov (United States)

    Khaimina, S S; Wrzosek, A; Dabrowska, R; Borovikov, Yu S

    2005-10-01

    Using polarization fluorimetry, we have investigated conformational changes of FITC-phalloidin-labeled F-actin in ghost muscle fibers. These changes were induced by myosin subfragment-1 (S1) in the absence and presence of MgADP, MgAMP-PNP, MgATPgammaS, or MgATP. Modeling of various intermediate states was accompanied by discrete changes in actomyosin orientation and mobility of fluorescent dye dipoles. This suggests multistep changes of orientation and mobility of actin monomers during the ATPase cycle. The most pronounced differences in orientation (~4 degrees ) and in mobility (~43%) of actin were found between the actomyosin states induced by MgADP and MgATP.

  3. The Shaker-1 Mouse Myosin VIIa Deafness Mutation Results in a Severely Reduced Rate of the ATP Hydrolysis Step.

    Science.gov (United States)

    Xiong, Ailian; Haithcock, Jessica; Liu, Yingying; Eusner, Lauren; McConnell, Matthew; White, Howard D; Belknap, Betty; Forgacs, Eva

    2017-11-22

    Mutations in the MYO7A gene, encoding the motor protein myosin VIIa, can cause Usher 1B, a deafness/blindness syndrome in humans, and the shaker-1 phenotype, characterized by deafness, head tossing and circling behavior, in mice. Myosin VIIa is responsible for tension bearing and the transduction mechanism in the stereocilia and for melanosome transport in the retina, in line with the phenotypic outcomes observed in mice. However, the effect of the shaker-1 mutation, a R502P amino acid substitution, on the motor function is unclear. To explore this question, we determined the kinetic properties and the effect on the filopodial tip localization of the recombinant mouse myosin VIIa-5IQ-SAH R502P (MyoVIIa-sh1) construct. Interestingly, though residue 502 is localized to a region thought to be involved in interacting with actin, the kinetic parameters for actin binding changed only slightly for the mutant construct. However, the rate constant for ATP hydrolysis (k+H + k-H) was reduced by ~ 200 fold from 12 s-1 to 0.05 s-1 making the hydrolysis step the rate limiting step of the ATPase cycle in the presence and absence of actin. Given that wild type mouse myosin VIIa is a slow, high duty ratio, monomeric motor, this altered hydrolysis rate would reduce activity to extremely low levels. Indeed, the translocation to the filopodial tips was hampered by the diminished motor function of a dimeric construct of the shaker-1 mutant. We conclude that the diminished motor activity of this mutant is most likely responsible for impaired hearing in the shaker-1 mice. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  4. Students' Interdisciplinary Reasoning about "High-Energy Bonds" and ATP

    CERN Document Server

    Dreyfus, Benjamin W; Sawtelle, Vashti; Svoboda, Julia; Turpen, Chandra; Redish, Edward F

    2012-01-01

    Students' sometimes contradictory ideas about ATP (adenosine triphosphate) and the nature of chemical bonds have been studied in the biology and chemistry education literatures, but these topics are rarely part of the introductory physics curriculum. We present qualitative data from an introductory physics course for undergraduate biology majors that seeks to build greater interdisciplinary coherence and therefore includes these topics. In these data, students grapple with the apparent contradiction between the energy released when the phosphate bond in ATP is broken and the idea that an energy input is required to break a bond. We see that students' perceptions of how each scientific discipline bounds the system of interest can influence how they justify their reasoning about a topic that crosses disciplines. This has consequences for a vision of interdisciplinary education that respects disciplinary perspectives while bringing them into interaction in ways that demonstrate consistency amongst the perspectiv...

  5. Students' interdisciplinary reasoning about "high-energy bonds" and ATP

    Science.gov (United States)

    Dreyfus, Benjamin W.; Geller, Benjamin D.; Sawtelle, Vashti; Svoboda, Julia; Turpen, Chandra; Redish, Edward F.

    2013-01-01

    Students' sometimes contradictory ideas about ATP (adenosine triphosphate) and the nature of chemical bonds have been studied in the biology and chemistry education literatures, but these topics are rarely part of the introductory physics curriculum. We present qualitative data from an introductory physics course for undergraduate biology majors that seeks to build greater interdisciplinary coherence and therefore includes these topics. In these data, students grapple with the apparent contradiction between the energy released when the phosphate bond in ATP is broken and the idea that an energy input is required to break a bond. We see that students' perceptions of how each scientific discipline bounds the system of interest can influence how they justify their reasoning about a topic that crosses disciplines. This has consequences for a vision of interdisciplinary education that respects disciplinary perspectives while bringing them into interaction in ways that demonstrate consistency amongst the perspectives.

  6. Asymmetric ATP Binding and Hydrolysis Activity of the Thermus aquaticus MutS Dimer Is Key to Modulation of Its Interactions with Mismatched DNA†

    Science.gov (United States)

    Antony, Edwin; Hingorani, Manju M.

    2010-01-01

    Prokaryotic MutS and eukaryotic Msh proteins recognize base pair mismatches and insertions or deletions in DNA and initiate mismatch repair. These proteins function as dimers (and perhaps higher order oligomers) and possess an ATPase activity that is essential for DNA repair. Previous studies of Escherichia coli MutS and eukaryotic Msh2–Msh6 proteins have revealed asymmetry within the dimer with respect to both DNA binding and ATPase activities. We have found the Thermus aquaticus MutS protein amenable to detailed investigation of the nature and role of this asymmetry. Here, we show that (a) in a MutS dimer one subunit (S1) binds nucleotide with high affinity and the other (S2) with 10-fold weaker affinity, (b) S1 hydrolyzes ATP rapidly while S2 hydrolyzes ATP at a 30–50-fold slower rate, (c) mismatched DNA binding to MutS inhibits ATP hydrolysis at S1 but slow hydrolysis continues at S2, and (d) interaction between mismatched DNA and MutS is weakened when both subunits are occupied by ATP but remains stable when S1 is occupied by ATP and S2 by ADP. These results reveal key MutS species in the ATPase pathway; S1ADP–S2ATP is formed preferentially in the absence of DNA or in the presence of fully matched DNA, while S1ATP–S2ATP and S1ATP–S2ADP are formed preferentially in the presence of mismatched DNA. These MutS species exhibit differences in interaction with mismatched DNA that are likely important for the mechanism of MutS action in DNA repair. PMID:15476405

  7. Microcystin-LR acute exposure does not alter in vitro and in vivo ATP, ADP and AMP hydrolysis in adult zebrafish (Danio rerio brain membranes

    Directory of Open Access Journals (Sweden)

    Luiza Wilges Kist

    2012-10-01

    Full Text Available Microcystins (MCs are toxins produced by cyanobacteria during the blooms that could accumulate in aquatic animals and be relocated to higher trophic levels. Adenosine triphosphate (ATP acts as an excitatory neurotransmitter and/or a neuromodulator in the extracellular space playing important roles in physiological and pathological conditions. The aim of this study was, therefore, to evaluate the acute effects of different concentrations of MC-LR on nucleoside triphosphate diphosphohydrolases and 5’-nucleotidade in adult zebrafish (Danio rerio brain membranes. The results have shown no significant changes in ATP, adenosine diphosphate (ADP and adenosine monophosphate (AMP hydrolysis in zebrafish brain membranes. MC-LR in vitro also did not alter ATP, ADP and AMP hydrolysis in the concentrations tested. These findings show that acute exposure to MC-LR did not modulate ectonucleotidase activity in the conditions tested. However, additional studies including chronic exposure should be performed in order to achieve a better understanding about MC-LR toxicity mechanisms in the central nervous system.

  8. The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter

    OpenAIRE

    Modali, Sita D.; Zgurskaya, Helen I.

    2011-01-01

    Escherichia coli MacAB-TolC is a tri-partite macrolide efflux transporter driven by hydrolysis of ATP. In this complex, MacA is the periplasmic membrane fusion protein that stimulates the activity of MacB transporter and establishes the link with the outer membrane channel TolC. The molecular mechanism by which MacA stimulates MacB remains unknown. Here, we report that the periplasmic membrane proximal domain of MacA plays a critical role in functional MacA-MacB interactions and stimulation o...

  9. The Specialized Hsp70 (HscA) Interdomain Linker Binds to Its Nucleotide-Binding Domain and Stimulates ATP Hydrolysis in Both cis and trans Configurations

    Science.gov (United States)

    2015-01-01

    Proteins from the isc operon of Escherichia coli constitute the machinery used to synthesize iron–sulfur (Fe–S) clusters for delivery to recipient apoproteins. Efficient and rapid [2Fe-2S] cluster transfer from the holo-scaffold protein IscU depends on ATP hydrolysis in the nucleotide-binding domain (NBD) of HscA, a specialized Hsp70-type molecular chaperone with low intrinsic ATPase activity (0.02 min−1 at 25 °C, henceforth reported in units of min–1). HscB, an Hsp40-type cochaperone, binds to HscA and stimulates ATP hydrolysis to promote cluster transfer, yet while the interactions between HscA and HscB have been investigated, the role of HscA’s interdomain linker in modulating ATPase activity has not been explored. To address this issue, we created three variants of the 40 kDa NBD of HscA: NBD alone (HscA386), NBD with a partial linker (HscA389), and NBD with the full linker (HscA395). We found that the rate of ATP hydrolysis of HscA395 (0.45 min–1) is nearly 15-fold higher than that of HscA386 (0.035 min–1), although their apparent affinities for ATP are equivalent. HscA395, which contains the full covalently linked linker peptide, exhibited intrinsic tryptophan fluorescence emission and basal thermostability that were higher than those of HscA386. Furthermore, HscA395 displayed narrower 1HN line widths in its two-dimensional 1H–15N TROSY-HSQC spectrum in comparison to HscA386, indicating that the peptide in the cis configuration binds to and stabilizes the structure of the NBD. The addition to HscA386 of a synthetic peptide with a sequence identical to that of the interdomain linker (L387LLDVIPLS395) stimulated its ATPase activity and induced widespread NMR chemical shift perturbations indicative of a binding interaction in the trans configuration. PMID:25372495

  10. ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology.

    Science.gov (United States)

    De Col, Valentina; Fuchs, Philippe; Nietzel, Thomas; Elsässer, Marlene; Voon, Chia Pao; Candeo, Alessia; Seeliger, Ingo; Fricker, Mark D; Grefen, Christopher; Møller, Ian Max; Bassi, Andrea; Lim, Boon Leong; Zancani, Marco; Meyer, Andreas J; Costa, Alex; Wagner, Stephan; Schwarzländer, Markus

    2017-07-18

    Growth and development of plants is ultimately driven by light energy captured through photosynthesis. ATP acts as universal cellular energy cofactor fuelling all life processes, including gene expression, metabolism, and transport. Despite a mechanistic understanding of ATP biochemistry, ATP dynamics in the living plant have been largely elusive. Here, we establish MgATP2- measurement in living plants using the fluorescent protein biosensor ATeam1.03-nD/nA. We generate Arabidopsis sensor lines and investigate the sensor in vitro under conditions appropriate for the plant cytosol. We establish an assay for ATP fluxes in isolated mitochondria, and demonstrate that the sensor responds rapidly and reliably to MgATP2- changes in planta. A MgATP2- map of the Arabidopsis seedling highlights different MgATP2- concentrations between tissues and within individual cell types, such as root hairs. Progression of hypoxia reveals substantial plasticity of ATP homeostasis in seedlings, demonstrating that ATP dynamics can be monitored in the living plant.

  11. Hydrogen peroxide lowers ATP levels in platelets without altering adenyalte energy charge and platelet function.

    Science.gov (United States)

    Holmsen, H; Robkin, L

    1977-03-10

    H2O2 irreversibly reduced metabolic platelet ATP levels with a corresponding accumulation of hypoxanthine. This process was enhanced by sodium azide or potassium cyanide and by increasing H2O2 concentrations. The adenylate energy charge was unaltered when less than two thirds of the metabolic ATP had disappeared but decreased markedly when more ATP disappeared. Platelet shape change, primary aggregation, dense granule and alpha-granule secretion were unaffected by H2O2-induced lowering of ATP provided that the adenylate energy charge did not fall by more than 5%; at greater adenylate energy charge reduction, platelet functions were inhibited. These results indicate that cell functions depend more on adenyalte energy charge than on the ATP level and expands the applicability of this view from bacterial systems to a mammalian cell, the human platelet.

  12. The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter.

    Science.gov (United States)

    Modali, Sita D; Zgurskaya, Helen I

    2011-08-01

    Escherichia coli MacAB-TolC is a tripartite macrolide efflux transporter driven by hydrolysis of ATP. In this complex, MacA is the periplasmic membrane fusion protein that stimulates the activity of MacB transporter and establishes the link with the outer membrane channel TolC. The molecular mechanism by which MacA stimulates MacB remains unknown. Here, we report that the periplasmic membrane proximal domain of MacA plays a critical role in functional MacA-MacB interactions and stimulation of MacB ATPase activity. Binding of MacA to MacB stabilizes the ATP-bound conformation of MacB, whereas interactions with both MacB and TolC affect the conformation of MacA. A single G353A substitution in the C-terminus of MacA inactivates MacAB-TolC function by changing the conformation of the membrane proximal domain of MacA and disrupting the proper assembly of the MacA-MacB complex. We propose that MacA acts in transport by promoting MacB transition into the closed ATP-bound conformation and in this respect, is similar to the periplasmic solute-binding proteins. © 2011 Blackwell Publishing Ltd.

  13. Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin.

    Directory of Open Access Journals (Sweden)

    Antoine Jégou

    2011-09-01

    Full Text Available The hydrolysis of ATP associated with actin and profilin-actin polymerization is pivotal in cell motility. It is at the origin of treadmilling of actin filaments and controls their dynamics and mechanical properties, as well as their interactions with regulatory proteins. The slow release of inorganic phosphate (Pi that follows rapid cleavage of ATP gamma phosphate is linked to an increase in the rate of filament disassembly. The mechanism of Pi release in actin filaments has remained elusive for over 20 years. Here, we developed a microfluidic setup to accurately monitor the depolymerization of individual filaments and determine their local ADP-Pi content. We demonstrate that Pi release in the filament is not a vectorial but a random process with a half-time of 102 seconds, irrespective of whether the filament is assembled from actin or profilin-actin. Pi release from the depolymerizing barbed end is faster (half-time of 0.39 seconds and further accelerated by profilin. Profilin accelerates the depolymerization of both ADP- and ADP-Pi-F-actin. Altogether, our data show that during elongation from profilin-actin, the dissociation of profilin from the growing barbed end is not coupled to Pi release or to ATP cleavage on the terminal subunit. These results emphasize the potential of microfluidics in elucidating actin regulation at the scale of individual filaments.

  14. Distinct Conformation of ATP Molecule in Solution and on Protein.

    Science.gov (United States)

    Kobayashi, Eri; Yura, Kei; Nagai, Yoshinori

    2013-01-01

    Adenosine triphosphate (ATP) is a versatile molecule used mainly for energy and a phosphate source. The hydrolysis of γ phosphate initiates the reactions and these reactions almost always start when ATP binds to protein. Therefore, there should be a mechanism to prevent spontaneous hydrolysis reaction and a mechanism to lead ATP to a pure energy source or to a phosphate source. To address these questions, we extensively analyzed the effect of protein to ATP conformation based on the sampling of the ATP solution conformations obtained from molecular dynamics simulation and the sampling of ATP structures bound to protein found in a protein structure database. The comparison revealed mainly the following three points; 1) The ribose ring in ATP molecule, which puckers in many ways in solution, tends to assume either C2' exo or C2' endo when it binds to protein. 2) The adenine ring in ATP molecule, which takes open-book motion with the two ring structures, has two distinct structures when ATP binds to protein. 3) The glycosyl-bond and the bond between phosphate and the ribose have unique torsion angles, when ATP binds to protein. The combination of torsion angles found in protein-bound forms is under-represented in ATP molecule in water. These findings suggest that ATP-binding protein exerts forces on ATP molecule to assume a conformation that is rarely found in solution, and that this conformation change should be a trigger for the reactions on ATP molecule.

  15. Energy metabolic state in hypothermically stored boar spermatozoa using a revised protocol for efficient ATP extraction

    NARCIS (Netherlands)

    Nguyen, Quynh Thu; Wallner, Ulrike; Schmicke, Marion; Waberski, Dagmar; Henning, Heiko

    2016-01-01

    Mammalian spermatozoa utilize ATP as the energy source for key functions on the route to fertilization. ATP and its precursor nucleotides ADP and AMP are determined in many sperm physiology studies, mostly by bioluminescence assays. Assay results vary widely, mainly due to different efficiency in

  16. Reaction pathways and free energy profiles for spontaneous hydrolysis of urea and tetramethylurea: Unexpected substituent effects

    Science.gov (United States)

    Yao, Min; Tu, Wenlong; Chen, Xi; Zhan, Chang-Guo

    2013-01-01

    It has been difficult to directly measure the spontaneous hydrolysis rate of urea and, thus, 1,1,3,3-tetramethylurea (Me4U) was used as a model to determine the “experimental” rate constant for urea hydrolysis. The use of Me4U was based on an assumption that the rate of urea hydrolysis should be 2.8 times that of Me4U hydrolysis because the rate of acetamide hydrolysis is 2.8 times that of N,N-dimethyl-acetamide hydrolysis. The present first-principles electronic-structure calculations on the competing non-enzymatic hydrolysis pathways have demonstrated that the dominant pathway is the neutral hydrolysis via the CN addition for both urea (when pHhydrolysis of amides where alkaline hydrolysis is dominant. Based on the computational data, the substituent shift of free energy barrier calculated for the neutral hydrolysis is remarkably different from that for the alkaline hydrolysis, and the rate constant for the urea hydrolysis should be ~1.3×109-fold lower than that (4.2×10−12 s−1) measured for the Me4U hydrolysis. As a result, the rate enhancement and catalytic proficiency of urease should be 1.2×1025 and 3×1027 M−1, respectively, suggesting that urease surpasses proteases and all other enzymes in its power to enhance the rate of reaction. All of the computational results are consistent with available experimental data for Me4U, suggesting that the computational prediction for urea is reliable. PMID:24097048

  17. Glyoxylate lowers metabolic ATP in human platelets without altering adenylate energy charge or aggregation.

    Science.gov (United States)

    Dangelmaier, Carol A; Holmsen, Holm

    2014-01-01

    Human blood platelets adhere to exposed collagen at the site of vascular injury, initiating a signaling cascade leading to fibrinogen activation, secretion of granules and aggregation, thus producing a stable thrombus. All these steps require metabolic ATP. In this study we have labeled the metabolic pool of ATP with nucleotides, treated platelets with various inhibitors and have monitored their ability to be activated. Incubating platelets with glyoxylate dramatically reduced the ATP level without a change in the adenylate energy charge (AEC). This reduction of ATP did not affect ADP-induced primary or secondary aggregation, whereas glyoxal, methyl glyoxal, or the combination of antimycin plus deoxyglucose reduced both ATP and AEC and inhibited aggregation. The reduction of ATP by glyoxylate was almost quantitatively matched by an increase in hypoxanthine without elevation of ADP. AMP, IMP or inosine, acetoacetate, aspartate, or glutamate had no effect on glyoxylate-induced breakdown of ATP, while pyruvate stopped the ATP reduction fast and efficiently. Glyoxylate also lowered the citrate content. The glyoxylate-induced breakdown of ATP coincided with an increase in fructose-1,6-bisphosphate, indicating that the phosphofructokinase reaction was the main ATP-consuming step. Glyoxylate was a substrate for lactate dehydrogenase although with a Km almost 100 times higher than pyruvate. We suggest that glyoxylate primarily competes with pyruvate in the pyruvate dehydrogenase reaction, thus lowering the citrate concentration, which in turn activates phosphofructokinase. Clearly, lowering of ATP in the cytosol by more than 50% does not affect platelet aggregation provided that the AEC is not reduced.

  18. ATP synthases from archaea: the beauty of a molecular motor.

    Science.gov (United States)

    Grüber, Gerhard; Manimekalai, Malathy Sony Subramanian; Mayer, Florian; Müller, Volker

    2014-06-01

    Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Energy metabolic state in hypothermically stored boar spermatozoa using a revised protocol for efficient ATP extraction

    Directory of Open Access Journals (Sweden)

    Quynh Thu Nguyen

    2016-11-01

    Full Text Available Mammalian spermatozoa utilize ATP as the energy source for key functions on the route to fertilization. ATP and its precursor nucleotides ADP and AMP are regularly investigated in sperm physiology studies, mostly by bioluminescence assays. Assay results vary widely, mainly due to different efficiencies in nucleotide extraction and prevention of their enzymatic degradation. Here, we describe a revised, validated protocol for efficient phosphatase inhibition and adenine nucleotide extraction resulting in consistently high ATP concentrations exceeding previously reported values for boar spermatozoa up to 20-fold. The revised assay is applicable for determining ATP concentrations and adenylate energy charge in extracts from fresh and frozen samples, thereby allowing simultaneous assessment of semen samples from long-term storage experiments. After validation, the assay was applied to liquid-preserved boar spermatozoa stored at 17°C and 5°C for 24 and 72 h. Cooling to 5°C, but not storage duration, reduced ATP concentration in spermatozoa (P<0.05, which was accompanied by the appearance of AMP and ADP in the preservation medium. ATP and energy charge were highly correlated to the proportion of membrane-intact spermatozoa, supporting the idea of nucleotides leaking through disrupted membranes in cold-shocked cells. The present assay allows highly standardized studies of energy metabolism in spermatozoa.

  20. Sleep and brain energy levels: ATP changes during sleep

    National Research Council Canada - National Science Library

    Dworak, Markus; McCarley, Robert W; Kim, Tae; Kalinchuk, Anna V; Basheer, Radhika

    2010-01-01

    .... Although many theories of function, indirect evidence, and even common sense suggest sleep is needed for an increase in brain energy, brain energy levels have not been directly measured with modern technology...

  1. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    Directory of Open Access Journals (Sweden)

    Adrien Nicolaï

    Full Text Available ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD of Hsp70 propagates a signal to its substrate-binding domain (SBD. Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in

  2. Mechanical Control of ATP Synthase Function: Activation Energy Difference between Tight and Loose Binding Sites

    KAUST Repository

    Beke-Somfai, Tamás

    2010-01-26

    Despite exhaustive chemical and crystal structure studies, the mechanistic details of how FoF1-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations using a recent highresolution X-ray structure, we conclude that formation of the P-O bond may be achieved through a transition state (TS) with a planar PO3 - ion. Surprisingly, there is a more than 40 kJ/mol difference between barrier heights of the loose and tight binding sites of the enzyme. This indicates that even a relatively small change in active site conformation, induced by the γ-subunit rotation, may effectively block the back reaction in βTP and, thus, promote ATP. © 2009 American Chemical Society.

  3. A Vision of Interdisciplinary Education: Students' Reasoning about "High-Energy Bonds" and ATP

    CERN Document Server

    Dreyfus, Benjamin W; Turpen, Chandra; Gouvea, Julia; Redish, Edward F

    2014-01-01

    As interdisciplinary courses are developed, instructors and researchers have to grapple with questions of how students should make connections across disciplines. We explore the issue of interdisciplinary reconciliation (IDR): how students reconcile seemingly contradictory ideas from different disciplines. While IDR has elements in common with other frameworks for the reconciliation of ideas across contexts, it differs in that each disciplinary idea is considered canonically correct within its own discipline. The setting for the research is an introductory physics course for biology majors that seeks to build greater interdisciplinary coherence and therefore includes biologically relevant topics such as ATP and chemical bond energy. In our case-study data, students grapple with the apparent contradiction between the energy released when the phosphate bond in ATP is broken and the idea that an energy input is required to break a bond. We see students justifying context-dependent modeling choices, showing nuanc...

  4. Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto: I - efeito da concentração Improving lettuce seedling root growth and ATP hydrolysis with humates from vermicompost: I - effect of vermicompost concentration

    Directory of Open Access Journals (Sweden)

    Maria Rita Cardoso Rodda

    2006-08-01

    root mitotic sites and emerged lateral roots in addition to a significant increase of microsomal ATP hydrolysis. The data suggest that the vermicompost bioactivity could be related, at least in part, to the humate-induced activation of the plant cell H+ pumps, which are responsible for generating the energy for nutrient absorption and cell growth.

  5. The role of ATP-binding cassette (ABC) transporters in pathogenesis and multidrug resistance of the wheat pathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    Stergiopoulos, I.

    2003-01-01

    ATP-binding cassette (ABC) transporters are membrane proteins that utilise the energy derived from the hydrolysis of ATP to drive the transport of compounds over biological membranes. They are members of one of the largest protein families to date, present in both pro- and eukaryotic

  6. Students’ reasoning about “high-energy bonds” and ATP: A vision of interdisciplinary education

    Directory of Open Access Journals (Sweden)

    Benjamin W. Dreyfus

    2014-05-01

    Full Text Available As interdisciplinary courses are developed, instructors and researchers have to grapple with questions of how students should make connections across disciplines. We explore the issue of interdisciplinary reconciliation (IDR: how students reconcile seemingly contradictory ideas from different disciplines. While IDR has elements in common with other frameworks for the reconciliation of ideas across contexts, it differs in that each disciplinary idea is considered canonically correct within its own discipline. The setting for the research is an introductory physics course for biology majors that seeks to build greater interdisciplinary coherence and therefore includes biologically relevant topics such as adenosine triphosphate (ATP and chemical bond energy. In our case-study data, students grapple with the apparent contradiction between the energy released when the phosphate bond in ATP is broken and the idea that an energy input is required to break a bond. We see students justifying context-dependent modeling choices, showing nuance in articulating how system choices may be related to disciplinary problems of interest. This represents a desired end point of IDR, in which students can build coherent connections between concepts from different disciplines while understanding each concept in its own disciplinary context. Our case study also illustrates elements of the instructional environment that play roles in the process of IDR.

  7. Hindering the strand passage reaction of human topoisomerase IIalpha without disturbing DNA cleavage, ATP hydrolysis, or the operation of the N-terminal clamp

    DEFF Research Database (Denmark)

    Oestergaard, Vibe H; Giangiacomo, Laura; Bjergbaek, Lotte

    2004-01-01

    DNA topoisomerase II is an essential enzyme that releases a topological strain in DNA by introduction of transient breaks in one DNA helix through which another helix is passed. While changing DNA topology, ATP is required to drive the enzyme through a series of conformational changes dependent...

  8. Exploring the Multidimensional Free Energy Surface of Phosphoester Hydrolysis with Constrained QM/MM Dynamics.

    Science.gov (United States)

    Li, Wenjin; Rudack, Till; Gerwert, Klaus; Gräter, Frauke; Schlitter, Jürgen

    2012-10-09

    The mechanism of the hydrolysis of phosphate monoesters, a ubiquitous biological reaction, has remained under debate. We here investigated the hydrolysis of a nonenzymatic model system, the monomethyl phosphate dianion, by hybrid quantum mechanical and molecular mechanical simulations. The solvation effects were taken into account with explicit water. Detailed free energy landscapes in two-dimensional and three-dimensional space were resolved using the multidimensional potential of mean constraint force, a newly developed method that was demonstrated to be powerful for free energy calculations along multiple coordinates. As in previous theoretical studies, the associative and dissociative pathways were indistinguishable. Furthermore, the associative pathway was investigated in great detail. We propose a rotation of an O-H bond in the transition between two pentacoordinated structures, during which an overall transition state was identified with an activation energy of 50 kcal/mol. This is consistent with experimental data. The results support a concerted proton transfer from the nucleophilic water to the phosphate group, and then to the leaving group.

  9. Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study.

    Science.gov (United States)

    Cano, R; Nielfa, A; Fdz-Polanco, M

    2014-09-01

    An economic assessment of thermal hydrolysis as a pretreatment to anaerobic digestion has been achieved to evaluate its implementation in full-scale plants. Six different solid wastes have been studied, among them municipal solid waste (MSW). Thermal hydrolysis has been tested with batch lab-scale tests, from which an energy and economic assessment of three scenarios is performed: with and without energy integration (recovering heat to produce steam in a cogeneration plant), finally including the digestate management costs. Thermal hydrolysis has lead to an increase of the methane productions (up to 50%) and kinetics parameters (even double). The study has determined that a proper energy integration design could lead to important economic savings (5 €/t) and thermal hydrolysis can enhance up to 40% the incomes of the digestion plant, even doubling them when digestate management costs are considered. In a full-scale MSW treatment plant (30,000 t/year), thermal hydrolysis would provide almost 0.5 M€/year net benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Protein Phosphorylation and Prevention of Cytochrome Oxidase Inhibition by ATP: Coupled Mechanisms of Energy Metabolism Regulation

    National Research Council Canada - National Science Library

    Acin-Perez, Rebeca; Gatti, Domenico L; Bai, Yidong; Manfredi, Giovanni

    2011-01-01

    ... cytochrome oxidase (COX), the terminal enzyme of the electron transfer chain (ETC), as one of its targets ( Acin-Perez et al., 2009a, 2009b ). COX translocates protons across the inner mitochondrial membrane, contributing to the proton electrochemical gradient used by the ATP synthase to generate ATP. In living cells, COX is a pacemaker ...

  11. [Effects of Chinese herb compound on myocardial SDH, ATP-ase and energy reserves in tail-suspended rats].

    Science.gov (United States)

    Wang, Bao-zhen; Li, Yong-zhi; Xin, Bing-mu; Fan, Quan-chun; Bai, Gui-e

    2004-10-01

    To investigate effects of Chinese herb compound on myocardial SDH, ATP-ase and energy reserves in tail-suspended rats. Male SD rats were randomly divided into three groups (n=10 each): (A) normal control group; (B) tail-suspended group; (C) tail-suspended + Chinese Medical herb compound group. Rats in group B and C were tail-suspended (-30 degrees) for 5 d to simulate weightlessness. All rats B were decapitated after the experiment. Myocardial SDH (method of Anderson N-BT), ATP-ase (method of Wachstein and Meisel) and energy reserves (method of HPLC) were examined. Compared with rats in groups A and C, SDH activity increased, SDH staining deepened, value of OD SDH enhanced, ATP-ase activity and OD value increased and enhanced significantly (PSDH and ATP-ase, at the same time decrease, myocardial energy reserves. Normal are maintained the low level of metabolism by the medical herb compound used which shows a protecting effects through mitigation, tranguilization and replenishment of Qi.

  12. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Rong; Shao, Ming; Han, Xu; Wang, Chuan; Li, Yong; Hu, Bin; Pang, Daiwen; Xie, Zhixiong

    2017-01-01

    Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs) biosynthesis in the Δatp1, Δatp2, Δatp14, and Δatp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S-adenosylmethionine, the product that would accumulate when ATP is accrued). This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications.

  13. Rad51 ATP binding but not hydrolysis is required to recruit Rad10 in synthesis-dependent strand annealing sites in S. cerevisiae.

    Science.gov (United States)

    Karlin, Justin; Fischhaber, Paula L

    2013-06-01

    Several modes of eukaryotic of DNA double strand break repair (DSBR) depend on synapsis of complementary DNA. The Rad51 ATPase, the S. cerevisiae homolog of E. coli RecA, plays a key role in this process by catalyzing homology searching and strand exchange between an invading DNA strand and a repair template (e.g. sister chromatid or homologous chromosome). Synthesis dependent strand annealing (SDSA), a mode of DSBR, requires Rad51. Another repair enzyme, the Rad1-Rad10 endonuclease, acts in the final stages of SDSA, hydrolyzing 3' overhanging single-stranded DNA. Here we show in vivo by fluorescence microscopy that the ATP binding function of yeast Rad51 is required to recruit Rad10 SDSA sites indicating that Rad51 pre-synaptic filament formation must occur prior to the recruitment of Rad1-Rad10. Our data also show that Rad51 ATPase activity, an important step in Rad51 filament disassembly, is not absolutely required in order to recruit Rad1-Rad10 to DSB sites.

  14. Coordination and hydrolysis of plutonium ions in aqueous solution using Car-Parrinello molecular dynamics free energy simulations.

    Science.gov (United States)

    Odoh, Samuel O; Bylaska, Eric J; de Jong, Wibe A

    2013-11-27

    Car-Parrinello molecular dynamics (CPMD) simulations have been used to examine the hydration structures, coordination energetics, and the first hydrolysis constants of Pu(3+), Pu(4+), PuO2(+), and PuO2(2+) ions in aqueous solution at 300 K. The coordination numbers and structural properties of the first shell of these ions are in good agreement with available experimental estimates. The hexavalent PuO2(2+) species is coordinated to five aquo ligands while the pentavalent PuO2(+) complex is coordinated to four aquo ligands. The Pu(3+) and Pu(4+) ions are both coordinated to eight water molecules. The first hydrolysis constants obtained for Pu(3+) and PuO2(2+) are 6.65 and 5.70, respectively, all within 0.3 pH unit of the experimental values (6.90 and 5.50, respectively). The hydrolysis constant of Pu(4+), 0.17, disagrees with the value of -0.60 in the most recent update of the Nuclear Energy Agency Thermochemical Database (NEA-TDB) but supports recent experimental findings. The hydrolysis constant of PuO2(+), 9.51, supports the experimental results of Bennett et al. [Radiochim. Acta 1992, 56, 15]. A correlation between the pKa of the first hydrolysis reaction and the effective charge of the plutonium center was found.

  15. Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution using Car-Parrinello Molecular Dynamics Free Energy Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Odoh, Samuel O.; Bylaska, Eric J.; De Jong, Wibe A.

    2013-11-27

    Car-Parrinello molecular dynamics (CPMD) simulations have been used to examine the hydration structures, coordination energetics and the first hydrolysis constants of Pu3+, Pu4+, PuO2+ and PuO22+ ions in aqueous solution at 300 K. The coordination numbers and structural properties of the first shell of these ions are in good agreement with available experimental estimates. The hexavalent PuO22+ species is coordinated to 5 aquo ligands while the pentavalent PuO2+ complex is coordinated to 4 aquo ligands. The Pu3+ and Pu4+ ions are both coordinated to 8 water molecules. The first hydrolysis constants obtained for Pu3+ and PuO22+ are 6.65 and 5.70 respectively, all within 0.3 pH units of the experimental values (6.90 and 5.50 respectively). The hydrolysis constant of Pu4+, 0.17, disagrees with the value of -0.60 in the most recent update of the Nuclear Energy Agency Thermochemical Database (NEA-TDB) but supports recent experimental findings. The hydrolysis constant of PuO2+, 9.51, supports the experimental results of Bennett et al. (Radiochim. Act. 1992, 56, 15). A correlation between the pKa of the first hydrolysis reaction and the effective charge of the plutonium center was found.

  16. How the nucleus and mitochondria communicate in energy production during stress: nuclear MtATP6, an early-stress responsive gene, regulates the mitochondrial F₁F₀-ATP synthase complex.

    Science.gov (United States)

    Moghadam, Ali Asghar; Ebrahimie, Eemaeil; Taghavi, Seyed Mohsen; Niazi, Ali; Babgohari, Mahbobeh Zamani; Deihimi, Tahereh; Djavaheri, Mohammad; Ramezani, Amin

    2013-07-01

    A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.

  17. HYDROLYSIS OF HALOACETONITRILES: LINEAR FREE ENERGY RELATIONSHIP, KINETICS AND PRODUCTS. (R825362)

    Science.gov (United States)

    AbstractThe hydrolysis rates of mono-, di- and trihaloacetonitriles were studied in aqueous buffer solutions at different pH. The stability of haloacetonitriles decreases and the hydrolysis rate increases with increasing pH and number of halogen atoms in the molecule:...

  18. Efficient Phagocytosis Requires Triacylglycerol Hydrolysis by Adipose Triglyceride Lipase*

    OpenAIRE

    Chandak, Prakash G.; Radovi?, Branislav; Aflaki, Elma; Kolb, Dagmar; Buchebner, Marlene; Fr?hlich, Eleonore; Magnes, Christoph; Sinner, Frank; Haemmerle, Guenter; Zechner, Rudolf; Tabas, Ira; Levak-Frank, Sanja; Kratky, Dagmar

    2010-01-01

    Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of...

  19. Modeling of the steam hydrolysis in a two-step process for hydrogen production by solar concentrated energy

    Science.gov (United States)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro

    2017-06-01

    In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  20. Free energy diagram for the heterogeneous enzymatic hydrolysis of glycosidic bonds in cellulose

    DEFF Research Database (Denmark)

    Westh, Peter; Cruys-Bagger, Nicolaj; Sørensen, Trine Holst

    2015-01-01

    Kinetic and thermodynamic data has been analyzed according to transition state theory and a simplified reaction scheme for the enzymatic hydrolysis of insoluble cellulose. For the cellobiohydrolase Cel7A from Hypocrea jecorina (Tricoderma reesei) we were able to measure or collect relevant values...

  1. A mechano-chemiosmotic model for the coupling of electron and proton transfer to ATP synthesis in energy-transforming membranes: a personal perspective.

    Science.gov (United States)

    Kasumov, Eldar A; Kasumov, Ruslan E; Kasumova, Irina V

    2015-01-01

    ATP is synthesized using ATP synthase by utilizing energy either from the oxidation of organic compounds, or from light, via redox reactions (oxidative- or photo phosphorylation), in energy-transforming membranes of mitochondria, chloroplasts, and bacteria. ATP synthase undergoes several changes during its functioning. The generally accepted model for ATP synthesis is the well-known rotatory model (see e.g., Junge et al., Nature 459:364-370, 2009; Junge and Müller, Science 333:704-705, 2011). Here, we present an alternative modified model for the coupling of electron and proton transfer to ATP synthesis, which was initially developed by Albert Lester Lehninger (1917-1986). Details of the molecular mechanism of ATP synthesis are described here that involves cyclic low-amplitude shrinkage and swelling of mitochondria. A comparison of the well-known current model and the mechano-chemiosmotic model is also presented. Based on structural, and other data, we suggest that ATP synthase is a Ca(2+)/H(+)-K(+) Cl(-)-pump-pore-enzyme complex, in which γ-subunit rotates 360° in steps of 30°, and 90° due to the binding of phosphate ions to positively charged amino acid residues in the N-terminal γ-subunit, while in the electric field. The coiled coil b 2-subunits are suggested to act as ropes that are shortened by binding of phosphate ions to positively charged lysines or arginines; this process is suggested to pull the α 3 β 3-hexamer to the membrane during the energization process. ATP is then synthesized during the reverse rotation of the γ-subunit by destabilizing the phosphated N-terminal γ-subunit and b 2-subunits under the influence of Ca(2+) ions, which are pumped over from storage-intermembrane space into the matrix, during swelling of intermembrane space. In the process of ATP synthesis, energy is first, predominantly, used in the delivery of phosphate ions and protons to the α 3 β 3-hexamer against the energy barrier with the help of C-terminal alpha

  2. Fabricating high-energy quantum dots in ultra-thin LiFePO4 nanosheets using a multifunctional high-energy biomolecule-ATP

    DEFF Research Database (Denmark)

    Zhang, X.D.; Bi, Z.Y.; He, W.

    2014-01-01

    By using a multifunctional high-energy biomolecule—adenosine triphosphate (ATP)—we fabricated highenergy quantum dots (HEQDs) with a feature size of less than 10 nm and used them in high-power lithium-ion batteries. We introduced high-energy phosphate bonds into the crystal structure of LiFePO4 n...... coating network structures. This work is instructive for fabrication and design of new types of electrochemical energy conversion and storage devices with extraordinary properties and functions.......By using a multifunctional high-energy biomolecule—adenosine triphosphate (ATP)—we fabricated highenergy quantum dots (HEQDs) with a feature size of less than 10 nm and used them in high-power lithium-ion batteries. We introduced high-energy phosphate bonds into the crystal structure of LiFePO4...... nanowire network structure was coated on the surface of the nanosheet. In LiFePO4 nanoparticles, HEQDs result in more storage sites of Li+ ions and easier transfer kinetics of electrons and lithium ions, where the kinetic transformation path between LiFePO4 and FePO4 is rather different from the path...

  3. Co-extraction of soluble and insoluble sugars from energy sorghum based on a hydrothermal hydrolysis process.

    Science.gov (United States)

    Yu, Qiang; Tan, Xuesong; Zhuang, Xinshu; Wang, Qiong; Wang, Wen; Qi, Wei; Zhou, Guixiong; Luo, Yu; Yuan, Zhenhong

    2016-12-01

    A process for co-extraction of soluble and insoluble sugars from energy sorghum (ES) was developed based on hydrothermal hydrolysis (HH). Two series of ES were investigated: one (N) with a high biomass yield displayed a higher recalcitrance to sugar release, whereas the second (T) series was characterized by high sugar extraction. The highest total xylose recoveries of 87.2% and 98.7% were obtained for N-11 and T-106 under hydrolysis conditions of 180°C for 50min and 180°C for 30min, respectively. Moreover, the T series displayed higher enzymatic digestibility (ED) than the N series. The high degree of branching (arabinose/xylose ratio) and acetyl groups in the hemicellulose chains of T-106 would be expected to accelerate sugar release during the HH process. In addition, negative correlations between ED and the lignin content, crystallinity index (CrI) and syringyl/guaiacyl (S/G) lignin ratio were observed. Furthermore, finding ways to overcome the thickness of the cell wall and heterogeneity of its chemical composition distribution would make cellulose more accessible to the enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Bioethanol Production from Waste Potatoes as a Sustainable Waste-to-energy Resource via Enzymatic Hydrolysis

    Science.gov (United States)

    Memon, A. A.; Shah, F. A.; Kumar, N.

    2017-07-01

    Ever increasing demand of energy and corresponding looming depletion of fossil fuels have transpired into a burning need of time to vie for alternative energy resources before the traditional energy sources are completely exhausted. Scientists are continuously working on sustainable energy production as an alternate source of energy to meet the present and future requirements. This research deals with conversion of the starch to fermentable carbon source (sugars) by fermentation through liquefaction by using yeast and alpha- amylase. The results show that the significant bioethanol production was achieved while using the parameters like temperature (30 °C) pH (6) and incubation time of 84 hrs. About 90 ml of bioethanol was produced from potato intake of 800 g. Pakistan being an agricultural country is rich in potato crop and this research bodes well to open new vistas to arrest the energy shortage in this part of the world

  5. Dynamic energy dependency of Chlamydia trachomatis on host cell metabolism during intracellular growth: Role of sodium-based energetics in chlamydial ATP generation.

    Science.gov (United States)

    Liang, Pingdong; Rosas-Lemus, Mónica; Patel, Dhwani; Fang, Xuan; Tuz, Karina; Juárez, Oscar

    2018-01-12

    Chlamydia trachomatis is an obligate intracellular human pathogen responsible for the most prevalent sexually-transmitted infection in the world. For decades C. trachomatis has been considered an "energy parasite" that relies entirely on the uptake of ATP from the host cell. The genomic data suggest that C. trachomatis respiratory chain could produce a sodium gradient that may sustain the energetic demands required for its rapid multiplication. However, this mechanism awaits experimental confirmation. Moreover, the relationship of chlamydiae with the host cell, in particular its energy dependence, is not well understood. In this work, we are showing that C. trachomatis has an active respiratory metabolism that seems to be coupled to the sodium-dependent synthesis of ATP. Moreover, our results show that the inhibition of mitochondrial ATP synthesis at an early stage decreases the rate of infection and the chlamydial inclusion size. In contrast, the inhibition of the chlamydial respiratory chain at mid-stage of the infection cycle decreases the inclusion size but has no effect on infection rate. Remarkably, the addition of monensin, a Na+/H+ exchanger, completely halts the infection. Altogether, our data indicate that chlamydial development has a dynamic relationship with the mitochondrial metabolism of the host, in which the bacterium mostly depends on host ATP synthesis at an early stage, and at later stages it can sustain its own energy needs through the formation of a sodium gradient. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Kinetic analysis of growth rate, ATP, and pigmentation suggests an energy-spilling function for the pigment prodigiosin of Serratia marcescens.

    Science.gov (United States)

    Haddix, Pryce L; Jones, Sarah; Patel, Pratik; Burnham, Sarah; Knights, Kaori; Powell, Joan N; LaForm, Amber

    2008-11-01

    Serratia marcescens is a gram-negative environmental bacterium and opportunistic pathogen. S. marcescens expresses prodigiosin, a bright red and cell-associated pigment which has no known biological function for producing cells. We present here a kinetic model relating cell, ATP, and prodigiosin concentration changes for S. marcescens during cultivation in batch culture. Cells were grown in a variety of complex broth media at temperatures which either promoted or essentially prevented pigmentation. High growth rates were accompanied by large decreases in cellular prodigiosin concentration; low growth rates were associated with rapid pigmentation. Prodigiosin was induced most strongly during limited growth as the population transitioned to stationary phase, suggesting a negative effect of this pigment on biomass production. Mathematically, the combined rate of formation of biomass and bioenergy (as ATP) was shown to be equivalent to the rate of prodigiosin production. Studies with cyanide inhibition of both oxidative phosphorylation and pigment production indicated that rates of biomass and net ATP synthesis were actually higher in the presence of cyanide, further suggesting a negative regulatory role for prodigiosin in cell and energy production under aerobic growth conditions. Considered in the context of the literature, these results suggest that prodigiosin reduces ATP production by a process termed energy spilling. This process may protect the cell by limiting production of reactive oxygen compounds. Other possible functions for prodigiosin as a mediator of cell death at population stationary phase are discussed.

  7. A critical appraisal of evidence for localized energy coupling. Kinetic studies on liposomes containing bacteriorhodopsin and ATP synthase.

    OpenAIRE

    van der Bend, R L; Petersen, J.; Berden, J.A; van Dam, K; Westerhoff, H. V.

    1985-01-01

    In intact systems (chloroplasts, mitochondria and bacteria) many experiments have been reported which are indicative of localized coupling between ATP synthase and electron transfer complexes. We have carried out similar experiments with a system in which we may assume that specific interactions between the proton pumps are absent: reconstituted vesicles containing bacteriorhodopsin and yeast mitochondrial ATP synthase. The only experiment that gives results which differ from those previously...

  8. Two-ion theory of energy coupling in ATP synthesis rectifies a fundamental flaw in the governing equations of the chemiosmotic theory.

    Science.gov (United States)

    Nath, Sunil

    2017-11-01

    The vital coupled processes of oxidative phosphorylation and photosynthetic phosphorylation synthesize molecules of adenosine-5'-triphosphate (ATP), the universal biological energy currency, and sustain all life on our planet. The chemiosmotic theory of energy coupling in oxidative and photophosphorylation was proposed by Mitchell >50years ago. It has had a contentious history, with part of the accumulated body of experimental evidence supporting it, and part of it in conflict with the theory. Although the theory was strongly criticized by many prominent scientists, the controversy has never been resolved. Here, the mathematical steps of Mitchell's original derivation leading to the principal equation of the chemiosmotic theory are scrutinized, and a fundamental flaw in them has been identified. Surprisingly, this flaw had not been detected earlier. Discovery of such a defect negates, or at least considerably weakens, the theoretical foundations on which the chemiosmotic theory is based. Ad hoc or simplistic ways to remedy this defect are shown to be scientifically unproductive and sterile. A novel two-ion theory of biological energy coupling salvages the situation by rectifying the fundamental flaw in the chemiosmotic theory, and the governing equations of the new theory have been shown to accurately quantify and predict extensive recent experimental data on ATP synthesis by F1FO-ATP synthase without using adjustable parameters. Some major biological implications arising from the new thinking are discussed. The principles of energy transduction and coupling proposed in the new paradigm are shown to be of a very general and universal nature. It is concluded that the timely availability after a 25-year research struggle of Nath's torsional mechanism of energy transduction and ATP synthesis is a rational alternative that has the power to solve the problems arising from the past, and also meet present and future challenges in this important interdisciplinary field of

  9. Energy Interconversion in Transport ATPases Role of Water in Ions Transport and in the Energy of Hydrolysis of Phosphate Compounds

    Science.gov (United States)

    de Meis, L.

    This chapter is related to the work carried out by Kjelstrup et al. [1,2,3], describing the energy dissipation of uncoupled and coupled enzymes. Here we describe the biochemical experiments that led to a partial understanding of how energy is handled by enzymes (proteins) to transport ions across a biological membrane and how the enzyme is able to determine how much of the total energy available during transport is used to perform work (ion transport) and how much is dissipated as heat. The experiments described show that the water organized around proteins (enzymes) and reactants involved in the transport process play a key role in the mechanism of energy transduction. Most of the bibliography of this chapter is related to the biological experiments that contributed to the elucidation of the mechanism of energy transduction during Ca2+ transport, as, e.g., works pertinent to the thermodynamic process of active transport, as seen in the perspective of physics [1,2,3,4,5,6,7].

  10. Restoration of Impaired Metabolic Energy Balance (ATP Pool and Tube Formation Potential of Endothelial Cells under “high glucose”, Diabetic Conditions by the Bioinorganic Polymer Polyphosphate

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2017-11-01

    Full Text Available Micro-vascularization is a fast, energy-dependent process that is compromised by elevated glucose concentrations such as in diabetes mellitus disease. Here, we studied the effect of the physiological bioinorganic polymer, polyphosphate (polyP, on the reduced ATP content and impaired function of endothelial cells cultivated under “high glucose” (35 mM diabetes mellitus conditions concentrations. This high-energy biopolymer has been shown to provide a source of metabolic energy, stored in its phosphoanhydride bonds. We show that exposure of human umbilical vein endothelial cells (HUVEC cells to “high glucose” levels results in reduced cell viability, increased apoptotic cell death, and a decline in intracellular ATP level. As a consequence, the ability of HUVEC cells to form tube-like structures in the in vitro cell tube formation assay was almost completely abolished under “high glucose” conditions. Those cells were grown onto a physiological collagen scaffold (collagen/basement membrane extract. We demonstrate that these adverse effects of increased glucose levels can be reversed by administration of polyP to almost normal values. Using Na-polyP, complexed in a stoichiometric (molar ratio to Ca2+ ions and in the physiological concentration range between 30 and 300 µM, an almost complete restoration of the reduced ATP pool of cells exposed to “high glucose” was found, as well as a normalization of the number of apoptotic cells and energy-dependent tube formation. It is concluded that the adverse effects on endothelial cells caused by the metabolic energy imbalance at elevated glucose concentrations can be counterbalanced by polyP, potentially opening new strategies for treatment of the micro-vascular complications in diabetic patients.

  11. Secondary and tertiary structure changes of reconstituted LmrA induced by nucleotide binding or hydrolysis - A Fourier transform attenuated total reflection infrared spectroscopy and tryptophan fluorescence quenching analysis

    NARCIS (Netherlands)

    Vigano, C; Margolles, A; van Veen, HW; Konings, WN; Ruysschaert, JM

    2000-01-01

    LmrA, a membrane protein of Lactococcus lactis, extrudes amphiphilic compounds from the inner leaflet of the cytoplasmic membrane, using energy derived from ATP hydrolysis. A combination of total reflection Fourier transform infrared spectroscopy, H-2/H exchange, and fluorescence quenching

  12. The ATP Sites of AAA+ Clamp Loaders Work Together as a Switch to Assemble Clamps on DNA*

    Science.gov (United States)

    Marzahn, Melissa R.; Hayner, Jaclyn N.; Finkelstein, Jeff; O'Donnell, Mike; Bloom, Linda B.

    2014-01-01

    Clamp loaders belong to a family of proteins known as ATPases associated with various cellular activities (AAA+). These proteins utilize the energy from ATP binding and hydrolysis to perform cellular functions. The clamp loader is required to load the clamp onto DNA for use by DNA polymerases to increase processivity. ATP binding and hydrolysis are coordinated by several key residues, including a conserved Lys located within the Walker A motif (or P-loop). This residue is required for each subunit to bind ATP. The specific function of each ATP molecule bound to the Saccharomyces cerevisiae clamp loader is unknown. A series of point mutants, each lacking a single Walker A Lys residue, was generated to study the effects of abolishing ATP binding in individual clamp loader subunits. A variety of biochemical assays were used to analyze the function of ATP binding during discrete steps of the clamp loading reaction. All mutants reduced clamp binding/opening to different degrees. Decreased clamp binding activity was generally correlated with decreases in the population of open clamps, suggesting that differences in the binding affinities of Walker A mutants stem from differences in stabilization of proliferating cell nuclear antigen in an open conformation. Walker A mutations had a smaller effect on DNA binding than clamp binding/opening. Our data do not support a model in which each ATP site functions independently to regulate a different step in the clamp loading cycle to coordinate these steps. Instead, the ATP sites work in unison to promote conformational changes in the clamp loader that drive clamp loading. PMID:24436332

  13. The ATP sites of AAA+ clamp loaders work together as a switch to assemble clamps on DNA.

    Science.gov (United States)

    Marzahn, Melissa R; Hayner, Jaclyn N; Finkelstein, Jeff; O'Donnell, Mike; Bloom, Linda B

    2014-02-28

    Clamp loaders belong to a family of proteins known as ATPases associated with various cellular activities (AAA+). These proteins utilize the energy from ATP binding and hydrolysis to perform cellular functions. The clamp loader is required to load the clamp onto DNA for use by DNA polymerases to increase processivity. ATP binding and hydrolysis are coordinated by several key residues, including a conserved Lys located within the Walker A motif (or P-loop). This residue is required for each subunit to bind ATP. The specific function of each ATP molecule bound to the Saccharomyces cerevisiae clamp loader is unknown. A series of point mutants, each lacking a single Walker A Lys residue, was generated to study the effects of abolishing ATP binding in individual clamp loader subunits. A variety of biochemical assays were used to analyze the function of ATP binding during discrete steps of the clamp loading reaction. All mutants reduced clamp binding/opening to different degrees. Decreased clamp binding activity was generally correlated with decreases in the population of open clamps, suggesting that differences in the binding affinities of Walker A mutants stem from differences in stabilization of proliferating cell nuclear antigen in an open conformation. Walker A mutations had a smaller effect on DNA binding than clamp binding/opening. Our data do not support a model in which each ATP site functions independently to regulate a different step in the clamp loading cycle to coordinate these steps. Instead, the ATP sites work in unison to promote conformational changes in the clamp loader that drive clamp loading.

  14. Stoichiometry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria

    Science.gov (United States)

    Alexandre, Adolfo; Reynafarje, Baltazar; Lehninger, Albert L.

    1978-01-01

    In order to verify more directly our earlier measurements showing that, on the average, close to four vectorial H+ are rejected per pair of electrons passing each of the three energy-conserving sites of the mitochondrial electron transport chain, direct tests of the H+/2e- ratio for sites 2 and 3 were carried out in the presence of permeant charge-compensating cations. Site 2 was examined by utilizing succinate as electron donor and ferricyanide as electron acceptor from mitochondrial cytochrome c; the directly measured H+/2e- ratio was close to 4. Energy-conserving site 3 was isolated for study with ferrocyanide or ascorbate plus tetramethylphenylenediamine as electron donors to cytochrome c and with oxygen as electron acceptor. The directly measured H+/2e- ratio for site 3 was close to 4. The H+/ATP ratio (number of vectorial H+ ejected per ATP hydrolyzed) was determined with a new method in which the steady-state rates of both H+ ejection and ATP hydrolysis were measured in the presence of K+ + valinomycin. The H+/ATP ratio was found to approach 3.0. A proton cycle for oxidative phosphorylation is proposed, in which four electrochemical H+ equivalents are ejected per pair of electrons passing each energy-conserving site; three of the H+ equivalents pass inward to derive ATP synthesis from ADP and phosphate and the fourth H+ is used to bring about the energy-requiring electrogenic expulsion of ATP4- in exchange for extramitochondrial ADP3-, via the H+/H2PO4- symporter. PMID:31621

  15. Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes

    Science.gov (United States)

    Denis, María Florencia Leal; Incicco, J. Jeremías; Espelt, María Victoria; Verstraeten, Sandra V.; Pignataro, Omar P.; Lazarowski, Eduardo R.; Schwarzbaum, Pablo J.

    2014-01-01

    SUMMARY Background The peptide mastoparan 7 (MST7) stimulated ATP release in human erythrocytes. We explored intra- and extracellular processes governing the time-dependent accumulation of extracellular ATP (i.e., ATPe kinetics). Methods Human erythrocytes were treated with MST7 in the presence or absence of two blockers of pannexin 1. ATPe concentration was monitored by luciferin-luciferase based real-time luminometry. Results Exposure of human erythrocytes to MST7 led to an acute increase in [ATPe], followed by a slower increase phase. ATPe kinetics reflected a strong activation of ATP efflux and a low rate of ATPe hydrolysis by ectoATPase activity. Enhancement of [ATPe] by MST7 required adhesion of erythrocytes to poly-D-lysin-coated coverslips, and correlated with a 31% increase of cAMP and 10% cell swelling. However, when MST7 was dissolved in a hyperosmotic medium to block cell swelling, ATPe accumulation was inhibited by 49%. Erythrocytes pre-exposure to 10 μM of either carbenoxolone or probenecid, two blockers of pannexin 1, exhibited a partial reduction of ATP efflux. Erythrocytes from pannexin 1 knockout mice exhibited similar ATPe kinetics as those of wild type mice erythrocytes exposed to pannexin 1 blockers. Conclusions MST7 induced release of ATP required either cell adhesion or strong activation of cAMP synthesis. Part of this release required cell swelling. Kinetic analysis and a data driven model suggested that ATP efflux is mediated by two ATP conduits displaying different kinetics, with one conduit being fully blocked by pannexin 1 blockers. General Significance Kinetic analysis of extracellular ATP accumulation from human erythrocytes and potential effects on microcirculation. PMID:23742824

  16. Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors.

    Science.gov (United States)

    Hassan, Hammad Ali; Rani, Sadaf; Fatima, Tabeer; Kiani, Farooq Ahmad; Fischer, Stefan

    2017-11-01

    Hydrolysis of phosphate groups is a crucial reaction in living cells. It involves the breaking of two strong bonds, i.e. the OaH bond of the attacking water molecule, and the POl bond of the substrate (Oa and Ol stand for attacking and leaving oxygen atoms). Mechanism of the hydrolysis reaction can proceed either by a concurrent or a sequential mechanism. In the concurrent mechanism, the breaking of OaH and POl bonds occurs simultaneously, whereas in the sequential mechanism, the OaH and POl bonds break at different stages of the reaction. To understand how protonation affects the mechanism of hydrolysis of phosphate monoester, we have studied the mechanism of hydrolysis of protonated and deprotonated phosphate monoester at M06-2X/6-311+G**//M06-2X/6-31+G*+ZPE level of theory (where ZPE stands for zero point energy). Our calculations show that in both protonated and deprotonated cases, the breaking of the water OaH bond occurs before the breaking of the POl bond. Because the two events are not separated by a stable intermediate, the mechanism can be categorized as semi-concurrent. The overall energy barrier is 41kcalmol(-1) in the unprotonated case. Most (5/6th) of this is due to the initial breaking of the water OaH bond. This component is lowered from 34 to 25kcalmol(-1) by adding one proton to the phosphate. The rest of the overall energy barrier comes from the subsequent breaking of the POl bond and is not sensitive to protonation. This is consistent with previous findings about the effect of triphosphate protonation on the hydrolysis, where the equivalent protonation (on the γ-phosphate) was seen to lower the barrier of breaking the water OaH bond and to have little effect on the POl bond breaking. Hydrolysis pathways of phosphate monoester with initial breaking of the POl bond could not be found here. This is because the leaving group in phosphate monoester cannot be protonated, unlike in triphosphate hydrolysis, where protonation of the β- and

  17. Constant enthalpy change value during pyrophosphate hydrolysis within the physiological limits of NaCl.

    Science.gov (United States)

    Wakai, Satoshi; Kidokoro, Shun-ichi; Masaki, Kazuo; Nakasone, Kaoru; Sambongi, Yoshihiro

    2013-10-11

    A decrease in water activity was thought to result in smaller enthalpy change values during PPi hydrolysis, indicating the importance of solvation for the reaction. However, the physiological significance of this phenomenon is unknown. Here, we combined biochemistry and calorimetry to solve this problem using NaCl, a physiologically occurring water activity-reducing reagent. The pyrophosphatase activities of extremely halophilic Haloarcula japonica, which can grow at ∼4 M NaCl, and non-halophilic Escherichia coli and Saccharomyces cerevisiae were maximal at 2.0 and 0.1 M NaCl, respectively. Thus, halophilic and non-halophilic pyrophosphatases exhibit distinct maximal activities at different NaCl concentration ranges. Upon calorimetry, the same exothermic enthalpy change of -35 kJ/mol was obtained for the halophile and non-halophiles at 1.5-4.0 and 0.1-2.0 M NaCl, respectively. These results show that solvation changes caused by up to 4.0 M NaCl (water activity of ∼0.84) do not affect the enthalpy change in PPi hydrolysis. It has been postulated that PPi is an ATP analog, having a so-called high energy phosphate bond, and that the hydrolysis of both compounds is enthalpically driven. Therefore, our results indicate that the hydrolysis of high energy phosphate compounds, which are responsible for biological energy conversion, is enthalpically driven within the physiological limits of NaCl.

  18. Glucose and the ATP paradox in yeast.

    NARCIS (Netherlands)

    Somsen, O.J.G.; Hoeben, M.A.; Esgalhado, M.E.L.M.; Snoep, J.L.; Visser, D.; van der Heijden, R.T.J.M.; Heijnen, J.J.; Westerhoff, H.V.

    2000-01-01

    A sustained decrease in the intracellular ATP concentration has been observed when extra glucose was added to yeast cells growing aerobically under glucose limitation. Because glucose degradation is the main source of ATP-derived free energy, this is a counter-intuitive phenomenon, which cannot be

  19. Competition between Different S-Components for the Shared Energy Coupling Factor Module in Energy Coupling Factor Transporters

    NARCIS (Netherlands)

    Majsnerowska, Maria; Ter Beek, Josy; Stanek, Weronika K; Duurkens, Ria; Slotboom, Dirk J

    2015-01-01

    Energy coupling factor (ECF) transporters take up micronutrients in Bacteria and Archaea. They consist of a membrane-embedded S-component that provides substrate specificity and a three-subunit ECF module that couples ATP hydrolysis to transport. The S-components ThiT (for thiamin) and NiaX (for

  20. ATP-dependent Conformational Changes Trigger Substrate Capture and Release by an ECF-type Biotin Transporter.

    Science.gov (United States)

    Finkenwirth, Friedrich; Sippach, Michael; Landmesser, Heidi; Kirsch, Franziska; Ogienko, Anastasia; Grunzel, Miriam; Kiesler, Cornelia; Steinhoff, Heinz-Jürgen; Schneider, Erwin; Eitinger, Thomas

    2015-07-03

    Energy-coupling factor (ECF) transporters for vitamins and metal ions in prokaryotes consist of two ATP-binding cassette-type ATPases, a substrate-specific transmembrane protein (S component) and a transmembrane protein (T component) that physically interacts with the ATPases and the S component. The mechanism of ECF transporters was analyzed upon reconstitution of a bacterial biotin transporter into phospholipid bilayer nanodiscs. ATPase activity was not stimulated by biotin and was only moderately reduced by vanadate. A non-hydrolyzable ATP analog was a competitive inhibitor. As evidenced by cross-linking of monocysteine variants and by site-specific spin labeling of the Q-helix followed by EPR-based interspin distance analyses, closure and reopening of the ATPase dimer (BioM2) was a consequence of ATP binding and hydrolysis, respectively. A previously suggested role of a stretch of small hydrophobic amino acid residues within the first transmembrane segment of the S units for S unit/T unit interactions was structurally and functionally confirmed for the biotin transporter. Cross-linking of this segment in BioY (S) using homobifunctional thiol-reactive reagents to a coupling helix of BioN (T) indicated a reorientation rather than a disruption of the BioY/BioN interface during catalysis. Fluorescence emission of BioY labeled with an environmentally sensitive fluorophore was compatible with an ATP-induced reorientation and consistent with a hypothesized toppling mechanism. As demonstrated by [(3)H]biotin capture assays, ATP binding stimulated substrate capture by the transporter, and subsequent ATP hydrolysis led to substrate release. Our study represents the first experimental insight into the individual steps during the catalytic cycle of an ECF transporter in a lipid environment. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. ATP-dependent Conformational Changes Trigger Substrate Capture and Release by an ECF-type Biotin Transporter*

    Science.gov (United States)

    Finkenwirth, Friedrich; Sippach, Michael; Landmesser, Heidi; Kirsch, Franziska; Ogienko, Anastasia; Grunzel, Miriam; Kiesler, Cornelia; Steinhoff, Heinz-Jürgen; Schneider, Erwin; Eitinger, Thomas

    2015-01-01

    Energy-coupling factor (ECF) transporters for vitamins and metal ions in prokaryotes consist of two ATP-binding cassette-type ATPases, a substrate-specific transmembrane protein (S component) and a transmembrane protein (T component) that physically interacts with the ATPases and the S component. The mechanism of ECF transporters was analyzed upon reconstitution of a bacterial biotin transporter into phospholipid bilayer nanodiscs. ATPase activity was not stimulated by biotin and was only moderately reduced by vanadate. A non-hydrolyzable ATP analog was a competitive inhibitor. As evidenced by cross-linking of monocysteine variants and by site-specific spin labeling of the Q-helix followed by EPR-based interspin distance analyses, closure and reopening of the ATPase dimer (BioM2) was a consequence of ATP binding and hydrolysis, respectively. A previously suggested role of a stretch of small hydrophobic amino acid residues within the first transmembrane segment of the S units for S unit/T unit interactions was structurally and functionally confirmed for the biotin transporter. Cross-linking of this segment in BioY (S) using homobifunctional thiol-reactive reagents to a coupling helix of BioN (T) indicated a reorientation rather than a disruption of the BioY/BioN interface during catalysis. Fluorescence emission of BioY labeled with an environmentally sensitive fluorophore was compatible with an ATP-induced reorientation and consistent with a hypothesized toppling mechanism. As demonstrated by [3H]biotin capture assays, ATP binding stimulated substrate capture by the transporter, and subsequent ATP hydrolysis led to substrate release. Our study represents the first experimental insight into the individual steps during the catalytic cycle of an ECF transporter in a lipid environment. PMID:25991724

  2. ATP as a biological hydrotrope.

    Science.gov (United States)

    Patel, Avinash; Malinovska, Liliana; Saha, Shambaditya; Wang, Jie; Alberti, Simon; Krishnan, Yamuna; Hyman, Anthony A

    2017-05-19

    Hydrotropes are small molecules that solubilize hydrophobic molecules in aqueous solutions. Typically, hydrotropes are amphiphilic molecules and differ from classical surfactants in that they have low cooperativity of aggregation and work at molar concentrations. Here, we show that adenosine triphosphate (ATP) has properties of a biological hydrotrope. It can both prevent the formation of and dissolve previously formed protein aggregates. This chemical property is manifested at physiological concentrations between 5 and 10 millimolar. Therefore, in addition to being an energy source for biological reactions, for which micromolar concentrations are sufficient, we propose that millimolar concentrations of ATP may act to keep proteins soluble. This may in part explain why ATP is maintained in such high concentrations in cells. Copyright © 2017, American Association for the Advancement of Science.

  3. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.

    Science.gov (United States)

    Liu, Shijie

    2010-01-01

    The conversion of biomass to chemicals and energy is imperative to sustaining our way of life as known to us today. Fossil chemical and energy sources are traditionally regarded as wastes from a distant past. Petroleum, natural gas, and coal are not being regenerated in a sustainable manner. However, biomass sources such as algae, grasses, bushes and forests are continuously being replenished. Woody biomass represents the most abundant and available biomass source. Woody biomass is a reliably sustainable source of chemicals and energy that could be replenished at a rate consistent with our needs. The biorefinery is a concept describing the collection of processes used to convert biomass to chemicals and energy. Woody biomass presents more challenges than cereal grains for conversion to platform chemicals due to its stereochemical structures. Woody biomass can be thought of as comprised of at least four components: extractives, hemicellulose, lignin and cellulose. Each of these four components has a different degree of resistance to chemical, thermal and biological degradation. The biorefinery concept proposed at ESF (State University of New York - College of Environmental Science and Forestry) aims at incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. The emphasis of this work is on the kinetics of hot-water extraction, filling the gap in the fundamental understanding, linking engineering developments, and completing the first step in the biorefinery processes. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers and acetic acid in the extract are the major components having the greatest potential value for development. Extraction/hydrolysis involves at least 16 general reactions that could

  4. The structural basis of a high affinity ATP binding ε subunit from a bacterial ATP synthase.

    Directory of Open Access Journals (Sweden)

    Alexander Krah

    Full Text Available The ε subunit from bacterial ATP synthases functions as an ATP sensor, preventing ATPase activity when the ATP concentration in bacterial cells crosses a certain threshold. The R103A/R115A double mutant of the ε subunit from thermophilic Bacillus PS3 has been shown to bind ATP two orders of magnitude stronger than the wild type protein. We use molecular dynamics simulations and free energy calculations to derive the structural basis of the high affinity ATP binding to the R103A/R115A double mutant. Our results suggest that the double mutant is stabilized by an enhanced hydrogen-bond network and fewer repulsive contacts in the ligand binding site. The inferred structural basis of the high affinity mutant may help to design novel nucleotide sensors based on the ε subunit from bacterial ATP synthases.

  5. Short-time ultrasonication treatment in enzymatic hydrolysis of biomass

    Science.gov (United States)

    Zengqian Shi; Zhiyong Cai; Siqun Wang; Qixin Zhong; Joseph J. Bozell

    2013-01-01

    To improve the conversion of enzymatic hydrolysis of biomass in an energy-efficient manner, two shorttime ultrasonication strategies were applied on six types of biomass with different structures and components. The strategies include pre-sonication before the hydrolysis and intermittent sonication during the ongoing hydrolysis. The microstructures of each type of...

  6. Dynamics of the metal binding domains and regulation of the human copper transporters ATP7B and ATP7A.

    Science.gov (United States)

    Yu, Corey H; Dolgova, Natalia V; Dmitriev, Oleg Y

    2017-04-01

    Copper transporters ATP7A and ATP7B regulate copper levels in the human cells and deliver copper to the biosynthetic pathways. ATP7A and ATP7B belong to the P-type ATPases and share much of the domain architecture and the mechanism of ATP hydrolysis with the other, well-studied, enzymes of this type. A unique structural feature of the copper ATPases is the chain of six cytosolic metal-binding domains (MBDs), which are believed to be involved in copper-dependent regulation of the activity and intracellular localization of these enzymes. Although the structures of all the MBDs have been solved, the mechanism of copper-dependent regulation of ATP7B and ATP7A, the roles of individual MBDs, and the relationship between the regulatory and catalytic copper binding are still unknown. We describe the structure and dynamics of the MBDs, review the current knowledge about their functional roles and propose a mechanism of regulation of ATP7B by copper-dependent changes in the dynamics and conformation of the MBD chain. Transient interactions between the MBDs, rather than transitions between distinct static conformations are likely to form the structural basis of regulation of the ATP-dependent copper transporters in human cells. © 2016 IUBMB Life, 69(4):226-235, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  7. Transcriptional organization of the large and the small ATP synthase operons, atpI/H/F/A and atpB/E, in Arabidopsis thaliana chloroplasts.

    Science.gov (United States)

    Malik Ghulam, Mustafa; Zghidi-Abouzid, Ouafa; Lambert, Emeline; Lerbs-Mache, Silva; Merendino, Livia

    2012-06-01

    The ATP synthase is a ubiquitous enzyme which is found in bacteria and eukaryotic organelles. It is essential in the photosynthetic and respiratory processes, by transforming the electrochemical proton gradient into ATP energy via proton transport across the membranes. In Escherichia coli, the atp genes coding for the subunits of the ATP synthase enzyme are grouped in the same transcriptional unit, while in higher plants the plastid atp genes are organized into a large (atpI/H/F/A) and a small (atpB/E) atp operon. By using the model plant Arabidopsis thaliana, we have investigated the strategy evolved in chloroplasts to overcome the physical separation of the atp gene clusters and to coordinate their transcription. We show that all the identified promoters in the two atp operons are PEP dependent and require sigma factors for specific recognition. Our results indicate that transcription of the two atp operons is initiated by at least one common factor, the essential SIG2 factor. Our data show that SIG3 and SIG6 also participate in transcription initiation of the large and the small atp operon, respectively. We propose that SIG2 might be the factor responsible for coordinating the basal transcription of the plastid atp genes and that SIG3 and SIG6 might serve to modulate plastid atp expression with respect to physiological and environmental conditions. However, we observe that in the sigma mutants (sig2, sig3 and sig6) the deficiency in the recognition of specific atp promoters is largely balanced by mRNA stabilization and/or by activation of otherwise silent promoters, indicating that the rate-limiting step for expression of the atp operons is mostly post-transcriptional.

  8. The hydrolysis of polyimides

    Science.gov (United States)

    Hoagland, P. D.; Fox, S. W.

    1973-01-01

    Thermal polymerization of aspartic acid produces a polysuccinimide (I), a chain of aspartoyl residues. An investigation was made of the alkaline hydrolysis of the imide rings of (I) which converts the polyimide to a polypeptide. The alkaline hydrolysis of polyimides can be expected to be kinetically complex due to increasing negative charge generated by carboxylate groups. For this reason, a diimide, phthaloyl-DL-aspartoyl-beta-alanine (IIA) was synthesized for a progressive study of the hydrolysis of polyimides. In addition, this diimide (IIA) can be related to thalidomide and might be expected to exhibit similar reactivity during hydrolysis of the phthalimide ring.

  9. Identification of the inorganic pyrophosphate metabolizing, ATP substituting pathway in mammalian spermatozoa.

    Directory of Open Access Journals (Sweden)

    Young-Joo Yi

    Full Text Available Inorganic pyrophosphate (PPi is generated by ATP hydrolysis in the cells and also present in extracellular matrix, cartilage and bodily fluids. Fueling an alternative pathway for energy production in cells, PPi is hydrolyzed by inorganic pyrophosphatase (PPA1 in a highly exergonic reaction that can under certain conditions substitute for ATP-derived energy. Recombinant PPA1 is used for energy-regeneration in the cell-free systems used to study the zymology of ATP-dependent ubiquitin-proteasome system, including the role of sperm-borne proteasomes in mammalian fertilization. Inspired by an observation of reduced in vitro fertilization (IVF rates in the presence of external, recombinant PPA1, this study reveals, for the first time, the presence of PPi, PPA1 and PPi transporter, progressive ankylosis protein ANKH in mammalian spermatozoa. Addition of PPi during porcine IVF increased fertilization rates significantly and in a dose-dependent manner. Fluorometric assay detected high levels of PPi in porcine seminal plasma, oviductal fluid and spermatozoa. Immunofluorescence detected PPA1 in the postacrosomal sheath (PAS and connecting piece of boar spermatozoa; ANKH was present in the sperm head PAS and equatorial segment. Both ANKH and PPA1 were also detected in human and mouse spermatozoa, and in porcine spermatids. Higher proteasomal-proteolytic activity, indispensable for fertilization, was measured in spermatozoa preserved with PPi. The identification of an alternative, PPi dependent pathway for ATP production in spermatozoa elevates our understanding of sperm physiology and sets the stage for the improvement of semen extenders, storage media and IVF media for animal biotechnology and human assisted reproductive therapies.

  10. Identification of the Inorganic Pyrophosphate Metabolizing, ATP Substituting Pathway in Mammalian Spermatozoa

    Science.gov (United States)

    Yi, Young-Joo; Sutovsky, Miriam; Kennedy, Chelsey; Sutovsky, Peter

    2012-01-01

    Inorganic pyrophosphate (PPi) is generated by ATP hydrolysis in the cells and also present in extracellular matrix, cartilage and bodily fluids. Fueling an alternative pathway for energy production in cells, PPi is hydrolyzed by inorganic pyrophosphatase (PPA1) in a highly exergonic reaction that can under certain conditions substitute for ATP-derived energy. Recombinant PPA1 is used for energy-regeneration in the cell-free systems used to study the zymology of ATP-dependent ubiquitin-proteasome system, including the role of sperm-borne proteasomes in mammalian fertilization. Inspired by an observation of reduced in vitro fertilization (IVF) rates in the presence of external, recombinant PPA1, this study reveals, for the first time, the presence of PPi, PPA1 and PPi transporter, progressive ankylosis protein ANKH in mammalian spermatozoa. Addition of PPi during porcine IVF increased fertilization rates significantly and in a dose-dependent manner. Fluorometric assay detected high levels of PPi in porcine seminal plasma, oviductal fluid and spermatozoa. Immunofluorescence detected PPA1 in the postacrosomal sheath (PAS) and connecting piece of boar spermatozoa; ANKH was present in the sperm head PAS and equatorial segment. Both ANKH and PPA1 were also detected in human and mouse spermatozoa, and in porcine spermatids. Higher proteasomal-proteolytic activity, indispensable for fertilization, was measured in spermatozoa preserved with PPi. The identification of an alternative, PPi dependent pathway for ATP production in spermatozoa elevates our understanding of sperm physiology and sets the stage for the improvement of semen extenders, storage media and IVF media for animal biotechnology and human assisted reproductive therapies. PMID:22485177

  11. Two-step ATP-driven opening of cohesin head.

    Science.gov (United States)

    Marcos-Alcalde, Íñigo; Mendieta-Moreno, Jesús I; Puisac, Beatriz; Gil-Rodríguez, María Concepción; Hernández-Marcos, María; Soler-Polo, Diego; Ramos, Feliciano J; Ortega, José; Pié, Juan; Mendieta, Jesús; Gómez-Puertas, Paulino

    2017-06-12

    The cohesin ring is a protein complex composed of four core subunits: Smc1A, Smc3, Rad21 and Stag1/2. It is involved in chromosome segregation, DNA repair, chromatin organization and transcription regulation. Opening of the ring occurs at the "head" structure, formed of the ATPase domains of Smc1A and Smc3 and Rad21. We investigate the mechanisms of the cohesin ring opening using techniques of free molecular dynamics (MD), steered MD and quantum mechanics/molecular mechanics MD (QM/MM MD). The study allows the thorough analysis of the opening events at the atomic scale: i) ATP hydrolysis at the Smc1A site, evaluating the role of the carboxy-terminal domain of Rad21 in the process; ii) the activation of the Smc3 site potentially mediated by the movement of specific amino acids; and iii) opening of the head domains after the two ATP hydrolysis events. Our study suggests that the cohesin ring opening is triggered by a sequential activation of the ATP sites in which ATP hydrolysis at the Smc1A site induces ATPase activity at the Smc3 site. Our analysis also provides an explanation for the effect of pathogenic variants related to cohesinopathies and cancer.

  12. Mechanism of ATP turnover inhibition in the EJC

    Science.gov (United States)

    Nielsen, Klaus H.; Chamieh, Hala; Andersen, Christian B.F.; Fredslund, Folmer; Hamborg, Kristiane; Le Hir, Hervé; Andersen, Gregers R.

    2009-01-01

    The exon junction complex (EJC) is deposited onto spliced mRNAs and is involved in many aspects of mRNA function. We have recently reconstituted and solved the crystal structure of the EJC core made of MAGOH, Y14, the most conserved portion of MLN51, and the DEAD-box ATPase eIF4AIII bound to RNA in the presence of an ATP analog. The heterodimer MAGOH/Y14 inhibits ATP turnover by eIF4AIII, thereby trapping the EJC core onto RNA, but the exact mechanism behind this remains unclear. Here, we present the crystal structure of the EJC core bound to ADP-AIF3, the first structure of a DEAD-box helicase in the transition-mimicking state during ATP hydrolysis. It reveals a dissociative transition state geometry and suggests that the locking of the EJC onto the RNA by MAGOH/Y14 is not caused by preventing ATP hydrolysis. We further show that ATP can be hydrolyzed inside the EJC, demonstrating that MAGOH/Y14 acts by locking the conformation of the EJC, so that the release of inorganic phosphate, ADP, and RNA is prevented. Unifying features of ATP hydrolysis are revealed by comparison of our structure with the EJC–ADPNP structure and other helicases. The reconstitution of a transition state mimicking complex is not limited to the EJC and eIF4AIII as we were also able to reconstitute the complex Dbp5–RNA–ADP–AlF3, suggesting that the use of ADP–AlF3 may be a valuable tool for examining DEAD-box ATPases in general. PMID:19033377

  13. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons.

    Science.gov (United States)

    Ludtmann, Marthe H R; Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Preza, Elisavet; Carro, Eva; Houlden, Henry; Gandhi, Sonia; Wray, Selina; Abramov, Andrey Y

    2017-05-26

    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Ecto-nucleoside triphosphate diphosphohydrolase 2 modulates local ATP-induced calcium signaling in human HaCaT keratinocytes.

    Directory of Open Access Journals (Sweden)

    Chia-Lin Ho

    Full Text Available Keratinocytes are the major building blocks of the human epidermis. In many physiological and pathophysiological conditions, keratinocytes release adenosine triphosphate (ATP as an autocrine/paracrine mediator that regulates cell proliferation, differentiation, and migration. ATP receptors have been identified in various epidermal cell types; therefore, extracellular ATP homeostasis likely determines its long-term, trophic effects on skin health. We investigated the possibility that human keratinocytes express surface-located enzymes that modulate ATP concentration, as well as the corresponding receptor activation, in the pericellular microenvironment. We observed that the human keratinocyte cell line HaCaT released ATP and hydrolyzed extracellular ATP. Interestingly, ATP hydrolysis resulted in adenosine diphosphate (ADP accumulation in the extracellular space. Pharmacological inhibition by ARL 67156 or gene silencing of the endogenous ecto-nucleoside triphosphate diphosphohydrolase (NTPDase isoform 2 resulted in a 25% reduction in both ATP hydrolysis and ADP formation. Using intracellular calcium as a reporter, we found that although NTPDase2 hydrolyzed ATP and generated sustainable ADP levels, only ATP contributed to increased intracellular calcium via P2Y2 receptor activation. Furthermore, knocking down NTPDase2 potentiated the nanomolar ATP-induced intracellular calcium increase, suggesting that NTPDase2 globally attenuates nucleotide concentration in the pericellular microenvironment as well as locally shields receptors in the vicinity from being activated by extracellular ATP. Our findings reveal an important role of human keratinocyte NTPDase2 in modulating nucleotide signaling in the extracellular milieu of human epidermis.

  15. Roles of ATP and NADPH in formation of the fe-s cluster of spinach ferredoxin.

    Science.gov (United States)

    Takahashi, Y; Mitsui, A; Fujita, Y; Matsubara, H

    1991-01-01

    Ferredoxin (Fd) in higher plants is encoded by a nuclear gene, synthesized in the cytoplasm as a larger precursor, and imported into the chloroplast, where it is proteolytically processed, and assembled with the [2Fe-2S] cluster. The final step in the biosynthetic pathway of Fd can be analyzed by a reconstitution system composed of isolated chloroplasts and [(35)S]cysteine, in which [(35)S]sulfide and iron are incorporated into Fd to build up the (35)S-labeled Fe-S cluster. Although a lysed chloroplast system shows obligate requirements for ATP and NADPH, in vitro chemical reconstitution of the Fe-S cluster is generally thought to be energy-independent. The present study investigated whether ATP and NADPH in the chloroplast system of spinach (Spinacia oleracea) are involved in the supply of [(35)S]sulfide or iron, or in Fe-S cluster formation itself. [(35)S]Sulfide was liberated from [(35)S] cysteine in an NADPH-dependent manner, whereas ATP was not necessary for this process. This desulfhydration of [(35)S]cysteine occurred before the formation of the (35)S-labeled Fe-S cluster, and the amount of radioactivity in [(35)S]sulfide was greater than that in (35)S-labeled holo-Fd by a factor of more than 20. Addition of nonradioactive sulfide (Na(2)S) inhibited competitively formation of the (35)S-labeled Fe-S cluster along with the addition of nonradioactive cysteine, indicating that some of the inorganic sulfide released from cysteine is incorporated into the Fe-S cluster of Fd. ATP hydrolysis was not involved in the production of inorganic sulfide or in the supply of iron for assembly into the Fe-S cluster. However, ATP-dependent Fe-S cluster formation was observed even in the presence of sufficient amounts of [(35)S]sulfide and iron. These results suggest a novel type of ATP-dependent in vivo Fe-S cluster formation that is distinct from in vitro chemical reconstitution. The implications of these results for the possible mechanisms of ATP-dependent Fe-S cluster

  16. Molecular basis of multidrug transport by ATP-binding cassette transporters : A proposed two-cylinder engine model

    NARCIS (Netherlands)

    van Veen, HW; Higgins, CF; Konings, WN

    ATP-binding cassette multidrug transporters are probably present in all living cells, and are able to export a variety of structurally unrelated compounds at the expense of ATP hydrolysis. The elevated expression of these proteins in multidrug resistant cells interferes with the drug-based control

  17. Sleep, brain energy levels, and food intake: Relationship between hypothalamic ATP concentrations, food intake, and body weight during sleep-wake and sleep deprivation in rats.

    Science.gov (United States)

    Dworak, M; Kim, T; McCarley, R W; Basheer, R

    2011-06-01

    The feeling of hunger and feeding, a wake-state-dependent behavior, is regulated by specific centers within the hypothalamus. While paraventricular nucleus (PVN), arcuate nucleus (ARC), and dorso- and ventromedial hypothalamus (DMH/VMH) regulate feeding, the lateral hypothalamus (LH) is associated both with feeding and wake/REM sleep regulation. In order to examine the effects of sleep and wakefulness on food intake and body weight, we also measured hypothalamic ATP concentrations, which are known to be involved in feeding behavior and sleep-wake regulation. In rats, food intake and body weight was measured during a 24-h light-dark cycle and during 6 h of sleep deprivation (SD) performed by gentle handling. Tissue samples from the PVN, ARC/DMH/VMH, and LH were collected after 6 h of SD and from time-matched diurnal controls. ATP was measured by luciferin-luciferase bioluminescence assay. Across the 24-h light-dark period, rats consumed approximately 28.13±4.48 g of food and gained 5.22±1.65 g with a positive correlation between food intake and body weight. During SD, while food intake increased significantly +147.31±6.13%, they lost weight significantly (-93.29±13.64%) when compared to undisturbed controls. SD resulted in a significant decrease in ATP levels only in LH (-44.60±21.13%) with no change in PVN, ARC/DMH/VMH region when compared with undisturbed controls. The results indicate a strong overall correlation between ATP concentrations in the LH and individual food intake and suggest a sleep-wake dependent neuronal control of food intake and body weight.

  18. Nucleotide exchange between cytosolic ATP and F-actin-bound ADP may be a major energy-utilizing process in unstimulated platelets.

    Science.gov (United States)

    Daniel, J L; Molish, I R; Robkin, L; Holmsen, H

    1986-05-02

    About 40% of the cytosolic ADP of human platelets is tightly bound to protein and the complex is precipitated from the cells by 43% ethanol. We show here that this ADP is bound to F-actin by three criteria (a) copurification with F-actin, (b) specific extraction with water and (c) by specific interaction with DNase I. Platelets contain 0.3 mumol/10(11) cells of this F-actin--ADP complex compared to the total actin content of 0.8 mumol/10(11) cells, which is consistent with the view that actin is maintained in different pools (F-actin--ADP, profilactin, G-actin). In intact platelets the F-actin-bound ADP turns over rapidly and we have determined a turnover rate at 37 degrees C of 0.1 +/- 0.025 s-1 by using a double-labelling procedure. This rapid turnover indicates that F-actin in intact platelets is in a very dynamic state, which may be necessary for rapid responses to stimuli. If it is assumed that the source of the ADP bound to F-actin is cytosolic ATP, the turnover of F-actin ADP measured represents an ATP-consuming process that would account for up to 50% of total ATP consumption in resting platelets.

  19. MRT letter: Expression of ATP sensor protein in Caenorhabditis elegans.

    Science.gov (United States)

    Kishikawa, Jun-ichi; Fujikawa, Makoto; Imamura, Hiromi; Yasuda, Kayo; Noji, Hiroyuki; Ishii, Naoaki; Mitani, Shohei; Yokoyama, Ken

    2012-01-01

    Adenosine 5'-triphosphate (ATP) is the major energy currency and is involved in many biological processes. The ATP-monitoring system for cells in animals can be helpful to study the relationship between energy metabolism and biological processes. The fluorescent ATP biosensor ATeam (ATP indicator based on Epsilon subunit for Analytical Measurements), which has been reported to monitor ATP levels in cultured cells on the basis of fluorescence resonance energy transfer (FRET), was introduced into nematodes by microinjection and UV-irradiation method. To confirm whether ATeam functions as an ATP sensor in nematode cells, the authors measured FRET of ATeam in cells of transgenic nematode. The ATeam was expressed in target cells in nematode. In vulva cells, ATP levels in the cytosol were higher than those in mitochondria. ATeam also sensed ATP level change in cultured cells from the transgenic nematode. These experiments indicated that ATeam is available for detection of changes in ATP levels in nematode cells. Copyright © 2011 Wiley Periodicals, Inc.

  20. D-helix influences dimerization of the ATP-binding cassette (ABC transporter associated with antigen processing 1 (TAP1 nucleotide-binding domain.

    Directory of Open Access Journals (Sweden)

    Ahmet S Vakkasoglu

    Full Text Available ATP-binding cassette (ABC transporters form a large family of transmembrane importers and exporters. Using two nucleotide-binding domains (NBDs, which form a canonical ATP-sandwich dimer at some point within the transport cycle, the transporters harness the energy from ATP binding and hydrolysis to drive substrate transport. However the structural elements that enable and tune the dimerization propensity of the NBDs have not been fully elucidated. Here we compared the biochemical properties of the NBDs of human and rat TAP1, a subunit of the heterodimeric transporter associated with antigen processing (TAP. The isolated human TAP1 NBD was monomeric in solution, in contrast to the previously observed ATP-mediated homodimerization of the isolated rat TAP1 NBD. Using a series of human-rat chimeric constructs, we identified the D-helix, an α-helix N-terminal to the conserved D-loop motif, as an important determinant of NBD dimerization. The ATPase activity of our panel of TAP1 NBD constructs largely correlated with dimerization ability, indicating that the observed dimerization uses the canonical ATP-sandwich interface. The N-terminus of the D-helix from one protomer interacts with the ATP-binding Walker A motif of the second protomer at the ATP-sandwich interface. However, our mutational analysis indicated that residues farther from the interface, within the second and third turn of the D-helix, also influence dimerization. Overall, our data suggest that although the D-helix sequence is not conserved in ABC transporters, its precise positioning within the NBD structure has a critical role in NBD dimerization.

  1. Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue.

    Science.gov (United States)

    Chène, Patrick; Rudloff, Joëlle; Schoepfer, Joseph; Furet, Pascal; Meier, Peter; Qian, Zhiyan; Schlaeppi, Jean-Marc; Schmitz, Rita; Radimerski, Thomas

    2009-01-07

    Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteristics of the tumor cell have only recently started to emerge. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Thus, interfering with ATPase function with low molecular weight inhibitors that target the nucleotide binding pocket should profoundly affect cells that are committed to undergo mitosis. Here we describe the discovery and characterization of a novel purine diamine analogue as a potent ATP-competitive catalytic inhibitor of topoisomerase II. Quinoline aminopurine compound 1 (QAP 1) inhibited topoisomerase II ATPase activity and decatenation reaction at sub-micromolar concentrations, targeted both topoisomerase II alpha and beta in cell free assays and, using a quantitative cell-based assay and a chromosome segregation assay, displayed catalytic enzyme inhibition in cells. In agreement with recent hypothesis, we show that BRCA1 mutant breast cancer cells have increased sensitivity to QAP 1. The results obtained with QAP 1 demonstrate that potent and selective catalytic inhibition of human topoisomerase II function with an ATP-competitive inhibitor is feasible. Our data suggest that further drug discovery efforts on ATP-competitive catalytic inhibitors are warranted and that such drugs could potentially be developed as anti-cancer therapy for tumors that bear the appropriate combination of molecular alterations.

  2. Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue

    Directory of Open Access Journals (Sweden)

    Schlaeppi Jean-Marc

    2009-01-01

    Full Text Available Abstract Background Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteristics of the tumor cell have only recently started to emerge. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Thus, interfering with ATPase function with low molecular weight inhibitors that target the nucleotide binding pocket should profoundly affect cells that are committed to undergo mitosis. Results Here we describe the discovery and characterization of a novel purine diamine analogue as a potent ATP-competitive catalytic inhibitor of topoisomerase II. Quinoline aminopurine compound 1 (QAP 1 inhibited topoisomerase II ATPase activity and decatenation reaction at sub-micromolar concentrations, targeted both topoisomerase II alpha and beta in cell free assays and, using a quantitative cell-based assay and a chromosome segregation assay, displayed catalytic enzyme inhibition in cells. In agreement with recent hypothesis, we show that BRCA1 mutant breast cancer cells have increased sensitivity to QAP 1. Conclusion The results obtained with QAP 1 demonstrate that potent and selective catalytic inhibition of human topoisomerase II function with an ATP-competitive inhibitor is feasible. Our data suggest that further drug discovery efforts on ATP-competitive catalytic inhibitors are warranted and that such drugs could potentially be developed as anti-cancer therapy for tumors that bear the appropriate combination of molecular alterations.

  3. The glycolytic flux in Escherichia coli is controlled by the demand for ATP

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Westerhoff, H.V.; Snoep, J.L.

    2002-01-01

    of the membrane-bound (F1F0) H+-ATP synthase were expressed in steadily growing Escherichia coli cells, which lowered the intracellular [ATP]/[ADP] ratio. This resulted in a strong stimulation of the specific glycolytic flux concomitant with a smaller decrease in the growth rate of the cells. By optimizing......The nature of the control of glycolytic flux is one of the central, as-yet-uncharacterized issues in cellular metabolism. We developed a molecular genetic tool that specifically induces ATP hydrolysis in living cells without interfering with other aspects of metabolism. Genes encoding the F-1 part...... additional ATP hydrolysis, we increased the flux through glycolysis to 1.7 times that of the wild-type flux. The results demonstrate why attempts in the past to increase the glycolytic flux through overexpression of glycolytic enzymes have been unsuccessful: the majority of flux control (> 75%) resides...

  4. A taste for ATP: neurotransmission in taste buds

    Science.gov (United States)

    Kinnamon, Sue C.; Finger, Thomas E.

    2013-01-01

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952

  5. Elements in nucleotide sensing and hydrolysis of the AAA+ disaggregation machine ClpB: a structure-based mechanistic dissection of a molecular motor.

    Science.gov (United States)

    Zeymer, Cathleen; Barends, Thomas R M; Werbeck, Nicolas D; Schlichting, Ilme; Reinstein, Jochen

    2014-02-01

    ATPases of the AAA+ superfamily are large oligomeric molecular machines that remodel their substrates by converting the energy from ATP hydrolysis into mechanical force. This study focuses on the molecular chaperone ClpB, the bacterial homologue of Hsp104, which reactivates aggregated proteins under cellular stress conditions. Based on high-resolution crystal structures in different nucleotide states, mutational analysis and nucleotide-binding kinetics experiments, the ATPase cycle of the C-terminal nucleotide-binding domain (NBD2), one of the motor subunits of this AAA+ disaggregation machine, is dissected mechanistically. The results provide insights into nucleotide sensing, explaining how the conserved sensor 2 motif contributes to the discrimination between ADP and ATP binding. Furthermore, the role of a conserved active-site arginine (Arg621), which controls binding of the essential Mg2+ ion, is described. Finally, a hypothesis is presented as to how the ATPase activity is regulated by a conformational switch that involves the essential Walker A lysine. In the proposed model, an unusual side-chain conformation of this highly conserved residue stabilizes a catalytically inactive state, thereby avoiding unnecessary ATP hydrolysis.

  6. Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng; Stanevich, Vitali; Wlodarchak, Nathan; Sengupta, Rituparna; Jiang, Li; Satyshur, Kenneth A.; Xing, Yongna

    2013-10-08

    Proper activation of protein phosphatase 2A (PP2A) catalytic subunit is central for the complex PP2A regulation and is crucial for broad aspects of cellular function. The crystal structure of PP2A bound to PP2A phosphatase activator (PTPA) and ATPγS reveals that PTPA makes broad contacts with the structural elements surrounding the PP2A active site and the adenine moiety of ATP. PTPA-binding stabilizes the protein fold of apo-PP2A required for activation, and orients ATP phosphoryl groups to bind directly to the PP2A active site. This allows ATP to modulate the metal-binding preferences of the PP2A active site and utilize the PP2A active site for ATP hydrolysis. In vitro, ATP selectively and drastically enhances binding of endogenous catalytic metal ions, which requires ATP hydrolysis and is crucial for acquisition of pSer/Thr-specific phosphatase activity. Furthermore, both PP2A- and ATP-binding are required for PTPA function in cell proliferation and survival. Our results suggest novel mechanisms of PTPA in PP2A activation with structural economy and a unique ATP-binding pocket that could potentially serve as a specific therapeutic target.

  7. Visualization and Measurement of ATP Levels in Living Cells Replicating Hepatitis C Virus Genome RNA

    OpenAIRE

    Tomomi Ando; Hiromi Imamura; Ryosuke Suzuki; Hideki Aizaki; Toshiki Watanabe; Takaji Wakita; Tetsuro Suzuki

    2012-01-01

    Adenosine 5'-triphosphate (ATP) is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energi...

  8. ATP: The crucial component of secretory vesicles.

    Science.gov (United States)

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R; González-Santana, Ayoze; Westhead, Edward W; Borges, Ricardo; Machado, José David

    2016-07-12

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission.

  9. Concept of Sustained Ordering and an ATP-related Mechanism of Life’s Origin

    Directory of Open Access Journals (Sweden)

    Erik M. Galimov

    2009-05-01

    Full Text Available This paper shows that the steadystate of a system of conjugated reactions, which are characterized by disproportionation of entropy and proceed in the domain of linear interactions, is an attractor of ordering. Such systems are primed to produce ordering, and life is a specific manifestation of the sustained ordering inherent to the chemistry of carbon. The adenosine triphospate (ATP molecule has properties which makes ATP hydrolysis to be most appropriate to form such a system in primitive world. Hence, ATP is suggested to play a key role in prebiological evolution. Principles of the origin and evolution of life following from the concept of ordering are stated.

  10. EFFECT OF REACTION CONDITIONS ON THE HYDROLYSIS OF WOOL KERATINS

    Directory of Open Access Journals (Sweden)

    BĂLĂU MÎNDRU Tudore

    2017-05-01

    Full Text Available Every year millions of tons of keratinous wastes are generated worldwide, therefore from an economic and environmental point of view, it is worthwhile developing processes to use and reuse these resources. Many different procedures and methods can be applied to obtain keratin hydrolysates. Microwave heating is based upon the ability of a particular substance to absorb microwave energy and convert the electromagnetic energy to heat (kinetic energy. An extension of this is application in the field of proteomics (the study of proteins and in particular their struc¬ture and function. Large complex proteins can be broken into smaller parts by using microwave heating. This work aimed to perform microwave-assisted hydrolysis of wool keratin wastes in different experimental conditions, and compare it with a conventional method of alkaline hydrolysis, in order to study the efficiency of the treatment induced by this field on the reaction products, subsequently analyzed by specific methods. It was studied the influence of the reaction conditions (reaction time and working recipe on the keratin hydrolysis yield, and also were analysed the structural changes induced by hydrolysis. A significant reduction of reaction time concurrent with a higher hydrolysis yield was obtained by microwave hydrolysis regardless of the alkali mixtures used; better results were obtained for 60 min treatment. IR analysis performed highlight the structural modifications induced by hydrolysis conditions, the process carried out by means of microwaves leading to a lower degradation of hydrolysis products.

  11. A comparative study of ATPase subunit 9 (Atp9) gene between ...

    African Journals Online (AJOL)

    ATPase subunit 9 gene (Atp9) is an important functional gene in mitochondria, and is closely related with energy supply. RNA editing of atp9 gene was associated with male sterility in plants. In this study, the atp9 gene in soybeans was cloned from a soybean cytoplasmic male sterile line NJCMS2A and its maintainer line ...

  12. ENZYMATIC HYDROLYSIS AS AN ENVIRONMENTALLY FRIENDLY PROCESS COMPARED TO THERMAL HYDROLYSIS FOR INSTANT COFFEE PRODUCTION

    Directory of Open Access Journals (Sweden)

    I. J. Baraldi

    Full Text Available Abstract Conventional production of instant coffee is based on solubilisation of polysaccharides present in roasted coffee. Higher process temperatures increase the solubilisation yield, but also lead to carbohydrate degradation and formation of undesirable volatile compounds. Enzymatic hydrolysis of roasted coffee is an alternative to minimize carbohydrate degradation. In this work, products obtained from thermal and enzymatic processes were compared in terms of carbohydrates and volatiles composition. Roasted coffee was extracted with water at 125 °C, and spent coffee was processed by thermal (180 °C or enzymatic hydrolysis. Enzymatic hydrolysis experiments were carried out at 50 °C using the commercial enzyme preparations Powercell (Prozyn, Galactomannanase (HBI-Enzymes, and Ultraflo XL (Novozymes. These formulations were previously selected from eleven different commercial enzyme preparations, and their main enzymatic activities included cellulase, galactomannanase, galactanase, and β-glucanase. Enzymatic hydrolysis yield was 18% (dry basis, similar to the extraction yield at 125 °C (20%, but lower than the thermal hydrolysis yield at 180 °C (28%. Instant coffee produced by enzymatic hydrolysis had a low content of undesirable volatile compounds and 21% (w/w of total carbohydrates. These results point to the enzymatic process as a feasible alternative for instant coffee production, with benefits including improved quality as well as reduced energy consumption.

  13. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    Directory of Open Access Journals (Sweden)

    Kaori Kohzuma

    2017-07-01

    Full Text Available The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP

  14. Identification of the magnesium-binding domain of the high affinity ATP binding-site of the Bacillus subtilis and Escherichia coli seca protein

    NARCIS (Netherlands)

    van der Wolk, J.P.W.; Klose, M; de Wit, Janny; Blaauwen, T.den; Freudl, R; Driessen, A.J.M.

    1995-01-01

    The homodimeric SecA protein is the peripheral subunit of the translocase, and couples the hydrolysis of ATP to the translocation of precursor proteins across the bacterial cytoplasmic membrane. The high affinity ATP binding activity of SecA resides in the amino-terminal domain of SecA. This domain

  15. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    Science.gov (United States)

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evaluation of hydrolysis-esterification biodiesel production from wet microalgae.

    Science.gov (United States)

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Li, Shuhong; Kitamura, Yutaka

    2016-08-01

    Wet microalgae hydrolysis-esterification route has the advantage to avoid the energy-intensive units (e.g. drying and lipid extraction) in the biodiesel production process. In this study, techno-economic evaluation of hydrolysis-esterification biodiesel production process was carried out and compared with conventional (usually including drying, lipid extraction, esterification and transesterification) biodiesel production process. Energy and material balance of the conventional and hydrolysis-esterification processes was evaluated by Aspen Plus. The simulation results indicated that drying (2.36MJ/L biodiesel) and triolein transesterification (1.89MJ/L biodiesel) are the dominant energy-intensive stages in the conventional route (5.42MJ/L biodiesel). By contrast, the total energy consumption of hydrolysis-esterification route can be reduced to 1.81MJ/L biodiesel, and approximately 3.61MJ can be saved to produce per liter biodiesel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Electric field driven torque in ATP synthase.

    Directory of Open Access Journals (Sweden)

    John H Miller

    Full Text Available FO-ATP synthase (FO is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1 overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.

  18. Cellular ATP release in the lung and airway

    Directory of Open Access Journals (Sweden)

    Satoru Ito

    2016-11-01

    Full Text Available Adenosine triphosphate (ATP is a universal energy source synthesized by mitochondrial oxidative phosphorylation and cytosolic glycolysis and transported by the vesicular nucleotide transporter for storage in secretory vesicles. Extracellular ATP regulates physiological functions and homeostasis of the respiratory system and is associated with pathogenesis of respiratory diseases. Thus, modulation of ATP and purinergic signaling may be a novel therapeutic approach to pulmonary disease. ATP is released from alveolar epithelial cells, airway epithelial cells, airway smooth muscle cells, fibroblasts and endothelial cells in response to various chemical and mechanical stimuli. In addition to conductive pathways such as connexins and pannexins, vesicular exocytosis is involved in the mechanisms of ATP release from the cells. Imaging approaches enable us to visualize ATP release from not only cultured cells but also lung tissue ex vivo. Extracellular vesicles, exosomes and membrane-derived microvesicles, containing cytoplasmic proteins, mRNA and microRNA, represent important mediators of cell-to-cell communication and the intercellular microenvironment. However, it is not known whether extracellular vesicles contain ATP as an intercellular messenger. Future studies are necessary to elucidate the mechanisms of cellular ATP release and purinergic signaling in the respiratory system.

  19. Enzymatic Hydrolysis of Lignocelluloses

    DEFF Research Database (Denmark)

    Kolasa, Marta; Ahring, Birgitte Kiær; Lübeck, Peter Stephensen

    2010-01-01

    bonds. Cellulose can be degraded to simple sugar components by means of enzymatic hydrolysis. However, due to its complex, crystalline structure it is difficult to break it down and the cooperative action of a variety of cellulolytic enzymes is necessary. Fungi are known to have potential in production...... source. By means of degenerate PCR, specific genes, homologous to the genes of previously classified glycoside hydrolases from CAZY database, are searched for in selected strains of Aspergillus sp., Trichoderma sp. and Penicillium sp. Both methods are anticipated to facilitate identification of target...

  20. Inhibition of the ATP Synthase Eliminates the Intrinsic Resistance of Staphylococcus aureus towards Polymyxins

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Nøhr-Meldgaard, Katrine; Bojer, Martin Saxtorph

    2017-01-01

    Staphylococcus aureus is intrinsically resistant to polymyxins (polymyxin B and colistin), an important class of cationic antimicrobial peptides used in treatment of Gram-negative bacterial infections. To understand the mechanisms underlying intrinsic polymyxin resistance in S. aureus, we screened......G or the subunits of the ATP synthase (atpA, atpB, atpG, or atpH), which during respiration is the main source of energy. Inactivation of atpA also conferred hypersusceptibility to colistin and the aminoglycoside gentamicin, whereas susceptibilities to nisin, gallidermin, bacitracin, vancomycin, ciprofloxacin......, linezolid, daptomycin, and oxacillin were unchanged. ATP synthase activity is known to be inhibited by oligomycin A, and the presence of this compound increased polymyxin B-mediated killing of S. aureus Our results demonstrate that the ATP synthase contributes to intrinsic resistance of S. aureus towards...

  1. How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent

    Science.gov (United States)

    Dudev, Todor; Grauffel, Cédric; Lim, Carmay

    2017-02-01

    Adenosine triphosphate (ATP), the major energy currency of the cell, exists in solution mostly as ATP-Mg. Recent experiments suggest that Mg2+ interacts with the highly charged ATP triphosphate group and Li+ can co-bind with the native Mg2+ to form ATP-Mg-Li and modulate the neuronal purine receptor response. However, it is unclear how the negatively charged ATP triphosphate group binds Mg2+ and Li+ (i.e. which phosphate group(s) bind Mg2+/Li+) and how the ATP solution conformation depends on the type of metal cation and the metal-binding mode. Here, we reveal the preferred ATP-binding mode of Mg2+/Li+ alone and combined: Mg2+ prefers to bind ATP tridentately to each of the three phosphate groups, but Li+ prefers to bind bidentately to the terminal two phosphates. We show that the solution ATP conformation depends on the cation and its binding site/mode, but it does not change significantly when Li+ binds to Mg2+-loaded ATP. Hence, ATP-Mg-Li, like Mg2+-ATP, can fit in the ATP-binding site of the host enzyme/receptor, activating specific signaling pathways.

  2. Hydrolysis of biomass material

    Science.gov (United States)

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  3. Effects of surface adsorption on catalytic activity of heavy meromyosin studied using a fluorescent ATP analogue.

    Science.gov (United States)

    Balaz, Martina; Sundberg, Mark; Persson, Malin; Kvassman, Jan; Månsson, Alf

    2007-06-19

    Biochemical studies in solution and with myosin motor fragments adsorbed to surfaces (in vitro motility assays) are invaluable for elucidation of actomyosin function. However, there is limited understanding of how surface adsorption affects motor properties, e.g., catalytic activity. Here we address this issue by comparing the catalytic activity of heavy meromyosin (HMM) in solution and adsorbed to standard motility assay surfaces [derivatized with trimethylchlorosilane (TMCS)]. For these studies we first characterized the interaction of HMM and actomyosin with the fluorescent ATP analogue adenosine 5'-triphosphate Alexa Fluor 647 2'- (or 3'-) O-(N-(2-aminoethyl)urethane) hexa(triethylammonium) salt (Alexa-ATP). The data suggest that Alexa-ATP is hydrolyzed by HMM in solution at a slightly higher rate than ATP but with a generally similar mechanism. Furthermore, Alexa-ATP is effective as a fuel for HMM-propelled actin filament sliding. The catalytic activity of HMM on TMCS surfaces was studied using (1) Alexa-ATP in total internal reflection fluorescence (TIRF) spectroscopy experiments and (2) Alexa-ATP and ATP in HPLC-aided ATPase measurements. The results support the hypothesis of different HMM configurations on the surface. However, a dominant proportion of the myosin heads were catalytically active, and their average steady-state hydrolysis rate was slightly higher (with Alexa-ATP) or markedly higher (with ATP) on the surface than in solution. The results are discussed in relation to the use of TMCS surfaces and Alexa-ATP for in vitro motility assays and single molecule studies. Furthermore, we propose a novel TIRF microscopy method to accurately determine the surface density of catalytically active myosin motors.

  4. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    Science.gov (United States)

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Catalytic carboxyester hydrolysis by diaminodiphenols

    Indian Academy of Sciences (India)

    Administrator

    Two diaminodiphenols, 1 and 2, have been examined as catalysts for the hydrolysis of 4- nitrophenyl acetate (NA) and 4-nitrophenylphosphate (NP) in aqueous-acetonitrile (25% acetonitrile v/v) media at 35ºC, I = 1·0 mol dm–3. The compound 1 enhances the hydrolysis rate of NA more than 105 times. Its catalytic efficiency ...

  6. Energetic approach of biomass hydrolysis in supercritical water.

    Science.gov (United States)

    Cantero, Danilo A; Vaquerizo, Luis; Mato, Fidel; Bermejo, M Dolores; Cocero, M José

    2015-03-01

    Cellulose hydrolysis can be performed in supercritical water with a high selectivity of soluble sugars. The process produces high-pressure steam that can be integrated, from an energy point of view, with the whole biomass treating process. This work investigates the integration of biomass hydrolysis reactors with commercial combined heat and power (CHP) schemes, with special attention to reactor outlet streams. The innovation developed in this work allows adequate energy integration possibilities for heating and compression by using high temperature of the flue gases and direct shaft work from the turbine. The integration of biomass hydrolysis with a CHP process allows the selective conversion of biomass into sugars with low heat requirements. Integrating these two processes, the CHP scheme yield is enhanced around 10% by injecting water in the gas turbine. Furthermore, the hydrolysis reactor can be held at 400°C and 23 MPa using only the gas turbine outlet streams. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Hydrolysis of Al3+ from constrained molecular dynamics.

    Science.gov (United States)

    Ikeda, Takashi; Hirata, Masaru; Kimura, Takaumi

    2006-02-21

    We investigated the hydrolysis reactions of Al(3+) in AlCl(3) aqueous solution using the constrained molecular dynamics based on the Car-Parrinello molecular-dynamics method. By employing the proton-aluminum coordination number as a reaction coordinate in the constrained molecular dynamics the deprotonation as well as dehydration processes are successfully realized. From our free-energy difference of DeltaG(0) approximately 8.0 kcal mol(-1) the hydrolysis constant pK(a1) is roughly estimated as 5.8, comparable to the literature value of 5.07. We show that the free-energy difference for the hydrolysis of Al(3+) in acidic conditions is at least 4 kcal mol(-1) higher than that in neutral condition, indicating that the hydrolysis reaction is inhibited by the presence of excess protons located around the hydrated ion, in agreement with the change of the predominant species by pH.

  8. Stepwise hydrolysis to improve carbon releasing efficiency from sludge.

    Science.gov (United States)

    Liu, Hongbo; Wang, Yuanyuan; Wang, Ling; Yu, Tiantian; Fu, Bo; Liu, He

    2017-08-01

    Based on thermal alkaline hydrolysis (TAH), a novel strategy of stepwise hydrolysis was developed to improve carbon releasing efficiency from waste activated sludge (WAS). By stepwise increasing hydrolysis intensity, conventional sludge hydrolysis (the control) was divided into four stages for separately recovering sludge carbon sources with different bonding strengths, namely stage 1 (60 °C, pH 6.0-8.0), stage 2 (80 °C, pH 6.0-8.0), stage 3 (80 °C, pH 10.0) and stage 4 (90 °C, pH 12.0). Results indicate stepwise hydrolysis could enhance the amount of released soluble chemical oxygen demand (SCOD) for almost 2 times, from 7200 to 14,693 mg/L, and the released carbon presented better biodegradability, with BOD/COD of 0.47 and volatile fatty acids (VFAs) yield of 0.37 g VFAs/g SCOD via anaerobic fermentation. Moreover, stepwise hydrolysis also improved the dewaterability of hydrolyzed sludge, capillary suction time (CST) reducing from 2500 to 1600 s. Economic assessment indicates stepwise hydrolysis shows less alkali demand and lower thermal energy consumption than those of the control. Furthermore, results of this study help support the concepts of improving carbon recovery in wastewater by manipulating WAS composition and the idea of classifiably recovering the nutrients in WAS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase.

    Science.gov (United States)

    Ahmad, Zulfiqar; Hassan, Sherif S; Azim, Sofiya

    2017-11-20

    For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phytochemicals is based on tradition or word of mouth with few evidence-based studies. Moreover, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become pertinent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of dietary phytochemicals are known to inhibit ATP synthase. Structural modifications of phytochemicals have been shown to increase the inhibitory potency and extent of inhibition. Sitedirected mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can result in selective binding and inhibition of microbial ATP synthase. In this review, the therapeutic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective targeting of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. A new myofilament contraction model with ATP consumption for ventricular cell model.

    Science.gov (United States)

    Muangkram, Yuttamol; Noma, Akinori; Amano, Akira

    2017-08-02

    A new contraction model of cardiac muscle was developed by combining previously described biochemical and biophysical models. The biochemical component of the new contraction model represents events in the presence of Ca(2+)-crossbridge attachment and power stroke following inorganic phosphate release, detachment evoked by the replacement of ADP by ATP, ATP hydrolysis, and recovery stroke. The biophysical component focuses on Ca(2+) activation and force (F b) development assuming an equivalent crossbridge. The new model faithfully incorporates the major characteristics of the biochemical and biophysical models, such as F b activation by transient Ca(2+) ([Ca(2+)]-F b), [Ca(2+)]-ATP hydrolysis relations, sarcomere length-F b, and F b recovery after jumps in length under the isometric mode and upon sarcomere shortening after a rapid release of mechanical load under the isotonic mode together with the load-velocity relationship. ATP consumption was obtained for all responses. When incorporated in a ventricular cell model, the contraction model was found to share approximately 60% of the total ATP usage in the cell model.

  11. Visualization of ATP release in pancreatic acini in response to cholinergic stimulus. Use of fluorescent probes and confocal microscopy

    DEFF Research Database (Denmark)

    Sørensen, Christiane Elisabeth; Novak, Ivana

    2001-01-01

    The energy providing substrate ATP can be released from various cells and act extracellularly to regulate the same cells or neighboring cells. However, the pathway for ATP release and the eliciting physiological stimulus are unclear. Recently, we showed that ATP activates P2X and P2Y purinergic...

  12. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng

    2012-09-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop-in replacements for petroleum based fuels. To improve the economics of the process, attention is now focused on optimizing the energy efficiency of the process, maximizing the reaction rate, and improving the recovery of the glycerol by-product. A laboratory-scale reactor system has been designed and built with this goal in mind.Sweet water (water with glycerol from the hydrolysis reaction) is routed to a distillation column and heated above the boiling point of water at the reaction pressure. The steam pressure allows the steam to return to the reactor without pumping. Direct injection of steam into the hydrolysis reactor is shown to provide favorable equilibrium conditions resulting in a high quality of FFA product and rapid reaction rate, even without preheating the inlet water and oil and with lower reactor temperatures and lower fresh water demand. The high enthalpy of the steam provides energy for the hydrolysis reaction. Steam injection offers enhanced conditions for continuous hydrolysis of triglycerides to high-purity streams of FFA and glycerol. © 2012 Elsevier B.V.

  13. Hydrolysis of ammonia borane and metal amidoboranes: A comparative study

    Science.gov (United States)

    Banu, Tahamida; Debnath, Tanay; Ash, Tamalika; Das, Abhijit K.

    2015-11-01

    A gas phase mechanistic investigation has been carried out theoretically to explore the hydrolysis pathway of ammonia borane (NH3BH3) and metal amidoboranes (MNH2BH3, M = Li,Na). The Solvation Model based on Density (SMD) has been employed to show the effect of bulk water on the reaction mechanism. Gibbs free energy of solvation has also been computed to evaluate the stabilization of the participating systems in water medium which directly affects the barrier heights in the potential energy surface of hydrolysis reaction. To validate the experimentally observed kinetics studies, we have carried out transition state theory calculations on these hydrolysis reactions. Our result shows that the hydrolysis of both the metal amidoboranes exhibits greatly improved kinetics over the neat NH3BH3 hydrolysis which corroborates well with the experimental observation. Between the two amidoboranes, hydrolysis of LiNH2BH3 is found to be kinetically favored over that of NaNH2BH3, making it a better candidate for releasing molecular hydrogen.

  14. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics.

    Science.gov (United States)

    Yu, Corey H; Yang, Nan; Bothe, Jameson; Tonelli, Marco; Nokhrin, Sergiy; Dolgova, Natalia V; Braiterman, Lelita; Lutsenko, Svetlana; Dmitriev, Oleg Y

    2017-11-03

    The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by apo-Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Hydrolysis reactor for hydrogen production

    Science.gov (United States)

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  16. Double-lock ratchet mechanism revealing the role of  SER-344 in FoF1 ATP synthase

    KAUST Repository

    Beke-Somfai, T.

    2011-03-07

    In a majority of living organisms, FoF1 ATP synthase performs the fundamental process of ATP synthesis. Despite the simple net reaction formula, ADP+Pi→ATP+H2O, the detailed step-by-step mechanism of the reaction yet remains to be resolved owing to the complexity of this multisubunit enzyme. Based on quantum mechanical computations using recent high resolution X-ray structures, we propose that during ATP synthesis the enzyme first prepares the inorganic phosphate for the γP-OADP bond-forming step via a double-proton transfer. At this step, the highly conserved αS344 side chain plays a catalytic role. The reaction thereafter progresses through another transition state (TS) having a planar ion configuration to finally form ATP. These two TSs are concluded crucial for ATP synthesis. Using stepwise scans and several models of the nucleotide-bound active site, some of the most important conformational changes were traced toward direction of synthesis. Interestingly, as the active site geometry progresses toward the ATP-favoring tight binding site, at both of these TSs, a dramatic increase in barrier heights is observed for the reverse direction, i.e., hydrolysis of ATP. This change could indicate a "ratchet" mechanism for the enzyme to ensure efficacy of ATP synthesis by shifting residue conformation and thus locking access to the crucial TSs.

  17. [ATP pool and bioluminescence in psychrophilic bacteria Photobacterium phosphoreum].

    Science.gov (United States)

    Alekserova, L É; Alenina, K A; Efremenko, E N; Mazhul', M M; Piskunova, N F; Ismailov, A D

    2014-01-01

    Bioluminescence activity and ATP pool were investigated in the culture of psychrophilic bacteria Photobacterium phosphoreum collected-from the exponential and stationary growth phases, as well as immobilized in polyvinyl alcohol (PVA) cryogel. In liquid culture, ATP pool remained at an almost a constant level throughout the luminescence cycle (over 100 h). The ATP pool in the stationary-phase and PVA-immobilizedl cells remained constant throughout their incubation in the medium (over 200 h) and in 3% NaCl solution (over 100 h): Quantitative assessment of integral photon yield and ATP pool indicated that bioluminescence decay in growing or stationary cells was not caused by limitation by the energy substrates of the luciferase reaction. Kinetic and quantitative parameters of emission activity and ATP pool excluded the possibility of formation of the aldehyde substrate for luciferase via reduction of the relevant fatty acids in NADPH and ATP-dependent reductase reaction and its oxidation in the monooxygenase reaction. Our results indicate that the aliphatic aldehyde is not utilized in the process of light emission.

  18. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand

    DEFF Research Database (Denmark)

    Liu, Jianming; Kandasamy, Vijayalakshmi; Würtz, Anders

    2016-01-01

    Having a sufficient supply of energy, usually in the form of ATP, is essential for all living organisms. In this study, however, we demonstrate that it can be beneficial to reduce ATP availability when the objective is microbial production. By introducing the ATP hydrolyzing F1-ATPase into a Lact......Having a sufficient supply of energy, usually in the form of ATP, is essential for all living organisms. In this study, however, we demonstrate that it can be beneficial to reduce ATP availability when the objective is microbial production. By introducing the ATP hydrolyzing F1-ATPase...... mM (32 g/L) of glucose into 146.5 mM (12.9 g/L) acetoin with a yield of 83 % of the theoretical maximum. To further demonstrate the potential of the cell factory developed, we complemented it with the lactose plasmid pLP712, which allowed for growth and acetoin production from a dairy waste stream...

  19. Eggshells – assisted hydrolysis of banana pulp for biogas production

    African Journals Online (AJOL)

    KARAKANA

    The least biogas yield of 10 mL was obtained in digester. C5 with 9 g of calcined eggshells additive. Key words: Anaerobic digestion, banana pulp hydrolysis biogas, eggshells. INTRODUCTION. The energy and global warming crisis, stimulates the need for development of renewable energy worldwide. (Buasri et al., 2013).

  20. Characterization of nucleoside triphosphate diphosphohydrolase activity in Trichomonas gallinae and the influence of penicillin and streptomycin in extracellular nucleotide hydrolysis.

    Science.gov (United States)

    Borges, Fernanda Pires; de Brum Vieira, Patrícia; Wiltuschnig, Renata C M; Tasca, Tiana; De Carli, Geraldo Attilio; Bonan, Carla Denise

    2008-06-01

    Here we described an nucleoside triphosphate diphosphohydrolase (NTPDase) activity in living trophozoites of Trichomonas gallinae. The enzyme hydrolyzes a variety of purine and pyrimidine nucleoside di- and triphosphates in an optimum pH range of 6.0-8.0. This enzyme activity was activated by high concentrations of divalent cations, such as calcium and magnesium. Contaminant activities were ruled out because the enzyme was not inhibited by classical inhibitors of ATPases (ouabain, 5.0 mM sodium azide, oligomycin) and alkaline phosphatases (levamisole). A significant inhibition of ATP hydrolysis (38%) was observed in the presence of 20 mM sodium azide. Sodium orthovanadate inhibited ATP and ADP hydrolysis (24% and 78%), respectively. The apparent K(M) (Michaelis constant) values were 667.62+/-13 microM for ATP and 125+/-5.3 microM for ADP. V(max) (maximum velocity) values were 0.44+/-0.007 nmol Pi min(-1) per 10(6) trichomonads and 0.91+/-0.12 nmol Pi min(-1) per 10(6) trichomonads for ATP and ADP, respectively. Moreover, we showed a marked decrease in ATP, ADP and AMP hydrolysis when the parasites were grown in the presence of penicillin and streptomycin. The existence of an NTPDase activity in T. gallinae may be involved in pathogenicity, protecting the parasite from the cytolytic effects of the extracellular nucleotides.

  1. Human MSH2 (hMSH2) protein controls ATP processing by hMSH2-hMSH6.

    Science.gov (United States)

    Heinen, Christopher D; Cyr, Jennifer L; Cook, Christopher; Punja, Nidhi; Sakato, Miho; Forties, Robert A; Lopez, Juana Martin; Hingorani, Manju M; Fishel, Richard

    2011-11-18

    The mechanics of hMSH2-hMSH6 ATP binding and hydrolysis are critical to several proposed mechanisms for mismatch repair (MMR), which in turn rely on the detailed coordination of ATP processing between the individual hMSH2 and hMSH6 subunits. Here we show that hMSH2-hMSH6 is strictly controlled by hMSH2 and magnesium in a complex with ADP (hMSH2(magnesium-ADP)-hMSH6). Destabilization of magnesium results in ADP release from hMSH2 that allows high affinity ATP binding by hMSH6, which then enhances ATP binding by hMSH2. Both subunits must be ATP-bound to efficiently form a stable hMSH2-hMSH6 hydrolysis-independent sliding clamp required for MMR. In the presence of magnesium, the ATP-bound sliding clamps remain on the DNA for ∼8 min. These results suggest a precise stepwise kinetic mechanism for hMSH2-hMSH6 functions that appears to mimic G protein switches, severely constrains models for MMR, and may partially explain the MSH2 allele frequency in Lynch syndrome or hereditary nonpolyposis colorectal cancer.

  2. Glucose Triggers ATP Secretion from Bacteria in a Growth-Phase-Dependent Manner

    Science.gov (United States)

    Hironaka, Ippei; Iwase, Tadayuki; Sugimoto, Shinya; Okuda, Ken-ichi; Tajima, Akiko; Yanaga, Katsuhiko

    2013-01-01

    ATP modulates immune cell functions, and ATP derived from gut commensal bacteria promotes the differentiation of T helper 17 (Th17) cells in the intestinal lamina propria. We recently reported that Enterococcus gallinarum, isolated from mice and humans, secretes ATP. We have since found and characterized several ATP-secreting bacteria. Of the tested enterococci, Enterococcus mundtii secreted the greatest amount of ATP (>2 μM/108 cells) after overnight culture. Glucose, not amino acids and vitamins, was essential for ATP secretion from E. mundtii. Analyses of energy-deprived cells demonstrated that glycolysis is the most important pathway for bacterial ATP secretion. Furthermore, exponential-phase E. mundtii and Enterococcus faecalis cells secrete ATP more efficiently than stationary-phase cells. Other bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, also secrete ATP in exponential but not stationary phase. These results suggest that various gut bacteria, including commensals and pathogens, might secrete ATP at any growth phase and modulate immune cell function. PMID:23354720

  3. Structure and Subunit Arrangement of the A-type ATP Synthase Complex from the Archaeon Methanococcus jannaschii Visualized by Electron Microscopy

    NARCIS (Netherlands)

    Coskun, Ünal; Chaban, Yuriy L.; Lingl, Astrid; Müller, Volker; Keegstra, Wilko; Boekema, Egbert J.; Grüber, Gerhard; Gruber, 27460

    2004-01-01

    In Archaea, bacteria, and eukarya, ATP provides metabolic energy for energy-dependent processes. It is synthesized by enzymes known as A-type or F-type ATP synthase, which are the smallest rotatory engines in nature. Here, we report the first projected structure of an intact A1A0 ATP synthase from

  4. Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation

    Science.gov (United States)

    Jena, Ananta Kumar

    2015-01-01

    Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…

  5. Hair bundles are specialized for ATP delivery via creatine kinase.

    NARCIS (Netherlands)

    Shin, J.B.; Streijger, F.; Beynon, A.J.; Peters, T.; Gadzala, L.; McMillen, D.; Bystrom, C.; Zee, C.E.E.M. van der; Wallimann, T.; Gillespie, P.G.

    2007-01-01

    When stimulated strongly, a hair cell's mechanically sensitive hair bundle may consume ATP too rapidly for replenishment by diffusion. To provide a broad view of the bundle's protein complement, including those proteins participating in energy metabolism, we used shotgun mass spectrometry methods to

  6. Cyclodextrin-based microcapsules as bioreactors for ATP biosynthesis.

    Science.gov (United States)

    Li, Jian-Hu; Wang, Yi-Fu; Ha, Wei; Liu, Yan; Ding, Li-Sheng; Li, Bang-Jing; Zhang, Sheng

    2013-09-09

    A biomimetic energy converter was fabricated via the assembly of CF0F1-ATPase on lipid-coated hollow nanocapsules composed of α-cyclodextrins/chitosan-graft-poly(ethylene glycol) methacrylate. Upon entrapped GOD into these capsules, the addition of glucose could trigger proton-motive force and then drive the rotation of ATPase to synthesize ATP.

  7. ATP Release and Effects in Pancreas

    DEFF Research Database (Denmark)

    Novak, Ivana; Amstrup, Jan; Henriksen, Katrine Lütken

    2003-01-01

    ATP and other nucleotides are released from various cells, but the pathway and physiological stimulus for ATP release are often unclear. The focus of our studies is the understanding of ATP release and signaling in rat exocrine pancreas. In acinar suspension mechanical stimulation, hypotonic shock...

  8. Extracellular ATP induces albuminuria in pregnant rats

    NARCIS (Netherlands)

    Faas, M.M.; van der Schaaf, G.; Borghuis, T.; Jongman, R.M.; van Pampus, Maria; de Vos, P.; van Goor, Harry; Bakker, W.W.

    BACKGROUND: As circulating plasma ATP concentrations are increased in pre-eclampsia, we tested whether increased plasma ATP is able to induce albuminuria during pregnancy. METHODS: Pregnant (day 14) and non-pregnant rats were infused with ATP (3000 microg/kg bw) via a permanent jugular vein cannula.

  9. Cloning and characterization of ATP synthase CF1 α gene from ...

    African Journals Online (AJOL)

    ATP synthase CF1 α subunit protein is a key enzyme for energy metabolism in plant kingdom, and plays an important role in multiple cell processes. In this study, the complete atpA gene (accession no. JN247444) was cloned from sweet potato (Ipomoea batatas L. Lam) by reverse transcriptasepolymerase chain reaction ...

  10. Energetic and metabolic consequences of aerobic and an-aerobic ATP-production.

    NARCIS (Netherlands)

    Schreurs, V.V.A.M.; Aarts, M.J.; IJssennagger, N.; Hermans, J.; Hendriks, W.H.

    2007-01-01

    ATP, the currency of cellular energy metabolism, can be produced during aerobic and an-aerobic oxidation of metabolic substrates. The aerobic oxidation yields CO2 + H2O as metabolic end products while ATP is produced by oxidative phosphorylation in the mitochondria. Carbohydrate, protein and fat

  11. ATP Changes the Fluorescence Lifetime of Cyan Fluorescent protein via an Interaction with His148

    NARCIS (Netherlands)

    Borst, J.W.; Willemse, M.; Slijkhuis, R.; Krogt, G.; Laptenok, S.; Jalink, K.; Wieringa, B.; Fransen, J.A.M.

    2010-01-01

    Recently, we described that ATP induces changes in YFP/CFP fluorescence intensities of Fluorescence Resonance Energy Transfer (FRET) sensors based on CFP-YFP. To get insight into this phenomenon, we employed fluorescence lifetime spectroscopy to analyze the influence of ATP on these fluorescent

  12. ATP changes the fluorescence lifetime of cyan fluorescent protein via an interaction with His148.

    NARCIS (Netherlands)

    Borst, J.W.; Willemse, M.P.; Slijkhuis, R.; Krogt, G. van der; Laptenok, S.P.; Jalink, K.; Wieringa, B.; Fransen, J.A.M.

    2010-01-01

    Recently, we described that ATP induces changes in YFP/CFP fluorescence intensities of Fluorescence Resonance Energy Transfer (FRET) sensors based on CFP-YFP. To get insight into this phenomenon, we employed fluorescence lifetime spectroscopy to analyze the influence of ATP on these fluorescent

  13. ATP-regenerating system in the cilia of Paramecium caudatum.

    Science.gov (United States)

    Noguchi, M; Sawada, T; Akazawa, T

    2001-03-01

    The energy supply for eukaryotic ciliary and flagellar movement is thought to be maintained by ATP-regenerating enzymes such as adenylate kinase, creatine kinase and arginine kinase. In this study, the energy-supplying system for the ciliary movement of Paramecium caudatum was examined. Arginine kinase and adenylate kinase activities were detected in the cilia. To demonstrate that phosphoarginine satisfactorily supplies high-energy phosphate compounds into the narrow ciliary space, we prepared an intact ciliated cortical sheet from live Paramecium caudatum. These cortical sheets, with an intact ciliary membrane, produced a half-closed system in which each cilium was covered with a ciliary membrane with an opening to the cell body. Ciliary beating on the intact cortical sheets was induced by perfusing not only ATP but also ADP. Addition of phosphoarginine (0.2 mmol l(-1)) increased the beat frequency. A further increase in beat frequency was observed in 0.4 mmol l(-1) phosphoarginine, and this was enhanced when the cilia were reactivated with relatively low concentrations of ATP. We have demonstrated that phosphoarginine supplies energy as a 'phosphagen' for ciliary beating in Paramecium caudatum, suggesting that phosphoarginine functions not only as a reservoir of energy but also as a transporter of energy in these continuously energy-consuming circumstances. http://www.biologists.com/JEB/movies/jeb3123.html

  14. Cellulase hydrolysis of unsorted MSW

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Felby, Claus; Jørgensen, Henning

    2011-01-01

    of surfactant. Concurrently, the enzyme performance was analysed on pure cellulose in a solution of MSW wastewater. Results showed no effect of surfactant addition to the hydrolysis media as measured by viscosity and particle size distribution. MSW treatment wastewater was found to contain a high amount...

  15. Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.

    Science.gov (United States)

    Nguyen, Lan Huong; Chong, Nyuk-Min

    2015-09-01

    Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of hydrolysis and carbonization reactions on hydrochar production.

    Science.gov (United States)

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA.

    Directory of Open Access Journals (Sweden)

    Tomomi Ando

    Full Text Available Adenosine 5'-triphosphate (ATP is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV, a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome.

  18. Nitration of specific tyrosines in FoF1 ATP synthase and activity loss in aging.

    Science.gov (United States)

    Haynes, Virginia; Traaseth, Nathaniel J; Elfering, Sarah; Fujisawa, Yasuko; Giulivi, Cecilia

    2010-05-01

    It has been reported that C-nitration of proteins occurs under nitrative/oxidative stress; however, its role in pathophysiological situations is not fully understood. In this study, we determined that nitration of Tyr(345) and Tyr(368) in the beta-subunit of the mitochondrial F(o)F(1)-ATPase is a major target for nitrative stress in rat liver under in vivo conditions. The chemical characteristics of these Tyr make them suitable for a facilitated nitration (solvent accessibility, consensus sequence, and pK(a)). Moreover, beta-subunit nitration increased significantly with the age of the rats (from 4 to 80 weeks old) and correlated with decreased ATP hydrolysis and synthesis rates. Although its affinity for ATP binding was unchanged, maximal ATPase activity decreased between young and old rats by a factor of two. These changes directly impacted the available ATP concentration in vivo, and it was expected that they would affect multiple cellular ATP-dependent processes. For instance, at least 50% of available [ATP] in the liver of older rats would have to be committed to sustain maximal Na(+)-K(+)-ATPase activity, whereas only 30% would be required for young rats. If this requirement was not fulfilled, the osmoregulation and Na(+)-nutrient cotransport in liver of older rats would be compromised. On the basis of our studies, we propose that targeted nitration of the beta-subunit is an early marker for nitrative stress and aging.

  19. Kinetics of hydrolysis in aqueous solution of 1-benzoyl-1,2,4-triazole; the role of pairwise and triplet Gibbs energy interaction parameters in describing the effects of added salts and added alcohols

    NARCIS (Netherlands)

    Noordman, Wouter H.; Blokzijl, Wilfried; Engberts, Jan B.F.N.; Blandamer, Michael J.

    Kinetic data are reported for the spontaneous hydrolysis of 1-benzoyl-1,2,4-triazole in aqueous solutions at ambient-pressure and 298.2 K, in aqueous solutions containing added ethanol, propanol and sodium chloride. Kinetic-data are also reported for the same reaction in aqueous mixtures of sodium

  20. Cooperation and Competition in the Evolution of ATP-Producing Pathways

    National Research Council Canada - National Science Library

    Thomas Pfeiffer; Stefan Schuster; Sebastian Bonhoeffer

    2001-01-01

    .... This trade-off may result in an evolutionary dilemma, because cells with a higher rate but lower yield of ATP production may gain a selective advantage when competing for shared energy resources...

  1. Activity-dependent modulation of intracellular ATP in cultured cortical astrocytes.

    Science.gov (United States)

    Winkler, Ulrike; Seim, Pauline; Enzbrenner, Yvonne; Köhler, Susanne; Sicker, Marit; Hirrlinger, Johannes

    2017-11-01

    Brain function is absolutely dependent on an appropriate supply of energy. A shortfall in supply-as occurs, for instance, following stroke-can lead rapidly to irreversible damage to this vital organ. While the consequences of pathophysiological energy depletion have been well documented, much less is known about the physiological energy dynamics of brain cells, although changes in the intracellular concentration of adenosine triphosphate (ATP), the major energy carrier of cells, have been postulated to contribute to cellular signaling. To address this issue more closely, we have investigated intracellular ATP in cultured primary cortical astrocytes by time-lapse microscopy using a genetically encoded fluorescent sensor for ATP. The cytosolic ATP sensor signal decreased after application of the neurotransmitter glutamate in a manner dependent on both glutamate concentration and glutamate transporter activity, but independent of glutamate receptors. The application of dopamine did not affect ATP levels within astrocytes. These results confirm that intracellular ATP levels in astrocytes do indeed respond to changes in physiological activity and pave the way for further studies addressing factors that affect regulation of ATP. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Brain ischemia alters platelet ATP diphosphohydrolase and 5'-nucleotidase activities in naive and preconditioned rats

    Directory of Open Access Journals (Sweden)

    S.S. Frassetto

    2000-11-01

    Full Text Available The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation.

  3. Adenosine 5 '-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    NARCIS (Netherlands)

    Arts, I.C.W.; Coolen, E.J.C.M.; Bours, M.J.L.; Huyghebaert, N.; Cohen Stuart, M.A.; Bast, A.; Dagnelie, P.C.

    2012-01-01

    Background: Nutritional supplements designed to increase adenosine 5'-triphosphate (ATP) concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity

  4. High glucose impairs ATP formation on the surface of human peripheral blood B lymphocytes.

    Science.gov (United States)

    Sakowicz-Burkiewicz, Monika; Grden, Marzena; Maciejewska, Izabela; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2013-07-01

    Diabetes-associated lymphocyte dysfunction may be attributed to the direct effect of hyperglycemia, but the impact of glucose concentration on B cell functionality is not fully resolved. Since, adenosine 5'-triphosphate (ATP) and its metabolite adenosine are the core constituents of the purinergic signaling network involved in regulation of immune response we aimed to investigate the impact of high glucose concentration on ATP outflow and metabolism on B cell surface. Purified human peripheral blood B cells cultured at high glucose (25 mM) concentration released significantly less ATP (~60%) comparing to cells cultured in low glucose (5mM) concentration. We observed that high glucose altered ATP hydrolysis on B cell surface due to increased activity of nucleoside triphosphate diphosphohydrolase-1 (NTPDase-1/CD39). In the presence of 10 μM [(3)H]AMP and 100 μM ATP significant quantities of [(3)H]ADP and [(3)H]ATP were generated, although the AMP to ADP phosphorylation potential of B cells cultured in high glucose decreased significantly. The flow cytometry analysis revealed that the level of ecto-adenylate kinase 1β (AK1β) on surface of B cells cultured in high glucose decreased significantly. Inhibition of NTPDase1/CD39 activity with 100 μM ARL67156 resulted in decreased cell viability, although significantly more viable cells retained in the culture media containing low glucose compared to high glucose media. Selective inhibition of P2X7 purinergic receptor irrespective of glucose concentration completely protected B cells against the ARL 67156-induced cell death. We assume that high glucose-induced alteration of ATP handling on B cell surface might contribute to impaired functionality of B cells in diabetes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Mechanisms of constitutive and ATP-evoked ATP release in neonatal mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hayoz Sébastien

    2012-05-01

    Full Text Available Abstract Background ATP is an extracellular signaling molecule with many ascribed functions in sensory systems, including the olfactory epithelium. The mechanism(s by which ATP is released in the olfactory epithelium has not been investigated. Quantitative luciferin-luciferase assays were used to monitor ATP release, and confocal imaging of the fluorescent ATP marker quinacrine was used to monitor ATP release via exocytosis in Swiss Webster mouse neonatal olfactory epithelial slices. Results Under control conditions, constitutive release of ATP occurs via exocytosis, hemichannels and ABC transporters and is inhibited by vesicular fusion inhibitor Clostridium difficile toxin A and hemichannel and ABC transporter inhibitor probenecid. Constitutive ATP release is negatively regulated by the ATP breakdown product ADP through activation of P2Y receptors, likely via the cAMP/PKA pathway. In vivo studies indicate that constitutive ATP may play a role in neuronal homeostasis as inhibition of exocytosis inhibited normal proliferation in the OE. ATP-evoked ATP release is also present in mouse neonatal OE, triggered by several ionotropic P2X purinergic receptor agonists (ATP, αβMeATP and Bz-ATP and a G protein-coupled P2Y receptor agonist (UTP. Calcium imaging of P2X2-transfected HEK293 “biosensor” cells confirmed the presence of evoked ATP release. Following purinergic receptor stimulation, ATP is released via calcium-dependent exocytosis, activated P2X1,7 receptors, activated P2X7 receptors that form a complex with pannexin channels, or ABC transporters. The ATP-evoked ATP release is inhibited by the purinergic receptor inhibitor PPADS, Clostridium difficile toxin A and two inhibitors of pannexin channels: probenecid and carbenoxolone. Conclusions The constitutive release of ATP might be involved in normal cell turn-over or modulation of odorant sensitivity in physiological conditions. Given the growth-promoting effects of ATP, ATP-evoked ATP

  6. Sodium as Coupling Cation in Respiratory Energy Conversion.

    Science.gov (United States)

    Fritz, Günter; Steuber, Julia

    2016-01-01

    Among the alkali cations, Na(+) has an extraordinary role in living cells since it is used to charge the battery of life. To this end, sophisticated protein complexes in biological membranes convert chemical energy obtained from oxidation of NADH, or hydrolysis of ATP, into an electrochemical gradient of sodium ions. Cells use this so-called sodium-motive force stored in energy-converting membranes for important processes like uptake of nutrients, motility, or expulsion of toxic compounds. The Na(+) pumps act in concert with other enzymes embedded in the lipid membrane, and together they form the respiratory chain which achieves the oxidation of NADH derived from nutrients under formation of an electrochemical sodium (or proton) gradient. We explain why Na(+) pumps are important model systems for the homologous, proton-translocating complexes, and hope to convince the reader that studying the Na(+)-translocating ATP synthase from the unimpressive bacterium Ilyobacter tartaricus had a big impact on our understanding of energy conversion by human ATP synthase. The Na(+)-translocating systems described here are either driven by the oxidation of NADH, the carrier of redox equivalents of cells, or by the hydrolysis of adenosine 5'-triphosphate, the universal high-energy compound of cells. The electrochemical energy provided by these respiratory Na(+) pumps, the NADH dehydrogenase or the ATPase, drives other Na(+) transport systems like the bacterial flagellum discussed in the last part of this chapter. The flagellar motor does not represent a Na(+) pump, but like ATPase, it operates by a rotational mechanism. By comparing these two Na(+) -translocating, rotary machines, we obtain new insight into the possible mechanisms of Na(+) transport through the stator proteins of the flagellar motor. Na(+) pumps are widespread in pathogenic bacteria where they play an important role in metabolism, making them novel targets for antibiotics.

  7. The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation.

    Science.gov (United States)

    Nath, Sunil

    2016-12-01

    As the chief energy source of eukaryotic cells, it is important to determine the thermodynamic efficiency of ATP synthesis in oxidative phosphorylation (OX PHOS). Previous estimates of the thermodynamic efficiency of this vital process have ranged from Lehninger's original back-of-the-envelope calculation of 38% to the often quoted value of 55-60% in current textbooks of biochemistry, to high values of 90% from recent information theoretic considerations, and reports of realizations of close to ideal 100% efficiencies by single molecule experiments. Hence this problem has been reinvestigated from first principles. The overall thermodynamic efficiency of ATP synthesis in the mitochondrial energy transduction OX PHOS process has been found to lie between 40 and 41% from four different approaches based on a) estimation using structural and biochemical data, b) fundamental nonequilibrium thermodynamic analysis, c) novel insights arising from Nath's torsional mechanism of energy transduction and ATP synthesis, and d) the overall balance of cellular energetics. The torsional mechanism also offers an explanation for the observation of a thermodynamic efficiency approaching 100% in some experiments. Applications of the unique, molecular machine mode of functioning of F 1 F O -ATP synthase involving direct inter-conversion of chemical and mechanical energies in the design and fabrication of novel, man-made mechanochemical devices have been envisaged, and some new ways to exorcise Maxwell's demon have been proposed. It is hoped that analysis of the fundamental problem of energy transduction in OX PHOS from a fresh perspective will catalyze new avenues of research in this interdisciplinary field. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Kinetics of ptaquiloside hydrolysis in aqueous solution

    DEFF Research Database (Denmark)

    Ayala-Luis, Karina B.; Bildsøe Hansen, Pernille; Rasmussen, Lars Holm

    2006-01-01

    of the toxin, a full understanding of the PTA degradation in aqueous environments is important. The kinetics of PTA hydrolysis was examined at 22C in aqueous buffered solutions (pH 2.88–8.93). The reaction was found to follow first-order kinetics with respect to PTA at all pH and temperature conditions. At p.......46 is strongly dependent on temperature, with an activation energy of 74.4 (2.6) kJ mol1. Stoichiometric calculations, reaction kinetics, and ultraviolet–visible spectrophotometry strongly indicates the formation of an intermediary compound at pH 5.07 and 6.07 via a mechanism comprising two first...

  9. A DFT investigation of methanolysis and hydrolysis of triacetin

    CERN Document Server

    Limpanuparb, Taweetham; Tantirungrotechai, Yuthana; 10.1016/j.theochem.2010.05.022

    2012-01-01

    The thermodynamic and kinetic aspects of the methanolysis and hydrolysis reactions of glycerol triacetate or triacetin, a model triacylglycerol compound, were investigated by using Density Functional Theory (DFT) at the B3LYP/6-31++G(d,p) level of calculation. Twelve elementary steps of triacetin methanolysis were studied under acid-catalyzed and base-catalyzed conditions. The mechanism of acid-catalyzed methanolysis reaction which has not been reported yet for any esters was proposed. The effects of substitution, methanolysis/hydrolysis position, solvent and face of nucleophilic attack on the free energy of reaction and activation energy were examined. The prediction confirmed the facile position at the middle position of glycerol observed by NMR techniques. The calculated activation energy and the trends of those factors agree with existing experimental observations in biodiesel production.

  10. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Flesner, R.L.; Dell`Orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.B.; Uher, K.; Kramer, J.F.

    1997-10-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment. Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  11. Pilot-scale base hydrolysis processing of HMX-based plastic-bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Flesner, R.L.; Dell`orco, P.C.; Spontarelli, T.; Bishop, R.L.; Skidmore, C.; Uher, K.J.; Kramer, J.F.

    1996-07-01

    Los Alamos National Laboratory has demonstrated that many energetic materials can be rendered non-energetic via reaction with sodium hydroxide or ammonia. This process is known as base hydrolysis. A pilot scale reactor has been developed to process up to 20 kg of plastic bonded explosive in a single batch operation. In this report, we discuss the design and operation of the pilot scale reactor for the processing of PBX 9404, a standard Department of Energy plastic bonded explosive containing HMX and nitrocellulose. Products from base hydrolysis, although non-energetic, still require additional processing before release to the environment Decomposition products, destruction efficiencies, and rates of reaction for base hydrolysis will be presented. Hydrothermal processing, previously known as supercritical water oxidation, has been proposed for converting organic products from hydrolysis to carbon dioxide, nitrogen, and nitrous oxide. Base hydrolysis in combination with hydrothermal processing may yield a viable alternative to open burning/open detonation for destruction of many energetic materials.

  12. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    aliquots of standards increase quality control and ease daily operation. The medium (Lumin(PM) buffer, tap water or MilliQ water) for preparation of ATP-standard dilution significantly affected the rlu response of the ATP-standard dilutions (20% difference). The effect of dilution media and of sample...

  13. The cotton ATP synthase δ1 subunit is required to maintain a higher ATP/ADP ratio that facilitates rapid fibre cell elongation.

    Science.gov (United States)

    Pang, Y; Wang, H; Song, W-Q; Zhu, Y-X

    2010-11-01

    The δ subunit of mitochondrial ATP synthase serves as a linker between the F(0) and F(1) sectors. Here, through microarray and quantitative RT-PCR, we found that the δ1 subunit was significantly up-regulated during cotton fibre cell elongation. Both the relative level and duration of GhATPδ1 transcripts correlated positively with the final length of different cotton germplasms. Elongating fibre cells had a significantly elevated ATP/ADP ratio, suggesting that a higher energy input is probably required for primary fibre cell wall formation and elongation. We obtained a putative full-length GhATPδ1 cDNA that shows 37% sequence identity to the Saccharomyces cerevisiae ATP16 at the deduced amino acid level. An almost wild-type growth rate was restored in atp16Δ cells that expressed GhATPδ1, with a resultant ATP/ADP ratio similar to that found in wild-type cells, indicating that the cotton gene was functional in yeast. Mitochondria prepared from 10 dpa wild-type fibre cells showed significantly higher ATP synthase activity in comparison to ovule samples from wild type and leaf samples. Exogenous application of piceatannol (PA) or oligomycin (OM), inhibitors of ATP synthase F(1) or F(0) subunits, respectively, in ovule culture media resulted in much shorter fibre cells and a significantly lower ATP/ADP ratio. Our data suggest that GhATPδ1 is important for activity of mitochondrial ATP synthase and is probably related to cotton fibre elongation. © 2010 German Botanical Society and The Royal Botanical Society of The Netherlands.

  14. Structure, function, and evolution of bacterial ATP-binding cassette systems

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, A.L.; Dassa, E.; Orelle, C.; Chen, J. (Purdue)

    2010-07-27

    The ATP-binding cassette (ABC) systems constitute one of the largest superfamilies of paralogous sequences. All ABC systems share a highly conserved ATP-hydrolyzing domain or protein (the ABC; also referred to as a nucleotide-binding domain [NBD]) that is unequivocally characterized by three short sequence motifs (Fig. 1): these are the Walker A and Walker B motifs, indicative of the presence of a nucleotide-binding site, and the signature motif, unique to ABC proteins, located upstream of the Walker B motif (426). Other motifs diagnostic of ABC proteins are also indicated in Fig. 1. The biological significance of these motifs is discussed in Structure, Function, and Dynamics of the ABC. ABC systems are widespread among living organisms and have been detected in all genera of the three kingdoms of life, with remarkable conservation in the primary sequence of the cassette and in the organization of the constitutive domains or subunits (203, 420). ABC systems couple the energy of ATP hydrolysis to an impressively large variety of essential biological phenomena, comprising not only transmembrane (TM) transport, for which they are best known, but also several non-transport-related processes, such as translation elongation (62) and DNA repair (174). Although ABC systems deserve much attention because they are involved in severe human inherited diseases (107), they were first discovered and characterized in detail in prokaryotes, as early as the 1970s (13, 148, 238, 468). The most extensively analyzed systems were the high-affinity histidine and maltose uptake systems of Salmonella enterica serovar Typhimurium and Escherichia coli. Over 2 decades ago, after the completion of the nucleotide sequences encoding these transporters in the respective laboratories of Giovanna Ames and Maurice Hofnung, Hiroshi Nikaido and colleagues noticed that the two systems displayed a global similarity in the nature of their components and, moreover, that the primary sequences of MalK and

  15. Enzymatic hydrolysis of plant extracts containing inulin

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, J.P.; Galzy, P.

    1981-10-01

    Inulin-rich extracts of chicory and Jerusalem artichoke are a good potential source of fructose. Total enzymatic hydrolysis of these extracts can be effected by yeast inulinases (EC 3.2.1.7). Chemical prehydrolysis is unfavourable. Enzymatic hydrolysis has advantages over chemical hydrolysis: it does not produce a dark-coloured fraction or secondary substances. It is possible to envisage the preparation of high fructose syrups using this process. (Refs. 42).

  16. The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Galbe Mats

    2009-03-01

    Full Text Available Abstract Background Two-step dilute acid hydrolysis of softwood, either as a stand-alone process or as pretreatment before enzymatic hydrolysis, is considered to result in higher sugar yields than one-step acid hydrolysis. However, this requires removal of the liquid between the two steps. In an industrial process, filtration and washing of the material between the two steps is difficult, as it should be performed at high pressure to reduce energy demand. Moreover, the application of pressure leads to more compact solids, which may affect subsequent processing steps. This study was carried out to investigate the influence of pressing the biomass, in combination with the effects of not washing the material, on the sugar yield obtained from two-step dilute acid hydrolysis, with and without subsequent enzymatic digestion of the solids. Results Washing the material between the two acid hydrolysis steps, followed by enzymatic digestion, resulted in recovery of 96% of the mannose and 81% of the glucose (% of the theoretical in the liquid fraction, regardless of the choice of dewatering method (pressing or vacuum filtration. Not washing the solids between the two acid hydrolysis steps led to elevated acidity of the remaining solids during the second hydrolysis step, which resulted in lower yields of mannose, 85% and 74% of the theoretical, for the pressed and vacuum-filtered slurry, respectively, due to sugar degradation. However, this increase in acidity resulted in a higher glucose yield (94.2% from pressed slurry than from filtered slurry (77.6%. Conclusion Pressing the washed material between the two acid hydrolysis steps had no significant negative effect on the sugar yields of the second acid hydrolysis step or on enzymatic hydrolysis. Not washing the material resulted in a harsher second acid hydrolysis step, which caused greater degradation of the sugars during subsequent acid hydrolysis of the solids, particularly in case of the vacuum

  17. Iron from haemoglobin and haemin modulates nucleotide hydrolysis in Trichomonas vaginalis.

    Science.gov (United States)

    Vieira, Patrícia de Brum; Silva, Nícolas Luiz Feijó; Kist, Luiza Wilges; Oliveira, Giovanna Medeiros Tavares de; Bogo, Maurício Reis; Carli, Geraldo Atillio de; Macedo, Alexandre José; Tasca, Tiana

    2015-04-01

    Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5'-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB) and haemin (HM) enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5'-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.

  18. Iron from haemoglobin and haemin modulates nucleotide hydrolysis in Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Patrícia de Brum Vieira

    2015-04-01

    Full Text Available Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5’-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB and haemin (HM enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5’-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.

  19. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles.

    Science.gov (United States)

    Huo, Yuan; Qi, Liang; Lv, Xiao-Jun; Lai, Ting; Zhang, Jing; Zhang, Zhi-Qi

    2016-04-15

    Adenosine triphosphate (ATP) is the most direct source of energy in organisms. This study is the first to demonstrate that ATP-aptamer complexes provide greater protection for unmodified gold nanoparticles (AuNPs) against salt-induced aggregation than either aptamer or ATP alone. This protective effect was confirmed using transmission electron microscopy, dynamic light scattering, Zeta potential measurement, and fluorescence polarization techniques. Utilizing controlled particle aggregation/dispersion as a gauge, a sensitive and selective aptasensor for colorimetric detection of ATP was developed using ATP-binding aptamers as the identification element and unmodified AuNPs as the probe. This aptasensor exhibited a good linear relationship between the absorbance and the logarithm concentration of ATP within a 50-1000 nM range. ATP analogs such as guanosine triphosphate, uridine triphosphate and cytidine triphosphate resulted in little or no interference in the determination of ATP. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Metal-dependent regulation of ATP7A and ATP7B in fibroblast cultures

    DEFF Research Database (Denmark)

    Lenartowicz, Malgorzata; Moos, Torben; Ogórek, Mateusz

    2016-01-01

    Deficiency of one of the copper transporters ATP7A and ATP7B leads to the rare X-linked disorder Menkes Disease (MD) or the rare autosomal disorder Wilson disease (WD), respectively. In order to investigate whether the ATP7A and the ATP7B genes may be transcriptionally regulated, we measured...... the expression level of the two genes at various concentrations of iron, copper, and insulin. Treating fibroblasts from controls or from individuals with MD or WD for 3 and 10 days with iron chelators revealed that iron deficiency led to increased transcript levels of both ATP7A and ATP7B. Copper deficiency...... for the two genes were observed in response to iron deficiency, different responses were observed after changes in the access to copper. Mosaic fibroblast cultures from female carriers of MD treated with copper or copper chelator for 6-8 weeks led to clonal selection. Cells that express the normal ATP7A...

  1. Acetone and Butanone Metabolism of the Denitrifying Bacterium “Aromatoleum aromaticum” Demonstrates Novel Biochemical Properties of an ATP-Dependent Aliphatic Ketone Carboxylase

    Science.gov (United States)

    Schühle, Karola

    2012-01-01

    The anaerobic and aerobic metabolism of acetone and butanone in the betaproteobacterium “Aromatoleum aromaticum” is initiated by their ATP-dependent carboxylation to acetoacetate and 3-oxopentanoic acid, respectively. Both reactions are catalyzed by the same enzyme, acetone carboxylase, which was purified and characterized. Acetone carboxylase is highly induced under growth on acetone or butanone and accounts for at least 5.5% of total cell protein. The enzyme consists of three subunits of 85, 75, and 20 kDa, respectively, in a (αβγ)2 composition and contains 1 Zn and 2 Fe per heterohexamer but no organic cofactors. Chromatographic analysis of the ATP hydrolysis products indicated that ATP was exclusively cleaved to AMP and 2 Pi. The stoichiometry was determined to be 2 ATP consumed per acetone carboxylated. Purified acetone carboxylase from A. aromaticum catalyzes the carboxylation of acetone and butanone as the only substrates. However, the enzyme shows induced (uncoupled) ATPase activity with many other substrates that were not carboxylated. Acetone carboxylase is a member of a protein family that also contains acetone carboxylases of various other organisms, acetophenone carboxylase of A. aromaticum, and ATP-dependent hydantoinases/oxoprolinases. While the members of this family share several characteristic features, they differ with respect to the products of ATP hydrolysis, subunit composition, and metal content. PMID:22020645

  2. Ataxia Telangiectasia-Mutated (ATM) Kinase Activity Is Regulated by ATP-driven Conformational Changes in the Mre11/Rad50/Nbs1 (MRN) Complex*

    Science.gov (United States)

    Lee, Ji-Hoon; Mand, Michael R.; Deshpande, Rajashree A.; Kinoshita, Eri; Yang, Soo-Hyun; Wyman, Claire; Paull, Tanya T.

    2013-01-01

    The Ataxia Telangiectasia-Mutated (ATM) protein kinase is recruited to sites of double-strand DNA breaks by the Mre11/Rad50/Nbs1 (MRN) complex, which also facilitates ATM monomerization and activation. MRN exists in at least two distinct conformational states, dependent on ATP binding and hydrolysis by the Rad50 protein. Here we use an ATP analog-sensitive form of ATM to determine that ATP binding, but not hydrolysis, by Rad50 is essential for MRN stimulation of ATM. Mre11 nuclease activity is dispensable, although some mutations in the Mre11 catalytic domain block ATM activation independent of nuclease function, as does the mirin compound. The coiled-coil domains of Rad50 are important for the DNA binding ability of MRN and are essential for ATM activation, but loss of the zinc hook connection can be substituted by higher levels of the complex. Nbs1 binds to the “closed” form of the MR complex, promoted by the zinc hook and by ATP binding. Thus the primary role of the hook is to tether Rad50 monomers together, promoting the association of the Rad50 catalytic domains into a form that binds ATP and also binds Nbs1. Collectively, these results show that the ATP-bound form of MRN is the critical conformation for ATM activation. PMID:23525106

  3. Ataxia telangiectasia-mutated (ATM) kinase activity is regulated by ATP-driven conformational changes in the Mre11/Rad50/Nbs1 (MRN) complex.

    Science.gov (United States)

    Lee, Ji-Hoon; Mand, Michael R; Deshpande, Rajashree A; Kinoshita, Eri; Yang, Soo-Hyun; Wyman, Claire; Paull, Tanya T

    2013-05-03

    The Ataxia Telangiectasia-Mutated (ATM) protein kinase is recruited to sites of double-strand DNA breaks by the Mre11/Rad50/Nbs1 (MRN) complex, which also facilitates ATM monomerization and activation. MRN exists in at least two distinct conformational states, dependent on ATP binding and hydrolysis by the Rad50 protein. Here we use an ATP analog-sensitive form of ATM to determine that ATP binding, but not hydrolysis, by Rad50 is essential for MRN stimulation of ATM. Mre11 nuclease activity is dispensable, although some mutations in the Mre11 catalytic domain block ATM activation independent of nuclease function, as does the mirin compound. The coiled-coil domains of Rad50 are important for the DNA binding ability of MRN and are essential for ATM activation, but loss of the zinc hook connection can be substituted by higher levels of the complex. Nbs1 binds to the "closed" form of the MR complex, promoted by the zinc hook and by ATP binding. Thus the primary role of the hook is to tether Rad50 monomers together, promoting the association of the Rad50 catalytic domains into a form that binds ATP and also binds Nbs1. Collectively, these results show that the ATP-bound form of MRN is the critical conformation for ATM activation.

  4. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    Science.gov (United States)

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Molecular devices for the regulation of chloroplast ATP synthase

    NARCIS (Netherlands)

    Hisabori, T.; Konno, H.; Ichimura, H.; Strotmann, H.; Bald, D.

    2002-01-01

    In chloroplasts, synthesis of ATP is energetically coupled with the utilization of a proton gradient formed by photosynthetic electron transport. The involved enzyme, the chloroplast ATP synthase, can potentially hydrolyze ATP when the magnitude of the transmembrane electrochemical potential

  6. Extracellular ATP Induces Calcium Signaling in Odontoblasts.

    Science.gov (United States)

    Lee, B M; Jo, H; Park, G; Kim, Y H; Park, C K; Jung, S J; Chung, G; Oh, S B

    2017-02-01

    Odontoblasts form dentin at the outermost surface of tooth pulp. An increasing level of evidence in recent years, along with their locational advantage, implicates odontoblasts as a secondary role as sensory or immune cells. Extracellular adenosine triphosphate (ATP) is a well-characterized signaling molecule in the neuronal and immune systems, and its potential involvement in interodontoblast communications was recently demonstrated. In an effort to elaborate the ATP-mediated signaling pathway in odontoblasts, the current study performed single-cell reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescent detection to investigate the expression of ATP receptors related to calcium signal in odontoblasts from incisal teeth of 8- to 10-wk-old rats, and demonstrated an in vitro response to ATP application via calcium imaging experiments. While whole tissue RT-PCR analysis detected P2Y2, P2Y4, and all 7 subtypes (P2X1 to P2X7) in tooth pulp, single-cell RT-PCR analysis of acutely isolated rat odontoblasts revealed P2Y2, P2Y4, P2X2, P2X4, P2X6, and P2X7 expression in only a subset (23% to 47%) of cells tested, with no evidence for P2X1, P2X3, and P2X5 expression. An increase of intracellular Ca(2+) concentration in response to 100μM ATP, which was repeated after pretreatment of thapsigargin or under the Ca(2+)-free condition, suggested function of both ionotropic and metabotropic ATP receptors in odontoblasts. The enhancement of ATP-induced calcium response by ivermectin and inhibition by 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) confirmed a functional P2X4 subtype in odontoblasts. Positive calcium response to 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP) and negative response to α,β-methylene ATP suggested P2X2, P2X4, and P2X7 as functional subunits in rat odontoblasts. Single-cell RT-PCR analysis of the cells with confirmed calcium response and immunofluorescent detection further corroborated the expression of P2X

  7. Metal-dependent regulation of ATP7A and ATP7B in fibroblast cultures

    Directory of Open Access Journals (Sweden)

    Lenartowicz Malgorzata

    2016-08-01

    Full Text Available Deficiency of one of the copper transporters ATP7A and ATP7B leads to the rare X-linked disorder Menkes Disease (MD or the rare autosomal disorder Wilson disease (WD, respectively. In order to investigate whether the ATP7A and the ATP7B genes may be transcriptionally regulated, we measured the expression level of the two genes at various concentrations of iron, copper and insulin. Treating fibroblasts from controls or from individuals with MD or WD for 3 and10 days with iron chelators revealed that iron deficiency led to increased transcript levels of both ATP7A and ATP7B. Copper deficiency obtained by treatment with the copper chelator led to a downregulation of ATP7A in the control fibroblasts, but surprisingly not in the WD fibroblasts. In contrast, the addition of copper led to an increased expression of ATP7A, but a decreased expression of ATP7B. Thus, whereas similar regulation patterns for the two genes were observed in response to iron deficiency, different responses were observed after changes in the access to copper. Mosaic fibroblast cultures from female carriers of MD treated with copper or copper chelator for 6-8 weeks led to clonal selection. Cells that express the normal ATP7A allele had a selective growth advantage at high copper concentrations, whereas more surprisingly, cells that express the mutant ATP7A allele had a selective growth advantage at low copper concentrations. Thus, although the transcription of ATP7A is regulated by copper, clonal growth selection in mosaic cell cultures is affected by the level of copper. Female carriers of MD are rarely affected probably due to a skewed inactivation of the X-chromosome bearing the ATP7A mutation.

  8. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary K.A. Bednarska The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  9. Enhancement of enzymatic adipyl-7-ADCA hydrolysis

    NARCIS (Netherlands)

    Schroën, C.G.P.H.; Kroon, P.J.; Vanderlaan, J.M.; Janssen, A.E.M.; Tramper, J.

    2002-01-01

    We studied enzymatic adipyl-7-ADCA hydrolysis as a new process for the production of 7-aminodeacetoxycephalosporanic acid (7-ADCA), one of the building blocks for cephalosporin antibiotics like cephalexin and cefadroxil. Adipyl-7-ADCA hydrolysis carried out with immobilised glutaryl acylase was

  10. Modeling the mechanisms of biological GTP hydrolysis

    DEFF Research Database (Denmark)

    Carvalho, Alexandra T.P.; Szeler, Klaudia; Vavitsas, Konstantinos

    2015-01-01

    in which GTP hydrolysis is activated and regulated is still a controversial topic and well-designed simulations can play an important role in resolving and rationalizing the experimental data. In this review, we discuss the contributions of computational biology to our understanding of GTP hydrolysis...

  11. Hydrolysis kinetics of dissolved polymer substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.; Zeeman, G.; Lettinga, G.

    2002-01-01

    In this paper, the relation between the hydrolysis rate of dissolved polymer substrates and sludge concentration was investigated in two ways, viz. by laboratory experiments and by computer simulations. In the simulations, the hydrolysis of dissolved polymer components was regarded as a general

  12. Redox regulation of ATP sulfurylase in microalgae

    Czech Academy of Sciences Publication Activity Database

    Prioretti, L.; Lebrun, R.; Gontero, B.; Giordano, Mario

    2016-01-01

    Roč. 478, č. 4 (2016), s. 1555-1562 ISSN 0006-291X Institutional support: RVO:61388971 Keywords : ATP sulfurylase * cysteine * Sulfur metabolism Subject RIV: EE - Microbiology, Virology Impact factor: 2.466, year: 2016

  13. ATP monitoring technology for microbial growth control in potable water systems

    Science.gov (United States)

    Whalen, Patrick A.; Whalen, Philip J.; Cairns, James E.

    2006-05-01

    ATP (Adenosine Triphosphate) is the primary energy transfer molecule present in all living biological cells on Earth. ATP cannot be produced or maintained by anything but a living organism, and as such, its measurement is a direct indication of biological activity. The main advantage of ATP as a biological indicator is the speed of the analysis - from collecting the sample to obtaining the result, only minutes are required. The technology to measure ATP is already widely utilized to verify disinfection efficacy in the food industry and is also commonly applied in industrial water processes such as cooling water systems to monitor microbial growth and biocide applications. Research has indicated that ATP measurement technology can also play a key role in such important industries as potable water distribution and biological wastewater treatment. As will be detailed in this paper, LuminUltra Technologies has developed and applied ATP measurement technologies designed for any water type, and as such can provide a method to rapidly and accurately determine the level of biological activity in drinking water supplies. Because of its speed and specificity to biological activity, ATP measurement can play a key role in defending against failing drinking water quality, including those encountered during routine operation and also bioterrorism.

  14. Neonatal diabetes and congenital hyperinsulinism caused by mutations in ABCC8/SUR1 are associated with altered and opposite affinities for ATP and ADP

    Directory of Open Access Journals (Sweden)

    Joseph eBryan

    2015-04-01

    Full Text Available ATP-sensitive K+ (KATP channels composed of potassium inward-rectifier type 6.2 and sulfonylurea receptor type 1 subunits (Kir6.2/SUR14 are expressed in various cells in the brain and endocrine pancreas where they couple metabolic status to membrane potential. In β-cells, increases in cytosolic [ATP/ADP]c inhibit KATP channel activity, leading to membrane depolarization and exocytosis of insulin granules. Mutations in ABCC8 (SUR1 or KCNJ11 (Kir6.2 can result in gain or loss of channel activity and cause neonatal diabetes (ND or congenital hyperinsulinism (CHI, respectively. SUR1 is reported to be a Mg2+-dependent ATPase. A prevailing model posits that ATP hydrolysis at SUR1 is required to stimulate openings of the pore. However, recent work shows nucleotide binding, without hydrolysis, is sufficient to switch SUR1 to stimulatory conformations. The actions of nucleotides, ATP and ADP, on ND (SUR1E1506D and CHI (SUR1E1506K mutants, without Kir6.2, were compared to assess both models. Both substitutions significantly impair hydrolysis in SUR1 homologues. SUR1E1506D has greater affinity for MgATP than wildtype; SUR1E1506K has reduced affinity. Without Mg2+, SUR1E1506K has a greater affinity for ATP4- consistent with electrostatic attraction between ATP4-, unshielded by Mg2+, and the basic lysine. Further analysis of ND and CHI ABCC8 mutants in the second transmembrane and nucleotide binding domains (TMD2 & NBD2, found a relation between their affinities for ATP (± Mg2+ and their clinical phenotype. Increased affinity for ATP is associated with ND; decreased affinity with CHI. In contrast, MgADP showed a weaker relationship. Diazoxide, known to reduce insulin release in some CHI cases, potentiates switching of CHI mutants from non-stimulatory to stimulatory states consistent with diazoxide stabilizing a nucleotide-bound conformation. The results emphasize the greater importance of nucleotide binding vs hydrolysis in the regulation of KATP channels

  15. Blau syndrome polymorphisms in NOD2 identify nucleotide hydrolysis and helical domain 1 as signalling regulators.

    Science.gov (United States)

    Parkhouse, Rhiannon; Boyle, Joseph P; Monie, Tom P

    2014-09-17

    Understanding how single nucleotide polymorphisms (SNPs) lead to disease at a molecular level provides a starting point for improved therapeutic intervention. SNPs in the innate immune receptor nucleotide oligomerisation domain 2 (NOD2) can cause the inflammatory disorders Blau Syndrome (BS) and early onset sarcoidosis (EOS) through receptor hyperactivation. Here, we show that these polymorphisms cluster into two primary locations: the ATP/Mg(2+)-binding site and helical domain 1. Polymorphisms in these two locations may consequently dysregulate ATP hydrolysis and NOD2 autoinhibition, respectively. Complementary mutations in NOD1 did not mirror the NOD2 phenotype, which indicates that NOD1 and NOD2 are activated and regulated by distinct methods. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Control of respiration and ATP synthesis in mammalian mitochondria and cells.

    Science.gov (United States)

    Brown, G C

    1992-05-15

    We have seen that there is no simple answer to the question 'what controls respiration?' The answer varies with (a) the size of the system examined (mitochondria, cell or organ), (b) the conditions (rate of ATP use, level of hormonal stimulation), and (c) the particular organ examined. Of the various theories of control of respiration outlined in the introduction the ideas of Chance & Williams (1955, 1956) give the basic mechanism of how respiration is regulated. Increased ATP usage can cause increased respiration and ATP synthesis by mass action in all the main tissues. Superimposed on this basic mechanism is calcium control of matrix dehydrogenases (at least in heart and liver), and possibly also of the respiratory chain (at least in liver) and ATP synthase (at least in heart). In many tissues calcium also stimulates ATP usage directly; thus calcium may stimulate energy metabolism at (at least) four possible sites, the importance of each regulation varying with tissue. Regulation of multiple sites may occur (from a teleological point of view) because: (a) energy metabolism is branched and thus proportionate regulation of branches is required in order to maintain constant fluxes to branches (e.g. to proton leak or different ATP uses); and/or (b) control over fluxes is shared by a number of reactions, so that large increases in flux requires stimulation at multiple sites because each site has relatively little control. Control may be distributed throughout energy metabolism, possibly due to the necessity of minimizing cell protein levels (see Brown, 1991). The idea that energy metabolism is regulated by energy charge (as proposed by Atkinson, 1968, 1977) is misleading in mammals. Neither mitochondrial ATP synthesis nor cellular ATP usage is a unique function of energy charge as AMP is not a significant regulator (see for example Erecinska et al., 1977). The near-equilibrium hypothesis of Klingenberg (1961) and Erecinska & Wilson (1982) is partially correct in that

  17. Analysis of molecular mechanisms of ATP synthesis from the standpoint of the principle of electrical neutrality.

    Science.gov (United States)

    Nath, Sunil

    2017-05-01

    Theories of biological energy coupling in oxidative phosphorylation (OX PHOS) and photophosphorylation (PHOTO PHOS) are reviewed and applied to ATP synthesis by an experimental system containing purified ATP synthase reconstituted into liposomes. The theories are critically evaluated from the standpoint of the principle of electrical neutrality. It is shown that the obligatory requirement to maintain overall electroneutrality of bulk aqueous phases imposes strong constraints on possible theories of energy coupling and molecular mechanisms of ATP synthesis. Mitchell's chemiosmotic theory is found to violate the electroneutrality of bulk aqueous phases and is shown to be untenable on these grounds. Purely electroneutral mechanisms or mechanisms where the anion/countercation gradient is dissipated or simply flows through the lipid bilayer are also shown to be inadequate. A dynamically electrogenic but overall electroneutral mode of ion transport postulated by Nath's torsional mechanism of energy transduction and ATP synthesis is shown to be consistent both with the experimental findings and the principle of electrical neutrality. It is concluded that the ATP synthase functions as a proton-dicarboxylic acid anion cotransporter in OX PHOS or PHOTO PHOS. A logical chemical explanation for the selection of dicarboxylic acids as intermediates in OX PHOS and PHOTO PHOS is suggested based on the pioneering classical thermodynamic work of Christensen, Izatt, and Hansen. The nonequilibrium thermodynamic consequences for theories in which the protons originate from water vis-a-vis weak organic acids are compared and contrasted, and several new mechanistic and thermodynamic insights into biological energy transduction by ATP synthase are offered. These considerations make the new theory of energy coupling more complete, and lead to a deeper understanding of the molecular mechanism of ATP synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells.

    Science.gov (United States)

    Qian, Yanrong; Wang, Xuan; Liu, Yi; Li, Yunsheng; Colvin, Robert A; Tong, Lingying; Wu, Shiyong; Chen, Xiaozhuo

    2014-09-01

    ATP plays central roles in cancer metabolism and the Warburg effect. Intratumoral ATP concentrations are up to 10(4) times higher than those of interstitial ATP in normal tissues. However, extracellular ATP is not known to enter cancer cells. Here we report that human A549 lung cancer cells internalized extracellular ATP by macropinocytosis as demonstrated by colocalization of a nonhydrolyzable fluorescent ATP and a macropinocytosis tracer high-molecular-weight dextran, as well as by a macropinocytosis inhibitor study. Extracellular ATP also induced increase of intracellular ATP levels, without involving transcription and translation at significant levels, and cancer cells' resistance to ATP-competitor anticancer drugs, likely through the mechanism of ATP internalization. These findings, described for the first time, have profound implications in ATP-sharing among cancer cells in tumors and highlight a novel anticancer target. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Theoretical study on alkaline hydrolysis of trinitrotoluene: later steps

    Directory of Open Access Journals (Sweden)

    Liudmyla K. Sviatenko

    2015-10-01

    Full Text Available Alkaline hydrolysis is an effective method to destroy such the pollutant as 2,4,6-trinitrotoluene (TNT in solution and in well-mixed soil. The mechanism of hydrolytic transformation of polynegative complex, which is one of the products of early stages of TNT hydrolysis, was theoretically investigated at the SMD(Pauling/M06-2X/6-31+G(d,p level under alkali condition. The studied process consists of more than twenty steps and includes a six-membered cycle cleavage and sequenced [1,3]-hydrogen migration and C-C bond rupture. The highest energy barrier is observed for interaction of nitromethanide with hydroxide. The most exothermic steps are C–C bonds breaking. As a result final products such as formate, acetate, ammonium, and nitrogen are formed.

  20. Relapsing encephalopathy with cerebellar ataxia related to an ATP1A3 mutation.

    Science.gov (United States)

    Dard, Rodolphe; Mignot, Cyril; Durr, Alexandra; Lesca, Gaetan; Sanlaville, Damien; Roze, Emmanuel; Mochel, Fanny

    2015-12-01

    ATP1A3, the gene encoding the α3-subunit of the Na(+) /K(+) -ATPase pump, has been involved in four clinical neurological entities: (1) alternating hemiplegia of childhood (AHC); (2) rapid-onset dystonia parkinsonism (RDP); (3) CAPOS (cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss) syndrome; and (4) early infantile epileptic encephalopathy. Here, we report on a 34-year-old female presenting with a new ATP1A3-related entity involving a relapsing encephalopathy characterized by recurrent episodes of cerebellar ataxia and altered consciousness during febrile illnesses. The term RECA is suggested - relapsing encephalopathy with cerebellar ataxia. The phenotype of this patient, resembling mitochondrial oxidative phosphorylation defects, emphasizes the possible role of brain energy deficiency in patients with ATP1A3 mutations. Rather than multiple overlapping syndromes, ATP1A3-related disorders might be seen as a phenotypic continuum. © 2015 Mac Keith Press.

  1. Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions.

    Science.gov (United States)

    Alric, Jean; Lavergne, Jérôme; Rappaport, Fabrice

    2010-01-01

    Assimilation of atmospheric CO2 by photosynthetic organisms such as plants, cyanobacteria and green algae, requires the production of ATP and NADPH in a ratio of 3:2. The oxygenic photosynthetic chain can function following two different modes: the linear electron flow which produces reducing power and ATP, and the cyclic electron flow which only produces ATP. Some regulation between the linear and cyclic flows is required for adjusting the stoichiometric production of high-energy bonds and reducing power. Here we explore, in the green alga Chlamydomonas reinhardtii, the onset of the cyclic electron flow during a continuous illumination under aerobic conditions. In mutants devoid of Rubisco or ATPase, where the reducing power cannot be used for carbon fixation, we observed a stimulation of the cyclic electron flow. The present data show that the cyclic electron flow can operate under aerobic conditions and support a simple competition model where the excess reducing power is recycled to match the demand for ATP.

  2. Subunit composition and ATP site labeling of the coated vesicle proton-translocating adenosinetriphosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H.; Berne, M.; Terres, G.; Terres, H.; Puopolo, K.; Forgac, M.

    1987-10-20

    The partially purified proton-translocating adenosinetriphosphatase ((H/sup +/)-ATPase) from clathrin-coated vesicles has been reported to contain eight polypeptides of molecular weights 15,000-116,000. To determine whether these polypeptides form a single macromolecular complex, the authors have isolated three monoclonal antibodies which recognize the reconstitutively active (H/sup +/)-ATPase in the native, detergent-solubilized state. All three monoclonal antibodies precipitate the same set of polypeptides from either the partially purified enzyme or the detergent-solubilized coated vesicle membrane proteins. The immunoprecipitated polypeptides have molecular weights of 100,000, 73,000, 58,000, 40,000, 38,000, 34,000, 33,000, 19,000, and 17,000. These results thus indicate that this set of polypeptides forms a single macromolecular complex and suggest that they correspond to subunits of the coated vesicle (H/sup +/)-ATPase. To identify the ATP-hydrolytic subunit of the coated vesicle (H/sup +/)-ATPase, the purified enzyme was reacted with N-ethylmaleimide (NEM) and 7-chloro-4-nitro-2,1,3-benzoxadiazole (NBD-C1), both of which inhibit activity in an ATP-protectable manner. Labeling was carried out by using (/sup 3/H)NEM or (/sup 14/C)NBD-C1, and the specificity of the reaction was increased by prelabeling of the protein with the nonradioactive reagents in the presence of ATP and by taking advantage of the nucleotide specificity of protection. The principal polypeptide labeled by both (/sup 3/H)NEM and (/sup 14/C)NBD-C1 had a molecular weight of 73,000. In addition, this protein was the only polypeptide whose labeling was significantly reduced in the presence of ATP. These results suggest that the 73,000-dalton polypeptide participates in ATP hydrolysis by the coated vesicle (H/sup +/)-ATPase.

  3. Hydrolysis inhibition of complex biowaste

    NARCIS (Netherlands)

    Vasconcelos Fernandes, T.

    2010-01-01

    The increasing demand of renewable energy sources and reuse of wastes, challenges our society for better technological solutions for energy production. Co-digestion of agricultural biowaste, such as animal manure and plant residues, offers an interesting contribution to the renewable energy

  4. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective.

    Science.gov (United States)

    Zhao, Xiaoling; Wu, Nan; Zhu, Qing; Gaur, Uma; Gu, Ting; Li, Diyan

    2016-09-01

    The problem of hypoxia adaptation in high altitudes is an unsolved brainteaser in the field of life sciences. As one of the best chicken breeds with adaptability to highland environment, the Tibetan chicken, is genetically different from lowland chicken breeds. In order to gain a better understanding of the mechanism of hypoxic adaptability in high altitude, in the present study, we focused on the MT-COI together with ATP-6 gene to explore the regulatory mechanisms for hypoxia adaptability in Tibet chicken. Here, we sequenced MT-COI of 29 Tibetan chickens and 30 Chinese domestic chickens and ATP-6 gene of 28 Tibetan chickens and 29 Chinese domestic chickens. In MT-COI gene, 9 single nucleotide polymorphisms (SNPs) were detected though none of these was a missense mutation, confirming the fact that MT-COI gene is a largely conservative sequence. In ATP-6 gene, 6 single nucleotide polymorphisms (SNPs) were detected and we found a missense mutation (m.9441G > A) in the ATP-6 gene of Tibetan chicken resulting in an amino acid substitution. Due to the critical role of ATP-6 gene in the proton translocation and energy metabolism, we speculated the possibility of this mutation playing an important role in easier energy conversion and metabolism in Tibetan chickens than Chinese domestic chickens so as to better adapt to the harsh environment of the high-altitude areas. The Median-joining profile also suggested that haplotype Ha2 has the ancestral position to the other haplotypes and has significant relationship with high-altitude adaptation in ATP-6 gene. Therefore, we considered that the polymorphism (m.9441G > A) in the ATP-6 gene may affect the specific functions of ATP-6 enzyme relating to high-altitude adaptation of Tibetan chicken and MT-COI gene is a largely conservative sequence.

  5. Enzymatic hydrolysis of biomass from wood.

    Science.gov (United States)

    Álvarez, Consolación; Reyes-Sosa, Francisco Manuel; Díez, Bruno

    2016-03-01

    Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta-xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta-mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2-20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Concentration Gradient Effects of Sodium and Lithium Ions and Deuterium Isotope Effects on the Activities of H+-ATP Synthase from Chloroplasts

    Science.gov (United States)

    Chen, M.-F.; Wang, J.-D.; Su, T.-M.

    2009-01-01

    We explored the concentration gradient effects of the sodium and lithium ions and the deuterium isotope's effects on the activities of H+-ATP synthase from chloroplasts (CF0F1). We found that the sodium concentration gradient can drive the ATP synthesis reaction of CF0F1. In contrast, the lithium ion can be an efficient enzyme-inhibitor by blocking the entrance channel of the ion translocation pathway in CF0. In the presence of sodium or lithium ions and with the application of a membrane potential, unexpected enzyme behaviors of CF0F1 were evident. To account for these observations, we propose that both of the sodium and lithium ions could undergo localized hydrolysis reactions in the chemical environment of the ion channel of CF0. The protons generated locally could proceed to complete the ion translocation process in the ATP synthesis reaction of CF0F1. Experimental and theoretical deuterium isotope effects of the localized hydrolysis on the activities of CF0F1, and the energetics of these related reactions, support this proposed mechanism. Our experimental observations could be understood in the framework of the well-established ion translocation models for the H+-ATP synthase from Escherichia coli, and the Na+-ATP synthase from Propionigenium modestum and Ilyobacter tartaricus. PMID:19289072

  7. Energy consumption in Hodgkin–Huxley type fast spiking neuron model exposed to an external electric field

    Directory of Open Access Journals (Sweden)

    K. Usha

    2016-09-01

    Full Text Available This paper evaluates the change in metabolic energy required to maintain the signalling activity of neurons in the presence of an external electric field. We have analysed the Hodgkin–Huxley type conductance based fast spiking neuron model as electrical circuit by changing the frequency and amplitude of the applied electric field. The study has shown that, the presence of electric field increases the membrane potential, electrical energy supply and metabolic energy consumption. As the amplitude of applied electric field increases by keeping a constant frequency, the membrane potential increases and consequently the electrical energy supply and metabolic energy consumption increases. On increasing the frequency of the applied field, the peak value of membrane potential after depolarization gradually decreases as a result electrical energy supply decreases which results in a lower rate of hydrolysis of ATP molecules.

  8. ATP8B1 and ATP11C: Two Lipid Flippases Important for Hepatocyte Function

    NARCIS (Netherlands)

    Naik, Jyoti; de Waart, Dirk R.; Utsunomiya, Karina; Duijst, Suzanne; Mok, Kam Ho; Oude Elferink, Ronald P. J.; Bosma, Piter J.; Paulusma, Coen C.

    2015-01-01

    P4 ATPases are lipid flippases and transport phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes. Lipid flipping is important for the biogenesis of transport vesicles. Recently it was shown that loss of the P4 ATPases ATP8B1 and ATP11C are associated with severe

  9. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion

    DEFF Research Database (Denmark)

    Mortensen, Stefan P.; Gonzalez-Alonso, Jose; Nielsen, Jens Jung

    2009-01-01

    ATP has been proposed to play multiple roles in local skeletal muscle blood flow regulation by inducing vasodilation and modulating sympathetic vasoconstrictor activity, but the mechanism remain unclear. Here we evaluated the effects of arterial ATP infusion and exercise on limb muscle interstitial...... local concentration. Key words: sympathetic nerve activity, vasodilation, endothelium, skeletal muscle....

  10. ATP-consuming and ATP-generating enzymes secreted by pancreas

    DEFF Research Database (Denmark)

    Yegutkin, Gennady G; Samburski, Sergei S; Jalkanen, Sirpa

    2006-01-01

    Pancreatic acini release ATP in response to various stimuli, including cholecystokinin octapeptide (CCK-8), as we show in the present study. There were indications that pancreatic juice also contains enzymes that could hydrolyze ATP during its passage through the ductal system. The aim of this st......Pancreatic acini release ATP in response to various stimuli, including cholecystokinin octapeptide (CCK-8), as we show in the present study. There were indications that pancreatic juice also contains enzymes that could hydrolyze ATP during its passage through the ductal system. The aim...... of this study was to determine which ATP-degrading and possibly ATP-generating enzymes were present in pancreatic secretion. For this purpose, pancreatic juice was collected from anesthetized rats stimulated with infusion of CCK-8. Purine-converting activities in juice samples were assayed by TLC using either...... [gamma-(32)P]ATP or (14)C/(3)H-labeled and unlabeled nucleotides as appropriate substrates. Data show that the juice contains the enzyme ecto-nucleoside triphosphate diphosphohydrolase that can hydrolyze both [(14)C]ATP and [(3)H]ADP about equally well, i.e. CD39. Reverse-phase high-performance liquid...

  11. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    Directory of Open Access Journals (Sweden)

    Neeharika, T. S.V.R.

    2015-12-01

    Full Text Available Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candida antarctica Lipase B was carried out in this study by varying reaction temperature (40–60 °C and enzyme concentration (2–5%. The optimal conditions were found to be 6 h reaction time, temperature 60°C, buffer to methyl ricinoleate ratio 2:1(v/w and 4% enzyme concentration to achieve a maximum conversion of 98.5%. A first order reversible reaction kinetic model was proposed to describe this reaction and a good agreement was observed between the experimental data and the model values. The effect of temperature on the forward reaction rate constant was determined by fitting data to the Arrhenius equation. The activation energy for forward reaction was found to be 14.69 KJ·mol−1.El ácido ricinoleico es un hidroxiácido insaturado que se produce naturalmente en el aceite de ricino en proporciones de hasta el 85–90%. El ácido ricinoleico es una materia prima con gran potencial y tiene aplicaciones en revestimientos, formulaciones lubricantes y en áreas farmacéuticas. Para la preparación del ácido ricinoleico se prefiere la hidrólisis enzimática del aceite de ricino a la hidrólisis convencional, para evitar la formación de estólidos. En este estudio se llevó a cabo la cinética de la hidrólisis enzimática del ricinoleato de metilo en presencia de lipasa de Candida antarctica B mediante la variación de la temperatura de reacción (40–60 °C y la concentración de la enzima (2–5%. Las condiciones óptimas de la reacción para

  12. Hydrolysis of alkaline pretreated banana peel

    Science.gov (United States)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  13. Hemicellulose hydrolysis catalysed by solid acids

    NARCIS (Netherlands)

    Carà, P.D.; Pagliaro, M.; Elmekawy, A.; Brown, D.R.; Verschuren, P.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running

  14. Process design and optimization of cellulose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, R.R.; Wilke, C.R.

    1978-08-01

    The primary concern of this work is the economic optimization of a process for the hydrolysis of waste cellulosic material to fermentable sugars. Hydrolysis is performed enzymatically, utilizing the cellulase enzyme complex produced by Trichoderma viride. Using corn stover as a substrate, a system was designed to provide 14% hydrolyzate sugars (70% fermentable) at an estimated cost of 6.84 cents/pound of sugar, a 43% cost reduction over previous designs. Optimal residence time for hydrolysis was found to be 62 hours, resulting in a 34% conversion of raw material to sugars. Total fixed capital investment for the process is estimated to be $17.13 x 10/sup 6/. The kinetics of cellulose hydrolysis were modeled through the use of a modified Michaelis--Menten equation, making computer simulation of batch hydrolyses possible. Additional studies on the accessibility of cellulose were performed, and the feasibility of a counter-current processing scheme was investigated.

  15. Voltage Dependence of ATP Secretion in Mammalian Taste Cells

    Science.gov (United States)

    Romanov, Roman A.; Rogachevskaja, Olga A.; Khokhlov, Alexander A.; Kolesnikov, Stanislav S.

    2008-01-01

    Mammalian type II taste cells release the afferent neurotransmitter adenosine triphosphate (ATP) through ATP-permeable ion channels, most likely to be connexin (Cx) and/or pannexin hemichannels. Here, we show that ion channels responsible for voltage-gated (VG) outward currents in type II cells are ATP permeable and demonstrate a strong correlation between the magnitude of the VG current and the intensity of ATP release. These findings suggest that slowly deactivating ion channels transporting the VG outward currents can also mediate ATP secretion in type II cells. In line with this inference, we studied a dependence of ATP secretion on membrane voltage with a cellular ATP sensor using different pulse protocols. These were designed on the basis of predictions of a model of voltage-dependent transient ATP efflux. Consistently with curves that were simulated for ATP release mediated by ATP-permeable channels deactivating slowly, the bell-like and Langmuir isotherm–like potential dependencies were characteristic of ATP secretion obtained for prolonged and short electrical stimulations of taste cells, respectively. These observations strongly support the idea that ATP is primarily released via slowly deactivating channels. Depolarizing voltage pulses produced negligible Ca2+ transients in the cytoplasm of cells releasing ATP, suggesting that ATP secretion is mainly governed by membrane voltage under our recording conditions. With the proviso that natural connexons and pannexons are kinetically similar to exogenously expressed hemichannels, our findings suggest that VG ATP release in type II cells is primarily mediated by Cx hemichannels. PMID:19029378

  16. Hydrolysis of isocyanic acid on SCR catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, M.; Kleemann, M.; Koebel, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Standard SCR catalysts possess high activity for the hydrolysis of HNCO and thus explain the suitability of urea as a selective reducing agent for NO{sub x}. At high space velocities HNCO-slip can get perceptible over the entire temperature range. This can be attributed to the fact that the temperature dependence is strong for the SCR reaction, but weak for the hydrolysis reaction. (author) 3 figs., 5 refs.

  17. Sucrose hydrolysis by thermostable immobilized inulinases from aspergillus ficuum.

    Science.gov (United States)

    Ettalibi, M; Baratti, J C.

    2001-05-07

    The possibility of using thermostable inulinases from Aspergillus ficuum in place of invertase for sucrose hydrolysis was explored. The commercial inulinases preparation was immobilized onto porous glass beads by covalent coupling using activation by a silane reagent and glutaraldehyde before adding the enzyme. The immobilization steps were optimized resulting in a support with 5,440 IU/g of support (sucrose hydrolysis) that is 77% of the activity of the free enzyme. Enzymatic properties of the immobilized inulinases were similar to those of the free enzymes with optimum pH near pH 5.0. However, temperature where the activity was maximal was shifted of 10 degrees C due to better thermal stability after immobilization with similar activation energies. The curve of the effect of sucrose concentration on activity was bi-phasic. The first part, for sucrose concentrations lower than 0.3 M, followed Michaelis-Menten kinetics with apparent K(M) and Vm only slightly affected by immobilization. Substrate inhibition was observed at values from 0.3 to 2 M sucrose. Complete sucrose hydrolysis was obtained for batch reactors with 0.3 and 1 M sucrose solutions. In continuous packed-bed reactor 100% (for 0.3 M sucrose), 90% (1 M sucrose) or 80% sucrose conversion were observed at space velocities of 0.06-0.25 h(-1). The operational half-life of the immobilized inulinases at 50 degrees C with 2 M sucrose was 350 days.

  18. Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection.

    Science.gov (United States)

    Santangelo, M F; Libertino, S; Turner, A P F; Filippini, D; Mak, W C

    2018-01-15

    Bioluminescence has been widely used for important biosensing applications such as the measurement of adenosine triphosphate (ATP), the energy unit in biological systems and an indicator of vital processes. The current technology for detection is mainly based on large equipment such as readers and imaging systems, which require intensive and time-consuming procedures. A miniaturised bioluminescence sensing system, which would allow sensitive and continuous monitoring of ATP, with an integrated and low-cost disposable microfluidic chamber for handling of biological samples, is highly desirable. Here, we report the design, fabrication and testing of 3D printed microfluidics chips coupled with silicon photomultipliers (SiPMs) for high sensitive real-time ATP detection. The 3D microfluidic chip reduces reactant consumption and facilitates solution delivery close to the SiPM to increase the detection efficiency. Our system detects ATP with a limit of detection (LoD) of 8nM and an analytical dynamic range between 15nM and 1µM, showing a stability error of 3%, and a reproducibility error below of 20%. We demonstrate the dynamic monitoring of ATP in a continuous-flow system exhibiting a fast response time, ~4s, and a full recovery to the baseline level within 17s. Moreover, the SiPM-based bioluminescence sensing system shows a similar analytical dynamic range for ATP detection to that of a full-size PerkinElmer laboratory luminescence reader. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Hydrolytic gain during hydrolysis reactions : implications and correction procedures

    NARCIS (Netherlands)

    Marchal, L.M.; Tramper, J.

    1999-01-01

    Some of the structural parameters of starch (e.g. % beta- or gluco-hydrolysis) were influenced by the increase in mass during the hydrolysis reactions (hydrolytic gain). Procedures were derived to correct this apparent % of hydrolysis to actual % of hydrolysis. These analytically derived equations

  20. An overview and update of ATP7A mutations leading to menkes disease and occipital horn syndrome

    DEFF Research Database (Denmark)

    Tümer, Zeynep

    2013-01-01

    of patients are males. MD occurs because of mutations in the ATP7A gene and the vast majority of ATP7A mutations are intragenic mutations or partial gene deletions. ATP7A is an energy-dependent transmembrane protein, which is involved in the delivery of copper to the secreted copper enzymes and in the export...... of surplus copper from cells. Severely affected MD patients die usually before the third year of life. A cure for the disease does not exist, but very early copper-histidine treatment may correct some of the neurological symptoms. This study reviews 274 published and 18 novel disease causing mutations...... identified in 370 unrelated MD patients, nonpathogenic variants of ATP7A, functional studies of the ATP7A mutations, and animal models of MD....

  1. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress.

    Science.gov (United States)

    Saha, Jayita; Sengupta, Atreyee; Gupta, Kamala; Gupta, Bhaskar

    2015-02-01

    ATP-binding cassette (ABC) transporter is a large gene superfamily that utilizes the energy released from ATP hydrolysis for transporting myriad of substrates across the biological membranes. Although many investigations have been done on the structural and functional analysis of the ABC transporters in Oryza sativa, much less is known about molecular phylogenetic and global expression pattern of the complete ABC family in rice. In this study, we have carried out a comprehensive phylogenetic analysis constructing neighbor-joining and maximum-likelihood trees based on various statistical methods of different ABC protein subfamily of five plant lineages including Chlamydomonas reinhardtii (green algae), Physcomitrella patens (moss), Selaginella moellendorffii (lycophyte), Arabidopsis thaliana (dicot) and O. sativa (monocot) to explore the origin and evolutionary patterns of these ABC genes. We have identified several conserved motifs in nucleotide binding domain (NBD) of ABC proteins among all plant lineages during evolution. Amongst the different ABC protein subfamilies, 'ABCE' has not yet been identified in lower plant genomes (algae, moss and lycophytes). The result indicated that gene duplication and diversification process acted upon these genes as a major operative force creating new groups and subgroups and functional divergence during evolution. We have demonstrated that rice ABCI subfamily consists of only half size transporters that represented highly dynamic members showing maximum sequence variations among the other rice ABC subfamilies. The evolutionary and the expression analysis contribute to a deep insight into the evolution and diversity of rice ABC proteins and their roles in response to salt stress that facilitate our further understanding on rice ABC transporters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5⿲ triphosphate (ATP)

    Science.gov (United States)

    Hammami, Khaled; El-Feki, Hafed; Marsan, Olivier; Drouet, Christophe

    2016-01-01

    ATP is a well-known energy supplier in cells. The idea to associate ATP to pharmaceutical formulations/biotechnological devices to promote cells activity by potentially modulating their microenvironment thus appears as an appealing novel approach. Since biomimetic nanocrystalline apatites have shown great promise for biomedical applications (bone regeneration, cells diagnostics/therapeutics, ⿦), thanks to a high surface reactivity and an intrinsically high biocompatibility, the present contribution was aimed at exploring ATP/apatite interactions. ATP adsorption on a synthetic carbonated nanocrystalline apatite preliminarily characterized (by XRD, FTIR, Raman, TG-DTA and SEM-EDX) was investigated in detail, pointing out a good agreement with Sips isothermal features. Adsorption characteristics were compared to those previously obtained on monophosphate nucleotides (AMP, CMP), unveiling some specificities. ATP was found to adsorb effectively onto biomimetic apatite: despite smaller values of the affinity constant KS and the exponential factor m, larger adsorbed amounts were reached for ATP as compared to AMP for any given concentration in solution. m guided by direct surface bonding rather than through stabilizing intermolecular interactions. Although standard οGads ° was estimated to only ⿿4 kJ/mol, the large value of Nmax led to significantly negative effective οGads values down to ⿿33 kJ/mol, reflecting the spontaneous character of adsorption process. Vibrational spectroscopy data (FTIR and Raman) pointed out spectral modifications upon adsorption, confirming chemical-like interactions where both the triphosphate group of ATP and its nucleic base were involved. The present study is intended to serve as a basis for future research works involving ATP and apatite nanocrystals/nanoparticles in view of biomedical applications (e.g. bone tissue engineering, intracellular drug delivery, ⿦).

  3. Kinetics of hydrolysis of meclofenoxate hydrochloride in human plasma.

    Science.gov (United States)

    Yoshioka, S; Aso, Y; Uchiyama, M

    1987-03-01

    The kinetics of hydrolysis of meclofenoxate hydrochloride in human plasma have been compared with those of clofibrate. The hydrolysis rate in fractionated plasma was determined in the presence and absence of a plasma esterase inhibitor, tetraethyl pyrophosphate. The kinetic data indicated that clofibrate decomposed only by esterase-induced hydrolysis, which was inhibited by binding of clofibrate to plasma proteins. In contrast to clofibrate, meclofenoxate decomposed rapidly in human plasma via spontaneous hydrolysis as well as esterase-induced hydrolysis. The spontaneous hydrolysis appeared to be inhibited by some components present in the esterase fraction isolated from plasma, while no significant inhibition of the hydrolysis by protein binding was observed.

  4. Two mutations in mitochondrial ATP6 gene of ATP synthase, related to human cancer, affect ROS, calcium homeostasis and mitochondrial permeability transition in yeast.

    Science.gov (United States)

    Niedzwiecka, Katarzyna; Tisi, Renata; Penna, Sara; Lichocka, Malgorzata; Plochocka, Danuta; Kucharczyk, Roza

    2018-01-01

    The relevance of mitochondrial DNA (mtDNA) mutations in cancer process is still unknown. Since the mutagenesis of mitochondrial genome in mammals is not possible yet, we have exploited budding yeast S. cerevisiae as a model to study the effects of tumor-associated mutations in the mitochondrial MTATP6 gene, encoding subunit 6 of ATP synthase, on the energy metabolism. We previously reported that four mutations in this gene have a limited impact on the production of cellular energy. Here we show that two mutations, Atp6-P163S and Atp6-K90E (human MTATP6-P136S and MTATP6-K64E, found in prostate and thyroid cancer samples, respectively), increase sensitivity of yeast cells both to compounds inducing oxidative stress and to high concentrations of calcium ions in the medium, when Om45p, the component of porin complex in outer mitochondrial membrane (OM), was fused to GFP. In OM45-GFP background, these mutations affect the activation of yeast permeability transition pore (yPTP, also called YMUC, yeast mitochondrial unspecific channel) upon calcium induction. Moreover, we show that calcium addition to isolated mitochondria heavily induced the formation of ATP synthase dimers and oligomers, recently proposed to form the core of PTP, which was slower in the mutants. We show the genetic evidence for involvement of mitochondrial ATP synthase in calcium homeostasis and permeability transition in yeast. This paper is a first to show, although in yeast model organism, that mitochondrial ATP synthase mutations, which accumulate during carcinogenesis process, may be significant for cancer cell escape from apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cellulose Hydrolysis: An Unsolved Problem

    OpenAIRE

    Vrushali H Jadhav

    2015-01-01

    As on today, almost whole world is dependent on fossil fuels as a source of energy. With increase in world’s population there are growing concerns about diminishing fossil fuel resources, global warming and environmental pollution; hence there is a need for search of renewable resources to bridge the gap between the supply and demand of energy and chemicals. In this respect for production of biofuels, biomass is the only widespread, abundant, inexpensive and sustainable resource which can be ...

  6. Characterization of Myelin Sheath F(o)F(1)-ATP synthase and its regulation by IF(1).

    Science.gov (United States)

    Ravera, Silvia; Panfoli, Isabella; Aluigi, Maria Grazia; Calzia, Daniela; Morelli, Alessandro

    2011-03-01

    F(o)F(1)-ATP synthase is the nanomotor responsible for most of ATP synthesis in the cell. In physiological conditions, it carries out ATP synthesis thanks to a proton gradient generated by the respiratory chain in the inner mitochondrial membrane. We previously reported that isolated myelin vesicles (IMV) contain functional F(o)F(1)-ATP synthase and respiratory chain complexes and are able to conduct an aerobic metabolism, to support the axonal energy demand. In this study, by biochemical assay, Western Blot (WB) analysis and immunofluorescence microscopy, we characterized the IMV F(o)F(1)-ATP synthase. ATP synthase activity decreased in the presence of the specific inhibitors (olygomicin, DCCD, FCCP, valynomicin/nigericin) and respiratory chain inhibitors (antimycin A, KCN), suggesting a coupling of oxygen consumption and ATP synthesis. ATPase activity was inhibited in low pH conditions. WB and microscopy analyses of both IMV and optic nerves showed that the Inhibitor of F(1) (IF(1)), a small protein that binds the F(1) moiety in low pH when of oxygen supply is impaired, is expressed in myelin sheath. Data are discussed in terms of the role of IF(1) in the prevention of the reversal of ATP synthase in myelin sheath during central nervous system ischemic events. Overall, data are consistent with an energetic role of myelin sheath, and may shed light on the relationship among demyelination and axonal degeneration.

  7. Two stage hydrolysis of corn stover at high solids content for mixing power saving and scale-up applications.

    Science.gov (United States)

    Liu, Ke; Zhang, Jian; Bao, Jie

    2015-11-01

    A two stage hydrolysis of corn stover was designed to solve the difficulties between sufficient mixing at high solids content and high power input encountered in large scale bioreactors. The process starts with the quick liquefaction to convert solid cellulose to liquid slurry with strong mixing in small reactors, then followed the comprehensive hydrolysis to complete saccharification into fermentable sugars in large reactors without agitation apparatus. 60% of the mixing energy consumption was saved by removing the mixing apparatus in large scale vessels. Scale-up ratio was small for the first step hydrolysis reactors because of the reduced reactor volume. For large saccharification reactors in the second step, the scale-up was easy because of no mixing mechanism was involved. This two stage hydrolysis is applicable for either simple hydrolysis or combined fermentation processes. The method provided a practical process option for industrial scale biorefinery processing of lignocellulose biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Kinetic investigation of hydrogen generation from hydrolysis of SnO and Zn solar nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Marc; Abanades, Stephane; Flamant, Gilles [Processes, Materials and Solar Energy Laboratory (CNRS-PROMES), 7 Rue du Four Solaire, 66120 Font-Romeu (France)

    2009-07-15

    The hydrolysis reaction of the two-step ZnO/Zn and SnO{sub 2}/SnO thermochemical cycles was kinetically investigated for solar hydrogen production. Nanoparticles of Zn and SnO were synthesized by solar thermal reduction of the oxides and neutral gas quenching of the vapors. They were then hydrolyzed to quantify and compare the H{sub 2} yields and the kinetic rate laws in fixed-bed. The hydrolysis of Zn nanoparticles reached only up to 55% of H{sub 2} yield, whereas SnO hydrolysis was almost complete. In contrast, Zn hydrolysis was much faster than SnO hydrolysis, but Zn deactivation occurred suddenly. Models of solid-gas reactions were applied to identify the controlling mechanisms and the associated kinetic parameters. The kinetic models were fitted to both isothermal and non-isothermal (temperature ramp) hydrolysis experimental data. Activation energies and reaction orders were found to be 122 {+-} 13 kJ/mol and 2.0 {+-} 0.3 for SnO, and 87 {+-} 7 kJ/mol and 3.5 {+-} 0.5 for Zn, respectively. Finally, a shrinking core approach was applied to the case of SnO to account for the reaction-controlling mechanisms. (author)

  9. Hydrolysis mechanism of (N, N) chelated cytotoxic Pt/Pd(II)-dichloro complexes: A theoretical approach

    Science.gov (United States)

    Mukherjee, Subhajit; Reddy B., Venkata P.; Mitra, Ishani; Linert, Wolfgang; Moi, Sankar Ch

    2017-06-01

    Two cytotoxic complexes cis-[Pt(MAMP)Cl2], 1 and cis-[Pd(MAMP)Cl2], 2 (where, MAMP = 2-[(Methylamino)methyl]pyridine) have been considered to explore their hydrolysis mechanism through Density Functional Theory. The stationary states on potential energy surfaces are optimized and characterized. Activation parameters and rate constants for hydrolysis of the complexes have been calculated in CPCM model and compared with that of renowned anticancer drugs. Second step is the rate-determining step with greater activation energy for both the complexes. Time Dependent Density Functional Theory is performed in order to understand the nature of electronic transition in the complexes.

  10. HYDROLYSIS OF AGRICULTURAL BIOMASS BY COMBINED PRETREATMENT AND ENZYMATIC METHODS IN ORDER TO PRODUCE BIOFUELS (ETHANOL, BIOGAS

    Directory of Open Access Journals (Sweden)

    STEFANA JURCOANE

    2009-05-01

    Full Text Available The use of energy crops (maize straw, wheat straw, barley straw etc. as substratefor renewable energy production (e.g. biogas is more efficient when it is degradedby different hydrolysis methods. However, fibers contained inside energy crops (e.g.cellulose and hemicellulose are only hardly and slowly degraded by anaerobicbacteria. The slow degradation of these substances can decrease the methane yieldsof agricultural biogas plants.In the present study, we investigated the efficiency ofcombined pretreatment (different concentrations H2SO4 + 30 minutes at 1210Cfollowed to enzymatic hydrolysis. Testing different concentration of H2SO4, goodresults were obtained for maize whole crop when we used combined pretreatment(3% H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis (3.9 foldhigher and for Gavott Maize Straw when we used combined pretreatment (2%H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis (3.6 fold highercomparing with untreated samples.

  11. Hydrolysis and heat treatment of aluminum dust.

    Science.gov (United States)

    López, F A; Peña, M C; López-Delgado, A

    2001-06-01

    Aluminum dust is a toxic and hazardous byproduct of Al remelting. The present research was performed to characterize and evaluate its behavior in water. The materials obtained by hydrolysis were also characterized, and the gases generated during the process were qualitatively analyzed. The effects of hydrolysis reaction time and temperature on the dust were also explored. The hydrolysis of Al dust is an exothermic reaction that gave rise to a solid composed of aluminum oxide, silicon oxide, and spinel (MgAl2O4). Most of the CH4, NH3, and SH2 gases generated were emitted immediately upon the start of the reaction, though their production continued for a long time. This slow reaction, which was moderately accelerated by temperature, led to the formation of a material less reactive than the untreated dust. On the other hand, heat treatment of the dust gave rise to an inert material composed of spinel, alumina, and magnesium and aluminum silicates.

  12. Additives enhancing enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Rocha-Martín, Javier; Martinez-Bernal, Claudio; Pérez-Cobas, Yolanda; Reyes-Sosa, Francisco Manuel; García, Bruno Díez

    2017-11-01

    Linked to the development of cellulolytic enzyme cocktails from Myceliophthora thermophila, we studied the effect of different additives on the enzymatic hydrolysis yield. The hydrolysis of pretreated corn stover (PCS), sugar cane straw (PSCS) and microcrystalline cellulose (Avicel) was performed under industrial conditions using high solid loadings, limited mixing, and low enzyme dosages. The addition of polyethylene glycol (PEG4000) allowed to increase the glucose yields by 10%, 7.5%, and 32%, respectively in the three materials. PEG4000 did not have significant effect on the stability of the main individual enzymes but increased beta-glucosidase and endoglucanase activity by 20% and 60% respectively. Moreover, the presence of PEG4000 accelerated cellulase-catalyzed hydrolysis reducing up to 25% the liquefaction time. However, a preliminary economical assessment concludes that even with these improvements, a lower contribution of PEG4000 to the 2G bioethanol production costs would be needed to reach commercial feasibility. Copyright © 2017. Published by Elsevier Ltd.

  13. Roles of ATP and NADPH in formation of the Fe-S cluster of spinach ferredoxin. [Spinacia oleracea

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yasuhiro; Mitsui, Akira; Fujita, Yuichi; Matsubara, Hiroshi (Osaka Univ. (Japan))

    1991-01-01

    The present study investigated whether ATP and NADPH in the chloroplast system of spinach (Spinacia oleracea) are involved in the supply of ({sup 35}S)sulfide or iron, or in Fe-S cluster formation itself. ({sup 35}S)Sulfide was liberated from ({sup 35}S)cysteine in an NADPH-dependent manner, whereas ATP was not necessary for this process. This desulfhydration of ({sup 35}S)cysteine occurred before the formation of the {sup 35}S-labeled Fe-S cluster, and the amount of radioactivity in ({sup 35}S)sulfide was greater than that in {sup 35}S-labeled holo-Fd by a factor of more than 20. Addition of nonradioactive sulfide (Na{sub 2}S) inhibited competitively formation of the {sup 35}S-labeled Fe-S cluster along with the addition of nonradioactive cysteine, indicating that some of the inorganic sulfide released from cysteine is incorporated into the Fe-S cluster of Fd. ATP hydrolysis was not involved in the production of inorganic sulfide or in the supply of iron for assembly into the Fe-S cluster. However, ATP-dependent Fe-S cluster formation was observed even in the presence of sufficient amounts of ({sup 35}S)sulfide and iron. These results suggest a novel type of ATP-dependent in vivo Fe-S cluster formation that is distinct from in vitro chemical reconstitution. The implications of these results for the possible mechanisms of ATP-dependent Fe-S cluster formation are discussed.

  14. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

    Directory of Open Access Journals (Sweden)

    Gracian Tejral

    2017-03-01

    Full Text Available Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation”  “semi-open conformation  “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.

  15. Binding Stoichiometry of a Recombinant Selenophosphate Synthetase with One Synonymic Substitution E197D to a Fluorescent Nucleotide Analog of ATP, TNP-ATP

    Directory of Open Access Journals (Sweden)

    Y. V. Preobrazhenskaya

    2013-01-01

    Full Text Available The transformation of the strain DH5αTM-T1R with plasmid vector pET11a containing the cloned gene of bacterial selenophosphate synthetase (SPS, selD, from the E. coli BL21-Gold (DE3 strain gives an overproducing strain of SPS with one synonymic substitution, E197D. The transformation efficiency was estimated as 8 × 108 CFU/μg plasmid DNA. 28 mg of highly purified preparation of recombinant SPS capable of binding TNP-ATP was eluted from DEAE-Sephadex column in amount of 15 % from the total soluble protein in crude extract. The fluorescent derivative of ATP, 2′(3′-O-(2,4,6-trinitrophenyladenosine-5′-triphosphate (TNP-ATP, was used as a synthetic analog of the substrate for the monitoring and quantitative analysis of the functional activity of SPS. The non-linear regression analysis of the saturation curve of TNP-ATP binding to D197 SPS with GraphPad Prism software fits to a model with 2 distinct binding sites with KDs different in order. The SPS existence in a form of tetramer in given reaction conditions, in accordance with the concentration stoichiometry of 4 moles of TNP-ATP to 1 mole of recombinant protein, is being discussed. The tetramer structure was predicted with molecular modelling software YASARA and modelled in vacuum using steepest descent minimization energy method. We hypothesize here the recombinant SPS exists as a dimer in solution with two active sites capable of ATP binding in each subunit.

  16. Revisiting the Brønsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Riisager, Anders; Shunmugavel, Saravanamurugan

    2013-01-01

    A new versatile method to measure rates and determine activation energies for the Brønsted acid catalysed hydrolysis of cellulose and cellobiose (and other polymeric carbohydrates) in ionic liquids is demonstrated by following the C–O stretching band of the glycoside bond with in situ ATR......-FTIR. An activation energy in excellent agreement with the literature was determined for cellulose hydrolysis, whereas a distinctly lower activation energy was determined for cellobiose hydrolysis. The methodology also allowed to independently determine activation energies for the formation of 5-hydroxymethylfurfural...

  17. Study of the Five Rickettsia prowazekii Proteins Annotated as ATP/ADP Translocases (Tlc): Only Tlc1 Transports ATP/ADP, While Tlc4 and Tlc5 Transport Other Ribonucleotides

    OpenAIRE

    Audia, Jonathon P.; Winkler, Herbert H.

    2006-01-01

    The obligate intracytoplasmic pathogen Rickettsia prowazekii relies on the transport of many essential compounds from the cytoplasm of the eukaryotic host cell in lieu of de novo synthesis, an evolutionary outcome undoubtedly linked to obligatory growth in this metabolite-replete niche. The paradigm for the study of rickettsial transport systems is the ATP/ADP translocase Tlc1, which exchanges bacterial ADP for host cell ATP as a source of energy, rather than as a source of adenylate. Interes...

  18. ATP-binding cassette (ABC) transporters in normal and pathological lung

    NARCIS (Netherlands)

    van der Deen, M; de Vries, EGE; Timens, W; Scheper, RJ; Timmer-Bosscha, H; Postma, DS

    2005-01-01

    ATP-binding cassette ( ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein ( P-gp), multidrug resistance-associated protein 1 ( MRP1) and

  19. ATP synthase in mycobacteria: special features and implications for a function as drug target.

    NARCIS (Netherlands)

    Lu, P.; Lill, H.; Bald, D.

    2014-01-01

    ATP synthase is a ubiquitous enzyme that is largely conserved across the kingdoms of life. This conservation is in accordance with its central role in chemiosmotic energy conversion, a pathway utilized by far by most living cells. On the other hand, in particular pathogenic bacteria whilst employing

  20. Catalytic hydrolysis of COS over CeO2 (110) surface: A density functional theory study

    Science.gov (United States)

    Song, Xin; Ning, Ping; Wang, Chi; Li, Kai; Tang, Lihong; Sun, Xin

    2017-08-01

    Density functional theory (DFT) calculations were performed to investigate the reaction pathways for catalytic hydrolysis of COS over CeO2 (110) surface using Dmol3 model. The thermodynamic stability analysis for the suggested routes of COS hydrolysis to CO2 and H2S was evaluated. The absolute values of adsorption energy of H2O-CeO2 are higher than that of COS-CeO2. Meanwhile, the adsorption energy and geometries show that H2O is easier adsorbed on the surface of CeO2 (110) than COS. H2O plays a role as a bridge in the process of joint adsorption. H2O forms more Cesbnd Osbnd H groups on the CeO2 (110) surface. CeO2 decreases the maximum energy barrier by 76.15 kcal/mol. The migration of H from H2O to COS is the key for the hydrolysis reaction. Csbnd O channel is easier to occur than Csbnd S channel. Experimental result shows that adding of CeO2 can increase COS removal rate and prolong the 100% COS removal rate from 180 min to 210 min. The difference between Fe2O3 and CeO2 for the hydrolysis of COS is characterized in the atomic charge transfer and the formation of Hsbnd O bond and Hsbnd S bond. The transfer effect of H in H2O to S in COS over CeO2 decreases the energy barriers of hydrolysis reaction, and enhances the reaction activity of COS hydrolysis.

  1. Characteristic Studies of Micron Zinc Particle Hydrolysis in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Lv Ming

    2015-09-01

    Full Text Available Zinc fuel is considered as a kind of promising energy sources for marine propeller. As one of the key steps for zinc marine energy power system, zinc hydrolysis process had been studied experimentally in a fixed bed reactor. In this study, we focus on the characteristics of micron zinc particle hydrolysis. The experimental results suggested that the steam inner diffusion is the controlling step of accumulative zinc particles hydrolysis reaction at a relative lower temperature and a relative higher water partial pressure. In other conditions, the chemical reaction kinetics was the controlling step. And two kinds of chemical reaction kinetics appeared in experiments: the surface reaction and the gas-gas reaction. The latter one occurs usually for larger zinc particles and high reaction temperature. Temperature seems to be one of the most important parameters for the dividing of different reaction mechanisms. Several parameters of the hydrolysis process including heating rate, water partial pressure, the particle size and temperature were also studied in this paper. Results show that the initial reaction temperature of zinc hydrolysis in fixed bed is about 410°C. And the initial reaction temperature increases as the heating rate increases and as the water partial pressure decreases. The total hydrogen yield increases as the heating rate decreases, as the water partial pressure increases, as the zinc particle size decreases, and as the reaction temperature increases. A hydrogen yield of more than 81.5% was obtained in the fixed bed experiments.

  2. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    NARCIS (Netherlands)

    Nina, Praveen Balabaskaran; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.; Eisen, Jonathan A.

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are

  3. Limitations of ATP as a measure of microbial biomass | Stuart ...

    African Journals Online (AJOL)

    Estimates of the total living biomass of micro-organisms on decomposing kelp detritus, calculated indirectly from the concentration of ATP, were compared with those obtained directly from cell numbers and volumes. Large overestimates in biomass were obtained from ATP x 250, and C:ATP ratios varied considerably with ...

  4. ATP Maintenance via Two Types of ATP Regulators Mitigates Pathological Phenotypes in Mouse Models of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Masaki Nakano

    2017-08-01

    Full Text Available Parkinson's disease is assumed to be caused by mitochondrial dysfunction in the affected dopaminergic neurons in the brain. We have recently created small chemicals, KUSs (Kyoto University Substances, which can reduce cellular ATP consumption. By contrast, agonistic ligands of ERRs (estrogen receptor-related receptors are expected to raise cellular ATP levels via enhancing ATP production. Here, we show that esculetin functions as an ERR agonist, and its addition to culture media enhances glycolysis and mitochondrial respiration, leading to elevated cellular ATP levels. Subsequently, we show the neuroprotective efficacies of KUSs, esculetin, and GSK4716 (an ERRγ agonist against cell death in Parkinson's disease models. In the surviving neurons, ATP levels and expression levels of α-synuclein and CHOP (an ER stress-mediated cell death executor were all rectified. We propose that maintenance of ATP levels, by inhibiting ATP consumption or enhancing ATP production, or both, would be a promising therapeutic strategy for Parkinson's disease.

  5. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Chao eLiang

    2015-10-01

    Full Text Available Chloroplasts and mitochondria are the major ATP producing organelles in plant leaves. Arabidopsis thaliana purple acid phosphatase 2 (AtPAP2 is a phosphatase dually targeted to the outer membranes of both organelles and it plays a role in the import of selected nuclear-encoded proteins into these two organelles. Overexpression (OE of AtPAP2 in Arabidopsis thaliana accelerates plant growth and promotes flowering, seed yield and biomass at maturity. Measurement of ADP/ATP/NADP+/NADPH contents in the leaves of 20-day-old OE and wild-type lines at the end of night and at 1 and 8 h following illumination in a 16/8 h photoperiod revealed that the ATP levels and ATP/NADPH ratios were significantly increased in the OE line at all three time points. The AtPAP2 OE line is therefore a good model to investigate the impact of high energy on the global molecular status of Arabidopsis. In this study, transcriptome, proteome and metabolome profiles of the high ATP transgenic line were examined and compared with those of wild-type plants. A comparison of OE and WT at the end of the night provide valuable information on the impact of higher ATP output from mitochondria on plant physiology, as mitochondrial respiration is the major source of ATP in the dark in leaves. Similarly, comparison of OE and WT following illumination will provide information on the impact of higher energy output from chloroplasts on plant physiology. Overexpression of AtPAP2 was found to significantly affect the transcript and protein abundances of genes encoded by the two organellar genomes. For example, the protein abundances of many ribosomal proteins encoded by the chloroplast genome were higher in the AtPAP2 OE line under both light and dark conditions, while the protein abundances of multiple components of the photosynthetic complexes were lower. RNA-seq data also showed that the transcription of the mitochondrial genome is greatly affected by the availability of energy. These data

  6. Glutamate and ATP at the Interface Between Signaling and Metabolism in Astroglia

    DEFF Research Database (Denmark)

    Parpura, Vladimir; Fisher, Elizabeth S; Lechleiter, James D

    2017-01-01

    Glutamate is the main excitatory transmitter in the brain, while ATP represents the most important energy currency in any living cell. Yet, these chemicals play an important role in both processes, enabling them with dual-acting functions in metabolic and intercellular signaling pathways. Glutamate....... It is astroglial receptors for these dual-acting molecules that could hold a key for medical intervention in pathological conditions. We focus on two examples disclosing the role of activation of astroglial ATP and glutamate receptors in pathology of two kinds of brain tissue, gray matter and white matter......, respectively. Interventions at the interface of metabolism and signaling show promise for translational medicine....

  7. Adenosine 5′-triphosphate (ATP supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans

    Directory of Open Access Journals (Sweden)

    Arts Ilja CW

    2012-04-01

    Full Text Available Abstract Background Nutritional supplements designed to increase adenosine 5′-triphosphate (ATP concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity exercise. Oral ATP supplements have beneficial effects in some but not all studies examining physical performance. One of the remaining questions is whether orally administered ATP is bioavailable. We investigated whether acute supplementation with oral ATP administered as enteric-coated pellets led to increased concentrations of ATP or its metabolites in the circulation. Methods Eight healthy volunteers participated in a cross-over study. Participants were given in random order single doses of 5000 mg ATP or placebo. To prevent degradation of ATP in the acidic environment of the stomach, the supplement was administered via two types of pH-sensitive, enteric-coated pellets (targeted at release in the proximal or distal small intestine, or via a naso-duodenal tube. Blood ATP and metabolite concentrations were monitored by HPLC for 4.5 h (naso-duodenal tube or 7 h (pellets post-administration. Areas under the concentration vs. time curve were calculated and compared by paired-samples t-tests. Results ATP concentrations in blood did not increase after ATP supplementation via enteric-coated pellets or naso-duodenal tube. In contrast, concentrations of the final catabolic product of ATP, uric acid, were significantly increased compared to placebo by ~50% after administration via proximal-release pellets (P = 0.003 and naso-duodenal tube (P = 0.001, but not after administration via distal-release pellets. Conclusions A single dose of orally administered ATP is not bioavailable, and this may explain why several studies did not find ergogenic effects of oral ATP supplementation. On the other hand, increases in uric acid after release of

  8. Enzymatic hydrolysis - present status and future developments

    Energy Technology Data Exchange (ETDEWEB)

    Linko, M.

    1983-01-01

    The environmental conditions for efficient cellulose and scylanate production with Trichoderma reesei have been studied. An interesting new aproach is cellulose production by Trichoderma reesei immobilized on K-carageenan. Hexoses and pentoses are produceed by the enzymatic hydrolysis of cellulose and hemicellulose and used for ethanol fermentation.

  9. HYDROLYSIS OF CHEESEWHEY PROTEINSWITH TRYPSIN, CHYMOTRYPSINAND CARBOXYPEPTIDASEA

    Directory of Open Access Journals (Sweden)

    M. F. CUSTÓDIO

    2009-01-01

    Full Text Available

    This work presents a method for adding value to cheese whey residues by whey proteins hydrolysis, using trypsin, chymotrypsin and carboxypeptidase A as catalysts. Sweet cheese whey was dialyzed and filtered in kaolin. Lactose and protein contents were analyzed after each step. The activities of bovine pancreas trypsin and chymotrypsin were measured at different pHs and temperatures. The optimal pH for the hydrolysis of whey proteins was 9.0 for both enzymes. Optima temperatures were 60ºC for trypsin, and 50ºC for chymotrypsin. Trypsin exhibited typical Michaelis-Menten behavior, but chymotrypsin did not. Electrophoretic analysis showed that neither trypsin nor chymotrypsin alone hydrolyzed whey proteins in less than three hours. Hydrolysis rates of -lactalbumin by trypsin, and of bovine serum albumin by chymotrypsin were low. When these enzymes were combined, however, all protein fractions were attacked and rates of hydrolysis were enhanced by one order of magnitude. The addition of carboxypeptidase A to the others enzymes did not improve the process yield.

  10. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  11. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J., E-mail: rbrown@mun.ca

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  12. ATP production from the oxidation of sulfide in gill mitochondria of the ribbed mussel Geukensia demissa.

    Science.gov (United States)

    Parrino, V; Kraus, D W; Doeller, J E

    2000-07-01

    The ribbed mussel Geukensia demissa inhabits intertidal Spartina grass marshes characterized by sulfide-rich sediments. Sulfide poisons aerobic respiration, and G. demissa may cope in this seemingly inhospitable environment by oxidizing sulfide in gill mitochondria. Well-coupled mitochondria isolated from G. demissa gills were used to investigate sulfide oxidation and ATP synthesis. State 3 respiration, maximally stimulated by 5 micromol l(-)(1) sulfide with a P/O ratio of 0.89 and a respiratory control ratio (RCR) of 1.40, remained refractory to sulfide at higher concentrations except in the presence of salicylhydroxamic acid (SHAM), an inhibitor of alternative oxidases. Sulfide-stimulated ATP production was 3-5 times greater than that stimulated by malate and succinate, respectively, giving an ATP/sulfide ratio of 0.63. The inhibition of sulfide-stimulated respiration and ATP production by the complex III inhibitors myxothiazol and antimycin A, respectively, suggests that electrons enter the electron transport chain before complex III. Combined with in vivo evidence for electron entry at cytochrome c, these data suggest that more than one type of sulfide-oxidizing enzyme may function in G. demissa gills. The SHAM-sensitive pathway of electron flux may be a critical component of a physiological strategy to tolerate sulfide. We conclude that G. demissa exploits the energy available from its reduced environment by using sulfide as a respiratory substrate for cellular ATP production.

  13. Estimation of effective concentrations of ATP-regenerating enzymes in cilia of Paramecium caudatum.

    Science.gov (United States)

    Kutomi, Osamu; Takemura, Motoyuki; Kamachi, Hiroyuki; Noguchi, Munenori

    2012-01-01

    The phosphoarginine shuttle system effectively regenerates ATP in the cilia of Paramecium caudatum. To estimate the effective concentration of ATP-regenerating enzymes, we attempted to reconstitute certain ATP-regenerating systems within the cilia of intact cortical sheets using exogenous enzymes and high-energy substances. The addition of phosphoenolpyruvate, which is one of the substrates in glycolysis, did not increase the ciliary beat frequency, whereas phosphocreatine together with exogenous creatine kinase, effectively increased the ciliary beat frequency. In the presence of 0.6 mg/ml creatine kinase and 0.4 mM phosphocreatine, the ciliary beat frequency was comparable to that produced by the addition of phosphoarginine. This result indicates that the reconstituted phosphocreatine shuttle system can work as an artificial ATP-regenerating system for ciliary movements. The effective concentration of creatine kinase in the reconstituted phosphocreatine shuttle system was estimated to be about 7.4 μM based on the molecular mass of creatine kinase (MW 81,000). Therefore, the effective concentration of arginine kinase in the cilia of live Paramecium is approximately 10 μM. This estimated concentration of intraciliary arginine kinase is sufficient to maintain a high ATP concentration throughout the cilia of P. caudatum. © 2011 The Author(s) Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  14. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  15. Volcano Plot for Bimetallic Catalysts in Hydrogen Generation by Hydrolysis of Sodium Borohydride

    Science.gov (United States)

    Koska, Anais; Toshikj, Nikola; Hoett, Sandra; Bernaud, Laurent; Demirci, Umit B.

    2017-01-01

    In the field of "hydrogen energy", sodium borohydride (NaBH[subscript 4]) is a potential hydrogen carrier able to release H[subscript 2] by hydrolysis in the presence of a metal catalyst. Our laboratory experiment focuses on this. It is intended for thirdyear undergraduate students in order to have hands-on laboratory experience through…

  16. An integrated biohydrogen refinery: Synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes

    OpenAIRE

    Redwood, Mark D.; Orozco, Rafael L.; Majewski, Artur J.; Macaskie, Lynne E

    2012-01-01

    An Integrated Biohydrogen Refinery (IBHR) and experimental net energy analysis are reported. The IBHR converts biomass to electricity using hydrothermal hydrolysis, extractive biohydrogen fermentation and photobiological hydrogen fermentation for electricity generation in a fuel cell. An extractive fermentation, developed previously, is applied to waste-derived substrates following hydrothermal pre treatment, achieving 83 99% biowaste destruction. The selective separation of organic acids fro...

  17. Impact of age on exercise-induced ATP supply during supramaximal plantar flexion in humans.

    Science.gov (United States)

    Layec, Gwenael; Trinity, Joel D; Hart, Corey R; Kim, Seong-Eun; Groot, H Jonathan; Le Fur, Yann; Sorensen, Jacob R; Jeong, Eun-Kee; Richardson, Russell S

    2015-08-15

    Currently, the physiological factors responsible for exercise intolerance and bioenergetic alterations with age are poorly understood due, at least in art, to the confounding effect of reduced physical activity in the elderly. Thus, in 40 healthy young (22 ± 2 yr) and old (74 ± 8 yr) activity-matched subjects, we assessed the impact of age on: 1) the relative contribution of the three major pathways of ATP synthesis (oxidative ATP synthesis, glycolysis, and the creatine kinase reaction) and 2) the ATP cost of contraction during high-intensity exercise. Specifically, during supramaximal plantar flexion (120% of maximal aerobic power), to stress the functional limits of the skeletal muscle energy systems, we used (31)P-labeled magnetic resonance spectroscopy to assess metabolism. Although glycolytic activation was delayed in the old, ATP synthesis from the main energy pathways was not significantly different between groups. Similarly, the inferred peak rate of mitochondrial ATP synthesis was not significantly different between the young (25 ± 8 mM/min) and old (24 ± 6 mM/min). In contrast, the ATP cost of contraction was significantly elevated in the old compared with the young (5.1 ± 2.0 and 3.7 ± 1.7 mM·min(-1)·W(-1), respectively; P age-related mitochondrial and glycolytic dysfunction. However, this study does confirm an abnormal elevation in exercise-induced skeletal muscle metabolic demand in the old that may contribute to the decline in exercise capacity with advancing age.

  18. Microwave-assisted Weak Acid Hydrolysis of Proteins

    Directory of Open Access Journals (Sweden)

    Miyeong Seo

    2012-06-01

    Full Text Available Myoglobin was hydrolyzed by microwave-assisted weak acid hydrolysis with 2% formic acid at 37 oC, 50 oC, and100 oC for 1 h. The most effective hydrolysis was observed at 100 oC. Hydrolysis products were investigated using matrixassistedlaser desorption/ionization time-of-flight mass spectrometry. Most cleavages predominantly occurred at the C-termini ofaspartyl residues. For comparison, weak acid hydrolysis was also performed in boiling water for 20, 40, 60, and 120 min. A 60-min weak acid hydrolysis in boiling water yielded similar results as a 60-min microwave-assisted weak acid hydrolysis at100 oC. These results strongly suggest that microwave irradiation has no notable enhancement effect on acid hydrolysis of proteinsand that temperature is the major factor that determines the effectiveness of weak acid hydrolysis.

  19. CgII cleaves DNA using a mechanism distinct from other ATP-dependent restriction endonucleases.

    Science.gov (United States)

    Toliusis, Paulius; Zaremba, Mindaugas; Silanskas, Arunas; Szczelkun, Mark D; Siksnys, Virginijus

    2017-08-21

    The restriction endonuclease CglI from Corynebacterium glutamicum recognizes an asymmetric 5'-GCCGC-3' site and cleaves the DNA 7 and 6/7 nucleotides downstream on the top and bottom DNA strands, respectively, in an NTP-hydrolysis dependent reaction. CglI is composed of two different proteins: an endonuclease (R.CglI) and a DEAD-family helicase-like ATPase (H.CglI). These subunits form a heterotetrameric complex with R2H2 stoichiometry. However, the R2H2·CglI complex has only one nuclease active site sufficient to cut one DNA strand suggesting that two complexes are required to introduce a double strand break. Here, we report studies to evaluate the DNA cleavage mechanism of CglI. Using one- and two-site circular DNA substrates we show that CglI does not require two sites on the same DNA for optimal catalytic activity. However, one-site linear DNA is a poor substrate, supporting a mechanism where CglI complexes must communicate along the one-dimensional DNA contour before cleavage is activated. Based on experimental data, we propose that adenosine triphosphate (ATP) hydrolysis by CglI produces translocation on DNA preferentially in a downstream direction from the target, although upstream translocation is also possible. Our results are consistent with a mechanism of CglI action that is distinct from that of other ATP-dependent restriction-modification enzymes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Rational design of substrate binding pockets in polyphosphate kinase for use in cost-effective ATP-dependent cascade reactions.

    Science.gov (United States)

    Cao, Hao; Nie, Kaili; Li, Chengcheng; Xu, Haijun; Wang, Fang; Tan, Tianwei; Liu, Luo

    2017-07-01

    Adenosine-5'-triphosphate (ATP) is the energy equivalent of the living system. Polyphosphate (polyP) is the ancient energy storage equivalent of organisms. Polyphosphate kinases (PPKs) catalyze the polyP formation or ATP formation, to store energy or to regenerate ATP, respectively. However, most PPKs are active only in the presence of long polyPs, which are more difficult and more expensive to generate than the short polyPs. We investigated the PPK preference towards polyPs by site-directed mutagenesis and computational simulation, to understand the mechanism and further design enzymes for effective ATP regeneration using short polyPs for in vitro cascade reactions, which are highly desired for research and applications. The results suggest that the short polyPs inhibit PPK by blocking the ADP-binding pocket. Structural comparison between PPK (Corynebacterium glutamicum) and PPK (Sinorhizobium meliloti) indicates that three amino acid residues, i.e., lysine, glutamate, and threonine, are involved in the activity towards short polyP by fixing the adenosine group of ADP in between the subunits of the dimer, while the terminal phosphate group of ADP still offers an active site, which presents a binding pocket for ADP. A proposed triple mutant PPK (SMc02148-KET) demonstrates significant activity towards short polyP to form ATP from ADP. The obtained high glutathione titer (38.79 mM) and glucose-6-phosphate titer (87.35 mM) in cascade reactions with ATP regeneration using the triple mutant PPK (SMc02148-KET) reveal that the tailored PPK establishes the effective ATP regeneration system for ATP-dependent reactions.

  1. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Gao, Zhan, E-mail: zhan-gao@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Koganti, Siva Rama Krishna, E-mail: sivaramakrishna.koganti@ttuhc.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Coetzee, William A., E-mail: william.coetzee@nyumc.org [Department of Pediatrics, NYU School of Medicine, New York, NY 10016 (United States); Goldhamer, David J., E-mail: david.goldhamer@uconn.edu [Center for Regenerative Biology, Department of Molecular and Cell Biology, Advanced Technology Laboratory, University of Connecticut, 1392 Storrs Road Unit 4243, Storrs, Connecticut 06269 (United States); Hodgson-Zingman, Denice M., E-mail: denice-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Zingman, Leonid V., E-mail: leonid-zingman@uiowa.edu [Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242 (United States); Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242 (United States); Department of Veterans Affairs, Medical Center, Iowa City, IA 52242 (United States)

    2016-02-26

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal muscle.

  2. Partial-hydrothermal hydrolysis is an effective way to recover bioactives from turmeric wastes

    Directory of Open Access Journals (Sweden)

    Ádina Lima de SANTANA

    2017-10-01

    Full Text Available Abstract Partial-hydrothermal hydrolysis using pressurized hot water was applied in waste turmeric, derived from extraction processes that employed supercritical and pressurized fluids, as a sustainable alternative for the recovery of bioactive constituents from this material. The reaction products consisted of a liquid extract of fermentable sugars and a solid fraction, which is a mixed biopolymer with relevant composition in terms of starch and antioxidant constituents. The effects of reaction conditions on resulting products were investigated. Economic evaluation was also performed showing that application of partial-hydrothermal hydrolysis from a residual feedstock is feasible in terms of low spend of energy and materials.

  3. Competition between Different S-Components for the Shared Energy Coupling Factor Module in Energy Coupling Factor Transporters.

    Science.gov (United States)

    Majsnerowska, Maria; Ter Beek, Josy; Stanek, Weronika K; Duurkens, Ria H; Slotboom, Dirk J

    2015-08-11

    Energy coupling factor (ECF) transporters take up micronutrients in Bacteria and Archaea. They consist of a membrane-embedded S-component that provides substrate specificity and a three-subunit ECF module that couples ATP hydrolysis to transport. The S-components ThiT (for thiamin) and NiaX (for niacin) from Lactococcus lactis form complexes with the same ECF module. Here, we assayed the uptake of thiamin and niacin in Escherichia coli cells expressing the transporter genes. We demonstrate that the two different S-components compete for the ECF module, and that competition is more efficient in the presence of the transported substrate. The data suggest that binding and release of the S-components is a step in the transport cycle.

  4. Enhancing enzymatic hydrolysis of coconut husk through Pseudomonas aeruginosa AP 029/GLVIIA rhamnolipid preparation.

    Science.gov (United States)

    de Araújo, Cynthia Kérzia Costa; de Oliveira Campos, Alan; de Araújo Padilha, Carlos Eduardo; de Sousa Júnior, Francisco Canindé; do Nascimento, Ruthinéia Jéssica Alves; de Macedo, Gorete Ribeiro; Dos Santos, Everaldo Silvino

    2017-08-01

    This work investigated the influence of chemical (Triton X-100) and biological surfactant preparation (rhamnolipids) in coconut husk hydrolysis that was subjected to pretreatment with acid-alkali or alkaline hydrogen peroxide. The natural and pretreated biomass was characterized using the National Renewable Energy Laboratory protocol analysis as well as X-ray diffraction and scanning electron microscopy. The results demonstrated that in terms of the total reducing sugars, there was no significant difference between the hydrolysis using Triton X-100 and rhamnolipids, regardless of the pretreatment. A cellulosic conversion value as high as 33.0% was obtained in experiments with rhamnolipids. The coconut husk was observed to be a potential biomass that could produce second generation ethanol, and the rhamnolipid preparation can be used to support for the enzymatic hydrolysis, enhancing the advantage of cellulose conversion into glucose over chemical surfactants because it is an environmentally friendly approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil

    DEFF Research Database (Denmark)

    Johansen, Henrik; Damgaard, Lars Holm; Olsen, Carl Erik

    2007-01-01

    in order to assess its fate in soil. The log Kow of dhurrin was 1.18 ± 0.08 (22 C). Hydrolysis was a first-order reaction with respect to dhurrin and hydroxyl ion concentrations. Half lives ranged from 1.2 h (pH 8.6; 25 C) to 530 d (pH 4; 25 C). The activation energy of hydrolysis was 112 + 9 kJ. At pH 5.......8 and room temperature, addition of humic acids (50 g l1) increased the rate of hydrolysis tenfold, while addition of kaolinite or goethite (100–250 g l1) both decreased the rate considerably. No significant sorption to soil components could be observed. The degradation rates of dhurrin in top and subsoils...

  6. Kinetic study of the thermal hydrolysis of Agave salmiana for mezcal production.

    Science.gov (United States)

    Garcia-Soto, M J; Jimenez-Islas, H; Navarrete-Bolanos, J L; Rico-Martinez, R; Miranda-Lopez, R; Botello-Alvarez, J E

    2011-07-13

    The kinetics of the thermal hydrolysis of the fructans of Agave salmiana were determined during the cooking step of mezcal production in a pilot autoclave. Thermal hydrolysis was achieved at different temperatures and cooking times, ranging from 96 to 116 °C and from 20 to 80 h. A simple kinetic model of the depolymerization of fructans to monomers and other reducing sugars and of the degradation of reducing sugars to furans [principally 5-(hydroxymethyl)furfural, HMF] was developed. From this model, the rate constants of the reactions were calculated, as well as the pre-exponential factors and activation energies of the Arrhenius equation. The model was found to fit the experimental data well. The tradeoff between a maximum fructan hydrolysis and a critical furan concentration in allowing for the best ethanol yield during fermentation was investigated. The results indicated that the thermal hydrolysis of agave was optimal, from the point of view of ethanol yield in the ensuing fermentation, in the temperature range of 106-116 °C and the cooking range time of 6-14 h. The optimal conditions corresponded to a fructan hydrolysis of 80%, producing syrups with furan and reducing sugar concentrations of 1 ± 0.1 and 110 ± 10 g/L, respectively.

  7. Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production.

    Science.gov (United States)

    Liang, Jiezhen; Chen, Xiaopeng; Wang, Linlin; Wei, Xiaojie; Wang, Huasheng; Lu, Songzhou; Li, Yunhua

    2017-03-01

    The aim of present study was to obtain total reducing sugars (TRS) by hydrolysis in subcritical CO2-water from sugarcane bagasse pith (SCBP), the fibrous residue remaining after papermaking from sugarcane bagasse. The optimum hydrolysis conditions were evaluated by L16(4(5)) orthogonal experiments. The TRS yield achieved 45.8% at the optimal conditions: 200°C, 40min, 500rmin(-1), CO2 initial pressure of 1MPa and liquid-to-solid ratio of 50:1. Fourier transform infrared spectrometry and two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance were used to characterize hydrolysis liquor, treated and untreated SCBP, resulting in the removal of hemicelluloses to mainly produce xylose, glucose and arabinose during hydrolysis. The severity factors had no correlation to TRS yield, indicating that the simple kinetic processes of biomass solubilisation cannot perfectly describe the SCBP hydrolysis. The first-order kinetic model based on consecutive reaction was used to obtain rate constants, activation energies and pre-exponential factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  9. ATP concentration as possible marker of liver damage at leukaemia treatment: confocal microscopy-based experimental study and numerical simulations

    Science.gov (United States)

    Malashchenko, V.; Zyubin, A.; Babak, S.; Lavrova, A.

    2017-04-01

    We consider the method of confocal microscopy as a convenient instrument for determination of chemical compounds in biological tissues and cells. In particular, we study the dynamics of adenosine triphosphate (ATP) concentration that could be used as a bio-marker of energy metabolism pathologies at the treatment of acute lymphoblastic leukaemia (ALL). On the basis of data obtained by the confocal microscopy, the values of ATP concentration have been calculated for each case. Possible correlations with other characteristics of pathology processes obtained from plasma of leukemia patients show that ATP value could be a prognostic factor of the treatment success. The role of ATP in the drug metabolism switching is also discussed within the context of kinetic modelling of metabolism processes leading to the production of 6-Thioguanosine monophosphate, which is a principal acting agent in chemotherapy.

  10. ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides.

    Science.gov (United States)

    Radian, Alexander D; Khare, Sonal; Chu, Lan H; Dorfleutner, Andrea; Stehlik, Christian

    2015-10-01

    Nucleotide-binding oligimerization domain (NOD)-like receptors (NLRs) are pattern recognition receptors (PRRs) involved in innate immune responses. NLRs encode a central nucleotide-binding domain (NBD) consisting of the NAIP, CIITA, HET-E and TP1 (NACHT) domain and the NACHT associated domain (NAD), which facilitates receptor oligomerization and downstream inflammasome signaling. The NBD contains highly conserved regions, known as Walker motifs, that are required for nucleotide binding and hydrolysis. The NLR containing a PYRIN domain (PYD) 7 (NLRP7) has been recently shown to assemble an ASC and caspase-1-containing high molecular weight inflammasome complex in response to microbial acylated lipopeptides and Staphylococcus aureus infection. However, the molecular mechanism responsible for NLRP7 inflammasome activation is still elusive. Here we demonstrate that the NBD of NLRP7 is an ATP binding domain and has ATPase activity. We further show that an intact nucleotide-binding Walker A motif is required for NBD-mediated nucleotide binding and hydrolysis, oligomerization, and NLRP7 inflammasome formation and activity. Accordingly, THP-1 cells expressing a mutated Walker A motif display defective NLRP7 inflammasome activation, interleukin (IL)-1β release and pyroptosis in response to acylated lipopeptides and S. aureus infection. Taken together, our results provide novel insights into the mechanism of NLRP7 inflammasome assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. High-risk biodegradable waste processing by alkaline hydrolysis.

    Science.gov (United States)

    Kalambura, Sanja; Voća, Neven; Krička, Tajana; Sindrak, Zoran; Spehar, Ana; Kalambura, Dejan

    2011-09-01

    Biodegradable waste is by definition degraded by other living organisms. Every day, meat industry produces large amounts of a specific type of biodegradable waste called slaughterhouse waste. Traditionally in Europe, this waste is recycled in rendering plants which produce meat and bone meal and fat. However, feeding animals with meat and bone meal has been banned since the outbreaks of bovine spongiform encephalopathy (BSE). In consequence, new slaughterhouse waste processing technologies have been developed, and animal wastes have now been used for energy production. Certain parts of this waste, such as brains and spinal cord, are deemed high-risk substances, because they may be infected with prions. Their treatment is therefore possible only in strictly controlled conditions. One of the methods which seems to bear acceptable health risk is alkaline hydrolysis. This paper presents the results of an alkaline hydrolysis efficiency study. It also proposes reuse of the obtained material as organic fertiliser, as is suggested by the analytical comparison between meat and bone meal and hydrolysate.

  12. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhagen, Jason Alan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca2+ imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca2+ signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K+ and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol

  13. MutSβ abundance and Msh3 ATP hydrolysis activity are important drivers of CTG•CAG repeat expansions.

    Science.gov (United States)

    Keogh, Norma; Chan, Kara Y; Li, Guo-Min; Lahue, Robert S

    2017-09-29

    CTG•CAG repeat expansions cause at least twelve inherited neurological diseases. Expansions require the presence, not the absence, of the mismatch repair protein MutSβ (Msh2-Msh3 heterodimer). To evaluate properties of MutSβ that drive expansions, previous studies have tested under-expression, ATPase function or polymorphic variants of Msh2 and Msh3, but in disparate experimental systems. Additionally, some variants destabilize MutSβ, potentially masking the effects of biochemical alterations of the variations. Here, human Msh3 was mutated to selectively inactivate MutSβ. Msh3-/- cells are severely defective for CTG•CAG repeat expansions but show full activity on contractions. Msh3-/- cells provide a single, isogenic system to add back Msh3 and test key biochemical features of MutSβ on expansions. Msh3 overexpression led to high expansion activity and elevated levels of MutSβ complex, indicating that MutSβ abundance drives expansions. An ATPase-defective Msh3 expressed at normal levels was as defective in expansions as Msh3-/- cells, indicating that Msh3 ATPase function is critical for expansions. Expression of two Msh3 polymorphic variants at normal levels showed no detectable change in expansions, suggesting these polymorphisms primarily affect Msh3 protein stability, not activity. In summary, CTG•CAG expansions are limited by the abundance of MutSβ and rely heavily on Msh3 ATPase function. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Foot-and-Mouth Disease Virus 2C Is a Hexameric AAA+ Protein with a Coordinated ATP Hydrolysis Mechanism

    DEFF Research Database (Denmark)

    Sweeney, Trevor; Cisnetto, Valentina; Bose, Daniel

    2010-01-01

    Foot-and-mouth disease virus (FMDV), a positive sense, single-stranded RNA virus, causes a highly contagious disease in cloven-hoofed livestock. Like other picornaviruses, FMDV has a conserved 2C protein assigned to the superfamily 3 helicases a group of AAA+ ATPases that has a predicted N...

  15. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling.

    Science.gov (United States)

    Civril, Filiz; Bennett, Matthew; Moldt, Manuela; Deimling, Tobias; Witte, Gregor; Schiesser, Stefan; Carell, Thomas; Hopfner, Karl-Peter

    2011-10-28

    RIG-I detects cytosolic viral dsRNA with 5' triphosphates (5'-ppp-dsRNA), thereby initiating an antiviral innate immune response. Here we report the crystal structure of superfamily 2 (SF2) ATPase domain of RIG-I in complex with a nucleotide analogue. RIG-I SF2 comprises two RecA-like domains 1A and 2A and a helical insertion domain 2B, which together form a 'C'-shaped structure. Domains 1A and 2A are maintained in a 'signal-off' state with an inactive ATP hydrolysis site by an intriguing helical arm. By mutational analysis, we show surface motifs that are critical for dsRNA-stimulated ATPase activity, indicating that dsRNA induces a structural movement that brings domains 1A and 2A/B together to form an active ATPase site. The structure also indicates that the regulatory domain is close to the end of the helical arm, where it is well positioned to recruit 5'-ppp-dsRNA to the SF2 domain. Overall, our results indicate that the activation of RIG-I occurs through an RNA- and ATP-driven structural switch in the SF2 domain.

  16. ATP-binding cassette (ABC) proteins in aquatic invertebrates: Evolutionary significance and application in marine ecotoxicology.

    Science.gov (United States)

    Jeong, Chang-Bum; Kim, Hui-Su; Kang, Hye-Min; Lee, Jae-Seong

    2017-04-01

    The ATP-binding cassette (ABC) protein superfamily is known to play a fundamental role in biological processes and is highly conserved across animal taxa. The ABC proteins function as active transporters for multiple substrates across the cellular membrane by ATP hydrolysis. As this superfamily is derived from a common ancestor, ABC genes have evolved via lineage-specific duplications through the process of adaptation. In this review, we summarized information about the ABC gene families in aquatic invertebrates, considering their evolution and putative functions in defense mechanisms. Phylogenetic analysis was conducted to examine the evolutionary significance of ABC gene families in aquatic invertebrates. Particularly, a massive expansion of multixenobiotic resistance (MXR)-mediated efflux transporters was identified in the absence of the ABCG2 (BCRP) gene in Ecdysozoa and Platyzoa, suggesting that a loss of Abcg2 gene occurred sporadically in these species during divergence of Protostome to Lophotrochozoa. Furthermore, in aquatic invertebrates, the ecotoxicological significance of MXR is discussed while considering the role of MXR-mediated efflux transporters in response to various environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electrospray ionization mass spectrometry for the hydrolysis complexes of cisplatin : Implications for the hydrolysis process of platinum complexes

    NARCIS (Netherlands)

    Xie, Feifan; Colin, Pieter; Van Bocxlaer, Jan

    Non-enzyme-dependent hydrolysis of the drug cisplatin is important for its mode of action and toxicity. However, up until today, the hydrolysis process of cisplatin is still not completely understood. In the present study, the hydrolysis of cisplatin in an aqueous solution was systematically

  18. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis

    NARCIS (Netherlands)

    Baks, T.; Bruins, M.E.; Matser, A.M.; Janssen, A.E.M.; Boom, R.M.

    2008-01-01

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with ¿-amylase from

  19. Co-hydrolysis of hydrothermal and dilute acid pretreated populus slurries to support development of a high-throughput pretreatment system

    Directory of Open Access Journals (Sweden)

    DeMartini Jaclyn D

    2011-07-01

    Full Text Available Abstract Background The BioEnergy Science Center (BESC developed a high-throughput screening method to rapidly identify low-recalcitrance biomass variants. Because the customary separation and analysis of liquid and solids between pretreatment and enzymatic hydrolysis used in conventional analyses is slow, labor-intensive and very difficult to automate, a streamlined approach we term 'co-hydrolysis' was developed. In this method, the solids and liquid in the pretreated biomass slurry are not separated, but instead hydrolysis is performed by adding enzymes to the whole pretreated slurry. The effects of pretreatment method, severity and solids loading on co-hydrolysis performance were investigated. Results For hydrothermal pretreatment at solids concentrations of 0.5 to 2%, high enzyme protein loadings of about 100 mg/g of substrate (glucan plus xylan in the original poplar wood achieved glucose and xylose yields for co-hydrolysis that were comparable with those for washed solids. In addition, although poplar wood sugar yields from co-hydrolysis at 2% solids concentrations fell short of those from hydrolysis of washed solids after dilute sulfuric acid pretreatment even at high enzyme loadings, pretreatment at 0.5% solids concentrations resulted in similar yields for all but the lowest enzyme loading. Conclusions Overall, the influence of severity on susceptibility of pretreated substrates to enzymatic hydrolysis was clearly discernable, showing co-hydrolysis to be a viable approach for identifying plant-pretreatment-enzyme combinations with substantial advantages for sugar production.

  20. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.

    Science.gov (United States)

    Gout, Elisabeth; Rébeillé, Fabrice; Douce, Roland; Bligny, Richard

    2014-10-28

    In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.

  1. Enzymatic hydrolysis of corn bran arabinoxylan

    DEFF Research Database (Denmark)

    Agger, Jane

    This thesis concerns enzymatic hydrolysis of corn bran arabinoxylan. The work has focused on understanding the composition and structure of corn bran with specific interest in arabinoxylan with the main purpose of targeting enzymatic hydrolysis for increased yields. Corn bran has been used...... as a model substrate because it represents a readily available agroindustrial side product with upgrading potentials. Corn bran originates from the wet-milling process in corn starch processing, is the outmost layers of the corn kernel and is particularly rich in pentose monosaccharides comprising the major...... components of arabinoxylan. Corn bran is one of the most recalcitrant cereal byproducts with arabinoxylans of particular heterogeneous nature. It is also rich in feruloyl derived substitutions, which are responsible for extensive cross-linking between arabinoxylan molecules and thereby participate...

  2. KINETICS OF HYDROLYSIS OF TRIBUTYRIN BY LIPASE

    Directory of Open Access Journals (Sweden)

    SULAIMAN AL-ZUHAIR

    2006-06-01

    Full Text Available Kinetics of the enzymatic hydrolysis of tributyrin using lipase has been investigated. The initial rate of reaction was determined experimentally at different substrate concentration by measuring the rate of butyric acid produced. Michaels-Menten kinetic model has been proposed to predict the initial rate of hydrolysis of tributyrin in micro-emulsion system. The kinetic parameters were estimated by fitting the data to the model using three methods, namely, the Lineweaver-Burk, Edie-Hofstee and Hanes methods. The Michaels-Menten model with the constant predicted by Edie-Hofstee and Hanes methods predicted the initial rate of reaction at various substrate concentrations better than the model with the constant predicted Lineweaver-Burk method, especially at high substrate concentrations.

  3. ACID HYDROLYSIS OF HEMICELLULOSE FROM SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    A. PESSOA JR.

    1997-09-01

    Full Text Available Hydrolysis of the hemicellulosic fraction of sugarcane bagasse by sulphuric acid was performed in laboratory (25 mL and semi-pilot (25 L reactors under different conditions of temperature, time and acid concentration. On the laboratory scale, the three highest recovery yields were obtained at: 140ºC for 10 min with 100 mgacid/gdm (yield=73.4%; 140ºC for 20 min with 100 mgacid/gdm (yield=73.9% and 150ºC for 20 min with 70 mgacid/gdm (yield=71.8%. These conditions were also used for hydrolysis in a semi-pilot reactor, and the highest xylose recovery yield (83.3% was obtained at 140ºC for 20 min with 100 mgacid/gdm

  4. Intracellular ATP and total adenylate concentrations are critical predictors of reovirus productivity from Vero cells.

    Science.gov (United States)

    Burgener, A; Coombs, K; Butler, M

    2006-07-05

    The productivity of reovirus type-3 Dearing was studied in cultures of Vero cells in serum-free media. Viral productivity was dependent upon the metabolic state of the cells rather than the phase of growth at which the cells were infected. Cells at different energy states were established by 24-h incubation in nutrient-depleted media. This resulted in variable intracellular nucleotide concentrations but high cellular viability was maintained. Of the nucleotides analyzed at the time of infection only the intracellular [ATP] and total adenylate nucleotides were positively correlated with viral productivity. The correlated data followed a sigmoidal plot with an equation defined by polynomial regression analysis. Apparent threshold values of 3.2 fmol/cell and 3.3 fmol/cell were established for ATP and total adenylate, respectively, at which the viral production was 50% the maximal value. Cultures with lower ATP and total adenylate levels at the time of infection resulted in as much as a 95% reduction in overall viral titer compared to the control. The adenylate energy charge (AEC) showed a negative correlation with viral production with an AEC value >0.97 resulting in low virus productivity. Intracellular ATP or total adenylate concentration at the point of infection may be used as a predictor of viral yield in bioprocesses designed for virus/vaccine production. (c) 2006 Wiley Periodicals, Inc.

  5. Biophysical comparison of ATP synthesis mechanisms shows a kinetic advantage for the rotary process

    Science.gov (United States)

    Anandakrishnan, Ramu; Zhang, Zining; Donovan-Maiye, Rory; Zuckerman, Daniel M.

    2016-01-01

    The ATP synthase (F-ATPase) is a highly complex rotary machine that synthesizes ATP, powered by a proton electrochemical gradient. Why did evolution select such an elaborate mechanism over arguably simpler alternating-access processes that can be reversed to perform ATP synthesis? We studied a systematic enumeration of alternative mechanisms, using numerical and theoretical means. When the alternative models are optimized subject to fundamental thermodynamic constraints, they fail to match the kinetic ability of the rotary mechanism over a wide range of conditions, particularly under low-energy conditions. We used a physically interpretable, closed-form solution for the steady-state rate for an arbitrary chemical cycle, which clarifies kinetic effects of complex free-energy landscapes. Our analysis also yields insights into the debated “kinetic equivalence” of ATP synthesis driven by transmembrane pH and potential difference. Overall, our study suggests that the complexity of the F-ATPase may have resulted from positive selection for its kinetic advantage. PMID:27647911

  6. Effects of enzymatic hydrolysis on lentil allergenicity.

    Science.gov (United States)

    Cabanillas, Beatriz; Pedrosa, Mercedes M; Rodríguez, Julia; González, Angela; Muzquiz, Mercedes; Cuadrado, Carmen; Crespo, Jesús F; Burbano, Carmen

    2010-09-01

    Enzymatic hydrolysis and further processing are commonly used to produce hypoallergenic dietary products derived from different protein sources, such as cow's milk. Lentils and chickpeas seem to be an important cause of IgE-mediated hypersensitivity in the Mediterranean area and India. Some studies have investigated the effects of enzymatic treatments on the in vitro immunological reactivity of members of the Leguminosae family, such as soybean, chickpea, lentil, and lupine. Nevertheless, there are only a few studies carried out to evaluate the effect on IgE reactivity of these food-hydrolysis products with sera from patients with well-documented allergy to these foods. In this study, lentil protein extract was hydrolyzed by sequential action of an endoprotease (Alcalase) and an exoprotease (Flavourzyme). Immunoreactivity to raw and hydrolyzed lentil extract was evaluated by means of IgE immunoblotting and ELISA using sera from five patients with clinical allergy to lentil. The results indicated that sequential hydrolysis of lentil results in an important proteolytic destruction of IgE-binding epitopes shown by in vitro experiments. However, some allergenic proteins were still detected by sera from four out of five patients in the last step of sequential hydrolyzation.

  7. Palm date fibers: analysis and enzymatic hydrolysis.

    Science.gov (United States)

    Shafiei, Marzieh; Karimi, Keikhosro; Taherzadeh, Mohammad J

    2010-11-01

    Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was improved by enzymatic hydrolysis. Hydrolysis resulted in 84.3% conversion of the cellulosic part of the fibers as well as reducing the settling time to 10 minutes and the final settled volume to 4% of the initial volume. It implies easier separation of the fibers and facilitates fermentation processes in the corresponding industries. Two kinds of high- and low-lignin fibers were identified from the water-insoluble fibers. The high-lignin fibers (75% lignin) settled easily, while the low-lignin fibers (41.4% lignin) formed a slurry suspension which settled very slowly. The hydrophilicity of these low-lignin fibers is the major challenge of the industrial processes.

  8. Palm Date Fibers: Analysis and Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Mohammad J. Taherzadeh

    2010-11-01

    Full Text Available Waste palm dates were subjected to analysis for composition and enzymatic hydrolysis of their flesh fibers. The fruit contained 32% glucose and 30% fructose, while the water-insoluble fibers of its flesh consisted of 49.9% lignin and 20.9% polysaccharides. Water-insoluble fibers were settled to 55% of its initial volume in 12 h. The presence of skin and flesh colloidal fibers results in high viscosity and clogging problems during industrial processes. The settling velocity of the fibers was improved by enzymatic hydrolysis. Hydrolysis resulted in 84.3% conversion of the cellulosic part of the fibers as well as reducing the settling time to 10 minutes and the final settled volume to 4% of the initial volume. It implies easier separation of the fibers and facilitates fermentation processes in the corresponding industries. Two kinds of high- and low-lignin fibers were identified from the water-insoluble fibers. The high-lignin fibers (75% lignin settled easily, while the low-lignin fibers (41.4% lignin formed a slurry suspension which settled very slowly. The hydrophilicity of these low-lignin fibers is the major challenge of the industrial processes.

  9. Water Availability as a Measure of Cellulose Hydrolysis Efficiency

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen

    Enzymatic hydrolysis involves the use of cellulases to break down cellulose in the presence of water. Therefore, not only are enzyme and substrate properties important for efficient hydrolysis, but also the hydrolysis medium, i.e. the liquid phase. The LF-NMR technique is used in this work...... availability is vital for efficient hydrolysis, especially at high dry matter content where water availability is low. At high dry matter content, cellulase activity changes water interactions with biomass, affecting the water mobility. While swelling and fiber loosening also take place during hydrolysis...... to measure properties of the liquid phase, where water protons are characterized based on their mobility in the system as measured by their relaxation time. Studies of cellulose hydrolysis at low dry matter show that the contents of the liquid phase influence the final hydrolysis yield, as the presence...

  10. Degradation of Opioids and Opiates During Acid Hydrolysis Leads to Reduced Recovery Compared to Enzymatic Hydrolysis.

    Science.gov (United States)

    Sitasuwan, Pongkwan; Melendez, Cathleen; Marinova, Margarita; Mastrianni, Kaylee R; Darragh, Alicia; Ryan, Emily; Lee, L Andrew

    2016-10-01

    Drug monitoring laboratories utilize a hydrolysis process to liberate the opiates from their glucuronide conjugates to facilitate their detection by tandem mass spectrometry (MS). Both acid and enzyme hydrolysis have been reported as viable methods, with the former as a more effective process for recovering codeine-6-glucuronide and morphine-6-glucuronide. Here, we report concerns with acid-catalyzed hydrolysis of opioids, including a significant loss of analytes and conversions of oxycodone to oxymorphone, hydrocodone to hydromorphone and codeine to morphine. The acid-catalyzed reaction was monitored in neat water and patient urine samples by liquid chromatography-time-of-flight and tandem MS. These side reactions with acid hydrolysis may limit accurate quantitation due to loss of analytes, possibly lead to false positives, and poorly correlate with pharmacogenetic profiles, as cytochrome P450 enzyme (CYP2D6) is often involved with oxycodone to oxymorphone, hydrocodone to hydromorphone and codeine to morphine conversions. Enzymatic hydrolysis process using the purified, genetically engineered β-glucuronidase (IMCSzyme(®)) addresses many of these concerns and demonstrates accurate quantitation and high recoveries for oxycodone, hydrocodone, oxymorphone and hydromorphone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Optimization of the enzyme system for hydrolysis of pretreated lignocellulose substrates; Optimering av enzymsystemet foer hydrolys av foerbehandlade lignocellulosa substrat

    Energy Technology Data Exchange (ETDEWEB)

    Tjerneld, Folke [Lund univ., (Sweden). Dept. of Biochemistry

    2000-06-01

    This project aims to clarify the reasons for the slow and incomplete enzymatic hydrolysis of certain lignocellulose substrates, particularly softwood e.g. spruce. Based on this knowledge we will optimize the enzyme system so that the yield of fermentable sugars is increased as well as the rate of hydrolysis. We will also study methods for recycling of the enzymes in the process by adsorption on fresh substrate. Progress in these areas will lead to improved process economy in an ethanol process. We collaborate with Chemical Engineering on hydrolysis of pretreated lignocellulose substrates and with Analytical Chemistry and Applied Microbiology on analysis of potential inhibitors. Within this main research direction the work at Biochemistry during this project period (since 970701) has been focused on the following areas: (1) Studies of the role of substrate properties in the enzymatic hydrolysis to clarify the reasons for the decrease in the rate of hydrolysis; (2) enzyme adsorption on lignin; (3) studies of recently identified low molecular weight endo glucanases which may be used for more effective penetration of small pores in pretreated substrates (this part is financed by the Nordic Energy Research Program). Central results during the period: In order to study the role of substrate properties for hydrolysis we have initiated investigations on steam pretreated substrates with several techniques. Measurements of pore sizes have been done with probe molecules of known molecular weights. Results show that probe molecules with diameters larger than 50 Aangstroem can more easily penetrate pretreated willow compared with spruce, which can be a part of the explanation for the better hydrolysability of hardwood substrates compared with softwood. We have started studies with electron microscopy of pretreated substrates at different degrees of enzymatic hydrolysis. With scanning electron microscopy (SEM) we can see significant differences in substrate structure in

  12. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.

    Science.gov (United States)

    Weiss, Kilian; Bottomley, Paul A; Weiss, Robert G

    2015-06-01

    Adenosine triphosphate (ATP) is absolutely required to fuel normal cyclic contractions of the heart. The creatine kinase (CK) reaction is a major energy reserve reaction that rapidly converts creatine phosphate (PCr) to ATP during the cardiac cycle and at times of stress and ischemia, but is significantly impaired in conditions such as hypertrophy and heart failure. Because the magnitudes of possible in vivo cyclic changes in cardiac high-energy phosphates (HEPs) during the cardiac cycle are not well known from previous work, this study uses mathematical modeling to assess whether, and to what extent, cyclic variations in HEPs and in the rate of ATP synthesis through CK (CK flux) could exist in the human heart, and whether they could be measured with current in vivo (31)P MRS methods. Multi-site exchange models incorporating enzymatic rate equations were used to study the cyclic dynamics of the CK reaction, and Bloch equations were used to simulate (31)P MRS saturation transfer measurements of the CK reaction. The simulations show that short-term buffering of ATP by CK requires temporal variations over the cardiac cycle in the CK reaction velocities modeled by enzymatic rate equations. The maximum variation in HEPs in the normal human heart beating at 60 min(-1) was approximately 0.4 mM and proportional to the velocity of ATP hydrolysis. Such HEP variations are at or below the current limits of detection by in vivo (31)P MRS methods. Bloch equation simulations show that (31)P MRS saturation transfer estimates the time-averaged, pseudo-first-order forward rate constant, k(f,ap)', of the CK reaction, and that periodic short-term fluctuations in kf ' and CK flux are not likely to be detectable in human studies employing current in vivo (31)P MRS methods. Copyright © 2015 John Wiley & Sons, Ltd.

  13. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    Science.gov (United States)

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  14. THE ROLE OF HYDRATION IN THE HYDROLYSIS OF PYROPHOSPHATE - A MONTE-CARLO SIMULATION WITH POLARIZABLE-TYPE INTERACTION POTENTIALS

    NARCIS (Netherlands)

    STMARTIN, H; ORTEGABLAKE, [No Value; LES, A; ADAMOWICZ, L

    1994-01-01

    The exchange of energy in biochemical reactions involves, in a majority of cases, the hydrolysis of phosphoanhydrides (P-O-P). This discovery has lead to a long discussion about the origin of the high energy of such bonds, and to a proposal that hydration plays a major role in the energetics of the

  15. Kinetic and thermal characterization of the hydrolysis of polysuccinimide

    Energy Technology Data Exchange (ETDEWEB)

    Mosig, J.; Gooding, C.H.; Wheeler, A.P. [Clemson Univ., SC (United States)

    1997-06-01

    Hundreds of millions of pounds of anionic polymers, particularly poly(acrylate) and its derivatives, are used annually as dispersants and antiscalants in water-treatment formulations and detergents, and much of this is released into environmental waters. Though these polymers are apparently not toxic, neither are they especially biodegradable. The kinetics of the base hydrolysis of polysuccinimide in an aqueous slurry were studied with temperatures ranging from 31 to 72 C and pH`s from 8.0 to 10.5. At the higher temperatures and lower pH values, the results are described adequately by a shrinking core model that is first order with respect to hydroxyl concentration and particle surface area. Temperature effects were modeled with an Arrhenius equation, which indicates an activation energy of 35 kJ/mol. In separate experiments, the heat of reaction was determined to be 38.5 kJ/mol.

  16. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    Directory of Open Access Journals (Sweden)

    Ting Xu

    2015-03-01

    Full Text Available The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.

  17. Exploration of process parameters for continuous hydrolysis of canola oil, camelina oil and algal oil

    KAUST Repository

    Wang, Weicheng

    2012-07-01

    Thermal hydrolysis of triglycerides to form free fatty acid (FFA) is a well-established industry practice. Recently, this process has been employed as a first step in the production of biofuels from lipids. To that end, batch and continuous hydrolysis of various feedstocks has been examined at the laboratory scale. Canola, the primary feedstock in this paper, camelina and algal oils were converted to high quality FFA. For the different reaction temperatures, the continuous hydrolysis system was found to provide better yields than the laboratory batch system. In addition, CFD simulation with ANSYS-CFX was used to model the performance and reactant/product separation in the continuous, counter-flow reactor. The effects of reaction temperature, water-to-oil ratio (ratio of water and oil volumetric inflow rate), and preheating of the reactants were examined experimentally. Optimization of these parameters has resulted in an improved, continuous process with high mass yields (89-93%, for reactor temperature of 260°C and water-to-oil ratio of 4:1) and energy efficiency (76%, for reactor temperature of 250°C and water-to-oil ratio of 2:1). Based on the product quality and energy efficiency considerations, the reactor temperature of 260°C and water-to-oil ratio of 4:1 have provided the optimal condition for the lab scale continuous hydrolysis reaction. © 2012 Elsevier B.V.

  18. Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water.

    Science.gov (United States)

    Zhuang, Xinshu; Yuan, Zhenhong; Ma, Longlong; Wu, Chuangzhi; Xu, Mingzhong; Xu, Jingliang; Zhu, Shunni; Qi, Wei

    2009-01-01

    We investigated the kinetics of hot liquid water (HLW) hydrolysis over a 60-min period using a self-designed setup. The reaction was performed within the range 160-220 degrees C, under reaction conditions of 4.0 MPa, a 1:20 solid:liquid ratio (g/mL), at 500 rpm stirring speed. Xylan was chosen as a model compound for hemicelluloses, and two kinds of agricultural wastes-rice straw and palm shell-were used as typical feedstocks representative of herbaceous and woody biomasses, respectively. The hydrolysis reactions for the three kinds of materials followed a first-order sequential kinetic model, and the hydrolysis activation energies were 65.58 kJ/mol for xylan, 68.76 kJ/mol for rice straw, and 95.19 kJ/mol for palm shell. The activation energies of sugar degradation were 147.21 kJ/mol for xylan, 47.08 kJ/mol for rice straw and 79.74 kJ/mol for palm shell. These differences may be due to differences in the composition and construction of the three kinds of materials. In order to reduce the decomposition of sugars, the hydrolysis time of biomasses such as rice straw and palm shell should be strictly controlled.

  19. Heterogeneity of ATP-sensitive K+ Channels in Cardiac Myocytes

    Science.gov (United States)

    Hong, Miyoun; Bao, Li; Kefaloyianni, Eirini; Agullo-Pascual, Esperanza; Chkourko, Halina; Foster, Monique; Taskin, Eylem; Zhandre, Marine; Reid, Dylan A.; Rothenberg, Eli; Delmar, Mario; Coetzee, William A.

    2012-01-01

    Ventricular ATP-sensitive potassium (KATP) channels link intracellular energy metabolism to membrane excitability and contractility. Our recent proteomics experiments identified plakoglobin and plakophilin-2 (PKP2) as putative KATP channel-associated proteins. We investigated whether the association of KATP channel subunits with junctional proteins translates to heterogeneous subcellular distribution within a cardiac myocyte. Co-immunoprecipitation experiments confirmed physical interaction between KATP channels and PKP2 and plakoglobin in rat heart. Immunolocalization experiments demonstrated that KATP channel subunits (Kir6.2 and SUR2A) are expressed at a higher density at the intercalated disk in mouse and rat hearts, where they co-localized with PKP2 and plakoglobin. Super-resolution microscopy demonstrate that KATP channels are clustered within nanometer distances from junctional proteins. The local KATP channel density, recorded in excised inside-out patches, was larger at the cell end when compared with local currents recorded from the cell center. The KATP channel unitary conductance, block by MgATP and activation by MgADP, did not differ between these two locations. Whole cell KATP channel current density (activated by metabolic inhibition) was ∼40% smaller in myocytes from mice haploinsufficient for PKP2. Experiments with excised patches demonstrated that the regional heterogeneity of KATP channels was absent in the PKP2 deficient mice, but the KATP channel unitary conductance and nucleotide sensitivities remained unaltered. Our data demonstrate heterogeneity of KATP channel distribution within a cardiac myocyte. The higher KATP channel density at the intercalated disk implies a possible role at the intercellular junctions during cardiac ischemia. PMID:23066018

  20. Organosolv pretreatment for enzymatic hydrolysis of poplars: I. enzyme hydrolysis of cellulosic residues

    Energy Technology Data Exchange (ETDEWEB)

    Chum, H.L.; Johnson, D.K.; Black, S.; Baker, J.; Grohmann, K.; Sarkanen, K.V.; Wallace, K.; Schroeder, H.A.

    1988-01-01

    Aspen (Populus tremuloides) and black cottonwood (Populus trichocarpa) organosolv pulps produced in a wide range of solvent composition (between 30 and 70% by volume of methanol) and catalysts (H/sub 2/SO/sub 4/ and H/sub 3/PO/sub 4/) such that the cooking liquor pH less than or equal to 3 are easily digested by enzymes. The total yields of hydrolysis residues (pulps) are in the 40-60% range; the acid-catalyzed delignification followed by enzyme hydrolysis can generate 70-88% of the original six-carbon sugars contained in the wood. Glucomannan and arabinogalactan are dissolved in to the pulping liquor in the pH range of 2-4.5. Lower pH (less than or equal to 3) leads to additional solubilization of six-carbon sugars. These sugars may be fermented directly. From the insoluble hydrolysis residues, 36-41% conversions of wood into fermentable sugars were obtained after enzyme hydrolysis; the starting feedstocks contain 50.8 and 46.6% hexosans, respectively, for aspen and black cottonwood. The kinetics of enzymatic hydrolysis of cellulose can be formally treated as two simultaneous pseudo-first-order reactions in which fast and slow hydrolysis of cellulose occur. Correlations between the glucan digestibility and the effect of the pretreatment have been made. The higher residual xylan content reduces the amount of the rapidly hydrolyzable glucan fraction and lowers the glucan digestibility. The proposed simple kinetic treatment is very helpful in assessing the effect of the pretreatment on pulp enzyme hydrolyzability.

  1. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  2. Conformational Footprint in Hydrolysis-Induced Nanofibrillation and Crystallization of Poly(lactic acid).

    Science.gov (United States)

    Xu, Huan; Yang, Xi; Xie, Lan; Hakkarainen, Minna

    2016-03-14

    The origin of hydrolysis-induced nanofibrillation and crystallization, at the molecular level, was revealed by mapping the conformational ordering during long-term hydrolytic degradation of initially amorphous poly(lactic acid) (PLA), a representative model for degradable aliphatic polyesters generally displaying strong interplay between crystallization and hydrolytic erosion. The conformational regularization of chain segments was essentially the main driving force for the morphological evolution of PLA during hydrolytic degradation. For hydrolysis at 37 °C, no significant structural variations were observed due to the immobilization of "frozen" PLA chains. In contrast, conformational ordering in PLA was immediately triggered during hydrolysis at 60 °C and was responsible for the transition from random coils to disordered trans and, further, to quasi-crystalline nanospheres. On the surfaces, the head-by-head absorption and joining of neighboring nanospheres led to nanofibrillar assemblies following a "gluttonous snake"-like manner. The length and density of nanofibers formed were in close relation to the hydrolytic evolution, both of which showed a direct rise in the initial 60 days and then a gradual decline. In the interior, presumably the high surface energy of the nanospheres allowed for the preferential anchoring and packing of conformationally ordered chains into lamellae. In accordance with the well-established hypothesis, the amorphous regions were attacked prior to the erosion of crystalline entities, causing a rapid increase of crystallinity during the initial 30 days, followed by a gradual fall until 90 days. In addition to adequate illustration of hydrolysis-induced variations of crystallinity, our proposed model elucidates the formation of spherulitic nuclei featuring an extremely wide distribution of diameters ranging from several nanometers to over 5 μm, as well as the inferior resistance to hydrolysis observed for the primary nuclei. Our work

  3. Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed.

    Science.gov (United States)

    Kadić, Adnan; Palmqvist, Benny; Lidén, Gunnar

    2014-01-01

    Mixing is an energy demanding process which has been previously shown to affect enzymatic hydrolysis. Concentrated biomass slurries are associated with high and non-Newtonian viscosities and mixing in these systems is a complex task. Poor mixing can lead to mass and/or heat transfer problems as well as inhomogeneous enzyme distribution, both of which can cause possible yield reduction. Furthermore the stirring energy dissipation may impact the particle size which in turn may affect the enzymatic hydrolysis. The objective of the current work was to specifically quantify the effects of mixing on particle-size distribution (PSD) and relate this to changes in the enzymatic hydrolysis. Two rather different materials were investigated, namely pretreated Norway spruce and giant reed. Changes in glucan hydrolysis and PSD were measured as a function of agitation during enzymatic hydrolysis at fiber loadings of 7 or 13% water-insoluble solids (WIS). Enzymatic conversion of pretreated spruce was strongly affected by agitation rates at the higher WIS content. However, at low WIS content the agitation had almost no effect on hydrolysis. There was some effect of agitation on the hydrolysis of giant reed at high WIS loading, but it was smaller than that for spruce, and there was no measurable effect at low WIS loading. In the case of spruce, intense agitation clearly affected the PSD and resulted in a reduced mean particle size, whereas for giant reed the decrease in particle size was mainly driven by enzymatic action. However, the rate of enzymatic hydrolysis was not increased after size reduction by agitation. The impact of agitation on the enzymatic hydrolysis clearly depends not only on feedstock but also on the solids loading. Agitation was found to affect the PSD differently for the examined pretreated materials spruce and giant reed. The fact that the reduced mean particle diameter could not explain the enhanced hydrolysis rates found for spruce at an elevated agitation

  4. Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed

    Science.gov (United States)

    2014-01-01

    Background Mixing is an energy demanding process which has been previously shown to affect enzymatic hydrolysis. Concentrated biomass slurries are associated with high and non-Newtonian viscosities and mixing in these systems is a complex task. Poor mixing can lead to mass and/or heat transfer problems as well as inhomogeneous enzyme distribution, both of which can cause possible yield reduction. Furthermore the stirring energy dissipation may impact the particle size which in turn may affect the enzymatic hydrolysis. The objective of the current work was to specifically quantify the effects of mixing on particle-size distribution (PSD) and relate this to changes in the enzymatic hydrolysis. Two rather different materials were investigated, namely pretreated Norway spruce and giant reed. Results Changes in glucan hydrolysis and PSD were measured as a function of agitation during enzymatic hydrolysis at fiber loadings of 7 or 13% water-insoluble solids (WIS). Enzymatic conversion of pretreated spruce was strongly affected by agitation rates at the higher WIS content. However, at low WIS content the agitation had almost no effect on hydrolysis. There was some effect of agitation on the hydrolysis of giant reed at high WIS loading, but it was smaller than that for spruce, and there was no measurable effect at low WIS loading. In the case of spruce, intense agitation clearly affected the PSD and resulted in a reduced mean particle size, whereas for giant reed the decrease in particle size was mainly driven by enzymatic action. However, the rate of enzymatic hydrolysis was not increased after size reduction by agitation. Conclusions The impact of agitation on the enzymatic hydrolysis clearly depends not only on feedstock but also on the solids loading. Agitation was found to affect the PSD differently for the examined pretreated materials spruce and giant reed. The fact that the reduced mean particle diameter could not explain the enhanced hydrolysis rates found for

  5. 36 degree step size of proton-driven c-ring rotation in FoF1-ATP synthase

    OpenAIRE

    Dueser, Monika G.; Zarrabi, Nawid; Cipriano, Daniel J.; Ernst, Stefan; Glick, Gary D.; Dunn, Stanley D.; Boersch, Michael

    2009-01-01

    Synthesis of the biological "energy currency molecule" adenosine triphosphate ATP is accomplished by FoF1-ATP synthase. In the plasma membrane of Escherichia coli, proton-driven rotation of a ring of 10 c subunits in the Fo motor powers catalysis in the F1 motor. While F1 uses 120 degree stepping, Fo models predict a step-by-step rotation of c subunits 36 degree at a time, which is here demonstrated by single-molecule fluorescence resonance energy transfer.

  6. Mitochondrial ATP Depletion Disrupts Caco-2 Monolayer Integrity and Internalizes Claudin 7.

    Science.gov (United States)

    JanssenDuijghuijsen, Lonneke M; Grefte, Sander; de Boer, Vincent C J; Zeper, Lara; van Dartel, Dorien A M; van der Stelt, Inge; Bekkenkamp-Grovenstein, Melissa; van Norren, Klaske; Wichers, Harry J; Keijer, Jaap

    2017-01-01

    Objective:In vivo studies suggest that intestinal barrier integrity is dependent on mitochondrial ATP production. Here, we aim to provide mechanistic support, using an in vitro model mimicking the oxidative in vivo situation. Methods: Human Caco-2 cells were cultured for 10 days in culture flasks or for 14 days on transwell inserts in either glucose-containing or galactose-containing medium. Mitochondria were visualized and cellular respiration and levels of oxidative phosphorylation (OXPHOS) proteins were determined. Mitochondrial ATP depletion was induced using CCCP, rotenone, or piericidin A (PA). Monolayer permeability was assessed using transepithelial electrical resistance (TEER) and fluorescein flux. Gene expression and cellular distribution of tight junction proteins were analyzed. Results: Caco-2 cells cultured in galactose-containing, but not in glucose-containing, medium showed increased mitochondrial connectivity, oxygen consumption rates and levels of OXPHOS proteins. Inhibition of mitochondrial ATP production using CCCP, rotenone or PA resulted in a dose-dependent increase in Caco-2 monolayer permeability. In-depth studies with PA showed a six fold decrease in cellular ATP and revealed increased gene expression of tight junction proteins (TJP) 1 and 2, occludin, and claudin 1, but decreased gene expression of claudin 2 and 7. Of these, claudin 7 was clearly redistributed from the cellular membrane into the cytoplasm, while the others were not (TJP1, occludin) or slightly (claudin 2, actin) affected. In vivo studies suggest that intestinal barrier integrity is dependent on mitochondrial ATP production. Here, we aim to provide mechanistic support, using an in vitro model mimicking the oxidative in vivo situation. Conclusions: Well-functioning mitochondria are essential for maintaining cellular energy status and monolayer integrity of galactose grown Caco-2 cells. Energy depletion-induced Caco-2 monolayer permeability may be facilitated by changes in the

  7. Dynamic changes in cytosolic ATP levels in cultured glutamatergic neurons during NMDA-induced synaptic activity supported by glucose or lactate

    DEFF Research Database (Denmark)

    Lange, Sofie Cecilie; Winkler, Ulrike; Andresen, Lars

    2015-01-01

    We have previously shown that synaptic transmission fails in cultured neurons in the presence of lactate as the sole substrate. Thus, to test the hypothesis that the failure of synaptic transmission is a consequence of insufficient energy supply, ATP levels were monitored employing the ATP...... biosensor Ateam1.03YEMK. While inducing synaptic activity by subjecting cultured neurons to two 30 s pulses of NMDA (30 µM) with a 4 min interval, changes in relative ATP levels were measured in the presence of lactate (1 mM), glucose (2.5 mM) or the combination of the two. ATP levels reversibly declined...... following NMDA-induced neurotransmission activity, as indicated by a reversible 10-20 % decrease in the response of the biosensor. The responses were absent when the NMDA receptor antagonist memantine was present. In the presence of lactate alone, the ATP response dropped significantly more than...

  8. Modelling the ATP production in mitochondria

    CERN Document Server

    Saa, Alberto

    2012-01-01

    We revisit here the mathematical model for ATP production in mitochondria introduced recently by Bertram, Pedersen, Luciani, and Sherman (BPLS) as a simplification of the more complete but intricate Magnus and Keizer's model. We correct some inaccuracies in the BPLS original approximations and then analyze some of the dynamical properties of the model. We infer from exhaustive numerical explorations that the enhanced BPLS equations have a unique attractor fixed point for physiologically acceptable ranges of mitochondrial variables and respiration inputs. We determine, in the stationary regime, the dependence of the mitochondrial variables on the respiration inputs, namely the cytosolic concentration of calcium ${\\rm Ca}_{\\rm c}$ and the substrate fructose 1,6-bisphosphate FBP. The same effect of calcium saturation reported for the original BPLS model is observed here. We find out, however, an interesting non-stationary effect: the inertia of the model tends to increase considerably for high concentrations of ...

  9. Synergy between cellulases and pectinases in the hydrolysis of hemp.

    Science.gov (United States)

    Zhang, Junhua; Pakarinen, Annukka; Viikari, Liisa

    2013-02-01

    The impact of pectinases in the hydrolysis of fresh, steam-exploded and ensiled hemp was investigated and the synergy between cellulases, pectinases and xylanase in the hydrolysis was evaluated. About half; 59.3% and 46.1% of pectin in the steam-exploded and ensiled hemp, respectively, could be removed by a low dosage of pectinases used. Pectinases were more efficient than xylanase in the hydrolysis of fresh and ensiled hemp whereas xylanase showed higher hydrolytic efficiency than the pectinase preparation used in the hydrolysis of steam-exploded hemp. Clear synergistic action between cellulases and xylanase could be observed in the hydrolysis of steam-exploded hemp. Supplementation of pectinase resulted in clear synergism with cellulases in the hydrolysis of all hemp substrates. Highest hydrolysis yield of steam-exploded hemp was obtained in the hydrolysis with cellulases and xylanase. In the hydrolysis of ensiled hemp, the synergistic action between cellulases and pectinases was more obvious for efficient hydrolysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    Science.gov (United States)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  11. Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass.

    Science.gov (United States)

    Jensen, Jill R; Morinelly, Juan E; Gossen, Kelsey R; Brodeur-Campbell, Michael J; Shonnard, David R

    2010-04-01

    The effects of dilute acid hydrolysis conditions were investigated on total sugar (glucose and xylose) yields after enzymatic hydrolysis with additional analyses on glucose and xylose monomer and oligomer yields from the individual hydrolysis steps for aspen (a hardwood), balsam (a softwood), and switchgrass (a herbaceous energy crop). The results of this study, in the form of measured versus theoretical yields and a severity analysis, show that for aspen and balsam, high dilute acid hydrolysis xylose yields were obtainable at all acid concentrations (0.25-0.75 wt.%) and temperatures (150-175 degrees C) studied as long as reaction time was optimized. Switchgrass shows a relatively stronger dependence on dilute acid hydrolysis acid concentration due to its higher neutralizing mineral content. Maximum total sugar (xylose and glucose; monomer plus oligomer) yields post-enzymatic hydrolysis for aspen, balsam, and switchgrass, were 88.3%, 21.2%, and 97.6%, respectively. In general, highest yields of total sugars (xylose and glucose; monomer plus oligomer) were achieved at combined severity parameter values (log CS) between 2.20 and 2.40 for the biomass species studied. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China.

    Science.gov (United States)

    Zhou, Yingjun; Takaoka, Masaki; Wang, Wei; Liu, Xiao; Oshita, Kazuyuki

    2013-07-01

    Co-digestion of wasted sewage sludge, restaurant kitchen waste, and fruit-vegetable waste was carried out in a pilot plant with thermal hydrolysis pre-treatment. Steam was used as heat source for thermal hydrolysis. It was found 38.3% of volatile suspended solids were dissolved after thermal hydrolysis, with digestibility increased by 115%. These results were more significant than those from lab studies using electricity as heat source due to more uniform heating. Anaerobic digesters were then operated under organic loading rates of about 1.5 and 3 kg VS/(m³ d). Little difference was found for digesters with and without thermal pre-treatment in biogas production and volatile solids removal. However, when looking into the digestion process, it was found digestion rate was almost doubled after thermal hydrolysis. Digester was also more stable with thermal hydrolysis pre-treatment. Less volatile fatty acids (VFAs) were accumulated and the VFAs/alkalinity ratio was also lower. Batch experiments showed the lag phase can be eliminated by thermal pre-treatment, implying the advantage could be more significant under a shorter hydraulic retention time. Moreover, it was estimated energy cost for thermal hydrolysis can be partly balanced by decreasing viscosity and improving dewaterability of the digestate. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption

    Directory of Open Access Journals (Sweden)

    Wiman Magnus

    2011-05-01

    Full Text Available Abstract Background When scaling up lignocellulose-based ethanol production, the desire to increase the final ethanol titer after fermentation can introduce problems. A high concentration of water-insoluble solids (WIS is needed in the enzymatic hydrolysis step, resulting in increased viscosity, which can cause mass and heat transfer problems because of poor mixing of the material. In the present study, the effects of mixing on the enzymatic hydrolysis of steam-pretreated spruce were investigated using a stirred tank reactor operated with different impeller speeds and enzyme loadings. In addition, the results were related to the power input needed to operate the impeller at different speeds, taking into account the changes in rheology throughout the process. Results A marked difference in hydrolysis rate at different impeller speeds was found. For example, the conversion was twice as high after 48 hours at 500 rpm compared with 25 rpm. This difference remained throughout the 96 hours of hydrolysis. Substantial amounts of energy were required to achieve only minor increases in conversion during the later stages of the process. Conclusions Impeller speed strongly affected both the hydrolysis rate of the pretreated spruce and needed power input. Similar conversions could be obtained at different energy input by altering the mixing (that is, energy input, enzyme load and residence time, an important issue to consider when designing large-scale plants.

  14. Kinetics of the methylparathion hydrolysis in aqueous medium; Cinetica de la hidrolisis del metilparation en medio acuoso

    Energy Technology Data Exchange (ETDEWEB)

    Manzanilla, J.; Barcelo, M.; Reyes, O. [Universidad Autonoma de Yucatan. Facultad de Quimica. Merida, Yucatan (Mexico)

    1997-12-31

    The kinetics of alkaline hydrolysis of methylparathion was studied at different temperatures (0-50 Centigrade) in the p H range of 8-12 by ultraviolet-visible absorption spectroscopy. Optimum p H and wavelength conditions were defined to carry out the simultaneous determination of methylparathion and one of its hydrolysis product, paranitrophenol, in buffered aqueous medium. Based on the experimental data and the mathematical equation of the kinetics, a rate constant (k) of first-order and an activation energy (Ea) of 9.2 Kcal/mol, were estimated. (Author) activation energy (Ea) of 9.2 Kcal/mol, were estimated. (Author)

  15. Glycolysis, but not Mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes

    OpenAIRE

    Ozawa, Shota; Ueda, Shuko; Imamura, Hiromi; Mori, Kiyoshi; Asanuma, Katsuhiko; Yanagita, Motoko; Nakagawa, Takahiko

    2015-01-01

    Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on ...

  16. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process on a dem......The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process...... on a demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis...

  17. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    Science.gov (United States)

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  18. Exon duplications in the ATP7A gene

    DEFF Research Database (Denmark)

    Mogensen, Mie; Skjørringe, Tina; Kodama, Hiroko

    2011-01-01

    BACKGROUND: Menkes disease (MD) is an X-linked, fatal neurodegenerative disorder of copper metabolism, caused by mutations in the ATP7A gene. Thirty-three Menkes patients in whom no mutation had been detected with standard diagnostic tools were screened for exon duplications in the ATP7A gene. ME...

  19. K ATP channels in pig and human intracranial arteries

    DEFF Research Database (Denmark)

    Ploug, Kenneth Beri; Sørensen, Mette Aaskov; Strøbech, Lotte

    2008-01-01

    Clinical trials suggest that synthetic ATP-sensitive K(+) (K(ATP)) channel openers may cause headache and migraine by dilating cerebral and meningeal arteries. We studied the mRNA expression profile of K(ATP) channel subunits in the pig and human middle meningeal artery (MMA) and in the pig middle...... cerebral artery (MCA). We determined the order of potency of four K(ATP) channel openers when applied to isolated pig MMA and MCA, and we examined the potential inhibitory effects of the Kir6.1 subunit specific K(ATP) channel blocker PNU-37883A on K(ATP) channel opener-induced relaxation of the isolated...... pig MMA and MCA. Using conventional RT-PCR, we detected the mRNA transcripts of the K(ATP) channel subunits Kir6.1 and SUR2B in all the examined pig and human intracranial arteries. Application of K(ATP) channel openers to isolated pig MMA and MCA in myographs caused a concentration...

  20. ATP release and purinergic signaling in NLRP3 inflammasome activation

    Directory of Open Access Journals (Sweden)

    Isabelle eCOUILLIN

    2013-01-01

    Full Text Available The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing that senses pathogen- and danger-associated molecular patterns. One step- or two step- models have been proposed to explain the tight regulation of IL-1β production during inflammation. Moreover, cellular stimulation triggers ATP release and subsequent activation of purinergic receptors at the cell surface. Importantly some studies have reported roles for extracellular ATP (eATP, in NLRP3 inflammasome activation in response to PAMPs and DAMPs. In this mini review, we will discuss the link between active ATP release, purinergic signaling and NLRP3 inflammasome activation. We will focus on the role of autocrine or paracrine ATP export in particle-induced NLRP3 inflammasome activation and discuss how particle activators are competent to induce maturation and secretion of IL-1β through a process that involves, as a first event, extracellular release of endogenous ATP through hemichannel opening, and as a second event, signaling through purinergic receptors that trigger NLRP3 inflammasome activation. Finally, we will review the evidence for ATP as a key proinflammatory mediator released by dying cells. In particular we will discuss how cancer cells dying via autophagy trigger ATP-dependent NLRP3 inflammasome activation in the macrophages engulfing them, eliciting an immunogenic response against tumors.

  1. Renal epithelial cells can release ATP by vesicular fusion

    Directory of Open Access Journals (Sweden)

    Randi G Bjaelde

    2013-09-01

    Full Text Available Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30, which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1 cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin reduced both the spontaneous and hypotonically (80%-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1 and vesicular transport (nocodazole. These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ∼90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50% or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8% and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells.

  2. The Role of ATP in the Regulation of NCAM Function

    DEFF Research Database (Denmark)

    Hübschmann, Martin; Skladchikova, Galina

    2008-01-01

    Extracellular ATP is an abundant signaling molecule that has a number of functions in the nervous system. It is released by both neurons and glial cells, activates purinergic receptors and acts as a trophic factor as well as a neurotransmitter. In this review, we summarize the evidence for a dire...... shedding, possibly affecting the structural plasticity associated with learning and memory.......Extracellular ATP is an abundant signaling molecule that has a number of functions in the nervous system. It is released by both neurons and glial cells, activates purinergic receptors and acts as a trophic factor as well as a neurotransmitter. In this review, we summarize the evidence for a direct...... ATP-NCAM interaction and discuss its functional implications. The ectodomain of NCAM contains the ATP binding Walker motif A and has intrinsic ATPase activity, which could modulate NCAM-dependent signaling processes. NCAM interacts directly with and signals through FGFR. The NCAM binding site to ATP...

  3. Energy

    CERN Document Server

    Graybill, George

    2007-01-01

    Unlock the mysteries of energy! Energy is more than ""the ability to do work""; we present these concepts in a way that makes them more accessible to students and easier to understand. The best way to understand energy is to first look at all the different kinds of energy including: What Is Energy, Mechanical Energy, Thermal, Sound Energy and Waves, as well as Light Energy.

  4. Calcium Co-regulates Oxidative Metabolism and ATP Synthase-dependent Respiration in Pancreatic Beta Cells

    Science.gov (United States)

    De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas

    2014-01-01

    Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio. PMID:24554722

  5. Enzymatic hydrolysis of lactose of whey permeate

    Directory of Open Access Journals (Sweden)

    Karina Nascimento de Almeida

    2015-09-01

    Full Text Available The whey permeate is the residual of the concentration process of the whey proteins by ultrafiltration method. It contains important nutrients such as lactose, minerals and some proteins and lipids. It is without an ending industrial waste that causes serious damage to the environment. For its full use the lactose must be hydrolyzed to enable its consumption by intolerant people. The enzymatic hydrolysis by lactase (β-galactosidase of Kluyveromyces lactis yeast is a safe method that does not compromise the integrity of other nutrients, enabling further use of the permeate as a raw material. This study aimed to perform tests of enzymatic hydrolysis of lactose in whey permeate formulations in a concentration of 0.2%, 0.7% and 1% at 30, 60 and 90 minutes with pH 6.3 medium and 37 °C. The reactions were monitored by high performance liquid chromatography which showed that the enzyme concentration of 0.7% at time 30 minutes formulations became safe for consumption by lactose intolerant people, according to minimum levels established by law.

  6. Design and test of urea hydrolysis reactor for vehicle

    Directory of Open Access Journals (Sweden)

    Qi Zhanfeng

    2017-01-01

    Full Text Available Ammonia production technology of urea-SCR system for vehicle is mainly used in pyrolysis. The reaction is complex, and there are some side effects. So a kind of urea hydrolysis device for vehicle is designed. Based on the in-depth analysis of ammonia production technology’s mechanism of urea hydrolysis for vehicle, the modified extended UNIQUAC equation and PHS equation of state were used to solve the thermodynamic model, and the experimental verification was carried out on the JX493ZLQ3 diesel engine. The results show that the design of urea hydrolysis reactor is in agreement with the experimental results. In the environment of urea hydrolysis, the higher the hydrolysis temperature, the faster the urea hydrolysis and the faster the production of ammonia. Under the same conditions, the hydrolysis rate of urea was the same, the higher the initial quality, the more ammonia produced. The method is suitable for the ammonia production technology of urea hydrolysis for vehicle and can be used for the formation of urea hydrolysis SCR system.

  7. Dexamethasone Enhances ATP-Induced Inflammatory Responses in Endothelial Cells

    Science.gov (United States)

    Ding, Yi; Gao, Zhan-Guo; Jacobson, Kenneth A.

    2010-01-01

    The purinergic nucleotide ATP is released from stressed cells and is implicated in vascular inflammation. Glucocorticoids are essential to stress responses and are used therapeutically, yet little information is available that describes the effects of glucocorticoids on ATP-induced inflammation. In a human microvascular endothelial cell line, extracellular ATP-induced interleukin (IL)-6 secretion in a dose- and time-dependent manner. When cells were pretreated with dexamethasone, a prototypic glucocorticoid, ATP-induced IL-6 production was enhanced in a time- and dose-dependent manner. Mifepristone, a glucocorticoid receptor antagonist, blocked these effects. ATP-induced IL-6 release was significantly inhibited by a phospholipase C inhibitor [1-[6-[((17β)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U73122)] (63.2 ± 3%, p dexamethasone induced mRNA expression of the purinergic P2Y2 receptor (P2Y2R) 1.8- ± 0.1-fold and, when stimulated with ATP, enhanced Ca2+ release and augmented IL-6 mRNA expression. Silencing of the P2Y2R by its small interfering RNA decreased ATP-induced IL-6 production by 81 ± 1% (p Dexamethasone enhanced the transcription rate of P2Y2R mRNA and induced a dose-related increase in the activity of the P2Y2R promoter. Furthermore, dexamethasone-enhanced ATP induction of adhesion molecule transcription and augmented the release of IL-8. Dexamethasone leads to an unanticipated enhancement of endothelial inflammatory mediator production by extracellular ATP via a P2Y2R-dependent mechanism. These data define a novel positive feedback loop of glucocorticoids and ATP-induced endothelial inflammation. PMID:20826566

  8. Expression of ATP7B in normal human liver

    Directory of Open Access Journals (Sweden)

    D Fanni

    2009-06-01

    Full Text Available ATP7B is a copper transporting P-type ATPase, also known as Wilson disease protein, which plays a key role in copper distribution inside cells. Recent experimental data in cell culture have shown that ATP7B putatively serves a dual function in hepatocytes: when localized to the Golgi apparatus, it has a biosynthetic role, delivering copper atoms to apoceruloplasmin; when the hepatocytes are under copper stress, ATP7B translocates to the biliary pole to transport excess copper out of the cell and into the bile canaliculus for subsequent excretion from the body via the bile. The above data on ATP7B localization have been mainly obtained in tumor cell systems in vitro. The aim of the present work was to assess the presence and localization of the Wilson disease protein in the human liver. We tested immunoreactivity for ATP7B in 10 human liver biopsies, in which no significant pathological lesion was found using a polyclonal antiserum specific for ATP7B. In the normal liver, immunoreactivity for ATP7B was observed in hepatocytes and in biliary cells. In the hepatocytes, immunoreactivity for ATP7B was observed close to the plasma membrane, both at the sinusoidal and at the biliary pole. In the biliary cells, ATP7B was localized close to the cell membrane, mainly concentrated at the basal pole of the cells. The data suggest that, in human liver, ATP7B is localized to the plasma membrane of both hepatocytes and biliary epithelial cells.

  9. Nanomolar ambient ATP decelerates P2X3 receptor kinetics.

    Science.gov (United States)

    Grote, Alexander; Hans, Michael; Boldogkoi, Zsolt; Zimmer, Andreas; Steinhäuser, Christian; Jabs, Ronald

    2008-12-01

    Homomeric P2X receptors differ in their electrophysiological and pharmacological profiles. The rapidly activating and desensitizing P2X3 receptors are known for their involvement in pain signalling pathways. Modulatory effects on P2X3 receptors have been reported for low concentrations of ATP ([ATP]). This includes both, enhancement and reduction of receptor currents. The first has been reported to be mediated by activation of ectoprotein kinases and high affinity desensitization (HAD), respectively. Both processes influence receptor current amplitudes. Here we describe a new phenomenon, the modulatory influence of ambient low [ATP] on P2X3 receptor kinetics. First, we studied in HEK cells whether persistent ATP affects current decay. To this end, P2X3 receptor mediated currents, elicited by pressure application of saturating [ATP], were analyzed after pre-application of low [ATP]. Second, UV-flash photolysis of ATP was employed to investigate whether submicromolar [ATP] affects receptor activation. Finally we confirmed the action of nanomolar [ATP] on native P2X3 receptors of neurons freshly isolated from rat dorsal root ganglia. We found that persistent low [ATP] caused pronounced deceleration of receptor current activation and decay. This priming effect indicates a mechanism different from HAD. It could be explained by a pre-opening receptor isomerization, induced by the occupation of a high affinity binding site already at the resting state. The observed modulation of the receptor kinetics could be considered as a physiological fine tuning mechanism of the nociceptive system, driven by the actual ambient agonist concentration.

  10. The ATP-dependent RNA helicase HrpB plays an important role in motility and biofilm formation in Xanthomonas citri subsp. citri.

    Science.gov (United States)

    Granato, Laís Moreira; Picchi, Simone Cristina; Andrade, Maxuel de Oliveira; Takita, Marco Aurélio; de Souza, Alessandra Alves; Wang, Nian; Machado, Marcos Antonio

    2016-03-23

    RNA helicases are enzymes that catalyze the separation of double-stranded RNA (dsRNA) using the free energy of ATP binding and hydrolysis. DEAD/DEAH families participate in many different aspects of RNA metabolism, including RNA synthesis, RNA folding, RNA-RNA interactions, RNA localization and RNA degradation. Several important bacterial DEAD/DEAH-box RNA helicases have been extensively studied. In this study, we characterize the ATP-dependent RNA helicase encoded by the hrpB (XAC0293) gene using deletion and genetic complementation assays. We provide insights into the function of the hrpB gene in Xanthomonas citri subsp. citri by investigating the roles of hrpB in biofilm formation on abiotic surfaces and host leaves, cell motility, host virulence of the citrus canker bacterium and growth in planta. The hrpB gene is highly conserved in the sequenced strains of Xanthomonas. Mutation of the hrpB gene (∆hrpB) resulted in a significant reduction in biofilms on abiotic surfaces and host leaves. ∆hrpB also exhibited increased cell dispersion on solid medium plates. ∆hrpB showed reduced adhesion on biotic and abiotic surfaces and delayed development in disease symptoms when sprayed on susceptible citrus leaves. Quantitative reverse transcription-PCR assays indicated that deletion of hrpB reduced the expression of four type IV pili genes. The transcriptional start site of fimA (XAC3241) was determined using rapid amplification of 5'-cDNA Ends (5'RACE). Based on the results of fimA mRNA structure predictions, the fimA 5' UTR may contain three different loops. HrpB may be involved in alterations to the structure of fimA mRNA that promote the stability of fimA RNA. Our data show that hrpB is involved in adherence of Xanthomonas citri subsp. citri to different surfaces. In addition, to the best of our knowledge, this is the first time that a DEAH RNA helicase has been implicated in the regulation of type IV pili in Xanthomonas.

  11. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis.

    Science.gov (United States)

    Baks, Tim; Bruins, Marieke E; Matser, Ariette M; Janssen, Anja E M; Boom, Remko M

    2008-01-23

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with alpha-amylase from Bacillus licheniformis were compared. Suspensions of native starch or starch gelatinized at different conditions either with or without enzyme were hydrolyzed. During hydrolysis, the oligosaccharide concentration, the dextrose equivalent, and the enzyme activity were determined. We found that the hydrolyzate composition was affected by the type of starch pretreatment and the enzyme addition point but that it was just minimally affected by the pressure applied during hydrolysis, as long as gelatinization was complete. The differences between hydrolysis of thermally gelatinized, high-pressure gelatinized, and native starch were explained by considering the granule structure and the specific surface area of the granules. These results show that the hydrolyzate composition can be influenced by choosing different process sequences and conditions.

  12. VLDL hydrolysis by hepatic lipase regulates PPARδ transcriptional responses.

    Directory of Open Access Journals (Sweden)

    Jonathan D Brown

    Full Text Available PPARs (α,γ,δ are a family of ligand-activated transcription factors that regulate energy balance, including lipid metabolism. Despite these critical functions, the integration between specific pathways of lipid metabolism and distinct PPAR responses remains obscure. Previous work has revealed that lipolytic pathways can activate PPARs. Whether hepatic lipase (HL, an enzyme that regulates VLDL and HDL catabolism, participates in PPAR responses is unknown.Using PPAR ligand binding domain transactivation assays, we found that HL interacted with triglyceride-rich VLDL (>HDL≫LDL, IDL to activate PPARδ preferentially over PPARα or PPARγ, an effect dependent on HL catalytic activity. In cell free ligand displacement assays, VLDL hydrolysis by HL activated PPARδ in a VLDL-concentration dependent manner. Extended further, VLDL stimulation of HL-expressing HUVECs and FAO hepatoma cells increased mRNA expression of canonical PPARδ target genes, including adipocyte differentiation related protein (ADRP, angiopoietin like protein 4 and pyruvate dehydrogenase kinase-4. HL/VLDL regulated ADRP through a PPRE in the promoter region of this gene. In vivo, adenoviral-mediated hepatic HL expression in C57BL/6 mice increased hepatic ADRP mRNA levels by 30%. In ob/ob mice, a model with higher triglycerides than C57BL/6 mice, HL overexpression increased ADRP expression by 70%, demonstrating the importance of triglyceride substrate for HL-mediated PPARδ activation. Global metabolite profiling identified HL/VLDL released fatty acids including oleic acid and palmitoleic acid that were capable of recapitulating PPARδ activation and ADRP gene regulation in vitro.These data define a novel pathway involving HL hydrolysis of VLDL that activates PPARδ through generation of specific monounsaturated fatty acids. These data also demonstrate how integrating cell biology with metabolomic approaches provides insight into specific lipid mediators and pathways of lipid

  13. Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production

    Directory of Open Access Journals (Sweden)

    Bösch Peter

    2010-07-01

    Full Text Available Abstract Background The two-step dilute acid hydrolysis (DAH of softwood is costly in energy demands and capital costs. However, it has the advantage that hydrolysis and subsequent removal of hemicellulose-derived sugars can be carried out under conditions of low severity, resulting in a reduction in the level of sugar degradation products during the more severe subsequent steps of cellulose hydrolysis. In this paper, we discuss a single-step DAH method that incorporates a temperature profile at two levels. This profile should simulate the two-step process while removing its major disadvantage, that is, the washing step between the runs, which leads to increased energy demand. Results The experiments were conducted in a reactor with a controlled temperature profile. The total dry matter content of the hydrolysate was up to 21.1% w/w, corresponding to a content of 15.5% w/w of water insoluble solids. The highest measured glucose yield, (18.3 g glucose per 100 g dry raw material, was obtained after DAH cycles of 3 min at 209°C and 6 min at 211°C with 1% H2SO4, which resulted in a total of 26.3 g solubilized C6 sugars per 100 g dry raw material. To estimate the remaining sugar potential, enzymatic hydrolysis (EH of the solid fraction was also performed. EH of the solid residue increased the total level of solubilized C6 sugars to a maximum of 35.5 g per 100 g dry raw material when DAH was performed as described above (3 min at 210°C and 2 min at 211°C with 1% H2SO4. Conclusion The dual-temperature DAH method did not yield decisively better results than the single-temperature, one-step DAH. When we compared the results with those of earlier studies, the hydrolysis performance was better than with the one-step DAH but not as well as that of the two-step, single-temperature DAH. Additional enzymatic hydrolysis resulted in lower levels of solubilized sugars compared with other studies on one-step DAH and two-step DAH followed by enzymatic

  14. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation.

    Science.gov (United States)

    Wang, Xin; Liu, Xianhua; Wang, Guangyi

    2011-03-01

    The overall goal of this work was to develop a saccharification method for the production of third generation biofuel (i.e. bioethanol) using feedstock of the invasive marine macroalga Gracilaria salicornia. Under optimum conditions (120 °C and 2% sulfuric acid for 30 min), dilute acid hydrolysis of the homogenized invasive plants yielded a low concentration of glucose (4.1 mM or 4.3 g glucose/kg fresh algal biomass). However, two-stage hydrolysis of the homogenates (combination of dilute acid hydrolysis with enzymatic hydrolysis) produced 13.8 g of glucose from one kilogram of fresh algal feedstock. Batch fermentation analysis produced 79.1 g EtOH from one kilogram of dried invasive algal feedstock using the ethanologenic strain Escherichia coli KO11. Furthermore, ethanol production kinetics indicated that the invasive algal feedstock contained different types of sugar, including C(5) -sugar. This study represents the first report on third generation biofuel production from invasive macroalgae, suggesting that there is great potential for the production of renewable energy using marine invasive biomass. © 2011 Institute of Botany, Chinese Academy of Sciences.

  15. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    Directory of Open Access Journals (Sweden)

    Wei Sheng Chia

    Full Text Available p97/Valosin-containing protein (VCP is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD. It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  16. Functional Consequences of Deletions of the N Terminus of the [epsilon] Subunit of the Chloroplast ATP Synthase.

    Science.gov (United States)

    Cruz, J. A.; Radkowski, C. A.; McCarty, R. E.

    1997-04-01

    The [epsilon] subunit of the chloroplast ATP synthase functions in part to prevent wasteful ATP hydrolysis by the enzyme. In addition, [epsilon] together with the remainder of the catalytic portion of the synthase (CF1) is required to block the nonproductive leak of protons through the membrane-embedded component of the synthase (CFO). Mutant [epsilon] subunits of the spinach (Spinacia oleracea) chloroplast ATP synthase that lack 5, 11, or 20 amino acids from their N termini ([epsilon]-[delta]5N, [epsilon]-[delta]11N, and [epsilon]-[delta]20N, respectively), were overexpressed as inclusion bodies. Using a procedure that resulted in the folding of full-length, recombinant [epsilon] in a biologically active form, none of these truncated forms resulted in [epsilon] that inhibited the ATPase activity of CF1 deficient in [epsilon], CF1(-[epsilon]). Yet, the [epsilon]-[delta]5N and [epsilon]-[delta]11N peptides significantly inhibited the ATPase activity of CF1(-[epsilon]) bound to CFO in NaBr-treated thylakoids. Although full-length [epsilon] rapidly inhibited the ATPase activity of CF1(-[epsilon]) in solution or bound to CFO, an extended period was required for the truncated forms to inhibit membrane-bound CF1(-[epsilon]). Despite the fact that [epsilon]-[delta]5N significantly inhibited the ATPase activity of CF1(-[epsilon]) bound to CFO, it did not block the proton conductance through CFO in NaBr-treated thylakoids reconstituted with CF1(-[epsilon]). Based on selective proteolysis and the binding of 8-anilino-1-naphthalene sulfonic acid, each of the truncated peptides gained significant secondary structure after folding. These results strongly suggest (a) that the N terminus of [epsilon] is important in its binding to CF1, (b) that CF0 stabilizes [epsilon] binding to the entire ATP synthase, and (c) that the N terminus may play some role in the regulation of proton flux through CFO.

  17. ATP Maintenance via Two Types of ATP Regulators Mitigates Pathological Phenotypes in Mouse Models of Parkinson's Disease.

    Science.gov (United States)

    Nakano, Masaki; Imamura, Hiromi; Sasaoka, Norio; Yamamoto, Masamichi; Uemura, Norihito; Shudo, Toshiyuki; Fuchigami, Tomohiro; Takahashi, Ryosuke; Kakizuka, Akira

    2017-08-01

    Parkinson's disease is assumed to be caused by mitochondrial dysfunction in the affected dopaminergic neurons in the brain. We have recently created small chemicals, KUSs (Kyoto University Substances), which can reduce cellular ATP consumption. By contrast, agonistic ligands of ERRs (estrogen receptor-related receptors) are expected to raise cellular ATP levels via enhancing ATP production. Here, we show that esculetin functions as an ERR agonist, and its addition to culture media enhances glycolysis and mitochondrial respiration, leading to elevated cellular ATP levels. Subsequently, we show the neuroprotective efficacies of KUSs, esculetin, and GSK4716 (an ERRγ agonist) against cell death in Parkinson's disease models. In the surviving neurons, ATP levels and expression levels of α-synuclein and CHOP (an ER stress-mediated cell death executor) were all rectified. We propose that maintenance of ATP levels, by inhibiting ATP consumption or enhancing ATP production, or both, would be a promising therapeutic strategy for Parkinson's disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation.

    Science.gov (United States)

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Mitani, Tomohiko; Azuma, Jun-Ichi

    2016-02-10

    This study investigated the effects of ionic conduction of electrolytes under microwave field to facilitate hydrothermal hydrolysis of corn starch and crystalline cellulose (Avicel), typical model biomass substrates. Addition of 0.1M NaCl was effective to improve reducing sugar yield by 1.61-fold at unit energy (kJ) level. Although Avicel cellulose was highly recalcitrant to hydrothermal hydrolysis, addition of 0.1M MgCl2 improved reducing sugar yield by 6.94-fold at unit energy (kJ). Dielectric measurement of the mixture of corn starch/water/electrolyte revealed that ionic conduction of electrolytes were strongly involved in facilitating hydrothermal hydrolysis of polysaccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Differential expression of ATP7A, ATP7B and CTR1 in adult rat dorsal root ganglion tissue

    Directory of Open Access Journals (Sweden)

    Ip Virginia

    2010-09-01

    Full Text Available Abstract Background ATP7A, ATP7B and CTR1 are metal transporting proteins that control the cellular disposition of copper and platinum drugs, but their expression in dorsal root ganglion (DRG tissue and their role in platinum-induced neurotoxicity are unknown. To investigate the DRG expression of ATP7A, ATP7B and CTR1, lumbar DRG and reference tissues were collected for real time quantitative PCR, RT-PCR, immunohistochemistry and Western blot analysis from healthy control adult rats or from animals treated with intraperitoneal oxaliplatin (1.85 mg/kg or drug vehicle twice weekly for 8 weeks. Results In DRG tissue from healthy control animals, ATP7A mRNA was clearly detectable at levels similar to those found in the brain and spinal cord, and intense ATP7A immunoreactivity was localised to the cytoplasm of cell bodies of smaller DRG neurons without staining of satellite cells, nerve fibres or co-localisation with phosphorylated heavy neurofilament subunit (pNF-H. High levels of CTR1 mRNA were detected in all tissues from healthy control animals, and strong CTR1 immunoreactivity was associated with plasma membranes and vesicular cytoplasmic structures of the cell bodies of larger-sized DRG neurons without co-localization with ATP7A. DRG neurons with strong expression of ATP7A or CTR1 had distinct cell body size profiles with minimal overlap between them. Oxaliplatin treatment did not alter the size profile of strongly ATP7A-immunoreactive neurons but significantly reduced the size profile of strongly CTR1-immunoreactive neurons. ATP7B mRNA was barely detectable, and no specific immunoreactivity for ATP7B was found, in DRG tissue from healthy control animals. Conclusions In conclusion, adult rat DRG tissue exhibits a specific pattern of expression of copper transporters with distinct subsets of peripheral sensory neurons intensely expressing either ATP7A or CTR1, but not both or ATP7B. The neuron subtype-specific and largely non

  20. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Directory of Open Access Journals (Sweden)

    Emri Zsuzsa

    2011-10-01

    concluded, therefore, that ATP- and SUC-sensitive Ca2+ transients appear to represent a signalling layer independent of NAc neurons. This previously unrecognised glial action of SUC, a major cellular energy metabolite, may play a role in linking metabolism to Ca2+ signalling in astrocytic networks under physiological and pathological conditions such as exercise and metabolic diseases.

  1. Genome-wide identification and evolution of ATP-binding cassette transporters in the ciliate Tetrahymena thermophila: A case of functional divergence in a multigene family

    Directory of Open Access Journals (Sweden)

    Yuan Dongxia

    2010-10-01

    Full Text Available Abstract Background In eukaryotes, ABC transporters that utilize the energy of ATP hydrolysis to expel cellular substrates into the environment are responsible for most of the efflux from cells. Many members of the superfamily of ABC transporters have been linked with resistance to multiple drugs or toxins. Owing to their medical and toxicological importance, members of the ABC superfamily have been studied in several model organisms and warrant examination in newly sequenced genomes. Results A total of 165 ABC transporter genes, constituting a highly expanded superfamily relative to its size in other eukaryotes, were identified in the macronuclear genome of the ciliate Tetrahymena thermophila. Based on ortholog comparisons, phylogenetic topologies and intron characterizations, each highly expanded ABC transporter family of T. thermophila was classified into several distinct groups, and hypotheses about their evolutionary relationships are presented. A comprehensive microarray analysis revealed divergent expression patterns among the members of the ABC transporter superfamily during different states of physiology and development. Many of the relatively recently formed duplicate pairs within individual ABC transporter families exhibit significantly different expression patterns. Further analysis showed that multiple mechanisms have led to functional divergence that is responsible for the preservation of duplicated genes. Conclusion Gene duplications have resulted in an extensive expansion of the superfamily of ABC transporters in the Tetrahymena genome, making it the largest example of its kind reported in any organism to date. Multiple independent duplications and subsequent divergence contributed to the formation of different families of ABC transporter genes. Many of the members within a gene family exhibit different expression patterns. The combination of gene duplication followed by both sequence divergence and acquisition of new patterns of

  2. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    Science.gov (United States)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  3. Analysis of the hydrolysis of inulin using real time 1H NMR spectroscopy

    Science.gov (United States)

    Barclay, Thomas; Ginic-Markovic, Milena; Johnston, Martin R.; Cooper, Peter D.; Petrovsky, Nikolai

    2012-01-01

    The hydrolysis of various carbohydrates was investigated under acidic conditions in real time by 1H NMR spectroscopy, with a focus on the polysaccharide inulin. Sucrose was used as a model compound to illustrate the applicability of this technique. The hydrolysis of sucrose was shown to follow pseudo first order kinetics and have an activation energy of 107.0 kJ.mol−1 (s.d. 1.7 kJ.mol−1). Inulin, pullulan and glycogen also all followed pseudo first order kinetics, but had an initiation phase at least partially generated by the protonation of the glycosidic bonds. It was also demonstrated that polysaccharide chain length has an effect on the hydrolysis of inulin. For short chain inulin (DPn 18, s.d. 0.70) the activation energy calculated for the hydrolytic cleavage of glucose was similar to sucrose at 108.5 kJ.mol−1 (std. dev. 0.60). For long chain inulin (DPn 30, s.d. 1.3) the activation energy for the hydrolytic cleavage of glucose was reduced to 80.5 kJ.mol−1 (s.d. 2.3 kJ.mol−1). This anomaly has been attributed to varied conformations for the two different lengths of inulin chain in solution. PMID:22464225

  4. Fermentable sugars by chemical hydrolysis of biomass

    Science.gov (United States)

    Binder, Joseph B.; Raines, Ronald T.

    2010-01-01

    Abundant plant biomass has the potential to become a sustainable source of fuels and chemicals. Realizing this potential requires the economical conversion of recalcitrant lignocellulose into useful intermediates, such as sugars. We report a high-yielding chemical process for the hydrolysis of biomass into monosaccharides. Adding water gradually to a chloride ionic liquid-containing catalytic acid leads to a nearly 90% yield of glucose from cellulose and 70–80% yield of sugars from untreated corn stover. Ion-exclusion chromatography allows recovery of the ionic liquid and delivers sugar feedstocks that support the vigorous growth of ethanologenic microbes. This simple chemical process, which requires neither an edible plant nor a cellulase, could enable crude biomass to be the sole source of carbon for a scalable biorefinery. PMID:20194793

  5. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Holy, T.E.; Leibler, S.

    1996-01-01

    and probability distributions relating to available experimental data are derived. Caps are found to be short and the total rate of hydrolysis at a microtubule end is found to be dynamically coupled to growth. The so-called catastrophe rate is a simple function of the microtubule growth rare and fits experimental...... data. A constant nonzero catastrophe rare, identical for both microtubule ends, is predicted at large growth rates. The delay time for dilution-induced catastrophes is stochastic with a simple distribution that fits the experimental one and, like the experimental one, does not depend on the rate...... description of several apparently contradictory experimental data. Experimental results for the catastrophe rate at different concentrations of magnesium ions and of microtubule associated proteins are discussed in terms of the model. Feasible experiments are suggested that can provide decisive tests...

  6. Cardiac ATP-sensitive K+ channel associates with the glycolytic enzyme complex

    Science.gov (United States)

    Hong, Miyoun; Kefaloyianni, Eirini; Bao, Li; Malester, Brian; Delaroche, Diane; Neubert, Thomas A.; Coetzee, William A.

    2011-01-01

    Being gated by high-energy nucleotides, cardiac ATP-sensitive potassium (KATP) channels are exquisitely sensitive to changes in cellular energy metabolism. An emerging view is that proteins associated with the KATP channel provide an additional layer of regulation. Using putative sulfonylurea receptor (SUR) coiled-coil domains as baits in a 2-hybrid screen against a rat cardiac cDNA library, we identified glycolytic enzymes (GAPDH and aldolase A) as putative interacting proteins. Interaction between aldolase and SUR was confirmed using GST pulldown assays and coimmunoprecipitation assays. Mass spectrometry of proteins from KATP channel immunoprecipitates of rat cardiac membranes identified glycolysis as the most enriched biological process. Coimmunoprecipitation assays confirmed interaction for several glycolytic enzymes throughout the glycolytic pathway. Immunocytochemistry colocalized many of these enzymes with KATP channel subunits in rat cardiac myocytes. The catalytic activities of aldolase and pyruvate kinase functionally modulate KATP channels in patch-clamp experiments, whereas d-glucose was without effect. Overall, our data demonstrate close physical association and functional interaction of the glycolytic process (particularly the distal ATP-generating steps) with cardiac KATP channels.—Hong, M., Kefaloyianni, E., Bao, L., Malester, B., Delaroche, D., Neubert, T. A., Coetzee, W. A. Cardiac ATP-sensitive K+ channel associates with the glycolytic enzyme complex. PMID:21482559

  7. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon-Seok; Lee, Cheol-Koo, E-mail: cklee2005@korea.ac.kr

    2013-09-13

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.

  8. Distinct cell stress responses induced by ATP restriction in quiescent human fibroblasts

    Directory of Open Access Journals (Sweden)

    Nirupama Yalamanchili

    2016-10-01

    Full Text Available Quiescence is the prevailing state of many cell types under homeostatic conditions. Yet, surprisingly little is known about how quiescent cells respond to energetic and metabolic challenges. To better understand compensatory responses of quiescent cells to metabolic stress, we established, in human primary dermal fibroblasts, an experimental ‘energy restriction’ model. Quiescence was achieved by short-term culture in serum-deprived media and ATP supply restricted using a combination of glucose transport inhibitors and mitochondrial uncouplers. In aggregate, these measures led to markedly reduced intracellular ATP levels while not compromising cell viability over the observation period of 48 h. Analysis of the transcription factor landscape induced by this treatment revealed alterations in several signal transduction nodes beyond the expected biosynthetic adaptations. These included increased abundance of NF-κB regulated transcription factors and altered transcription factor subsets regulated by Akt and p53. The observed changes in gene regulation and corresponding alterations in key signaling nodes are likely to contribute to cell survival at intracellular ATP concentrations substantially below those achieved by growth factor deprivation alone. This experimental model provides a benchmark for the investigation of cell survival pathways and related molecular targets that are associated with restricted energy supply associated with biological aging and metabolic diseases.

  9. Kinetic study of sphingomyelin hydrolysis for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2008-01-01

    in cosmetic and pharmaceutical industries such as in hair and skin care products. The enzymatic hydrolysis of sphingomyelin has been proved to be a feasible method to produce ceramide. The kinetic performance of sphingomyelin hydrolysis in the optimal two-phase (water:organic solvent) reaction system...

  10. The kinetics of hydrolysis of acetylsalicylic acid (Aspirin) in different ...

    African Journals Online (AJOL)

    The kinetics of hydrolysis of Acetylsalicylic acid (Aspirin) to salicylic acid was followed by the direct spectrophotometric measurement of the amount of salicylic acid produced with time. Salicylic acid was complexed with ferric ion giving a characteristic purple colour (λlm 523nm). The kinetics of hydrolysis was found to follow ...

  11. Factors Impeding Enzymatic Wheat Gluten Hydrolysis at High Solid Concentrations

    NARCIS (Netherlands)

    Hardt, N.A.; Janssen, A.E.M.; Boom, R.M.; Goot, van der A.J.

    2014-01-01

    Enzymatic wheat gluten hydrolysis at high solid concentrations is advantageous from an environmental and economic point of view. However, increased wheat gluten concentrations result in a concentration effect with a decreased hydrolysis rate at constant enzyme-to-substrate ratios and a decreased

  12. A comparison of acidic and enzymatic hydrolysis of rutin | Wang ...

    African Journals Online (AJOL)

    Rutin and its hydrolysis products (isoquercitrin and quercetin) are widely used as important materials in food and pharmaceutical industry. In this study, the effects of various acids and enzymes as catalysts on the hydrolysis reaction of rutin were studied. In comparison with acidic and enzymatic catalysis of rutin, the research ...

  13. Production of value added materials by subcritical water hydrolysis ...

    African Journals Online (AJOL)

    The aim of this study was the determination of the best experimental conditions for the production of useful materials such as amino acids by subcritical water hydrolysis from supercritical carbon dioxide extracted krill residues and to compare the results with raw krill. Subcritical water hydrolysis efficiency from raw and ...

  14. Photodegradation and Hydrolysis of Chlorpyrifos in Aqueous Systems

    African Journals Online (AJOL)

    Hydrolysis and photodegradation of chlorpyrifos a widely used organophosphorus pesticide was studied. Hydrolysis is a dominant ... in aqueous systems. Implication for this study is relevant in understanding the fate of chlorpyrifos once released into the environment with possible application in water/wastewater treatment.

  15. Limited hydrolysis of soybean protein concentrate and isolate with ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... Soy protein concentrate (SPC) and soy protein isolate (SPI) were limited hydrolyzed with trypsin or neutrase under controlled hydrolysis conditions. Eight soybean protein hydrolysates, 4 SPC hydroly- sates and 4 SPI hydrolysates were prepared with degree of hydrolysis (DH) of 1 or 2%. SDS-PAGE was.

  16. Multivariate data analysis of enzyme production for hydrolysis purposes

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Suhr, K.I.

    1999-01-01

    of the structure in the data - possibly combined with analysis of variance (ANOVA). Partial least squares regression (PLSR) showed a clear connection between the two differentdata matrices (the fermentation variables and the hydrolysis variables). Hence, PLSR was suitable for prediction purposes. The hydrolysis...

  17. Selective substrate uptake: The role of ATP-binding cassette (ABC) importers in pathogenesis.

    Science.gov (United States)

    Tanaka, Kari J; Song, Saemee; Mason, Kevin; Pinkett, Heather W

    2018-04-01

    The uptake of nutrients, including metals, amino acids and peptides are required for many biological processes. Pathogenic bacteria scavenge these essential nutrients from microenvironments to survive within the host. Pathogens must utilize a myriad of mechanisms to acquire these essential nutrients from the host while mediating the effects of toxicity. Bacteria utilize several transport proteins, including ATP-binding cassette (ABC) transporters to import and expel substrates. ABC transporters, conserved across all organisms, are powered by the energy from ATP to move substrates across cellular membranes. In this review, we will focus on nutrient uptake, the role of ABC importers at the host-pathogen interface, and explore emerging therapies to combat pathogenesis. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Structure of the ATP Synthase Catalytic Complex (F1) from Escherichia coli in an Autoinhibited conformation

    Energy Technology Data Exchange (ETDEWEB)

    G Cingolani; T Duncan

    2011-12-31

    ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F{sub 1}) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit {var_epsilon} adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts that are incompatible with functional rotation. As a result, the three catalytic subunits are stabilized in a set of conformations and rotational positions distinct from previous F{sub 1} structures.

  19. Catalytic hydrolysis of COS over CeO{sub 2} (110) surface: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xin; Ning, Ping [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Chi [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Li, Kai, E-mail: likaikmust@163.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Tang, Lihong; Sun, Xin [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China)

    2017-08-31

    Graphical abstract: CeO{sub 2} decreases the maximum energy barrier by 76.15 kcal/mol. H{sub 2}O plays a role as a bridge in the process of joint adsorption. Catalytic effect of CeO{sub 2} in the hydrolysis of COS is mainly reflected on the C−O channel. - Highlights: • H{sub 2}O is easier adsorbed on the CeO{sub 2} (110) surface than COS. • When COS and H{sub 2}O jointly adsorb on the CeO{sub 2} (110) surface, the H{sub 2}O molecule plays a role as a bridge. • Ce−O−H bond can enhance the adsorption effect. • Catalytic effect of CeO{sub 2} in the hydrolysis of COS is mainly reflected on the C−O channel. - Abstract: Density functional theory (DFT) calculations were performed to investigate the reaction pathways for catalytic hydrolysis of COS over CeO{sub 2} (110) surface using Dmol{sup 3} model. The thermodynamic stability analysis for the suggested routes of COS hydrolysis to CO{sub 2} and H{sub 2}S was evaluated. The absolute values of adsorption energy of H{sub 2}O-CeO{sub 2} are higher than that of COS-CeO{sub 2}. Meanwhile, the adsorption energy and geometries show that H{sub 2}O is easier adsorbed on the surface of CeO{sub 2} (110) than COS. H{sub 2}O plays a role as a bridge in the process of joint adsorption. H{sub 2}O forms more Ce−O−H groups on the CeO{sub 2} (110) surface. CeO{sub 2} decreases the maximum energy barrier by 76.15 kcal/mol. The migration of H from H{sub 2}O to COS is the key for the hydrolysis reaction. C−O channel is easier to occur than C−S channel. Experimental result shows that adding of CeO{sub 2} can increase COS removal rate and prolong the 100% COS removal rate from 180 min to 210 min. The difference between Fe{sub 2}O{sub 3} and CeO{sub 2} for the hydrolysis of COS is characterized in the atomic charge transfer and the formation of H−O bond and H−S bond. The transfer effect of H in H{sub 2}O to S in COS over CeO{sub 2} decreases the energy barriers of hydrolysis reaction, and enhances the reaction

  20. What Orthopaedic Operating Room Surfaces Are Contaminated With Bioburden? A Study Using the ATP Bioluminescence Assay.

    Science.gov (United States)

    Richard, Raveesh Daniel; Bowen, Thomas R

    2017-07-01

    Contaminated operating room surfaces can increase the risk of orthopaedic infections, particularly after procedures in which hardware implantation and instrumentation are used. The question arises as to how surgeons can measure surface cleanliness to detect increased levels of bioburden. This study aims to highlight the utility of adenosine triphosphate (ATP) bioluminescence technology as a novel technique in detecting the degree of contamination within the sterile operating room environment. What orthopaedic operating room surfaces are contaminated with bioburden? When energy is required for cellular work, ATP breaks down into adenosine biphosphate (ADP) and phosphate (P) and in that process releases energy. This process is inherent to all living things and can be detected as light emission with the use of bioluminescence assays. On a given day, six different orthopaedic surgery operating rooms (two adult reconstruction, two trauma, two spine) were tested before surgery with an ATP bioluminescence assay kit. All of the cases were considered clean surgery without infection, and this included the previously performed cases in each sampled room. These rooms had been cleaned and prepped for surgery but the patients had not been physically brought into the room. A total of 13 different surfaces were sampled once in each room: the operating room (OR) preparation table (both pre- and postdraping), OR light handles, Bovie machine buttons, supply closet countertops, the inside of the Bair Hugger™ hose, Bair Hugger™ buttons, right side of the OR table headboard, tourniquet machine buttons, the Clark-socket attachment, and patient positioners used for total hip and spine positioning. The relative light units (RLUs) obtained from each sample were recorded and data were compiled and averaged for analysis. These values were compared with previously published ATP benchmark values of 250 to 500 RLUs to define cleanliness in both the hospital and restaurant industries. All

  1. Epidemic based modeling of enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Tai, Chao; Arellano, Maria G; Keshwani, Deepak R

    2014-01-01

    An epidemic based model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, dilute sulfuric acid pretreated corn stover. The process of substrate getting adsorbed and digested by enzyme was simulated as susceptibles getting infected by viruses and becoming removed and recovered. This model simplified the dynamic enzyme "infection" process and the catalysis of cellulose into a two-parameter controlled, enzyme behavior guided mechanism. Furthermore, the model incorporates the adsorption block by lignin and inhibition effects on cellulose catalysis. The model satisfactorily predicted the enzyme adsorption and hydrolysis, negative role of lignin, and inhibition effects over hydrolysis for a broad range of substrate and enzyme loadings. Sensitivity analysis was performed to evaluate the incorporation of lignin and other inhibition effects. Our model will be a useful tool for evaluating the effects of parameters during hydrolysis and guide a design strategy for continuous hydrolysis and the associated process control. © 2014 American Institute of Chemical Engineers.

  2. Enzymatic Hydrolysis of Hydrotropic Pulps at Different Substrate Loadings.

    Science.gov (United States)

    Denisova, Marina N; Makarova, Ekaterina I; Pavlov, Igor N; Budaeva, Vera V; Sakovich, Gennady V

    2016-03-01

    Enzymatic hydrolysis of cellulosic raw materials to produce nutrient broths for microbiological synthesis of ethanol and other valuable products is an important field of modern biotechnology. Biotechnological processing implies the selection of an effective pretreatment technique for raw materials. In this study, the hydrotropic treatment increased the reactivity of the obtained substrates toward enzymatic hydrolysis by 7.1 times for Miscanthus and by 7.3 times for oat hulls. The hydrotropic pulp from oat hulls was more reactive toward enzymatic hydrolysis compared to that from Miscanthus, despite that the substrates had similar compositions. As the initial substrate loadings were raised during enzymatic hydrolysis of the hydrotropic Miscanthus and oat hull pulps, the concentration of reducing sugars increased by 34 g/dm(3) and the yield of reducing sugars decreased by 31 %. The findings allow us to predict the efficiency of enzymatic hydrolysis of hydrotropic pulps from Miscanthus and oat hulls when scaling up the process by volume.

  3. Glucose-Modulated Mitochondria Adaptation in Tumor Cells: A Focus on ATP Synthase and Inhibitor Factor 1

    Directory of Open Access Journals (Sweden)

    Irene Mavelli

    2012-02-01

    Full Text Available Warburg’s hypothesis has been challenged by a number of studies showing that oxidative phosphorylation is repressed in some tumors, rather than being inactive per se. Thus, treatments able to shift energy metabolism by activating mitochondrial pathways have been suggested as an intriguing basis for the optimization of antitumor strategies. In this study, HepG2 hepatocarcinoma cells were cultivated with different metabolic substrates under conditions mimicking “positive” (activation/biogenesis or “negative” (silencing mitochondrial adaptation. In addition to the expected up-regulation of mitochondrial biogenesis, glucose deprivation caused an increase in phosphorylating respiration and a rise in the expression levels of the ATP synthase β subunit and Inhibitor Factor 1 (IF1. Hyperglycemia, on the other hand, led to a markedly decreased level of the transcriptional coactivator PGC-α suggesting down-regulation of mitochondrial biogenesis, although no change in mitochondrial mass and no impairment of phosphorylating respiration were observed. Moreover, a reduction in mitochondrial networking and in ATP synthase dimer stability was produced. No effect on β-ATP synthase expression was elicited. Notably, hyperglycemia caused an increase in IF1 expression levels, but it did not alter the amount of IF1 associated with ATP synthase. These results point to a new role of IF1 in relation to high glucose utilization by tumor cells, in addition to its well known effect upon mitochondrial ATP synthase regulation.

  4. Distinct neurological disorders with ATP1A3 mutations

    Science.gov (United States)

    Heinzen, Erin L.; Arzimanoglou, Alexis; Brashear, Allison; Clapcote, Steven J.; Gurrieri, Fiorella; Goldstein, David B.; Jóhannesson, Sigurður H.; Mikati, Mohamad A.; Neville, Brian; Nicole, Sophie; Ozelius, Laurie J.; Poulsen, Hanne; Schyns, Tsveta; Sweadner, Kathleen J.; van den Maagdenberg, Arn; Vilsen, Bente

    2014-01-01

    Genetic research has shown that mutations that modify the protein-coding sequence of ATP1A3, the gene encoding the α3 subunit of Na+/K+-ATPase, cause both rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood. These discoveries link two clinically distinct neurological diseases to the same gene, however, ATP1A3 mutations are, with one exception, disease-specific. Although the exact mechanism of how these mutations lead to disease is still unknown, much knowledge has been gained about functional consequences of ATP1A3 mutations using a range of in vitro and animal model systems, and the role of Na+/K+-ATPases in the brain. Researchers and clinicians are attempting to further characterise neurological manifestations associated with mutations in ATP1A3, and to build on the existing molecular knowledge to understand how specific mutations can lead to different diseases. PMID:24739246

  5. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  6. Phylogenetic analysis of the thylakoid ATP/ADP carrier reveals new insights into its function restricted to green plants

    Directory of Open Access Journals (Sweden)

    Cornelia eSpetea

    2012-01-01

    Full Text Available ATP is the common energy currency of cellular metabolism in all living organisms. Most of them synthesize ATP in the cytosol or on the mitochondrial inner membrane, whereas land plants, algae and cyanobacteria also produce it on the thylakoid membrane during the light-dependent reactions of photosynthesis. From the site of synthesis, ATP is transported to the site of utilization via intracellular membranes transporters. One major type of ATP transporter is represented by the mitochondrial ADP/ATP carrier family. Here we review a recently characterized member, namely the thylakoid ATP/ADP carrier from Arabidopsis thaliana (AtTAAC. Thus far, no orthologues of this carrier have been characterized in other organisms, although similar sequences can be recognized in many sequenced genomes. Protein Sequence database searches and phylogenetic analyses indicate the absence of TAAC in cyanobacteria and its appearance early in the evolution of photosynthetic eukaryotes. The TAAC clade is composed of carriers found in land plants and some green algae, but no proteins from other photosynthetic taxa, such as red algae, brown algae and diatoms. This implies that TAAC-like sequences arose only once before the divergence of green algae and land plants. Based on these findings, it is proposed that TAAC may have evolved in response to the need of a new activity in higher photosynthetic eukaryotes. This activity may provide the energy to drive reactions during biogenesis and turnover of photosynthetic complexes, which are heterogenously distributed in a thylakoid membrane system composed of appressed and non-appressed regions.

  7. Bioenergetics of the heart at high altitude: environmental hypoxia imposes profound transformations on the myocardial process of ATP synthesis.

    Science.gov (United States)

    Reynafarje, Baltazar D; Marticorena, Emilio

    2002-12-01

    The low concentration of O2 in the thin air at high altitude is undoubtedly the reason for the remarkable modifications in the structure and function of the heart, lung, and blood of humans permanently living under these conditions. The effect of natural hypoxia on the energy metabolism of the cell is however not well understood. Here we study the proces of ATP synthesis in the heart of guinea pigs native to high altitude (4500 m) as compared with those native to sea level. The following are the novel findings of this study. (1) The rates and extents of ATP synthesis in the presence of low concentrations of ADP (<30 microM) are significantly higher at high altitude than at sea level. (2) The Hill coefficient, i.e. the degree of cooperativity between the three catalytic sites of the ATP synthase, is lower at high altitude (n = 1.36) than at sea level (n = 1.94). (3) Both, the affinity for ADP and the fractional occupancy of the catalytic sites by ATP, are higher at high altitude than at sea level but the P50, i.e. the concentration of ADP at which 50% of the catalytic sites are filled with ADP and/or ATP, is the same (approximately 74.7 microM). (4) In the physiological range of ADP concentrations, the phosphorylation potential deltaGp is significantly higher at high altitude than at sea level. It is concluded that the molecular mechanism of energy transduction is profoundly modified at high altitude in order to readily and efficiently generate ATP in the presence of low concentrations of O2 and ADP.

  8. ATP-ases of synaptic plasma membranes in striatum: enzymatic systems for synapses functionality by in vivo administration of L-acetylcarnitine in relation to Parkinson's Disease.

    Science.gov (United States)

    Villa, R F; Ferrari, F; Gorini, A

    2013-09-17

    The maximum rate (Vmax) of some enzymatic activities related to energy consumption was evaluated in synaptic plasma membranes from rat brain striatum, the synaptic energy state being a crucial factor in neurodegenerative diseases etiopathogenesis. Two types of synaptic plasma membranes were isolated from rats subjected to in vivo treatment with L-acetylcarnitine at two different doses (30 and 60 mg × kg(-1) i.p., 28 days, 5 days/week). The following enzyme activities were evaluated: acetylcholinesterase (AChE); Na(+), K(+), Mg(2+)-ATP-ase; ouabain insensitive Mg(2+)-ATP-ase; Na(+), K(+)-ATP-ase; direct Mg(2+)-ATP-ase; Ca(2+), Mg(2+)-ATP-ase; and low- and high-affinity Ca(2+)-ATP-ase. In control (vehicle-treated) animals, enzymatic activities are differently expressed in synaptic plasma membranes type I (SPM1) with respect to synaptic plasma membranes type II (SPM2), the evaluated enzymatic activities being higher in SPM2. Subchronic treatment with L-acetylcarnitine decreased AChE on SPM1 and SPM2 at the dose of 30 mg × kg(-1). Pharmacological treatment decreased ouabain insensitive Mg(2+)-ATP-ase activity and high affinity Ca(2+)-ATP-ase activity at the doses of 30 and 60 mg × kg(-1) respectively on SPM1, while it decreased Na(+), K(+)-ATP-ase, direct Mg(2+)-ATP-ase and Ca(2+), Mg(2+)-ATP-ase activities at the dose of 30 mg × kg(-1) on SPM2. These results suggest that the sensitivity to drug treatment is different between these two populations of synaptic plasma membranes from the striatum, confirming the micro-heterogeneity of these subfractions, possessing different metabolic machinery with respect to energy consumption and utilization and the regional selective effect of L-acetylcarnitine on cerebral tissue, depending on the considered area. The drug potential effect at the synaptic level in Parkinson's Disease neuroprotection is also discussed with respect to acetylcholine and energy metabolism. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights

  9. FIBROBLAST CYTOSKELETAL REMODELING INDUCED BY TISSUE STRETCH INVOLVES ATP SIGNALING

    OpenAIRE

    Langevin, HM; Fujita, T.; Bouffard, NA; Takano, T; Koptiuch, C; Badger, GJ; Nedergaard, M

    2013-01-01

    Fibroblasts in whole areolar connective tissue respond to static stretching of the tissue by expanding and remodeling their cytoskeleton within minutes both ex vivo and in vivo. This study tested the hypothesis that the mechanism of fibroblast expansion in response to tissue stretch involves extracellular ATP signaling. In response to tissue stretch ex vivo, ATP levels in the bath solution increased significantly, and this increase was sustained for 20 minutes, returning to baseline at 60 min...

  10. Journey in guidelines for lipid management: From adult treatment panel (ATP-I to ATP-III and what to expect in ATP-IV

    Directory of Open Access Journals (Sweden)

    P G Talwalkar

    2013-01-01

    Full Text Available Adult Treatment Panel (ATP, an expert panel to supervise cholesterol management was set up under the aegis of National Cholesterol Education Program (NCEP in 1985. Since then NCEP-ATP has been revising and framing guidelines to enable clinician to deliver better treatment to cardiovascular patients and to educate general people. As a result, considerable reduction in cardiovascular related deaths has been observed in recent times. All three ATP guidelines viz. ATP-I, ATP-II and ATP-III have targeted low density lipoprotein as their primary goal. The ATP-III guideline was updated in the light of evidences from 5-major clinical trials and was released in 2004. It added therapeutic lifestyle changes, concept of risk equivalents, Framingham CHD-risk score non-high density lipoprotein cholesterol (non-HDL-C as secondary target and gave strong emphasis on metabolic risk factors. The earlier treat-to-target paradigm faced fierce criticism from clinicians across the globe because of insufficient proof of safety and benefits of treating patients with respect to an individual′s low density lipoprotein (LDL level. Further, demonstration of non-HDL-C and total cholesterol/HDL-C ratio as strong predictors of overall cardiovascular risk foresees new guidelines. A tailored-treatment approach was suggested instead of LDL-C target based treatment approach which was soundly based on direct clinical trials evidences and proposes treatment based on individual′s overall 5- to 10-year cardiovascular risk irrespective of LDL-C level, leading to lower number of people on high dose/s of statins. Recent report of the Cholesterol Treatment Trialist′s Collaborators meta-analysis strongly supported primary prevention of LDL with statins in low risk individuals and showed that its benefits completely outweighed its known hazards. Markers other than LDL-C like apolipoprotein B, non-HDL-C and total cholesterol/HDL-C ratio would take precedence in the risk assessment and

  11. Journey in guidelines for lipid management: From adult treatment panel (ATP)-I to ATP-III and what to expect in ATP-IV.

    Science.gov (United States)

    Talwalkar, P G; Sreenivas, C G; Gulati, Ashish; Baxi, Hemang

    2013-07-01

    Adult Treatment Panel (ATP), an expert panel to supervise cholesterol management was set up under the aegis of National Cholesterol Education Program (NCEP) in 1985. Since then NCEP-ATP has been revising and framing guidelines to enable clinician to deliver better treatment to cardiovascular patients and to educate general people. As a result, considerable reduction in cardiovascular related deaths has been observed in recent times. All three ATP guidelines viz. ATP-I, ATP-II and ATP-III have targeted low density lipoprotein as their primary goal. The ATP-III guideline was updated in the light of evidences from 5-major clinical trials and was released in 2004. It added therapeutic lifestyle changes, concept of risk equivalents, Framingham CHD-risk score non-high density lipoprotein cholesterol (non-HDL-C) as secondary target and gave strong emphasis on metabolic risk factors. The earlier treat-to-target paradigm faced fierce criticism from clinicians across the globe because of insufficient proof of safety and benefits of treating patients with respect to an individual's low density lipoprotein (LDL) level. Further, demonstration of non-HDL-C and total cholesterol/HDL-C ratio as strong predictors of overall cardiovascular risk foresees new guidelines. A tailored-treatment approach was suggested instead of LDL-C target based treatment approach which was soundly based on direct clinical trials evidences and proposes treatment based on individual's overall 5- to 10-year cardiovascular risk irrespective of LDL-C level, leading to lower number of people on high dose/s of statins. Recent report of the Cholesterol Treatment Trialist's Collaborators meta-analysis strongly supported primary prevention of LDL with statins in low risk individuals and showed that its benefits completely outweighed its known hazards. Markers other than LDL-C like apolipoprotein B, non-HDL-C and total cholesterol/HDL-C ratio would take precedence in the risk assessment and strong emphasis would

  12. Electroless Nickel-Based Catalyst for Diffusion Limited Hydrogen Generation through Hydrolysis of Borohydride

    Directory of Open Access Journals (Sweden)

    Shannon P. Anderson

    2013-07-01

    Full Text Available Catalysts based on electroless nickel and bi-metallic nickel-molybdenum nanoparticles were synthesized for the hydrolysis of sodium borohydride for hydrogen generation. The catalysts were synthesized by polymer-stabilized Pd nanoparticle-catalyzation and activation of Al2O3 substrate and electroless Ni or Ni-Mo plating of the substrate for selected time lengths. Catalytic activity of the synthesized catalysts was tested for the hydrolyzation of alkaline-stabilized NaBH4 solution for hydrogen generation. The effects of electroless plating time lengths, temperature and NaBH4 concentration on hydrogen generation rates were analyzed and discussed. Compositional analysis and surface morphology were carried out for nano-metallized Al2O3 using Scanning Electron Micrographs (SEM and Energy Dispersive X-Ray Microanalysis (EDAX. The as-plated polymer-stabilized electroless nickel catalyst plated for 10 min and unstirred in the hydrolysis reaction exhibited appreciable catalytic activity for hydrolysis of NaBH4. For a zero-order reaction assumption, activation energy of hydrogen generation using the catalyst was estimated at 104.6 kJ/mol. Suggestions are provided for further work needed prior to using the catalyst for portable hydrogen generation from aqueous alkaline-stabilized NaBH4 solution for fuel cells.

  13. Improving efficiency of transport fuels production by thermal hydrolysis of waste activated sludge

    Science.gov (United States)

    Gulshin, Igor

    2017-10-01

    The article deals with issues of transport biofuels. Transport biofuels are an important element of a system of energy security. Moreover, as part of a system it is inextricably linked to the urban, rural or industrial infrastructure. The paper discusses methods of increasing the yield of biogas from anaerobic digesters at wastewater treatment plants. The thermal hydrolysis method was considered. The main advantages and drawbacks of this method were analyzed. The experimental biomass (from SNDOD-bioreactor) and high-organic substrate have been previously studied by respirometry methods. A biomethane potential of the investigated organic substrate has high rates because of substrate composition (the readily biodegradable substrate in the total composition takes about 85%). Waste activated sludge from SNDOD-bioreactor can be used for biofuel producing with high efficiency especially with pre-treatment like a thermal hydrolysis. Further studies have to consider the possibility of withdrawing inhibitors from waste activated sludge.

  14. Navigating the Chemical Space of HCN Polymerization and Hydrolysis: Guiding Graph Grammars by Mass Spectrometry Data

    Directory of Open Access Journals (Sweden)

    Peter F. Stadler

    2013-09-01

    Full Text Available Polymers of hydrogen cyanide and their hydrolysis products constitute a plausible, but still poorly understood proposal for early prebiotic chemistry on Earth. HCN polymers are generated by the interplay of more than a dozen distinctive reaction mechanisms and form a highly complex mixture. Here we use a computational model based on graph grammars as a means of exploring the chemical spaces of HCN polymerization and hydrolysis. A fundamental issue is to understand the combinatorial explosion inherent in large, complex chemical systems. We demonstrate that experimental data, here obtained by mass spectrometry, and computationally predicted free energies together can be used to guide the exploration of the chemical space and makes it feasible to investigate likely pathways and chemical motifs even in potentially open-ended chemical systems.

  15. Kinetic study of microwave-assisted alkaline hydrolysis of Jatropha curcas oil

    Science.gov (United States)

    Yusuf, Nur'aini Raman; Kamil, Ruzaimah Nik Mohamad; Yusup, Suzana

    2016-11-01

    The kinetics of hydrolysis of Jatropha curcas oil under microwave irradation in the presence of alkaline solution was studied. The temperature of 50°C, 65°C and 80°C were studied in the range of optimum condition of 1.75 M catalyst, solvent/oil ratio of (1: 68) and 15 minutes reaction time. The rate constants of oil hydrolysis are corresponding to triglyceride disappearance concentration. The rates of reaction for fatty acids production was determined by pseudo first order. The activation energy (Ea) achieved at 30.61 kJ/mol is lower using conventional method. This conclude that the rate of reaction via microwave heating is less temperature sensitive therefore reaction can be obtained at lower temperature.

  16. Sonochemical Approach to Synthesis of Co-B Catalysts and Hydrolysis of Alkaline NaBH4 Solutions

    Directory of Open Access Journals (Sweden)

    Bilge Coşkuner

    2014-01-01

    Full Text Available Co-B catalysts are promising candidates for hydrogen evolution via hydrolysis of alkaline sodium borohydride (NaBH4 solutions. In the present paper, a sonochemical approach was investigated for synthesis of Co-B catalysts and hydrolysis of alkaline NaBH4 solutions. Sonochemical application on synthesizing process improved the intrinsic and extrinsic properties of Co-B catalysts such as crystal, spectral, surface area, pore volume, pore diameter, and particle size. Co-B catalysts prepared by sonochemical approach possessed smaller particle size, higher surface area, and higher pore volume than the Co-B catalysts prepared by coprecipitation synthesis. The effects of sonochemical process on hydrolysis of alkaline NaBH4 solutions were investigated by Arrhenius theory. It was clearly demonstrated that the advantages of alkaline NaBH4 solution sonohydrolysis provide superficial effects on hydrogen evolution kinetic as maximum H2 generation rate (HGR and minimum activation energy (Ea.

  17. An ATP synthase harboring an atypical γ-subunit is involved in ATP synthesis in tomato fruit chromoplasts

    DEFF Research Database (Denmark)

    Pateraki, Irini; Renato, Marta; Azcõn-Bieto, Joaquín

    2013-01-01

    Chromoplasts are non-photosynthetic plastids specialized in the synthesis and accumulation of carotenoids. During fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts in a process characterized by the degradation of the thylakoid membranes, and by the active...... synthesis and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP, and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources. It is widely accepted that the ATP used for biosynthetic processes...... the involvement of a plastidial ATP synthase harboring an atypical γ-subunit induced during ripening, which lacks the regulatory dithiol domain present in plant and algae chloroplast γ-subunits. Silencing of this atypical γ-subunit during fruit ripening impairs the capacity of isolated chromoplast to synthesize...

  18. Investigation of the Inertness to Hydrolysis of Platinum(IV) Prodrugs.

    Science.gov (United States)

    Ritacco, Ida; Mazzone, Gloria; Russo, Nino; Sicilia, Emilia

    2016-02-15

    Platinum(IV) complexes are an important class of compounds that can act as prodrugs, and due to their inertness, if correctly designed, they could have low toxicity outside the cancer cell and improve the pharmacological properties of the platinum(II) anticancer agents that are currently used in the clinic. Because of the efforts that are concentrated on the use of axial ligands able to control the reduction potentials, lipophilicity, charge, selectivity, targeting, and cell uptake of the Pt(IV) complexes, we considered to be of interest to probe the inertness of such complexes that is assumed to be a fulfilled prerequisite. To this aim, a density functional theory computational analysis of the hydrolysis mechanism and the corresponding energy profiles for a series of Pt(IV) derivatives of cisplatin, carboplatin, and oxaliplatin with acetato, haloacetato, and chlorido ligands was performed to probe their stability in biological fluids. The heights of the barriers calculated along the hydrolysis pathways for the associative displacement of ligands both in axial and equatorial positions confirm that Pt(IV) complexes are, in general, more inert than the corresponding Pt(II) drugs even if inertness is lower than expected. Some exceptions exist, such as derivatives of oxaliplatin for the hydrolysis in equatorial position. The nature of the axial ligands influences the course of the hydrolysis reaction even if a decisive role is played by the ligands in equatorial positions. The mechanism of the aquation in axial position of cisplatin Pt(IV) derivative with two chlorido axial ligands assisted by Pt(II) cisplatin was elucidated, and the calculated activation energy confirms the catalytic role played by the Pt(II) complex.

  19. Catalytic hydrolysis of cellulose into furans

    Science.gov (United States)

    Shi, Chengmei; Tao, Furong; Cui, Yuezhi

    2016-12-01

    Chromium chloride in 4-(3-methylimidazolium-1-yl)butane-1-sulfonic acid hydrogen sulfate (IL-1) was found to effectively catalyze the hydrolysis of microcrystalline cellulose (MCC) at 150°C for 300 min to achieve 87.8% conversion to a slate of products. With a catalytic amount of CrCl3, the yields of 5-hydroxymethyl furfural (HMF) and furfural were up to 32.4 and 15.2%, respectively, small molecules levulinic acid (LA, 10.8%) and the total reducing sugars (TRS, 10.7%) were also generated. Through LC-MSD analysis and mass spectra, dimer of furan compounds as the main by-products were speculated, and the components of gas products were methane, ethane, CO, CO2, and H2. We suggested that IL-1 and CrCl3 exhibited a coordination interaction; the formation of the intermediate via the hydride shift played a key role in the formation of HMF. The catalyst was recycled and exhibited constant activity for five successive trials.

  20. HYDROLYSIS OF AGRICULTURAL BIOMASS BY COMBINED PRETREATMENT AND ENZYMATIC METHODS IN ORDER TO PRODUCE BIOFUELS (ETHANOL, BIOGAS

    Directory of Open Access Journals (Sweden)

    STEFANA JURCOANE

    2009-05-01

    Full Text Available The use of energy crops (maize straw, wheat straw, barley straw etc. as substrate for renewable energy production (e.g. biogas is more efficient when it is degraded by different hydrolysis methods. However, fibers contained inside energy crops (e.g. cellulose and hemicellulose are only hardly and slowly degraded by anaerobic bacteria. The slow degradation of these substances can decrease the methane yields of agricultural biogas plants.In the present study, we investigated the efficiency of combined pretreatment (different concentrations H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis. Testing different concentration of H2SO4, good results were obtained for maize whole crop when we used combined pretreatment (3% H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis (3.9 fold higher and for Gavott Maize Straw when we used combined pretreatment (2% H2SO4 + 30 minutes at 1210C followed to enzymatic hydrolysis (3.6 fold higher comparing with untreated samples.

  1. Kinetic Model For Triglyceride Hydrolysis Using Lipase:Review

    Directory of Open Access Journals (Sweden)

    Heri Hermansyah

    2010-10-01

    Full Text Available Triglyceride hydrolysis using lipase has been proposed as a novel method to produce raw materials in food and cosmetic industries such as diacylglycerol, monoacylglycerol, glycerol and fatty acid. In order to design a reactor for utilizing this reaction on industrial scale, constructing a kinetic model is important. Since the substrates are oil and water, the hydrolysis takes place at oil-water interface. Furthermore, the triglyceride has three ester bonds, so that the hydrolysis stepwise proceeds. Thus, the reaction mechanism is very complicated. The difference between the interfacial and bulk concentrations of the enzyme, substrates and products, and the interfacial enzymatic reaction mechanism should be considered in the model.

  2. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase

    DEFF Research Database (Denmark)

    Kerovuo, J.; Rouvinen, J.; Hatzack, Frank-Andreas

    2000-01-01

    Phytic acid (myo-inositol hexakisphosphate, InsP(6)) hydrolysis by Bacillus phytase (PhyC) was studied. The enzyme hydrolyses only three phosphates from phytic acid. Moreover, the enzyme seems to prefer the hydrolysis of every second phosphate over that of adjacent ones. Furthermore, it is very...... likely that the enzyme has two alternative pathways for the hydrolysis of phytic acid, resulting in two different myo-inositol trisphosphate end products: Ins(2,4,6)P-8 and Ins(1,3,5)P-3. These results, together with inhibition studies with fluoride, vanadate, substrate and a substrate analogue, indicate...

  3. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  4. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate

    Science.gov (United States)

    Villa-Bellosta, Ricardo; Hamczyk, Magda R.; Andrés, Vicente

    2017-01-01

    Purpose Phosphorus is an essential nutrient involved in many pathobiological processes. Less than 1% of phosphorus is found in extracellular fluids as inorganic phosphate ion (Pi) in solution. High serum Pi level promotes ectopic calcification in many tissues, including blood vessels. Here, we studied the effect of elevated Pi concentration on macrophage polarization and calcification. Macrophages, present in virtually all tissues, play key roles in health and disease and display remarkable plasticity, being able to change their physiology in response to environmental cues. Methods and results High-throughput transcriptomic analysis and functional studies demonstrated that Pi induces unpolarized macrophages to adopt a phenotype closely resembling that of alternatively-activated M2 macrophages, as revealed by arginine hydrolysis and energetic and antioxidant profiles. Pi-induced macrophages showed an anti-calcifying action mediated by increased availability of extracellular ATP and pyrophosphate. Conclusion We conclude that the ability of Pi-activated macrophages to prevent calcium-phosphate deposition is a compensatory mechanism protecting tissues from hyperphosphatemia-induced pathologic calcification. PMID:28362852

  5. Cervical anterior transpedicular screw fixation (ATPS)--Part II. Accuracy of manual insertion and pull-out strength of ATPS.

    Science.gov (United States)

    Koller, Heiko; Acosta, Frank; Tauber, Mark; Fox, Michael; Martin, Hudelmaier; Forstner, Rosmarie; Augat, Peter; Penzkofer, Rainer; Pirich, Christian; Kässmann, H; Resch, Herbert; Hitzl, Wolfgang

    2008-04-01

    Reconstruction after multilevel decompression of the cervical spine, especially in the weakened osteoporotic, neoplastic or infectious spine often requires circumferential stabilization and fusion. To avoid the additional posterior surgery in these cases while increasing rigidity of anterior-only screw-plate constructs, the authors introduce the concept of anterior transpedicular screw (ATPS) fixation. We demonstrated its morphological feasibility as well as its indications in a previous study in Part I of our project. Consequently, the objectives of the current study were to assess the ex vivo accuracy of placing ATPS into the cervical vertebra as well as the biomechanical performance of ATPS in comparison to traditional vertebral body screws (VBS) in terms of pull-out strength (POS). Twenty-three ATPS were inserted alternately to two screws into the pedicles and vertebral bodies, respectively, of six cadaveric specimens from C3-T1. For insertion of ATPS, a manual fluoroscopically assisted technique was used. Pre- and post insertional CT-scans were used to assess accuracy of ATPS insertion in the axial and sagittal planes. A newly designed grading system and accuracy score were used to delineate accuracy of ATPS insertion. Following insertion of screws, 23 ATPS and 22 VBS were subjected to pull-out testing (POT). The bone mineral density (BMD) of each specimen was assessed prior to POT. Statistical analysis showed that the incidence of correctly placed screws and non-critical pedicles breaches in axial plane was 78.3%, and 95.7% in sagittal plane. Hence, according to our definition of "critical" pedicle breach that exposes neurovascular structures at risk, 21.7% (n = 5) of all ATPS inserted showed a critical pedicle breach in axial plane. Notably, no critical pedicle perforation occurred at the C6 to T1 levels. Pull-out testing of ATPS and VBS revealed that pull-out resistance of ATPS was 2.5-fold that of VBS. Mean POS of 23 ATPS with a mean BMD of 0.566 g/cm(2

  6. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  7. Mitochondrial function and energy metabolism in neuronal HT22 cells resistant to oxidative stress

    Science.gov (United States)

    Pfeiffer, Annika; Jaeckel, Martin; Lewerenz, Jan; Noack, Rebecca; Pouya, Alireza; Schacht, Teresa; Hoffmann, Christina; Winter, Jennifer; Schweiger, Susann; Schäfer, Michael K E; Methner, Axel

    2014-01-01

    Background and Purpose The hippocampal cell line HT22 is an excellent model for studying the consequences of endogenous oxidative stress. Extracellular glutamate depletes cellular glutathione by blocking the glutamate/cystine antiporter system xc−. Glutathione depletion induces a well-defined programme of cell death characterized by an increase in reactive oxygen species and mitochondrial dysfunction. Experimental Approach We compared the mitochondrial shape, the abundance of mitochondrial complexes and the mitochondrial respiration of HT22 cells, selected based on their resistance to glutamate, with those of the glutamate-sensitive parental cell line. Key Results Glutamate-resistant mitochondria were less fragmented and displayed seemingly contradictory features: mitochondrial calcium and superoxide were increased while high-resolution respirometry suggested a reduction in mitochondrial respiration. This was interpreted as a reverse activity of the ATP synthase under oxidative stress, leading to hydrolysis of ATP to maintain or even elevate the mitochondrial membrane potential, suggesting these cells endure ineffective energy metabolism to protect their membrane potential. Glutamate-resistant cells were also resistant to oligomycin, an inhibitor of the ATP synthase, but sensitive to deoxyglucose, an inhibitor of hexokinases. Exchanging glucose with galactose rendered resistant cells 1000-fold more sensitive to oligomycin. These results, together with a strong increase in cytosolic hexokinase 1 and 2, a reduced lactate production and an increased activity of glucose-6-phosphate dehydrogenase, suggest that glutamate-resistant HT22 cells shuttle most available glucose towards the hexose monophosphate shunt to increase glutathione recovery. Conclusions and Implications These results indicate that mitochondrial and metabolic adaptations play an important role in the resistance of cells to oxidative stress. Linked Articles This article is part of a themed issue on

  8. ATP11C targets basolateral bile salt transporter proteins in mouse central hepatocytes

    NARCIS (Netherlands)

    de Waart, Dirk R.; Naik, Jyoti; Utsunomiya, Karina S.; Duijst, Suzanne; Ho-Mok, Kam; Bolier, A. Ruth; Hiralall, Johan; Bull, Laura N.; Bosma, Piter J.; Oude Elferink, Ronald P. J.; Paulusma, Coen C.

    2016-01-01

    ATP11C is a homolog of ATP8B1, both of which catalyze the transport of phospholipids in biological membranes. Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type1 in humans, which is characterized by a canalicular cholestasis. Mice deficient in ATP11C are characterized by a

  9. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available The mitochondrial phosphate transporter (MPT plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.

  10. The Mitochondrial Phosphate Transporters Modulate Plant Responses to Salt Stress via Affecting ATP and Gibberellin Metabolism in Arabidopsis thaliana

    Science.gov (United States)

    Yang, Guodong; Wu, Changai; Huang, Jinguang; Zheng, Chengchao

    2012-01-01

    The mitochondrial phosphate transporter (MPT) plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana. PMID:22937061

  11. Oxidative stress with altered element content and decreased ATP level of erythrocytes in hepatocellular carcinoma and colorectal liver metastases.

    Science.gov (United States)

    Váli, László; Hahn, Oszkár; Kupcsulik, Péter; Drahos, Agnes; Sárváry, Eniko; Szentmihályi, Klára; Pallai, Zsolt; Kurucz, Timea; Sípos, Péter; Blázovics, Anna

    2008-05-01

    Our aim was to study the possible alterations of redox status (enzymatic and nonenzymatic parameters and metal elements) in erythrocytes of patients with hepatocellular carcinoma (HCC), colorectal liver metastases (CRLM) and benign liver neoplasms. The function of redox homeostasis is closely connected to the energy level of erythrocytes, therefore, the ATP level was also determined. Antioxidant parameters, enzyme activities of superoxide dismutase and glutathione peroxidase were estimated in the erythrocytes of 11 patients with benign tumour, 23 patients with primary malignant and 37 metastatic liver tumour patients and 30 age-matched and sex-matched healthy controls. Element content with inductively coupled plasma optical emission spectrometer and ATP level by the chemiluminometric method were also determined from the samples. Free radical intensity was significantly increased, whereas erythrocyte glutathione peroxidase and superoxide dismutase activities were significantly decreased in the HCC and CRLM groups versus benign groups and controls. Se, Mn and Zn levels were lowered in HCC and CRLM groups versus benign and control groups. The content of Cu, Mg, Se and Zn changed significantly between HCC and CRLM groups. Similarly, ATP concentration decreased in HCC and CRLM versus controls and benign groups. The lowest levels of ATP and antioxidant enzyme activities were found in the case of CRLM patients. These results reveal an alteration in the ATP level of erythrocytes with concomitant changes in the antioxidant defence system in hepatic cancer patients. Altered redox homeostasis (oxidative damage) may lead to decreased ATP level and consequently may play an important role in primary carcinogenesis and generation of metastases, as well.

  12. Selective decrease of components of the creatine kinase system and ATP synthase complex in chronic Chagas disease cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Priscila Camillo Teixeira

    2011-06-01

    Full Text Available BACKGROUND: Chronic Chagas disease cardiomyopathy (CCC is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC and ischemic (IC cardiomyopathies. METHODOLOGY/PRINCIPAL FINDINGS: Myocardium homogenates from CCC (N=5, IC (N=5 and IDC (N=5 patients, as well as from heart donors (N=5 were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit and muscular creatine kinase (CKM and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. CONCLUSIONS/SIGNIFICANCE: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.

  13. KREBER`S ADVENTURES: COMPUTER GAME ABOUT THE ATP FORMATION

    Directory of Open Access Journals (Sweden)

    F. J. Baêta

    2015-08-01

    Full Text Available Introduction: Biochemistry, as well as other subjects related to molecular area, have several abstract and difficult concepts to be understood, therefore, many educational innovations have been developed, highlighting the digital games. The digital games feature a playful and motivational character that encourages students during the concepts learning, with a different way to learning the concepts studied. Objectives: The objective of this study was the development of a computer game focused on the concepts of ATP formation, including the glycolytic pathway, Krebs cycle and Electron Transport Chain, as well as aspects related to the regulation, and evaluate the usability of it, as well as some evidence of its educational potential. Material and methods: The development of the game followed the following steps: definition of the subject; understanding of game developer (it was chosen the GameMaker; storyboard creation of the game; prototyping, implementation and usability testing. For the evaluation, inspection usability was performed (without involving end users and subsequently the cognitive route and the usability questionnaire (the latter two with students of the discipline of Biochemistry. Results: The game approached the energy metabolism in three phases: the glycolytic pathway, Krebs cycle and electron transport chain. Each phase has a different purpose, with some questions about the ways. To complete the game, you must correctly answer the questions, avoid the obstacles and achieve the goals of each phase. After usability testing, it found that users could, in a playful manner, actively interact with the content addressed and, through the difficulties presented in the game, had the opportunity to expand and review their knowledge. Conclusions: The game was identified as a motivating and innovative proposal for  teaching, and it had good usability for undergraduate students. The ludic worked as a pedagogical practice encourages student

  14. Enzymatic hydrolysis of pretreated barley and wheat straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa

    2007-01-01

    feeding strategy to increase the substrate loading in the hydrolysis reaction. The substrate for the enzymatic hydrolysis was primarily steam pretreated wheat and barley straw since these substrates were the primary feedstocks for the Babilafuente Bioethanol process. The initial work showed...... that there was indeed potential to boost the enzyme activities in Celluclast (arising from Trichoderma reesei) by addition of small amounts of fermentation broth from fungal sources other than T. reesei at optimal reaction conditions for Celluclast, pH 5, 50 °C. The activity(ies) related to the boosting effect were...... indicated to arise from more efficient or different endoglucanase activities than those found in Celluclast. Evaluating of the extent of hydrolysis using the 4 major enzyme activities in Celluclast, which constituted a complete set of enzymes for hydrolysis of cellulose, showed that the most efficient...

  15. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...

  16. Effects of processing conditions on hydrolysis of cassava starch ...

    African Journals Online (AJOL)

    amyloglucosidase using 30% initial cassava starch concentration, which produced 152 g/l reducing sugar concentration and DE of 50.9. The total effective operating time was 60 h. Keywords:Cassava starch, hydrolysis, enzyme, dextrose equivalent.

  17. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis.

    Science.gov (United States)

    Guilherme, Ederson Paulo Xavier; de Oliveira, Jocilane Pereira; de Carvalho, Lorendane Millena; Brandi, Igor Viana; Santos, Sérgio Henrique Sousa; de Carvalho, Gleidson Giordano Pinto; Cota, Junio; Mara Aparecida de Carvalho, Bruna

    2017-11-01

    A bioreactor was built by means of immobilizing alpha-amylase from Aspergillus oryzae by encapsulation, through cryopolymerization of acrylamide monomers for the continuous starch hydrolysis. The starch hydrolysis was evaluated regarding pH, the concentration of immobilized amylase on cryogel, the concentration of starch solution and temperature. The maximum value for starch hydrolysis was achieved at pH 5.0, concentration of immobilized enzyme 111.44 mg amylase /gcryogel , concentration of starch solution 45 g/L and temperature of 35°C. The immobilized enzyme showed a conversion ratio ranging from 68.2 to 97.37%, depending on the pH and temperature employed. Thus, our results suggest that the alpha-amylase from A. oryzae immobilized on cryogel monoliths represents a potential process for industrial production of maltose from starch hydrolysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A complete degradation of organophosphates by microwave-assisted hydrolysis

    Czech Academy of Sciences Publication Activity Database

    Jansa, Petr; Čechová, Lucie; Janeba, Zlatko

    2016-01-01

    Roč. 3, č. 3 (2016), s. 219-226 ISSN 2213-3356 R&D Projects: GA MV VG20102015046 Institutional support: RVO:61388963 Keywords : organophosphates * microwave irradiation * hydrolysis Subject RIV: CC - Organic Chemistry

  19. Interaction of Solvents and Mechanical Pretreatment with Enzymatic Lignocellulose Hydrolysis

    OpenAIRE

    Wang, Yumei

    2017-01-01

    Renewable plant biomass is considered as an alternative raw material for the production of fuels and chemicals instead of decreasing fossil resources. Enzymatic hydrolysis of pretreated lignocellulosic material to produce high sugar concentrations is one important step in a bio-refinery process, and can be operated under moderate conditions without by-products. However, the efficiency of the enzymatic hydrolysis is hindered by lignocellulose recalcitrance. Therefore, pretreatments of the biom...

  20. The human digestive tract has proteases capable of gluten hydrolysis

    Directory of Open Access Journals (Sweden)

    Sergio Gutiérrez

    2017-07-01

    Conclusion: The digestive tracts of patients with CD and healthy subjects have enzymatic machinery needed for gluten degradation. Patients with CD showed more gluten hydrolysis than did healthy individuals, although, in both cases, a fraction of 33-mer peptide remained intact. Gliadin peptides derived from gastrointestinal digestion, especially the 33-mer, can potentially be used by commensal microbiota from both CD-positive and CD-negative individuals, and differences in bacterial hydrolysis can modify its immunogenic capacity.

  1. Kinetic studies of cellulose enzymatic hydrolysis from pretreated corn cob

    Science.gov (United States)

    Stevanie, Jeannie; Kartawiria, Irvan; Abimanyu, Haznan

    2017-01-01

    Successful utilization of corn cob biomass as raw material in bioethanol production is depending on the hydrolysis process where high level of β-cellulose is converted into glucose. Enzymatic hydrolysis is the common process for this purpose. This study is focusing on the evaluation of hydrolysis of pre-treated corn cob using Novozymes Cellic ® C-Tec2 and H-Tec2 enzymes to obtain the optimum reaction condition and its general reaction kinetics. The corn cob used was pretreated using 10% of NaOH solution. Hydrolysis reactions were conducted in 250 ml Erlenmeyer flask for 72 hour using mixture of C-Tec2 and H-Tec2 enzymes at the fixed ratio of 5:1 and glucose concentration were measured using HPLC. Reaction temperature of 40°C and quantity of 0.5 ml enzyme solution per gram substrate gives the highest reaction rate (0.0123 gram of glucose/gram sample.h) with the glucose yield being 0.089 g glucose/ g substrate. Total conversion of cellulose observed was 11.91 %. Corn cob hydrolysis using C-Tec2 and H-Tec2 enzymes also result in xylose (0.0202 g/g substrate), which can also contribute to bioethanol productivity in further fermentation process. The reaction is following zero order kinetics for the first 8 hours and reaches maximum yield within 10 hours; significantly shorter compared to previous studies of cellulosic material hydrolysis that may take up to 72 hour to complete. Prolonging the hydrolysis of pre-treated corn cob more than 24 hour gives no significant increase in glucose conversion and yield. Hydrolysis temperature range of 40°C to 60°C is in accordance with the manufacturer recommendation for the purpose; however the decrease of reaction rate is observable at temperature 50°C or higher.

  2. ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses.

    Directory of Open Access Journals (Sweden)

    Shuang Wu

    Full Text Available The oral secretions of herbivores are important recognition cues that can be used by plants to mediate induced defenses. In this study, a degradation of adenosine-5'-triphosphate (ATP in tomato leaves was detected after treatment with Helicoverpa zea saliva. Correspondingly, a high level of ATPase activity in saliva was detected and three ATP hydrolyzing enzymes: apyrase, ATP synthase and ATPase 13A1 were identified in salivary glands. To determine the functions of these proteins in mediating defenses, they were cloned from H. zea and expressed in Escherichia coli. By applying the purified expressed apyrase, ATP synthase or ATPase 13A1 to wounded tomato leaves, it was determined that these ATP hydrolyzing enzymes suppressed the defensive genes regulated by the jasmonic acid and ethylene pathways in tomato plant. Suppression of glandular trichome production was also observed after treatment. Blood-feeding arthropods employ 5'-nucleotidase family of apyrases to circumvent host responses and the H. zea apyrase, is also a member of this family. The comparatively high degree of sequence similarity of the H. zea salivary apyrase with mosquito apyrases suggests a broader evolutionary role for salivary apyrases than previously envisioned.

  3. Fibroblast cytoskeletal remodeling induced by tissue stretch involves ATP signaling.

    Science.gov (United States)

    Langevin, Helene M; Fujita, Takumi; Bouffard, Nicole A; Takano, Takahiro; Koptiuch, Cathryn; Badger, Gary J; Nedergaard, Maiken

    2013-09-01

    Fibroblasts in whole areolar connective tissue respond to static stretching of the tissue by expanding and remodeling their cytoskeleton within minutes both ex vivo and in vivo. This study tested the hypothesis that the mechanism of fibroblast expansion in response to tissue stretch involves extracellular ATP signaling. In response to tissue stretch ex vivo, ATP levels in the bath solution increased significantly, and this increase was sustained for 20 min, returning to baseline at 60 min. No increase in ATP was observed in tissue incubated without stretch or tissue stretched in the presence of the Rho kinase inhibitor Y27632. The increase in fibroblast cross sectional area in response to tissue stretch was blocked by both suramin (a purinergic receptor blocker) and apyrase (an enzyme that selectively degrades extracellular ATP). Furthermore, connexin channel blockers (octanol and carbenoxolone), but not VRAC (fluoxetine) or pannexin (probenecid) channel blockers, inhibited fibroblast expansion. Together, these results support a mechanism in which extracellular ATP signaling via connexin hemichannels mediate the active change in fibroblast shape that occurs in response to a static increase in tissue length. Copyright © 2013 Wiley Periodicals, Inc.

  4. Phenomenological analysis of ATP dependence of motor protein

    CERN Document Server

    Zhang, Yunxin

    2011-01-01

    In this study, through phenomenological comparison of the velocity-force data of processive motor proteins, including conventional kinesin, cytoplasmic dynein and myosin V, we found that, the ratio between motor velocities of two different ATP concentrations is almost invariant for any substall, superstall or negative external loads. Therefore, the velocity of motor can be well approximated by a Michaelis-Menten like formula $V=\\atp k(F)L/(\\atp +K_M)$, with $L$ the step size, and $k(F)$ the external load $F$ dependent rate of one mechanochemical cycle of motor motion in saturated ATP solution. The difference of Michaelis-Menten constant $K_M$ for substall, superstall and negative external load indicates, the ATP molecule affinity of motor head for these three cases are different, though the expression of $k(F)$ as a function of $F$ might be unchanged for any external load $F$. Verifications of this Michaelis-Menten like formula has also been done by fitting to the recent experimental data.

  5. On Local Coupling of Electron Transport and ATP-Synthesis System in Mitochondria. Theory and Experiment.

    Science.gov (United States)

    Eremeev, S A; Yaguzhinsky, L S

    2015-05-01

    A brief description of the principal directions for searching and investigating the model of local coupling between respiration and phosphorylation proposed by R. Williams is given in this paper. We found conditions where it was possible to reveal typical functional special features of the mitochondrial phosphorylating system. According to the theory, such special features should be observed experimentally if the mitochondrial phosphorylating system operated in the state of a supercomplex. It was proved that the phosphorylating system is able to operate in two states: P. Mitchell state and R. Williams state. It was demonstrated that in the ATP synthesis reaction, ATP-synthase (F1F0) was able to use thermodynamic potential of Bronsted acids as a source of energy. It was shown using a double-inhibitor titration technique that when the phosphorylating system operated in the supercomplex state, the electron transfer system and ATP-synthesis system were docked rigidly. A model system of chemical synthesis of membrane-bound proton fraction (Bronsted acids), carrying a free energy excess, was developed on the model of bilayer lipid membrane. Catalysts selectively accelerating proton detachment of this fraction were also found. The formation of a Bronsted acids fraction carrying free energy excess was recorded during the operation of proton pumps on mitochondrial and mitoplastic membranes. In the experimental part of the work, a brief description is given of studies on new uncouplers that transfer the phosphorylation system from the local coupling state to the state of transmembrane proton transfer. Thus, they accelerated the respiration of mitochondria and decreased the ADP/O parameter.

  6. [ATP content in cryopreserved sperm of Siberian white cranes Grus leucogeranus (Aves: Gruiformes)].

    Science.gov (United States)

    Maksudov, G Iu; Erokhin, A S; Nesterenko, O N; Panchenko, V G

    2002-01-01

    ATP contents were studied in the native and cryoconserved sperm of Siberian white cranes Grus leucogeranus using bioluminescence analysis. The ATP content in freshly obtained spermatozoa was 12.7 nmol/10(8) cells. No ATP was found in the seminal plasma. In the process of freezing-thawing, the ATP concentration in the spermatozoa decreased by 30%. The differences in the dynamics of ATP content during cryoconservation of sperm of white cranes and other birds and mammals are discussed.

  7. Ultrasound enhanced enzymatic hydrolysis of Parthenium hysterophorus: A mechanistic investigation.

    Science.gov (United States)

    Singh, Shuchi; Agarwal, Mayank; Bhatt, Aditya; Goyal, Arun; Moholkar, Vijayanand S

    2015-09-01

    This study has attempted to establish the mechanism of the ultrasound-induced enhancement of enzymatic hydrolysis of pretreated and delignified biomass of Parthenium hysterophorus. A dual approach of statistical optimization of hydrolysis followed by application of sonication at optimum conditions has been adopted. The kinetics of hydrolysis shows a marked 6× increase with sonication, while net sugar yield shows marginal rise of ∼ 20%. The statistical experimental design reveals the hydrolysis process to be enzyme limited. Profile of sugar yield in ultrasound-assisted enzymatic hydrolysis has been analyzed using HCH-1 model coupled with Genetic Algorithm optimization. The trends in the kinetic and physiological parameters of HCH-1 model reveal that sonication enhances enzyme/substrate affinity and reaction velocity of hydrolysis. The product inhibition of enzyme in all forms (free, adsorbed, complexed) also reduces with ultrasound. These effects are attributed to intense micro-convection induced by ultrasound and cavitation in the liquid medium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development of complete hydrolysis of pectins from apple pomace.

    Science.gov (United States)

    Wikiera, Agnieszka; Mika, Magdalena; Starzyńska-Janiszewska, Anna; Stodolak, Bożena

    2015-04-01

    Enzymatically extracted pectins have a more complex structure than those obtained by conventional methods. As a result, they are less susceptible to hydrolysis, which makes the precise determination of their composition difficult. The aim of the study was to develop a method of complete hydrolysis of enzymatically extracted apple pectins. Substrates were pectins isolated from apple pomace by the use of xylanase and multicatalytic preparation Celluclast and apple pomace. Hydrolysis was performed by a chemical method with 2M TFA at 100 °C and 120 °C and a combined acidic/enzymatic method. After hydrolysis, the contents of galacturonic acid and neutral sugars were measured by HPLC. Complete hydrolysis of polygalacturonic acid occurred after 2.5h incubation with 2M TFA at 120 °C. The efficient hydrolysis of neutral sugars in pectins was performed with 2M TFA at 100 °C for 2.5h. Monomers most susceptible to concentrated acid were rhamnose, mannose and arabinose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Plant mitochondrial F0F1 ATP synthase. Identification of the individual subunits and properties of the purified spinach leaf mitochondrial ATP synthase.

    Science.gov (United States)

    Hamasur, B; Glaser, E

    1992-04-01

    Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the

  10. Synthesis, tribological and hydrolysis stability study of novel benzotriazole borate derivative.

    Directory of Open Access Journals (Sweden)

    Xiong Liping

    Full Text Available Benzotriazole and borate derivatives have long been used as multifunctional additives to lubricants. A novel, environmentally friendly additive borate ester (NHB, which contains boron, ethanolamine, and benzotriazole groups in one molecule, was synthesized by a multi-step reaction, and its tribological properties in rapeseed oil (RSO were investigated by a four-ball tribometer. The hydrolysis stability of the additive was investigated by half-time and open observation methods, and the mechanism of hydrolysis stability was discussed through Gaussian calculation. The novel compound NHB showed excellent performance under extreme pressure, against wearing, and in reducing friction, and its hydrolysis time is more than 1,220 times, which is better than that of triethyl borate. The mass ratio of NHB is bigger than that of the mixed liquid of triethyl borate and ethanolamine. The lone electron of amino N atoms forms a coordination effect with the B atom to compensate for the shortage of electrons in the B atom and to improve the hydrolysis stability of NHB. The surface morphology and the traces of different elements in the tribofilms formed with 1.0 wt.% NHB in were detected with scanning electron microscopy(SEM, energy dispersive X-ray spectroscopy (EDXand X-ray photoelectron spectroscopy(XPS. The results shown that the additive caused a tribochemical reaction with the steel ball surface during the lubricating process. A mixed boundary lubrication film that contains organic nitrogen and inorganic salts, such as BN, B2O3, FeOx, Fe-O-B, and FeB, was also formed, and the formation of the lubricating film improved the tribological properties of the base oil.

  11. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature.

    Science.gov (United States)

    Chen, Rachel

    2015-01-01

    A key characteristic of current biomass technology is the requirement for complete hydrolysis of cellulose and hemicellulose, which stems from the inability of microbial strains to use partially hydrolyzed cellulose, or cellodextrin. The complete hydrolysis paradigm has been practiced over the past 4 decades with major enzyme companies perfecting their cellulase mix for maximal yield of monosaccharides, with corresponding efforts in strain development focus almost solely on the conversion of monosaccharides, not cellodextrin, to products. While still in its nascent infancy, a new paradigm requiring only partial hydrolysis has begun to take hold, promising a shift in the biomass technology at its fundamental core. The new paradigm has the potential to reduce the requirement for cellulase enzymes in the hydrolysis step and provides new strategies for metabolic engineers, synthetic biologists and alike in engineering fermenting organisms. Several recent publications reveal that microorganisms engineered to metabolize cellodextrins, rather than monomer glucose, can reap significant energy gains in both uptake and subsequent phosphorylation. These energetic benefits can in turn be directed for enhanced robustness and increased productivity of a bioprocess. Furthermore, the new cellodextrin metabolism endows the biocatalyst the ability to evade catabolite repression, a cellular regulatory mechanism that is hampering rapid conversion of biomass sugars to products. Together, the new paradigm offers significant advantages over the old and promises to overcome several critical barriers in biomass technology. More research, however, is needed to realize these promises, especially in discovery and engineering of cellodextrin transporters, in developing a cost-effective method for cellodextrin generation, and in better integration of cellodextrin metabolism to endogenous glycolysis.

  12. Process evaluation of enzymatic hydrolysis with filtrate recycle for the production of high concentration sugars.

    Science.gov (United States)

    Xue, Ying; Rusli, Jannov; Chang, Hou-Min; Phillips, Richard; Jameel, Hasan

    2012-02-01

    Process simulation and lab trials were carried out to demonstrate and confirm the efficiency of the concept that recycling hydrolysate at low total solid enzymatic hydrolysis is one of the options to increase the sugar concentration without mixing problems. Higher sugar concentration can reduce the capital cost for fermentation and distillation because of smaller retention volume. Meanwhile, operation cost will also decrease for less operating volume and less energy required for distillation. With the computer simulation, time and efforts can be saved to achieve the steady state of recycling process, which is the scenario for industrial production. This paper, to the best of our knowledge, is the first paper discussing steady-state saccharification with recycling of the filtrate form enzymatic hydrolysis to increase sugar concentration. Recycled enzymes in the filtrate (15-30% of the original enzyme loading) resulted in 5-10% higher carbohydrate conversion compared to the case in which recycled enzymes were denatured. The recycled hydrolysate yielded 10% higher carbohydrate conversion compared to pure sugar simulated hydrolysate at the same enzyme loading, which indicated hydrolysis by-products could boost enzymatic hydrolysis. The high sugar concentration (pure sugar simulated) showed inhibition effect, since about 15% decrease in carbohydrate conversion was observed compared with the case with no sugar added. The overall effect of hydrolysate recycling at WinGEMS simulated steady-state conditions with 5% total solids was increasing the sugar concentration from 35 to 141 g/l, while the carbohydrate conversion was 2% higher for recycling at steady state (87%) compared with no recycling strategy (85%). Ten percent and 15% total solid processes were also evaluated in this study.

  13. ATP level and caffeine efficiency on cytokinesis inhibition in plants.

    Science.gov (United States)

    López-Sáez, J F; Mingo, R; González-Fernández, A

    1982-06-01

    Plant cytokinesis appears to be a topographically organized process of exocytosis. Golgi vesicles which contain cell wall precursors are translocated during telophase, by interzonal microtubules, to the equatorial region of the mitotic apparatus where they fuse with each other giving rise to the new cell wall. Caffeine inhibits cytokinesis by hindering Golgi vesicle coalescence. The present results demonstrate that treatments which increase the cellular ATP level (adenosine, cycloheximide and anisomycin) counteract caffein-induced cytokinesis inhibition in meristem cells of onion root tips (Allium cepa L.), while treatments which decrease ATP level potentiate this caffeine effect (dinitrophenol, fluoroacetate, low oxygen tensions, etc.). We postulate that caffeine, in competition with the cellular ATP level, blocks cell plate formation by inhibiting a certain ATPase activity required for membrane fusion of Golgi vesicles.

  14. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    Current standard methods for surveillance of microbial drinking water quality are culture based, which are laborious and time-consuming, where results not are available before one to three days after sampling. This means that the water may have been consumed before results on deteriorated water....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP......, microbial quality in distributed water, detection of aftergrowth, biofilm formation etc. This PhD project demonstrated that ATP levels are relatively low and fairly stable in drinking water without chlorine residual despite different sampling locations, different drinking water systems and time of year...

  15. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P......) of the total ankle dorsiflexor muscle volume, which was 267 +/- 10 cm. Relative cross-sectional areas occupied by Type I, IIA, and IIB fibers in the tibialis anterior were 69.3 +/- 2.2, 27.4 +/- 2.76, and 3.2 +/- 1.0%, respectively. ATP economy of force maintenance did not change significantly during the 60-s...... contraction. It averaged at 4.81 +/- 0.42 N.s.micromol-1, and correlated with the relative cross-sectional area of the muscle occupied by Type I fiber (r = 0.73, P economy compared with those maintaining the force (3...

  16. Hydrolysis of and oxide solubilities in melts related to electrolytic magnesium production

    Energy Technology Data Exchange (ETDEWEB)

    Vindstad, J.E.

    1996-12-31

    It takes about 13-14 kWh to produce 1 kg magnesium metal by today`s technology, although the thermodynamic energy required is only about 6.8 kWh/kg (at 700{sup o}C). The specific energy consumption of a magnesium electrolysis cell is inversely proportional to the current efficiency, which is affected by the presence of impurities in the electrolyte. A high current efficiency requires that the cathode is well wetted by the liquid magnesium and that the latter is well wetted by the electrolyte. If the metal does not wet the cathode, and the melt not the metal, then the cathodic overvoltage and thus also the energy consumption increases. The presence of water has a detrimental effect on the electrolysis because an MgO film forms on the metal when the water reacts with the magnesium produced, thus interfering with the wetting of the cathode by the metal. It follows that a thorough knowledge of the processes going on in the hydrolysis is important for improving the energy efficiency of the magnesium production. The first part of this doctoral thesis discusses experiments on the equilibria established during hydrolysis of pure liquid MgCl{sub 2} and of a liquid NaCl-MgCl{sub 2} mixture at 730 and 675 {sup o}C. The second part deals with the effect of fluoride on the solubility of MgO in MgCl{sub 2}-containing melts. 67 refs., 35 figs., 12 tabs.

  17. Arabidopsis fructokinase-like protein associations are regulated by ATP.

    Science.gov (United States)

    Riggs, John W; Callis, Judy

    2017-05-10

    The Arabidopsis thaliana fructokinase-like proteins FLN1 and FLN2 are required for the differentiation of plastids into photosynthetically competent chloroplasts. However, their specific roles are unknown. FLN1 and FLN2 localize in a multisubunit prokaryotic-type polymerase (plastid-encoded RNA polymerase) complex that transcribes genes encoding components of photosynthesis-related assemblies. Despite sequence identity with fructokinases, which are members of the pfkB (phosphofructokinase B) family of enzymes, kinase activity of FLN1 and FLN2 has not been demonstrated. Homology modeling using pfkB X-ray structures, sequence comparisons, and mutational analyses suggests that FLN proteins may bind their substrates differently from other pfkB proteins. We provide evidence that purified recombinant FLN1 undergoes an ATP-mediated change in binding affinity with both itself and recombinant FLN2. The ATP-mediated change in the affinity of FLN1 for FLN2 is not affected by mutations in conserved active-site residues known to affect catalysis in active pfkB enzymes. In contrast, recombinant FLN2 hetero-oligomerizes independently of ATP concentration. At ATP concentrations that promote FLN1 homomeric interactions, the FLN1-FLN2 hetero-oligomer is the dominant form in vitro We further present evidence that FLN1 associates with a large protein complex in chloroplasts independently of ATP. Given that ATP levels fluctuate between light-dark cycles in the 1-5 mM range, we propose that changes in FLN1 and FLN2 interactions are biologically meaningful. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  18. Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.

    Science.gov (United States)

    Ometto, Francesco; Quiroga, Gerardo; Pšenička, Pavel; Whitton, Rachel; Jefferson, Bruce; Villa, Raffaella

    2014-11-15

    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60-100%) and ultrasounds (30-60%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose

    Directory of Open Access Journals (Sweden)

    Palmqvist Benny

    2012-08-01

    Full Text Available Abstract Background A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. Results In this work, we monitor the impeller torque (and hence power input in a stirred tank reactor throughout high solid enzymatic hydrolysis (Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength, whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. Conclusions The results clearly highlight the large differences between the arundo and spruce materials, both in terms of

  20. Interdisciplinary reasoning about energy in an introductory physics course for the life sciences

    Science.gov (United States)

    Dreyfus, Benjamin William

    Energy is a unifying concept that cuts across physics, chemistry, and biology. However, students who study all three disciplines can end up with a fragmented understanding of energy. This dissertation sits at the intersection of two active areas of current research: the teaching and learning of energy, and interdisciplinary science education (particularly the intersection of physics and biology). The context for this research is an introductory physics course for undergraduate life sciences majors that is reformed to build stronger interdisciplinary connections between physics, biology, and chemistry. An approach to energy that incorporates chemical bonds and chemical reactions is better equipped to meet the needs of life sciences students than a traditional introductory physics approach that focuses primarily on mechanical energy, and so we present a curricular thread for chemical energy in the physics course. Our first set of case studies examines student reasoning about ATP hydrolysis, a biochemically significant reaction that powers various processes in the cell. We observe students expressing both that an energy input is required to break a chemical bond (which they associate with physics) and that energy is released when the phosphate bond is broken in ATP (which they associate with biology). We use these case studies to articulate a model of interdisciplinary reconciliation: building coherent connections between concepts from different disciplines while understanding each concept in its own disciplinary context and justifying the modeling choices in deciding when to use each disciplinary model. Our second study looks at ontological metaphors for energy: metaphors about what kind of thing energy is. Two ontological metaphors for energy that have previously been documented include energy as a substance and energy as a location. We argue for the use of negative energy in modeling chemical energy in an interdisciplinary context, and for the use of a blended

  1. Inhibition of TREK-2 K(+) channels by PI(4,5)P2: an intrinsic mode of regulation by intracellular ATP via phosphatidylinositol kinase.

    Science.gov (United States)

    Woo, Joohan; Shin, Dong Hoon; Kim, Hyun Jong; Yoo, Hae Young; Zhang, Yin-Hua; Nam, Joo Hyun; Kim, Woo Kyung; Kim, Sung Joon

    2016-08-01

    TWIK-related two-pore domain K(+) channels 1 and 2 (TREKs) are activated under various physicochemical conditions. However, the directions in which they are regulated by PI(4,5)P2 and intracellular ATP are not clearly presented yet. In this study, we investigated the effects of ATP and PI(4,5)P2 on overexpressed TREKs (HEK293T and COS-7) and endogenously expressed TREK-2 (mouse astrocytes and WEHI-231 B cells). In all of these cells, both TREK-1 and TREK-2 currents were spontaneously increased by dialysis with ATP-free pipette solution for whole-cell recording (ITREK-1,w-c and ITREK-2w-c) or by membrane excision for inside-out patch clamping without ATP (ITREK-1,i-o and ITREK-2,i-o). Steady state ITREK-2,i-o was reversibly decreased by 3 mM ATP applied to the cytoplasmic side, and this reduction was prevented by wortmannin, a PI-kinase inhibitor. An exogenous application of PI(4,5)P2 inhibited the spontaneously increased ITREKs,i-o, suggesting that intrinsic PI(4,5)P2 maintained by intracellular ATP and PI kinase may set the basal activity of TREKs in the intact cells. The inhibition of intrinsic TREK-2 by ATP was more prominent in WEHI-231 cells than astrocytes. Interestingly, unspecific screening of negative charges by poly-L-lysine also inhibited ITREK-2,i-o. Application of PI(4,5)P2 after the poly-L-lysine treatment showed dose-dependent dual effects, initial activation and subsequent inhibition of ITREK-2,i-o at low and high concentrations, respectively. In HEK293T cells coexpressing TREK-2 and a voltage-sensitive PI(4,5)P2 phosphatase, sustained depolarization increased ITREK-2,w-c initially (TREK-2 and type 3 muscarinic receptor, application of carbachol induced transient activation and sustained suppression of ITREK-2,w-c and cell-attached ITREK-2. The inhibition of TREK-2 by unspecific electrostatic quenching, extensive dephosphorylation, or sustained hydrolysis of PI(4,5)P2 suggests the existence of dual regulatory modes that depend on PI(4,5)P2

  2. Benzopyrimido-pyrrolo-oxazine-dione (R)-BPO-27 Inhibits CFTR Chloride Channel Gating by Competition with ATP.

    Science.gov (United States)

    Kim, Yonjung; Anderson, Marc O; Park, Jinhong; Lee, Min Goo; Namkung, Wan; Verkman, A S

    2015-10-01

    We previously reported that benzopyrimido-pyrrolo-oxazinedione BPO-27 [6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4',5':3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid] inhibits the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel with low nanomolar potency and reduces cystogenesis in a model of polycystic kidney disease. We used computational chemistry and patch-clamp to show that enantiomerically pure (R)-BPO-27 inhibits CFTR by competition with ATP, whereas (S)-BPO-27 is inactive. Docking computations using a homology model of CFTR structure suggested that (R)-BPO-27 binds near the canonical ATP binding site, and these findings were supported by molecular dynamics simulations showing a lower binding energy for the (R) versus (S) stereoisomers. Three additional lower-potency BPO-27 analogs were modeled in a similar fashion, with the binding energies predicted in the correct order. Whole-cell patch-clamp studies showed linear CFTR currents with a voltage-independent (R)-BPO-27 block mechanism. Single-channel recordings in inside-out patches showed reduced CFTR channel open probability and increased channel closed time by (R)-BPO-27 without altered unitary channel conductance. At a concentration of (R)-BPO-27 that inhibited CFTR chloride current by ∼50%, the EC50 for ATP activation of CFTR increased from 0.27 to 1.77 mM but was not changed by CFTRinh-172 [4-[[4-oxo-2-thioxo-3-[3-trifluoromethyl)phenyl]-5-thiazolidinylidene]methyl]benzoic acid], a thiazolidinone CFTR inhibitor that acts at a site distinct from the ATP binding site. Our results suggest that (R)-BPO-27 inhibition of CFTR involves competition with ATP. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    David, E., E-mail: david@icsi.ro [National Institute for Research and Development for Cryogenic and Isotopic Technologies, P.O Raureni, P.O. Box 7, 240050 Rm. Valcea (Romania); Kopac, J., E-mail: Janez.Kopac@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, P.O. Box 394, 1000 Ljubljana (Slovenia)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The hydrolysis of aluminum dross in tap water generates pure hydrogen. Black-Right-Pointing-Pointer Aluminum particles from dross are activated by mechanically milling technique. Black-Right-Pointing-Pointer The process is completely greenhouse gases free and is cleanly to environment. Black-Right-Pointing-Pointer Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 {mu}m. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  4. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord [v1; ref status: indexed, http://f1000r.es/3rm

    Directory of Open Access Journals (Sweden)

    Eric McCoy

    2014-07-01

    Full Text Available Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides.  Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5’-monophosphate (AMP to adenosine in primary somatosensory neurons.  Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons.  Ectonucleoside triphosphate diphosphohydrolases (ENTPDs comprise a class of enzymes that dephosphorylate extracellular ATP and ADP.  Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3 was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG, in the dorsal horn of the spinal cord, and in free nerve endings in the skin.  To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse.  This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder.  However, DRG and spinal cord tissues from Entpd3-/- mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates.  Additionally, using fast-scan cyclic voltammetry (FSCV, adenosine production was not impaired in the dorsal spinal cord of Entpd3-/- mice when the substrate ADP was applied.  Further, Entpd3-/- mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3-/- mice showed a modest reduction in β-alanine-mediated itch.  Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord.  Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.

  5. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord [v2; ref status: indexed, http://f1000r.es/4dl

    Directory of Open Access Journals (Sweden)

    Eric McCoy

    2014-09-01

    Full Text Available Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides.  Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5’-monophosphate (AMP to adenosine in primary somatosensory neurons.  Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons.  Ectonucleoside triphosphate diphosphohydrolases (ENTPDs comprise a class of enzymes that dephosphorylate extracellular ATP and ADP.  Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3 was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG, in the dorsal horn of the spinal cord, and in free nerve endings in the skin.  To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse.  This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder.  However, DRG and spinal cord tissues from Entpd3-/- mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates.  Additionally, using fast-scan cyclic voltammetry (FSCV, adenosine production was not impaired in the dorsal spinal cord of Entpd3-/- mice when the substrate ADP was applied.  Further, Entpd3-/- mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3-/- mice showed a modest reduction in β-alanine-mediated itch.  Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord.  Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.

  6. Microscopy of single F(o) F(1) -ATP synthases--the unraveling of motors, gears, and controls.

    Science.gov (United States)

    Börsch, Michael

    2013-03-01

    Optical microscopy of single F(1) -ATPase and F(o) F(1) -ATP synthases started 15 years ago. Direct demonstration of ATP-driven subunit rotation by videomicroscopy became the new exciting tool to analyze the conformational changes of this enzyme during catalysis. Stimulated by these experiments, technical improvements for higher time resolution, better angular resolution, and reduced viscous drag were developed rapidly. Optics and single-molecule enzymology were entangled to benefit both biochemists and microscopists. Today, several single-molecule microscopy methods are established including controls for the precise nanomanipulation of individual enzymes in vitro. Förster resonance energy transfer, which has been used for simultaneous monitoring of conformational changes of different parts of this rotary motor, is one of them and may become the tool for the analysis of single F(o) F(1) -ATP synthases in membranes of living cells. Here, breakthrough experiments are critically reviewed and challenges are discussed for the future microscopy of single ATP synthesizing enzymes at work. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  7. SOLUTE TRANSPORT AND ENERGY TRANSDUCTION IN BACTERIA

    NARCIS (Netherlands)

    KONINGS, WN; POOLMAN, B; VANVEEN, HW

    1994-01-01

    In bacteria two forms of metabolic energy are usually present, i.e. ATP and transmembrane ion-gradients, that can be used to drive the various endergonic reactions associated with cellular growth. ATP can be formed directly in substrate level phosphorylation reactions whereas primary transport

  8. Abnormal expression of ATP1A1 and ATP1A2 in breast cancer [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Alexey Bogdanov

    2017-01-01

    Full Text Available Breast cancer is the first in incidence and the second in death among all solid tumors occurring in women. The identification of molecular genetic abnormalities in breast cancer is important to improve the results of treatment. In the present study, we analyzed microarray data of breast cancer expression profiling (NCBI GEO database, accession GSE65194, focusing on Na+/K+-ATPase coding genes. We found overexpression of the ATP1A1 and down-regulation of the ATP1A2. We expect that our research could help to improve the understanding of predictive and prognostic features of breast cancer.

  9. Hydrolysis of DFP and the Nerve Agent (S)-Sarin by DFPase Proceeds Along Two Different Reaction Pathways: Implica-tions for Engineering Bioscavengers

    Energy Technology Data Exchange (ETDEWEB)

    Wymore, Troy W [ORNL; Langan, Paul [ORNL; Smith, Jeremy C [ORNL; Field, Martin J. [Institut de Biologie Structurale Jean-Pierre Ebel; Parks, Jerry M [ORNL

    2014-01-01

    Organophosphorus (OP) nerve agents such as (S)-sarin are among the most highly toxic compounds that have been synthesized. Engineering enzymes that catalyze the hydrolysis of nerve agents ( bioscavengers ) is an emerging prophylactic approach to diminishing their toxic effects. Although its native function is not known, diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris catalyzes the hydrolysis of OP compounds. Here, we investigate the mechanisms of diisopropylfluorophosphate (DFP) and (S)-sarin hydrolysis by DFPase with quantum mechanical/molecular mechanical (QM/MM) umbrella sampling simulations. We find that the mechanism for hydrolysis of DFP involves nucleophilic attack by Asp229 on phosphorus to form a pentavalent intermediate. P F bond dissociation then yields a phosphoacyl enzyme intermediate in the rate-limiting step. The simulations suggest that a water molecule, coordinated to the catalytic Ca2+, donates a proton to Asp121 and then attacks the tetrahedral phosphoacyl intermediate to liberate the diisopropylphosphate product. In contrast, the calculated free energy barrier for hydrolysis of (S)-sarin by the same mechanism is highly unfavorable, primarily due to the instability of the pentavalent phosphoenzyme species. Instead, simulations suggest that hydrolysis of (S)-sarin proceeds by a mechanism in which Asp229 could activate an intervening water molecule for nucleophilic attack on the substrate. These findings may lead to improved strategies for engineering DFPase and related six-bladed -propeller folds for more efficient degradation of OP compounds.

  10. Hydrolysis rate constants at 10–25 °C can be more than doubled by a short anaerobic pre-hydrolysis at 35 °C

    NARCIS (Netherlands)

    Zhang, L.; Gao, R.; Naka, A.; Hendrickx, T.L.G.; Rijnaarts, H.H.M.; Zeeman, G.

    2016-01-01

    Hydrolysis is the first step of the anaerobic digestion of complex wastewater and considered as the rate limiting step especially at low temperature. Low temperature (10–25 °C) hydrolysis was investigated with and without application of a short pre-hydrolysis at 35 °C. Batch experiments were

  11. Bioluminometric assay of ATP in mouse brain: Determinant factors ...

    Indian Academy of Sciences (India)

    Firefly luciferase bioluminescence (FLB) is a highly sensitive and specific method for the analysis of adenosine-5-triphosphate (ATP) in biological samples. Earlier attempts to modify the FLB test for enhanced sensitivity have been typically based on in vitro cell systems. This study reports an optimized FLB procedure for the ...

  12. Electrochemical Investigation of the Interaction between Catecholamines and ATP.

    Science.gov (United States)

    Taleat, Zahra; Estévez-Herrera, Judith; Machado, José D; Dunevall, Johan; Ewing, Andrew G; Borges, Ricardo

    2018-02-06

    The study of the colligative properties of adenosine 5'-triphosphate (ATP) and catecholamines has received the attention of scientists for decades, as they could explain the capabilities of secretory vesicles (SVs) to accumulate neurotransmitters. In this Article, we have applied electrochemical methods to detect such interactions in vitro, at the acidic pH of SVs (pH 5.5) and examined the effect of compounds having structural similarities that correlate with functional groups of ATP (adenosine, phosphoric acid and sodium phosphate salts) and catecholamines (catechol). Chronoamperometry and fast scan cyclic voltammetry (FSCV) provide evidence compatible with an interaction of the catechol and adenine rings. This interaction is also reinforced by an electrostatic interaction between the phosphate group of ATP and the protonated ammonium group of catecholamines. Furthermore, chronoamperometry data suggest that the presence of ATP subtlety reduces the apparent diffusion coefficient of epinephrine in aqueous media that adds an additional factor leading to a slower rate of catecholamine exocytosis. This adds another plausible mechanism to regulate individual exocytosis events to alter communication.

  13. Diversity and regulation of ATP sulfurylase in photosynthetic organisms

    Directory of Open Access Journals (Sweden)

    Laura ePrioretti

    2014-11-01

    Full Text Available ATP sulfurylase (ATPS catalyzes the first committed step in the sulfate assimilation pathway, the activation of sulfate prior to its reduction. ATPS has been studied in only a few model organisms and even in these cases to a much smaller extent than the sulfate reduction and cysteine synthesis enzymes. This is possibly because the latter were considered of greater regulatory importance for sulfate assimilation. Recent evidences (reported in this paper challenge this view and suggest that ATPSes may have a crucial regulatory role in sulfate assimilation, at least in algae.In the ensuing text, we summarize the current knowledge on ATPS, with special attention to the processes that control its activity and gene(s expression. Special attention is given to algae ATPSes. The focus on algae is the consequence of the fact that a comprehensive investigation of ATPSes revealed that the algal enzymes, especially those that are most likely involved in the pathway of sulfate reduction to cysteine, possess features that are not present in other organisms. For instance, algae ATPSes show a great diversity of isoforms and a high content of cysteine residues, whose positions are often conserved. It is interesting that, at least with respect to the number of cysteines, the ATPSes of eukaryotic algae are closer to the marine cyanobacteria of the genera Synechococcus and Prochlorococcus and are more distant from freshwater cyanobacteria. These characteristics might have evolved in parallel with the radiation of algae in the oceans and the increase of sulfate concentration in seawater.

  14. Familial Hemiplegic Migraine With ATP1A2 Mutations

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-05-01

    Full Text Available Three children with prolonged hemiplegia following severe unilateral headache and having mutations in ATP1A2 are reported from UCLA School of Medicine, Los Angeles, CA; University Children’s Hospital, Zurich, Switzerland; and Wake Forest University School of Medicine, Winston-Salem, NC.

  15. Distinct neurological disorders with ATP1A3 mutations

    NARCIS (Netherlands)

    Heinzen, E.L.; Arzimanoglou, A.; Brashear, A.; Clapcote, S.J.; Gurrieri, F.; Goldstein, D.B; Johannesson, S.H.; Mikati, M.A.; Neville, B.; Nicole, S.; Ozelius, L.J.; Poulsen, H.; Schyns, T.; Sweadner, K.J.; Maagdenberg, A. van den; Vilsen, B.; Koenderink, J.B.

    2014-01-01

    Genetic research has shown that mutations that modify the protein-coding sequence of ATP1A3, the gene encoding the alpha3 subunit of Na(+)/K(+)-ATPase, cause both rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood. These discoveries link two clinically distinct neurological

  16. Abiogenic Photophosphorylation of ADP to ATP Sensitized by Flavoproteinoid Microspheres

    Science.gov (United States)

    Kolesnikov, Michael P.; Telegina, Taisiya A.; Lyudnikova, Tamara A.; Kritsky, Mikhail S.

    2008-06-01

    A model for abiogenic photophosphorylation of ADP by orthophosphate to yield ATP was studied. The model is based on the photochemical activity of flavoproteinoid microspheres that are formed by aggregation in an aqueous medium of products of thermal condensation of a glutamic acid, glycine and lysine mixture (8:3:1) and contain, along with amino acid polymers (proteinoids), abiogenic isoalloxazine (flavin) pigments. Irradiation of aqueous suspensions of microspheres with blue visible light or ultraviolet in the presence of ADP and orthophosphate resulted in ATP formation. The yield of ATP in aerated suspensions was 10 20% per one mol of starting ADP. Deaeration reduced the photophosphorylating activity of microspheres five to 10 times. Treatment of aerated microsphere suspensions with superoxide dismutase during irradiation partially suppressed ATP formation. Deaerated microspheres restored completely their photophosphorylating activity after addition of hydrogen peroxide to the suspension. The photophosphorylating activity of deaerated suspensions of flavoproteinoid microspheres was also recovered by introduction of Fe3+-cytochrome c, an electron acceptor alternative to oxygen. On the basis of the results obtained, a chemical mechanism of phosphorylation is proposed in which the free radical form of reduced flavin sensitizer left( {{text{FlH}}^ bullet } right) and ADP are involved.

  17. Clipboard: New paradigm for ATP synthesis and consumption

    Indian Academy of Sciences (India)

    2011-03-14

    Mar 14, 2011 ... Home; Journals; Journal of Biosciences; Volume 36; Issue 1. Clipboard: New paradigm for ATP synthesis and consumption. C Channakeshava. Volume 36 Issue 1 March 2011 pp 3-4. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/jbsc/036/01/0003-0004 ...

  18. Differential expression of ATP-dependent RNA helicase gene in ...

    African Journals Online (AJOL)

    AJL

    2012-02-07

    Feb 7, 2012 ... lysogeny broth (LB) medium at 4°C was induced for VBNC state; activated genes were detected using. mRNA differential display .... 191 amino acids. This cDNA sequence had a homology of 95 to 100% to the nucleotide of adenosine tripho- sphate (ATP)-dependent RNA helicase rh1B gene in different ...

  19. Starch hydrolysis modeling: application to fuel ethanol production.

    Science.gov (United States)

    Murthy, Ganti S; Johnston, David B; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2011-09-01

    Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ± 0.15% (w/v) and ± 0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R2 = 0.69-0.79) and DP4+ (R2 = 0.8-0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.

  20. Enzymatic hydrolysis of fructans in the tequila production process.

    Science.gov (United States)

    Avila-Fernández, Angela; Rendón-Poujol, Xóchitl; Olvera, Clarita; González, Fernando; Capella, Santiago; Peña-Alvarez, Araceli; López-Munguía, Agustín

    2009-06-24

    In contrast to the hydrolysis of reserve carbohydrates in most plant-derived alcoholic beverage processes carried out with enzymes, agave fructans in tequila production have traditionally been transformed to fermentable sugars through acid thermal hydrolysis. Experiments at the bench scale demonstrated that the extraction and hydrolysis of agave fructans can be carried out continuously using commercial inulinases in a countercurrent extraction process with shredded agave fibers. Difficulties in the temperature control of large extraction diffusers did not allow the scaling up of this procedure. Nevertheless, batch enzymatic hydrolysis of agave extracts obtained in diffusers operating at 60 and 90 degrees C was studied at the laboratory and industrial levels. The effects of the enzymatic process on some tequila congeners were studied, demonstrating that although a short thermal treatment is essential for the development of tequila's organoleptic characteristics, the fructan hydrolysis can be performed with enzymes without major modifications in the flavor or aroma, as determined by a plant sensory panel and corroborated by the analysis of tequila congeners.

  1. Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester.

    Science.gov (United States)

    Chiplunkar, Pranali P; Zhao, Xiaoman; Tomke, Prerana D; Noro, Jennifer; Xu, Bo; Wang, Qiang; Silva, Carla; Pratap, Amit P; Cavaco-Paulo, Artur

    2018-01-01

    The ultrasound-assisted hydrolysis of aspirin methyl ester (AME) was investigated using immobilized Candida antarctica lipase B (CALB) (1%) in the presence of solvents like triolein, chloroform (CHCl3) and dichloromethane (DCM). The effect of ultrasound and the role of water on the conversion rates have also been investigated. Proton nuclear magnetic resonance spectroscopic (1H NMR) was chosen to calculate hydrolysis convertion rates. We observed that lipase-ultrasound assisted hydrolysis of AME in the presence of triolein and water showed the highest hydrolysis conversion rate (65.3%). Herein low water amount played an important role as a nucleophile being crucial for the hydrolysis yields obtained. Lipase activity was affected by the conjugated action of ultrasound and solvents (35.75% of decrease), however not disturbing its hydrolytic efficiency. It was demonstrated that lipase is able to hydrolyse AME to methyl 2-hydroxy benzoate (methyl salicylate), which applications include fragrance agents in food, beverages and cosmetics, or analgesic agent in liniments. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hydrolysis of aluminum dross material to achieve zero hazardous waste.

    Science.gov (United States)

    David, E; Kopac, J

    2012-03-30

    A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    addition were evaluated in the dry grind process using GSHE (GSH process). Addition of proteases resulted in higher ethanol concentrations (15.2 to 18.0% v/v) and lower (DDGS) yields (32.9 to 45.8% db) compared to the control (no protease addition). As level of proteases and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Proteases addition reduced required GSHE dose. Ethanol concentrations with protease addition alone were higher than with urea or with addition of both protease and urea. Corn endosperm consists of soft and hard endosperm. More exposed starch granules and rough surfaces produced from soft endosperm compared to hard endosperm will create more surface area which will benefit the solid phase hydrolysis as used in GSH process. In this study, the effects of protease, urea, endosperm hardness and GSHE levels on the GSH process were evaluated. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from dry milling pilot plant. Soft endosperm resulted in higher ethanol concentrations (at 72 hr) compared to ground corn or hard endosperm. Addition of urea increased ethanol concentrations (at 72 hr) for soft and hard endosperm. The effect of protease addition on increasing ethanol concentrations and fermentation rates was more predominant for soft endosperm, less for hard endosperm and least for ground corn. The GSH process with protease resulted in higher ethanol concentration than that with urea. For fermentation of soft endosperm, GSHE dose can be reduced. Ground corn fermented faster at the beginning than hard and soft endosperm due to the presence of inherent nutrients which enhanced yeast growth.

  4. Effects of Trimetaphosphate on Abiotic Formation and Hydrolysis of Peptides

    Directory of Open Access Journals (Sweden)

    Izabela K. Sibilska

    2017-11-01

    Full Text Available The primordial Earth probably had most of the factors needed for the emergence and development of life. It is believed that it had not only water, but also simple inorganic and organic materials. While studies since the 1950s on the origins of organic matter have established key roles for amino acids, conditions that would have promoted their condensation to make polymers, such as peptides or proteins, have yet to be fully defined. The condensation of amino acids in a water-rich environment is not thermodynamically favored. Therefore, the efficient formation of peptides requires the presence of a catalyst or the activation of a substrate. In living cells, the biosynthesis of proteins is assisted by enzymes and requires adenosine triphosphate (ATP, a relatively complex organic polyphosphate, which serves as an energy source. Outside the living organism, simpler inorganic polyphosphates can form active aminoacyl–phosphate anhydrides, which suggests the broader potential of phosphorus for enabling the polymerization of amino acids. However, this has yet to be demonstrated. To address this gap, aqueous solutions containing a simple dipeptide, diglycine, and a simple polyphosphate, trimetaphosphate, were dried, and reaction products were analyzed by high performance liquid chromatography and mass spectrometry (HPLC-MS. Different reaction environments, which were defined by the initial solution composition, pH, temperature, and incubation time, were found to affect the distribution and yield of products. Our results collectively provide strong evidence for reactions that both condense and hydrolyze peptides. It is noteworthy that the co-occurrence of reactions that form and cleave peptides are a central feature of Kauffman’s theory for the emergence of autocatalytic sets, which is a key step in the chemical origins of life.

  5. Elasticity, friction, and pathway of γ-subunit rotation in FoF1-ATP synthase.

    Science.gov (United States)

    Okazaki, Kei-ichi; Hummer, Gerhard

    2015-08-25

    We combine molecular simulations and mechanical modeling to explore the mechanism of energy conversion in the coupled rotary motors of FoF1-ATP synthase. A torsional viscoelastic model with frictional dissipation quantitatively reproduces the dynamics and energetics seen in atomistic molecular dynamics simulations of torque-driven γ-subunit rotation in the F1-ATPase rotary motor. The torsional elastic coefficients determined from the simulations agree with results from independent single-molecule experiments probing different segments of the γ-subunit, which resolves a long-lasting controversy. At steady rotational speeds of ∼ 1 kHz corresponding to experimental turnover, the calculated frictional dissipation of less than k(B)T per rotation is consistent with the high thermodynamic efficiency of the fully reversible motor. Without load, the maximum rotational speed during transitions between dwells is reached at ∼ 1 MHz. Energetic constraints dictate a unique pathway for the coupled rotations of the Fo and F1 rotary motors in ATP synthase, and explain the need for the finer stepping of the F1 motor in the mammalian system, as seen in recent experiments. Compensating for incommensurate eightfold and threefold rotational symmetries in Fo and F1, respectively, a significant fraction of the external mechanical work is transiently stored as elastic energy in the γ-subunit. The general framework developed here should be applicable to other molecular machines.

  6. Activated sludge optimization using ATP in pulp and paper industry.

    Science.gov (United States)

    Bäckman, Göran; Gytel, Ulla

    2015-01-01

    The activated sludge process is an old technology, but still the most commonly used one for treatment of wastewater. Despite the wide spread usage the technology still suffers from instability (Tandoi et al. 2006) and high operating cost. Activated sludge processes often carry a large solids inventory. Managing the total inventory without interference is the key component of the optimization process described in this paper. Use of nutrients is common in pulp and paper effluent treatment. Feeding enough nutrients to support the biomass growth is a delicate balance. Overfeeding or underfeeding of nutrients can result in higher costs. Detrimental substances and toxic components in effluents entering a biological treatment system can cause severe, long lasting disturbances (Hynninen & Ingman 1998; Bergeron & Pelletier 2004). A LumiKem test kit is used to measure biological activity with adenosine triphosphate (ATP) in a pulp and paper mill. ATP data are integrated with other standardized mill parameters. Measurements of active volatile suspended solids based on ATP can be used to quantify the living biomass in the activated sludge process and to ensure that sufficient biomass is present in order to degrade the wastewater constituents entering the process. Information about active biomass will assist in optimizing sludge inventories and feeding of nutrients allowing the living biomass to re-populate to create optimal efficiency. ATP measurements can also be used to alert operators if any components toxic to bacteria are present in wastewater. The bio stress index represents the stress level experienced by the microbiological population. This parameter is very useful in monitoring toxicity in and around bioreactors. Results from the wastewater process optimization and ATP measurements showed that treatment cost could be reduced by approximately 20-30% with fewer disturbances and sustained biological activity compared to the reference period. This was mainly achieved by

  7. Electrofluid hydrolysis enhances the production of fermentable sugars from corncob via in/reverse-phase induced voltage.

    Science.gov (United States)

    Wu, Fengfeng; Jin, Yamei; Li, Dandan; Zhou, Yuyi; Guo, Lunan; Zhang, Mengyue; Xu, Xueming; Yang, Na

    2017-06-01

    To improve the economic value of lignocellulosic biomasses, an innovative electrofluidic technology has been applied to the efficient hydrolysis of corncob. The system combines fluidic reactors and induced voltages via magnetoelectric coupling effect. The excitation voltage had a positive impact on reducing sugar content (RSC). But, the increase of voltage frequency at 400-700Hz caused a slight decline of the RSC. Higher temperature limits the electrical effect on the hydrolysis at 70-80°C. The energy efficiency increased under the addition of metallic ions and series of in-phase induced voltage to promote hydrolysis. In addition, the 4-series system with in-phase and reverse-phase induced voltages under the synchronous magnetic flux, exhibited a significant influence on the RSC with a maximum increase of 56%. High throughput could be achieved by increasing series in a compact system. Electrofluid hydrolysis avoids electrochemical reaction, electrode corrosion, and sample contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. DEXTRINIZED SYRUPS OBTAINING THROUGH THE ENZYMATIC HYDROLYSIS OF SORGHUM STARCH

    Directory of Open Access Journals (Sweden)

    Leyanis Rodríguez Rodríguez

    2015-10-01

    Full Text Available The main objective of this work was the production of syrups dextrinized by enzymatic hydrolysis of starch red sorghum CIAPR-132 using α-amylase on solutions at different concentrations, with different concentrations of enzyme and enzyme hydrolysis time. The response variable was the dextrose equivalent in each obtained syrup (ED using the modified Lane-Eynon method. In some of the experiments, we used a full factorial design 23 and in others we worked with intermediate concentration and higher hydrolysis time with different levels of enzyme. The obtained products were syrups dextrinized ED between 10,25 and 33,97% (values we can find within the established ones for these types of syrups, which can be used for their functional properties as intermediates syrups or as raw material for different processes of the food industry. This allows you to set a pattern for the use of sorghum feedstock in unconventional obtaining products from its starch.

  9. Hydrolysis of Toxic Natural Glucosides Catalyzed by Cyclodextrin Dicyanohydrins

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Nielsen, Erik Holm; Bols, Mikael

    2008-01-01

    The hydrolysis of toxic 7-hydroxycoumarin glucosides and other aryl and alkyl glucosides, catalyzed by modified a- and ß-cyclodextrin dicyanohydrins, was investigated using different UV, redox, or HPAEC detection assays. The catalyzed reactions all followed Michaelis-Menten kinetics, and an impre......The hydrolysis of toxic 7-hydroxycoumarin glucosides and other aryl and alkyl glucosides, catalyzed by modified a- and ß-cyclodextrin dicyanohydrins, was investigated using different UV, redox, or HPAEC detection assays. The catalyzed reactions all followed Michaelis-Menten kinetics...... degree of catalysis was also found for the toxic hydroxycoumarin esculin. A novel synthesized diaminomethyl ß-cyclodextrin showed a weak catalysis of p-nitrophenyl ß-D-glucopyranoside hydrolysis....

  10. Enzyme hydrolysis kinetics of micro-grinded maize straws.

    Science.gov (United States)

    Hu, Jianjun; Jing, Yanyan; Zhang, Quanguo; Guo, Jie; Lee, Duu-Jong

    2017-09-01

    This study applied micro-grinding to disintegrate the maize straws and then use the micro-grinded straws of particle sizes particle size 53-61, 80-96 or 150-180μm, for subsequent enzyme hydrolysis tests. The reducing sugar productivity was increased with reducing particle size. A kinetic model considering product inhibition was developed as follows t=aln[S]0[S]0-[P]+b[P], where S, P and t are the substrate, enzyme and hydrolysis time, respectively, and a and b are fitting parameters. The initial substrate concentration is proportional to the total exposed surface area. Additionally, the mechanical grinding can increase the biomass affinity for enzyme attack, suggesting the enhanced local action of shearing on the fiber matrix surfaces. The enhanced hydrolysis efficiency of the micro-grinded straws is welcomed by the subsequent refinery steps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    Science.gov (United States)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  12. An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes.

    Science.gov (United States)

    Redwood, Mark D; Orozco, Rafael L; Majewski, Artur J; Macaskie, Lynne E

    2012-09-01

    An Integrated Biohydrogen Refinery (IBHR) and experimental net energy analysis are reported. The IBHR converts biomass to electricity using hydrothermal hydrolysis, extractive biohydrogen fermentation and photobiological hydrogen fermentation for electricity generation in a fuel cell. An extractive fermentation, developed previously, is applied to waste-derived substrates following hydrothermal pre-treatment, achieving 83-99% biowaste destruction. The selective separation of organic acids from waste-fed fermentations provided suitable substrate for photofermentative hydrogen production, which enhanced the gross energy generation up to 11-fold. Therefore, electrodialysis provides the key link in an IBHR for 'waste to energy'. The IBHR compares favourably to 'renewables' (photovoltaics, on-shore wind, crop-derived biofuels) and also emerging biotechnological options (microbial electrolysis) and anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Understanding the hydrolysis mechanism of ethyl acetate catalyzed by an aqueous molybdocene: a computational chemistry investigation.

    Science.gov (United States)

    Tílvez, Elkin; Cárdenas-Jirón, Gloria I; Menéndez, María I; López, Ramón

    2015-02-16

    A thoroughly mechanistic investigation on the [Cp2Mo(OH)(OH2)](+)-catalyzed hydrolysis of ethyl acetate has been performed using density functional theory methodology together with continuum and discrete-continuum solvation models. The use of explicit water molecules in the PCM-B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP for Mo)//PCM-B3LYP/aug-cc-pVDZ (aug-cc-pVDZ-PP for Mo) computations is crucial to show that the intramolecular hydroxo ligand attack is the preferred mechanism in agreement with experimental suggestions. Besides, the most stable intermediate located along this mechanism is analogous to that experimentally reported for the norbornenyl acetate hydrolysis catalyzed by molybdocenes. The three most relevant steps are the formation and cleavage of the tetrahedral intermediate immediately formed after the hydroxo ligand attack and the acetic acid formation, with the second one being the rate-determining step with a Gibbs energy barrier of 36.7 kcal/mol. Among several functionals checked, B3LYP-D3 and M06 give the best agreement with experiment as the rate-determining Gibbs energy barrier obtained only differs 0.2 and 0.7 kcal/mol, respectively, from that derived from the experimental kinetic constant measured at 296.15 K. In both cases, the acetic acid elimination becomes now the rate-determining step of the overall process as it is 0.4 kcal/mol less stable than the tetrahedral intermediate cleavage. Apart from clarifying the identity of the cyclic intermediate and discarding the tetrahedral intermediate formation as the rate-determining step for the mechanism of the acetyl acetate hydrolysis catalyzed by molybdocenes, the small difference in the Gibbs energy barrier found between the acetic acid formation and the tetrahedral intermediate cleavage also uncovers that the rate-determining step could change when studying the reactivity of carboxylic esters other than ethyl acetate substrate specific toward molybdocenes or other transition metal complexes. Therefore

  14. Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review.

    Science.gov (United States)

    Jeoh, Tina; Cardona, Maria J; Karuna, Nardrapee; Mudinoor, Akshata R; Nill, Jennifer

    2017-07-01

    Bioconversion of lignocellulose forms the basis for renewable, advanced biofuels, and bioproducts. Mechanisms of hydrolysis of cellulose by cellulases have been actively studied for nearly 70 years with significant gains in understanding of the cellulolytic enzymes. Yet, a full mechanistic understanding of the hydrolysis reaction has been elusive. We present a review to highlight new insights gained since the most recent comprehensive review of cellulose hydrolysis kinetic models by Bansal et al. (2009) Biotechnol Adv 27:833-848. Recent models have taken a two-pronged approach to tackle the challenge of modeling the complex heterogeneous reaction-an enzyme-centric modeling approach centered on the molecularity of the cellulase-cellulose interactions to examine rate limiting elementary steps and a substrate-centric modeling approach aimed at capturing the limiting property of the insoluble cellulose substrate. Collectively, modeling results suggest that at the molecular-scale, how rapidly cellulases can bind productively (complexation) and release from cellulose (decomplexation) is limiting, while the overall hydrolysis rate is largely insensitive to the catalytic rate constant. The surface area of the insoluble substrate and the degrees of polymerization of the cellulose molecules in the reaction both limit initial hydrolysis rates only. Neither enzyme-centric models nor substrate-centric models can consistently capture hydrolysis time course at extended reaction times. Thus, questions of the true reaction limiting factors at extended reaction times and the role of complexation and decomplexation in rate limitation remain unresolved. Biotechnol. Bioeng. 2017;114: 1369-1385. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. A new type of Na(+-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif.

    Directory of Open Access Journals (Sweden)

    Sarah Schulz

    Full Text Available The anaerobic bacterium Fusobacterium nucleatum uses glutamate decarboxylation to generate a transmembrane gradient of Na⁺. Here, we demonstrate that this ion-motive force is directly coupled to ATP synthesis, via an F₁F₀-ATP synthase with a novel Na⁺ recognition motif, shared by other human pathogens. Molecular modeling and free-energy simulations of the rotary element of the enzyme, the c-ring, indicate Na⁺ specificity in physiological settings. Consistently, activity measurements showed Na⁺ stimulation of the enzyme, either membrane-embedded or isolated, and ATP synthesis was sensitive to the Na⁺ ionophore monensin. Furthermore, Na⁺ has a protective effect against inhibitors targeting the ion-binding sites, both in the complete ATP synthase and the isolated c-ring. Definitive evidence of Na⁺ coupling is provided by two identical crystal structures of the c₁₁ ring, solved by X-ray crystallography at 2.2 and 2.6 Å resolution, at pH 5.3 and 8.7, respectively. Na⁺ ions occupy all binding sites, each coordinated by four amino acids and a water molecule. Intriguingly, two carboxylates instead of one mediate ion binding. Simulations and experiments demonstrate that this motif implies that a proton is concurrently bound to all sites, although Na⁺ alone drives the rotary mechanism. The structure thus reveals a new mode of ion coupling in ATP synthases and provides a basis for drug-design efforts against this opportunistic pathogen.

  16. Calmodulin antagonists decrease glucose 1,6-bisphosphate, fructose 1,6-bisphosphate, ATP and viability of melanoma cells.

    Science.gov (United States)

    Glass-Marmor, L; Morgenstern, H; Beitner, R

    1996-10-17

    Glycolysis is known to be the primary energy source in cancer cells. We investigated here the effect of four different calmodulin antagonists: thioridazine (10-[2-(1-methyl-2-piperidyl) ethyl]-2-methylthiophenothiazine), CGS 9343B (1,3-dihydro-1-[1-[(4-methyl-4H,6H-pyrrolo[1,2-a] [4,1]-benzoxazepin-4-yl)methyl]-4-piperidinyl]-2 H-benzimidazol-2-one (1:1) maleate), clotrimazole (1-(alpha-2-chlorotrityl)imidazole) and bifonazole (1-(alpha-biphenyl-4-ylbenzyl)imidazole), on the levels of glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, the two stimulatory signal molecules of glycolysis, and on ATP content and cell viability in B16 melanoma cells. We found that all four substances significantly reduced the levels of glucose 1,6-bisphosphate, fructose 1,6-bisphosphate and ATP, in a dose- and time-dependent manner. Cell viability was reduced in a close correlation with the fall in ATP. The decrease in glucose 1,6-bisphosphate and fructose 1,6-bisphosphate did not result from the cytotoxic effects of the calmodulin antagonists, since their content was already reduced before any cytotoxic effect was observed. These findings suggest that the fall in the levels of the two signal molecules of glycolysis, induced by the calmodulin antagonists, causes a reduction in glycolysis and ATP levels, which eventually leads to cell death. Since cell proliferation was also reported to be inhibited by calmodulin antagonists, these substances are most promising agents in treatment of cancer by inhibiting both cell proliferation and the glycolytic supply of ATP required for cell growth.

  17. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon

    2014-01-01

    Mechanical agitation during enzymatic hydrolysis of insoluble plant biomass at high dry matter contents is indispensable for the initial liquefaction step in biorefining. It is known that particle size reduction is an important part of liquefaction, but the mechanisms involved are poorly understood....... Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry...

  18. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied......, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...

  19. Visualizing phosphodiester-bond hydrolysis by an endonuclease

    DEFF Research Database (Denmark)

    Molina, Rafael; Stella, Stefano; Redondo, Pilar

    2015-01-01

    The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two....... This third metal ion has a crucial role, triggering the consecutive hydrolysis of the targeted phosphodiester bonds in the DNA strands and leaving its position once the DSB is generated. The multiple structures show the orchestrated conformational changes in the protein residues, nucleotides and metals...

  20. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

    Directory of Open Access Journals (Sweden)

    Jonathon eTelianidis

    2013-08-01

    Full Text Available Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-Type ATPases (copper-ATPases, ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  1. Electrochemistry of ATP-capped silver nanoparticles in layer-by-layer multilayer films

    Science.gov (United States)

    Singh, Poonam; Solomon, Virgil C.; Buttry, Daniel A.

    2014-07-01

    Colloidal silver nanoparticles (Ag NPs) capped with adenosine triphosphate (ATP) were prepared using borohydride reduction of Ag+ in the presence of ATP. Subsequent characterization was done using transmission electron microscopy/high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and non-contact atomic force microscopy (NcAFM) confirming the size and composition of the Ag NPs. This report focuses on two topics: (1) the change in NP size and properties as a function of molar ratios of Ag+ to ATP capping ligand to BH4 - reductant, and (2) the electrochemical behavior of the NPs in layer-by-layer (LbL) multilayer films. On the basis of electrostatic interaction between negatively charged phosphate groups on Ag NPs and positively charged poly(diallyldimethylammonium) hydrochloride, NPs were immobilized on 3-mercaptopropionic acid (MCP)-functionalized gold electrodes using LbL assembly method followed by characterization of the film using NcAFM. Furthermore, the redox chemistry for phase transformations of immobilized Ag NPs to AgCl or Ag2O in multilayer films was examined using cyclic voltammetry (CV) in NaOH and NaCl solutions. A non-linear increase of charge with an increase in the number of bilayers in the film was observed up to five layers. Underpotential deposition of Pb on multilayer film of Ag NPs confirmed the presence of Ag in multilayer films. The stability of the LbL film toward electrochemical cycling to higher potentials (i.e., +0.8 V) in NaOH solutions was evaluated.

  2. Studies towards the synthesis of ATP analogs as potential glutamine synthetase inhibitors

    CSIR Research Space (South Africa)

    Salisu, S

    2011-05-01

    Full Text Available In research directed at the development of adenine triphosphate (ATP) analogs as potential glutamine synthetase (GS) inhibitors, adenine and allopurinol derivatives have been synthesized either as novel ATP analogs or as scaffolds...

  3. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    M Florencia Leal Denis

    Full Text Available The peptide mastoparan 7 (MST7 triggered in human erythrocytes (rbcs the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe, interacting with P (purinergic receptors, can affect cell volume (Vr, we explored the dynamic regulation between Vr and ATPe.We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors.In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40-50% and swelling by 40-60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%.Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop underlying ATP-induced ATP release of rbcs.

  4. Dephosphorylation of the Core Clock Protein KaiC in the Cyanobacterial KaiABC Circadian Oscillator Proceeds via an ATP Synthase Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Egli, Martin; Mori, Tetsuya; Pattanayek, Rekha; Xu, Yao; Qin, Ximing; Johnson, Carl H. (Vanderbilt)

    2014-10-02

    The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro from three proteins, KaiA, KaiB, and KaiC in the presence of ATP, to tick in a temperature-compensated manner. KaiC, the central cog of this oscillator, forms a homohexamer with 12 ATP molecules bound between its N- and C-terminal domains and exhibits unusual properties. Both the N-terminal (CI) and C-terminal (CII) domains harbor ATPase activity, and the subunit interfaces between CII domains are the sites of autokinase and autophosphatase activities. Hydrolysis of ATP correlates with phosphorylation at threonine and serine sites across subunits in an orchestrated manner, such that first T432 and then S431 are phosphorylated, followed by dephosphorylation of these residues in the same order. Although structural work has provided insight into the mechanisms of ATPase and kinase, the location and mechanism of the phosphatase have remained enigmatic. From the available experimental data based on a range of approaches, including KaiC crystal structures and small-angle X-ray scattering models, metal ion dependence, site-directed mutagenesis (i.e., E318, the general base), and measurements of the associated clock periods, phosphorylation patterns, and dephosphorylation courses as well as a lack of sequence motifs in KaiC that are typically associated with known phosphatases, we hypothesized that KaiCII makes use of the same active site for phosphorylation and dephosphorlyation. We observed that wild-type KaiC (wt-KaiC) exhibits an ATP synthase activity that is significantly reduced in the T432A/S431A mutant. We interpret the first observation as evidence that KaiCII is a phosphotransferase instead of a phosphatase and the second that the enzyme is capable of generating ATP, both from ADP and P{sub i} (in a reversal of the ATPase reaction) and from ADP and P-T432/P-S431 (dephosphorylation). This new concept regarding the mechanism of dephosphorylation is also supported by the

  5. Energy metabolism in rat mast cells in relation to histamine secretion

    DEFF Research Database (Denmark)

    Johansen, T

    1987-01-01

    1. The relation between the energy metabolism and the secretory activity of rat peritoneal mast cells has been studied by determination of the cellular content of ATP and the rate of lactate production reflecting the rate of ATP synthesis under various experimental conditions. Secretion...... and the cellular ATP content at the time of cell activation was demonstrated. This may indicate a direct link between ATP and the secretory mechanism. 3. The possibility of an increased utilization of ATP during histamine secretion was explored in mast cells exposed to metabolic inhibitors. Incubation of mast...... cells with 2-deoxyglucose (2-DG) decreased the ATP content of the cells, and a long-lasting and stable level of mast cell ATP was observed. This is explained by a small decrease in the rate of ATP-synthesis by 2-DG. In 2-DG-treated cells secretion of histamine in response to compound 48...

  6. OH-initiated transformation and hydrolysis of aspirin in AOPs system: DFT and experimental studies.

    Science.gov (United States)

    He, Lin; Sun, Xiaomin; Zhu, Fanping; Ren, Shaojie; Wang, Shuguang

    2017-08-15

    Advanced oxidation processes (AOPs) are widely used in wastewater treatment of pharmaceutical and personal care products (PPCPs). In this work, the OH-initiated transformation as well as the hydrolysis of a typical PPCPs, aspirin, was investigated using density functional theory (DFT) calculations and laboratory experiments. For DFT calculations, the frontier electron densities and bond dissociation energies were analyzed. Profiles of the potential energy surface were constructed, and all the possible pathways were discussed. Additionally, rate constants for each pathway were calculated with transition state theory (TST) method. UV/H 2 O 2 experiments of aspirin were performed and degradation intermediates were identified by UPLC-MS-MS analysis. Different findings from previous experimental works were reported that the H-abstraction pathways at methyl position were dominated and OH-addition pathways on benzene ring were also favored. Meantime, hydroxyl ASA was confirmed as the main stable intermediate. Moreover, it was the first time to use DFT method to investigate the hydrolysis mechanisms of organic ester compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The influence of ferric (III citrate on ATP-hydrolases of Desulfuromonas acetoxidans ІМV В-7384

    Directory of Open Access Journals (Sweden)

    O. Maslovska

    2013-02-01

    Full Text Available Desulfuromonas acetoxidans obtains energy for growth by the anaerobic oxidation of organic compounds with the carbon dioxide formation. It was found that ferrum and manganese are used as terminal electron acceptors in the processes of anaerobic respiration, such as dissimilative Fe3+- and Mn4+-reduction, carried out by these bacteria (Lovely, 1991. D. acetoxidans ІМV B-7384 can be used as anode biocatalyst in microbial fuel cell with high electron recovery through acetate oxidation to the electric current as a result of electron transfer to the anode or 3d-type transition metals, such as ferrum and manganese, in the process of their reduction. Investigation of biochemical changes of D. acetoxidans ІМV B-7384 under the influence of Fe (III compounds is important for optimization of the process of bacterial electricity generation. ATP-hydrolase is located in cytoplasmic membrane, and its subunits are exposed to both the cytoplasm and the external environment. Therefore, the changes of that enzyme activity can be used as an indicator of various stress exposure. Presence of ferric iron ions in the bacterial growth medium could catalyze generation of organic reactive oxygen species, such as peroxyl (ROO- and alkoxyl (RO- radicals. Lipid peroxidation is one of the main reasons of cell damage and it’s following death under the influence of reactive oxygen metabolites. It is known that lipid peroxidation and membrane transport processes are somehow interrelated, but mechanisms of such interaction are still unidentified. In our previous researche we have shown the influence of ferric (III citrate on the intensity of lipid peroxidation of D. аcetoxidans ІМV В-7384. Significant increase of the content of lipid peroxidation products (lipid hydroperoxides, conjugated dienes and malondialdehyde in bacterial cells has been observed under the addition of ferric (III citrate into the cultural medium. The increase of the concentration of lipid

  8. The dynamic equilibrium between ATP synthesis and ATP consumption is lower in isolated mitochondria from myotubes established from type 2 diabetic subjects compared to lean control

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2011-01-01

    selects the mitochondria based on an antibody recognizing the mitochondrial outer membrane and not by size through gradient centrifugation. The dynamic equilibrium between ATP synthesis and ATP consumption is 35% lower in isolated mitochondria from myotubes established from type 2 diabetic subjects...... or not in the mitochondria of diabetic skeletal muscle from subjects with type 2 diabetes. ATP synthesis was measured on mitochondria isolated from cultured myotubes established from lean (11/9), obese (9/11) and subjects with type 2 diabetes (9/11) (female/male, n=20 in each group), precultured under normophysiological...... compared to lean control. The ATP synthesis rate without ATP consumption was not different between groups and there were no significant gender differences. The mitochondrial dysfunction in type 2 diabetes in vivo is partly based on a primarily impaired ATP synthesis....

  9. Engineering a light-controlled F1 ATPase using structure-based protein design

    National Research Council Canada - National Science Library

    Hoersch, Daniel

    2016-01-01

    The F1 sub-complex of ATP synthase is a biological nanomotor that converts the free energy of ATP hydrolysis into mechanical work with an astonishing efficiency of up to 100% (Kinosita et al., 2000...

  10. Wilson Disease Protein ATP7B Utilizes Lysosomal Exocytosis to Maintain Copper Homeostasis

    NARCIS (Netherlands)

    Polishchuk, Elena V.; Concilli, Mafalda; Iacobacci, Simona; Chesi, Giancarlo; Pastore, Nunzia; Piccolo, Pasquale; Paladino, Simona; Baldantoni, Daniela; van IJzendoorn, Sven C. D.; Chan, Jefferson; Chang, Christopher J.; Amoresano, Angela; Pane, Francesca; Pucci, Piero; Tarallo, Antonietta; Parenti, Giancarlo; Brunetti-Pierri, Nicola; Settembre, Carmine; Ballabio, Andrea; Polishchuk, Roman S.

    2014-01-01

    Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we

  11. Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction

    DEFF Research Database (Denmark)

    Kringelbach, Tina M.; Aslan, Derya; Novak, Ivana

    2015-01-01

    effects on bone remodeling. Therefore, we hypothesized that ATP signaling is also applied by osteocytes in mechanotransduction. We applied a short fluid pulse on MLO-Y4 osteocyte-like cells during real-time detection of ATP and demonstrated that mechanical stimulation activates the acute release of ATP...

  12. A rapid and convenient method for preparing salt-free (. gamma. -/sup 32/P)ATP

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, J.L.; Avruch, J.

    1981-09-15

    (..gamma..-/sup 32/P)ATP is prepared by an existing enzymatic method that yields approximately 95% incorporation of /sup 32/P into ATP. A rapid and convenient method for purifying the (..gamma..-/sup 32/P)ATP which results in a product free of both salt and buffer is reported.

  13. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin

    Directory of Open Access Journals (Sweden)

    Romina Baaske

    2016-12-01

    Full Text Available Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla. This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L, which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin.

  14. P2Y Receptor Modulation of ATP Release in the Urothelium

    Directory of Open Access Journals (Sweden)

    Kylie J. Mansfield

    2014-01-01

    Full Text Available The release of ATP from the urothelium in response to stretch during filling demonstrates the importance of the purinergic system for the physiological functioning of the bladder. This study examined the effect of P2 receptor agonists on ATP release from two urothelial cell lines (RT4 and UROtsa cells. Hypotonic Krebs was used as a stretch stimulus. Incubation of urothelial cells with high concentrations of the P2Y agonist ADP induced ATP release to a level that was 40-fold greater than hypotonic-stimulated ATP release (P < 0.0011, ADP EC50 1.8 µM. Similarly, an increase in ATP release was also observed with the P2Y agonist, UTP, up to a maximum of 70% of the hypotonic response (EC50 0.62 µM. Selective P2 receptor agonists, αβ-methylene-ATP, ATP-γ-S, and 2-methylthio-ADP had minimal effects on ATP release. ADP-stimulated ATP release was significantly inhibited by suramin (100 µM, P = 0.002. RT4 urothelial cells break down nucleotides (100 µM including ATP, ADP, and UTP to liberate phosphate. Phosphate liberation was also demonstrated from endogenous nucleotides with approximately 10% of the released ATP broken down during the incubation. These studies demonstrate a role for P2Y receptor activation in stimulation of ATP release and emphasize the complexity of urothelial P2 receptor signalling.

  15. Glycolysis and ATP degradation in cod ( Gadus morhua ) at subzero temperatures in relation to thaw rigor

    DEFF Research Database (Denmark)

    Cappeln, Gertrud; Jessen, Flemming

    2001-01-01

    Glycolysis was shown to occur during freezing of cod of decrease in glycogen and an increase in lactate. In addition, the ATP content decreased during freezing. Synthesis of ATP was measured as degradation of glycogen. During storage at -9 and - 12 degreesC it was found that degradation of ATP...

  16. Ionotropic ATP receptors in neuronal-glial communication.

    Science.gov (United States)

    Lalo, Ulyana; Verkhratsky, Alexei; Pankratov, Yuri

    2011-04-01

    In the central nervous system ATP is released from both neurones and astroglial cells acting as a homo- and heterocellular neurotransmitter. Glial cells express numerous purinoceptors of both ionotropic (P2X) and metabotropic (P2Y) varieties. Astroglial P2X receptors can be activated by ongoing synaptic transmission and can mediate fast local signalling through elevation in cytoplasmic Ca(2+) and Na(+) concentrations. These ionic signals can be translated into various physiological messages by numerous pathways, including release of gliotransmitters, metabolic support of neurones and regulation of activity of postsynaptic glutamate and GABA receptors. Ionotropic purinoceptors represent a novel pathway of glia-driven modulation of synaptic signalling that involves the release of ATP from neurones and astrocytes followed by activation of P2X receptors which can regulate synaptic activity by variety of mechanisms expressed in both neuronal and glial compartments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Motor pathway excitability in ATP13A2 mutation carriers

    DEFF Research Database (Denmark)

    Zittel, S; Kroeger, J; van der Vegt, J P M

    2012-01-01

    OBJECTIVE: To describe excitability of motor pathways in Kufor-Rakeb syndrome (PARK9), an autosomal recessive nigro-striatal-pallidal-pyramidal neurodegeneration caused by a mutation in the ATP13A2 gene, using transcranial magnetic stimulation (TMS). METHODS: Five members of a Chilean family...... with an ATP13A2 mutation (one affected mutation carrier (MC) with a compound heterozygous mutation, 4 asymptomatic MC with a single heterozygous mutation) and 11 healthy subjects without mutations were studied. We measured motor evoked potentials (MEP), the contralateral silent period (cSP), short interval...... intracortical inhibition (SICI), intracortical facilitation (ICF), short latency afferent inhibition (SAI) as markers of intracortical intrahemispheric inhibition/facilitation and the ipsilateral silent period (iSP) and paired-pulse interhemispheric inhibition (IHI) to probe interhemispheric motor interactions...

  18. Kinetics of signaling-DNA-aptamer-ATP binding

    Science.gov (United States)

    Nakamura, Issei; Shi, An-Chang; Nutiu, Razvan; Yu, Jasmine M. Y.; Li, Yingfu

    2009-03-01

    DNA a