An atomistic-continuum hybrid simulation of fluid flows over superhydrophobic surfaces
LI Qiang; He, Guo-Wei
2009-01-01
Recent experiments have found that slip length could be as large as on the order of 1 μm for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption i...
Atomistic-Continuum Hybrid Simulation of Heat Transfer between Argon Flow and Copper Plates
Mao, Yijin; Chen, C L
2016-01-01
A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic-continuum hybrid method. Navier-Stokes equations for continuum domain are solved through the Pressure Implicit with Splitting of Operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. With both momentum and energy coupling method applied, simulations on convection of argon flows between two parallel plates are performed. The top plate is kept as a constant velocity and has higher temperature, while the lower one, which is modeled with FCC copper lattices, is also fixed but has lower temperature. It is found that, heat transfer between argon fluid flow and copper plate in this situation is much higher than that at macroscopic when the flow is fully developed.
A robust, coupled approach for atomistic-continuum simulation.
Energy Technology Data Exchange (ETDEWEB)
Aubry, Sylvie; Webb, Edmund Blackburn, III (Sandia National Laboratories, Albuquerque, NM); Wagner, Gregory John; Klein, Patrick A.; Jones, Reese E.; Zimmerman, Jonathan A.; Bammann, Douglas J.; Hoyt, Jeffrey John (Sandia National Laboratories, Albuquerque, NM); Kimmer, Christopher J.
2004-09-01
This report is a collection of documents written by the group members of the Engineering Sciences Research Foundation (ESRF), Laboratory Directed Research and Development (LDRD) project titled 'A Robust, Coupled Approach to Atomistic-Continuum Simulation'. Presented in this document is the development of a formulation for performing quasistatic, coupled, atomistic-continuum simulation that includes cross terms in the equilibrium equations that arise due to kinematic coupling and corrections used for the calculation of system potential energy to account for continuum elements that overlap regions containing atomic bonds, evaluations of thermo-mechanical continuum quantities calculated within atomistic simulations including measures of stress, temperature and heat flux, calculation used to determine the appropriate spatial and time averaging necessary to enable these atomistically-defined expressions to have the same physical meaning as their continuum counterparts, and a formulation to quantify a continuum 'temperature field', the first step towards constructing a coupled atomistic-continuum approach capable of finite temperature and dynamic analyses.
Wu, C. -J.; Chou, C. -Y.; Han, C. -N.; Chiang, K.-N.
2006-01-01
This paper the utilizes atomistic-continuum mechanics (ACM) to investigate the mechanical properties of single-walled carbon nanotubes (SWCNTs). By establishing a linkage between structural mechanics and molecular mechanics, not only the Young's moduli could be obtained but also the modal analysis could be achieved. In addition, according to atomistic-continuum mechanics and finite element method, an effective atomistic-continuum model is constructed to investigate the above two mechanical pr...
Control of density fluctuations in atomistic-continuum simulations of dense liquids
DEFF Research Database (Denmark)
Kotsalis, E.M.; Walther, Jens Honore; Koumoutsakos, P.
2007-01-01
continuum solver for the simulation of the Navier-Stokes equations. The lack of periodic boundary conditions in the molecular dynamics simulations hinders the proper accounting for the virial pressure leading to spurious density fluctuations at the continuum-atomistic interface. An ad hoc boundary force is...... usually employed to remedy this situation.We propose the calculation of this boundary force using a control algorithm that explicitly cancels the density fluctuations. The results demonstrate that the present approach outperforms state-of-the-art algorithms. The conceptual and algorithmic simplicity of...
A Spectral Multiscale Method for Wave Propagation Analysis: Atomistic-Continuum Coupled Simulation
Patra, Amit K; Ganguli, Ranjan
2014-01-01
In this paper, we present a new multiscale method which is capable of coupling atomistic and continuum domains for high frequency wave propagation analysis. The problem of non-physical wave reflection, which occurs due to the change in system description across the interface between two scales, can be satisfactorily overcome by the proposed method. We propose an efficient spectral domain decomposition of the total fine scale displacement along with a potent macroscale equation in the Laplace domain to eliminate the spurious interfacial reflection. We use Laplace transform based spectral finite element method to model the macroscale, which provides the optimum approximations for required dynamic responses of the outer atoms of the simulated microscale region very accurately. This new method shows excellent agreement between the proposed multiscale model and the full molecular dynamics (MD) results. Numerical experiments of wave propagation in a 1D harmonic lattice, a 1D lattice with Lennard-Jones potential, a ...
Directory of Open Access Journals (Sweden)
Luciano T. Costa
2010-01-01
Full Text Available Computational methods for the calculation of dynamical properties of fluids might consider the system as a continuum or as an assembly of molecules. Molecular dynamics (MD simulation includes molecular resolution, whereas computational fluid dynamics (CFD considers the fluid as a continuum. This work provides a review of hybrid methods MD/CFD recently proposed in the literature. Theoretical foundations, basic approaches of computational methods, and dynamical properties typically calculated by MD and CFD are first presented in order to appreciate the similarities and differences between these two methods. Then, methods for coupling MD and CFD, and applications of hybrid simulations MD/CFD, are presented.
Energy Technology Data Exchange (ETDEWEB)
Guo, Jianwen; Zhang, Guojun; Huang, Yu; Ming, Wuyi; Liu, Min; Huang, Hao, E-mail: huanghaohust1990@gmail.com
2014-10-01
Highlights: • An atomistic-continuum computational simulation model for single-discharge micro-EDM process of Cu cathode is constructed. • Cathode material is removed mainly in the form of single atoms or small clusters in micro-EDM. • Electric action leads to the formation of peaks on the surface of crater. • Removing process of cathode material under the hybrid action combining the thermal action and the electric action is studied, and the strength of either action needed for material to remove is much reduced. - Abstract: In micro-electrical discharge machining (micro-EDM), the discharge duration is ultra-short, and both the electric action and the thermal action by the discharge channel play important roles in the removing process of cathode material. However, in most researches on the machining mechanism of micro-EDM, only the thermal action is concerned. In this article, a combined atomistic-continuum modeling method in which the two-temperature model and the molecular dynamics simulation model are integrated is used to construct the simulation model for cathode in single-discharge micro-EDM process. With this simulation model, removing processes of Cu cathode material in micro-EDM under pure thermal action, pure electric action and the combination of them are investigated in a simulative way. By analyzing evolutions of temperature, stress and micro-structure of material as well as the dynamical behaviors of material in the removing process, mechanisms of the cathode material removal and crater formation are revealed. In addition, the removing process of cathode material under the combination of pure thermal action and pure electric action is compared with those under the two pure actions respectively to analyze the interactive effect between the thermal action and the electric action.
International Nuclear Information System (INIS)
Highlights: • An atomistic-continuum computational simulation model for single-discharge micro-EDM process of Cu cathode is constructed. • Cathode material is removed mainly in the form of single atoms or small clusters in micro-EDM. • Electric action leads to the formation of peaks on the surface of crater. • Removing process of cathode material under the hybrid action combining the thermal action and the electric action is studied, and the strength of either action needed for material to remove is much reduced. - Abstract: In micro-electrical discharge machining (micro-EDM), the discharge duration is ultra-short, and both the electric action and the thermal action by the discharge channel play important roles in the removing process of cathode material. However, in most researches on the machining mechanism of micro-EDM, only the thermal action is concerned. In this article, a combined atomistic-continuum modeling method in which the two-temperature model and the molecular dynamics simulation model are integrated is used to construct the simulation model for cathode in single-discharge micro-EDM process. With this simulation model, removing processes of Cu cathode material in micro-EDM under pure thermal action, pure electric action and the combination of them are investigated in a simulative way. By analyzing evolutions of temperature, stress and micro-structure of material as well as the dynamical behaviors of material in the removing process, mechanisms of the cathode material removal and crater formation are revealed. In addition, the removing process of cathode material under the combination of pure thermal action and pure electric action is compared with those under the two pure actions respectively to analyze the interactive effect between the thermal action and the electric action
International Nuclear Information System (INIS)
Submicron-sized samples with 42,000 finite elements containing up to ∼86 million atoms have been simulated using a concurrent atomistic-continuum method. The simulations reproduce not only nucleation and growth of semicircular dislocation loops in Cu and Al, but also hexagonal shuffle dislocation loops in Si, with the loop radius approaching ∼75 nm. Details of leading and trailing partial dislocations connected by intrinsic stacking faults, dislocation loop coalescence through annihilation, and formation of junctions are reproduced.
New Developments in the Embedded Statistical Coupling Method: Atomistic/Continuum Crack Propagation
Saether, E.; Yamakov, V.; Glaessgen, E.
2008-01-01
A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain has been enhanced. The concurrent MD-FEM coupling methodology uses statistical averaging of the deformation of the atomistic MD domain to provide interface displacement boundary conditions to the surrounding continuum FEM region, which, in turn, generates interface reaction forces that are applied as piecewise constant traction boundary conditions to the MD domain. The enhancement is based on the addition of molecular dynamics-based cohesive zone model (CZM) elements near the MD-FEM interface. The CZM elements are a continuum interpretation of the traction-displacement relationships taken from MD simulations using Cohesive Zone Volume Elements (CZVE). The addition of CZM elements to the concurrent MD-FEM analysis provides a consistent set of atomistically-based cohesive properties within the finite element region near the growing crack. Another set of CZVEs are then used to extract revised CZM relationships from the enhanced embedded statistical coupling method (ESCM) simulation of an edge crack under uniaxial loading.
International Nuclear Information System (INIS)
Nano-electrical discharge machining (nano-EDM) is an attractive measure to manufacture parts with nanoscale precision, however, due to the incompleteness of its theories, the development of more advanced nano-EDM technology is impeded. In this paper, a computational simulation model combining the molecular dynamics simulation model and the two-temperature model for single discharge process in nano-EDM is constructed to study the machining mechanism of nano-EDM from the thermal point of view. The melting process is analyzed. Before the heated material gets melted, thermal compressive stress higher than 3 GPa is induced. After the material gets melted, the compressive stress gets relieved. The cooling and solidifying processes are also analyzed. It is found that during the cooling process of the melted material, tensile stress higher than 3 GPa arises, which leads to the disintegration of material. The formation of the white layer is attributed to the homogeneous solidification, and additionally, the resultant residual stress is analyzed.
Magnetosheath plasma expansion: Hybrid simulations
Czech Academy of Sciences Publication Activity Database
Trávníček, Pavel; Hellinger, Petr; Taylor, M. G. G. T.; Escoubet, C. P.; Dandouras, I.; Lucek, E.
2007-01-01
Roč. 34, č. 15 (2007), L15104/1-L15104/5. ISSN 0094-8276 R&D Projects: GA ČR GA205/05/1011; GA AV ČR IAA300420602 Institutional research plan: CEZ:AV0Z30420517 Keywords : numerical simulations * marginal stability * mirror instability * proton cyclotron instability * hybrid simulations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.744, year: 2007
Hybrid2 - The hybrid power system simulation model
Energy Technology Data Exchange (ETDEWEB)
Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)
1996-12-31
There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.
A hybrid cardiovascular simulator for VAD training.
Zielinski, Krzysztof; Kozarski, Maciej; Fresiello, Libera; Di Molfetta, Arianna; Ferrari, Gianfranco; Peristeris, Spiros; Darowski, Marek
2014-01-01
Aim: The use of VAD training is a relevant issue involving physicians, care givers and, to some extent, patients. The aim of this work is the development of a hybrid (hydro-computational) cardiovascular simulator (HCS) as a support to learning of VAD control and of VAD-circulatory system interactions. Methods: The model is a component of a comprehensive platform aimed at VAD training. It consists of the lumped parameter computational circulatory model and the hybrid (hydro-computational) inte...
Numerical simulation of lower hybrid wave propagation
International Nuclear Information System (INIS)
Concerning the LHRH (Lower Hybrid Resonance Heating) in a tokamak, a numerical simulation is made of the propagation of a lower hybrid wave. By solving the system of two-fluid equations and Poisson's equation, ray trajectories of the lower hybrid waves are traced. The cases of cold plasma approximation, linear approximation and nonlinear two-fluid model are examined. The effect of density fluctuation due to the presence of a drift wave on the conical ray trajectories is also studied. Only the preliminary results are presented in this report. (auth.)
Hybrid simulation models of production networks
Kouikoglou, Vassilis S
2001-01-01
This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.
Simulated Annealing using Hybrid Monte Carlo
Salazar, Rafael; Toral, Raúl
1997-01-01
We propose a variant of the simulated annealing method for optimization in the multivariate analysis of differentiable functions. The method uses global actualizations via the hybrid Monte Carlo algorithm in their generalized version for the proposal of new configurations. We show how this choice can improve upon the performance of simulated annealing methods (mainly when the number of variables is large) by allowing a more effective searching scheme and a faster annealing schedule.
TRNSYS HYBRID wind diesel PV simulator
Energy Technology Data Exchange (ETDEWEB)
Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)
1996-12-31
The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.
Hybrid Simulations of Particle Acceleration at Shocks
Energy Technology Data Exchange (ETDEWEB)
Caprioli, Damiano
2014-11-15
We present the results of large hybrid (kinetic ions – fluid electrons) simulations of particle acceleration at non-relativistic collisionless shocks. Ion acceleration efficiency and magnetic field amplification are investigated in detail as a function of shock inclination and strength, and compared with predictions of diffusive shock acceleration theory, for shocks with Mach number up to 100. Moreover, we discuss the relative importance of resonant and Bell's instability in the shock precursor, and show that diffusion in the self-generated turbulence can be effectively parametrized as Bohm diffusion in the amplified magnetic field.
Hybrid Simulations of Particle Acceleration at Shocks
Caprioli, Damiano
2014-01-01
We present the results of large hybrid (kinetic ions - fluid electrons) simulations of particle acceleration at non-relativistic collisionless shocks. Ion acceleration efficiency and magnetic field amplification are investigated in detail as a function of shock inclination and strength, and compared with predictions of diffusive shock acceleration theory, for shocks with Mach number up to 100. Moreover, we discuss the relative importance of resonant and Bell's instability in the shock precursor, and show that diffusion in the self-generated turbulence can be effectively parametrized as Bohm diffusion in the amplified magnetic field.
A phased approach to enable hybrid simulation of complex structures
Spencer, Billie F.; Chang, Chia-Ming; Frankie, Thomas M.; Kuchma, Daniel A.; Silva, Pedro F.; Abdelnaby, Adel E.
2014-08-01
Hybrid simulation has been shown to be a cost-effective approach for assessing the seismic performance of structures. In hybrid simulation, critical parts of a structure are physically tested, while the remaining portions of the system are concurrently simulated computationally, typically using a finite element model. This combination is realized through a numerical time-integration scheme, which allows for investigation of full system-level responses of a structure in a cost-effective manner. However, conducting hybrid simulation of complex structures within large-scale testing facilities presents significant challenges. For example, the chosen modeling scheme may create numerical inaccuracies or even result in unstable simulations; the displacement and force capacity of the experimental system can be exceeded; and a hybrid test may be terminated due to poor communication between modules (e.g., loading controllers, data acquisition systems, simulation coordinator). These problems can cause the simulation to stop suddenly, and in some cases can even result in damage to the experimental specimens; the end result can be failure of the entire experiment. This study proposes a phased approach to hybrid simulation that can validate all of the hybrid simulation components and ensure the integrity large-scale hybrid simulation. In this approach, a series of hybrid simulations employing numerical components and small-scale experimental components are examined to establish this preparedness for the large-scale experiment. This validation program is incorporated into an existing, mature hybrid simulation framework, which is currently utilized in the Multi-Axial Full-Scale Sub-Structuring Testing and Simulation (MUST-SIM) facility of the George E. Brown Network for Earthquake Engineering Simulation (NEES) equipment site at the University of Illinois at Urbana-Champaign. A hybrid simulation of a four-span curved bridge is presented as an example, in which three piers are
Multiscale simulation of blood flow in brain arteries with an aneurysm
Grinberg, Leopold; Fedosov, Dmitry A; Insley, Joseph A; Papka, Michael E; Kumaran, Kalyan; Karniadakis, George Em
2011-01-01
Interfacing atomistic-based with continuum-based simulation codes is now required in many multiscale physical and biological systems. We present the first results from coupled atomistic-continuum simulations on 190,000 processors. Platelet aggregation in the patient-specific model of an aneurysm has been modeled using a high-order spectral/hp element Navier-Stokes solver with a stochastic (coarse-grained) Molecular Dynamics solver based on Dissipative Particle Dynamics (DPD).
Accelerating Climate Simulations Through Hybrid Computing
Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark
2009-01-01
Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.
Modeling, Stability Analysis, and Testing of a Hybrid Docking Simulator
Zebenaya, M.; Boge, T.; Choukroun, D.
2014-01-01
A hybrid docking simulator is a hardware-in-the-loop (HIL) simulator that includes a hardware element within a numerical simulation loop. One of the goals of performing a HIL simulation at the European Proximity Operation Simulator (EPOS) is the verification and validation of the docking phase in an on-orbit servicing mission.....
Hybrid reference metrology exploiting patterning simulation
Rana, Narender; Archie, Chas
2010-03-01
Workhorse metrology such as CD-SEM is used during process development, process control, and optical proximity correction model generation and verification. Such metrology needs to be calibrated to handle various types of profiles encountered during IC fabrication. Reference metrology is used for calibration of workhorse metrology. There is an astounding need for sub-half and sub-quarter nanometer measurement uncertainty in the near future technology nodes as envisaged in the International Technology Roadmap for Semiconductors. In this regime of desired measurement uncertainty all metrology techniques are deemed limited and hybrid metrology appears promising to offer a solution. Hybrid metrology is the use of multiple metrology techniques, each with particular strength, to reduce the overall measurement uncertainty. CD-AFM makes use of a flared probe in order to scan the sidewalls and bottom of the pattern on a wafer to provide 3D profile and CD measurements at desired location on the profile. As the CD shrinks with technology nodes especially the space, the size of the AFM probe also needs to shrink while maintaining the flared geometry specifications. Unfortunately the fabrication of such probes is a challenge and new techniques are required to extend reference metrology to the smallest space and hole of interest. This paper proposes a reference system combining CD-AFM and patterning simulation model. This hybrid metrology system enables CD metrology in a space not measurable directly by conventional CD-AFM probe. The key idea is to use the successfully measured profile and CD information from the CD-AFM to calibrate or train the patterning simulation optical and resist model. Ability of this model to predict profile and CD measurement is verified on a physically measured dataset including cross sections and additional CD-AFM measurements. It is hypothesized that this model will be able to predict profile and CD measurements in otherwise immeasurable geometries
Mirror instability near the threshold: Hybrid simulations
Hellinger, P.; Trávníček, P.; Passot, T.; Sulem, P.; Kuznetsov, E. A.; Califano, F.
2007-12-01
Nonlinear behavior of the mirror instability near the threshold is investigated using 1-D hybrid simulations. The simulations demonstrate the presence of an early phase where quasi-linear effects dominate [ Shapiro and Shevchenko, 1964]. The quasi-linear diffusion is however not the main saturation mechanism. A second phase is observed where the mirror mode is linearly stable (the stability is evaluated using the instantaneous ion distribution function) but where the instability nevertheless continues to develop, leading to nonlinear coherent structures in the form of magnetic humps. This regime is well modeled by a nonlinear equation for the magnetic field evolution, derived from a reductive perturbative expansion of the Vlasov-Maxwell equations [ Kuznetsov et al., 2007] with a phenomenological term which represents local variations of the ion Larmor radius. In contrast with previous models where saturation is due to the cooling of a population of trapped particles, the resulting equation correctly reproduces the development of magnetic humps from an initial noise. References Kuznetsov, E., T. Passot and P. L. Sulem (2007), Dynamical model for nonlinear mirror modes near threshold, Phys. Rev. Lett., 98, 235003. Shapiro, V. D., and V. I. Shevchenko (1964), Sov. JETP, 18, 1109.
Simulation of a hybrid pervaporation-distillation process
Energy Technology Data Exchange (ETDEWEB)
Verhoef, A.; Degreve, J.; Huybrechs, B.; Van der Bruggen, B. [Department of Chemical Engineering, Laboratory for Applied Physical Chemistry and Environmental Technology, Katholieke Universiteit Leuven, W. de Croylaan 46, 3001 Leuven (Belgium); Van Veen, H.; Pex, P. [ECN Energy Efficiency in Industry, Westerduinweg 3, P.O. Box 1, 1755 ZG Petten (Netherlands)
2008-06-15
This study explores the possibility of simulating a hybrid pervaporation membrane process with the help of Aspen Plus (Aspen Tech) flowsheeting. Because Aspen Plus does not contain membrane modules in its Model Library, the pervaporation membrane is simulated within Excel Visual Basic for Applications (VBA). Excel VBA is then linked with Aspen Plus to perform the hybrid simulation. In this way, the user can control the simulation even during the calculations. Case studies, in which industrially relevant hybrid distillation-pervaporation processes are simulated, are used to test the program. First, the dehydration and recycling of ethanol in an industrial plant is looked at, to explore whether an economic improvement can be established with a hybrid process. Secondly, the same is done for the purification of acetic acid in an industrial plant. The results presented here indicate the value of this software as a design tool.
Numerical simulations of plasma brush behavior in hybrid armatures
Hawke, R. S.; Pincosy, P. A.
1993-01-01
Hybrid armatures used to accelerate projectiles in railguns are often the consequence of using a solid armature or in some cases the preferred armature type. Although hybrid armatures are often used, their design has been empirical and their performance sporadic. As a first step towards understanding hybrid design and performance, we have begun a combined numerical simulation and experimental verification effort. This paper will describe numerical simulations performed with a quasi 1-D MHD code (CONFUSE) which has been applied to simulate the behavior of plasma brushes used in hybrid armatures. The simulations have provided estimates of the plasma brush length, resistive voltage drop and temperatures corresponding to a range of; 1) brush gap size, 2) fuse thickness, and 3) magnetic pressure. The results of these simulations is presented and discussed.
Numerical simulations of plasma brush behavior in hybrid armatures
Energy Technology Data Exchange (ETDEWEB)
Hawke, R.S.; Pincosy, P.A.
1992-04-01
Hybrid armatures used to accelerate projectiles in railguns are often the consequence of using a solid armature or in some cases the preferred armature type. Although hybrid armatures are often used, their design has been empirical and their performance sporadic. As a first step towards understanding hybrid design and performance, we have begun a combined numerical simulation and experimental verification effort This paper will describe numerical simulations performed with liquid 1-D MHD code (CONFUSE) which has been applied to simulate the behavior of plasma brushes used in hybrid armatures. The simulations have provided estimates of the plasma brush length, resistive voltage drop and temperatures corresponding to a range of; (1) brush gap size, (2) fuse thickness, and (3) magnetic pressure. The results of these simulations will be presented and discussed.
Simulation and Analysis of the Hybrid Operating Mode in ITER
International Nuclear Information System (INIS)
The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER
Hybrid and Electric Advanced Vehicle Systems Simulation
Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.
1985-01-01
Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.
Electric and plug-in hybrid vehicles advanced simulation methodologies
Varga, Bogdan Ovidiu; Moldovanu, Dan; Iclodean, Calin
2015-01-01
This book is designed as an interdisciplinary platform for specialists working in electric and plug-in hybrid electric vehicles powertrain design and development, and for scientists who want to get access to information related to electric and hybrid vehicle energy management, efficiency and control. The book presents the methodology of simulation that allows the specialist to evaluate electric and hybrid vehicle powertrain energy flow, efficiency, range and consumption. The mathematics behind each electric and hybrid vehicle component is explained and for each specific vehicle the powertrain
Development and implementation of advanced control methods for hybrid simulation
Kim, Hong
2011-01-01
Hybrid simulation is an effective way of testing structures that combines the benefits of a computational analysis and experimental testing techniques. Innovative structures consists of state-ofthe-art components and assemblages whose function as a system needs to be tested experimentally. Often times, these components and assemblages push the controller and other testing equipment to its limits. Performing hybrid simulation with the controller in displacement control mode does not always suf...
Temperature field simulation of laser-TIG hybrid welding
Institute of Scientific and Technical Information of China (English)
陈彦宾; 李俐群; 方俊飞; 封小松; 吴林
2003-01-01
The three-dimensional transient temperature distribution of laser-TIG hybrid welding was analyzed and simulated numerically. Calculations were based on a finite element model, in which the physical process of hybrid welding was studied and the coupling effect of the laser and arc in the hybrid process was fully considered. The temperature fields and weld cross-sections of the typical welding parameters are obtained using present model. The calculation results show that the model can indicate the relationship of energy match between laser and arc to joints cross-sections objectively, and the simulation results are well agreed with the experimental results.
The hall effect in magnetic reconnection: Hybrid versus Hall-less hybrid simulations
Malakit, K.; Cassak, P. A.; Shay, M. A.; Drake, J. F.
2009-04-01
To understand the role of the Hall effect during fast magnetic reconnection, hybrid simulations with and without the Hall term in the generalized Ohm's Law are compared, as done originally by Karimabadi et al. (2004). It is found that reconnection with the Hall term is fast, but reconnection in the so-called Hall-less hybrid simulations is Sweet-Parker like (slow) when the resistivity is constant and uniform. These results re-affirm the importance of the Hall term in allowing fast reconnection in the hybrid model.
Towards Hybrid Overset Grid Simulations of the Launch Environment
Moini-Yekta, Shayan
A hybrid overset grid approach has been developed for the design and analysis of launch vehicles and facilities in the launch environment. The motivation for the hybrid grid methodology is to reduce the turn-around time of computational fluid dynamic simulations and improve the ability to handle complex geometry and flow physics. The LAVA (Launch Ascent and Vehicle Aerodynamics) hybrid overset grid scheme consists of two components: an off-body immersed-boundary Cartesian solver with block-structured adaptive mesh refinement and a near-body unstructured body-fitted solver. Two-way coupling is achieved through overset connectivity between the off-body and near-body grids. This work highlights verification using code-to-code comparisons and validation using experimental data for the individual and hybrid solver. The hybrid overset grid methodology is applied to representative unsteady 2D trench and 3D generic rocket test cases.
Continuum simulations of water flow past fullerene molecules
DEFF Research Database (Denmark)
Popadic, A.; Praprotnik, M.; Koumoutsakos, P.;
2015-01-01
We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as...... computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow...
Energy Technology Data Exchange (ETDEWEB)
Winke, Florian; Bargende, Michael [Stuttgart Univ. (Germany). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)
2013-09-15
As a result of the rising requirements on the development process of modern vehicles, simulation models for the prediction of fuel efficiency have become an irreplaceable tool in the automotive industry. Especially for the design of hybrid electric drivetrains, the increasingly short development cycles can only be met by the use of efficient simulation models. At the IVK of the University of Stuttgart, different approaches to simulating the longitudinal dynamics of hybrid electric vehicles were analysed and compared within the presented project. The focus of the investigations was on urban operation. The objective was to develop a hybrid vehicle concept that allows an equitable comparison with pure battery electric vehicles. (orig.)
Autocorrelations in hybrid Monte Carlo simulations
International Nuclear Information System (INIS)
Simulations of QCD suffer from severe critical slowing down towards the continuum limit. This problem is known to be prominent in the topological charge, however, all observables are affected to various degree by these slow modes in the Monte Carlo evolution. We investigate the slowing down in high statistics simulations and propose a new error analysis method, which gives a realistic estimate of the contribution of the slow modes to the errors. (orig.)
Parallel multiscale simulations of a brain aneurysm
International Nuclear Information System (INIS)
Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in
Parallel multiscale simulations of a brain aneurysm
Energy Technology Data Exchange (ETDEWEB)
Grinberg, Leopold [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Fedosov, Dmitry A. [Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich 52425 (Germany); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)
2013-07-01
Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in
Parallel multiscale simulations of a brain aneurysm
Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em
2013-07-01
Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier-Stokes solver NɛκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NɛκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in future
Pressure calculation in hybrid particle-field simulations.
Milano, Giuseppe; Kawakatsu, Toshihiro
2010-12-01
In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials. PMID:21142296
Pressure calculation in hybrid particle-field simulations
International Nuclear Information System (INIS)
In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.
A hybrid society model for simulating residential electricity consumption
International Nuclear Information System (INIS)
In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)
A Parallel Genetic Simulated Annealing Hybrid Algorithm for Task Scheduling
Institute of Scientific and Technical Information of China (English)
SHU Wanneng; ZHENG Shijue
2006-01-01
In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing .It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively.When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole.From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.
STEM image simulation with hybrid CPU/GPU programming.
Yao, Y; Ge, B H; Shen, X; Wang, Y G; Yu, R C
2016-07-01
STEM image simulation is achieved via hybrid CPU/GPU programming under parallel algorithm architecture to speed up calculation on a personal computer (PC). To utilize the calculation power of a PC fully, the simulation is performed using the GPU core and multi-CPU cores at the same time to significantly improve efficiency. GaSb and an artificial GaSb/InAs interface with atom diffusion have been used to verify the computation. PMID:27093687
Simulating Strongly Correlated Electron Systems with Hybrid Monte Carlo
Institute of Scientific and Technical Information of China (English)
LIU Chuan
2000-01-01
Using the path integral representation, the Hubbard and the periodic Anderson model on D-dimensional cubic lattice are transformed into field theories of fermions in D + 1 dimensions. These theories at half-filling possess a positive definite real symmetry fermion matrix and can be simulated using the hybrid Monte Carlo method.
A hybrid parallel framework for the cellular Potts model simulations
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV
2009-01-01
The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).
dHybrid: a massively parallel code for hybrid simulations of space plasmas
Gargat'e, L; Fonseca, R A; Silva, L O
2006-01-01
A massively parallel simulation code, called \\textit{dHybrid}, has been developed to perform global scale studies of space plasma interactions. This code is based on an explicit hybrid model; the numerical stability and parallel scalability of the code are studied. A stabilization method for the explicit algorithm, for regions of near zero density, is proposed. Three-dimensional hybrid simulations of the interaction of the solar wind with unmagnetized artificial objects are presented, with a focus on the expansion of a plasma cloud into the solar wind, which creates a diamagnetic cavity and drives the Interplanetary Magnetic Field out of the expansion region. The dynamics of this system can provide insights into other similar scenarios, such as the interaction of the solar wind with unmagnetized planets.
Hybrid Method Simulation of Slender Marine Structures
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye
deal with time domain simulation of slender marine structures such as mooring lines and flexible risers used in deep sea offshore installations. The first part of the thesis describes how neural networks can be designed and trained to cover a large number of different sea states. Neural networks can...... only recognize patterns similar to those comprised in the data used to train the network. Fatigue life evaluation of marine structures often considers simulations of more than a hundred different sea states. Hence, in order for this method to be useful, the training data must be arranged so that a...... critical hot spots along the structure. This means that the relation between external loading and corresponding structural response not necessarily is as direct as for the mooring line example. Hence, one neural network is not sufficient to cover the entire structure. It is demonstrated how a series of...
Simulation of hybrid renewable microgeneration systems for variable electricity prices
International Nuclear Information System (INIS)
This paper addresses a hybrid renewable system that consists of a micro-Combined Cooling Heat and Power (CCHP) unit and a solar energy conversion device. In addition to a traditional PV system, a High Concentrator Photovoltaic (HCPV) device, the design of which is suitable for building integration application, was also modelled and embedded in the hybrid system. The work identifies the optimal management strategies for the hybrid renewable system in an effort to minimise the primary energy usage, the carbon dioxide emissions and the operational costs for variable electricity prices that result from the day-ahead electricity market. An “ad hoc” model describes the performance of the HCPV module, PV and Internal Combustion Engine, whilst the other units were simulated based on their main characteristic parameters. The developed algorithm was applied to three different building typologies. The results indicate that the best configuration is the hybrid renewable system with PV, which can provide a yearly primary energy reduction of between 20% and 30% compared to separate production. The hybrid renewable system with HCPV becomes competitive with the PV technology when the level of solar radiation is high. - Highlights: • The paper addresses a hybrid renewable system that consists of a micro-CCHP unit and a solar energy conversion device. • Both PV and High Concentrator Photovoltaic (HCPV) systems have been modelled and embedded in the hybrid system. • The work identifies the optimal management strategies for variable electricity prices. • Hybrid renewable systems provide a yearly primary energy reduction of between 20% and 30% compared to separate production. • When the level of solar radiation is high, HCPV becomes competitive with the PV technology
A hybrid approach to simulating mechanical properties of polymer nanocomposites.
Mccarron, Andy P; Raj, Sharad; Hyers, Robert; Kim, Moon K
2009-12-01
Empirical studies indicate that a polymer reinforced with nanoscale particles could enhance its mechanical properties such as stiffness and toughness. To give insight into how and why this nanoparticle reinforcement is effective, it is necessary to develop computational models that can accurately simulate the effects of nanoparticles on the fracture characteristics of polymer composites. Furthermore, a hybrid model that can account for both continuum and non-continuum effects will hasten the development of not only new hierarchical composite materials but also new theories to explain their behavior. This paper presents a hybrid modeling scheme for simulating fracture of polymer nanocomposites by utilizing an atomistic modeling approach called Elastic Network Model (ENM) in conjunction with a traditional Finite Element Analysis (FEA). The novelty of this hybrid ENM-FEA approach lies in its ability to model less interesting outer domains with FEA while still accounting for areas of interest such as crack tip reion and the interface between a nanoparticle and the polymer matrix at atomic scale with ENM. Various simulation conditions have been tested to determine the feasibility of the proposed hybrid model. For instance, an iterative result from a uniaxial loading with isotropic properties in an ENM-FEA model shows accuracy and convergence to the analytic solution. PMID:19908790
Simulations for the transmutation of nuclear wastes with hybrid reactors
International Nuclear Information System (INIS)
A Monte Carlo simulation, devoted to the spallation, has been built in the framework of the hybrid systems proposed for the nuclear wastes incineration. This system GSPARTE, described the reactions evolution. It takes into account and improves the nuclear codes and the low and high energy particles transport in the GEANT code environment, adapted to the geometry of the hybrid reactors. Many applications and abacus useful for the wastes transmutation, have been realized with this system: production of thick target neutrons, source definition, material damages. (A.L.B.)
Hybrid simulation of high temperature gas cooled reactor
International Nuclear Information System (INIS)
A hybrid simulator was made to calculate the dynamics of high temperature gas cooled reactor(VHTR). The continuous space-discrete time (CSDT) method is applied to solve the partial differential equations of the heat transfer in the hybrid computation. By this method the error of the heat balance is decreased to less than one percent in the steady state. Though the mini computer is used for this simulator, it operates about five times faster than real time. The dynamics of VHTR are characterized by the large heat capacity of the reactor core and the long time constant. The values of these parameters are reported as the results of this calculation. The control system of the reactivity and the coolant flow rate is required to operate the reactor. The nonlinearity of VHTR which occurs in the change of flow rate are also understood quantitatively by this simulator. (author)
A Matlab—Based Simulation for Hybrid Electric Motorcycle
Institute of Scientific and Technical Information of China (English)
邵定国; 李永斌; 汪信尧; 江建中
2003-01-01
This paper presents a simulation and modeling package based on Matlab for a parallel hybrid electric motorcycle (HEM).The package consists of several main detailed models: internal combustion engine (ICE), motor, continuously variable transmission(CVT), battery, energy management system (EMS) etc. Each component is built as a library, and can be connected together accord-ing to the parallel HEM's topology. Simulation results, such as ICE power demand, motor power demand, battery instantaneous state-of-charge (SOC), pollution emissions etc. Are given and discussed. Lastly experimental data verify our simulation results.
RFI in hybrid loops - Simulation and experimental results.
Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.
1972-01-01
A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.
Simulation and Test of a Fuel Cell Hybrid Golf Cart
Directory of Open Access Journals (Sweden)
Jingming Liang
2014-01-01
Full Text Available This paper establishes the simulation model of fuel cell hybrid golf cart (FCHGC, which applies the non-GUI mode of the Advanced Vehicle Simulator (ADVISOR and the genetic algorithm (GA to optimize it. Simulation of the objective function is composed of fuel consumption and vehicle dynamic performance; the variables are the fuel cell stack power sizes and the battery numbers. By means of simulation, the optimal parameters of vehicle power unit, fuel cell stack, and battery pack are worked out. On this basis, GUI mode of ADVISOR is used to select the rated power of vehicle motor. In line with simulation parameters, an electrical golf cart is refitted by adding a 2 kW hydrogen air proton exchange membrane fuel cell (PEMFC stack system and test the FCHGC. The result shows that the simulation data is effective but it needs improving compared with that of the real cart test.
A Hybrid Model for Smoke Simulation
Institute of Scientific and Technical Information of China (English)
童若锋; 董金祥
2002-01-01
A smoke simulation approach based on the integration of traditional particlesystems and density functions is presented in this paper. By attaching a density function toeach particle as its attribute, the diffusion of smoke can be described by the variation of parti-cles' density functions, along with the effect on airflow by controlling particles' movement andfragmentation. In addition, a continuous density field for realistic rendering can be generatedquickly through the look-up tables of particle's density functions. Compared with traditionalparticle systems, this approach can describe smoke diffusion, and provide a continuous densityfield for realistic rendering with much less computation. A quick rendering scheme is also pre-sented in this paper as a useful preview tool for tuning appropriate parameters in the smokemodel.
Energy Technology Data Exchange (ETDEWEB)
Kelz, Gerald; Hirschberg, Wolfgang [Inst. fuer Fahrzeugtechnik, Technische Univ. Graz (Austria)
2009-07-01
The power train of a hybrid vehicle is considerably more complex than that of conventional vehicles. Whilst the topology of a conventional vehicle is normally fixed, the arrangement of the power train components for innovative propulsion systems is a flexible one. The aim is to find those topologies and configurations which are optimal for the intended use. Fuel consumption potentials can be derived with the aid of vehicle longitudinal dynamics simulation. Mostly these simulations are carried out using commercial software which is optimized for the standard topology and do not offer the flexibility to calculate arbitrary topologies. This article covers the modular modeling and the fuel consumption simulation of complex hybrid power trains for topology analysis. A component library for the development of arbitrary hybrid propulsion systems is introduced. The focus lies on an efficient and fast modeling which provides exact simulation results. Several models of power train components are introduced. (orig.)
Dynamic simulations of hybrid energy systems in load sharing application
International Nuclear Information System (INIS)
The paper analyzes the energy, environmental and economic performance of two hybrid micro-cogeneration systems in a load sharing application among residential and office buildings under Napoli (South Italy) weather conditions. The load sharing approach is investigated using dynamic simulations in comparison to a base case with separate conventional systems. Once the advantage of load sharing approach was demonstrated, the performance of two different hybrid systems in load sharing scenario were analyzed. The first one consists of a ground source heat pump (GSHP) and a fuel cell (FC); while the second one is based on a GSHP and a photovoltaic thermal (PVT) system. The performance of these two systems were also compared to a stand-alone GSHP system in order to analyze the advantages of hybrid systems to a single GSHP system. The energy analysis results show that in a load sharing case while using conventional technologies the primary energy savings are equal to 2.1% with respect to the reference case. The introduction of hybrid microcogeneration systems in load sharing application led to primary energy saving with respect to the reference case of 12.8% for the GSHP-FC system and 53.1% for the GSHP-PVT system. The environmental analysis shows a reduction of CO2 equivalent emissions equal to 15.8% and 52.0% for GSHP-FC and GSHP-PVT respectively. The better energy and environmental performance of GSHP-PVT system is due to the introduction of a significant amount of renewable energy source. The economic analysis focusses on operational cost and Simple Pay Back (SPB) index of the different cases and it is also based on an accurate study of the natural gas and electricity tariffs in Italy. This analysis highlights the advantages of the load sharing approach, because in some cases it allows the reduction of both the investment cost and the operational cost. The economic analysis for the two hybrid systems shows an operational costs reduction equal to 28.0% for GSHP-FC and
Hybrid simulations with dynamical quarks: Spectra, screening and thermodynamics
International Nuclear Information System (INIS)
We summarize simulations made by the Argonne/University of Illinois group using the Hybrid algorithm to include dynamical staggered fermions. Recent work on the mass spectrum and screening effects due to the inclusion of four light flavors of dynamical quarks is presented. We also present a brief overview of what we have learned about the finite temperature chiral phase transition. 5 refs., 4 figs., 1 tab
Hybrid and electric advanced vehicle systems (heavy) simulation
Hammond, R. A.; Mcgehee, R. K.
1981-01-01
A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.
Stability of K-montmorillonite hydrates: Hybrid MC simulations
Odriozola, G
2005-01-01
NPzzT and MuPzzT simulations of K-montmorillonite hydrates were performed employing hybrid Monte Carlo simulations. Two condition sets were studied, P=1 atm and T= 300 K (ground level conditions), and P=600 atm and T= 394 K; this last condition mimics a burial depth close to 4 km. For these conditions, swelling curves as a function of the reservoir water vapor pressure were built. We found the single layer K-montmorillonite hydrate stable for high vapor pressures for both, burial and ground level conditions. A simple explanation for this high stability is given.
Hybrid multiscale simulation of a mixing-controlled reaction
Scheibe, Timothy D.; Schuchardt, Karen; Agarwal, Khushbu; Chase, Jared; Yang, Xiaofan; Palmer, Bruce J.; Tartakovsky, Alexandre M.; Elsethagen, Todd; Redden, George
2015-09-01
Continuum-scale models, which employ a porous medium conceptualization to represent properties and processes averaged over a large number of solid grains and pore spaces, are widely used to study subsurface flow and reactive transport. Recently, pore-scale models, which explicitly resolve individual soil grains and pores, have been developed to more accurately model and study pore-scale phenomena, such as mineral precipitation and dissolution reactions, microbially-mediated surface reactions, and other complex processes. However, these highly-resolved models are prohibitively expensive for modeling domains of sizes relevant to practical problems. To broaden the utility of pore-scale models for larger domains, we developed a hybrid multiscale model that initially simulates the full domain at the continuum scale and applies a pore-scale model only to areas of high reactivity. Since the location and number of pore-scale model regions in the model varies as the reactions proceed, an adaptive script defines the number and location of pore regions within each continuum iteration and initializes pore-scale simulations from macroscale information. Another script communicates information from the pore-scale simulation results back to the continuum scale. These components provide loose coupling between the pore- and continuum-scale codes into a single hybrid multiscale model implemented within the SWIFT workflow environment. In this paper, we consider an irreversible homogeneous bimolecular reaction (two solutes reacting to form a third solute) in a 2D test problem. This paper is focused on the approach used for multiscale coupling between pore- and continuum-scale models, application to a realistic test problem, and implications of the results for predictive simulation of mixing-controlled reactions in porous media. Our results and analysis demonstrate that the hybrid multiscale method provides a feasible approach for increasing the accuracy of subsurface reactive transport
Multiscale Hy3S: Hybrid stochastic simulation for supercomputers
Directory of Open Access Journals (Sweden)
Kaznessis Yiannis N
2006-02-01
Full Text Available Abstract Background Stochastic simulation has become a useful tool to both study natural biological systems and design new synthetic ones. By capturing the intrinsic molecular fluctuations of "small" systems, these simulations produce a more accurate picture of single cell dynamics, including interesting phenomena missed by deterministic methods, such as noise-induced oscillations and transitions between stable states. However, the computational cost of the original stochastic simulation algorithm can be high, motivating the use of hybrid stochastic methods. Hybrid stochastic methods partition the system into multiple subsets and describe each subset as a different representation, such as a jump Markov, Poisson, continuous Markov, or deterministic process. By applying valid approximations and self-consistently merging disparate descriptions, a method can be considerably faster, while retaining accuracy. In this paper, we describe Hy3S, a collection of multiscale simulation programs. Results Building on our previous work on developing novel hybrid stochastic algorithms, we have created the Hy3S software package to enable scientists and engineers to both study and design extremely large well-mixed biological systems with many thousands of reactions and chemical species. We have added adaptive stochastic numerical integrators to permit the robust simulation of dynamically stiff biological systems. In addition, Hy3S has many useful features, including embarrassingly parallelized simulations with MPI; special discrete events, such as transcriptional and translation elongation and cell division; mid-simulation perturbations in both the number of molecules of species and reaction kinetic parameters; combinatorial variation of both initial conditions and kinetic parameters to enable sensitivity analysis; use of NetCDF optimized binary format to quickly read and write large datasets; and a simple graphical user interface, written in Matlab, to help users
Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance
Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.
2014-12-01
It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.
Hybrid Computational Simulation and Study of Terahertz Pulsed Photoconductive Antennas
Emadi, R.; Barani, N.; Safian, R.; Nezhad, A. Zeidaabadi
2016-08-01
A photoconductive antenna (PCA) has been numerically investigated in the terahertz (THz) frequency band based on a hybrid simulation method. This hybrid method utilizes an optoelectronic solver, Silvaco TCAD, and a full-wave electromagnetic solver, CST. The optoelectronic solver is used to find the accurate THz photocurrent by considering realistic material parameters. Performance of photoconductive antennas and temporal behavior of the excited photocurrent for various active region geometries such as bare-gap electrode, interdigitated electrodes, and tip-to-tip rectangular electrodes are investigated. Moreover, investigations have been done on the center of the laser illumination on the substrate, substrate carrier lifetime, and diffusion photocurrent associated with the carriers temperature, to achieve efficient and accurate photocurrent. Finally, using the full-wave electromagnetic solver and the calculated photocurrent obtained from the optoelectronic solver, electromagnetic radiation of the antenna and its associated detected THz signal are calculated and compared with a measurement reference for verification.
Magnetohydrodynamic and hybrid simulations of broadband fluctuations near interplanetary shocks
International Nuclear Information System (INIS)
We present results of a theoretical study of evolution of a spectrum of finite amplitude right-hand elliptically polarized magnetohydrodynamic (MHD) waves. The analysis includes use of one-and-a-half-dimensional solutions of the equations that describe compressible MHD together with one-and-a-half-dimensional hybrid simulation of the phenomenon. The motivation of the study is to understand the origin and properties of finite amplitude waves often observed in the vicinity of collisionless shocks in the heliosphere. The solutions of the MHD equations are compared with both the results of the hybrid simulations and observations previously reported by Vinas et al. in the vicinity of a quasi-parallel interplanetary shock. The initial conditions of the MHD solutions were constructed to model the observed spectrum of magnetic and velocity fluctuations; plasma parameters were also chosen to replicate the observed parameters. For the typical parameters of β = 0.5, σB/B0 = 0.25 and a spectrum of parallel propagating, circularly polarized dispersive waves, initially the density and magnetic energy density correlations grow due to the (nonlinear) ponderomotive effect. The spectral features below the ion cyclotron frequency are established quickly on the Alfvenic timescale but then persist and match closely the observed fluctuations. The parametric decay instabilities that subsequently appear further enhance the density fluctuations and produce a high-frequency magnetic power spectrum consistent with the spacecraft observation. The MHD and hybrid simulations extend the previous picture of wave generation by a beam-driven ion cyclotron instability to the fully nonlinear stage. 64 refs., 24 figs
Nonlinear hybrid simulation of toroidicity-induced alfven eigenmode
International Nuclear Information System (INIS)
Gyrokinetic/Magnetohydrodynamics hybrid simulations have been carried out using MH3D-K code to study the nonlinear saturation of the toroidicity-induced Alfven eigenmode driven by energetic particles in a tokamak plasma. It is shown that the wave particle trapping is the nonlinear saturation mechanism for the parameters considered. The corresponding density profile flattening of hot particles is observed. The saturation amplitude is proportional to the square of linear growth rate. In addition to TAE modes, a new n = 1, m = 0 global Alfven eigenmode is shown to be excited by the energetic particles
Hybrid simulation codes with application to shocks and upstream waves
Winske, D.
1985-01-01
Hybrid codes in which part of the plasma is represented as particles and the rest as a fluid are discussed. In the past few years such codes with particle ions and massless, fluid electrons have been applied to space plasmas, especially to collisionless shocks. All of these simulation codes are one-dimensional and similar in structure, except for how the field equations are solved. The various approaches that are used (resistive Ohm's law, predictor-corrector, Hamiltonian) are described in detail and results from the various codes are compared with examples taken from collisionless shocks and low frequency wave phenomena upstream of shocks.
Simulation of nuclear power plant dynamics with hybrid computer
International Nuclear Information System (INIS)
Results of simulation studies of the direct digital system of temperature control of the A-1 power plant reactor, carried out on a hybrid computer, are presented. The algorithm of such a control was programmed for the RPP 16 control computer as a user's code. A set of algorithms for studies of the sensitivity of dynamic system models to parameter changes and for the synthesis of multivariable decoupled control systems were compiled and programmed for a digital computer. Xenon oscillations in the core of the WWER type reactor were investigated using the D-decomposition technique. (author)
Adaptive hybrid simulations for multiscale stochastic reaction networks
International Nuclear Information System (INIS)
The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such a partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest
Hybrid multiscale simulation of a mixing-controlled reaction
Energy Technology Data Exchange (ETDEWEB)
Scheibe, Timothy D.; Schuchardt, Karen L.; Agarwal, Khushbu; Chase, Jared M.; Yang, Xiaofan; Palmer, Bruce J.; Tartakovsky, Alexandre M.; Elsethagen, Todd O.; Redden, George D.
2015-09-01
Continuum-scale models have been used to study subsurface flow, transport, and reactions for many years but lack the capability to resolve fine-grained processes. Recently, pore-scale models, which operate at scales of individual soil grains, have been developed to more accurately model and study pore-scale phenomena, such as mineral precipitation and dissolution reactions, microbially-mediated surface reactions, and other complex processes. However, these highly-resolved models are prohibitively expensive for modeling domains of sizes relevant to practical problems. To broaden the utility of pore-scale models for larger domains, we developed a hybrid multiscale model that initially simulates the full domain at the continuum scale and applies a pore-scale model only to areas of high reactivity. Since the location and number of pore-scale model regions in the model varies as the reactions proceed, an adaptive script defines the number and location of pore regions within each continuum iteration and initializes pore-scale simulations from macroscale information. Another script communicates information from the pore-scale simulation results back to the continuum scale. These components provide loose coupling between the pore- and continuum-scale codes into a single hybrid multiscale model implemented within the SWIFT workflow environment. In this paper, we consider an irreversible homogenous bimolecular reaction (two solutes reacting to form a third solute) in a 2D test problem. This paper is focused on the approach used for multiscale coupling between pore- and continuum-scale models, application to a realistic test problem, and implications of the results for predictive simulation of mixing-controlled reactions in porous media. Our results and analysis demonstrate that loose coupling provides a feasible, efficient and scalable approach for multiscale subsurface simulations.
Hybrid liquid desiccant air-conditioning system: Experiments and simulations
International Nuclear Information System (INIS)
This study focuses on a hybrid liquid desiccant air-conditioning system consisting of a conventional liquid desiccant system and a vapour compression heat pump. The hybrid liquid desiccant air-conditioning system is expected to enhance the system efficiency of a conventional liquid desiccant system. In this study, the liquid desiccant is aqueous solution of lithium chloride and the refrigerant of the vapour compression heat pump is R407C. The main feature of this system is that the absorber and regenerator are integrated with the evaporator and condenser respectively. The performance evaluation test is conducted to obtain the primary data. Additionally, the improvement method for the system efficiency is discussed by the mathematical calculations. As a result, the system can dehumidify 5.9 g/kg(DA) under the conditions of summer in Tokyo, Japan. Then, the calculation results show that COPs can become higher by improving the compressor isentropic efficiency and the temperature efficiency of solution heat exchanger. - Highlights: → We focus on a hybrid liquid desiccant air-conditioning system. → The feature of the system is that the absorber is integrated with the evaporator. → We develop a mathematical model considering heat and mass transfer in the absorber. → The simulation and experiment are carried out to reveal the system performance. → COP becomes higher by improving the compressor and the solution heat exchanger.
Sizing and Simulation of PV-Wind Hybrid Power System
Directory of Open Access Journals (Sweden)
Mustafa Engin
2013-01-01
Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.
Hybrid neural network bushing model for vehicle dynamics simulation
International Nuclear Information System (INIS)
Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers
Accelerating Climate and Weather Simulations through Hybrid Computing
Zhou, Shujia; Cruz, Carlos; Duffy, Daniel; Tucker, Robert; Purcell, Mark
2011-01-01
Unconventional multi- and many-core processors (e.g. IBM (R) Cell B.E.(TM) and NVIDIA (R) GPU) have emerged as effective accelerators in trial climate and weather simulations. Yet these climate and weather models typically run on parallel computers with conventional processors (e.g. Intel, AMD, and IBM) using Message Passing Interface. To address challenges involved in efficiently and easily connecting accelerators to parallel computers, we investigated using IBM's Dynamic Application Virtualization (TM) (IBM DAV) software in a prototype hybrid computing system with representative climate and weather model components. The hybrid system comprises two Intel blades and two IBM QS22 Cell B.E. blades, connected with both InfiniBand(R) (IB) and 1-Gigabit Ethernet. The system significantly accelerates a solar radiation model component by offloading compute-intensive calculations to the Cell blades. Systematic tests show that IBM DAV can seamlessly offload compute-intensive calculations from Intel blades to Cell B.E. blades in a scalable, load-balanced manner. However, noticeable communication overhead was observed, mainly due to IP over the IB protocol. Full utilization of IB Sockets Direct Protocol and the lower latency production version of IBM DAV will reduce this overhead.
A hybrid simulation model for a stable auroral arc
Directory of Open Access Journals (Sweden)
P. Janhunen
Full Text Available We present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000–11 000 km.
Key words. Magnetospheric physics (magnetosphere-ionosphere interactions; auroral phenomena – Space plasma physics (numerical simulation studies
Hybrid particle-field molecular dynamics simulation for polyelectrolyte systems.
Zhu, You-Liang; Lu, Zhong-Yuan; Milano, Giuseppe; Shi, An-Chang; Sun, Zhao-Yan
2016-04-14
To achieve simulations on large spatial and temporal scales with high molecular chemical specificity, a hybrid particle-field method was proposed recently. This method is developed by combining molecular dynamics and self-consistent field theory (MD-SCF). The MD-SCF method has been validated by successfully predicting the experimentally observable properties of several systems. Here we propose an efficient scheme for the inclusion of electrostatic interactions in the MD-SCF framework. In this scheme, charged molecules are interacting with the external fields that are self-consistently determined from the charge densities. This method is validated by comparing the structural properties of polyelectrolytes in solution obtained from the MD-SCF and particle-based simulations. Moreover, taking PMMA-b-PEO and LiCF3SO3 as examples, the enhancement of immiscibility between the ion-dissolving block and the inert block by doping lithium salts into the copolymer is examined by using the MD-SCF method. By employing GPU-acceleration, the high performance of the MD-SCF method with explicit treatment of electrostatics facilitates the simulation study of many problems involving polyelectrolytes. PMID:27001709
The Simulation of the Functioning of a Hybrid Vehicle
Directory of Open Access Journals (Sweden)
Dinel Popa
2010-01-01
Full Text Available In the paper we present a functional model and its mathematic modeling of the movement of the mechanism that simulates the functioning of a hybrid vehicle. The mechanism used for the coupling of three electric engines of continuous current with permanent magnet stator is a planetary mechanism with a double satellite. The functional model operation is ensured by an electronic module which allows the supply voltage variation of electric motors and an electronic device. In order to study the movement of the mechanism from a mathematical point of view we have designed a mathematic model with two degrees of freedom. We obtain the solution in transition phase and in permanent phase after obtaining the differential equations of motion using Lagrange's equations.
Hybrid simulations of mini-magnetospheres in the laboratory
International Nuclear Information System (INIS)
Solar energetic ions are a known hazard to both spacecraft electronics and to manned space flights in interplanetary space missions that extend over a long period of time. A dipole-like magnetic field and a plasma source, forming a mini-magnetosphere, are being tested in the laboratory as means of protection against such hazards. We investigate, via particle-in-cell hybrid simulations, using kinetic ions and fluid electrons, the characteristics of the mini-magnetospheres. Our results, for parameters identical to the experimental conditions, reveal the formation of a mini-magnetosphere, whose features are scanned with respect to the plasma density, the plasma flow velocity and the intensity of the dipole field. Comparisons with a simplified theoretical model reveal a good qualitative agreement and excellent quantitative agreement for higher plasma dynamic pressures and lower B-fields
A Hybrid Flight Control for a Simulated Raptor-30 V2 Helicopter
Directory of Open Access Journals (Sweden)
Arbab Nighat Khizer
2015-04-01
Full Text Available This paper presents a hybrid flight control system for a single rotor simulated Raptor-30 V2 helicopter. Hybrid intelligent control system, combination of the conventional and intelligent control methodologies, is applied to small model helicopter. The proposed hybrid control used PID as a traditional control and fuzzy as an intelligent control so as to take the maximum advantage of advanced control theory. The helicopter?s model used; comes from X-Plane flight simulator and their hybrid flight control system was simulated using MATLAB/SIMULINK in a simulation platform. X-Plane is also used to visualize the performance of this proposed autopilot design. Through a series of numerous experiments, the operation of hybrid control system was investigated. Results verified that the proposed hybrid control has an excellent performance at hovering flight mode.
A hybrid flight control for a simulated raptor-30 v2 helicopter
International Nuclear Information System (INIS)
This paper presents a hybrid flight control system for a single rotor simulated Raptor-30 V2 helicopter. Hybrid intelligent control system, combination of the conventional and intelligent control methodologies, is applied to small model helicopter. The proposed hybrid control used PID as a traditional control and fuzzy as an intelligent control so as to take the maximum advantage of advanced control theory. The helicopter model used; comes from X-Plane flight simulator and their hybrid flight control system was simulated using MATLAB/SIMULINK in a simulation platform. X-Plane is also used to visualize the performance of this proposed autopilot design. Through a series of numerous experiments, the operation of hybrid control system was investigated. Results verified that the proposed hybrid control has an excellent performance at hovering flight mode. (author)
Plasma environment of Titan: a 3-D hybrid simulation study
Directory of Open Access Journals (Sweden)
S. Simon
2006-05-01
Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.
Hybrid Simulation of the Shock Wave Trailing the Moon
Israelevich, P.; Ofman, Leon
2012-01-01
A standing shock wave behind the Moon was predicted by Michel (1967) but never observed nor simulated. We use 1D hybrid code in order to simulate the collapse of the plasma-free cavity behind the Moon and for the first time to model the formation of this shock. Starting immediately downstream of the obstacle we consider the evolution of plasma expansion into the cavity in the frame of reference moving along with the solar wind. Well-known effects as electric charging of the cavity affecting the plasma flow and counterstreaming ion beams in the wake are reproduced. Near the apex of the inner Mach cone where the plasma flows from the opposite sides of the obstacle meet, a shock wave arises. We expect the shock to be produced at periods of high electron temperature solar wind streams (T(sub i) much less than T(sub e) approximately 100 eV). The shock is produced by the interaction of oppositely directed proton beams in the plane containing solar wind velocity and interplanetary magnetic field vectors. In the direction across the magnetic field and the solar wind velocity, the shock results from the interaction of the plasma flow with the region of the enhanced magnetic field inside the cavity that plays the role of the magnetic barrier. The appearance of the standing shock wave is expected at the distance of approximately 7R(sub M) downstream of the Moon.
Simulation study of two-ion hybrid resonance heating
International Nuclear Information System (INIS)
A one-dimensional low-noise, low-frequency electromagnetic particle simulation code that is appropriate for investigation of ion cyclotron resonance heating (ICRH) is developed. Retaining the hyperbolicity of the electromagnetic waves and exploiting nearly one-dimensional characteristics (perpendicular to the external magnetic field) of the ICRH, we use the guiding center electron approximation for the transverse electronic current calculation. We observe mode conversion of the incoming magnetosonic wave into the electrostatic ion-ion hybrid mode accompanied by strong ion-heating. The dependence of this heating on the different plasma parameters is examined through a series of simulations, focusing mainly on wave incidence from the high field side. Because K/sub parallel/ = 0 in our runs, the conventional Landau damping cannot explain the ion heating. Non-linear mechanisms for energy transfer are discussed. Our numerical results demonstrate the importance of the non-linear wave particle interaction for energy transfer are discussed. Our numerical results demonstrate the importance of the non-linear wave particle interaction for energy absorption during radio frequency heating in the ion cyclotron regime. 32 refs., 17 figs
Quantum Simulations of Solvated Biomolecules Using Hybrid Methods
Hodak, Miroslav
2009-03-01
One of the most important challenges in quantum simulations on biomolecules is efficient and accurate inclusion of the solvent, because the solvent atoms usually outnumber those in the biomolecule of interest. We have developed a hybrid method that allows for explicit quantum-mechanical treatment of the solvent at low computational cost. In this method, Kohn-Sham (KS) density functional theory (DFT) is combined with an orbital-free (OF) DFT. Kohn-Sham (KS) DFT is used to describe the biomolecule and its first solvation shells, while the orbital-free (OF) DFT is employed for the rest of the solvent. The OF part is fully O(N) and capable of handling 10^5 solvent molecules on current parallel supercomputers, while taking only ˜ 10 % of the total time. The compatibility between the KS and OF DFT methods enables seamless integration between the two. In particular, the flow of solvent molecules across the KS/OF interface is allowed and the total energy is conserved. As the first large-scale applications, the hybrid method has been used to investigate the binding of copper ions to proteins involved in prion (PrP) and Parkinson's diseases. Our results for the PrP, which causes mad cow disease when misfolded, resolve a contradiction found in experiments, in which a stronger binding mode is replaced by a weaker one when concentration of copper ions is increased, and show how it can act as a copper buffer. Furthermore, incorporation of copper stabilizes the structure of the full-length PrP, suggesting its protective role in prion diseases. For alpha-synuclein, a Parkinson's disease (PD) protein, we show that Cu binding modifies the protein structurally, making it more susceptible to misfolding -- an initial step in the onset of PD. In collaboration with W. Lu, F. Rose and J. Bernholc.
Real-time simulation of an automotive gas turbine using the hybrid computer
Costakis, W.; Merrill, W. C.
1984-01-01
A hybrid computer simulation of an Advanced Automotive Gas Turbine Powertrain System is reported. The system consists of a gas turbine engine, an automotive drivetrain with four speed automatic transmission, and a control system. Generally, dynamic performance is simulated on the analog portion of the hybrid computer while most of the steady state performance characteristics are calculated to run faster than real time and makes this simulation a useful tool for a variety of analytical studies.
Hybrid molecular simulation of methane storage inside pillared graphene
Hassani, Atieh; Hamed Mosavian, Mohammad Taghi; Ahmadpour, Ali; Farhadian, Nafiseh
2015-06-01
In this study, a hybrid molecular dynamics—grand canonical Monte Carlo simulation is carried out to investigate the storage capacity of methane in a new nanostructure adsorbent called pillared graphene. This new nanostructure is composed of graphene sheets in parallel with vertical carbon nanotubes (CNTs), which act as their holders. The adsorption ability of this new structure is compared to graphene sheets to evaluate its potential for methane storage. The results show that in a specific adsorbent volume, applying pillared graphene increases the number of adsorbed methane up to 22% in comparison to graphene sheets. Given the application of various isotherm models such as Langmuir, Freundlich, Sips, and Toth and calculation of their parameters, it is predicted that methane adsorption on pillared graphene displays a heterogeneous behavior. Furthermore, the effects of geometry parameters such as CNTs diameter, the number of CNTs, and graphene sheets layer spacing on the methane uptake are investigated. The results show that the pillared graphene containing 1 CNT per 30 nm2 graphene sheet areas provides the best configuration for methane adsorption. This optimum structure is characterized by a small diameter of about 0.938 nm and an optimal layer spacing of about 1.2 nm. Finally, our results show that this kind of pillared structure can be suitable for methane storage.
SIMULATION OF WIRELESS SENSOR NETWORK WITH HYBRID TOPOLOGY
Directory of Open Access Journals (Sweden)
J. Jaslin Deva Gifty
2016-03-01
Full Text Available The design of low rate Wireless Personal Area Network (WPAN by IEEE 802.15.4 standard has been developed to support lower data rates and low power consuming application. Zigbee Wireless Sensor Network (WSN works on the network and application layer in IEEE 802.15.4. Zigbee network can be configured in star, tree or mesh topology. The performance varies from topology to topology. The performance parameters such as network lifetime, energy consumption, throughput, delay in data delivery and sensor field coverage area varies depending on the network topology. In this paper, designing of hybrid topology by using two possible combinations such as star-tree and star-mesh is simulated to verify the communication reliability. This approach is to combine all the benefits of two network model. The parameters such as jitter, delay and throughput are measured for these scenarios. Further, MAC parameters impact such as beacon order (BO and super frame order (SO for low power consumption and high channel utilization, has been analysed for star, tree and mesh topology in beacon disable mode and beacon enable mode by varying CBR traffic loads.
Modeling and simulation of a hybrid ship power system
Doktorcik, Christopher J.
2011-12-01
Optimizing the performance of naval ship power systems requires integrated design and coordination of the respective subsystems (sources, converters, and loads). A significant challenge in the system-level integration is solving the Power Management Control Problem (PMCP). The PMCP entails deciding on subsystem power usages for achieving a trade-off between the error in tracking a desired position/velocity profile, minimizing fuel consumption, and ensuring stable system operation, while at the same time meeting performance limitations of each subsystem. As such, the PMCP naturally arises at a supervisory level of a ship's operation. In this research, several critical steps toward the solution of the PMCP for surface ships have been undertaken. First, new behavioral models have been developed for gas turbine engines, wound rotor synchronous machines, DC super-capacitors, induction machines, and ship propulsion systems. Conventional models describe system inputs and outputs in terms of physical variables such as voltage, current, torque, and force. In contrast, the behavioral models developed herein express system inputs and outputs in terms of power whenever possible. Additionally, the models have been configured to form a hybrid system-level power model (HSPM) of a proposed ship electrical architecture. Lastly, several simulation studies have been completed to expose the capabilities and limitations of the HSPM.
Hybrid molecular simulation of methane storage inside pillared graphene.
Hassani, Atieh; Hamed Mosavian, Mohammad Taghi; Ahmadpour, Ali; Farhadian, Nafiseh
2015-06-21
In this study, a hybrid molecular dynamics--grand canonical Monte Carlo simulation is carried out to investigate the storage capacity of methane in a new nanostructure adsorbent called pillared graphene. This new nanostructure is composed of graphene sheets in parallel with vertical carbon nanotubes (CNTs), which act as their holders. The adsorption ability of this new structure is compared to graphene sheets to evaluate its potential for methane storage. The results show that in a specific adsorbent volume, applying pillared graphene increases the number of adsorbed methane up to 22% in comparison to graphene sheets. Given the application of various isotherm models such as Langmuir, Freundlich, Sips, and Toth and calculation of their parameters, it is predicted that methane adsorption on pillared graphene displays a heterogeneous behavior. Furthermore, the effects of geometry parameters such as CNTs diameter, the number of CNTs, and graphene sheets layer spacing on the methane uptake are investigated. The results show that the pillared graphene containing 1 CNT per 30 nm(2) graphene sheet areas provides the best configuration for methane adsorption. This optimum structure is characterized by a small diameter of about 0.938 nm and an optimal layer spacing of about 1.2 nm. Finally, our results show that this kind of pillared structure can be suitable for methane storage. PMID:26093570
Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications
Hong-Wen He; Rui Xiong; Yu-Hua Chang
2010-01-01
Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UD...
Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle
Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani
2010-01-01
Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...
Design and simulation of a hybrid dielectric waveguide
Aryal, Krishna Prasad
Waveguides, in general are used as a means to route photons. Traditional dielectric waveguides, composed of a high index core surrounded by a low index cladding, produce maximum field intensities far from dielectric interfaces. This thesis presents the design of a plasmonic enhanced waveguide, which relocates the maximum optical field intensity from the center of the waveguide to an interfacial region defined by a dielectric and a negative index material. This is accomplished through the use of a metal film, positioned on top of a traditional ridge waveguide in those places where one wishes to excite a plasmon mode as opposed to the more traditional dielectric mode. Plasmon modes have their highest field intensity at the interface located between the metal and the dielectric. In this thesis, the waveguide dimensions of a hybrid dielectric waveguide are determined with the intent of producing single mode operation for a ridge waveguide with and without metal on top. A commercial Eigen mode solver (MODE Lumerical) is used to obtain all field profiles, waveguide effective index and waveguide loss. Multiple simulations were used to design a waveguide, which supports a single plasmonic mode when the metal film is in place and a single dielectric mode when the metal film is absent. Such a waveguide is expected to find use in the field of integrated quantum optics where quantum dots, defined by near surface confining potentials, require high interfacial fields for maximum dot/field interactions. Further, based on the final waveguide design height of ( 5microm ) and width of ( 7.9microm ), an effective index of ( 3.687 ) results when operated in the plasmon mode and (3.619) when operated in dielectric mode. This change in refractive index suggests such hybrid dielectric/plasmon waveguides can be used for the design of Bragg reflectors leading to plasmonic cavities, which, when coupled to the proposed near surface located quantum dots, can be used for the production and
Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications
Directory of Open Access Journals (Sweden)
Hong-Wen He
2010-11-01
Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.
Zhu, Jiulong; Wang, Shijun
Presently water resource in most watersheds in China is distributed in terms of administrative instructions. This kind of allocation method has many disadvantages and hampers the instructional effect of market mechanism on water allocation. The paper studies South-to-North Water Transfer Project and discusses water allocation of the node lakes along the Project. Firstly, it advanced four assumptions. Secondly, it analyzed constraint conditions of water allocation in terms of present state of water allocation in China. Thirdly, it established a goal model of water allocation and set up a systematic model from the angle of comprehensive profits of water utilization and profits of the node lakes. Fourthly, it discussed calculation method of the model by means of Simulated Annealing Hybrid Genetic Algorithm (SHGA). Finally, it validated the rationality and validity of the model by a simulation testing.
Energy Technology Data Exchange (ETDEWEB)
Balaven-Clermidy, S.
2001-12-01
Oil reservoir simulations study multiphase flows in porous media. These flows are described and evaluated through numerical schemes on a discretization of the reservoir domain. In this thesis, we were interested in this spatial discretization and a new kind of hybrid mesh has been proposed where the radial nature of flows in the vicinity of wells is directly taken into account in the geometry. Our modular approach described wells and their drainage area through radial circular meshes. These well meshes are inserted in a structured reservoir mesh (a Corner Point Geometry mesh) made up with hexahedral cells. Finally, in order to generate a global conforming mesh, proper connections are realized between the different kinds of meshes through unstructured transition ones. To compute these transition meshes that we want acceptable in terms of finite volume methods, an automatic method based on power diagrams has been developed. Our approach can deal with a homogeneous anisotropic medium and allows the user to insert vertical or horizontal wells as well as secondary faults in the reservoir mesh. Our work has been implemented, tested and validated in 2D and 2D1/2. It can also be extended in 3D when the geometrical constraints are simplicial ones: points, segments and triangles. (author)
Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong
2016-07-01
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.
Kinematics and Simulation of a Hybrid Mechanism: MATLAB/SimMechanics
International Nuclear Information System (INIS)
Kinematic analysis and simulation of hybrid drive system are addressed in this study. A seven link mechanism with two degrees of freedom is selected as the configuration of the system. Kinematic analysis is performed by loop closure equations and required inputs of servo motor are given to get desired ram motion scenario. MATLAB/SimMechanics platform is used to model the hybrid driven mechanical system mechanism characteristics. The simulation results are presented herein
Co-simulation Methodologies for Hybrid and Electric Vehicle Dynamics
Veintimilla Porlán, Julia
2016-01-01
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced m...
Simulation-Guided DNA Probe Design for Consistently Ultraspecific Hybridization
Wang, J. Sherry; Zhang, David Yu
2015-01-01
Hybridization of complementary sequences is one of the central tenets of nucleic acid chemistry; however, the unintended binding of closely related sequences limits the accuracy of hybridization-based approaches for analyzing nucleic acids. Thermodynamics-guided probe design and empirical optimization of reaction conditions have been used to enable discrimination of single nucleotide variants, but typically these approaches provide only an approximate 25-fold difference in binding affinity. H...
A study on optimization of hybrid drive train using Advanced Vehicle Simulator (ADVISOR)
Same, Adam; Stipe, Alex; Grossman, David; Park, Jae Wan
This study investigates the advantages and disadvantages of three hybrid drive train configurations: series, parallel, and "through-the-ground" parallel. Power flow simulations are conducted with the MATLAB/Simulink-based software ADVISOR. These simulations are then applied in an application for the UC Davis SAE Formula Hybrid vehicle. ADVISOR performs simulation calculations for vehicle position using a combined backward/forward method. These simulations are used to study how efficiency and agility are affected by the motor, fuel converter, and hybrid configuration. Three different vehicle models are developed to optimize the drive train of a vehicle for three stages of the SAE Formula Hybrid competition: autocross, endurance, and acceleration. Input cycles are created based on rough estimates of track geometry. The output from these ADVISOR simulations is a series of plots of velocity profile and energy storage State of Charge that provide a good estimate of how the Formula Hybrid vehicle will perform on the given course. The most noticeable discrepancy between the input cycle and the actual velocity profile of the vehicle occurs during deceleration. A weighted ranking system is developed to organize the simulation results and to determine the best drive train configuration for the Formula Hybrid vehicle. Results show that the through-the-ground parallel configuration with front-mounted motors achieves an optimal balance of efficiency, simplicity, and cost. ADVISOR is proven to be a useful tool for vehicle power train design for the SAE Formula Hybrid competition. This vehicle model based on ADVISOR simulation is applicable to various studies concerning performance and efficiency of hybrid drive trains.
HYBRIST Mobility Model - A Novel Hybrid Mobility Model for VANET Simulations
ManfeDanquah, Wiseborn; Turgay Altilar, D.
2014-01-01
Simulations play a vital role in implementing, testing and validating proposed algorithms and protocols in VANET. Mobility model, defined as the movement pattern of vehicles, is one of the main factors that contribute towards the efficient implementation of VANET algorithms and protocols. Using near reality mobility models ensure that accurate results are obtained from simulations. Mobility models that have been proposed and used to implement and test VANET protocols and algorithms are either the urban mobility model or highway mobility model. Algorithms and protocols implemented using urban or highway mobility models may not produce accurate results in hybrid mobility models without enhancement due to the vast differences in mobility patterns. It is on this score the Hybrist, a novel hybrid mobility model is proposed. The realistic mobility pattern trace file of the proposed Hybrist hybrid mobility model can be imported to VANET simulators such as Veins and network simulators such as ns2 and Qualnet to simulate VANET algorithms and protocols.
Monte Carlo simulation of BN-600 LMFR hybrid core
International Nuclear Information System (INIS)
The safe operation of a large fast reactor requires accurate estimation of power produced in different parts of the reactor core and blanket. MCNPX code was used to develop a model to simulate and study the whole core of a prototype LMFR hybrid core; the BN-600. In this model, the core is composed of eight radial zones (typical code model layout is illustrated) the first two inner zones are low enrichment zones (LEZ), followed by a medium enrichment zone (MEZ). In the forth zone is the mixed oxide zone (MOX) composed of (U,Pu)O2 fuel subassemblies, then the outer high enrichment fuel zone (HEZ). The rest of the core are two zones of steel shielding assemblies (SSA) and an outer radial reflector to enclose the whole core. There is also 19 shim and control rods (SHR), and 6 scram rods (SCR). The model also take into account the axial variation in geometry and composition, this is accomplished by dividing the core axially into eight different zones with a definite thickness and composition. Partial insertion of control assembly which distorts the reactor flux and fission rates distribution are simulated using the three dimensional model of the reactor core. The spectrum of neutron flux is divided into 23 energy groups. Through this work several parameters are analyzed including criticality, axial and radial power distributions at different zones of the reactor core and burnup analysis in a typical operating conditions of the reactor core. F4 tally was used to calculate the flux distribution in the core and FM4 card was used to calculate the power distribution which is normalized to a total power of 1470 Mw. The energy release per fission was fixed to 200 Mev, as suggested in the BN-600 benchmark details. The temperature variation inside every cell (assembly) were considered by using the 'TMP' card. All fuel cells are at a uniform temperature 1500 K and all structural and coolant isotopes are at a uniform temperature 600 K, and in our model we assign a cross section
Hybrid programming model for implicit PDE simulations on multicore architectures
Kaushik, Dinesh K.
2011-01-01
The complexity of programming modern multicore processor based clusters is rapidly rising, with GPUs adding further demand for fine-grained parallelism. This paper analyzes the performance of the hybrid (MPI+OpenMP) programming model in the context of an implicit unstructured mesh CFD code. At the implementation level, the effects of cache locality, update management, work division, and synchronization frequency are studied. The hybrid model presents interesting algorithmic opportunities as well: the convergence of linear system solver is quicker than the pure MPI case since the parallel preconditioner stays stronger when hybrid model is used. This implies significant savings in the cost of communication and synchronization (explicit and implicit). Even though OpenMP based parallelism is easier to implement (with in a subdomain assigned to one MPI process for simplicity), getting good performance needs attention to data partitioning issues similar to those in the message-passing case. © 2011 Springer-Verlag.
Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle
Directory of Open Access Journals (Sweden)
Siavash Sadeghi
2010-04-01
Full Text Available Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicle performance,dynamic modeling of the motor and other components is necessary. Whereas the switchedreluctance machine is well suited for electric and hybrid electric vehicles, due to the simpleand rugged construction, low cost, and ability to operate over a wide speed range atconstant power, in this paper dynamic performance of the switched reluctance motor for eseries hybrid electric vehicles is investigated. For this purpose a switched reluctance motorwith its electrical drive is modeld and simulated first, and then the other components of aseries hybrid electric vehicle, such as battery, generator, internal combusion engine, andgearbox, are designed and linked with the electric motor. Finally a typical series hybridelectric vehicle is simulated for different drive cycles. The extensive simulation results showthe dynamic performance of SRM, battery, fuel consumption, and emissions.
Hybrid simulation of secondary coolant circuit dynamics in PWR nuclear power plants
International Nuclear Information System (INIS)
A mathematical model is described of the secondary coolant circuit defined by a system of balance equations for a two-phase medium. Simulation was carried out of the individual technological assemblies of the secondary circuit separately, and a model was developed of the whole secondary coolant circuit after debugging. The advantages were used of the analog and the digital parts of a hybrid computer system for optimal hybrid simulation. A block diagram of the program is presented. The model is to be used for simulating the behaviour of the secondary circuit in accident situations. (J.P.)
Szuch, J. R.; Krosel, S. M.; Bruton, W. M.
1982-01-01
A systematic, computer-aided, self-documenting methodology for developing hybrid computer simulations of turbofan engines is presented. The methodology that is pesented makes use of a host program that can run on a large digital computer and a machine-dependent target (hybrid) program. The host program performs all the calculations and data manipulations that are needed to transform user-supplied engine design information to a form suitable for the hybrid computer. The host program also trims the self-contained engine model to match specified design-point information. Part I contains a general discussion of the methodology, describes a test case, and presents comparisons between hybrid simulation and specified engine performance data. Part II, a companion document, contains documentation, in the form of computer printouts, for the test case.
An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays
Directory of Open Access Journals (Sweden)
Laurenzi Ian J
2009-12-01
Full Text Available Abstract Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.
Variable Bus Voltage Modeling for Series Hybrid Electric Vehicle Simulation
Merkle, Matthew Alan
1997-01-01
A growing dependence on foreign oil, along with a heightened concern over the environmental impact of personal transportation, had led the U. S. government to investigate and sponsor research into advanced transportation concepts. One of these future technologies is the hybrid electric vehicle (HEV), typically featuring both an internal combustion engine and an electric motor, with the goal of producing fewer emissions while obtaining superior fuel economy. While vehicles such as the Virg...
Thermodynamic Simulation of a Hybrid Pneumatic-Combustion Engine Concept
Higelin, Pascal; Charlet, Alain; Chamaillard, Yann
2002-01-01
Although internal combustion engines display high overall maximum global efficiencies, this potential cannot be fully exploited in automotive applications: in real conditions, the average engine load (and thus efficiency) is quite low and the kinetic energy during a braking phase is lost. This work presents a new hybrid pneumatic-combustion engine and the associated thermodynamic cycles, which is able to store energy in the form of compressed air. This energy can be issued from a braking phas...
CONEX and CORSIKA: a new 3D hybrid model for air shower simulation
International Nuclear Information System (INIS)
The hybrid air shower simulation code CONEX has been implemented as an option in the air shower Monte-Carlo model CORSIKA. In CONEX, Monte-Carlo simulation of high energy interactions is combined with a fast numerical solution of cascade equations. Low energy secondary particles can then be tracked within CORSIKA to obtain the lateral extension of the air shower. This allows the fast and realistic simulation of 3D showers at ultra-high energies.
Modeling and Simulation of Hybrid Solar Photovoltaic, Wind turbine and Hydraulic Power System
Sami, S.; D. Icaza
2015-01-01
This paper presents the modeling and simulation of the energy conversion equations describing the total power generated by a hybrid system of solar photovoltaic, wind turbine and hydraulic turbine. To validate this simulation model, the aforementioned equations were coded with MATLAB V13.2, compared to experimental data. The model is intended to be used as an optimization and design tool. A block diagram approach was used during the simulation with MATLAB. The model predicted results compared...
Zhang, Hui; Cesnik, Carlos E. S.
2016-04-01
Local interaction simulation approach (LISA) is a highly parallelizable numerical scheme for guided wave simulation in structural health monitoring (SHM). This paper addresses the issue of simulating wave propagation in unbounded domain through the implementation of non-reflective boundary (NRB) in LISA. In this study, two different categories of NRB, i.e., the non-reflective boundary condition (NRBC) and the absorbing boundary layer (ABL), have been investigated in the parallelized LISA scheme. For the implementation of NRBC, a set of general LISA equations considering the effect from boundary stress is obtained first. As a simple example, the Lysmer and Kuhlemeyer (L-K) model is applied here to demonstrate the easiness of NRBC implementation in LISA. As a representative of ABL implementation, the LISA scheme incorporating the absorbing layers with increasing damping (ALID) is also proposed, based on elasto-dynamic equations considering damping effect. Finally, an effective hybrid model combining L-K and ALID methods in LISA is developed, and guidelines for implementing the hybrid model is presented. Case studies on a three-dimensional plate model compares the performance of hybrid method to that of L-K and ALID acting independently. The simulation results demonstrate that best absorbing efficiency is achieved with the hybrid method.
Strategy and gaps for modeling, simulation, and control of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hovsapian, Rob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mesina, George L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-04-01
The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers, and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled
Hybrid Monte-Carlo method for simulating neutron and photon radiography
International Nuclear Information System (INIS)
We present a Hybrid Monte-Carlo method (HMCM) for simulating neutron and photon radiographs. HMCM utilizes the combination of a Monte-Carlo particle simulation for calculating incident film radiation and a statistical post-processing routine to simulate film noise. Since the method relies on MCNP for transport calculations, it is easily generalized to most non-destructive evaluation (NDE) simulations. We verify the method's accuracy through ASTM International's E592-99 publication, Standard Guide to Obtainable (E)quivalent Penetrameter Sensitivity for Radiography of Steel Plates [1]. Potential uses for the method include characterizing alternative radiological sources and simulating NDE radiographs
Hybrid Monte-Carlo method for simulating neutron and photon radiography
Wang, Han; Tang, Vincent
2013-11-01
We present a Hybrid Monte-Carlo method (HMCM) for simulating neutron and photon radiographs. HMCM utilizes the combination of a Monte-Carlo particle simulation for calculating incident film radiation and a statistical post-processing routine to simulate film noise. Since the method relies on MCNP for transport calculations, it is easily generalized to most non-destructive evaluation (NDE) simulations. We verify the method's accuracy through ASTM International's E592-99 publication, Standard Guide to Obtainable Equivalent Penetrameter Sensitivity for Radiography of Steel Plates [1]. Potential uses for the method include characterizing alternative radiological sources and simulating NDE radiographs.
Co-Simulation of Hybrid Systems with SpaceEx and Uppaal
DEFF Research Database (Denmark)
Bogomolov, Sergiy; Greitschus, Marius; Jensen, Peter Gjøl;
2015-01-01
The Functional Mock-up Interface (FMI) is an industry standard which enables co-simulation of complex heterogeneous systems using multiple simulation engines. In this paper, we show how to use FMI in order to co-simulate hybrid systems modeled in the model checkers SPACEEX and UPPAAL. We show how...... FMI components can be automatically generated from SPACEEX and UPPAAL models. We also validate the cosimulation approach by comparing the simulations of a room heating benchmark in two cases: first, when a single model is simulated in SPACEEX; and second, when the model is split in two submodels, and...
An introduction to the hybrid simulation – the conception of the simulation system
Directory of Open Access Journals (Sweden)
K. Foit
2010-04-01
Full Text Available Purpose: of this paper: The aim of this paper is to present a simple hybrid simulation system, which is composed of virtual reality software and a mathematically oriented application. From the engineer’s point of view, an important possibility is to link together the mathematical software programs with these for creating presentation graphics or virtual reality, in order to create a simulation system with the large customisability.Design/methodology/approach: The coupling of mathematical and virtual reality system can be done in several different ways, using mechanisms for the Interprocess Communication.Findings: It has been assumed that EonX control will be used in a program conceptually similar to the EON Viewer, but equipped with support of basic interprocess communication interfaces in order to maximize flexibility and possibility of data exchange with different applications.Research limitations/implications: The one of specific requirements is to create an appropriate virtual world in EON Studio with use of external events nodes.Practical implications: The simple application named SockED has been created for testing purposes. The SockED application, which is hosting EonX control, acts as DDE server. As an external application any mathematical program that supports the DDE communication can be used (eg. Microsoft Excel, Matlab. There is also theoretical possibility of use the Programmable Logic Controller in similar manner like in case of SCADA application, but this case was not tested yet.Originality/value: There is no program on the market that allows complicated mathematical computation along with high resolution, 3D presentation graphics. The creation of SockED application allowed combining a mathematical program with the powerful graphics engine from EON Reality.
Bellos, Vasilis; Tsakiris, George
2016-09-01
The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.
A hybrid approach to simulate multiple photon scattering in X-ray imaging
International Nuclear Information System (INIS)
A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or γ-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results
A hybrid approach to simulate multiple photon scattering in X-ray imaging
Energy Technology Data Exchange (ETDEWEB)
Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)
2005-01-01
A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.
Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems
Energy Technology Data Exchange (ETDEWEB)
Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger
2012-09-01
Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.
Logic hybrid simulation-optimization algorithm for distillation design
Caballero Suárez, José Antonio
2014-01-01
In this paper, we propose a novel algorithm for the rigorous design of distillation columns that integrates a process simulator in a generalized disjunctive programming formulation. The optimal distillation column, or column sequence, is obtained by selecting, for each column section, among a set of column sections with different number of theoretical trays. The selection of thermodynamic models, properties estimation etc., are all in the simulation environment. All the numerical issues relat...
Goh, Yang Miang; Askar Ali, Mohamed Jawad
2016-08-01
One of the key challenges in improving construction safety and health is the management of safety behavior. From a system point of view, workers work unsafely due to system level issues such as poor safety culture, excessive production pressure, inadequate allocation of resources and time and lack of training. These systemic issues should be eradicated or minimized during planning. However, there is a lack of detailed planning tools to help managers assess the impact of their upstream decisions on worker safety behavior. Even though simulation had been used in construction planning, the review conducted in this study showed that construction safety management research had not been exploiting the potential of simulation techniques. Thus, a hybrid simulation framework is proposed to facilitate integration of safety management considerations into construction activity simulation. The hybrid framework consists of discrete event simulation (DES) as the core, but heterogeneous, interactive and intelligent (able to make decisions) agents replace traditional entities and resources. In addition, some of the cognitive processes and physiological aspects of agents are captured using system dynamics (SD) approach. The combination of DES, agent-based simulation (ABS) and SD allows a more "natural" representation of the complex dynamics in construction activities. The proposed hybrid framework was demonstrated using a hypothetical case study. In addition, due to the lack of application of factorial experiment approach in safety management simulation, the case study demonstrated sensitivity analysis and factorial experiment to guide future research. PMID:26456000
Simulation of phase locking of two lasers with hybrid resonators
International Nuclear Information System (INIS)
A three-dimensional numerical diffraction model of a slab laser with a hybrid resonator is developed and used for studying the phase locking of two lasers optically coupled through the edge of the output mirror. Numerical analysis of phase locking of industrial CO2 slab lasers shows that such a locking is possible for an appropriate choice of coupling parameters. It is found that the destructive effect of the active medium caused by an increase in the pump intensity can be minimised. It is shown that as the pump intensity is increased, the lateral radiation pattern of the output radiation improves while the beam is broadened in the transverse direction due to excitation of higher-order waveguide modes. (control of laser radiation parameters)
Thermodynamic Simulation of a Hybrid Pneumatic-Combustion Engine Concept
Directory of Open Access Journals (Sweden)
Yann Chamaillard
2002-03-01
Full Text Available Although internal combustion engines display high overall maximum global efficiencies, this potential cannot be fully exploited in automotive applications: in real conditions, the average engine load (and thus efficiency is quite low and the kinetic energy during a braking phase is lost. This work presents a new hybrid pneumatic-combustion engine and the associated thermodynamic cycles, which is able to store energy in the form of compressed air. This energy can be issued from a braking phase or from a combustion phase at low power. The potential energy from the air tank can then be restored to start the engine, or charge the engine at full load. The regenerative breaking and the suppression of the idling phases could provide an improvement in terms of fuel economy as high as 15% or more if combined with engine downsizing.
Plasma simulation in a hybrid ion electric propulsion system
Jugroot, Manish; Christou, Alex
2015-04-01
An exciting possibility for the next generation of satellite technology is the microsatellite. These satellites, ranging from 10-500 kg, can offer advantages in cost, reduced risk, and increased functionality for a variety of missions. For station keeping and control of these satellites, a suitable compact and high efficiency thruster is required. Electrostatic propulsion provides a promising solution for microsatellite thrust due to their high specific impulse. The rare gas propellant is ionized into plasma and generates a beam of high speed ions by electrostatic processes. A concept explored in this work is a hybrid combination of dc ion engines and hall thrusters to overcome space-charge and lifetime limitations of current ion thruster technologies. A multiphysics space and time-dependent formulation was used to investigate and understand the underlying physical phenomena. Several regions and time scales of the plasma have been observed and will be discussed.
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics
International Nuclear Information System (INIS)
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency
Hybrid-model transient stability simulation using dynamic phasors based HVDC system model
Energy Technology Data Exchange (ETDEWEB)
Zhu, Haojun; Cai, Zexiang [College of Electrical Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Haoming [Department of Electrical Engineering, Southeast University, Nanjing 210096 (China); Qi, Qingru [North China Power Engineering Co. Ltd., Beijing 100084 (China); Ni, Yixin [Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong (China)
2006-04-15
A novel hybrid-model transient stability simulation algorithm for ac/dc power systems is suggested in this paper, where dynamic phasors theory is applied for HVDC transmission system modeling, and traditional electromechanical transient models are used for ac system. A detailed dynamic-phasors-based HVDC system model is derived first, and the algorithm for interface of the dc dynamic phasors model to ac network is proposed next. Computer simulation results show that the HVDC dynamic phasors model has very good accuracy as compared with its electromagnetic transient model; the test results from a 2-area ac/dc power system and a multi-infeed HVDC power system show clearly that the suggested interface algorithm works effectively in system transient stability analysis. The proposed hybrid-model simulation algorithm provides a new approach for dynamic simulation of large-scale ac/dc power systems. (author)
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics
Energy Technology Data Exchange (ETDEWEB)
Strehl, Robert; Ilie, Silvana, E-mail: silvana@ryerson.ca [Department of Mathematics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.
Molecular dynamics, Langevin, and hybrid Monte Carlo simulations in multicanonical ensemble
Hansmann, Uwe H E; Eisenmenger, F; Hansmann, Ulrich H.E.; Okamoto, Yuko; Eisenmenger, Frank
1996-01-01
We demonstrate that the multicanonical approach is not restricted to Monte Carlo simulations, but can also be applied to simulation techniques such as molecular dynamics, Langevin, and hybrid Monte Carlo algorithms. The effectiveness of the methods are tested with an energy function for the protein folding problem. Simulations in the multicanonical ensemble by the three methods are performed for a penta peptide, Met-enkephalin. For each algorithm, it is shown that from only one simulation run one can not only find the global-minimum-energy conformation but also obtain probability distributions in canonical ensemble at any temperature, which allows the calculation of any thermodynamic quantity as a function of temperature.
Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics
Energy Technology Data Exchange (ETDEWEB)
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott [Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106-5080 (United States)
2015-01-28
We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.
Microcanonical and hybrid simulations of lattice quantum chromodynamics with dynamical fermions
International Nuclear Information System (INIS)
Lattice QCD is simulated using Microcanonical and Hybrid (Micro-canonical/Langevin) methods to facilitate the inclusion of dynamical fermions (quarks). We report on simulations with 4 flavors of light dynamical quarks on a 103 x 6 lattice to study the finite temperature deconfinement/chiral transition which should be observable in relativistic heavy ion collisions, as a function of quark mass. A first order transition is observed at large mass, weakens at intermediate mass and strengthens for very small quark mass
Modelization and Simulation of an Electric and Fuel Cell Hybrid Vehicle under Real Conditions
Victor Alfonsin; Rocio Maceiras; A. Cancela; Sanchez, A
2015-01-01
This paper presents a toolbox for the simulation of a zero emission urban hybrid bus, which combines batteries and fuel cells. This type of vehicle performs predefined routes with a certain frequency, then they are an ideal option to the replacement of combustion engines with renewable energy systems. The simulation of these vehicles can be made for different standard driving cycles (ECE-15, EUDC, NEDC, SFUDS) or for real routes from GPS device data. This will allow to consider the orography ...
Hybrid modelling and simulation of a computer numerical control machine tool feed drive
Pislaru, Crinela; Ford, Derek G.; Holroyd, Geoffrey
2004-01-01
The paper presents a new approach to the modelling and simulation of a computer numerical control (CNC) machine tool feed drive. The hybrid model of the drive incorporates a distributed load, explicit damping factors and measured non-linear effects in order to achieve a realistic dynamic performance. In this way, the shortcomings of traditional modelling methods applied to CNC machine tool axis drives are overcome. A MATLAB/SIMULINK package was used to simulate this new model for a CNC machin...
Numerical Simulation of Carbon Nanotubes/GaAs Hybrid PV Devices with AMPS-1D
Georgi Xosrovashvili; Gorji, Nima E.
2014-01-01
The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell are modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the electron affinity, acceptor and donor density while the other electrical parameters reach an optimum value. Increasing the concentratio...
Transient simulation of regression rate on thrust regulation process in hybrid rocket motor
Tian Hui; Li Yijie; Zeng Peng
2014-01-01
The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene) hybrid motor have been per...
Blom, H.A.P.; Krystul, J.; Bakker, G.J.
2006-01-01
We study the problem of estimating small reachability probabilities for large scale stochastic hybrid processes through Sequential Monte Carlo (SMC) simulation. Recently, [Cerou et al., 2002, 2005] developed an SMC approach for diffusion processes, and referred to the resulting SMC algorithm as an I
Multiple molecular dynamics time-scales in Hybrid Monte Carlo fermion simulations
PEARDON, MICHAEL JAMES; SEXTON, JAMES CHRISTOPHER
2003-01-01
PUBLISHED A scheme for separating the high- and low-frequency molecular dynamics modes in Hybrid Monte Carlo (HMC) simulations of gauge theories with dynamical fermions is presented. The algorithm is tested in the Schwinger model with Wilson fermions. MP is grateful to Enterprise-Ireland for support under grant SC/01/306.
A multi-scale code for flexible hybrid simulations
Leukkunen, L; Lopez-Acevedo, O
2012-01-01
Multi-scale computer simulations combine the computationally efficient classical algorithms with more expensive but also more accurate ab-initio quantum mechanical algorithms. This work describes one implementation of multi-scale computations using the Atomistic Simulation Environment (ASE). This implementation can mix classical codes like LAMMPS and the Density Functional Theory-based GPAW. Any combination of codes linked via the ASE interface however can be mixed. We also introduce a framework to easily add classical force fields calculators for ASE using LAMMPS, which also allows harnessing the full performance of classical-only molecular dynamics. Our work makes it possible to combine different simulation codes, quantum mechanical or classical, with great ease and minimal coding effort.
Modeling and Simulation for Hybrid of PV-Wind system
Directory of Open Access Journals (Sweden)
Maged N. F. Nashed
2015-04-01
Full Text Available The rising consumption rate of fossil fuels causes a significant pollution impact on the atmosphere, unwanted greenhouse gases has drawn worldwide attention towards renewable energy sources. Moreover, in recent year’s generation of electricity using the different types of renewable sources are specifically evaluated in the economical performance of the overall equipment. This paper focuses on the modeling and analysis of a Standalone Photovoltaic (PV- wind energy hybrid generation system under different conditions using MATLAB. The proposed system consists of two renewable sources i.e. wind and solar energy. Modeling of PV array and wind turbine is explained. The wind subsystem is equipped of an induction generator. In photovoltaic system, the variable DC output voltage is controlled using buck-boost converter for the MPPT. These two systems are combined to operate in parallel and the common bus collects the total energy from the wind and PV systems are uses it to the load and with change the load
Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac
2015-07-01
Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10months. The hybrid bioreactors were operated in an aerobic-anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia-nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75d and 60d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4L/kgvs and 113.2L/kgvs. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens. PMID:25857421
Hybrid airfoil design methods for full-scale ice accretion simulation
Saeed, Farooq
The objective of this thesis is to develop a design method together with a design philosophy that allows the design of "subscale" or "hybrid" airfoils that simulate fullscale ice accretions. These subscale or hybrid airfoils have full-scale leading edges and redesigned aft-sections. A preliminary study to help develop a design philosophy for the design of hybrid airfoils showed that hybrid airfoils could be designed to simulate full-scale airfoil droplet-impingement characteristics and, therefore, ice accretion. The study showed that the primary objective in such a design should be to determine the aft section profile that provides the circulation necessary for simulating full-scale airfoil droplet-impingement characteristics. The outcome of the study, therefore, reveals circulation control as the main design variable. To best utilize this fact, this thesis describes two innovative airfoil design methods for the design of hybrid airfoils. Of the two design methods, one uses a conventional flap system while the other only suggests the use of boundary-layer control through slot-suction on the airfoil upper surface as a possible alternative for circulation control. The formulation of each of the two design methods is described in detail, and the results from each method are validated using wind-tunnel test data. The thesis demonstrates the capabilities of each method with the help of specific design examples highlighting their application potential. In particular, the flap-system based hybrid airfoil design method is used to demonstrate the design of a half-scale hybrid model of a full-scale airfoil that simulates full-scale ice accretion at both the design and off-design conditions. The full-scale airfoil used is representative of a scaled modern business-jet main wing section. The study suggests some useful advantages of using hybrid airfoils as opposed to full-scale airfoils for a better understanding of the ice accretion process and the related issues. Results
International Nuclear Information System (INIS)
Highlights: • Matlab/Simulink modelling of a solar hybrid greenhouse. • Estimation of greenhouse gas emission reductions. • Feasibility and cost analysis of the system. - Abstract: Solar energy is a major renewable energy source and hybrid solar systems are gaining increased academic and industrial attention due to the unique advantages they offer. In this paper, a mathematical model has been developed to investigate the thermal behavior of a greenhouse heated by a hybrid solar collector system. This hybrid system contains an evacuated tube solar heat collector unit, an auxiliary fossil fuel heating unit, a hot water storage unit, control and piping units. A Matlab/Simulink based model and software has been developed to predict the storage water temperature, greenhouse indoor temperature and the amount of auxiliary fuel, as a function of various design parameters of the greenhouse such as location, dimensions, and meteorological data of the region. As a case study, a greenhouse located in Şanlıurfa/Turkey has been simulated based on recent meteorological data and aforementioned hybrid system. The results of simulations performed on an annual basis indicate that revising the existing fossil fuel system with the proposed hybrid system, is economically feasible for most cases, however it requires a slightly longer payback period than expected. On the other hand, by reducing the greenhouse gas emissions significantly, it has a considerable positive environmental impact. The developed dynamic simulation method can be further used for designing heating systems for various solar greenhouses and optimizing the solar collector and thermal storage sizes
International Nuclear Information System (INIS)
Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kgvs and 113.2 L/kgvs. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kgvs and 113.2 L/kgvs. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens
Energy Technology Data Exchange (ETDEWEB)
Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac, E-mail: jaehacko@pkusz.edu.cn
2015-07-15
Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.
Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system
Energy Technology Data Exchange (ETDEWEB)
Wang, Shaojie [ClimateMaster, Inc., Oklahoma City, OK (United States); Ellis, Dan [ClimateMaster, Inc., Oklahoma City, OK (United States)
2014-05-29
The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.
Bailey, Ann Marie; Christopher, John J; Salzar, Robert S; Brozoski, Frederick
2015-05-01
Response of the human body to high-rate vertical loading, such as military vehicle underbody blast (UBB), is not well understood because of the chaotic nature of such events. The purpose of this research was to compare the response of postmortem human surrogates (PMHS) and the Hybrid-III anthropomorphic test device (ATD) to simulated UBB loading ranging from 100 to 860 g seat and floor acceleration. Data from 13 whole body PMHS tests were used to create response corridors for vertical loading conditions for the pelvis, T1, head, femur, and tibia; these responses were compared to Hybrid-III responses under matched loading conditions. PMID:25751733
Energy Technology Data Exchange (ETDEWEB)
Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)
2015-08-15
The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.
A hybrid local/non-local framework for the simulation of damage and fracture
Azdoud, Yan
2014-01-01
Recent advances in non-local continuum models, notably peridynamics, have spurred a paradigm shift in solid mechanics simulation by allowing accurate mathematical representation of singularities and discontinuities. This doctoral work attempts to extend the use of this theory to a community more familiar with local continuum models. In this communication, a coupling strategy - the morphing method -, which bridges local and non-local models, is presented. This thesis employs the morphing method to ease use of the non-local model to represent problems with failure-induced discontinuities. First, we give a quick review of strategies for the simulation of discrete degradation, and suggest a hybrid local/non-local alternative. Second, we present the technical concepts involved in the morphing method and evaluate the quality of the coupling. Third, we develop a numerical tool for the simulation of the hybrid model for fracture and damage and demonstrate its capabilities on numerical model examples
International Nuclear Information System (INIS)
The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity
Modeling and Simulation of Hybrid Solar Photovoltaic, Wind turbine and Hydraulic Power System
Directory of Open Access Journals (Sweden)
S. Sami
2015-09-01
Full Text Available This paper presents the modeling and simulation of the energy conversion equations describing the total power generated by a hybrid system of solar photovoltaic, wind turbine and hydraulic turbine. To validate this simulation model, the aforementioned equations were coded with MATLAB V13.2, compared to experimental data. The model is intended to be used as an optimization and design tool. A block diagram approach was used during the simulation with MATLAB. The model predicted results compared fairly with experimental data under various conditions.
Full color hybrid display for aircraft simulators. [landing aids
Chase, W. D. (Inventor)
1977-01-01
A full spectrum color monitor, connected to the camera and lens system of a television camera supported by a gantry frame over a terrain model simulating an aircraft landing zone, projects the monitor image onto a lens or screen visually accessible to a trainee in the simulator. A digital computer produces a pattern corresponding to the lights associated with the landing strip onto a monochromatic display, and an optical system projects the calligraphic image onto the same lens so that it is superposed on the video representation of the landing field. The optical system includes a four-color wheel which is rotated between the calligraphic display and the lens, and an apparatus for synchronizing the generation of a calligraphic pattern with the color segments on the color wheel. A servo feedback system responsive to the servo motors on the gantry frame produces an input to the computer so that the calligraphically generated signal corresponds in shape, size and location to the video signal.
Modelling and Simulation of System Dynamics of Hybrid-Driven Precision Press
Institute of Scientific and Technical Information of China (English)
LI Yonggang; ZHANG Ce; MENG Caifang; SONG Yimin
2005-01-01
Different from conventional mechanical systems with single degree of freedom (DOF), the main idea of the system of hybrid-driven precision press is to combine the motion of a constant speed motor with a servomotor via a two-DOF mechanism to provide flexible output. In order to make the feasibility clear, this paper studies theoretically the dynamic characteristics of this hybrid-driven mechanical system.Firstly,the dynamics model of the whole electromechanical system is set up by combining dynamic equations of DC motors with those of two-DOF nine-bar mechanism deduced by the Lagrange′s formula. Secondly through the numerical solution with the fourth Runge-Kutta, computer simulation about the dynamics is done, which shows that the designed and optimized hybrid-driven precision press is feasible in theory. These provide theoretical basis for later experimental research.
International Nuclear Information System (INIS)
In this paper, a microwave imaging technique for reconstructing the shape of two-dimensional perfectly conducting scatterers by means of a stochastic optimization approach is investigated. Based on the boundary condition and the measured scattered field derived by transverse magnetic illuminations, a set of nonlinear integral equations is obtained and the imaging problem is reformulated in to an optimization problem. A hybrid approximation algorithm, called PSO-SA, is developed in this work to solve the scattering inverse problem. In the hybrid algorithm, particle swarm optimization (PSO) combines global search and local search for finding the optimal results assignment with reasonable time and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The hybrid approach elegantly combines the exploration ability of PSO with the exploitation ability of SA. Reconstruction results are compared with exact shapes of some conducting cylinders; and good agreements with the original shapes are observed.
Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes
Energy Technology Data Exchange (ETDEWEB)
Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL; Franzese, Oscar [ORNL
2014-01-01
We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.
Hybrid Network Simulation for the ATLAS Trigger and Data Acquisition (TDAQ) System
Bonaventura, Matias Alejandro; The ATLAS collaboration; Castro, Rodrigo Daniel; Foguelman, Daniel Jacob
2015-01-01
The poster shows the ongoing research in the ATLAS TDAQ group in collaboration with the University of Buenos Aires in the area of hybrid data network simulations. he Data Network and Processing Cluster filters data in real-time, achieving a rejection factor in the order of 40000x and has real-time latency constrains. The dataflow between the processing units (TPUs) and Readout System (ROS) presents a “TCP Incast”-type network pathology which TCP cannot handle it efficiently. A credits system is in place which limits rate of queries and reduces latency. This large computer network, and the complex dataflow has been modelled and simulated using a PowerDEVS, a DEVS-based simulator. The simulation has been validated and used to produce what-if scenarios in the real network. Network Simulation with Hybrid Flows: Speedups and accuracy, combined • For intensive network traffic, Discrete Event simulation models (packet-level granularity) soon becomes prohibitive: Too high computing demands. • Fluid Flow simul...
Development of a software platform for a plug-in hybrid electric vehicle simulator
Karlis, Athanasios; Bibeau, Eric; Zanetel, Paul; Lye, Zelon
2012-03-01
Electricity use for transportation has had limited applications because of battery storage range issues, although many recent successful demonstrations of electric vehicles have been achieved. Renewable biofuels such as biodiesel and bioethanol also contribute only a small percentage of the overall energy mix for mobility. Recent advances in hybrid technologies have significantly increased vehicle efficiencies. More importantly, hybridization now allows a significant reduction in battery capacity requirements compared to pure electric vehicles, allowing electricity to be used in the overall energy mix in the transportation sector. This paper presents an effort made to develop a Plug-in Hybrid Electric Vehicle (PHEV) platform that can act as a comprehensive alternative energy vehicle simulator. Its goal is to help in solving the pressing needs of the transportation sector, both in terms of contributing data to aid policy decisions for reducing fossil fuel use, and to support research in this important area. The Simulator will allow analysing different vehicle configurations, and control strategies with regards to renewable and non-renewable fuel and electricity sources. The simulation platform models the fundamental aspects of PHEV components, that is, process control, heat transfer, chemical reactions, thermodynamics and fluid properties. The outcomes of the Simulator are: (i) determining the optimal combination of fuels and grid electricity use, (ii) performing greenhouse gas calculations based on emerging protocols being developed, and (iii) optimizing the efficient and proper use of renewable energy sources in a carbon constrained world.
A Hybrid Navier-Stokes/Particle Method for Simulating Rarefied Flow
Duttweiler, Craig R.; Baganoff, Donald; Feiereisen, William J.
1997-11-01
A particle method such as the Direct Simulation Monte Carlo method (DSMC) simulates a gas flow by statistically modeling the behavior of a large number of virtual particles and is necessary for the simulation of rarefied flows for which the Navier-Stokes (NS) equations become invalid due to failure of the constituent relations upon which they are based. Unfortunately, while more versatile than NS, DSMC is also computationally much more intensive. Even on a parallel computer, simulation times can become large, and so a less computationally intensive method is desirable. Luckily, in a high-enthalpy flow, most of the particles, and hence computational intensity, are contained in a relatively small, dense region of the domain in which NS is often viable. A logical approach, then, is to hybridize NS and DSMC, allowing the former to handle regions of higher density and the latter to handle regions of greater rarefaction. A robust hybrid method has been developed and successfully applied to several problems, including a blunt body in Mach 10 flow and a lid-driven cavity. In these and other cases, the hybrid method takes less time to produce solutions whose quality is equal to or greater than that of solutions produced by DSMC alone.
Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant
Energy Technology Data Exchange (ETDEWEB)
Tsai A, Banta L, Tucker D
2010-08-01
This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.
Optimization of Electric Power Distribution Using Hybrid Simulated Annealing Approach
Directory of Open Access Journals (Sweden)
Walid Ahmed
2008-01-01
Full Text Available The key goal of electric power distribution companies is to provide a high quality of service with a low cost of operation. The growing customer needs requires a re-distribution of the Power over various nodes of the Distributed Generation (DG facilitates. The re-distribution might cause over load on various parts of the networks which if not correctly optimized might increase the cost of maintenance and affect the overall network reliability. This is why it is urgently requited to find a methodology that can effectively provide a schema for re-distribution of the power and achieve both customers and power companies contracting objectives. In this paper, we explore our new proposed idea of using a simulated annealing based local search technique to provide an efficient power load distribution for distributed generation network. On doing this, we will apply our approach on the famous IEEE14 and IEEE30 power systems as two test cases. The developed results show the significant of the proposed approach.
Fast garment simulation with aid of hybrid bones
Institute of Scientific and Technical Information of China (English)
吴博; 陈寅; 徐凯; 程志全; 熊岳山
2015-01-01
A data-driven method was proposed to realistically animate garments on human poses in reduced space. Firstly, a gradient based method was extended to generate motion sequences and garments were simulated on the sequences as our training data. Based on the examples, the proposed method can fast output realistic garments on new poses. Our framework can be mainly divided into offline phase and online phase. During the offline phase, based on linear blend skinning (LBS), rigid bones and flex bones were estimated for human bodies and garments, respectively. Then, rigid bone weight maps on garment vertices were learned from examples. In the online phase, new human poses were treated as input to estimate rigid bone transformations. Then, both rigid bones and flex bones were used to drive garments to fit the new poses. Finally, a novel formulation was also proposed to efficiently deal with garment-body penetration. Experiments manifest that our method is fast and accurate. The intersection artifacts are fast removed and final garment results are quite realistic.
Aspects of solar wind interaction with Mars: comparison of fluid and hybrid simulations
Directory of Open Access Journals (Sweden)
N. V. Erkaev
2007-02-01
Full Text Available Mars has no global intrinsic magnetic field, and consequently the solar wind plasma interacts directly with the planetary ionosphere. The main factors of this interaction are: thermalization of plasma after the bow shock, ion pick-up process, and the magnetic barrier effect, which results in the magnetic field enhancement in the vicinity of the obstacle. Results of ideal magnetohydrodynamic and hybrid simulations are compared in the subsolar magnetosheath region. Good agreement between the models is obtained for the magnetic field and plasma parameters just after the shock front, and also for the magnetic field profiles in the magnetosheath. Both models predict similar positions of the proton stoppage boundary, which is known as the ion composition boundary. This comparison allows one to estimate applicability of magnetohydrodynamics for Mars, and also to check the consistency of the hybrid model with Rankine-Hugoniot conditions at the bow shock. An additional effect existing only in the hybrid model is a diffusive penetration of the magnetic field inside the ionosphere. Collisions between ions and neutrals are analyzed as a possible physical reason for the magnetic diffusion seen in the hybrid simulations.
Zhu, Sha; Degnan, James H; Eldon, Bjarki
2013-01-01
Hybrid-Lambda is a software package that simulates gene trees under Kingman or two Lambda-coalescent processes within species networks or species trees. It is written in C++, and re- leased under GNU General Public License (GPL) version 3. Users can modify and make new dis- tribution under the terms of this license. For details of this license, visit http://www.gnu.org/licenses/. Hybrid Lambda is available at https://code.google.com/p/hybrid-lambda.
Ayvaz, M. Tamer
2016-07-01
In this study, a new simulation-optimization approach is proposed for solving the areal groundwater pollution source identification problems which is an ill-posed inverse problem. In the simulation part of the proposed approach, groundwater flow and pollution transport processes are simulated by modeling the given aquifer system on MODFLOW and MT3DMS models. The developed simulation model is then integrated to a newly proposed hybrid optimization model where a binary genetic algorithm and a generalized reduced gradient method are mutually used. This is a novel approach and it is employed for the first time in the areal pollution source identification problems. The objective of the proposed hybrid optimization approach is to simultaneously identify the spatial distributions and input concentrations of the unknown areal groundwater pollution sources by using the limited number of pollution concentration time series at the monitoring well locations. The applicability of the proposed simulation-optimization approach is evaluated on a hypothetical aquifer model for different pollution source distributions. Furthermore, model performance is evaluated for measurement error conditions, different genetic algorithm parameter combinations, different numbers and locations of the monitoring wells, and different heterogeneous hydraulic conductivity fields. Identified results indicated that the proposed simulation-optimization approach may be an effective way to solve the areal groundwater pollution source identification problems.
A zero-equation turbulence model for two-dimensional hybrid Hall thruster simulations
International Nuclear Information System (INIS)
We present a model for electron transport across the magnetic field of a Hall thruster and integrate this model into 2-D hybrid particle-in-cell simulations. The model is based on a simple scaling of the turbulent electron energy dissipation rate and the assumption that this dissipation results in Ohmic heating. Implementing the model into 2-D hybrid simulations is straightforward and leverages the existing framework for solving the electron fluid equations. The model recovers the axial variation in the mobility seen in experiments, predicting the generation of a transport barrier which anchors the region of plasma acceleration. The predicted xenon neutral and ion velocities are found to be in good agreement with laser-induced fluorescence measurements
The hardware-in-the-loop simulation test of a parallel hybrid transmission control system
Energy Technology Data Exchange (ETDEWEB)
Marco, J. [Pi Technology, Cambridge (United Kingdom); Ball, R. [University of Warwick, Coventry (United Kingdom). Warwick Manufacturing Group; Jones, R.P. [University of Warwick, Coventry (United Kingdom). School of Engineering; Roxburgh, A. [Warwick Control Technologies, Coventry (United Kingdom)
2001-07-01
This paper will present the hardware-in-the-loop simulation test of the transmission control system for the HERO (Hybrid Electric Realised Off-road) vehicle. HERO is a parallel hybrid derivative of a Land Rover Defender. The powertrain consists of a diesel engine and an electrical machine mechanically coupled to the gearbox input shaft. The main function of the transmission control system is to employ the electrical machine to actively assist in gear changes. The transmission control system is a combination of feedback compensation elements and supervisory rule-bases. The simulated performance of the control system is compared to the results obtained when the control algorithms have been converted to a source code program and compiled to the control module operating within a HILST environment. (author)
Proposal for high-fidelity quantum simulation using a hybrid dressed state
Cai, Jianming; Cohen, Itsik; Retzker, Alex; Plenio, Martin B.
2015-01-01
A fundamental goal of quantum technologies concerns the exploitation of quantum coherent dynamics for the realisation of novel quantum applications such as quantum computing, quantum simulation, and quantum metrology. A key challenge on the way towards these goals remains the protection of quantum coherent dynamics from environmental noise. Here, we propose a concept of hybrid dressed state from a pair of continuously driven systems. It allows sufficiently strong driving fields to suppress th...
Simulation and experimental results of hybrid electric machine with a novel flux control strategy
Paplicki Piotr; Wardach Marcin; Bonisławski Michał; Pałka Ryszard
2015-01-01
The paper presents selected simulation and experimental results of a hybrid ECPMS-machine (Electric Controlled Permanent Magnet Synchronous Machine). This permanent magnets (PMs) excited machine offers an extended magnetic field control capability which makes it suitable for battery electric vehicle (BEV) drives. Rotor, stator and the additional direct current control coil of the machine are analyzed in detail. The control system and strategy, the diagram of power supply system and an equival...
Hybrid Simulation of the Seismic Response of Squat Reinforced Concrete Shear Walls
Whyte, Catherine Alexandra
2012-01-01
Most industrial and nuclear facilities rely on reinforced concrete structural walls as their primary seismic lateral-force-resisting components. These walls commonly have an aspect ratio smaller than 0.5 and have a very high stiffness and strength. There is a significant uncertainty regarding the behavior of these walls under earthquake loading, their failure modes, and their expected strengths and deformation capacities. Hybrid simulation is an effective experimental method to examine these...
Dynamical overlap fermion simulations with a preconditioned Hybrid Monte Carlo force
Volkholz, Jan; Bietenholz, Wolfgang; Shcheredin, Stanislav
2006-01-01
We present simulation results for the 2-flavour Schwinger model with dynamical Ginsparg-Wilson fermions. Our Dirac operator is constructed by inserting an approximately chiral hypercube operator into the overlap formula, which yields the overlap hypercube operator. Due to the similarity with the hypercubic kernel, a low polynomial of this kernel can be used as a numerically cheap way to evaluate the fermionic part of the Hybrid Monte Carlo force. We verify algorithmic requirements like area c...
Structure of the lunar wake: Two-dimensional global hybrid simulations
Czech Academy of Sciences Publication Activity Database
Trávníček, Pavel; Hellinger, Petr; Schriver, D.; Bale, S. D.
2005-01-01
Roč. 32, - (2005), L06102/1-L06102/4. ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA205/05/1011 Grant ostatní: ESA(XE) PRODEX 14529; NSF(US) INT- 0010111; NASA (US) NAG5-11804 Institutional research plan: CEZ:AV0Z30420517 Keywords : hybrid simulations * lunar wake Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.491, year: 2005
Efficient parabolic evaluation of coupling terms in hybrid quantum/classical simulations
Energy Technology Data Exchange (ETDEWEB)
Bastida, Adolfo, E-mail: bastida@um.es [Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Murcia, 30100 Murcia (Spain); Soler, Miguel Angel; Zuniga, Jose; Requena, Alberto [Departamento de Quimica Fisica, Facultad de Quimica, Universidad de Murcia, 30100 Murcia (Spain); Miguel, Beatriz [Departamento de Ingenieria Quimica y Ambiental, Universidad Politecnica de Cartagena, 30203 Cartagena (Spain)
2009-03-30
A parabolic interpolation function of time is proposed to evaluate the non-adiabatic coupling matrix elements and the adiabatic energies at intermediate times within the classical time integration interval in hybrid quantum/classical simulations. The accuracy and the computational efficiency of this parabolic approximation are illustrated by carrying out a numerical application to the well-studied vibrational relaxation of I{sub 2} in liquid xenon.
NUMERICAL SIMULATION OF STRESS-INDUCED SECONDARY FLOWS WITH HYBRID FINITE ANALYTIC METHOD
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The algorithm of the Hybrid Finite Analytic Method (HFAM) was used to simulate fully developed trubulent flows in non-circular ducts and open channels. And the turbulent flow fields in a square duct and a rectangular open channels were calculated by Naot and Rodi's model, and that in a compound channel was calculated by Speaizle's non-linear eddy-viscosity model with this algorithm. The results show that the HFAM is suitable for calculating these complicated turbulent flows.
Hybrid Acceleration of a Molecular DynamicsSimulation Using Short-Ranged Potentials
Hornich, Julian
2013-01-01
Molecular dynamics simulations are a very usefultool to study the behavior and interaction of atoms and molecules in chemicaland bio-molecular systems. With the fast rising complexity of such simulationshybrid systems with both, multi-core processors (CPUs) and multiple graphics processingunits (GPUs), become more and more popular. To obtain an optimal performance thisthesis presents and evaluates two different hybrid algorithms, employing allavailable compute capacity from CPUs and GPUs. The...
A Hybrid MPI-OpenMP Parallel Implementation for Simulating Taylor-Couette Flow
Shi, Liang; Hof, Bjoern; Avila, Marc
2013-01-01
A hybrid-parallel direct-numerical-simulation method for turbulent Taylor-Couette flow is presented. The Navier-Stokes equations are discretized in cylindrical coordinates with the spectral Fourier-Galerkin method in the axial and azimuthal directions, and high-order finite differences in the radial direction. Time is advanced by a second-order, semi-implicit projection scheme, which requires the solution of five Helmholtz/Poisson equations, avoids staggered grids and renders very small slip velocities. Nonlinear terms are computed with the pseudospectral method. The code is parallelized using a hybrid MPI-OpenMP strategy, which is simpler to implement, reduces inter-node communications and is more efficient compared to a flat MPI parallelization. A strong scaling study shows that the hybrid code maintains very good scalability up to $\\mathcal{O}(10^4)$ processor cores and thus allows to perform simulations at higher resolutions than previously feasible, and opens up the possibility to simulate turbulent Tayl...
Hybrid simulation of scatter intensity in industrial cone-beam computed tomography
Thierry, R.; Miceli, A.; Hofmann, J.; Flisch, A.; Sennhauser, U.
2009-01-01
A cone-beam computed tomography (CT) system using a 450 kV X-ray tube has been developed to challenge the three-dimensional imaging of parts of the automotive industry in short acquisition time. Because the probability of detecting scattered photons is high regarding the energy range and the area of detection, a scattering correction becomes mandatory for generating reliable images with enhanced contrast detectability. In this paper, we present a hybrid simulator for the fast and accurate calculation of the scattering intensity distribution. The full acquisition chain, from the generation of a polyenergetic photon beam, its interaction with the scanned object and the energy deposit in the detector is simulated. Object phantoms can be spatially described in form of voxels, mathematical primitives or CAD models. Uncollided radiation is treated with a ray-tracing method and scattered radiation is split into single and multiple scattering. The single scattering is calculated with a deterministic approach accelerated with a forced detection method. The residual noisy signal is subsequently deconvoluted with the iterative Richardson-Lucy method. Finally the multiple scattering is addressed with a coarse Monte Carlo (MC) simulation. The proposed hybrid method has been validated on aluminium phantoms with varying size and object-to-detector distance, and found in good agreement with the MC code Geant4. The acceleration achieved by the hybrid method over the standard MC on a single projection is approximately of three orders of magnitude.
DEFF Research Database (Denmark)
Riaz, M. Tahir; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup;
2011-01-01
The paper presents a hybrid Genetic and Simulated Annealing algorithm for implementing Chordal Ring structure in optical backbone network. In recent years, topologies based on regular graph structures gained a lot of interest due to their good communication properties for physical topology of the...... networks. There have been many use of evolutionary algorithms to solve the problems which are in combinatory complexity nature, and extremely hard to solve by exact approaches. Both Genetic and Simulated annealing algorithms are similar in using controlled stochastic method to search the solution. The...
International Nuclear Information System (INIS)
The tokamak edge plasma region begins beyond the middle plasma, limited by a diaphragm and spread to torus vacuum chamber wall. Parameters of edge plasma have been measured; several disgnostic type have been used. Numerical simulation code is used for result interpretarion and to display important phenomena in this region. Simulation results give a relation between the plasma parameters at the limiter radius; these parameters can be used as limit conditions for inner plasma transport codes. Edge plasma measurements have been examined with care during lower hybrid frequency heating. Study of plasma parameter modifications can help to a better comprehension of phenomena related to heating
Chen, Yijiang; Abraham, Douglas S.; Heckman, David P.; Kwok, Andrew; MacNeal, Bruce E.; Tran, Kristy; Wu, Janet P.
2016-03-01
A technology demonstration of free space optical communication at interplanetary distances is planned via one or more future NASA deep-space missions. Such demonstrations will "pave the way" for operational use of optical communications on future robotic/potential Human missions. Hence, the Deep Space Network architecture will need to evolve. Preliminary attempts to model the anticipated future mission set and simulate how well it loads onto assumed architectures with combinations of RF and optical apertures have been evaluated. This paper discusses the results of preliminary loading simulations for hybrid RF-optical network architectures and highlights key mission and ground infrastructure considerations that emerge.
Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application
Jingming Liang; Zefeng Wu
2015-01-01
A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC) stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT) model has been figured out by applying the computational fluid dynamics (CFD) software, based on which, the...
Hybrid simulations of Z-Pinches in support of wire array implosion experiments at NTF
International Nuclear Information System (INIS)
Three-dimensional hybrid simulation of a plasma current-carrying column reveal two different regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to the appearance of large-scale axial perturbations and eventually to bending of the plasma column. In the second regime, with a four-times-larger Hall parameter, small-scale perturbations dominate and no bending of the plasma column is observed. Simulation results are compared with laser probing experimental data obtained during wire array implosions on the Zebra pulse power generator at the Nevada Terawatt Facility.
Global hybrid simulation of unmagnetized planets - Comparison of Venus and Mars
Brecht, Stephen H.; Ferrante, John R.
1991-01-01
Results from three-dimensional hybrid particle simulations of the solar wind interaction with the planets Mars and Venus are presented. The simulations produce shocks and magnetic barriers which are asymmetric. These results are qualitatively in agreement with data. In the absence of an ionosphere the subsolar shock standoff distance was found to agree with the observations if the Hall current is limited. It was also found that the solar wind interaction with Mars and Venus was substantially different. The interaction with Venus can be generally viewed as a magnetized interaction. The Mars interaction is very kinetic in nature and appears not to have a shock in the classic sense.
Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration
Shea, Patrick R.; Flamm, Jeffrey D.; Long, Kurtis R.; James, Kevin D.; Tompkins, Daniel M.; Beyar, Michael D.
2016-01-01
Propulsion airframe integration testing on a 5.75% scale hybrid wing body model us- ing turbine powered simulators was completed at the National Full-Scale Aerodynamics Complex 40- by 80-foot test section. Four rear control surface con gurations including a no control surface de ection con guration were tested with the turbine powered simulator units to investigate how the jet exhaust in uenced the control surface performance as re- lated to the resultant forces and moments on the model. Compared to ow-through nacelle testing on the same hybrid wing body model, the control surface e ectiveness was found to increase with the turbine powered simulator units operating. This was true for pitching moment, lift, and drag although pitching moment was the parameter of greatest interest for this project. With the turbine powered simulator units operating, the model pitching moment was seen to increase when compared to the ow-through nacelle con guration indicating that the center elevon and vertical tail control authority increased with the jet exhaust from the turbine powered simulator units.
Quasi-Static Single-Component Hybrid Simulation of a Composite Structure with Multi-Axis Control
DEFF Research Database (Denmark)
Høgh, J.; Waldbjørn, J.; Wittrup-Schmidt, J.;
2015-01-01
evaluate the validity of the method, the results are compared to a test of the emulated structure – referred to here as the reference test. It was found that the error introduced by compliance in the load train was signiﬁcant. Digital image correlation was for this reason implemented in the hybrid......, hybrid simulation has typically been applied to structures with a simple connection between the numerical model and physical test, e.g. civil engineering structures. In this paper, the method is applied to a composite structure, where the boundary is more complex i.e. 3 degrees of freedom. In order to...... simulation communication loop to compensate for this source of error. Furthermore, the accuracy of the hybrid simulation was improved by compensating for communication delay. The test showed high correspondence between the hybrid simulation and the reference test in terms of overall deﬂection as well as...
Optimized Mooring Line Simulation Using a Hybrid Method Time Domain Scheme
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye; Voie, Per Erlend Torbergsen; Høgsberg, Jan;
2014-01-01
Dynamic analyses of slender marine structures are computationally expensive. Recently it has been shown how a hybrid method which combines FEM models and artificial neural networks (ANN) can be used to reduce the computation time spend on the time domain simulations associated with fatigue analysis...... of the ANN are based on one short time domain simulation sequence generated by a FEM model of the structure. This means that it is possible to evaluate the importance of input parameters based on this single simulation only. The method is tested on a numerical model of mooring lines on a floating offshore...... of mooring lines by two orders of magnitude. The present study shows how an ANN trained to perform nonlinear dynamic response simulation can be optimized using a method known as optimal brain damage (OBD) and thereby be used to rank the importance of all analysis input. Both the training and the optimization...
Burgess, David; Gingell, Peter W; Trávníček, Pavel M
2016-01-01
Supercritical collisionless perpendicular shocks have an average macrostructure determined primarily by the dynamics of ions specularly reflected at the magnetic ramp. Within the overall macrostructure, instabilities, both linear and nonlinear, generate fluctuations and microstructure. To identify the sources of such microstructure, high-resolution two- and three-dimensional simulations have been carried out using the hybrid method, wherein the ions are treated as particles and the electron response is modelled as a massless fluid. We confirm the results of earlier 2-D simulations showing both field-parallel aligned propagating fluctuations and fluctuations carried by the reflected-gyrating ions. In addition, it is shown that, for 2-D simulations of the shock coplanarity plane, the presence of short-wavelength fluctuations in all magnetic components is associated with the ion Weibel instability driven at the upstream edge of the foot by the reflected-gyrating ions. In 3-D simulations we show for the first tim...
Directory of Open Access Journals (Sweden)
Pietra Paola
2012-04-01
Full Text Available We propose a hybrid classical-quantum model to study the motion of electrons in ultra-scaled confined nanostructures. The transport of charged particles, considered as one dimensional, is described by a quantum effective mass model in the active zone coupled directly to a drift-diffusion problem in the rest of the device. We explain how this hybrid model takes into account the peculiarities due to the strong confinement and we present numerical simulations for a simplified carbon nanotube. Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans des nanostructures très fortement confinées. Le transport des particules, consideré unidimensionel, est décrit par un modèle quantique avec masse effective dans la zone active couplé à un problème de dérive-diffusion dans le reste du domaine. Nous expliquons comment ce modèle hybride prend en compte les spécificités de ce très fort confinement et nous présentons des résultats numériques pour un nanotube de carbone simplifié.
A Hybrid Model for the Computationally-Efficient Simulation of the Cerebellar Granular Layer.
Cattani, Anna; Solinas, Sergio; Canuto, Claudio
2016-01-01
The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system) and its continuous counterpart (PDE system) obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables. Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least 270 times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround, and time-windowing. PMID:27148027
D. Nunn
1993-01-01
This paper presents a highly efficient and stable algorithm for the numerical simulation of collision free plasma. This algorithm has been successfully used to numerically model non linear electron cyclotron resonance in VLF band radio waves in space, and has produced good simulations of radio emissions such as ‘dawn chorus’ and ‘triggered VLF emissions’. The algorithm fills the phase box with simulation particles which represent phase space trajectories. Particle trajectories are followed fo...
Development and Simulation of a Type of Four-Shaft ECVT for a Hybrid Electric Vehicle
Directory of Open Access Journals (Sweden)
Yong Zhang
2016-02-01
Full Text Available In hybrid electric vehicles with power-split configurations, the engine can be decoupled from the wheel and operated with improved fuel economy, while the entire efficiency of the powertrain is affected by the circular electric power flow. Two planetary gear (2-PG sets with adding brakes/clutches, namely a type of four shaft elelctric continuously variable transmission (ECVT can provide multi-mode operation for the powertrain and extend the efficient area. First, a conventional 2-PG AT (Automatic Transmission architecture is investigated. By analyzing and comparing the connection and operating modes based on the kinematic relationship and lever analogy, a feasible four-shaft ECVT architecture with two brakes and two simplified versions are picked. To make a trade-off between fuel economy and configuration complexity, an instantaneous optimal control strategy based on the equivalent consumption minimization strategy (ECMS concept is then developed and employed as the unified optimization method in the simulations of three different configurations. Finally, the simulation results show that the simplified versions are suboptimal sets and the fuel economy is sacrificed by the limits of different modes. From the viewpoint of concept design, a multi-mode power-split configuration is more suitable for hybrid electric vehicles. This research applied a systematic methodology from concept design to energy management optimization, which can provide the guidelines for researchers to select a suitable multi-mode power-split hybrid powertrain.
Hybrid SN and ray-tracing with fictitious quadrature for simulation of SPECT
International Nuclear Information System (INIS)
A hybrid SN and simplified ray-tracing formulation is developed for simulation of the Single Photon Emission Computational Tomography (SPECT) for a torso phantom. The calculational model can be partitioned into two parts: i) A SN transport calculation is performed to determine a flux moments distribution in the phantom due to the radioactive source deposited in the heart; ii) A simplified ray-tracing formulation is used to transport particles leaving the phantom surface through a set of collimators normal to the SPECT camera. The Fictitious Quadrature (FQ) technique is developed to integrate the two parts and to evaluate angular fluxes along directions of interest. In this formulation, collimators are not included explicitly. However, their effect is accounted for by using a new circular ordinate splitting technique. We implemented this hybrid formulation in a revision to the TITAN code. The results of the TITAN simulation are in good agreement with the predictions of the reference Monte Carlo SIMIND code. It is also shown that the new hybrid formulation in TITAN results in a higher computational efficiency. (authors)
Simulation and Parametric Analysis of a Hybrid SOFC-Gas Turbine Power Generation System
International Nuclear Information System (INIS)
Combined SOFC-Gas Turbine Power Generation Systems are aimed to increase the power and efficiency obtained from the technology of using high temperature fuel cells by integrating them with gas turbines. Hybrid systems are considered in the last few years as one of the most promising technologies to obtain electric energy from the natural gas at very high efficiency with a serious potential for commercial use. The use of high temperature allows internal reforming for natural gas and thus disparity of fuel composition is allowed. Also air preheating is performed thanks to the high operating cell temperature as a task of energy integration. In this paper a modeling approach is presented for the fuel cell-gas turbine hybrid power generation systems, to obtain the sofc output voltage, power, and the overall hybrid system efficiency. The system has been simulated using HYSYS, the process simulation software to help improving the process understanding and provide a quick system solution. Parametric analysis is also presented in this paper to discuss the effect of some important SOFC operating parameters on the system performance and efficiency
Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias
2011-10-01
Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing processes [e.g., the message-passing interface (MPI)] with multithreading (e.g., OpenMP, Pthreads). The objective of this study is to compare the performance of such hybrid programming models when applied to the simulation of a realistic physiological multiscale model of the heart. Our results show that the hybrid models perform favorably when compared to an implementation using only the MPI and, furthermore, that OpenMP in combination with the MPI provides a satisfactory compromise between performance and code complexity. Having the ability to use threads within MPI processes enables the sophisticated use of all processor cores for both computation and communication phases. Considering that HPC systems in 2012 will have two orders of magnitude more cores than what was used in this study, we believe that faster than real-time multiscale cardiac simulations can be achieved on these systems. PMID:21768044
International Nuclear Information System (INIS)
Highlights: • Design, simulation, and manufacturing of a hybrid electric motorcycle are explained. • The electric machine is mounted in the front wheel hub of an ordinary motorcycle. • Two different energy control strategy are implemented. • The simulation results show that the motorcycle performance is improved. • The acceleration is improved and the fuel consumption and pollutions are decreased. - Abstract: In this paper, design, simulation, and conversion of a normal motorcycle to a Hybrid Electric Motorcycle (HEM) is described. At first, a simple model designed and simulated using ADVISOR2002. Then, the controller schematic and its optimized control strategy are described. A 125 cc ICE motorcycle is selected and converted into a HEM. A brushless DC (BLDC) motor assembled in the front wheel and a normal internal combustion engine in the rear wheel propel the motorcycle. The nominal powers are 6.6 kW and 500 W for the ICE and BLDC respectively. The original motorcycle has a Continuous Variable Transmission (CVT) that is the best choice for a HEM power transmission because it can operate in the automatic handling mode and has high efficiency. Moreover, by using the CVT, the ICE can be started while motorcycle is running. Finally, three operating modes of HEM, two implemented energy control strategies, and HEM engine control system by servomotors, and LCD display are explained
Nonlinear hybrid simulation of internal kink with beam ion effects in DIII-D
Energy Technology Data Exchange (ETDEWEB)
Shen, Wei; Sheng, Zheng-Mao [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Fu, G. Y.; Tobias, Benjamin [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Zeeland, Michael Van [General Atomics, San Diego, California 92186-5608 (United States); Wang, Feng [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)
2015-04-15
In DIII-D sawteething plasmas, long-lived (1,1) kink modes are often observed between sawtooth crashes. The saturated kink modes have two distinct frequencies. The mode with higher frequency transits to a fishbone-like mode with sufficient on-axis neutral beam power. In this work, hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of the n = 1 mode with effects of energetic beam ions for a typical DIII-D discharge where both saturated kink mode and fishbone were observed. Linear simulation results show that the n = 1 internal kink mode is unstable in MHD limit. However, with kinetic effects of beam ions, a fishbone-like mode is excited with mode frequency about a few kHz depending on beam pressure profile. The mode frequency is higher at higher beam power and/or narrower radial profile consistent with the experimental observation. Nonlinear simulations have been performed to investigate mode saturation as well as energetic particle transport. The nonlinear MHD simulations show that the unstable kink mode becomes a saturated kink mode after a sawtooth crash. With beam ion effects, the fishbone-like mode can also transit to a saturated kink mode with a small but finite mode frequency. These results are consistent with the experimental observation of saturated kink mode between sawtooth crashes.
Energy Technology Data Exchange (ETDEWEB)
Sheng, Zheng, E-mail: 19994035@sina.com [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Wang, Jun; Zhou, Bihua [National Defense Key Laboratory on Lightning Protection and Electromagnetic Camouflage, PLA University of Science and Technology, Nanjing 210007 (China); Zhou, Shudao [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044 (China)
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Hybrid simulation of boiling water reactor dynamics using a university research reactor
International Nuclear Information System (INIS)
A ''hybrid'' reactor/simulation (HRS) testing arrangement has been developed and experimentally verified using The Pennsylvania State University (Penn State) TRIGA Reactor. The HRS uses actual plant components to supply key parameters to a digital simulation (and vice versa). To implement the HRS on the Penn State TRIGA reactor, an experimental or secondary control rod drive mechanism is used to introduce reactivity feedback effects that are characteristic of a boiling water reactor (BWR). The simulation portion of the HRS provides a means for introducing reactivity feedback caused by voiding via a reduced order thermal-hydraulic model. With the model bifurcation parameter set to the critical value, the nonlinearity caused by the neutronic-simulated thermal/hydraulic coupling of the hybrid system is evident upon attaining a limit cycle, thereby verifying that these effects are indeed present. The shape and frequency of oscillation (∼ 0.4 Hz) of the limit cycles obtained with the HRS are similar to those observed in operating commercial BWRs. A control or diagnostic system specifically designed to accommodate (or detect) this type of anomaly can be experimentally verified using the research reactor based HRS
Jovian Plasma Torus Interaction with Europa: 3D Hybrid Kinetic Simulation. First results
Lipatov, A. S.; Cooper, J. F.; Paterson, W. R.; Sittler, E. C.; Hartle, R. E.; Simpson, D. G.
2010-01-01
The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa-moon-magnetosphere system with respect to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo orbiter mission, and for planning flyby and orbital measurements, (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy etal.,2007;Shematovichetal.,2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyro radius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions).Non-thermal distributions of upstream plasma will be addressed in future work. Photoionization,electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider two models for background plasma:(a) with O(++) ions; (b) with O(++) and S(++) ions. The majority of O2 atmosphere is thermal with an extended cold population (Cassidyetal.,2007). A few first simulations already include an induced magnetic dipole; however, several important effects of induced magnetic fields arising from oceanic shell conductivity will be addressed in later work.
A hybrid method for efficient and accurate simulations of diffusion compartment imaging signals
Rensonnet, Gaëtan; Jacobs, Damien; Macq, Benoît; Taquet, Maxime
2015-12-01
Diffusion-weighted imaging is sensitive to the movement of water molecules through the tissue microstructure and can therefore be used to gain insight into the tissue cellular architecture. While the diffusion signal arising from simple geometrical microstructure is known analytically, it remains unclear what diffusion signal arises from complex microstructural configurations. Such knowledge is important to design optimal acquisition sequences, to understand the limitations of diffusion-weighted imaging and to validate novel models of the brain microstructure. We present a novel framework for the efficient simulation of high-quality DW-MRI signals based on the hybrid combination of exact analytic expressions in simple geometric compartments such as cylinders and spheres and Monte Carlo simulations in more complex geometries. We validate our approach on synthetic arrangements of parallel cylinders representing the geometry of white matter fascicles, by comparing it to complete, all-out Monte Carlo simulations commonly used in the literature. For typical configurations, equal levels of accuracy are obtained with our hybrid method in less than one fifth of the computational time required for Monte Carlo simulations.
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Electrostatics of DNA nucleotide-carbon nanotube hybrids evaluated from QM:MM simulations
Chehel Amirani, Morteza; Tang, Tian
2015-11-01
Biomolecule-functionalized carbon nanotubes (CNTs) have been studied vastly in recent years due to their potential applications for instance in cancer detection, purification and separation of CNTs, and nanoelectronics. Studying the electrostatic potential generated by a biomolecule-CNT hybrid is important in predicting its interactions with the surrounding environment such as charged particles and surfaces. In this paper, we performed atomistic simulations using a QM:MM approach to evaluate the electrostatic potential and charge transfer for a hybrid structure formed by a DNA nucleotide and a CNT in solution. Four types of DNA nucleotides and two CNTs with chiralities of (4,4) and (7,0) were considered. The types of nucleotides and CNTs were both found to play important roles in the electrostatic potential and charge transfer of the hybrid. At the same distance from the CNT axis, the electrostatic potential for the nucleotide-(4,4) CNT hybrids was found to be stronger compared with that for the nucleotide-(7,0) CNT hybrids. Higher electric charge was also shown to be transferred from the DNA nucleotides to the (7,0) CNT compared with the (4,4) CNT. These results correlate with the previous finding that the nucleotides bound more tightly to the (7,0) CNT compared with the (4,4) CNT.Biomolecule-functionalized carbon nanotubes (CNTs) have been studied vastly in recent years due to their potential applications for instance in cancer detection, purification and separation of CNTs, and nanoelectronics. Studying the electrostatic potential generated by a biomolecule-CNT hybrid is important in predicting its interactions with the surrounding environment such as charged particles and surfaces. In this paper, we performed atomistic simulations using a QM:MM approach to evaluate the electrostatic potential and charge transfer for a hybrid structure formed by a DNA nucleotide and a CNT in solution. Four types of DNA nucleotides and two CNTs with chiralities of (4,4) and (7
A hybrid Tabu search-simulated annealing method to solve quadratic assignment problem
Directory of Open Access Journals (Sweden)
Mohamad Amin Kaviani
2014-06-01
Full Text Available Quadratic assignment problem (QAP has been considered as one of the most complicated problems. The problem is NP-Hard and the optimal solutions are not available for large-scale problems. This paper presents a hybrid method using tabu search and simulated annealing technique to solve QAP called TABUSA. Using some well-known problems from QAPLIB generated by Burkard et al. (1997 [Burkard, R. E., Karisch, S. E., & Rendl, F. (1997. QAPLIB–a quadratic assignment problem library. Journal of Global Optimization, 10(4, 391-403.], two methods of TABUSA and TS are both coded on MATLAB and they are compared in terms of relative percentage deviation (RPD for all instances. The performance of the proposed method is examined against Tabu search and the preliminary results indicate that the hybrid method is capable of solving real-world problems, efficiently.
International Nuclear Information System (INIS)
Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an extended version of hybrid magnetohydrodynamics gyrokinetic code (XHMGC) to study thermal ion kinetic effects on Alfvenic modes driven by energetic particles, such as kinetic beta induced Alfven eigenmodes in tokamak fusion plasmas. The XHMGC nonlinear model can be used to address a number of problems, where kinetic treatments of both thermal and supra-thermal plasma components are necessary, as theoretically predicted, or where it is desirable to investigate the phenomena connected with the presence of two supra-thermal particle species with different radial profiles and velocity space distributions.
A general hybrid radiation transport scheme for star formation simulations on an adaptive grid
Klassen, Mikhail; Pudritz, Ralph E; Peters, Thomas; Banerjee, Robi; Buntemeyer, Lars
2014-01-01
Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodynamics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion (FLD) solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calc...
Directory of Open Access Journals (Sweden)
Jingwei Song
2014-01-01
Full Text Available A simulated annealing (SA based variable weighted forecast model is proposed to combine and weigh local chaotic model, artificial neural network (ANN, and partial least square support vector machine (PLS-SVM to build a more accurate forecast model. The hybrid model was built and multistep ahead prediction ability was tested based on daily MSW generation data from Seattle, Washington, the United States. The hybrid forecast model was proved to produce more accurate and reliable results and to degrade less in longer predictions than three individual models. The average one-week step ahead prediction has been raised from 11.21% (chaotic model, 12.93% (ANN, and 12.94% (PLS-SVM to 9.38%. Five-week average has been raised from 13.02% (chaotic model, 15.69% (ANN, and 15.92% (PLS-SVM to 11.27%.
Solid rocket combustion simulator technology using the hybrid rocket for simulation
Ramohalli, Kumar
1994-01-01
The hybrid rocket is reexamined in light of several important unanswered questions regarding its performance. The well-known heat transfer limited burning rate equation is quoted, and its limitations are pointed out. Several inconsistencies in the burning rate determination through fuel depolymerization are explicitly discussed. The resolution appears to be through the postulate of (surface) oxidative degradation of the fuel. Experiments are initiated to study the fuel degradation in mixtures of nitrogen/oxygen in the 99.9 percent/0.1 percent to 98 percent/2 percent range. The overall hybrid combustion behavior is studied in a 2 in-diameter rocket motor, where a PMMA tube is used as the fuel. The results include detailed, real-time infrared video images of the combustion zone. Space- and time-averaged images give a broad indication of the temperature reached in the gases. A brief outline is shown of future work, which will specifically concentrate on the exploration of the role of the oxidizer transport to the fuel surface, and the role of the unburned fuel that is reported to escape below the classical time-averaged boundary layer flame.
Shi, Xianbo; Reininger, Ruben; Sánchez del Río, Manuel; Qian, Jun; Assoufid, Lahsen
2014-09-01
A hybrid method combining ray-tracing and wavefront propagation was recently developed for X-ray optics simulation and beamline design optimization. One major application of the hybrid method is its ability to assess the effects of figure errors on the performance of focusing mirrors. In the present work, focusing profiles of mirrors with different figure errors are simulated using three available wave optics methods: the hybrid code based on the Fourier optics approach, the stationary phase approximation and a technique based on the direct Fresnel-Kirchhoff diffraction integral. The advantages and limitations of each wave optics method are discussed. We also present simulations performed using the figure errors of an elliptical cylinder mirror measured at APS using microstitching interferometry. These results show that the hybrid method provides accurate and quick evaluation of the expected mirror performance making it a useful tool for designing diffraction-limited focusing beamlines.
GTKDynamo: a PyMOL plug-in for QC/MM hybrid potential simulations.
Bachega, José Fernando R; Timmers, Luís Fernando S M; Assirati, Lucas; Bachega, Leonardo R; Field, Martin J; Wymore, Troy
2013-09-30
Hybrid quantum chemical/molecular mechanical (QCMM) potentials are very powerful tools for molecular simulation. They are especially useful for studying processes in condensed phase systems, such as chemical reactions that involve a relatively localized change in electronic structure and where the surrounding environment contributes to these changes but can be represented with more computationally efficient functional forms. Despite their utility, however, these potentials are not always straightforward to apply since the extent of significant electronic structure changes occurring in the condensed phase process may not be intuitively obvious. To facilitate their use, we have developed an open-source graphical plug-in, GTKDynamo that links the PyMOL visualization program and the pDynamo QC/MM simulation library. This article describes the implementation of GTKDynamo and its capabilities and illustrates its application to QC/MM simulations. PMID:24137667
Global particle simulation of lower hybrid wave propagation and mode conversion in tokamaks
International Nuclear Information System (INIS)
Particle-in-cell simulation of lower hybrid (LH) waves in core plasmas is presented with a realistic electron-to-ion mass ratio in toroidal geometry. Due to the fact that LH waves mainly interact with electrons to drive the current, ion dynamic is described by cold fluid equations for simplicity, while electron dynamic is described by drift kinetic equations. This model could be considered as a new method to study LH waves in tokamak plasmas, which has advantages in nonlinear simulations. The mode conversion between slow and fast waves is observed in the simulation when the accessibility condition is not satisfied, which is consistent with the theory. The poloidal spectrum upshift and broadening effects are observed during LH wave propagation in the toroidal geometry
A comparison of simulated precipitation by hybrid isentropic-sigma and sigma models
Johnson, Donald R.; Zapotocny, Tom H.; Reames, Fred M.; Wolf, Bart J.; Pierce, R. B.
1993-01-01
Simulations of dry and moist baroclinic development from 10- and 22-layer hybrid isentropic-sigma coordinate models are compared with those from 11-, 27-, and 35-layer sigma coordinate models. The ability of the models to transport water vapor and simulate equivalent potential temperature is examined. Predictions of the timing, location, and amount of precipitation are compared. Several analytical distributions of water vapor are specified initially. It is shown that when the relative humidity is vertically uniform through a substantial extent of the atmosphere, all the models produce very similar precipitation distributions. However, when water vapor is confined to relatively shallow layers, the ability of the sigma coordinate models to simulate the timing, location, and amount of precipitation is severely compromised.
Global particle simulation of lower hybrid wave propagation and mode conversion in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Bao, J., E-mail: baojian@pku.edu.cn [Fusion Simulation Center and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Lin, Z. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Kuley, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Fusion Simulation Center and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)
2015-12-10
Particle-in-cell simulation of lower hybrid (LH) waves in core plasmas is presented with a realistic electron-to-ion mass ratio in toroidal geometry. Due to the fact that LH waves mainly interact with electrons to drive the current, ion dynamic is described by cold fluid equations for simplicity, while electron dynamic is described by drift kinetic equations. This model could be considered as a new method to study LH waves in tokamak plasmas, which has advantages in nonlinear simulations. The mode conversion between slow and fast waves is observed in the simulation when the accessibility condition is not satisfied, which is consistent with the theory. The poloidal spectrum upshift and broadening effects are observed during LH wave propagation in the toroidal geometry.
Bao, J; Kuley, A; Wang, Z X
2016-01-01
Electromagnetic particle simulation model has been formulated and verified for nonlinear processes of lower hybrid (LH) waves in fusion plasmas. Electron dynamics is described by the drift kinetic equation using either kinetic momentum or canonical momentum. Ion dynamics is treated as the fluid system or by the Vlasov equation. Compressible magnetic perturbation is retained to simulate both the fast and slow LH waves. Numerical properties are greatly improved by using electron continuity equation to enforce consistency between electrostatic potential and vector potential, and by using the importance sampling technique. The simulation model has been implemented in the gyrokinetic toroidal code (GTC), and verified for the dispersion relation and nonlinear particle trapping of the electromagnetic LH waves.
Energy Technology Data Exchange (ETDEWEB)
Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL
2013-01-01
We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Directory of Open Access Journals (Sweden)
Justin S Hogg
2014-04-01
Full Text Available Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R
2014-04-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings
Simulation of a Natural Convection by the Hybrid Thermal Lattice Boltzmann Equation
Energy Technology Data Exchange (ETDEWEB)
Ryu, Seungyeob; Kang, Hanok; Seo, Jaekwang; Yun, Juhyeon; Zee, Sung-Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2006-07-01
Recently, the lattice Boltzmann method(LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with multiphase flows, complex geometries and interfacial dynamics may be treated. In spite of its success in solving various challenging problems involving athermal fluids, the LBM has not been able to handle realistic thermal fluids with a satisfaction. The difficulty encountered in the thermal LBM seems to be the numerical instabilities. The existing thermal lattice Boltzmann models may be classified into three categories based on their approach in solving the Boltzmann equation, namely, the multispeed, the passive scalar and the thermal energy distribution approach. For more details see Ref. In the present work, the hybrid thermal lattice Boltzmann scheme proposed by Lallemand and Luo is used for simulating a natural convection in a square cavity. They proposed a hybrid thermal lattice Boltzmann equation(HTLBE) in which the mass and momentum conservation equations are solved by using the multiple-relaxation-time(MRT) model, whereas the diffusion-advection equations for the temperature are solved separately by using finite-difference technique. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of temperature fields at high Rayleigh numbers.
Modelization and Simulation of an Electric and Fuel Cell Hybrid Vehicle under Real Conditions
Directory of Open Access Journals (Sweden)
Victor Alfonsin
2015-06-01
Full Text Available This paper presents a toolbox for the simulation of a zero emission urban hybrid bus, which combines batteries and fuel cells. This type of vehicle performs predefined routes with a certain frequency, then they are an ideal option to the replacement of combustion engines with renewable energy systems. The simulation of these vehicles can be made for different standard driving cycles (ECE-15, EUDC, NEDC, SFUDS or for real routes from GPS device data. This will allow to consider the orography of the route, considering the slope that overcomes the vehicle at each time, generally this parameter is not included in other models, and it could become a determining factor for the applicability of these vehicles on certain specified routes. Moreover, this tool lets to study and to analyse other not easily quantifiable factors, such as the weather or peak-hour traffic. Finally, the performance of an urban hybrid bus was investigated to assess its theoretical range and the technical feasibility of zero-emission vehicles. Keywords: Electric vehicle; Battery; Fuel cell; Hydrogen; Simulation
A Robust Method for Handling Low Density Regions in Hybrid Simulations for Collisionless Plasmas
Amano, Takanobu; Shirakawa, Keisuke
2014-01-01
A robust method to handle vacuum and near vacuum regions in hybrid simulations for space and astrophysical plasmas is presented. The conventional hybrid simulation model dealing with kinetic ions and a massless charge-neutralizing electron fluid is known to be susceptible to numerical instability due to divergence of the whistler-mode wave dispersion, as well as division-by-density operation in regions of low density. Consequently, a pure vacuum region is not allowed to exist in the simulation domain unless some ad hoc technique is used. To resolve this difficulty, an alternative way to introduce finite electron inertia effect is proposed. Contrary to the conventional method, the proposed one introduces a correction to the electric field rather than the magnetic field. It is shown that the generalized Ohm's law correctly reduces to Laplace's equation in a vacuum which therefore does not involve any numerical problems. In addition, a variable ion-to-electron mass ratio is introduced to reduce the phase velocit...
2D-3D hybrid stabilized finite element method for tsunami runup simulations
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
Accelerated Degradation for Hardware in the Loop Simulation of Fuel Cell-Gas Turbine Hybrid System
DEFF Research Database (Denmark)
Abreu-Sepulveda, Maria A.; Harun, Nor Farida; Hackett, Gregory;
2015-01-01
hardware-in-the-loop simulation. To assess the long-term stability of the SOFC part of the system, electrochemical degradation due to operating conditions such as current density and fuel utilization have been incorporated into the SOFC model and successfully recreated in real time. The mathematical......The U.S. Department of Energy (DOE)-National Energy Technology Laboratory (NETL) in Morgantown, WV has developed the hybrid performance (HyPer) project in which a solid oxide fuel cell (SOFC) one-dimensional (1D), real-time operating model is coupled to a gas turbine hardware system by utilizing...
Simulation and experimental results of hybrid electric machine with a novel flux control strategy
Directory of Open Access Journals (Sweden)
Paplicki Piotr
2015-03-01
Full Text Available The paper presents selected simulation and experimental results of a hybrid ECPMS-machine (Electric Controlled Permanent Magnet Synchronous Machine. This permanent magnets (PMs excited machine offers an extended magnetic field control capability which makes it suitable for battery electric vehicle (BEV drives. Rotor, stator and the additional direct current control coil of the machine are analyzed in detail. The control system and strategy, the diagram of power supply system and an equivalent circuit model of the ECPMS-machine are presented. Influence of the additional excitation on the performance parameters of the machine, such as: torque, efficiency, speed limits and back-EMF have also been discussed.
Hybrid simulation of comet Shoemaker-Levy 9 interaction with Jovian bow shock
Lipatov, A. S.; Sharma, A. S.
1994-01-01
The interaction of the solar wind with comet Shoemaker-Levy 9 leading to the formation of the cometary magnetosphere and its interaction with the Jovian bow shock is simulated using a one dimensional hybrid code. The mass loading of the solar wind by the cometary ions leads to the formation of a bow shock behind which the plasma density is 2-3/cu cm and the electron temperature is 4 eV. The interaction of this system with the Jovian bow shock yields local enhancements of the magnetic field and the plasma density by factors of 4-5 and the electron temperature by 2-3.
New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications
Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris
2016-05-01
Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.
Gyro-particle, gyro-reduced-MHD, and hybrid simulation of internal kink modes
International Nuclear Information System (INIS)
The collision less reconnection process in Tokamaks due to the nonlinear development of m=1 (poloidal mode number) and n=1 (toroidal mode number) kinetic internal kink mode is simulated by the gyro-particle code (GYR3D), the gyro-reduced MHD code (GRM3D-2F), and the particle-fluid hybrid code (Hybrid3D). These codes are based on the nonlinear gyrokinetic Vlasov-Poisson-Ampere system and have exact energy invariance. GYR3D is a three-dimensional gyrokinetic magneto-inductive particle code with δf method. GRM3D-2F is a two-field and two-fluid model including the effects of electron inertia and the perturbed electron pressure gradients along the magnetic field. In Hybrid3D, electrons are treated as fluid, while ions are treated as particles. The results of these three codes agreed very well. We believe that the better understanding of the physics associated with the kinetic MHD phenomena in Tokamaks will be achieved by executing simultaneously these codes. (author)
Dynamics modeling and simulation of a new nine-bar press with hybrid-driven mechanism
International Nuclear Information System (INIS)
A novel hybrid-driven mechanical press for precision drawing is presented. This new press is composed of a ninebar linkage which has two degrees of freedom determined by inputs from a dc constant speed motor and a dc servomotor. Therefore, the generalized coordinates are the angular displacement of two cranks. The kinetic energy, potential energy and generalized torques are analyzed. According to the equivalent circuit of the dc motor and the brushless servomotor, their dynamical model and position negative feedback model are developed separately. Then, a dynamical model for the hybrid-driven press is developed by using Lagrange's formulation. The dynamical equation is then transformed into a system of first order equations. Six first order differential equations are obtained in the state variables. In the end, the fourth fourth order Runge-Kutta method, an explicit method, is chosen as the integration technique of computer simulation. Two motors' current, two cranks' position and two cranks' angular velocity are treated as unknowns and the time response of the hybrid-driven press is obtained by integrating the system of first order equations through time
Energy Technology Data Exchange (ETDEWEB)
Yu, Yuqi; Wang, Jinan; Shao, Qiang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn; Zhu, Weiliang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [ACS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203 (China); Shi, Jiye, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [UCB Pharma, 216 Bath Road, Slough SL1 4EN (United Kingdom)
2015-03-28
The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much less computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.
International Nuclear Information System (INIS)
We develop a multiscale hybrid scheme for simulations of soft condensed matter systems, which allows one to treat the system at the particle level in selected regions of space, and at the continuum level elsewhere. It is derived systematically from an underlying particle-based model by field theoretic methods. Particles in different representation regions can switch representations on the fly, controlled by a spatially varying tuning function. As a test case, the hybrid scheme is applied to simulate colloid–polymer composites with high resolution regions close to the colloids. The hybrid simulations are significantly faster than reference simulations of a pure particle-based model, and the results are in good agreement. (paper)
Directory of Open Access Journals (Sweden)
Katrašnik T.
2013-05-01
Full Text Available The paper presents a mechanistic system level simulation model for mode/big hybrid and conventional vehicle topologies. The paper addresses the Dynamic interaction between different domains: internal combustion engine. exhaust after treatment devices, electric components. mechanical drive train. cooling circuit system and corresponding control units. To achieve a good ratio between accuracy. predictability and computational speed of the model an innovative time domain decoupling is presented, which is based on applying domain specific integration steps to ditferent domains and subsequent consistent cross-domain coupling ol’thefluxes. In addition, a computationally efficient frunieveork for transporting active and passive gaseous species is introduced to combine computational efficiency with the need for modeling pollutant transport in the gas path. The applicability and versatility of the mechanistic system level simulations model is presented through analyses of transient phenomena caused by the high interdependency of the sub-systems, i.e. domains. Results of a hyt’hrid vehicle are compared to results of a conventional vehicle to highlight differences in operating regimes of partiular components that are inherent to particular poster train topology. L’article présente un modèle de simulation au niveau mécanique destiné à la modélisation de topologies de véhicules hydrides et conventionnels. L’article décrit l’interaction dynamique entre différents domaines : moteur à combustion interne, dispositifs de post-traitement d’échappement, composants électriques, chaîne cinématique mécanique, circuit de refroidissement et les unités de contrôle correspondantes. Afin d’obtenir un rapport correct entre précision, prévisibilité et vitesse de calculs du modèle, un découplage innovant du domaine temporel est présenté, lequel est basé sur l’application à différents domaines, d’étapes d’intégration sp
Modeling And Simulation As The Basis For Hybridity In The Graphic Discipline Learning/Teaching Area
Directory of Open Access Journals (Sweden)
Jana Žiljak Vujić
2009-01-01
Full Text Available Only some fifteen years have passed since the scientific graphics discipline was established. In the transition period from the College of Graphics to «Integrated Graphic Technology Studies» to the contemporary Faculty of Graphics Arts with the University in Zagreb, three main periods of development can be noted: digital printing, computer prepress and automatic procedures in postpress packaging production. Computer technology has enabled a change in the methodology of teaching graphics technology and studying it on the level of secondary and higher education. The task has been set to create tools for simulating printing processes in order to master the program through a hybrid system consisting of methods that are separate in relation to one another: learning with the help of digital models and checking in the actual real system. We are setting a hybrid project for teaching because the overall acquired knowledge is the result of completely different methods. The first method is on the free programs level functioning without consequences. Everything remains as a record in the knowledge database that can be analyzed, statistically processed and repeated with new parameter values of the system being researched. The second method uses the actual real system where the results are in proving the value of new knowledge and this is something that encourages and stimulates new cycles of hybrid behavior in mastering programs. This is the area where individual learning incurs. The hybrid method allows the possibility of studying actual situations on a computer model, proving it on an actual real model and entering the area of learning envisaging future development.
Modeling and Simulation as the Basis for Hybridity in the Graphic Discipline Learning/Teaching Area
Directory of Open Access Journals (Sweden)
Vilko Ziljak
2009-11-01
Full Text Available Only some fifteen years have passed since the scientific graphics discipline was established. In the transition period from the College of Graphics to «Integrated Graphic Technology Studies» to the contemporary Faculty of Graphics Arts with the University in Zagreb, three main periods of development can be noted: digital printing, computer prepress and automatic procedures in postpress packaging production. Computer technology has enabled a change in the methodology of teaching graphics technology and studying it on the level of secondary and higher education. The task has been set to create tools for simulating printing processes in order to master the program through a hybrid system consisting of methods that are separate in relation to one another: learning with the help of digital models and checking in the actual real system. We are setting a hybrid project for teaching because the overall acquired knowledge is the result of completely different methods. The first method is on the free programs level functioning without consequences. Everything remains as a record in the knowledge database that can be analyzed, statistically processed and repeated with new parameter values of the system being researched. The second method uses the actual real system where the results are in proving the value of new knowledge and this is something that encourages and stimulates new cycles of hybrid behavior in mastering programs. This is the area where individual learning incurs. The hybrid method allows the possibility of studying actual situations on a computer model, proving it on an actual real model and entering the area of learning envisaging future development.
A hybrid model for the computationally-efficient simulation of the cerebellar granular layer
Directory of Open Access Journals (Sweden)
Anna eCattani
2016-04-01
Full Text Available The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system and its continuous counterpart (PDE system obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables.Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least $270$ times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround and time-windowing.
DEFF Research Database (Denmark)
Maghareh, Amin; Waldbjørn, Jacob Paamand; Dyke, Shirley J.;
2016-01-01
Real-time hybrid simulation (RTHS) is a powerful cyber-physical technique that is a relatively cost-effective method to perform global/local system evaluation of structural systems. A major factor that determines the ability of an RTHS to represent true system-level behavior is the fidelity of the...... numerical substructure. While the use of higher-order models increases fidelity of the simulation, it also increases the demand for computational resources. Because RTHS is executed at real-time, in a conventional RTHS configuration, this increase in computational resources may limit the achievable sampling...... frequencies and/or introduce delays that can degrade its stability and performance. In this study, the Adaptive Multi-rate Interface rate-transitioning and compensation technique is developed to enable the use of more complex numerical models. Such a multi-rate RTHS is strictly executed at real-time, although...
Solar wind turbulence from MHD to sub-ion scales: high-resolution hybrid simulations
Franci, Luca; Matteini, Lorenzo; Landi, Simone; Hellinger, Petr
2015-01-01
We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wave numbers. The simulation results exhibit simultaneously several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magneto-hydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm's law.
Fast surrogate-assisted simulation-driven optimization of compact microwave hybrid couplers
Kurgan, Piotr; Koziel, Slawomir
2016-07-01
This work presents a robust methodology for expedited simulation-driven design optimization of compact microwave hybrid couplers. The technique relies on problem decomposition, and a bottom-up design strategy, starting from the level of basic building blocks of the coupler, and finishing with a tuning procedure that exploits a fast surrogate model of the entire structure. The latter is constructed by cascading local response surface approximations of coupler elementary elements. The cross-coupling effects within the structure are neglected in the first stage of the design process; however, they are accounted for in the tuning phase by means of space-mapping correction of the surrogate. The proposed approach is demonstrated through the design of a compact rat-race and two branch-line couplers. In all cases, the computational cost of the optimization process is very low and corresponds to just a few high-fidelity electromagnetic simulations of respective structures. Experimental validation is also provided.
Solar Wind Turbulence from MHD to Sub-ion Scales: High-resolution Hybrid Simulations
Franci, Luca; Verdini, Andrea; Matteini, Lorenzo; Landi, Simone; Hellinger, Petr
2015-05-01
We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.
Towards Reconfigurable, Separable and Hard Real-Time Hybrid Simulation and Test Systems
Quartier, F.; Delatte, B.; Joubert, M.
2009-05-01
Formation flight needs several new technologies, new disciplines, new approaches and above all, more concurrent engineering by more players. One of the problems to be addressed are more complex simulation and test systems that are easy to re-configure to include parts of the target hardware and that can provide sufficient power to handle simulation cores that are requiring one to two orders of magnitude more processing power than the current technology provides. Critical technologies that are already addressed by CNES and Spacebel are study model reuse and simulator reconfigurability (Basiles), model portability (SMP2) and the federation of several simulators using HLA. Two more critical issues are addressed in ongoing R&D work by CNES and Spacebel and are covered by this paper and concern the time engineering and management. The first issue concerns separability (characterisation, identification and handling of separable subsystems) and the consequences on practical systems. Experiments on the Pleiades operational simulator have shown that adding precise simulation of instruments such as Doris and the Star Tracker can be added without significantly impacting overall performance. Improved time analysis leads to better system understanding and testability. The second issue concerns architectures for distributed hybrid simulators systems that provide hard real-time capabilities and can react with a relative time precision and jitter that is in the 10 to 50 µsecond range using mainstream PC's and mainstream Operating Systems. This opens a way to make smaller economic hardware test systems that can be reconfigured to make large hardware test systems without restarting development. Although such systems were considered next to impossible till now, distributed hard real-time systems are getting in reach when modern but mainstream electronics are used and when processor cores can be isolated and reserved for real-time cores. This requires a complete rethinking of the
Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits
Chiesa, Alessandro; Santini, Paolo; Gerace, Dario; Raftery, James; Houck, Andrew A.; Carretta, Stefano
2015-11-01
Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence.
Gallbladder Removal Simulation for Laparoscopic Surgery Training:A Hybrid Modeling Method
Institute of Scientific and Technical Information of China (English)
Youngjun Kim; Dongjune Chang; Jungsik Kim; Sehyung Park
2013-01-01
Laparoscopic surgery has many advantages,but it is difficult for a surgeon to achieve the necessary surgical skills.Recently,virtual training simulations have been gaining interest because they can provide a safe and efficient learning environment for medical students and novice surgeons.In this paper,we present a hybrid modeling method for simulating gallbladder removal that uses both the boundary element method (BEM) and the finite element method (FEM).Each modeling method is applied according to the deformable properties of human organs:BEM for the liver and FEM for the gallbladder.Connective tissues between the liver and the gallbladder are also included in the surgical simulation.Deformations in the liver and the gallbladder models are transferred via connective tissue springs using a mass-spring method.Special effects and techniques are developed to achieve realistic simulations,and the software is integrated into a custom-designed haptic interface device.Various computer graphical techniques are also applied in the virtual gallbladder removal laparoscopic surgery training.The detailed techniques and the results of the simulations are described in this paper.
A new hybrid scheme for simulations of highly collisional RF-driven plasmas
Eremin, Denis; Hemke, Torben; Mussenbrock, Thomas
2016-02-01
This work describes a new 1D hybrid approach for modeling atmospheric pressure discharges featuring complex chemistry. In this approach electrons are described fully kinetically using particle-in-cell/Monte-Carlo (PIC/MCC) scheme, whereas the heavy species are modeled within a fluid description. Validity of the popular drift-diffusion approximation is verified against a ‘full’ fluid model accounting for the ion inertia and a fully kinetic PIC/MCC code for ions as well as electrons. The fluid models require knowledge of the momentum exchange frequency and dependence of the ion mobilities on the electric field when the ions are in equilibrium with the latter. To this end an auxiliary Monte-Carlo scheme is constructed. It is demonstrated that the drift-diffusion approximation can overestimate ion transport in simulations of RF-driven discharges with heavy ion species operated in the γ mode at the atmospheric pressure or in all discharge simulations for lower pressures. This can lead to exaggerated plasma densities and incorrect profiles provided by the drift-diffusion models. Therefore, the hybrid code version featuring the full ion fluid model should be favored against the more popular drift-diffusion model, noting that the suggested numerical scheme for the former model implies only a small additional computational cost.
Aspect of Dynamic Simulation and Experimental Research Studies on Hybrid Pneumatic Power System
Directory of Open Access Journals (Sweden)
K. David Huang
2010-01-01
Full Text Available A Hybrid Pneumatic Power System (HPPS has been developed for several years with the major aim of reducing the vehicle fuel consumption, environment pollution and enhancing the vehicle performance as well. Comparing with the conventional hybrid system, HPPS replaces the battery's electrochemical energy with a high-pressure air storage tank and enables the internal combustion engine (ICE to function at its sweet spot. Besides, the HPPS, which effectively merges both the high-pressure air flow from the storage tank and the recycled exhaust flow from the ICE, thereby increases the thermal efficiency of the ICE and transforms the merged flow energy into mechanical energy using a high-efficiency turbine. This paper focuses on the major research process into HPPSs, including overall dynamic simulation and experimental validation. By using the simulation tool ITI-Sim, this research demonstrates an experiment which can be operated precisely according to the requirements of various driving conditions under which a car actually runs on the road in accordance with the regulated running vehicle test mode. HPPS is expected to increase the performance of the entire system from 15% to 39%, and is likely to replace the traditional system in the coming years.
Modeling, simulation, and concept studies of a fuel cell hybrid electric vehicle powertrain
Energy Technology Data Exchange (ETDEWEB)
Oezbek, Markus
2010-03-29
This thesis focuses on the development of a fuel cell-based hybrid electric powertrain for smaller (2 kW) hybrid electric vehicles (HEVs). A Hardware-in-the-Loop test rig is designed and built with the possibility to simulate any load profile for HEVs in a realistic environment, whereby the environment is modeled. Detailed simulation models of the test rig are developed and validated to real physical components and control algorithms are designed for the DC/DC-converters and the fuel cell system. A state-feedback controller is developed for the DC/DC-converters where the state-space averaging method is used for the development. For the fuel cells, a gain-scheduling controller based on state feedback is developed and compared to two conventional methods. The design process of an HEV with regard to a given load profile is introduced with comparison between SuperCaps and batteries. The HEV is also evaluated with an introduction to different power management concepts with regard to fuel consumption, dynamics, and fuel cell deterioration rate. The power management methods are implemented in the test rig and compared. (orig.)
A control-oriented simulation model of a power-split hybrid electric vehicle
International Nuclear Information System (INIS)
Highlights: ► A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed. ► Modeling the energy losses in the HEV transmission components are presented. ► The control optimization model implementation aspects are discussed. -- Abstract: A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed in this paper for the purpose of HEV dynamics analysis and control system design. The bond graph methodology is used to model dominant dynamic effects of the mechanical part of the HEV transmission. Simple quasi-static battery model, the environment model, the tire and the power losses model of a vehicle are included, as well. A low-level electric generator speed control loop is designed, which includes a PI controller tuned according to the symmetrical optimum tuning procedure. Finally, off-line optimization by conjugate gradient-based BPTT-like optimal control algorithm, which is based on the presented mathematical model, is also given in the paper.
Kadoura, Ahmad Salim
2014-03-17
Molecular simulation could provide detailed description of fluid systems when compared to experimental techniques. They can also replace equations of state; however, molecular simulation usually costs considerable computational efforts. Several techniques have been developed to overcome such high computational costs. In this paper, two early rejection schemes, a conservative and a hybrid one, are introduced. In these two methods, undesired configurations generated by the Monte Carlo trials are rejected earlier than it would when using conventional algorithms. The methods are tested for structureless single-component Lennard-Jones particles in both canonical and NVT-Gibbs ensembles. The computational time reduction for both ensembles is observed at a wide range of thermodynamic conditions. Results show that computational time savings are directly proportional to the rejection rate of Monte Carlo trials. The proposed conservative scheme has shown to be successful in saving up to 40% of the computational time in the canonical ensemble and up to 30% in the NVT-Gibbs ensemble when compared to standard algorithms. In addition, it preserves the exact Markov chains produced by the Metropolis scheme. Further enhancement for NVT-Gibbs ensemble is achieved by combining this technique with the bond formation early rejection one. The hybrid method achieves more than 50% saving of the central processing unit (CPU) time.
Simulation of the dynamics of a LWR power plant with the use of a hybrid computing system
International Nuclear Information System (INIS)
The simulation is discussed of the dynamics of the primary loop of the nuclear power plant with light water reactor using the hybrid computer. The mathematical model serving as a basis for the design of the analog computer circuit diagram, the method of analog connections and control program checking are described. A test problem and its solution are presented. Hybrid computer EAI 690 was used to solve the presented problem. (author)
Wang, X.; Briguglio, S.; Chen, L.; Di Troia, C; Fogaccia, G.; Vlad, G.; Zonca, F.
2010-01-01
Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to study thermal ion kinetic effects on Alfv\\'enic...
Hybrid MPI-OpenMP Paradigm on SMP Clusters: MPEG-2 Encoder and N-Body Simulation
Duy, Truong Vinh Truong; Yamazaki, Katsuhiro; Ikegami, Kosai; Oyanagi, Shigeru
2012-01-01
Clusters of SMP nodes provide support for a wide diversity of parallel programming paradigms. Combining both shared memory and message passing parallelizations within the same application, the hybrid MPI-OpenMP paradigm is an emerging trend for parallel programming to fully exploit distributed shared-memory architecture. In this paper, we improve the performance of MPEG-2 encoder and n-body simulation by employing the hybrid MPI-OpenMP programming paradigm on SMP clusters. The hierarchical im...
Trajkovic, Sasa; Tunestål, Per; Johansson, Bengt
2009-01-01
In the study presented in this paper, experimental data from a pneumatic hybrid has been compared to the results from a simulation of the engine in GT-Power. The engine in question is a single-cylinder Scania D12 diesel engine, which has been converted to work as a pneumatic hybrid. The base engine model, provided by Scania, is made in GT-Power and it is based on the same engine configuration as the one used during real engine testing. During pneumatic hybrid operation the engine can be us...
Fahrenthold, Eric P.; Shivarama, Ravishankar
2004-01-01
The hybrid particle-finite element method of Fahrenthold and Horban, developed for the simulation of hypervelocity impact problems, has been extended to include new formulations of the particle-element kinematics, additional constitutive models, and an improved numerical implementation. The extended formulation has been validated in three dimensional simulations of published impact experiments. The test cases demonstrate good agreement with experiment, good parallel speedup, and numerical convergence of the simulation results.
Energy Technology Data Exchange (ETDEWEB)
Baumeister, A. [Univ. der Bundeswehr Muenchen, Neubiberg (Germany). Abt. Regenerative Energien; Mayer, O. [Univ. der Bundeswehr Muenchen, Neubiberg (Germany). Abt. Regenerative Energien; Zaengerl, H.P. [Univ. der Bundeswehr Muenchen, Neubiberg (Germany). Abt. Regenerative Energien
1996-12-01
Hybrid regenerative technologies for the electricity supply of remote regions open up many possibilities by showing a high complexity in design for small plant sizes and correspondingly low profit. Widespread use is therefore only possible with reduced engineering costs by suitable computer or software support in design and simulation. (orig.) [Deutsch] Hybride, regenerative Technologien zur Stromversorgung entlegener Regionen eroeffnen viele Chancen, zeigen aber auch eine hohe Komplexitaet in der Auslegung bei eher geringen Anlagengroessen und entsprechend niedrigen Ertraegen. Eine weitverbreitete Nutzung ist deshalb nur bei reduzierten Engineeringkosten durch entsprechende Computer- bzw. Softwareunterstuetzung in Auslegung und Simulation moeglich. (orig.)
Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application
Directory of Open Access Journals (Sweden)
Jingming Liang
2015-01-01
Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.
Transient simulation of regression rate on thrust regulation process in hybrid rocket motor
Institute of Scientific and Technical Information of China (English)
Tian Hui; Li Yijie; Zeng Peng
2014-01-01
The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene) hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.
Hybrid simulation of toroidal Alfvén eigenmode on the National Spherical Torus Experiment
International Nuclear Information System (INIS)
Energetic particle modes and Alfvén eigenmodes driven by super-Alfvénic fast ions are routinely observed in neutral beam heated plasmas on the National Spherical Torus eXperiment (NSTX). These modes can significantly impact fast ion transport and thus cause fast ion redistribution or loss. Self-consistent linear simulations of Toroidal Alfvén Eigenmodes (TAEs) in NSTX plasmas have been carried out with the kinetic/magnetohydrodynamic hybrid code M3D-K using experimental plasma parameters and profiles including plasma toroidal rotation. The simulations show that unstable TAEs with n=3,4, or 5 can be excited by the fast ions from neutral beam injection. The simulated mode frequency, mode radial structure, and phase shift are consistent with measurements from a multi-channel microwave reflectometer diagnostic. A sensitivity study on plasma toroidal rotation, safety factor q profile, and initial fast ion distribution is performed. The simulations show that rotation can have a significant destabilizing effect when the rotation is comparable or larger than the experimental level. The mode growth rate is sensitive to q profile and fast ion distribution. Although mode structure and peak position depend somewhat on q profile and plasma rotation, the variation of synthetic reflectometer response is within experimental uncertainty and it is not sensitive enough to see the difference clearly
3D hybrid and MHD/particle simulations of field-reversed configurations
International Nuclear Information System (INIS)
A nonlinear 3D code in cylindrical geometry is being developed for the stability studies of FRC. Two numerical schemes have been implemented: a hybrid scheme with particle ions and fluid electrons, and MHD/particle scheme in which the background plasma is described by MHD equations. And energetic ions are treated via particle simulations. The MHD equations are advanced on a finite-difference mesh in a cylindrical coordinate system, while particle pushing is done on 3D Cartesian grids. Full ion dynamics is retained in order to include large-orbit effects (with s∼1), which are important for the tilt mode stabilization in FRC. Also, in contrast to the previous work, δf method is utilized to reduce numerical noise in the simulations. The code has been benchmarked against previous MHD simulation of tilting instability in FRC. It was found that rigid rotation reduces the growth rate, but does not stabilize the mode even for rotation rates equal to the Alfven time. Sheared rotation is found to be destabilizing for the velocity profile considered. Simulations with a fast ion beam with 1 % of the bulk ion density and s∼3 did not show a reduction in growth rate of the tilting instability. (author)
Transient simulation of regression rate on thrust regulation process in hybrid rocket motor
Directory of Open Access Journals (Sweden)
Tian Hui
2014-12-01
Full Text Available The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.
Burgess, David; Hellinger, Petr; Gingell, Imogen; Trávníček, Pavel M.
2016-08-01
> Supercritical collisionless perpendicular shocks have an average macrostructure determined primarily by the dynamics of ions specularly reflected at the magnetic ramp. Within the overall macrostructure, instabilities, both linear and nonlinear, generate fluctuations and microstructure. To identify the sources of such microstructure, high-resolution two- and three-dimensional simulations have been carried out using the hybrid method, wherein the ions are treated as particles and the electron response is modelled as a massless fluid. We confirm the results of earlier two-dimensional (2-D) simulations showing both field-parallel aligned propagating fluctuations and fluctuations carried by the reflected-gyrating ions. In addition, it is shown that, for 2-D simulations of the shock coplanarity plane, the presence of short-wavelength fluctuations in all magnetic components is associated with the ion Weibel instability driven at the upstream edge of the foot by the reflected-gyrating ions. In 3-D simulations we show for the first time that the dominant microstructure is due to a coupling between field-parallel propagating fluctuations in the ramp and the motion of the reflected ions. This results in a pattern of fluctuations counter-propagating across the surface of the shock at an angle inclined to the magnetic field direction, due to a combination of field-parallel motion at the Alfvén speed of the ramp and motion in the sense of gyration of the reflected ions.
Simulation of a Wall-Bounded Flow using a Hybrid LES/RAS Approach with Turbulence Recycling
Quinlan, Jesse R.; Mcdaniel, James; Baurle, Robert A.
2012-01-01
Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/ Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters the three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case, and these comparisons indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. The effect of turbulence recycling on the solution is illustrated by performing coarse grid simulations with and without inflow turbulence recycling. Two shock sensors, one of Ducros and one of Larsson, are assessed for use with the hybridized inviscid flux reconstruction scheme.
International Nuclear Information System (INIS)
Particle-in-cell (PIC) simulation method has been proved to be a good candidate to study the interactions between plasmas and radio-frequency waves. However, for waves in the lower hybrid range of frequencies, a full PIC simulation is not efficient due to its high computational cost. In this work, a gyro-kinetic electron and fully-kinetic ion (GeFi) particle simulation model is applied to study the propagations and mode conversion processes of lower hybrid waves (LHWs) in plasmas. With this method, the computational efficiency of LHW simulations is greatly increased by using a larger grid size and time step. The simulation results in the linear regime are validated by comparison with the linear theory. (magnetically confined plasma)
Yunfang, Jia; Cheng, Ju
2016-01-01
The graphene field effect transistor (GFET) has been widely studied and developed as sensors and functional devices. The first report about GFET sensing simulation on the device level is proposed. The GFET's characteristics, its responding for single strand DNA (ssDNA) and hybridization with the complimentary DNA (cDNA) are simulated based on Sentaurus, a popular CAD tool for electronic devices. The agreement between the simulated blank GFET feature and the reported experimental data suggests the feasibility of the presented simulation method. Then the simulations of ssDNA immobilization on GFET and hybridization with its cDNA are performed, the results are discussed based on the electron transfer (ET) mechanism between DNA and graphene. Project supported by the National Natural Science Foundation of China (No. 61371028) and the Tianjin Natural Science Foundation (No. 12JCZDJC22400).
International Nuclear Information System (INIS)
This paper reviews the status of lower hybrid current drive (LHCD) simulation and modeling. We first discuss modules used for wave propagation, absorption, and current drive with particular emphasis placed on comparing exact numerical solutions of the Fokker Planck equation in 2-dimension with solution methods that employ 1-dimensional and adjoint approaches. We also survey model predictions for LHCD in past and present experiments showing detailed comparisons between simulated and observed current drive efficiencies and hard X-ray profiles. Finally we discuss several model predictions for lower hybrid current profile control in proposed next step reactor options. (authors)
Simulations of hybrid system varying solar radiation and microturbine response time
Directory of Open Access Journals (Sweden)
Yolanda Fernández Ribaya
2015-07-01
Full Text Available Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico.The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.
Simulations of hybrid system varying solar radiation and microturbine response time
International Nuclear Information System (INIS)
Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico).The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times
A general hybrid radiation transport scheme for star formation simulations on an adaptive grid
International Nuclear Information System (INIS)
Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodyanmics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calculating gas and dust temperatures in the presence of multiple stellar sources. Our method enables radiation-hydrodynamic studies of young stellar objects, protostellar disks, and clustered star formation in magnetized, filamentary environments.
Hybrid parallel strategy for the simulation of fast transient accidental situations at reactor scale
International Nuclear Information System (INIS)
Highlights: • Reference accidental situations for current and future reactors are considered. • They require the modeling of complex fluid–structure systems at full reactor scale. • EPX software computes the non-linear transient solution with explicit time stepping. • Focus on the parallel hybrid solver specific to the proposed coupled equations. - Abstract: This contribution is dedicated to the latest methodological developments implemented in the fast transient dynamics software EUROPLEXUS (EPX) to simulate the mechanical response of fully coupled fluid–structure systems to accidental situations to be considered at reactor scale, among which the Loss of Coolant Accident, the Core Disruptive Accident and the Hydrogen Explosion. Time integration is explicit and the search for reference solutions within the safety framework prevents any simplification and approximations in the coupled algorithm: for instance, all kinematic constraints are dealt with using Lagrange Multipliers, yielding a complex flow chart when non-permanent constraints such as unilateral contact or immersed fluid–structure boundaries are considered. The parallel acceleration of the solution process is then achieved through a hybrid approach, based on a weighted domain decomposition for distributed memory computing and the use of the KAAPI library for self-balanced shared memory processing inside subdomains
Use of a hybrid code for global-scale plasma simulation
International Nuclear Information System (INIS)
This paper presents a demonstration of the use of a hybrid code to model the Earth's magnetosphere on a global scale. The typical hybrid code calculates the interaction of fully kinetic ions and a massless electron fluid with the magnetic field. This code also includes a fluid ion component to approximate the cold ionospheric plasma that spatially overlaps with the discrete particle component. Other innovative features of the code include a numerically generated curvilinear coordinate system and subcycling of the magnetic field update to the particle push. These innovations allow the code to accommodate disparate time and distance scales. The demonstration is a simulation of the noon meridian plane of the magnetosphere. The code exhibits the formation of fast and slow-mode shocks and tearing reconnection at the magnetopause. New results include particle acceleration in the cusp and nearly field aligned currents linking the cusp and polar ionosphere. The paper also describes a density depletion instability and measures to avoid it. 27 refs., 4 figs
A general hybrid radiation transport scheme for star formation simulations on an adaptive grid
Energy Technology Data Exchange (ETDEWEB)
Klassen, Mikhail; Pudritz, Ralph E. [Department of Physics and Astronomy, McMaster University 1280 Main Street W, Hamilton, ON L8S 4M1 (Canada); Kuiper, Rolf [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany); Peters, Thomas [Institut für Computergestützte Wissenschaften, Universität Zürich Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Banerjee, Robi; Buntemeyer, Lars, E-mail: klassm@mcmaster.ca [Hamburger Sternwarte, Universität Hamburg Gojenbergsweg 112, D-21029 Hamburg (Germany)
2014-12-10
Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodyanmics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calculating gas and dust temperatures in the presence of multiple stellar sources. Our method enables radiation-hydrodynamic studies of young stellar objects, protostellar disks, and clustered star formation in magnetized, filamentary environments.
Dynamic Modeling and Motion Simulation for A Winged Hybrid-Driven Underwater Glider
Institute of Scientific and Technical Information of China (English)
WANG Shu-xin; SUN Xiu-jun; WANG Yan-hui; WU Jian-guo; WANG Xiao-ming
2011-01-01
PETREL,a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV(autonomous underwater vehicle).It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile.In this paper,theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration.In addition,due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes,the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced,and the tailored dynamic equations of the hybrid glider are formulated.Moreover,the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.
Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters
Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel
2010-01-01
HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.
A General Hybrid Radiation Transport Scheme for Star Formation Simulations on an Adaptive Grid
Klassen, Mikhail; Kuiper, Rolf; Pudritz, Ralph E.; Peters, Thomas; Banerjee, Robi; Buntemeyer, Lars
2014-12-01
Radiation feedback plays a crucial role in the process of star formation. In order to simulate the thermodynamic evolution of disks, filaments, and the molecular gas surrounding clusters of young stars, we require an efficient and accurate method for solving the radiation transfer problem. We describe the implementation of a hybrid radiation transport scheme in the adaptive grid-based FLASH general magnetohydrodyanmics code. The hybrid scheme splits the radiative transport problem into a raytracing step and a diffusion step. The raytracer captures the first absorption event, as stars irradiate their environments, while the evolution of the diffuse component of the radiation field is handled by a flux-limited diffusion solver. We demonstrate the accuracy of our method through a variety of benchmark tests including the irradiation of a static disk, subcritical and supercritical radiative shocks, and thermal energy equilibration. We also demonstrate the capability of our method for casting shadows and calculating gas and dust temperatures in the presence of multiple stellar sources. Our method enables radiation-hydrodynamic studies of young stellar objects, protostellar disks, and clustered star formation in magnetized, filamentary environments.
Simulation of a sea ice ecosystem using a hybrid model for slush layer desalination
Saenz, Benjamin T.; Arrigo, Kevin R.
2012-05-01
Porous, slushy layers are a common feature of Antarctic sea ice and are often colonized by high concentrations of algae. Despite its potential importance to the physics and biogeochemistry of the sea ice ecosystem, current knowledge of the evolution of sea ice slush layers is limited. Here we present a model of sea ice that is capable of reproducing the vertical biophysical evolution of sea ice that contains slush layers. The model uses a novel hybrid desalination scheme to calculate salt fluxes and brine motion during freezing using one of two different methods depending on the brine fraction of the ice. Model runs using atmospheric and snow depth forcing from the Ice Station Weddell experiment show that model is able to simulate the magnitude and timing of sea ice temperature, salinity, and associated algal growth of observed slush layers, as well as the surrounding sea ice. The model was designed with regional-scale simulations in mind and we show that the model performs well at lower vertical resolutions, as long as the slush layer is resolved. Incorporation of our model of slush ice desalination into regional and global simulations has potential to improve model estimates of salt, heat, and biochemical fluxes in polar marine environments.
Full-wave simulations of lower hybrid wave propagation in the EAST tokamak
Bonoli, P. T.; Lee, J. P.; Shiraiwa, S.; Wright, J. C.; Ding, B.; Yang, C.
2015-11-01
Studies of lower hybrid (LH) wave propagation have been conducted in the EAST tokamak where electron Landau damping (ELD) of the wave is typically weak, resulting in multiple passes of the wave front prior to its being absorbed in the plasma core. Under these conditions it is interesting to investigate full-wave effects that can become important at the plasma cut-off where the wave is reflected at the edge, as well as full-wave effects such as caustic formation in the core. High fidelity LH full-wave simulations were performed for EAST using the TORLH field solver. These simulations used sufficient poloidal mode resolution to resolve the perpendicular wavelengths associated with electron Landau damping of the LH wave at the plasma periphery, thus achieving fully converged electric field solutions at all radii of the plasma. Comparison of these results with ray tracing simulations will also be presented. Work supported by the US DOE under Contract No. DE-SC0010492 and DE-FC02-01ER54648.
Marenduzzo, D.; Orlandini, E.; Cates, M. E.; Yeomans, J. M.
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently “extensile” rods, in the case of flow-aligning liquid crystals, and for sufficiently “contractile” ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of “convection rolls.” These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.
Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant
Directory of Open Access Journals (Sweden)
Francesco Calise
2015-04-01
Full Text Available This paper presents a dynamic simulation model and a parametric analysis of a solar-geothermal hybrid cogeneration plant based on an Organic Rankine Cycle (ORC powered by a medium-enthalpy geothermal resource and a Parabolic Trough Collector solar field. The fluid temperature supplying heat to the ORC varies continuously as a function of the solar irradiation, affecting both the electrical and thermal energies produced by the system. Thus, a dynamic simulation was performed. The ORC model, developed in Engineering Equation Solver, is based on zero-dimensional energy and mass balances and includes specific algorithms to evaluate the off-design system performance. The overall simulation model of the solar-geothermal cogenerative plant was implemented in the TRNSYS environment. Here, the ORC model is imported, whereas the models of the other components of the system are developed on the basis of literature data. Results are analyzed on different time bases presenting energetic, economic and exergetic performance data. Finally, a rigorous optimization has been performed to determine the set of system design/control parameters minimizing simple payback period and exergy destruction rate. The system is profitable when a significant amount of the heat produced is consumed. The highest irreversibilities are due to the solar field and to the heat exchangers.
A new hybrid kinetic electron model for full-f gyrokinetic simulations
Idomura, Y.
2016-05-01
A new hybrid kinetic electron model is developed for electrostatic full-f gyrokinetic simulations of the ion temperature gradient driven trapped electron mode (ITG-TEM) turbulence at the ion scale. In the model, a full kinetic electron model is applied to the full-f gyrokinetic equation, the multi-species linear Fokker-Planck collision operator, and an axisymmetric part of the gyrokinetic Poisson equation, while in a non-axisymmetric part of the gyrokinetic Poisson equation, turbulent fluctuations are determined only by kinetic trapped electrons responses. By using this approach, the so-called ωH mode is avoided with keeping important physics such as the ITG-TEM, the neoclassical transport, the ambipolar condition, and particle trapping and detrapping processes. The model enables full-f gyrokinetic simulations of ITG-TEM turbulence with a reasonable computational cost. Comparisons between flux driven ITG turbulence simulations with kinetic and adiabatic electrons are presented. Although the similar ion temperature gradients with nonlinear upshift from linear critical gradients are sustained in quasi-steady states, parallel flows and radial electric fields are qualitatively different with kinetic electrons.
Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics. PMID:17930285
Simulation of hydrogen bubble growth in tungsten by a hybrid model
International Nuclear Information System (INIS)
A two dimensional hybrid code (HIIPC-MC) joining rate-theory and Monte Carlo (MC) methods is developed in this work. We evaluate the cascade-coalescence mechanism contribution to the bubble growth by MC. First, effects of the starting radius and solute deuterium concentration on the bubble growth are studied; then the impacts of the wall temperature and implantation ion flux on the bubble growth are assessed. The simulation indicates that the migration-coalescence of the bubbles and the high pressure inside the bubbles are the main driving forces for the bubble growth, and that neglect of the migration and coalescence would lead to an underestimation of the bubble growth or blistering
An improved hybrid topology optimization approach coupling simulated annealing and SIMP (SA-SIMP)
International Nuclear Information System (INIS)
The Solid Isotropic Material with Penalization (SIMP) methodology has been used extensively due to its versatility and ease of implementation. However, one of its main drawbacks is that resulting topologies exhibit areas of intermediate densities which lack any physical meaning. This paper presents a hybrid methodology which couples simulated annealing and SIMP (SA-SIMP) in order to achieve solutions which are stiffer and predominantly black and white. Under a look-ahead strategy, the algorithm gradually fixes or removes those elements whose density resulting from SIMP is intermediate. Different strategies for selecting and fixing the fractional elements are examined using benchmark examples, which show that topologies resulting from SA-SIMP are more rigid than SIMP and predominantly black and white.
Energy Technology Data Exchange (ETDEWEB)
Wardle, K.E. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)
2013-07-01
Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.
Franci, Luca; Matteini, Lorenzo; Verdini, Andrea; Landi, Simone
2016-01-01
Proton temperature anisotropies between the directions parallel and perpendicular to the mean magnetic field are usually observed in the solar wind plasma. Here, we employ a high-resolution hybrid particle-in-cell simulation in order to investigate the relation between spatial properties of the proton temperature and the peaks in the current density and in the flow vorticity. Our results indicate that, although regions where the proton temperature is enhanced and temperature anisotropies are larger correspond approximately to regions where many thin current sheets form, no firm quantitative evidence supports the idea of a direct causality between the two phenomena. On the other hand, quite a clear correlation between the behavior of the proton temperature and the out-of-plane vorticity is obtained.
Hybrid parallel strategy for the simulation of fast transient accidental situations at reactor scale
International Nuclear Information System (INIS)
This contribution is dedicated to the latest methodological developments implemented in the fast transient dynamics software EUROPLEXUS (EPX) to simulate the mechanical response of fully coupled fluid-structure systems to accidental situations to be considered at reactor scale, among which the Loss of Coolant Accident, the Core Disruptive Accident and the Hydrogen Explosion. Time integration is explicit and the search for reference solutions within the safety framework prevents any simplification and approximations in the coupled algorithm: for instance, all kinematic constraints are dealt with using Lagrange Multipliers, yielding a complex flow chart when non-permanent constraints such as unilateral contact or immersed fluid-structure boundaries are considered. The parallel acceleration of the solution process is then achieved through a hybrid approach, based on a weighted domain decomposition for distributed memory computing and the use of the KAAPI library for self-balanced shared memory processing inside sub-domains. (authors)
Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.
2014-03-01
Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.
International Nuclear Information System (INIS)
Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup
Simulations of the lower-hybrid antenna in the Madison Symmetric Torus reversed-field pinch
International Nuclear Information System (INIS)
Due to constraints inherent to a reversed-field pinch plasma configuration, an unusual launch structure—the interdigital line—was used for lower-hybrid current-drive experiments in the Madison Symmetric Torus. The antenna design and performance were analyzed using an array of codes (including RANT3D/AORSA1D-H, Microwave Studio and VORPAL). It was found that the voltage phasing was not the intended one. As a result, the parallel-wavenumber spectrum of the launched wave peaks at a value lower than desired, making the accessibility marginal. Further simulations demonstrated that the error can largely be corrected by either lowering the antenna operating frequency or shortening the length of the resonators. (paper)
Dynamical overlap fermion simulations with a preconditioned Hybrid Monte Carlo force
Volkholz, J; Shcheredin, S; Volkholz, Jan; Bietenholz, Wolfgang; Shcheredin, Stanislav
2006-01-01
We present simulation results for the 2-flavour Schwinger model with dynamical Ginsparg-Wilson fermions. Our Dirac operator is constructed by inserting an approximately chiral hypercube operator into the overlap formula, which yields the overlap hypercube operator. Due to the similarity with the hypercubic kernel, a low polynomial of this kernel can be used as a numerically cheap way to evaluate the fermionic part of the Hybrid Monte Carlo force. We verify algorithmic requirements like area conservation and reversibility, and we discuss the viability of this approach in view of the acceptance rate. Next we confirm a high level of locality for this formulation. Finally we evaluate the chiral condensate at light fermion masses, based on the density of low lying Dirac eigenvalues in different topological sectors. The results represent one of the first measurements with dynamical overlap fermions, and they agree very well with analytic predictions at weak coupling.
Samejima, Masaki; Akiyoshi, Masanori; Mitsukuni, Koshichiro; Komoda, Norihisa
We propose a business scenario evaluation method using qualitative and quantitative hybrid model. In order to evaluate business factors with qualitative causal relations, we introduce statistical values based on propagation and combination of effects of business factors by Monte Carlo simulation. In propagating an effect, we divide a range of each factor by landmarks and decide an effect to a destination node based on the divided ranges. In combining effects, we decide an effect of each arc using contribution degree and sum all effects. Through applied results to practical models, it is confirmed that there are no differences between results obtained by quantitative relations and results obtained by the proposed method at the risk rate of 5%.
Energy Technology Data Exchange (ETDEWEB)
Tikare, Veena; Hernandez-Rivera, Efrain; Madison, Jonathan D.; Holm, Elizabeth Ann [Carnegie Mellon University, Pittsburgh, PA; Patterson, Burton R. [University of Florida, Gainesville, FL; Homer, Eric R. [Brigham Young University, Provo, UT
2013-09-01
Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.
Simulation of generalized hybrid model for solar and wind power generation
Directory of Open Access Journals (Sweden)
Vankadara Sampath kumar
2015-03-01
Full Text Available Due to urbanization, globalization and industrialization the demand for energy is rapidly increasing allows the world and India is not an exception. Out of all energies electrical energy is playing a major role in developed as well as developing countries. The energy is mostly produced by fossil fuels which are developing day his is to by day .they also produce lot of pollutants which totally damage the environment the alternative to this is to encourage renewable energy source. Now days the energy production at domestic level is becoming popular with the help of solar and wind energies . These technologies are widely used now days in the present paper an attempt has been made to simulate a generalized hybrid model including solar and wind.
International Nuclear Information System (INIS)
The decision concerning the location of sites for nuclear waste repositories in the subsurface depends upon the long-term containment capabilities of hydrogeological environments. The numerical simulation of the multiphase flow and contaminant transport that take place in this problem is an important tool to help engineers and scientists in selecting appropriate sites. In this paper, we employ a hybrid strategy that combines an Eulerian approximation scheme for the underlying two-phase flow problem with a locally conservative Lagrangian method to approximate the transport of radionuclide. This Lagrangian scheme is computationally efficient and virtually free of numerical diffusion. In order to face unsaturated and heterogeneous problems, four extensions in the Lagrangian scheme are implemented. To show the effectiveness of the improved version we perform a grid refinement study. (author)
Chen, Qiang; Chen, Bin
2012-10-01
In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced, which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have been implemented to validate our model. The numerical results are consistent with a simplified analytical model, which demonstrates that this model can obtain satisfying numerical solutions successfully.
Institute of Scientific and Technical Information of China (English)
Yu Daren; Wu Zhiwen; Wu Xiaoling
2005-01-01
Based on the analysis of the physical mechanism of the Stationary Plasma Thruster (SPT), an integral equation describing the ion density of the steady SPT and the ion velocity distribution function at an arbitrary axial position of the steady SPT channel are derived. The integral equation is equivalent to the Vlasov equation, but the former is simpler than the latter. A one dimensional steady quasineutral hybrid model is established. In this model, ions are described by the above integral equation, and neutrals and electrons are described by hydrodynamic equations. The transferred equivalency to the differential equation and the integral equation, together with other equations, are solved by an ordinary differential equation (ODE) solver in the Matlab.The numerical simulation results show that under various circumstances, the ion average velocity would be different and needs to be deduced separately.
Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area
Reshi, Owais A.
2016-04-13
Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a w4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes w6.0, w6.25, w6.5 and w6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes
A hybrid model for simulating rogue waves in random seas on a large temporal and spatial scale
Wang, Jinghua; Ma, Q. W.; Yan, S.
2016-05-01
A hybrid model for simulating rogue waves in random seas on a large temporal and spatial scale is proposed in this paper. It is formed by combining the derived fifth order Enhanced Nonlinear Schrödinger Equation based on Fourier transform, the Enhanced Spectral Boundary Integral (ESBI) method and its simplified version. The numerical techniques and algorithm for coupling three models on time scale are suggested. Using the algorithm, the switch between the three models during the computation is triggered automatically according to wave nonlinearities. Numerical tests are carried out and the results indicate that this hybrid model could simulate rogue waves both accurately and efficiently. In some cases discussed, the hybrid model is more than 10 times faster than just using the ESBI method, and it is also much faster than other methods reported in the literature.
Energy Technology Data Exchange (ETDEWEB)
Guillen S, Omar; Mejia N, Fortino [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)
2005-07-01
In order to facilitate and to simplify the development and analysis of a Hybrid System in reference to its design, construction, operation and maintenance, it turns out optimal to carry out the simulation of this one by means of software, with which a significant reduction in the investment costs is obtained. Given the mix of technology of electrical generation which is involved in a hybrid system, it is very important to have a tool integrated with specialized packages of calculation (software), that allow to carry out the simulation tasks of the operational functioning of these systems. Combined with the former, one must not fail to consider the operation characteristics, the facilities of the user, the clarity in the obtained results and the possibility of its validation with respect to prototypes orchestrated in field. Equally, it is necessary to consider the identification of tasks involved in relation to the place of installation of this electrification technology. At the moment, the hybrid systems technology still is in a stage of development in the international level, and exist important limitations as far as the methodology availability and engineering tools for the optimum design of these systems. With the development of this paper, it is intended to contribute to the advance of the technology and to count on own tools to solve the described series of problems. In this article are described the activities that more impact have in the design and development of hybrid systems, as well as the identification of variables, basic characteristics and form of validation of tools in the integration of a methodology for the simulation of these systems, facilitating their design and development. [Spanish] Para facilitar y simplificar el desarrollo y analisis de un Sistema Hibrido en lo que refiere a su diseno, construccion, operacion y mantenimiento, resulta optimo efectuar la simulacion de este por medio de un software, con lo que se obtiene una reduccien
Ultra-fast hybrid CPU-GPU multiple scatter simulation for 3-D PET.
Kim, Kyung Sang; Son, Young Don; Cho, Zang Hee; Ra, Jong Beom; Ye, Jong Chul
2014-01-01
Scatter correction is very important in 3-D PET reconstruction due to a large scatter contribution in measurements. Currently, one of the most popular methods is the so-called single scatter simulation (SSS), which considers single Compton scattering contributions from many randomly distributed scatter points. The SSS enables a fast calculation of scattering with a relatively high accuracy; however, the accuracy of SSS is dependent on the accuracy of tail fitting to find a correct scaling factor, which is often difficult in low photon count measurements. To overcome this drawback as well as to improve accuracy of scatter estimation by incorporating multiple scattering contribution, we propose a multiple scatter simulation (MSS) based on a simplified Monte Carlo (MC) simulation that considers photon migration and interactions due to photoelectric absorption and Compton scattering. Unlike the SSS, the MSS calculates a scaling factor by comparing simulated prompt data with the measured data in the whole volume, which enables a more robust estimation of a scaling factor. Even though the proposed MSS is based on MC, a significant acceleration of the computational time is possible by using a virtual detector array with a larger pitch by exploiting that the scatter distribution varies slowly in spatial domain. Furthermore, our MSS implementation is nicely fit to a parallel implementation using graphic processor unit (GPU). In particular, we exploit a hybrid CPU-GPU technique using the open multiprocessing and the compute unified device architecture, which results in 128.3 times faster than using a single CPU. Overall, the computational time of MSS is 9.4 s for a high-resolution research tomograph (HRRT) system. The performance of the proposed MSS is validated through actual experiments using an HRRT. PMID:24403412
Proposal for High-Fidelity Quantum Simulation Using a Hybrid Dressed State.
Cai, Jianming; Cohen, Itsik; Retzker, Alex; Plenio, Martin B
2015-10-16
A fundamental goal of quantum technologies concerns the exploitation of quantum coherent dynamics for the realization of novel quantum applications such as quantum computing, quantum simulation, and quantum metrology. A key challenge on the way towards these goals remains the protection of quantum coherent dynamics from environmental noise. Here, we propose a concept of a hybrid dressed state from a pair of continuously driven systems. It allows sufficiently strong driving fields to suppress the effect of environmental noise while at the same time being insusceptible to both the amplitude and phase noise in the continuous driving fields. This combination of robust features significantly enhances coherence times under realistic conditions and at the same time provides new flexibility in Hamiltonian engineering that otherwise is not achievable. We demonstrate theoretically applications of our scheme for a noise-resistant analog quantum simulation in the well-studied physical systems of nitrogen-vacancy centers in diamond and of trapped ions. The scheme may also be exploited for quantum computation and quantum metrology. PMID:26550857
Directory of Open Access Journals (Sweden)
Lisa Teich
2015-11-01
Full Text Available The development of magnetoresistive sensors based on magnetic nanoparticles which are immersed in conductive gel matrices requires detailed information about the corresponding magnetoresistive properties in order to obtain optimal sensor sensitivities. Here, crucial parameters are the particle concentration, the viscosity of the gel matrix and the particle structure. Experimentally, it is not possible to obtain detailed information about the magnetic microstructure, i.e., orientations of the magnetic moments of the particles that define the magnetoresistive properties, however, by using numerical simulations one can study the magnetic microstructure theoretically, although this requires performing classical spin dynamics and molecular dynamics simulations simultaneously. Here, we present such an approach which allows us to calculate the orientation and the trajectory of every single magnetic nanoparticle. This enables us to study not only the static magnetic microstructure, but also the dynamics of the structuring process in the gel matrix itself. With our hybrid approach, arbitrary sensor configurations can be investigated and their magnetoresistive properties can be optimized.
Directory of Open Access Journals (Sweden)
Ahmed Fouad Ali
2014-05-01
Full Text Available This paper presents a new algorithm for solving large scale global optimization problems based on hybridization of simulated annealing and Nelder-Mead algorithm. The new algorithm is called simulated Nelder-Mead algorithm with random variables updating (SNMRVU. SNMRVU starts with an initial solution, which is generated randomly and then the solution is divided into partitions. The neighborhood zone is generated, random number of partitions are selected and variables updating process is starting in order to generate a trail neighbor solutions. This process helps the SNMRVU algorithm to explore the region around a current iterate solution. The Nelder- Mead algorithm is used in the final stage in order to improve the best solution found so far and accelerates the convergence in the final stage. The performance of the SNMRVU algorithm is evaluated using 27 scalable benchmark functions and compared with four algorithms. The results show that the SNMRVU algorithm is promising and produces high quality solutions with low computational costs.
BCA-kMC Hybrid Simulation for Hydrogen and Helium Implantation in Material under Plasma Irradiation
Kato, Shuichi; Ito, Atsushi; Sasao, Mamiko; Nakamura, Hiroaki; Wada, Motoi
2015-09-01
Ion implantation by plasma irradiation into materials achieves the very high concentration of impurity. The high concentration of impurity causes the deformation and the destruction of the material. This is the peculiar phenomena in the plasma-material interaction (PMI). The injection process of plasma particles are generally simulated by using the binary collision approximation (BCA) and the molecular dynamics (MD), while the diffusion of implanted atoms have been traditionally solved by the diffusion equation, in which the implanted atoms is replaced by the continuous concentration field. However, the diffusion equation has insufficient accuracy in the case of low concentration, and in the case of local high concentration such as the hydrogen blistering and the helium bubble. The above problem is overcome by kinetic Monte Carlo (kMC) which represents the diffusion of the implanted atoms as jumps on interstitial sites in a material. In this paper, we propose the new approach ``BCA-kMC hybrid simulation'' for the hydrogen and helium implantation under the plasma irradiation.
Assessing the Impact of Policy Changes in the Icelandic Cod Fishery Using a Hybrid Simulation Model
Directory of Open Access Journals (Sweden)
Sigríður Sigurðardóttir
2014-01-01
Full Text Available Most of the Icelandic cod is caught in bottom trawlers or longliners. These two fishing methods are fundamentally different and have different economic, environmental, and even social effects. In this paper we present a hybrid-simulation framework to assess the impact of changing the ratio between cod quota allocated to vessels with longlines and vessels with bottom trawls. It makes use of conventional bioeconomic models and discrete event modelling and provides a framework for simulating life cycle assessment (LCA for a cod fishery. The model consists of two submodels, a system dynamics model describing the biological aspect of the fishery and a discrete event model for fishing activities. The model was run multiple times for different quota allocation scenarios and results are presented where different scenarios are presented in the three dimensions of sustainability: environmental, social, and economic. The optimal allocation strategy depends on weighing the three different factors. The results were encouraging first-steps towards a useful modelling method but the study would benefit greatly from better data on fishing activities.
Hybrid (kinetic-fluid) simulation scheme based on method of characteristics
Javaheri, N; Abbasi, H
2015-01-01
Certain features of the method of characteristics are of considerable interest in relation with Vlasov simulation [H. Abbasi {\\it et al}, Phys. Rev. E \\textbf{84}, 036702 (2011)]. A Vlasov simulation scheme of this kind can be recurrence free providing initial phase points in velocity space are set randomly. Naturally, less filtering of fine-structures (arising from grid spacing) is possible as there is now a smaller scale than the grid spacing that is average distance between two phase points. Its interpolation scheme is very simple in form and carried out with less operations. In our previous report, the simplest model (immobile ions) was considered to merely demonstrate the important features. Now, a hybrid model is introduced that solves the coupled Vlasov-Fluid-Poisson system self-consistently. A possible application of the code is the study of ion-acoustic (IA) soliton attributes. To this end, a collisionless plasma with hot electrons and cold positive ions is considered. For electrons, the collisionles...
Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge
Wang, Xifeng; Song, Yuanhong; Zhao, Shuxia; Dai, Zhongling; Wang, Younian
2016-04-01
A one-dimensional fluid/Monte-Carlo (MC) hybrid model is developed to describe capacitively coupled SiH4/Ar discharge, in which the lower electrode is applied by a RF source and pulse modulated by a square-wave, to investigate the modulation effects of the pulse duty cycle on the discharge mechanism. An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase. Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species, such as electrons, ions, and radicals. The simulation results show that, the electron energy distribution f(ɛ) is modulated evidently within a pulse cycle, with its tail extending to higher energies during the power-on period, while shrinking back promptly in the afterglow period. Thus, the rate coefficients could be controlled during the discharge, resulting in modulation of the species composition on the substrate compared with continuous excitation. Meanwhile, more negative ions, like SiH‑3 and SiH‑2, may escape to the electrodes owing to the collapse of ambipolar electric fields, which is beneficial to films deposition. Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components. supported by National Natural Science Foundation of China (No. 11275038)
High-resolution hybrid simulations of kinetic plasma turbulence at proton scales
Franci, Luca; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr
2015-01-01
We investigate properties of plasma turbulence from magneto-hydrodynamic (MHD) to sub-ion scales by means of two-dimensional, high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field, perpendicular to the simulation box, and we add a spectrum of large-scale magnetic and kinetic fluctuations, with energy equipartition and vanishing correlation. Once the turbulence is fully developed, we observe a MHD inertial range, where the spectra of the perpendicular magnetic field and the perpendicular proton bulk velocity fluctuations exhibit power-law scaling with spectral indices of -5/3 and -3/2, respectively. This behavior is extended over a full decade in wavevectors and is very stable in time. A transition is observed around proton scales. At sub-ion scales, both spectra steepen, with the former still following a power law with a spectral index of ~-3. A -2.8 slope is observed in the density and parallel magnetic fluctuations, highlighting the presence of compressive effects ...
A New Hybrid Scheme for Simulations of Highly Collisional RF-Driven Plasmas
Eremin, Denis; Mussenbrock, Thomas
2015-01-01
This work describes a new 1D hybrid approach for modeling atmospheric pressure discharges featuring complex chemistry. In this approach electrons are described fully kinetically using Particle-In-Cell/Monte-Carlo (PIC/MCC) scheme, whereas the heavy species are modeled within a fluid description. Validity of the popular drift-diffusion approximation is verified against a "full" fluid model accounting for the ion inertia and a fully kinetic PIC/MCC code for ions as well as electrons. The fluid models require knowledge of the momentum exchange frequency and dependence of the ion mobilities on the electric field when the ions are in equilibrium with the latter. To this end an auxiliary Monte-Carlo scheme is constructed. It is demonstrated that the drift-diffusion approximation can overestimate ion transport in simulations of RF-driven discharges with heavy ion species operated in the $\\gamma$ mode at the atmospheric pressure or in all discharge simulations for lower pressures. This can lead to exaggerated plasma ...
A hybrid formulation for the numerical simulation of condensed phase explosives
Michael, L.; Nikiforakis, N.
2016-07-01
In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.
Wang, X; Chen, L; Di Troia, C; Fogaccia, G; Vlad, G; Zonca, F
2010-01-01
Adopting the theoretical framework for the generalized fishbonelike dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic simulation model has been derived analytically by taking into account both thermal ion compressibility and diamagnetic effects in addition to energetic particle kinetic behaviors. The extended model has been used for implementing an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to study thermal ion kinetic effects on Alfv\\'enic modes driven by energetic particles, such as kinetic beta induced Alfv\\'en eigenmodes in tokamak fusion plasmas.
Lipatov, A S; Paterson, W R; Sittler, E C; Hartle, R E; Simpson, D G
2012-01-01
The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect a to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream backgr...
Study on Forward-Facing Model and Real-Time Simulation for a Series Hybrid Electric Vehicle
Directory of Open Access Journals (Sweden)
Xudong Liu
2011-10-01
Full Text Available To shorten design period and reduce development costs, computer modeling and simulation is important for HEV design and development. In this paper, real-time simulation for a Series Hybrid Electric Vehicle (SHEV is made to verify its fuzzy logic control strategy based on dSPACE-DS1103 development kits. The whole real-time simulation schematic is designed and the vehicle forward-facing simulation model is set up. Modeling methods for the driver, controller and vehicle (includes engine, generator, motor, battery, etc. under MATLAB/Simulink environment are discussed in detail. Driver behavior is simulated by two potentiometers and introduced into the real-time system to realize close-loop control. A real-time monitoring interface is also developed to observe the experiment results. Experiment results show that the real-time simulation platform works well and the SHEV fuzzy logic control strategy is effective.
DEFF Research Database (Denmark)
Sousa, Tiago; Vale, Zita; Carvalho, Joao Paulo;
2014-01-01
The massification of electric vehicles (EVs) can have a significant impact on the power system, requiring a new approach for the energy resource management. The energy resource management has the objective to obtain the optimal scheduling of the available resources considering distributed...... to determine the best solution in a reasonable amount of time. This paper presents a hybrid artificial intelligence technique to solve a complex energy resource management problem with a large number of resources, including EVs, connected to the electric network. The hybrid approach combines...... simulated annealing (SA) and ant colony optimization (ACO) techniques. The case study concerns different EVs penetration levels. Comparisons with a previous SA approach and a deterministic technique are also presented. For 2000 EVs scenario, the proposed hybrid approach found a solution better than the...
Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu
2016-07-01
The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Ku, S.; Hager, R.; Chang, C. S.; Kwon, J. M.; Parker, S. E.
2016-06-01
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation - e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others - can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function - driven by ionization, charge exchange and wall loss - is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
Full-wave Electromagnetic Field Simulations of Lower Hybrid Waves in Tokamaks
International Nuclear Information System (INIS)
The most common method for treating wave propagation in tokamaks in the lower hybrid range of frequencies (LHRF) has been toroidal ray tracing, owing to the short wavelengths (relative to the system size) found in this regime. Although this technique provides an accurate description of 2D and 3D plasma inhomogeneity effects on wave propagation, the approach neglects important effects related to focusing, diffraction, and finite extent of the RF launcher. Also, the method breaks down at plasma cutoffs and caustics. Recent adaptation of full-wave electromagnetic field solvers to massively parallel computers has made it possible to accurately resolve wave phenomena in the LHRF. One such solver, the TORIC code, has been modified to simulate LH waves by implementing boundary conditions appropriate for coupling the fast electromagnetic and the slow electrostatic waves in the LHRF. In this frequency regime the plasma conductivity operator can be formulated in the limits of unmagnetized ions and strongly magnetized electrons, resulting in a relatively simple and explicit form. Simulations have been done for parameters typical of the planned LHRF experiments on Alcator C-Mod, demonstrating fully resolved fast and slow LH wave fields using a Maxwellian non-relativistic plasma dielectric. Significant spectral broadening of the injected wave spectrum and focusing of the wave fields have been found, especially at caustic surfaces. Comparisons with toroidal ray tracing have also been done and differences between the approaches have been found, especially for cases where wave caustics form. The possible role of this diffraction-induced spectral broadening in filling the spectral gap in LH heating and current drive will be discussed
3D hybrid simulations of the interaction of a magnetic cloud with a bow shock
Turc, L.; Fontaine, D.; Savoini, P.; Modolo, R.
2015-08-01
In this paper, we investigate the interaction of a magnetic cloud (MC) with a planetary bow shock using hybrid simulations. It is the first time to our knowledge that this interaction is studied using kinetic simulations which include self-consistently both the ion foreshock and the shock wave dynamics. We show that when the shock is in a quasi-perpendicular configuration, the MC's magnetic structure in the magnetosheath remains similar to that in the solar wind, whereas it is strongly altered downstream of a quasi-parallel shock. The latter can result in a reversal of the magnetic field north-south component in some parts of the magnetosheath. We also investigate how the MC affects in turn the outer parts of the planetary environment, i.e., from the foreshock to the magnetopause. We find the following: (i) The decrease of the Alfvén Mach number at the MC's arrival causes an attenuation of the foreshock region because of the weakening of the bow shock. (ii) The foreshock moves along the bow shock's surface, following the rotation of the MC's magnetic field. (iii) Owing to the low plasma beta, asymmetric flows arise inside the magnetosheath, due to the magnetic tension force which accelerates the particles in some parts of the magnetosheath and slows them down in others. (iv) The quasi-parallel region forms a depression in the shock's surface. Other deformations of the magnetopause and the bow shock are also highlighted. All these effects can contribute to significantly modify the solar wind/magnetosphere coupling during MC events.
Simon, Sven; Motschmann, Uwe
2009-12-01
A 3D, multi-species hybrid model (kinetic ions, fluid electrons) has been applied to the interaction between Saturn's largest satellite Titan and the plasma in the giant planet's outer magnetosphere. In contrast to the idealized picture deduced from Voyager 1 data, recent observations made by the Cassini magnetometer instrument suggest that the ambient magnetic field is not directed perpendicular to Titan's orbital plane. Therefore, our purpose is to investigate systematically how Titan's induced magnetosphere is affected by a tilt of the upstream magnetic field. In the first part of our study, the structure of Titan's induced magnetosphere is analyzed as a function of the angle between the ambient magnetic field B and the bulk velocity u of the corotating plasma flow. Our simulations show that introducing a flow-aligned magnetic field component goes along with an asymmetrization of Titan's magnetotail, in addition to the asymmetry that already arises from the large gyroradii of the ion species involved in the interaction. In the vicinity of Titan, the field lines become strongly twisted, permitting the wakeside magnetic lobe structure to even penetrate into the satellite's geometric plasma shadow. However, despite the increased complexity of Titan's magnetic environment, the overall characteristics of the pick-up tail remain practically the same as in the case of "ideal" magnetic field orientation (B⊥u). In the second part of our study, we investigate in real-time the transition that Titan's plasma interaction undergoes during a change of the ambient magnetic field direction. In contrast to earlier analyses of Titan's plasma environment under non-stationary upstream conditions, the tilt of the ambient magnetic field is again taken into account. While in the case of B being perpendicular to u, the reconfiguration of Titan's induced magnetosphere is mainly governed by reconnection, our simulations suggest that when a flow-aligned field component is included
Hybrid lattice-Boltzmann and finite-difference simulation of electroosmotic flow in a microchannel
International Nuclear Information System (INIS)
A three-dimensional (3D) transient mathematical model is developed to simulate electroosmotic flows (EOFs) in a homogeneous, square cross-section microchannel, with and without considering the effects of axial pressure gradients. The general governing equations for electroosmotic transport are incompressible Navier-Stokes equations for fluid flow and the nonlinear Poisson-Boltzmann (PB) equation for electric potential distribution within the channel. In the present numerical approach, the hydrodynamic equations are solved using a lattice-Boltzmann (LB) algorithm and the PB equation is solved using a finite-difference (FD) method. The hybrid LB-FD numerical scheme is implemented on an iterative framework solving the system of coupled time-dependent partial differential equations subjected to the pertinent boundary conditions. Transient behavior of the EOF and effects due to the variations of different physicochemical parameters on the electroosmotic velocity profile are investigated. Transport characteristics for the case of combined electroosmotic- and pressure-driven microflows are also examined with the present model. For the sake of comparison, the cases of both favorable and adverse pressure gradients are considered. EOF behaviors of the non-Newtonian fluid are studied through implementation of the power-law model in the 3D LB algorithm devised for the fluid flow analysis. Numerical simulations reveal that the rheological characteristic of the fluid changes the EOF pattern to a considerable extent and can have significant consequences in the design of electroosmotically actuated bio-microfluidic systems. To improve the performance of the numerical solver, the proposed algorithm is implemented for parallel computing architectures and the overall parallel performance is found to improve with the number of processors.
A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
Energy Technology Data Exchange (ETDEWEB)
Ku, S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hager, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Chang, C. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kwon, J. M. [National Fusion Research Institute, Republic of Korea; Parker, S. E. [University of Colorado Boulder, USA
2016-06-01
In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles provide scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.
Simulation of the hybrid Tunka Advanced International Gamma-ray and Cosmic ray Astrophysics (TAIGA)
Kunnas, M.; Astapov, I.; Barbashina, N.; Beregnev, S.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Brückner, M.; Budnev, N.; Chiavassa, A.; Chvalaev, O.; Dyachok, A.; Epimakhov, S.; Eremin, T.; Gafarov, A.; Gorbunov, N.; Grebenyuk, V.; Gress, O.; Gress, T.; Grinyuk, A.; Grishin, O.; Horns, D.; Ivanova, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kokoulin, R.; Kompaniets, K.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kozhin, V.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Perevalov, A.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popescu, M.; Popova, E.; Porelli, A.; Porokhovoy, S.; Prosin, V.; Ptuskin, V.; Romanov, V.; Rubtsov, G. I.; Müger; Rybov, E.; Samoliga, V.; Satunin, P.; Saunkin, A.; Savinov, V.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slunecka, M.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Veslopopov, A.; Veslopopova, E.; Voronov, D.; Wischnewski, R.; Yashin, I.; Yurin, K.; Zagorodnikov, A.; Zirakashvili, V.; Zurbanov, V.
2015-08-01
Up to several 10s of TeV, Imaging Air Cherenkov Telescopes (IACTs) have proven to be the instruments of choice for GeV/TeV gamma-ray astronomy due to their good reconstrucion quality and gamma-hadron separation power. However, sensitive observations at and above 100 TeV require very large effective areas (10 km2 and more), which is difficult and expensive to achieve. The alternative to IACTs are shower front sampling arrays (non-imaging technique or timing-arrays) with a large area and a wide field of view. Such experiments provide good core position, energy and angular resolution, but only poor gamma-hadron separation. Combining both experimental approaches, using the strengths of both techniques, could optimize the sensitivity to the highest energies. The TAIGA project plans to combine the non-imaging HiSCORE [8] array with small (∼10m2) imaging telescopes. This paper covers simulation results of this hybrid approach.
Ion Dynamics at A Rippled Quasi-parallel Shock: 2-D Hybrid Simulations
Hao, Yufei; Gao, Xinliang; Wang, Shui
2016-01-01
In this paper, two-dimensional (2-D) hybrid simulations are performed to investigate ion dynamics at a rippled quasi-parallel shock. The results show that the ripples around the shock front are inherent structures of a quasi-parallel shock, and the reformation of the shock is not synchronous along the surface of the shock front. By following the trajectories of the upstream ions, we find that these ions behave differently when they interact with the shock front at different positions along the shock surface. The upstream particles are easier to transmit through the upper part of a ripple, and the bulk velocity in the corresponding downstream is larger, where a high-speed jet is formed. In the lower part of the ripple, the upstream particles tend to be reflected by the shock. For the reflected ions by the shock, they may suffer multiple stage acceleration when moving along the shock surface, or trapped between the upstream waves and the shock front. At last, these ions may escape to the further upstream or ent...
Ion Dynamics at a Rippled Quasi-parallel Shock: 2D Hybrid Simulations
Hao, Yufei; Lu, Quanming; Gao, Xinliang; Wang, Shui
2016-05-01
In this paper, two-dimensional hybrid simulations are performed to investigate ion dynamics at a rippled quasi-parallel shock. The results show that the ripples around the shock front are inherent structures of a quasi-parallel shock, and the re-formation of the shock is not synchronous along the surface of the shock front. By following the trajectories of the upstream ions, we find that these ions behave differently when they interact with the shock front at different positions along the shock surface. The upstream particles are transmitted more easily through the upper part of a ripple, and the corresponding bulk velocity downstream is larger, where a high-speed jet is formed. In the lower part of the ripple, the upstream particles tend to be reflected by the shock. Ions reflected by the shock may suffer multiple-stage acceleration when moving along the shock surface or trapped between the upstream waves and the shock front. Finally, these ions may escape further upstream or move downstream; therefore, superthermal ions can be found both upstream and downstream.
Electron currents in field reversed mirror dynamics: Theory and hybrid simulation
International Nuclear Information System (INIS)
To model the dynamics of the Field-Reversed Mirror (FRM) as a whole we have developed a 1-D radical hybrid code which also incorporates the above electron null current model. This code, named FROST, models the plasma as azimuthally symmetric with no axial dependence. A multi-group method in energy and canonical angular momentum describes the large-orbit ions from the beam. Massless fluid equations describe electrons and low energy ions. Since a fluid treatment for electrons is invalid near a field null, the null region electron current model discussed above has been included for this region, a unique feature. Results of simulation of neutral beam start-up in a 2XIIB-like plasma is discussed. There FROST predicts that electron currents will retard, but not prevent reversal of the magnetic field at the plasma center. These results are optimistic when compared to actual reversal experiments in 2XIIB, because there finite axial length effects and micro-instabilities substantially deteriorated the ion confinement. Nevertheless, because of the importance of the electron current in a low field region in the FRM, FROST represents a valuable intermediate step toward a more complete description of FRM dynamics. 54 refs., 50 figs., 3 tabs
Three-dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Wijesinghe, S; Hornung, R; Garcia, A; Hadjiconstantinou, N
2004-04-15
We present an adaptive mesh and algorithmic refinement (AMAR) scheme for modeling multi-scale hydrodynamics. The AMAR approach extends standard conservative adaptive mesh refinement (AMR) algorithms by providing a robust flux-based method for coupling an atomistic fluid representation to a continuum model. The atomistic model is applied locally in regions where the continuum description is invalid or inaccurate, such as near strong flow gradients and at fluid interfaces, or when the continuum grid is refined to the molecular scale. The need for such ''hybrid'' methods arises from the fact that hydrodynamics modeled by continuum representations are often under-resolved or inaccurate while solutions generated using molecular resolution globally are not feasible. In the implementation described herein, Direct Simulation Monte Carlo (DSMC) provides an atomistic description of the flow and the compressible two-fluid Euler equations serve as our continuum-scale model. The AMR methodology provides local grid refinement while the algorithm refinement feature allows the transition to DSMC where needed. The continuum and atomistic representations are coupled by matching fluxes at the continuum-atomistic interfaces and by proper averaging and interpolation of data between scales. Our AMAR application code is implemented in C++ and is built upon the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) framework developed at Lawrence Livermore National Laboratory. SAMRAI provides the parallel adaptive gridding algorithm and enables the coupling between the continuum and atomistic methods.
Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations
Cerri, S S; Jenko, F; Told, D; Rincon, F
2016-01-01
A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfv\\'en wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at $\\beta\\gtrsim1$ and by magnetosonic/whistler fluctuations at lower $\\beta$. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and va...
Directory of Open Access Journals (Sweden)
V. Génot
2009-02-01
Full Text Available Using 5 years of Cluster data, we present a detailed statistical analysis of magnetic fluctuations associated with mirror structures in the magnetosheath. We especially focus on the shape of these fluctuations which, in addition to quasi-sinusoidal forms, also display deep holes and high peaks. The occurrence frequency and the most probable location of the various types of structures is discussed, together with their relation to local plasma parameters. While these properties have previously been correlated to the β of the plasma, we emphasize here the influence of the distance to the linear mirror instability threshold. This enables us to interpret the observations of mirror structures in a stable plasma in terms of bistability and subcritical bifurcation. The data analysis is supplemented by the prediction of a quasi-static anisotropic MHD model and hybrid numerical simulations in an expanding box aimed at mimicking the magnetosheath plasma. This leads us to suggest a scenario for the formation and evolution of mirror structures.
Particle-in-cell simulation study of a lower-hybrid shock
Dieckmann, Mark Eric; Doria, Domenico; Ynnerman, Anders; Borghesi, Marco
2016-01-01
The expansion of a magnetized high-pressure plasma into a low-pressure ambient medium is examined with particle-in-cell (PIC) simulations. The magnetic field points perpendicularly to the plasma's expansion direction and binary collisions between particles are absent. The expanding plasma steepens into a quasi-electrostatic shock that is sustained by the lower-hybrid (LH) wave. The ambipolar electric field points in the expansion direction and it induces together with the background magnetic field a fast E cross B drift of electrons. The drifting electrons modify the background magnetic field, resulting in its pile-up by the LH shock. The magnetic pressure gradient force accelerates the ambient ions ahead of the LH shock, reducing the relative velocity between the ambient plasma and the LH shock to about the phase speed of the shocked LH wave, transforming the LH shock into a nonlinear LH wave. The oscillations of the electrostatic potential have a larger amplitude and wavelength in the magnetized plasma than...
Hybrid multi-grids simulations of Ganymede's magnetosphere : comparison with Galileo observations.
Leclercq, L.; Modolo, R.; Leblanc, F.
2015-12-01
The Jovian satellite Ganymede is the biggest moon of our solar system. One of the main motivation of our interest for this moon is its own intrinsic magnetic field, which has been discovered during the Galileo mission (Kivelson et al. 1996). The magnetic field of Ganymede directly interacts with the corotating jovian plasma, leading to the formation of a mini-magnetosphere which is embedded in the giant magnetosphere of Jupiter. This is the only known case of interaction between two planetary magnetospheres.In the frame of the European space mission JUICE (Jupiter Icy moon Exploration), we investigate this unique interaction with a 3D parallel multi-species hybrid model. This model is based on the CAM-CL algorithm (Matthews 1994) and has been used to study the ionized environments of Titan, Mars and Mercury. In the hybrid formalism, ions are kinetically treated whereas electrons are considered as a zero-inertial fluid to ensure the quasi-neutrality of the plasma. The temporal evolution of the electromagnetic fields is calculated solving Maxwell's equations. The jovian magnetospheric plasma is described as being composed of oxygen and proton ions. The magnetic field of Ganymede, which includes dipolar and induced components (Kivelson et al, 2002), is distorted by its interaction with the Jovian plasma and formed the Alfvén wings. The planetary plasma is described as being composed of O+, with a scale height equal to 125 km. The description of the exosphere is provided by the 3D multi-species collisional exospheric/atmospheric model of Leblanc et al, (2015) and Turc et al. (2014). The ionization of this neutral exosphere by charge exchanges, by electronic impacts, and by reaction with solar photons contributes to the production of planetary plasma. In this model, calculations are performed on a cartesian simulation grid which is refined (down to ~120 km of spatial resolution) at Ganymede, using a multi-grids approach (Leclercq et al., submitted, 2015). Results are
Evolution of flux ropes in the magnetotail: A three-dimensional global hybrid simulation
Energy Technology Data Exchange (ETDEWEB)
Lu, S. [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei (China); State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Lin, Y.; Wang, X. Y. [Physics Department, Auburn University, Auburn, Alabama (United States); Lu, Q. M., E-mail: qmlu@ustc.edu.cn; Huang, C.; Wu, M. Y.; Wang, S. [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei (China); Wang, R. S. [Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China)
2015-05-15
Flux ropes in the Earth's magnetotail are widely believed to play a crucial role in energy transport during substorms and the generation of energetic particles. Previous kinetic simulations are limited to the local-scale regime, and thus cannot be used to study the structure associated with the geomagnetic field and the global-scale evolution of the flux ropes. Here, the evolution of flux ropes in the magnetotail under a steady southward interplanetary magnetic field are studied with a newly developed three-dimensional global hybrid simulation model for dynamics ranging from the ion Larmor radius to the global convection time scales. Magnetic reconnection with multiple X-lines is found to take place in the near-tail current sheet at geocentric solar magnetospheric distances x=−30R{sub E}∼−15R{sub E} around the equatorial plane (z=0). The magnetotail reconnection layer is turbulent, with a nonuniform structure and unsteady evolution, and exhibits properties of typical collisionless fast reconnection with the Hall effect. A number of small-scale flux ropes are generated through the multiple X-line reconnection. The diameter of the flux ropes is several R{sub E}, and the spatial scale of the flux ropes in the dawn-dusk direction is on the order of several R{sub E} and does not extend across the entire section of the magnetotail, contrary to previous models and MHD simulation results and showing the importance of the three-dimensional effects. The nonuniform and unsteady multiple X-line reconnection with particle kinetic effects leads to various kinds of flux rope evolution: The small-scale flux ropes propagate earthward or tailward after formation, and eventually merge into the near-Earth region or the mid-/distant-tail plasmoid, respectively. During the propagation, some of the flux ropes can be tilted in the geocentric solar magnetospheric (x,y) plane with respect to the y (dawn-dusk) axis. Coalescence between flux ropes is also observed. At the same time
Evolution of flux ropes in the magnetotail: A three-dimensional global hybrid simulation
International Nuclear Information System (INIS)
Flux ropes in the Earth's magnetotail are widely believed to play a crucial role in energy transport during substorms and the generation of energetic particles. Previous kinetic simulations are limited to the local-scale regime, and thus cannot be used to study the structure associated with the geomagnetic field and the global-scale evolution of the flux ropes. Here, the evolution of flux ropes in the magnetotail under a steady southward interplanetary magnetic field are studied with a newly developed three-dimensional global hybrid simulation model for dynamics ranging from the ion Larmor radius to the global convection time scales. Magnetic reconnection with multiple X-lines is found to take place in the near-tail current sheet at geocentric solar magnetospheric distances x=−30RE∼−15RE around the equatorial plane (z=0). The magnetotail reconnection layer is turbulent, with a nonuniform structure and unsteady evolution, and exhibits properties of typical collisionless fast reconnection with the Hall effect. A number of small-scale flux ropes are generated through the multiple X-line reconnection. The diameter of the flux ropes is several RE, and the spatial scale of the flux ropes in the dawn-dusk direction is on the order of several RE and does not extend across the entire section of the magnetotail, contrary to previous models and MHD simulation results and showing the importance of the three-dimensional effects. The nonuniform and unsteady multiple X-line reconnection with particle kinetic effects leads to various kinds of flux rope evolution: The small-scale flux ropes propagate earthward or tailward after formation, and eventually merge into the near-Earth region or the mid-/distant-tail plasmoid, respectively. During the propagation, some of the flux ropes can be tilted in the geocentric solar magnetospheric (x,y) plane with respect to the y (dawn-dusk) axis. Coalescence between flux ropes is also observed. At the same time, the evolution of the
International Nuclear Information System (INIS)
Recently, magneto-rheological (MR) elastomer-based base isolation systems have been actively studied as alternative smart base isolation systems because MR elastomers are capable of adjusting their modulus or stiffness depending on the magnitude of the applied magnetic field. By taking advantage of the MR elastomers’ stiffness-tuning ability, MR elastomer-based smart base isolation systems strive to alleviate limitations of existing smart base isolation systems as well as passive-type base isolators. Until now, research on MR elastomer-based base isolation systems primarily focused on characterization, design, and numerical evaluations of MR elastomer-based isolators, as well as experimental tests with simple structure models. However, their applicability to large civil structures has not been properly studied yet because it is quite challenging to numerically emulate the complex behavior of MR elastomer-based isolators and to conduct experiments with large-size structures. To address these difficulties, this study employs the real-time hybrid simulation technique, which combines physical testing and computational modeling. The primary goal of the current hybrid simulation study is to evaluate seismic performances of an MR elastomer-based smart base isolation system, particularly its adaptability to distinctly different seismic excitations. In the hybrid simulation, a single-story building structure (non-physical, computational model) is coupled with a physical testing setup for a smart base isolation system with associated components (such as laminated MR elastomers and electromagnets) installed on a shaking table. A series of hybrid simulations is carried out under two seismic excitations having different dominant frequencies. The results show that the proposed smart base isolation system outperforms the passive base isolation system in reducing the responses of the structure for the excitations considered in this study. (paper)
Sitaram, Mahesh I; Padiyar, KR; Ramanarayanan, V
1998-01-01
Active filters have long been in use for the filtering of power system load harmonics. In this paper, the digital simulation results of a hybrid active power filter system for a rectifier load are presented. The active filter is used for filtering higher order harmonics as the dominant harmonics are filtered by the passive filter. This reduces the rating of the active filter significantly. The DC capacitor voltage of the active filter is controlled using a PI controller.
Burke, Andy; Zhao, Hengbing
2010-01-01
The use of ultracapacitors in plug-in hybrid vehicles (PHEVs) with high energy density lithium-ion and zinc-air batteries is studied. Simulations were performed for various driving cycles with the PHEVs operating in the charge depleting and charge sustaining modes. The effects of the load leveling of the power demand from the batteries using the ultracapacitors are evident. The average and the peak currents from the batteries are lower by a factor of 2-3.
International Nuclear Information System (INIS)
Real-time hybrid simulation is a viable and economical technique that allows researchers to observe the behavior of critical elements at full scale when an entire structure is subjected to dynamic loading. To ensure reliable experimental results, it is necessary to evaluate the actuator tracking after the test, even when sophisticated compensation methods are used to negate the detrimental effect of servo-hydraulic dynamics. Existing methods for assessment of actuator tracking are often based on time-domain analysis. This paper proposes a frequency-domain-based approach to the assessment of actuator tracking for real-time hybrid simulations. To ensure the accuracy of the proposed frequency response approach, the effects of spectrum leakage are investigated as well as the length and sampling frequency requirements of the signals. Two signal pre-processing techniques (data segmentation and window transform) are also discussed and compared to improve the accuracy of the proposed approach. Finally the effectiveness of the proposed frequency-domain-based approach is demonstrated through both computational analyses and laboratory tests, including real-time tests with predefined displacement and real-time hybrid simulation. (paper)
Guo, Tong; Chen, Cheng; Xu, WeiJie; Sanchez, Frank
2014-04-01
Real-time hybrid simulation is a viable and economical technique that allows researchers to observe the behavior of critical elements at full scale when an entire structure is subjected to dynamic loading. To ensure reliable experimental results, it is necessary to evaluate the actuator tracking after the test, even when sophisticated compensation methods are used to negate the detrimental effect of servo-hydraulic dynamics. Existing methods for assessment of actuator tracking are often based on time-domain analysis. This paper proposes a frequency-domain-based approach to the assessment of actuator tracking for real-time hybrid simulations. To ensure the accuracy of the proposed frequency response approach, the effects of spectrum leakage are investigated as well as the length and sampling frequency requirements of the signals. Two signal pre-processing techniques (data segmentation and window transform) are also discussed and compared to improve the accuracy of the proposed approach. Finally the effectiveness of the proposed frequency-domain-based approach is demonstrated through both computational analyses and laboratory tests, including real-time tests with predefined displacement and real-time hybrid simulation.
Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.
2015-05-01
Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with
Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun
2007-01-01
Potential growth of two widely-grown hybrid rice varieties in the Jinhua district of Zhejiang Province, Shanyou63 for mid-rice and Xieyou46 for late rice, was simulated using a crop growth model of WOFOST. Parameters of the rice growth in WOFOST were calibrated through field experiments from 1999 to 2002 in Jinhua. The potential yield simulated with WOFOST was about 12 t/ha for Shanyou63 and 10 t/ha for Xieyou46, which are in good agreement with the highest recorded yield obtained in this are...
Guo, Zhifang; Wu, Mingyu; Du, Aimin
2016-04-01
We employ two-dimensional global hybrid simulations to study the generation, propagation, and polarization of electromagnetic ion cyclotron (EMIC) waves in the near-Earth magnetotail (around x = - 10 R E ) during dipolarization. In our simulation, EMIC waves with left-hand polarized signals originate in the low-latitude magnetotail as a result of the ion temperature anisotropy which is due to ion heating by Alfvén waves. Subsequently, EMIC waves can propagate along the ambient magnetic field toward high-latitudes. Our work provides one possible mechanism for the generation of EMIC waves observed in the near-Earth magnetotail.
Institute of Scientific and Technical Information of China (English)
YAN Li-jiao; YAO Zhong; ZHENG Zhi-ming; LI Hua-bin
2006-01-01
The article established the HDRICE model by modifying the structure of the ORYZA1 model and revising its parameters by field experiments. The HDRICE model consists of the modules of morphological development of rice, daily dry matter accumulation and partitioning, daily CO2 assimilation of the canopy, leaf area, and tiller development. The model preferably simulated the dynamic rice development because of the thorough integration of the effects of temperature and light on the rates of rice development, photosynthesis, respiration, and. other ecophysiological processes. In addition, this model has attainable grain yield in the test experiment that showed the potential yield of cultivar Xieyou 46 ranged from 11 to 13 tons ha-1. Besides, the model was used to optimize the combinations of the transplanting date, seedling age and density for cultivar Xieyou 46 at Jinhua area, and the population quantitative indices to attain the potential yield such as maximum stems, effective panicles, filled grain number/leaf area, and so on. The result showed that the combination of transplanting date on July 25, seedling age of 35 days and base seedling density of 1.33 × 106ha-1 is the optimum combination for the second hybrid rice production in Jinhua County, China. And the maximum stems, the effective panicles, the filled grain per panicle, the peak of optimum LAI, LAI in later filling stage, and the filled grain number/leaf were 6.03 × 106 ha, 3.99 × 106 ha,119.2, 8.59, 5-6, and 0.64, respectively.
Lu, San; Lu, Quanming; Lin, Yu; Wang, Xueyi; Ge, Yasong; Wang, Rongsheng; Zhou, Meng; Fu, Huishan; Huang, Can; Wu, Mingyu; Wang, Shui
2015-08-01
Dipolarization fronts (DFs) as earthward propagating flux ropes (FRs) in the Earth's magnetotail are presented and investigated with a three-dimensional (3-D) global hybrid simulation for the first time. In the simulation, several small-scale earthward propagating FRs are found to be formed by multiple X line reconnection in the near tail. During their earthward propagation, the magnetic field Bz of the FRs becomes highly asymmetric due to the imbalance of the reconnection rates between the multiple X lines. At the later stage, when the FRs approach the near-Earth dipole-like region, the antireconnection between the southward/negative Bz of the FRs and the northward geomagnetic field leads to the erosion of the southward magnetic flux of the FRs, which further aggravates the Bz asymmetry. Eventually, the FRs merge into the near-Earth region through the antireconnection. These earthward propagating FRs can fully reproduce the observational features of the DFs, e.g., a sharp enhancement of Bz preceded by a smaller amplitude Bz dip, an earthward flow enhancement, the presence of the electric field components in the normal and dawn-dusk directions, and ion energization. Our results show that the earthward propagating FRs can be used to explain the DFs observed in the magnetotail. The thickness of the DFs is on the order of several ion inertial lengths, and the electric field normal to the front is found to be dominated by the Hall physics. During the earthward propagation from the near-tail to the near-Earth region, the speed of the FR/DFs increases from ~150 km/s to ~1000 km/s. The FR/DFs can be tilted in the GSM (x, y) plane with respect to the y (dawn-dusk) axis and only extend several Earth radii in this direction. Moreover, the structure and evolution of the FRs/DFs are nonuniform in the dawn-dusk direction, which indicates that the DFs are essentially 3-D.
Yoon, Min
2013-11-01
The attenuation of bulk organic matter and trace organic contaminants (TOrCs) was evaluated for various aquifer recharge and recovery (ARR)-ozone (O3) hybrid treatment process combinations using soil-batch reactor and bench-scale ozonation experiments as a proof of concept prior to pilot and/or field studies. In water reclamation and especially potable reuse, refractory bulk organic matter and TOrCs are of potential health concern in recycled waters. In this study, the role of biotransformation of bulk organic matter and TOrCs was investigated considering different simulated treatment combinations, including soil passage (ARR) alone, ARR after ozonation (O3-ARR), and ARR prior to ozonation (ARR-O3). During oxic (aerobic) ARR simulations, soluble microbial-like substances (e.g., higher molecular weight polysaccharides and proteins) were easily removed while (lower molecular weight) humic substances and aromatic organic matter were not efficiently removed. During ARR-ozone treatment simulations, removals of bulk organic matter and TOrCs were rapid and effective compared to ARR alone. A higher reduction of effluent-derived organic matter, including aromatic organic matter and humic substances, was observed in the ARR-O3 hybrid followed by the O3-ARR hybrid. An enhanced attenuation of recalcitrant TOrCs was observed while increasing the ozone dose slightly (O3: DOC=1). TOrC removal efficiency also increased during the post-ozone treatment combination (i.e., ARR-O3). In addition, the carcinogenic wastewater disinfection byproduct N-nitrosodimethylamine (NDMA) was eliminated below the method reporting limit (<5ngL-1) both during ARR treatment alone and the ARR-ozone hybrid. © 2013 Elsevier Ltd.
Lan-Rong Dung; Hsiang-Fu Yuan; Jieh-Hwang Yen; Chien-Hua She; Ming-Han Lee
2016-01-01
A new battery simulator based on a hybrid model is proposed in this paper for dynamic discharging behavior and runtime predictions in existing electronic simulation environments, e.g., PSIM, so it can help power circuit designers to develop and optimize their battery-powered electronic systems. The hybrid battery model combines a diffusion model and a switching overpotential model, which automatically switches overpotential resistance mode or overpotential voltage mode to accurately describe ...
Directory of Open Access Journals (Sweden)
A. M. Yusop
2014-01-01
Full Text Available This study presents the behavioral model of thermal temperature and power generation of a thermoelectric-solar hybrid energy system exposed to dynamic transient sources. In the development of thermoelectric-solar hybrid energy system, studies have focused on the regulation of both systems separately. In practice, a separate control system affects hardware pricing. In this study, an inverse dynamic analysis shaping technique based on exponential function is applied to a solar array (SA to stabilize output voltage before this technique is combined with a thermoelectric module (TEM. This method can be used to estimate the maximum power point of the hybrid system by initially shaping the input voltage of SA. The behavior of the overall system can be estimated by controlling the behavior of SA, such that SA can follow the output voltage of TEM as the time constant of TEM is greater than that of SA. Moreover, by employing a continuous and differentiable function, the acquired output behavior of the hybrid system can be attained. Data showing the model is obtained from current experiments with predicted values of temperature, internal resistance, and current attributes of TEM. The simulation results show that the proposed input shaper can be used to trigger the output voltage of SA to follow the TEM behavior under transient conditions.
Energy Technology Data Exchange (ETDEWEB)
Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.
2009-06-01
NREL worked with GM and demonstrated equivalent performance in the Saturn Vue Belt Alternator Starter (BAS) hybrid vehicle whether running with its stock batteries or a retrofit ultracapacitor system.
Directory of Open Access Journals (Sweden)
Bravo S.
2004-01-01
Full Text Available A hybrid neural network model for simulating the process of enzymatic reduction of fructose to sorbitol process catalyzed by glucose-fructose oxidoreductase in Zymomonas mobilis CP4 is presented. Data used to derive and validate the model was obtained from experiments carried out under different conditions of pH, temperature and concentrations of both substrates (glucose and fructose involved in the reaction. Sonicated and lyophilized cells were used as source of the enzyme. The optimal pH for sorbitol synthesis at 30º C is 6.5. For a value of pH of 6, the optimal temperature is 35º C. The neural network in the model computes the value of the kinetic relationship. The hybrid neural network model is able to simulate changes in the substrates and product concentrations during sorbitol synthesis under pH and temperature conditions ranging between 5 and 7.5 and 25 and 40º C, respectively. Under these conditions the rate of sorbitol synthesis shows important differences. Values computed using the hybrid neural network model have an average error of 1.7·10-3 mole.
Structure development and simulation of plug-in hybrid electric vehicle
A. A. Marozka; Yu. N. Petrenko
2013-01-01
Electric-drive vehicles (EDVs) have gained attention, especially in the context of growing concerns about global warming and energy security aspects associated with road transport. The main characteristic of EDVs is that the torque is supplied to the wheels by an electric motor that is powered either solely by a battery or in combination with an internal combustion engine (ICE). This covers hybrid electric vehicles (HEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles...
Multi-Physic Modeling and Simulation of a Hybrid Vehicle with Range Extender
Directory of Open Access Journals (Sweden)
Nissrine MHAITI*,
2014-04-01
Full Text Available As the global economy begins to strain under the pressure of raising petroleum prices and environmental concerns, automobile manufacturers constantly strive to produce more fuel efficient and environmentally friendly vehicles. That’s why mechatronic sophistication in automotive vehicles is increasing. Given the current resources and technologies, the most feasible solution is hybrid electric vehicles (HEV. HEVs can be organized into three classes: parallel, series and power-split hybrids.
Modeling and simulation of a series hybrid electric vehicle propulsion system
Muñoz Aguilar, Raúl Santiago
2010-01-01
Two problems related with hybrid electric vehicles have been analyzed in this dissertation. The first one consists in proposing a propulsion system scheme for the vehicle and the second one consist in modeling it. In order to set a propulsion system scheme, the standard configurations for the hybrid electric vehicles are presented as well as some variations of the series topologies. Then, a novel configuration which is composed by a synchronous machine and an induction machi...
Borovikov, Yu S.; Sulaymanov, A. O.; Andreev, M. V.
2015-10-01
Development, research and operation of smart grids (SG) with active-adaptive networks (AAS) are actual tasks for today. Planned integration of high-speed FACTS devices greatly complicates complex dynamic properties of power systems. As a result the operating conditions of equipment of power systems are significantly changing. Such situation creates the new actual problem of development and research of relay protection and automation (RPA) which will be able to adequately operate in the SGs and adapt to its regimes. Effectiveness of solution of the problem depends on using tools - different simulators of electric power systems. Analysis of the most famous and widely exploited simulators led to the conclusion about the impossibility of using them for solution of the mentioned problem. In Tomsk Polytechnic University developed the prototype of hybrid multiprocessor software and hardware system - Hybrid Real-Time Power System Simulator (HRTSim). Because of its unique features this simulator can be used for solution of mentioned tasks. This article introduces the concept of development and research of relay protection and automation with usage of HRTSim.
Directory of Open Access Journals (Sweden)
D. Mahesh Naik
2014-07-01
Full Text Available This paper proposes a dynamic modeling and control strategy for a grid connected hybrid wind and photovoltaic (PV energy system inter-connected to electrical grid through power electronic interface. A gearless permanent magnet synchronous generator (PMSG is used to capture the maximum wind energy. The PV and wind systems are connected dc-side of the voltage source inverter through a boost converter individually and maintain a fixed dc output at dc link. A proper control scheme is required to operate power converters to match up the grid connection requirements. This study considered the performance of modeled hybrid system under different case scenarios. All simulation models are developed using MATLAB/Simulink.
Institute of Scientific and Technical Information of China (English)
Zhang Zhi-Dong; Chang Chun-Rui; Ma Dong-Lai
2009-01-01
Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model,in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals.We confirm in the thin hybrid nematic film the existence of a biaxially nonbent structure and the structarc transition from the biaxial to the bent-director structure,which is similar to the result obtained using the Lebwohl-Lasher model.However,the step-like director's profile,characteristic for the biaxial structure,is spatially asymmetric in the film because the pair potential leads to K1≠K3.We estimate the upper cell thickness to be 69 spin layers,in which the biaxial structure can be found.
Energy Technology Data Exchange (ETDEWEB)
Joly, L.; Andriot, C.
1995-12-31
Hybrid force-position control aims at controlling position and force in separate directions. It is particularly useful to perform certain robotic tasks. In tele-operation context, passivity is important because it ensures stability when the system interacts with any passive environment. In this paper, we propose an original approach to hybrid force-position control of a force reflecting tele-robot system. It is based on real-time simulation of a virtual mechanism corresponding to the task. the resulting control law is passive. Experiments on a 6 degrees of freedom tele-operation system consisting in following a bent pipe under several control modes validate the approach. (authors). 12 refs., 6 figs.
International Nuclear Information System (INIS)
Hybrid force-position control aims at controlling position and force in separate directions. It is particularly useful to perform certain robotic tasks. In tele-operation context, passivity is important because it ensures stability when the system interacts with any passive environment. In this paper, we propose an original approach to hybrid force-position control of a force reflecting tele-robot system. It is based on real-time simulation of a virtual mechanism corresponding to the task. the resulting control law is passive. Experiments on a 6 degrees of freedom tele-operation system consisting in following a bent pipe under several control modes validate the approach. (authors). 12 refs., 6 figs
Modeling,Analysis and Simulation ofThree Phase Hybrid Power Filter forPower Quality Improvement
Directory of Open Access Journals (Sweden)
Prashanta Kumar Das
2012-05-01
Full Text Available A three-phase hybrid series power filter is constituted by a series active filter and a passive filter connected in parallel with the load. The control strategy is based on the “dual formulation of the electric power vectorial theory”. The proposed algorithm eliminates the current harmonics of supply. It also improves the power factor and harmonic compensation features of the associated passive filter even if there is a change in system parameters.A shunt hybrid power filter is constituted by a shunt active filter and a passive filter connected in parallel with the load, is proposed with same control strategy. Simulations have been carried out on the MATLAB-SIMULINK platform with different loads and with variation in the source impedance.
International Nuclear Information System (INIS)
The nanojoining process of Ag-Au hybrid nanowires at 800K was comprehensively studied by virtue of molecular dynamics (MD) simulation. Three kinds of configurations including end-to-end, T-like and X-like were built in the simulation aiming to understand the nanojoining mechanism. The detailed dynamic evolution of atoms, crystal structure transformation and defects development during the nanojoining processes were performed. The results indicate that there are two stages in the nanojoining process of Ag-Au nanowires which are atom diffusion and new bonds formation. Temperature is a key parameter affecting both stages ascribed to the energy supply and the optimum temperature for Ag-Au nanojoint with diameter of 4.08 nm has been discussed. The mechanical properties of the nanojoint were examined with simulation of tensile test on the end-to-end joint. It was revealed that the nanojoint was strong enough to resist fracture at the joining area
Directory of Open Access Journals (Sweden)
Su Ding
2015-05-01
Full Text Available The nanojoining process of Ag-Au hybrid nanowires at 800K was comprehensively studied by virtue of molecular dynamics (MD simulation. Three kinds of configurations including end-to-end, T-like and X-like were built in the simulation aiming to understand the nanojoining mechanism. The detailed dynamic evolution of atoms, crystal structure transformation and defects development during the nanojoining processes were performed. The results indicate that there are two stages in the nanojoining process of Ag-Au nanowires which are atom diffusion and new bonds formation. Temperature is a key parameter affecting both stages ascribed to the energy supply and the optimum temperature for Ag-Au nanojoint with diameter of 4.08 nm has been discussed. The mechanical properties of the nanojoint were examined with simulation of tensile test on the end-to-end joint. It was revealed that the nanojoint was strong enough to resist fracture at the joining area.
Bao, J.; Lin, Z.; Kuley, A.; Wang, Z. X.
2016-06-01
Effects of toroidicity on linear mode conversion and absorption of lower hybrid (LH) waves in fusion plasmas have been studied using electromagnetic particle simulation. The simulation confirms that the toroidicity induces an upshift of parallel refractive index when LH waves propagate from the tokamak edge toward the core, which affects the radial position for the mode conversion between slow and fast LH waves. Furthermore, moving LH antenna launch position from low field side toward high field side leads to a larger upshift of the parallel refractive index, which helps the slow LH wave penetration into the tokamak core. The broadening of the poloidal spectrum of the wave-packet due to wave diffraction is also verified in the simulation. Both the upshift and broadening effects of the parallel spectrum of the wave-packet modify the parallel phase velocity and thus the linear absorption of LH waves by electron Landau resonance.
Hybrid cadaveric/surrogate model of thoracolumbar spine injury due to simulated fall from height.
Ivancic, Paul C
2013-10-01
A fall from high height can cause thoracolumbar spine fracture with retropulsion of endplate fragments into the canal leading to neurological deficit. Our objectives were to develop a hybrid cadaveric/surrogate model for producing thoracolumbar spine injury during simulated fall from height, evaluate the feasibility and performance of the model, and compare injuries with those observed clinically. Our model consisted of a 3-vertebra human lumbar specimen (L3-L4-L5) stabilized with muscle force replication and mounted within an impact dummy. The model was subjected to a fall from height of 2.2 m with impact velocity of 6.6 m/s. Kinetic and kinematic time-history responses were determined using spinal and pelvis load cell data and analyses of high-speed video. Injuries to the L4 vertebra were evaluated by fluoroscopy, radiography, and detailed anatomical dissection. Peak compression forces during the fall from height occurred at 7 ms and reached 44.7 kN at the ground, 9.1 kN at the pelvis, and 4.5 kN at the spine. Pelvis acceleration peaks reached 209.9 g at 8 ms for vertical and 62.8 g at 12 ms for rearward. Tensile load peaks were then observed (spine: 657.0 N at 47 ms; pelvis: 569.4 N at 61 ms). T1/pelvis peak flexion of 68.3° occurred at 38 ms as the upper torso translated forward while the pelvis translated rearward. Complete axial burst fracture of the L4 vertebra was observed including endplate comminution, retropulsion of bony fragments into the canal, loss of vertebral body height, and increased interpedicular distance due to fractures anterior to the pedicles and a vertical split fracture of the left lamina. Our dynamic injury model closely replicated the biomechanics of real-life fall from height and produced realistic, clinically relevant burst fracture of the lumbar spine. Our model may be used for further study of thoracolumbar spine injury mechanisms and injury prevention strategies. PMID:23792617
Lin, Y.; Wang, X. Y.; Lu, S.; Perez, J. D.; Lu, Q.
2014-09-01
Dynamics of the near-Earth magnetotail associated with substorms during a period of extended southward interplanetary magnetic field is studied using a three-dimensional (3-D) global hybrid simulation model that includes both the dayside and nightside magnetosphere, for the first time, with physics from the ion kinetic to the global Alfvénic convection scales. It is found that the dayside reconnection leads to the penetration of the dawn-dusk electric field through the magnetopause and thus a thinning of the plasma sheet, followed by the magnetotail reconnection with 3-D, multiple flux ropes. Ion kinetic physics is found to play important roles in the magnetotail dynamics, which leads to the following results: (1) Hall electric fields in the thin current layer cause a systematic dawnward ion drift motion and thus a dawn-dusk asymmetry of the plasma sheet with a higher (lower) density on the dawnside (duskside). Correspondingly, more reconnection occurs on the duskside. Bidirectional fast ions are generated due to acceleration in reconnection, and more high-speed earthward flow injections are found on the duskside than the dawnside. Such finding of the dawn-dusk asymmetry is consistent with recent satellite observations. (2) The injected ions undergo the magnetic gradient and curvature drift in the dipole-like field, forming a ring current. (3) Ion particle distributions reveal multiple populations/beams at various distances in the tail. (4) Dipolarization of the tail magnetic field takes place due to the pileup of the injected magnetic fluxes and thermal pressure of injected ions, where the fast earthward flow is stopped. Oscillation of the dipolarization front is developed at the fast-flow braking, predominantly on the dawnside. (5) Kinetic compressional wave turbulence is present around the dipolarization front. The cross-tail currents break into small-scale structures with k⟂ρi˜1, where k⟂ is the perpendicular wave number. A sharp dip of magnetic field
International Nuclear Information System (INIS)
A dynamics simulator of the primary system of Experimental Multi-Purpose High-Temperature Gas-Cooled Reactor including the intermediate heat exchanger has been developed based on the basic conceptual design of the reactor. A one-dimensional distributed parameter model is used for simulation and solved by CSDT (Continuous-Space-Discrete-Time) method using a hybrid computer. In this report is described the mathematical model adopted, structure of the simulator, examples of dynamics simulation. (author)
Institute of Scientific and Technical Information of China (English)
LI Lian-xia; LIAO Hua-sheng; LI Tian-xiang
2006-01-01
A hybrid model that combines both physical and numerical models was employed to simulate the velocity field in a river area in complex geometry with multiple plunging jets. The simulation was based on experiments concerning energy dissipation and scour prevention at the Xiluodu Hydropower Station on the Yangtze River. The calculated results indicate that the complex geometry of the river area has a significant influence on the velocity field, especially on the circulation flow pattern at upstream and downstream of the plunging area and on the asymmetric characteristics of the spiral flow near both banks. The scour characteristics of the downstream river bed caused by the multiple jets were also predicted and analyzed according to the characteristics of the calculated velocity field. The good agreement between the simulated and experimental results indicates that the hybrid model can be used to effectively solve complicated 3-D problems with complex geometric and inlet conditions. Such problems may not easily be solved by using either a physical or a numerical model alone, and therefore the method presented in this article is considered to be a practical and effective way of dealing with this kind of problems.
3-D hybrid LES-RANS model for simulation of open-channel T-diversion flows
Institute of Scientific and Technical Information of China (English)
Jie ZHOU; Cheng ZENG
2009-01-01
The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage.To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows,a hybrid LES-RANS model,which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model,is proposed in the present study.The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel,as well as the downstream region of a branch channel.The LES model was used to simulate the channel diversion region,where turbulent flow characteristics ate complicated.Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence.A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations.This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions.Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.
3-D hybrid LES-RANS model for simulation of open-channel T-diversion flows
Directory of Open Access Journals (Sweden)
Jie ZHOU
2009-09-01
Full Text Available The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES model with the Reynolds-averaged Navier-Stokes (RANS model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.
Dávila, H. Olaya; Sevilla, A. C.; Castro, H. F.; Martínez, S. A.
2016-07-01
Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu2SiO5:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu0.7Y0.3AlO3:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source 22Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.
SiSeRHMap v1.0: a simulator for mapped seismic response using a hybrid model
Grelle, Gerardo; Bonito, Laura; Lampasi, Alessandro; Revellino, Paola; Guerriero, Luigi; Sappa, Giuseppe; Guadagno, Francesco Maria
2016-04-01
The SiSeRHMap (simulator for mapped seismic response using a hybrid model) is a computerized methodology capable of elaborating prediction maps of seismic response in terms of acceleration spectra. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches and models are organized in a code architecture composed of five interdependent modules. A GIS (geographic information system) cubic model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A meta-modelling process confers a hybrid nature to the methodology. In this process, the one-dimensional (1-D) linear equivalent analysis produces acceleration response spectra for a specified number of site profiles using one or more input motions. The shear wave velocity-thickness profiles, defined as trainers, are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Emul-spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated evolutionary algorithm (EA) and the Levenberg-Marquardt algorithm (LMA) as the final optimizer. In the final step, the GCM maps executor module produces a serial map set of a stratigraphic seismic response at different periods, grid solving the calibrated Emul-spectra model. In addition, the spectra topographic amplification is also computed by means of a 3-D validated numerical prediction model. This model is built to match the results of the numerical simulations related to isolate reliefs using GIS morphometric data. In this way, different sets of seismic response maps are developed on which maps of design acceleration response spectra are also defined by means of an enveloping technique.
Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems
Zhou, Wei
optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and
D. Nunn
2005-01-01
This paper presents a highly efficient and stable algorithm for the numerical simulation of collision free plasma. The algorithm has been successfully used to numerically model non linear electron cyclotron resonance in VLF band radio waves in space, and has produced good simulations of radio emissions such as ‘dawn chorus’ and ‘triggered VLF emissions’. The algorithm fills the phase box with simulation particles which represent phase space trajectories. Particle trajectories are followed for...
Lindgren, Juuso; Lund, Peter D.
2015-01-01
The effect of different charging infrastructure configurations on the electric-driven distance of plug-in hybrid electric vehicles (e-mileage) has been investigated, using an agent-based traffic simulation. Our findings suggest that the same e-mileage can be achieved with fewer charging poles if the poles support charging from several parking slots around them, and the charging cable is switched from one vehicle to the next. We also find that the charging power supported by most Finnish charg...
Czech Academy of Sciences Publication Activity Database
Jeništa, Jiří; Takana, H.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Křenek, Petr
Vol. 550. Bristol : IOP Publishing Ltd, 2014, 012016-012016. ISSN 1742-6588. - (IOPscience. 550). [High-Tech Plasma Processes Conference (HTPP-2014) /13./. Toulouse (FR), 22.06.2014-27.06.2014] R&D Projects: GA ČR GAP205/11/2070 Institutional support: RVO:61389021 Keywords : Hybrid-stabilized electric arc * large-eddy simulation * partial characteristics * the Smagorinsky subgrid scale model Subject RIV: BL - Plasma and Gas Discharge Physics http://iopscience.iop.org/1742-6596/550/1/012016/pdf/1742-6596_550_1_012016.pdf
Fontaras, Georgios; Pistikopoulos, Panayotis; Samaras, Zissis
2008-06-01
The reduction of transport-generated CO2 emissions is currently a problem of global interest. Hybrid electric vehicles (HEVs) are considered as one promising technological solution for limiting transport-generated greenhouse gas emissions. Currently, the number of HEVs in the market remains limited, but this picture will change in the years to come as HEVs are expected to pave the way for cleaner technologies in transport. In this paper, results are presented regarding fuel economy and pollutant emissions measurements of two hybrid electric production vehicles. The measurements were conducted on a Prius II and a Honda Civic IMA using both the European legislated driving cycle (New European Driving Cycle, NEDC) and real-world simulation driving cycles (Artemis). In addition to the emissions measurements, other vehicle-operating parameters were studied in an effort to better quantify the maximum CO2 reduction potential. Data from real-world operation of a Prius II vehicle were also used in the evaluation. Results indicate that in most cases both vehicles present improved energy efficiency and pollutant emissions compared to conventional cars. The fuel economy benefit of the two HEVs peaked under urban driving conditions where reductions of 60% and 40% were observed, respectively. Over higher speeds the difference in fuel economy was lower, reaching that of conventional diesel at 95 km h-1. The effect of ambient temperature on fuel consumption was also quantified. It is concluded that urban operation benefits the most of hybrid technology, leading to important fuel savings and urban air quality improvement.
Shepherd, Micah R; Fahnline, John B; Dare, Tyler P; Hambric, Stephen A; Campbell, Robert L
2015-11-01
Many structural acoustics problems involve a vibrating structure in a heavy fluid. However, obtaining fluid-loaded natural frequencies and damping experimentally can be difficult and expensive. This paper presents a hybrid experimental-numerical approach to determine the heavy-fluid-loaded resonance frequencies and damping of a structure from in-air measurements. The approach combines in-air experimentally obtained mode shapes with simulated in-water acoustic resistance and reactance matrices computed using boundary element (BE) analysis. The procedure relies on accurate estimates of the mass-normalized, in vacuo mode shapes using singular value decomposition and rational fraction polynomial fitting, which are then used as basis modes for the in-water BE analysis. The method is validated on a 4.445 cm (1.75 in.) thick nickel-aluminum-bronze rectangular plate by comparing natural frequencies and damping obtained using the hybrid approach to equivalent data obtained from actual in-water measurements. Good agreement is shown for the fluid-loaded natural frequencies and one-third octave loss factors. Finally, the limitations of the hybrid approach are examined. PMID:26627781
Directory of Open Access Journals (Sweden)
Chen Chen
2010-12-01
Full Text Available This paper proposes a novel hybrid active power filter (HAPF topology based onthe cascaded connection of the AC-side capacitor and the third-order LCL-filter, which hasthe advantage of the conventional hybrid filter and the LCL-filter in terms of reduced dclinkvoltage and better switching ripple attenuation. The robust deadbeat control law isderived for the current loop, with special emphasis on robustness analysis. The stabilityand robustness analysis under parameter variations are presented for the converter-sidecurrent tracking scheme and the grid-side current tracking scheme. It is found that thestability margins obtained from the converter-side current tracking control scheme aregenerally higher than those obtained from the grid-side current tracking scheme. However,the converter-side current tracking scheme is sensitive to the variation of the dampingresistance, and it would impose additional parameter uncertainty on the control system andcomplicate the problem. Hence the grid-side current tracking scheme is implemented. Thesimulation results obtained from Matlab/Simulink are presented for verification, where theinductance variation and grid disturbance scenarios are also taken into consideration. Theeffectiveness of the proposed hybrid APF is substantially confirmed by the simulation andexperimental results.
Hybrid code simulation on mode conversion in the second harmonic ICRF heating
International Nuclear Information System (INIS)
ICRF second harmonic heating of a single-species plasma is studied by using a 1 - 1/2 dimensional quasi-neutral hybrid code. Mode conversion, transmission and reflection of the magnetosonic waves are confirmed, both for the high- and low-field-side excitations. The ion heating by waves propagating perpendicularly to the static magnetic field is also observed. (author)
Czech Academy of Sciences Publication Activity Database
Tlustý, J.; Škramlík, Jiří; Švec, J.; Valouch, Viktor
2012-01-01
Roč. 2012, č. 292178 (2012), s. 1-17. ISSN 1024-123X Institutional support: RVO:61388998 Keywords : analytical modeling * four-switch hybrid power filter * sixfold switching symmetry Subject RIV: JA - Electronic s ; Optoelectronics, Electrical Engineering Impact factor: 1.383, year: 2012 http://www.hindawi.com/journals/mpe/2012/292178/
International Nuclear Information System (INIS)
This study describes the feasibility of anaerobic treatment of complex phenolics mixture from a simulated synthetic coal wastewater using four identical 13.5 L (effective volume) bench scale hybrid up-flow anaerobic sludge blanket (HUASB) (combining UASB + anaerobic filter) reactors at four different hydraulic retention times (HRT) under mesophilic (27 ± 5 oC) conditions. Synthetic coal wastewater with an average chemical oxygen demand (COD) of 2240 mg/L and phenolics concentration of 752 mg/L was used as substrate. The phenolics contained phenol (490 mg/L); m-, o-, p-cresols (123.0, 58.6, 42 mg/L); 2,4-, 2,5-, 3,4- and 3,5-dimethyl phenols (6.3, 6.3, 4.4 and 21.3 mg/L) as major phenolic compounds. The study demonstrated that at optimum HRT, 24 h, and phenolic loading rate of 0.75 g COD/(m3-d), the phenolics and COD removal efficiency of the reactors were 96% and 86%, respectively. Bio-kinetic models were applied to data obtained from experimental studies in hybrid UASB reactor. Grau second-order multi-component substrate removal model was best fitted to the hybrid UASB reactor. The second-order substrate removal rate constant (k2(s)) was found as 1.72 h-1 for the hybrid reactor treating complex phenolic mixture. Morphological examination of the sludge revealed rod-type Methanothrix-like, cells to be dominant on the surface
Generation of ion temperature anisotropy in kinetic hybrid-Vlasov simulations (Invited)
Perrone, D.; Valentini, F.; Servidio, S.; Dalena, S.; Veltri, P.
2013-12-01
The interplanetary medium is a multi-component and weakly collisional system generally observed to be in a fully turbulent regime [1,2]. The system dynamics at short spatial scales appears to be dominated by kinetic effects that drive the interstellar gas far from the configuration of thermodynamic equilibrium [3-5]. We present a numerical analysis of a turbulent plasma composed of kinetic ions (protons and alpha particles) and fluid electrons in the typical conditions of the solar-wind environment, developed by using a low-noise hybrid Vlasov-Maxwell code [6,7] in a five dimensional phase space configuration (two dimensions in physical space and three dimensions in velocity space) [8]. The ion dynamics at short spatial scales (shorter than the proton skin depth) display several interesting aspects, mainly consisting in the departure of the distribution functions from the typical Maxwellian configuration, which has been systematically quantified through the evalutation of the temperature anisotropy ratio (perpendicular to parallel temperature ratio) with respect to the local magnetic field. This temperature anisotropy appears to be a direct effect of the turbulent nature of the system dynamics. Moreover, the turbulent activity leads to the generation of coherent structures, such as vortices and current sheets. Conditioned ion temperature distributions suggest heating associated with coherent structures; the distribution of ion temperatures moves towards higher values with increasing PVI threshold for the upper inertial range in the turbulent spectra. This behavior is more evident for alpha particles than for protons. The physical phenomenology recovered in these numerical simulations reproduces very common features recovered in 'in situ' measurements in the turbulent solar wind [9-11], suggesting that the multi-ion Vlasov model represents a valid approach to the understanding of the nature of complex kinetic effects in astrophysical plasmas. [1] R. Bruno and V
Chen, Zheng; Mi, Chunting Chris; Xia, Bing; You, Chenwen
2014-12-01
In this paper, an energy management method is proposed for a power-split plug-in hybrid electric vehicle (PHEV). Through analyzing the PHEV powertrain, a series of quadratic equations are employed to approximate the vehicle's fuel-rate, using battery current as the input. Pontryagin's Minimum Principle (PMP) is introduced to find the battery current commands by solving the Hamiltonian function. Simulated Annealing (SA) algorithm is applied to calculate the engine-on power and the maximum current coefficient. Moreover, the battery state of health (SOH) is introduced to extend the application of the proposed algorithm. Simulation results verified that the proposed algorithm can reduce fuel-consumption compared to charge-depleting (CD) and charge-sustaining (CS) mode.
Xu, Ran
2013-01-01
In this paper, a hybrid quasi-static atomistic simulation method at finite temperature is developed, which combines the advantages of MD for thermal equilibrium and atomic-scale finite element method (AFEM) for efficient equilibration. Some temperature effects are embedded in static AFEM simulation by applying the virtual and equivalent thermal disturbance forces extracted from MD. Alternatively performing MD and AFEM can quickly obtain a series of thermodynamic equilibrium configurations such that a quasi-static process is modeled. Moreover, a stirring-accelerated MD/AFEM fast relaxation approach is proposed, in which the atomic forces and velocities are randomly exchanged to artificially accelerate the "slow processes" such as mechanical wave propagation and thermal diffusion. The efficiency of the proposed methods is demonstrated by numerical examples on single wall carbon nanotubes.
Mozumdar, Mohammad; Song, Zhen Yu; Lavagno, Luciano; Sangiovanni-Vincentelli, Alberto L
2014-01-01
The Model Based Design (MBD) approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs) are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL) simulation. PMID:24960083
Directory of Open Access Journals (Sweden)
Mohammad Mozumdar
2014-06-01
Full Text Available The Model Based Design (MBD approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL simulation.
de Laage de Meux, B.; Audebert, B.; Manceau, R.; Perrin, R.
2015-03-01
A general forcing method for Large Eddy Simulation (LES) is proposed for the purpose of providing the flow with fluctuations that satisfy a desired statistical state. This method, the Anisotropic Linear Forcing (ALF) introduces an unsteady linear tensor function of the resolved velocity which acts as a restoring force in the mean velocity and resolved stress budgets. The ALF generalizes and extends several forcing previously proposed in the literature. In order to make it possible to impose the integral length scale of the turbulence generated by the forcing term, an alternative formulation of the ALF, using a differential spatial filter, is proposed and analyzed. The anisotropic forcing of the Reynolds stresses is particularly attractive, since unsteady turbulent fluctuations can be locally enhanced or damped, depending on the target stresses. As such, it is shown that the ALF is an effective method to promote turbulent fluctuations downstream of the LES inlet or at the interface between RANS and LES in zonal hybrid RANS/LES modeling. The detailed analysis of the influence of the ALF parameters in spatially developing channel flows and hybrid computations where the ALF target statistics are given by a RANS second-moment closure show that this original approach performs as well as the synthetic eddy method. However, since the ALF method is more flexible and significant computational savings are obtained, the method appears a promising all-in-one solution for general embedded LES simulations.
Jia, Guozhang; Xiang, Nong; Wang, Xueyi; Huang, Yueheng; Lin, Yu
2016-01-01
The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparable to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ˜ 3ωLH, where ωLH represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ˜ 1.3ωLH), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.
Energy Technology Data Exchange (ETDEWEB)
Jia, Guozhang; Xiang, Nong; Huang, Yueheng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Xueyi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Physics Department, 206 Allison Laboratory, Auburn University, Alabama 36849-5311 (United States); Lin, Yu [Physics Department, 206 Allison Laboratory, Auburn University, Alabama 36849-5311 (United States)
2016-01-15
The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparable to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ∼ 3ω{sub LH}, where ω{sub LH} represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ∼ 1.3ω{sub LH}), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.
Development of a hybrid particle-mesh method for two-phase flow simulations with phase change
International Nuclear Information System (INIS)
A hybrid particle-mesh method was developed for efficient and accurate simulations of two-phase flows with phase change. In this method, the CIP/MM (constrained interpolated profile/multi-moment finite volume) method is used to calculate the main part of two-phase flows, while the finite volume particle (FVP) method is applied to represent the interface between two phases based on a Lagrangian scheme. The conservation equations are first solved by CIP/MM, and then mass, velocity and energy on the mesh grid are interpolated to numerical particles, which are distributed only on the surface of liquid phase to capture the phase interface by the FVP method. The particles are also used to calculate heat and mass transfers due to phase change on the interface. The phase of each particle is determined according to its enthalpy value interpolated from mesh grids. The mesh and particle methods are combined tightly in a single numerical solution algorithm to improve numerical accuracy and stability. Two benchmark simulations of conventional 1D Stefan problem for a vapor-liquid system and horizontal film boiling behavior demonstrate that this hybrid method is potentially applicable to two-phase flow calculations with phase change occurring at moving interface. (author)
Energy Technology Data Exchange (ETDEWEB)
Behjat, E.; Aminmansoor, F.; Abbasi, H. [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, P. O. Box 15875-4413, Tehran (Iran, Islamic Republic of)
2015-08-15
Disintegration of a Gaussian profile into ion-acoustic solitons in the presence of trapped electrons [H. Hakimi Pajouh and H. Abbasi, Phys. Plasmas 15, 082105 (2008)] is revisited. Through a hybrid (Vlasov-Fluid) model, the restrictions associated with the simple modified Korteweg de-Vries (mKdV) model are studied. For instance, the lack of vital information in the phase space associated with the evolution of electron velocity distribution, the perturbative nature of mKdV model which limits it to the weak nonlinear cases, and the special spatio-temporal scaling based on which the mKdV is derived. Remarkable differences between the results of the two models lead us to conclude that the mKdV model can only monitor the general aspects of the dynamics, and the precise picture including the correct spatio-temporal scales and the properties of solitons should be studied within the framework of hybrid model.
Hybrid Strategy of Particle Swarm Optimization and Simulated Annealing for Optimizing Orthomorphisms
Institute of Scientific and Technical Information of China (English)
Tong Yan; Zhang Huanguo
2012-01-01
Orthomorphism on F2^n is a kind of elementary pemmtation with good cryptographic properties. This paper proposes a hybrid strategy of Particle Swarm Optimization （PSO） and Sirrmlated Annealing （SA） for finding orthomorphisrm with good cryptographic properties. By experiment based on this strategy, we get some orthorrorphisrm on F2^n = 5, 6, 7, 9, 10） with good cryptographic properties in the open document for the first time, and the optirml orthorrrphism on F found in this paper also does better than the one proposed by Feng Dengguo et al. in stream cipher Loiss in difference uniformity, algebraic degree, algebraic irrarnity and corresponding pernmtation polynomial degree. The PSOSA hybrid strategy for optimizing orthomerphism in this paper makes design of orthorrorphisrm with good cryptographic properties automated, efficient and convenient, which proposes a new approach to design orthornorphisrm.
A New Hybrid Scheme for Simulations of Highly Collisional RF-Driven Plasmas
Eremin, Denis; Hemke, Torben; Mussenbrock, Thomas
2015-01-01
This work describes a new 1D hybrid approach for modeling atmospheric pressure discharges featuring complex chemistry. In this approach electrons are described fully kinetically using Particle-In-Cell/Monte-Carlo (PIC/MCC) scheme, whereas the heavy species are modeled within a fluid description. Validity of the popular drift-diffusion approximation is verified against a "full" fluid model accounting for the ion inertia and a fully kinetic PIC/MCC code for ions as well as electrons. The fluid ...
A hybrid modelling approach to simulating foot-and-mouth disease outbreaks in Australian livestock
Directory of Open Access Journals (Sweden)
Richard A Bradhurst
2015-03-01
Full Text Available Foot-and-mouth disease (FMD is a highly contagious and economically important viral disease of cloven-hoofed animals. Australia's freedom from FMD underpins a valuable trade in live animals and animal products. An outbreak of FMD would result in the loss of export markets and cause severe disruption to domestic markets. The prevention of, and contingency planning for, FMD are of key importance to government, industry, producers and the community. The spread and control of FMD is complex and dynamic due to a highly contagious multi-host pathogen operating in a heterogeneous environment across multiple jurisdictions. Epidemiological modelling is increasingly being recognized as a valuable tool for investigating the spread of disease under different conditions and the effectiveness of control strategies. Models of infectious disease can be broadly classified as: population-based models that are formulated from the top-down and employ population-level relationships to describe individual-level behaviour, individual-based models that are formulated from the bottom-up and aggregate individual-level behaviour to reveal population-level relationships, or hybrid models which combine the two approaches into a single model.The Australian Animal Disease Spread (AADIS hybrid model employs a deterministic equation-based model (EBM to model within-herd spread of FMD, and a stochastic, spatially-explicit agent-based model (ABM to model between-herd spread and control. The EBM provides concise and computationally efficient predictions of herd prevalence and clinical signs over time. The ABM captures the complex, stochastic and heterogeneous environment in which an FMD epidemic operates. The AADIS event-driven hybrid EBM/ABM architecture is a flexible, efficient and extensible framework for modelling the spread and control of disease in livestock on a national scale. We present an overview of the AADIS hybrid approach and a description of the model
Monte Carlo simulation of dosimetric parameters for hybrid PdI source in brachytherapy
International Nuclear Information System (INIS)
According to dose calculation formula recommended by AAPM TG-43U1, dose rate constant of' Model 6711 125I brachytherapy source was calculated by Monte Carlo method. The calculation results were in good agreement with TG-43U1. Then, dose rate constant, radial dose function and anisotropy function of new hybrid PdI source were calculated by Monte Carlo method. Empiric equations were obtained for radial dose function. (authors)
Development and Simulation of a Type of Four-Shaft ECVT for a Hybrid Electric Vehicle
Yong Zhang; Xuerui Ma; Chengliang Yin; Shifei Yuan
2016-01-01
In hybrid electric vehicles with power-split configurations, the engine can be decoupled from the wheel and operated with improved fuel economy, while the entire efficiency of the powertrain is affected by the circular electric power flow. Two planetary gear (2-PG) sets with adding brakes/clutches, namely a type of four shaft elelctric continuously variable transmission (ECVT) can provide multi-mode operation for the powertrain and extend the efficient area. First, a conventional 2-PG AT (Aut...
A hybrid classical-quantum transport model for the simulation of Carbon Nanotube transistors
Jourdana, Clément; Pietra, Paola
2014-01-01
In this paper, we propose a hybrid classical-quantum approach to study the electron transport in strongly confined nanostructures. The device domain is made of an active zone (where quantum effects are strong) sandwiched between two electron reservoirs (where the transport is considered highly collisional). A one dimensional effective mass Schrödinger system is coupled with a drift-diffusion model, both taking into account the peculiarities due to the strong confinement and to the two dimensi...
Energy-based modelling and simulation of a series hybrid electric vehicle propulsion system
Muñoz Aguilar, Raúl Santiago; Dòria Cerezo, Arnau; Puleston, Paul
2009-01-01
This paper presents an energy-based model of a series hybrid electric vehicle. The proposed propulsion system has a new configuration using a wound-rotor synchronous generator (WRSM) and a doublyfed induction machine (DFIM). From the classic dq dynamical equations of the WRSM and DFIM the port-controlled Hamiltonian models of each machine is described. One of the abilities of the port-based models is that the complete model is easy to obtain by means of interconnection rules. Foll...
Simulations with the Hybrid Monte Carlo algorithm: implementation and data analysis
Schaefer, Stefan
2011-01-01
This tutorial gives a practical introduction to the Hybrid Monte Carlo algorithm and the analysis of Monte Carlo data. The method is exemplified at the ϕ 4 theory, for which all steps from the derivation of the relevant formulae to the actual implementation in a computer program are discussed in detail. It concludes with the analysis of Monte Carlo data, in particular their auto-correlations.
Energy Technology Data Exchange (ETDEWEB)
Zhang, G; Marshall, N; Shaheen, E; Bosmans, H [Department of Radiology, University Hospitals Leuven, Herestraat 49, Leuven 3000 (Belgium); Pauwels, R; Jacobs, R [Oral Imaging Center, University Hospitals Leuven, Kapucijnenvoer 33, Leuven 3000 (Belgium); Nuyts, J, E-mail: guozhi.zhang@med.kuleuven.be [Department of Nuclear Medicine, University Hospitals Leuven, Herestraat 49, Leuven 3000 (Belgium)
2011-09-21
This paper proposes a hybrid technique to simulate the complete chain of an oral cone beam computed tomography (CBCT) system for the study of both radiation dose and image quality. The model was developed around a 3D Accuitomo 170 unit (J Morita, Japan) with a tube potential range of 60-90 kV. The Monte Carlo technique was adopted to simulate the x-ray generation, filtration and collimation. Exact dimensions of the bow-tie filter were estimated iteratively using experimentally acquired flood images. Non-flat radiation fields for different exposure settings were mediated via 'phase spaces'. Primary projection images were obtained by ray tracing at discrete energies and were fused according to the two-dimensional energy modulation templates derived from the phase space. Coarse Monte Carlo simulations were performed for scatter projections and the resulting noisy images were smoothed by Richardson-Lucy fitting. Resolution and noise characteristics of the flat panel detector were included using the measured modulation transfer function (MTF) and the noise power spectrum (NPS), respectively. The Monte Carlo dose calculation was calibrated in terms of kerma free-in-air about the isocenter, using an ionization chamber, and was subsequently validated by comparison against the measured air kerma in water at various positions of a cylindrical water phantom. The resulting dose discrepancies were found <10% for most cases. Intensity profiles of the experimentally acquired and simulated projection images of the water phantom showed comparable fractional increase over the common area as changing from a small to a large field of view, suggesting that the scatter was accurately accounted. Image validation was conducted using two small phantoms and the built-in quality assurance protocol of the system. The reconstructed simulated images showed high resemblance on contrast resolution, noise appearance and artifact pattern in comparison to experimentally acquired images
Issues regarding the modelling and simulation of hybrid micro grid systems
Szeidert, I.; Filip, I.; Prostean, O.
2016-02-01
The main followed objectives within control strategies dedicated to hybrid micro grid systems (wind/hydro/solar), that operate based on maximum power point tracking (MPPT) techniques are to improve the conversion systems efficiency and to maintain the quality of the produced electrical energy (the voltage and power factor control). One of the main goals of maximum power point tracking strategy is to achieve the harvesting of the maximal possible energy within a pre-set time period. In order to implement the control strategies for micro grid systems that operate at time variable parameter, there are usually required specific transducers (anemometer for wind speed measurement, optical rotational transducers, taco generators, etc.). In the technical literature there are presented several variants of the MPPT techniques, which are particularized at several applications (wind energy conversion systems, solar systems, hydro plants and micro grid hybrid systems). The maximum power point tracking implementations are mainly based on two-level architecture. The inferior level controls the primary variables, while the superior level represents the MPPT control structure. In the paper, authors present some micro grid structures proposed at Politehnica University Timisoara within the frame of a research grant. The paper is focused on the application of MPPT strategies on hybrid micro grid systems. There are presented several structures and control strategies and are highlighted their advantages and disadvantages, together with practical implementation guidelines.
Iterative Methods for the Force-based Quasicontinuum Approximation
Dobson, Matthew; Luskin, Mitchell; Ortner, Christoph
2009-01-01
Force-based atomistic-continuum hybrid methods are the only known pointwise consistent methods for coupling a general atomistic model to a finite element continuum model. For this reason, and due to their algorithmic simplicity, force-based coupling methods have become a popular class of atomistic-continuum hybrid models as well as other types of multiphysics models. However, the recently discovered unusual stability properties of the linearized force-based quasicontinuum (QCF) approximation,...
International Nuclear Information System (INIS)
At Colorado University-Boulder the primary task is to extend our gyrokinetic Particle-in-Cell simulation of tokamak micro-turbulence and transport to the area of energetic particle physics. We have implemented a gyrokinetic ion/massless fluid electron hybrid model in the global δf-PIC code GEM, and benchmarked the code with analytic results on the thermal ion radiative damping rate of Toroidal Alfven Eigenmodes (TAE) and with mode frequency and spatial structure from eigenmode analysis. We also performed nonlinear simulations of both a single-n mode (n is the toroidal mode number) and multiple-n modes, and in the case of single-n, benchmarked the code on the saturation amplitude vs. particle collision rate with analytical theory. Most simulations use the f method for both ions species, but we have explored the full-f method for energetic particles in cases where the burst amplitude of the excited instabilities is large as to cause significant re-distribution or loss of the energetic particles. We used the hybrid model to study the stability of high-n TAEs in ITER. Our simulations show that the most unstable modes in ITER lie in the rage of 10 α(0) = 0.7% for the fully shaped ITER equilibrium. We also carried nonlinear simulations of the most unstable n = 15 mode and found that the saturation amplitude for the nominal ITER discharge is too low to cause large redistribution or loss of alpha particles. To include kinetic electron effects in the hybrid model we have studied a kinetic electron closure scheme for the fluid electron model. The most important element of the closure scheme is a complete Ohm's law for the parallel electric field E||, derived by combining the quasi-neutrality condition, the Ampere's equation and the v|| moment of the gyrokinetic equations. A discretization method for the closure scheme is studied in detail for a three-dimensional shear-less slab plasma. It is found that for long-wavelength shear Alfven waves the kinetic closure scheme is
Gott, Kevin
This research endeavors to better understand the physical vapor deposition (PVD) vapor transport process by determining the most appropriate fluidic model to design PVD coating manufacturing. An initial analysis was completed based on the calculation of Knudsen number from titanium vapor properties. The results show a dense Navier-Stokes solver best describes flow near the evaporative source, but the material properties suggest expansion into the chamber may result in a strong drop in density and a rarefied flow close to the substrate. A hybrid CFD-DSMC solver is constructed in OpenFOAM for rapidly rarefying flow fields such as PVD vapor transport. The models are patched together combined using a new patching methodology designed to take advantage of the one-way motion of vapor from the CFD region to the DSMC region. Particles do not return to the dense CFD region, therefore the temperature and velocity can be solved independently in each domain. This novel technique allows a hybrid method to be applied to rapidly rarefying PVD flow fields in a stable manner. Parameter studies are performed on a CFD, Navier-Stokes continuum based compressible solver, a Direct Simulation Monte Carlo (DSMC) rarefied particle solver, a collisionless free molecular solver and the hybrid CFD-DSMC solver. The radial momentum at the inlet and radial diffusion characteristics in the flow field are shown to be the most important to achieve an accurate deposition profile. The hybrid model also shows sensitivity to the shape of the CFD region and rarefied regions shows sensitivity to the Knudsen number. The models are also compared to each other and appropriate experimental data to determine which model is most likely to accurately describe PVD coating deposition processes. The Navier-Stokes solvers are expected to yield backflow across the majority of realistic inlet conditions, making their physics unrealistic for PVD flow fields. A DSMC with improved collision model may yield an accurate
Lipatov, A. S.; Cooper, J F.; Paterson, W. R.; Sittler, E. C., Jr.; Hartle, R. E.; Simpson, David G.
2013-01-01
The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to a variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider the models with Oþ þ and Sþ þ background plasma, and various betas for background ions and electrons, and pickup electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population (Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence on the parameters of the upstream plasma and Europa's atmosphere (model I, cases (a) and (b) with a homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from oceanic shell conductivity. This effect was estimated based on the difference between the observed and modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an inductive
Kodiweera, Chandana; Wu, Yu-Chien
2016-06-01
This article provides NODDI diffusion metrics in the brains of 52 healthy participants and computer simulation data to support compatibility of hybrid diffusion imaging (HYDI), "Hybrid diffusion imaging"[1] acquisition scheme in fitting neurite orientation dispersion and density imaging (NODDI) model, "NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain"[2]. HYDI is an extremely versatile diffusion magnetic resonance imaging (dMRI) technique that enables various analyzes methods using a single diffusion dataset. One of the diffusion data analysis methods is the NODDI computation, which models the brain tissue with three compartments: fast isotropic diffusion (e.g., cerebrospinal fluid), anisotropic hindered diffusion (e.g., extracellular space), and anisotropic restricted diffusion (e.g., intracellular space). The NODDI model produces microstructural metrics in the developing brain, aging brain or human brain with neurologic disorders. The first dataset provided here are the means and standard deviations of NODDI metrics in 48 white matter region-of-interest (ROI) averaging across 52 healthy participants. The second dataset provided here is the computer simulation with initial conditions guided by the first dataset as inputs and gold standard for model fitting. The computer simulation data provide a direct comparison of NODDI indices computed from the HYDI acquisition [1] to the NODDI indices computed from the originally proposed acquisition [2]. These data are related to the accompanying research article "Age Effects and Sex Differences in Human Brain White Matter of Young to Middle-Aged Adults: A DTI, NODDI, and q-Space Study" [3]. PMID:27115027
Todo, Y.; Berk, H. L.; Breizman, B. N.
2012-03-01
A hybrid simulation code for nonlinear magnetohydrodynamics (MHD) and energetic-particle dynamics has been extended to simulate recurrent bursts of Alfvén eigenmodes by implementing the energetic-particle source, collisions and losses. The Alfvén eigenmode bursts with synchronization of multiple modes and beam ion losses at each burst are successfully simulated with nonlinear MHD effects for the physics condition similar to a reduced simulation for a TFTR experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874, Todo et al 2003 Phys. Plasmas 10 2888). It is demonstrated with a comparison between nonlinear MHD and linear MHD simulation results that the nonlinear MHD effects significantly reduce both the saturation amplitude of the Alfvén eigenmodes and the beam ion losses. Two types of time evolution are found depending on the MHD dissipation coefficients, namely viscosity, resistivity and diffusivity. The Alfvén eigenmode bursts take place for higher dissipation coefficients with roughly 10% drop in stored beam energy and the maximum amplitude of the dominant magnetic fluctuation harmonic δBm/n/B ~ 5 × 10-3 at the mode peak location inside the plasma. Quadratic dependence of beam ion loss rate on magnetic fluctuation amplitude is found for the bursting evolution in the nonlinear MHD simulation. For lower dissipation coefficients, the amplitude of the Alfvén eigenmodes is at steady levels δBm/n/B ~ 2 × 10-3 and the beam ion losses take place continuously. The beam ion pressure profiles are similar among the different dissipation coefficients, and the stored beam energy is higher for higher dissipation coefficients.
International Nuclear Information System (INIS)
Open-cell metal foams are used as lightweight construction elements, energy absorbers or as support for catalytic coatings. Coating of open-cell metal foams is not only used for catalytic applications, but it leads also to tremendous increase in stiffness and energy absorption capacity. A non-line of sight coating technique for complex 3D structures is electrodeposition. Unfortunately, due to the 3D porosity and the related problems in mass transport limitation during the deposition, it is not possible to produce homogeneously coated foams. In the present contribution, we present a semi-non-destructive technique applicable to determine the coating thickness distribution of magnetic coatings by measuring the remanent magnetic field of coated foams. In order to have a closer look at the mass transport mechanism, a numerical model was developed to predict the field scans for different coating thickness distributions in the foams. For long deposition times the deposition reaches a steady state whereas a Helmholtz equation is sufficient to predict the coating thickness distribution. The applied current density could be identified as the main influencing parameter. Based on the developed model, it is possible to improve the electrodeposition process and hence the homogeneity in the coating thickness of coated metal foams. This leads to enhanced mechanical properties of the hybrid foams and contributes to better and resource-efficient energy absorbers and lightweight materials. - Highlights: • Production of hybrid foams by electrodeposition of nickel on open-cell metal foams. • Magnetic field scans for visualization of spatial coating thickness distribution. • Modeling of magnetic fields of inhomogeneously coated hybrid foams. • Investigation of mass transport limitation during coating by a Helmholtz equation. • Increasing coating homogeneity by use of low current densities and deposition rates
Energy Technology Data Exchange (ETDEWEB)
Jung, A., E-mail: anne.jung@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany); Klis, D., E-mail: d.klis@lte.uni-saarland.de [Universität des Saarlandes, Laboratory for Electromagnetic Theory, Campus C6 3, 66123 Saarbrücken (Germany); Goldschmidt, F., E-mail: f.goldschmidt@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany)
2015-03-15
Open-cell metal foams are used as lightweight construction elements, energy absorbers or as support for catalytic coatings. Coating of open-cell metal foams is not only used for catalytic applications, but it leads also to tremendous increase in stiffness and energy absorption capacity. A non-line of sight coating technique for complex 3D structures is electrodeposition. Unfortunately, due to the 3D porosity and the related problems in mass transport limitation during the deposition, it is not possible to produce homogeneously coated foams. In the present contribution, we present a semi-non-destructive technique applicable to determine the coating thickness distribution of magnetic coatings by measuring the remanent magnetic field of coated foams. In order to have a closer look at the mass transport mechanism, a numerical model was developed to predict the field scans for different coating thickness distributions in the foams. For long deposition times the deposition reaches a steady state whereas a Helmholtz equation is sufficient to predict the coating thickness distribution. The applied current density could be identified as the main influencing parameter. Based on the developed model, it is possible to improve the electrodeposition process and hence the homogeneity in the coating thickness of coated metal foams. This leads to enhanced mechanical properties of the hybrid foams and contributes to better and resource-efficient energy absorbers and lightweight materials. - Highlights: • Production of hybrid foams by electrodeposition of nickel on open-cell metal foams. • Magnetic field scans for visualization of spatial coating thickness distribution. • Modeling of magnetic fields of inhomogeneously coated hybrid foams. • Investigation of mass transport limitation during coating by a Helmholtz equation. • Increasing coating homogeneity by use of low current densities and deposition rates.
Performance simulation and analysis of a fuel cell/battery hybrid forklift truck
DEFF Research Database (Denmark)
Hosseinzadeh, Elham; Rokni, Masoud; Advani, Suresh G.;
2013-01-01
strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical...... choice for the hybrid system based on system size and hydrogen consumption. In addition, it is observed that hydrogen consumption decreases by about 24% when the maximum speed of the drive cycle is decreased from 4.5 to 3 m/s. Similarly, by decreasing the forklift load from 2.5 to 1.5 ton, the hydrogen...
Particle-in-cell simulations of the near-field of a lower hybrid grill
Rantamäki, Karin
2003-01-01
Lower hybrid (LH) waves in the frequency range 1 to 10 GHz are used to heat and to drive current in a tokamak. A crucial issue for the future devices is the coupling of the wave power from the launching structure, the grill, to the plasma. A related problem is the formation of hot spots on the grill limiters and other components that are magnetically connected to the grill region. A probable explanation for these asymmetric heat loads is the parasitic absorption of the LH power. In parasitic ...
Hybrid Electro-Mechanical Simulation Tool for Wind Turbine Generators: Preprint
Energy Technology Data Exchange (ETDEWEB)
Singh, M.; Muljadi, E.; Jonkman, J.
2013-05-01
This paper describes the use of MATLAB/Simulink to simulate the electrical and grid-related aspects of a WTG and the FAST aero-elastic wind turbine code to simulate the aerodynamic and mechanical aspects of the WTG. The combination of the two enables studies involving both electrical and mechanical aspects of the WTG.
Bonnefond, Audrey; González, Edurne; Asua, Jose María; Leiza, Jose Ramon; Kiwi, John; Pulgarin, Cesar; Rtimi, Sami
2015-11-01
This study addresses the preparation and characterization of hybrid films prepared from Titanium dioxide (TiO2) Pickering stabilized acrylic polymeric dispersion as well as their bacterial inactivation efficiency under sunlight irradiation. Complete bacterial inactivation under low intensity simulated solar light irradiation (55 mW/cm(2)) was observed within 240 min for the films containing 10 weight based on monomers (wbm) % of TiO2, whereas 360 min were needed for the films containing 20 wbm% of TiO2. The hybrid films showed repetitive Escherichia coli (E. coli) inactivation under light irradiation. TiO2 released from the films surfaces was measured by inductively coupled plasma mass spectrometry (IPC-MS), obtaining values of ∼ 0.5 and 1 ppb/cm(2) for the films containing 10 wbm% and 20 wbm% of TiO2, respectively, far below the allowed cytotoxicity level for TiO2 (200 ppb). Transmission electron microscopy (TEM) of the hybrid films showed that TiO2 nanoparticles (NPs) were located at the polymer particle's surface forming a continuous inorganic network inside the film matrix. Atomic force microscopy (AFM) images showed differences in the TiO2 dispersion between the air-film and film-substrate interfaces. Films containing 10 wbm% of TiO2 had higher roughness (Rg) at both interfaces than the one containing 20 wbm% of TiO2 inducing an increase in the bacterial adhesion as well as the bacterial inactivation kinetics. The highly oxidative OH-radicals participating in the bacterial inactivation were determined by fluorescence. PMID:26222605
Simulation study of proposed off-midplane lower hybrid current drive in KSTAR
Bae, Young-soon; Shiraiwa, S.; Bonoli, P.; Wallace, G.; Wright, J. C.; Parker, R.; Kim, J. H.; Namkung, W.; Cho, M. H.; Park, B. H.; Yoon, S. W.; Oh, Y. K.; Park, H.
2016-07-01
A new proposal of lower hybrid (LH) wave launching is studied for efficient current drive aiming for high performance H-mode operation in Korea Superconducting Tokamak Advanced Research (KSTAR). This new concept is the off-midplane launch which results in a rapid up-shift of the parallel component of refractive index and hence simultaneously maintains good wave accessibility and efficient single pass absorption via Landau damping. In order to locate an optimal position of the launcher in the poloidal direction, the ray-tracing and Fokker–Planck codes were used. Based on a survey of the LH wave launch parameters and operation conditions including the compatibility issues with the existing in-vessel components, the LH wave launch from the top position near the upper X-point of the plasma separatrix provides the possibility to eliminate the accessibility problem and reduce parasitic edge loss for the KSTAR high performance H-mode operation scenario using 5 GHz lower hybrid current drive.
Directory of Open Access Journals (Sweden)
Devesh Ramphal Upadhyay
2016-02-01
Full Text Available The paper introduces an idea which adds itself into contribution of getting best fuel economy of a passenger car when it is running at high speed on a highway. A six speed (forward gear box is addressed in the paper which is controlled manually and automatically as well. The paper introduces an advancement in manual transmission gear box for passenger cars. Hydraulic circuit is designed with mechatronics point of view and resulting in making the shifting of gear automatically. A computational design is made of the Hybrid Gear Box (HGB using CATIA P3 V5 as a designing software. A new gear meshing in 5 speed manual transmission gear box which synchronizes with the output shaft of the transmission automatically after getting command by the automated system designed. Parameters are considered on the basis of practical model and is been simulated by using Simdriveline as the Simulink tool of MATLAB r2010a. The mechanical properties of the components of the hybrid gear box is calculated on the basis of the functional parameters and with help of the fundamental and dependent properties formulation. The final result is the graphical analysis of the model forobtaining at least 15% fuel efficient than any of the vehicle of same configurations.
Experiment and CFD simulation of hybrid SNCR-SCR using urea solution in a pilot-scale reactor
Energy Technology Data Exchange (ETDEWEB)
Nguyen, T.D.B.; Lim, Y.I.; Eom, W.H.; Kim, S.J.; Yoo, K.S. [Hankyong National University, Gyonggi Do (Republic of Korea). Dept. of Chemical Engineering
2010-10-12
The urea-based selective non-catalytic reduction (SNCR) experiment and modeling previously presented by Nguyen, Lim, et al. (2008) was extended in this study to the hybrid SNCR-SCR process for nitrogen oxides (NOx) removal in a pilot-scale flow reactor. The 5 wt% urea-water solution was sprayed into the SNCR zone and a commercial V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} catalyst in the form of monolith honeycomb was applied in the SCR zone. The NOx reduction efficiency of 91% was obtained from hybrid SNCR-SCR experiments, while 81% of NOx was reduced from the SNCR zone at 940{sup o}C and a normalized stoichiometric ratio (NSR) of 2.0. The turbulent reacting flow computational fluid dynamics (CFD) model with a nonuniform droplet size distribution was used, incorporating with the reduced seven-step reactions of SNCR and one Arrhenius-type SCR kinetics. The CFD simulation results showed a reasonable agreement with the experimental data in the temperature range between 900 and 980{sup o}C.
Weijie, Xu; Tong, Guo; Cheng, Chen
2016-03-01
The delay compensation method plays an essential role in maintaining the stability and achieving accurate real-time hybrid simulation results. The effectiveness of various compensation methods in different test scenarios, however, needs to be quantitatively evaluated. In this study, four compensation methods (i.e., the polynomial extrapolation, the linear acceleration extrapolation, the inverse compensation and the adaptive inverse compensation) are selected and compared experimentally using a frequency evaluation index (FEI) method. The effectiveness of the FEI method is first verified through comparison with the discrete transfer function approach for compensation methods assuming constant delay. Incomparable advantage is further demonstrated for the FEI method when applied to adaptive compensation methods, where the discrete transfer function approach is difficult to implement. Both numerical simulation and laboratory tests with predefined displacements are conducted using sinusoidal signals and random signals as inputs. Findings from numerical simulation and experimental results demonstrate that the FEI method is an efficient and effective approach to compare the performance of different compensation methods, especially for those requiring adaptation of compensation parameters.
2D hybrid simulations of super-diffusion at the magnetopause driven by Kelvin-Helmholtz instability
Energy Technology Data Exchange (ETDEWEB)
Cowee, Misa M [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Gary, S Peter [Los Alamos National Laboratory
2009-01-01
This manuscript describes the self-consistent simulation of diffusion at the magnetopause driven by Kelvin-Helmholtz (KH) instability. Two-dimensional hybrid (kinetic ions, fluid electrons) simulations of the most KH-unstable configuration where the shear flow is oriented perpendicular to the uniform magnetic field are carried out. The motion of the simulation particles are tracked during the run and their mean-square displacement normal to the magnetopause is calculated from which diffusion coefficients are determined. The diffusion coefficients are found to be time dependent, with D{sub x} {proportional_to} t{sup {alpha}}, where {alpha} > 1. Additionally, the probability distribution functions (PDF) of the 'jump lengths' the particles make over time are found to be non-gaussian. Such time-dependent diffusion coefficients and non-gaussian PDF's have been associated with so-called 'super-diffusion', in which diffusive mixing of particles is enhanced over classical diffusion. The results indicate that while turbulence associated with the break-down of vortices contributes to this enhanced diffusion, it is the growth of large-scale, coherent vortices is the more important process in facilitating it.
Modelling and Simulation of a Hybrid Solid Oxide Fuel Cell Coupled with a Gas Turbine Power Plant
Directory of Open Access Journals (Sweden)
Luca Andreassi
2009-09-01
Full Text Available
The paper presents a simulation of a hybrid solid oxide fuel cell-gas turbine (SOFC-GT power generation system fueled by natural gas. In the system considered, the unreacted fuel from a topping solid oxide fuel cell is burnt in an afterburner to feed a bottoming gas turbine and produce additional power. Combustion gas expands in the gas turbine after having preheated the inlet air and fuel and it is used to generate steam required by the reforming reactions. A novel thermodynamic model has been developed for the fuel cell and implemented into the library of a modular object-oriented Process Simulator, CAMELPro™. The relevant plant performance indicators have been analyzed to evaluate the incremental increase in efficiency brought about by the introduction of the gas turbine and heat regeneration system. Simulations were performed for different values of the main plant parameters.
International Nuclear Information System (INIS)
Numeric studies of the impact of the velocity space distribution on the stabilization of (1,1) internal kink mode and excitation of the fishbone mode are performed with a hybrid kinetic-magnetohydrodynamic model. These simulations demonstrate an extension of the physics capabilities of NIMROD[C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)], a three-dimensional extended magnetohydrodynamic (MHD) code, to include the kinetic effects of an energetic minority ion species. Kinetic effects are captured by a modification of the usual MHD momentum equation to include a pressure tensor calculated from the δf particle-in-cell method [S. E. Parker and W. W. Lee, Phys. Fluids B 5, 77 (1993)]. The particles are advanced in the self-consistent NIMROD fields. We outline the implementation and present simulation results of energetic minority ion stabilization of the (1,1) internal kink mode and excitation of the fishbone mode. A benchmark of the linear growth rate and real frequency is shown to agree well with another code. The impact of the details of the velocity space distribution is examined; particularly extending the velocity space cutoff of the simulation particles. Modestly increasing the cutoff strongly impacts the (1,1) mode. Numeric experiments are performed to study the impact of passing versus trapped particles. Observations of these numeric experiments suggest that assumptions of energetic particle effects should be re-examined.
Directory of Open Access Journals (Sweden)
Fiser Ondrej
2011-01-01
Full Text Available Long-term monthly and annual statistics of the attenuation of electromagnetic waves that have been obtained from 6 years of measurements on a free space optical path, 853 meters long, with a wavelength of 850 nm and on a precisely parallel radio path with a frequency of 58 GHz are presented. All the attenuation events observed are systematically classified according to the hydrometeor type causing the particular event. Monthly and yearly propagation statistics on the free space optical path and radio path are obtained. The influence of individual hydrometeors on attenuation is analysed. The obtained propagation statistics are compared to the calculated statistics using ITU-R models. The calculated attenuation statistics both at 850 nm and 58 GHz underestimate the measured statistics for higher attenuation levels. The availability performance of a simulated hybrid FSO/RF system is analysed based on the measured data.
Simulation of a Hybrid Optical/Radio/Acoustic Extension to IceCube for EeV Neutrino Detection
Besson, D; Ahrens, J; Atlee, D W; Bahcall, J N; Bai, X; Baret, B; Bartelt, M; Bay, R; Barwick, S W; Beattie, K; Becka, T; Becker, K H; Becker, J K; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Boser, S; Botner, O; Bouchta, A; Braun, J; Burgess, C; Burgess, T; Castermans, T; Chirkin, D; Clem, J; Conrad, J; Cooley, J; Cowen, D F; D'Agostino, M V; Davour, A; Day, C T; De Clercq, C; Desiati, P; De Young, T R; Dreyer, J; Duvoort, M R; Edwards, W R; Ehrlich, R; Ekstrom, P; Ellsworth, R W; Evenson, P A; Fazely, A R; Feser, T; Filimonov, K; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Gerhardt, L; Greene, M G; Grullon, S; Goldschmidt, A; Goodman, J; Gro, A; Gunasingha, R M; Hallgren, A; Halzen, F; Hanson, K; Hardtke, D; Hardtke, R; Harenberg, T; Hart, J E; Hauschildt, T; Hays, D; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hodges, J; Hoffman, K D; Hoshina, K; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hundertmark, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Jones, A; Joseph, J M; Kampert, K H; Karle, A; Kawai, H; Kelley, J L; Kestel, M; Kitamura, N; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Köpke, L; Krasberg, M; Kühn, K; Kujawski, E; Landsman, H; Lang, R; Leich, H; Liubarsky, I; Lundberg, J; Madsen, J; Marciniewski, P; Mase, K; Matis, H S; McCauley, T; McParland, C P; Meli, A; Messarius, T; Mészáros, P; Minor, R H; Miocinovic, P; Miyamoto, H; Mokhtarani, A; Montaruli, T; Morey, A; Morse, R; Movit, S M; Munich, K; Nahnhauer, R; Nam, J W; Niessen, P; Nygren, D R; Ogelman, H; Olbrechts, P; Olivas, A; Patton, S; Peña-Garay, C; Perez de los Heros, C; Pieloth, D; Pohl, A C; Porrata, R; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Refflinghaus, F; Resconi, E; Rhode, W; Ribordy, M; Richter, S; Rizzo, A; Robbins, S; Rott, C; Rutledge, D; Sander, H G; Schlenstedt, S; Schneider, D; Schwarz, R; Seckel, D; Seo, S H; Silvestri, A; Smith, A J; Solarz, M; Song, C; Sopher, J E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Steffen, P; Stezelberger, T; Stokstad, R G; Stoufer, M; Stoyanov, S; Sulanke, K H; Sullivan, G W; Sumner, T J; Taboada, I; Tarasova, O; Tepe, A; Thollander, L; Tilav, S; Toale, P A; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Voigt, B; Wagner, W; Walck, C; Waldmann, H; Walter, M; Wang, Y R; Wendt, C; Wiebusch, C; Wikström, G; Williams, D; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yoshida, S; Yodh, G; Böser, S; Vandenbroucke, J A
2005-01-01
Astrophysical neutrinos at $\\sim$EeV energies promise to be an interesting source for astrophysics and particle physics. Detecting the predicted cosmogenic ("GZK") neutrinos at 10$^{16}$ - 10$^{20}$ eV would test models of cosmic ray production at these energies and probe particle physics at $\\sim$100 TeV center-of-mass energy. While IceCube could detect $\\sim$1 GZK event per year, it is necessary to detect 10 or more events per year in order to study temporal, angular, and spectral distributions. The IceCube observatory may be able to achieve such event rates with an extension including optical, radio, and acoustic receivers. We present results from simulating such a hybrid detector.
Ziegler, Jack L.
A hybrid weighted essentially non-oscillatory (WENO)/centered-difference (CD) numerical method, with low numerical dissipation, high-order shock-capturing, and structured adaptive mesh refinement (SAMR), has been developed for the direct numerical simulation (DNS) of the multicomponent, compressive, reactive Navier-Stokes equations. The method enables accurate resolution of diffusive processes within reaction zones. This numerical method is verified with a series of one- and two-dimensional test problems, including a convergence test of a two-dimensional unsteady reactive double Mach reflection problem. Validation of the method is conducted with experimental comparisons of three applications all of which model multi-dimensional, unsteady reactive flow: an irregular propane detonation, shock and detonation bifurcations, and spark ignition deflagrations.
Lisjak, Andrea; Tatone, Bryan S. A.; Mahabadi, Omid K.; Grasselli, Giovanni; Marschall, Paul; Lanyon, George W.; Vaissière, Rémi de la; Shao, Hua; Leung, Helen; Nussbaum, Christophe
2016-05-01
The analysis and prediction of the rock mass disturbance around underground excavations are critical components of the performance and safety assessment of deep geological repositories for nuclear waste. In the short term, an excavation damaged zone (EDZ) tends to develop due to the redistribution of stresses around the underground openings. The EDZ is associated with an increase in hydraulic conductivity of several orders of magnitude. In argillaceous rocks, sealing mechanisms ultimately lead to a partial reduction in the effective hydraulic conductivity of the EDZ with time. The goal of this study is to strengthen the understanding of the phenomena involved in the EDZ formation and sealing in Opalinus Clay, an indurated claystone currently being assessed as a host rock for a geological repository in Switzerland. To achieve this goal, hybrid finite-discrete element method (FDEM) simulations are performed. With its explicit consideration of fracturing processes, FDEM modeling is applied to the HG-A experiment, an in situ test carried out at the Mont Terri underground rock laboratory to investigate the hydro-mechanical response of a backfilled and sealed microtunnel. A quantitative simulation of the EDZ formation process around the microtunnel is first carried out, and the numerical results are compared with field observations. Then, the re-compression of the EDZ under the effect of a purely mechanical loading, capturing the increase of swelling pressure from the backfill onto the rock, is considered. The simulation results highlight distinctive rock failure kinematics due to the bedded structure of the rock mass. Also, fracture termination is simulated at the intersection with a pre-existing discontinuity, representing a fault plane oblique to the bedding orientation. Simulation of the EDZ re-compression indicates an overall reduction of the total fracture area as a function of the applied pressure, with locations of ineffective sealing associated with self
Development of a hybrid PIC code for the simulation of plasma spacecraft interactions
Masselin, Matthieu
2012-01-01
Electric propulsion is gaining popularity in space industry. This type of propulsion is replacing chemical propulsion for different maneuvers. But it deeply modifies the ambient plasma that surrounds the satellites and can affect the operation of satellites. Modelling the interactions arising from electric propulsion is then critical. In the frame of SPIS, a simulation software designed to simulate plasma-spacecraft interactions, European Space Agency (ESA) started the AISEPS project which ai...
HYBRIST Mobility Model- A Novel Hybrid Mobility Model for VANET Simulations
Danquah, Wiseborn Manfe; Altilar, Turgay D
2014-01-01
Simulations play a vital role in implementing, testing and validating proposed algorithms and protocols in VANET. Mobility model, defined as the movement pattern of vehicles, is one of the main factors that contribute towards the efficient implementation of VANET algorithms and protocols. Using near reality mobility models ensure that accurate results are obtained from simulations. Mobility models that have been proposed and used to implement and test VANET protocols and algorithms are either...
Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun
2007-01-01
Potential growth of two widely-grown hybrid rice varieties in the Jinhua district of Zhejiang Province, Shanyou63 for mid-rice and Xieyou46 for late rice, was simulated using a crop growth model of WOFOST. Parameters of the rice growth in WOFOST were calibrated through field experiments from 1999 to 2002 in Jinhua. The potential yield simulated with WOFOST was about 12 t/ha for Shanyou63 and 10 t/ha for Xieyou46, which are in good agreement with the highest recorded yield obtained in this area. Under farmers practice, current yield is about 7.5 t/ha for Shanyou63 and 6.5 t/ha for Xieyou46. There is a gap between the actual rice yield and the potential yield for these two hybrid rice varieties grown in this area. The attainable target yields were set to 70% to 75% of their potential yields for the two varieties. A recently developed software “Nutrient Decision Support System (NuDSS)” for irrigated rice was used to optimize nutrient management for these two rice varieties. According to NuDSS, the optimal fertilizer N requirement for the target yields was about 150 kg/ha for Shanyou63 and about 120 kg/ha for Xieyou46, which were only about 70% of the fertilizer N application under current farmers’ practice. Comparing with farmers’ practice, there is great potential to increase actual rice yields and to reduce fertilizer N use rates by improving rice crop management practice in Jinhua. PMID:17610328
Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun
2007-07-01
Potential growth of two widely-grown hybrid rice varieties in the Jinhua district of Zhejiang Province, Shanyou63 for mid-rice and Xieyou46 for late rice, was simulated using a crop growth model of WOFOST. Parameters of the rice growth in WOFOST were calibrated through field experiments from 1999 to 2002 in Jinhua. The potential yield simulated with WOFOST was about 12 t/ha for Shanyou63 and 10 t/ha for Xieyou46, which are in good agreement with the highest recorded yield obtained in this area. Under farmers practice, current yield is about 7.5 t/ha for Shanyou63 and 6.5 t/ha for Xieyou46. There is a gap between the actual rice yield and the potential yield for these two hybrid rice varieties grown in this area. The attainable target yields were set to 70% to 75% of their potential yields for the two varieties. A recently developed software "Nutrient Decision Support System (NuDSS)" for irrigated rice was used to optimize nutrient management for these two rice varieties. According to NuDSS, the optimal fertilizer N requirement for the target yields was about 150 kg/ha for Shanyou63 and about 120 kg/ha for Xieyou46, which were only about 70% of the fertilizer N application under current farmers' practice. Comparing with farmers' practice, there is great potential to increase actual rice yields and to reduce fertilizer N use rates by improving rice crop management practice in Jinhua. PMID:17610328
Institute of Scientific and Technical Information of China (English)
XIE Wen-xia; WANG Guang-huo; ZHANG Qi-chun
2007-01-01
Potential growth of two widely-grown hybrid rice varieties in the Jinhua district of Zhejiang Province, Shanyou63 for mid-rice and Xieyou46 for late rice, was simulated using a crop growth model of WOFOST. Parameters of the rice growth in WOFOST were calibrated through field experiments from 1999 to 2002 in Jinhua. The potential yield simulated with WOFOST was about 12 t/ha for Shanyou63 and 10 t/ha for Xieyou46, which are in good agreement with the highest recorded yield obtained in this area. Under farmers practice, current yield is about 7.5 t/ha for Shanyou63 and 6.5 t/ha for Xieyou46. There is a gap between the actual rice yield and the potential yield for these two hybrid rice varieties grown in this area. The attainable target yields were set to 70% to 75% of their potential yields for the two varieties. A recently developed software "Nutrient Decision Support System (NuDSS)" for irrigated rice was used to optimize nutrient management for these two rice varieties. According to NuDSS, the optimal fertilizer N requirement for the target yields was about 150 kg/ha for Shanyou63 and about 120 kg/ha for Xieyou46, which were only about 70% of the fertilizer N application under current farmers' practice. Comparing with farmers' practice, there is great potential to increase actual rice yields and to reduce fertilizer N use rates by improving rice crop management practice in Jinhua.
SiSeRHMap v1.0: a simulator for mapped seismic response using a hybrid model
Directory of Open Access Journals (Sweden)
G. Grelle
2015-06-01
Full Text Available SiSeRHMap is a computerized methodology capable of drawing up prediction maps of seismic response. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches and models are organized in a code-architecture composed of five interdependent modules. A GIS (Geographic Information System Cubic Model (GCM, which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A metamodeling process confers a hybrid nature to the methodology. In this process, the one-dimensional linear equivalent analysis produces acceleration response spectra of shear wave velocity-thickness profiles, defined as trainers, which are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Spectra is optimized on the above trainer acceleration response spectra by means of a dedicated Evolutionary Algorithm (EA and the Levenberg–Marquardt Algorithm (LMA as the final optimizer. In the final step, the GCM Maps Executor module produces a serial map-set of a stratigraphic seismic response at different periods, grid-solving the calibrated Spectra model. In addition, the spectra topographic amplification is also computed by means of a numerical prediction model. This latter is built to match the results of the numerical simulations related to isolate reliefs using GIS topographic attributes. In this way, different sets of seismic response maps are developed, on which, also maps of seismic design response spectra are defined by means of an enveloping technique.
SiSeRHMap v1.0: a simulator for mapped seismic response using a hybrid model
Grelle, G.; Bonito, L.; Lampasi, A.; Revellino, P.; Guerriero, L.; Sappa, G.; Guadagno, F. M.
2015-06-01
SiSeRHMap is a computerized methodology capable of drawing up prediction maps of seismic response. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches and models are organized in a code-architecture composed of five interdependent modules. A GIS (Geographic Information System) Cubic Model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A metamodeling process confers a hybrid nature to the methodology. In this process, the one-dimensional linear equivalent analysis produces acceleration response spectra of shear wave velocity-thickness profiles, defined as trainers, which are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated Evolutionary Algorithm (EA) and the Levenberg-Marquardt Algorithm (LMA) as the final optimizer. In the final step, the GCM Maps Executor module produces a serial map-set of a stratigraphic seismic response at different periods, grid-solving the calibrated Spectra model. In addition, the spectra topographic amplification is also computed by means of a numerical prediction model. This latter is built to match the results of the numerical simulations related to isolate reliefs using GIS topographic attributes. In this way, different sets of seismic response maps are developed, on which, also maps of seismic design response spectra are defined by means of an enveloping technique.
Reclaimed water quality during simulated ozone-managed aquifer recharge hybrid
Yoon, Min
2014-06-17
A synergistic hybrid of two treatment processes, managed aquifer recharge (MAR) combined with ozonation, was proposed for wastewater reclamation and water reuse applications. Batch reactor and soil-column experiments were performed to evaluate reclaimed water quality using various chemical and bacterial analyses. The ozone process was optimized at low ozone dose (0.5 mg O3/mg DOC) based on the control of N-nitrosodimethylamine (<5 ng L-1) and bromate (<10 μg L-1), and applied prior to (i.e., O3-MAR) and after MAR (i.e., MAR-O3). This work demonstrates that effluent organic matter (EfOM) and trace organic contaminants (TOrCs) are effectively removed during the hybrid process of MAR combined ozonation, compared to MAR only. Based on fluorescence excitation-emission matrices analyses, both MAR and ozonation reduce soluble microbial (protein-like) products while only ozonation contributes in reducing humic and fulvic substances. Even at low ozone dose of 0.5 mg O3/mg DOC, the O3-MAR hybrid significantly reduced UV absorbance by ≥2 m-1, BDOC by ≥64 %, and total (Σ) TOrC concentrations by ≥70 % in the effluent water quality. However, no significant improvement (<10 %) in the removal of Σ16 TOrC concentrations was observed for the increased ozone dose at 1.0 mg O3/mg DOC during MAR combined ozonation processes. Overall, O3-MAR was effective by 10-30 % in treating effluent water than MAR based on DOC, UV254 nm EfOM, TOrC and bacterial analyses. In addition, MAR-O3 was better than O3-MAR for the reduction of fluorescence (close MQ), TOrCs (≥74 %) and total bacteria cell concentrations (>3 log reduction). Therefore, implementing MAR prior to ozonation appears to remove the bio-amenable compounds that react rapidly with ozone, thereby reducing oxidant demand and treatment efficiency. © 2014 Springer-Verlag Berlin Heidelberg.
MODELISATION, SIMULATION ET OPTIMISATION D’UN SYSTEME HYBRIDE EOLIEN-PHOTOVOLTAIQUE
BELGHITRI, HOUDA
2010-01-01
L’exploitation des ressources renouvelables connaît un grand essor dans les pays industrialisés et même dans quelques pays sous-développés. L’Algérie à fournit un grand effort pour l’électrification rurale et saharienne .En effet, le taux d’électrification national pour l’année 2001 est de 96%. Malgré le taux élevé, il existe toujours des foyers épars qui leurs électrifications par l’extension du réseau conventionnel est très coûteuse. Le système hybride de production d’électri...
An improving method for micro-G simulation with magnetism-buoyancy hybrid system
Zhu, Zhanxia; Yuan, Jianping; Song, Jiangzhou; Cui, Rongxin
2016-06-01
This paper presents a novel solution for the micro-G experiment with magnetism-buoyancy hybrid system. The improvement includes two parts, (i) proposing an innovative system called general balance test bed (GBTB), and (ii) designing a resistance effect compensation system. The GBTB, a special platform, can be used to realize the effect of neutral buoyancy, by using controllable electromagnetic force instead of conventional weight or foam module to eliminate the difference between gravity and liquid buoyancy. In this paper, principles, components, and functions of the GBTB are developed. Then, in order to improve test fidelity, a compensation system is designed to counteract the water resistance effect during maneuver, and a novel prediction law is proposed to make water resistance force prediction more coincident with the real value by introducing control errors and error rates. Finally, the feasibility and effectiveness of the proposed solution are demonstrated through micro-G experiments and tests.
Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks
DEFF Research Database (Denmark)
Wright, J.C.; Bonoli, P.T.; Brambilla, M.;
2004-01-01
Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first...... time are capable of achieving the resolution and speed necessary to address mode conversion phenomena in full two-dimensional (2-D) toroidal geometry. These codes have been used in conjunction with theory and experimental data from the Alcator C-Mod [I. H. Hutchinson , Phys. Plasmas 1, 1511 (1994)] to...
Simulation of solar-powered ammonia-water integrated hybrid cooling system
International Nuclear Information System (INIS)
A number of solar-operated air-conditioning systems based on the H2O-LiBr absorption chiller were built, installed, and monitored. A systematic study at the University of Colorado has been published. This paper presents a simple cost-benefit analysis of the conventional vapor compression system (VCS), the vapor absorption system (VAS), and the integrated hybrid system (IHS). The cost of energy input to the VAS and the IHS were compared with the energy cost of the VCS that these solar-powered systems replace. It was found that cost savings can be realized with solar-powered systems, only after a critical overall solar fraction is exceeded. Typically, this value was about 0.7 for a VAS and about 0.12 for a IHS. These cost-benefit results provided the motivation for a more detailed study of the IHS. There has also been other efforts in this direction
An Event-Driven Hybrid Molecular Dynamics and Direct Simulation Monte Carlo Algorithm
Energy Technology Data Exchange (ETDEWEB)
Donev, A; Garcia, A L; Alder, B J
2007-07-30
A novel algorithm is developed for the simulation of polymer chains suspended in a solvent. The polymers are represented as chains of hard spheres tethered by square wells and interact with the solvent particles with hard core potentials. The algorithm uses event-driven molecular dynamics (MD) for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in event-driven algorithms, rather, the momentum and energy exchange in the solvent is determined stochastically using the Direct Simulation Monte Carlo (DSMC) method. The coupling between the solvent and the solute is consistently represented at the particle level, however, unlike full MD simulations of both the solvent and the solute, the spatial structure of the solvent is ignored. The algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard wall subjected to uniform shear. The algorithm closely reproduces full MD simulations with two orders of magnitude greater efficiency. Results do not confirm the existence of periodic (cycling) motion of the polymer chain.
Institute of Scientific and Technical Information of China (English)
温平川; 徐晓东; 何先刚
2003-01-01
This paper presents a highly hybrid Genetic Algorithm / Simulated Annealing algorithm. This algorithmhas been successfully implemented on Beowulf PCs Cluster and applied to a set of standard function optimization prob-lems. From experimental results, it is easily to see that this algorithm proposed by us is not only effective but also robust.
Hybrid Simulations and Scaling Laws for Shock Formation in the UCLA Collisionless Shock Experiment
Larson, David; Winske, Dan; Cowee, Misa; Clark, S. Eric; Niemann, Christoph; Brecht, Stephen
2015-11-01
Two- and three-dimensional simulations are used to compare and contrast the plasma expansion, formation of a magnetic cavity, and generation of an outgoing shock wave for conditions relevant to the laser experiment at UCLA, as a function of the background ion mass. A model of the shock formation process is constructed that yields an expression for the speed of the shock, which we show is in good agreement with the simulations. In addition, the criteria for generating strongly-coupled shocks are derived and simulations are used to examine the velocity scaling obtained via momentum conservation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by DTRA10027-6759.
Wong, Un-Hong; Aoki, Takayuki; Wong, Hon-Cheng
2014-07-01
Modern graphics processing units (GPUs) have been widely utilized in magnetohydrodynamic (MHD) simulations in recent years. Due to the limited memory of a single GPU, distributed multi-GPU systems are needed to be explored for large-scale MHD simulations. However, the data transfer between GPUs bottlenecks the efficiency of the simulations on such systems. In this paper we propose a novel GPU Direct-MPI hybrid approach to address this problem for overall performance enhancement. Our approach consists of two strategies: (1) We exploit GPU Direct 2.0 to speedup the data transfers between multiple GPUs in a single node and reduce the total number of message passing interface (MPI) communications; (2) We design Compute Unified Device Architecture (CUDA) kernels instead of using memory copy to speedup the fragmented data exchange in the three-dimensional (3D) decomposition. 3D decomposition is usually not preferable for distributed multi-GPU systems due to its low efficiency of the fragmented data exchange. Our approach has made a breakthrough to make 3D decomposition available on distributed multi-GPU systems. As a result, it can reduce the memory usage and computation time of each partition of the computational domain. Experiment results show twice the FLOPS comparing to common 2D decomposition MPI-only implementation method. The proposed approach has been developed in an efficient implementation for MHD simulations on distributed multi-GPU systems, called MGPU-MHD code. The code realizes the GPU parallelization of a total variation diminishing (TVD) algorithm for solving the multidimensional ideal MHD equations, extending our work from single GPU computation (Wong et al., 2011) to multiple GPUs. Numerical tests and performance measurements are conducted on the TSUBAME 2.0 supercomputer at the Tokyo Institute of Technology. Our code achieves 2 TFLOPS in double precision for the problem with 12003 grid points using 216 GPUs.
Energy Technology Data Exchange (ETDEWEB)
Aminmansoor, F.; Abbasi, H., E-mail: abbasi@aut.ac.ir [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)
2015-08-15
The present paper is devoted to simulation of nonlinear disintegration of a localized perturbation into ion-acoustic solitons train in a plasma with hot electrons and cold ions. A Gaussian initial perturbation is used to model the localized perturbation. For this purpose, first, we reduce fluid system of equations to a Korteweg de-Vries equation by the following well-known assumptions. (i) On the ion-acoustic evolution time-scale, the electron velocity distribution function (EVDF) is assumed to be stationary. (ii) The calculation is restricted to small amplitude cases. Next, in order to generalize the model to finite amplitudes cases, the evolution of EVDF is included. To this end, a hybrid code is designed to simulate the case, in which electrons dynamics is governed by Vlasov equation, while cold ions dynamics is, like before, studied by the fluid equations. A comparison between the two models shows that although the fluid model is capable of demonstrating the general features of the process, to have a better insight into the relevant physics resulting from the evolution of EVDF, the use of kinetic treatment is of great importance.
He, Siyu; Gomez-Tames, Jose; Yu, Wenwei
2016-01-01
As one of neurological tests, needle electromygraphy exam (NEE) plays an important role to evaluate the conditions of nerves and muscles. Neurology interns and novice medical staff need repetitive training to improve their skills in performing the exam. However, no training systems are able to reproduce multiple pathological conditions to simulate real needle electromyogram exam. For the development of a robotic simulator, three components need to be realized: physical modeling of upper limb morphological features, position-dependent electromyogram generation, and needle localization; the latter is the focus of this study. Our idea is to couple two types of sensing mechanism in order to acquire the needle-tip position with high accuracy. One is to segment the needle from camera images and calculate its insertion point on the skin surface by a top-hat transform algorithm. The other is voltage-based depth measurement, in which a conductive tissue-like phantom was used to realize both needle-tip localization and physical sense of needle insertion. For that, a pair of electrodes was designed to generate a near-linear voltage distribution along the depth direction of the tissue-like phantom. The accuracy of the needle-tip position was investigated by the electric field potential and camera hybridization. The results showed that the needle tip could be detected with an accuracy of 1.05±0.57 mm. PMID:27382339
Kouno, Takahisa; Ogata, Shuji; Shimada, Takaaki; Tamura, Tomoyuki; Kobayashi, Ryo
2016-05-01
A hybrid quantum-classical simulation of a 4,608-atom silica glass is performed at a temperature of 400 K with either a water monomer or dimer inserted in a void. The quantum region that includes the water and the surrounding atoms is treated by the density-functional theory (DFT). During a simulation, the silica glass is gradually compressed or expanded. No Si-O bond breaking occurs with a water monomer until the silica glass collapses. With a water dimer, we find that Si-O bond breaking occurs through three steps in 3 out of 24 compression cases: (i) H-transfer as 2H2O → OH- + H3O+ accompanied by the adsorption of OH- at a strained Si to make it five-coordinated, (ii) breaking of a Si-O bond that originates from the five-coordinated Si, and (iii) H-transfer from H3O+ to the O of the broken Si-O bond. A separate DFT calculation confirms that the barrier energy of the bond breaking with a water dimer under compression is smaller than that with a water monomer and that the barrier energy decreases significantly when the silica glass is compressed further.
Uma, B; Radhakrishnan, R; Eckmann, D M; Ayyaswamy, P S
2013-01-01
A hybrid scheme based on Markovian fluctuating hydrodynamics of the fluid and a non-Markovian Langevin dynamics with the Ornstein-Uhlenbeck noise perturbing the translational and rotational equations of motion of a nanoparticle is employed to study the thermal motion of a nearly neutrally buoyant nanoparticle in an incompressible Newtonian fluid medium. A direct numerical simulation adopting an arbitrary Lagrangian-Eulerian based finite element method is employed in simulating the thermal motion of the particle suspended in the fluid contained in a cylindrical vessel. The instantaneous flow around the particle and the particle motion are fully resolved. The numerical results show that (a) the calculated temperature of the nearly neutrally buoyant Brownian particle in a quiescent fluid satisfies the equipartition theorem; (b) the translational and rotational decay of the velocity autocorrelation functions result in algebraic tails, over long time; (c) the translational and rotational mean square displacements of the particle obeys Stokes-Einstein and Stokes-Einstein-Debye relations, respectively; and (d) the parallel and perpendicular diffusivities of the particle closer to the wall are consistent with the analytical results, where available. The study has important implications for designing nanocarriers for targeted drug delivery. PMID:23814315
International Nuclear Information System (INIS)
A formulation of the electron momentum equation and Maxwell's field equations suitable for global solution in an r-z hybrid plasma simulation code has been derived. The assumption of zero electron inertia is made in the electron momentum equation and Maxwell's equations are used in the radiation-free or Darwin limit. These techniques make explicit use of the axisymmetric properties of the model to decouple the components of the model equations. Equations to self-consistently advance the electron temperature are not presently included in this scheme. The model equations which result from these considerations are two coupled, nonlinear, second order partial differential equations. These two equations are integrated in time by a noniterative ADI procedure along with the explicit particle-in-cell ion time integration procedure. The resulting nearly implicit electron-field algorithm treats wide variations in the local signal velocity without instability; this consideration is most important since pure vacuum regions are allowed. The global nature of the solution requires boundary conditions only on the boundaries of the simulation region; arbitrary intermixing of plasma vacuum regions requires only the simple detection of low density cells and does not require monitoring of plasma vacuum interfaces
Simulation of vortex shedding behind a bluff body flame stabilizer using a hybrid U-RANS/PDF method
Institute of Scientific and Technical Information of China (English)
Min-Ming Zhu; Ping-Hui Zhao; Hai-Wen Ge; Yi-Liang Chen
2012-01-01
The present study aims at the investigation of the effects of turbulence-chemistry interaction on combustion instabilities using a probability density function (PDF)method. The instantaneous quantities in the flow field were decomposed into the Favre-averaged variables and the stochastic fluctuations,which were calculated by unsteady Reynolds averaged Navier-Stokes (U-RANS) equations and the PDF model,respectively.A joint fluctuating velocityfrequency-composition PDF was used.The governing equations are solved by a consistent hybrid finite volume/MonteCarlo algorithm on triangular unstructured meshes.A nonreacting flow behind a triangular-shaped bluff body flame stabilizer in a rectilinear combustor was simulated by the present method.The results demonstrate the capability of the present method to capture the large-scale coherent structures.The triple decomposition was performed,by dividing the coherent Favre-averaged velocity into time-averaged value and periodical coherent part,to analyze the coherent and incoherent contributions to Reynolds stresses.A simple modification to the coefficients in the turbulent frequency model will help to improve the simulation results.Unsteady flow fields were depicted by streamlines and vorticity contours.Moreover,the association between turbulence production and vorticity saddle points is illustrated.
Martinez, Andrew S.; Brouwer, Jacob; Samuelsen, G. Scott
2012-09-01
This work assesses the feasibility of Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) hybrid power systems for use as the prime mover in freight locomotives. The available space in a diesel engine-powered locomotive is compared to that required for an SOFC-GT system, inclusive of fuel processing systems necessary for the SOFC-GT. The SOFC-GT space requirement is found to be similar to current diesel engines, without consideration of the electrical balance of plant. Preliminary design of the system layout within the locomotive is carried out for illustration. Recent advances in SOFC technology and implications of future improvements are discussed as well. A previously-developed FORTRAN model of an SOFC-GT system is then augmented to simulate the kinematics and power notching of a train and its locomotives. The operation of the SOFC-GT-powered train is investigated along a representative route in Southern California, with simulations presented for diesel reformate as well as natural gas reformate and hydrogen as fuels. Operational parameters and difficulties are explored as are comparisons of expected system performance to modern diesel engines. It is found that even in the diesel case, the SOFC-GT system provides significant savings in fuel and CO2 emissions, making it an attractive option for the rail industry.
Calhoun, V D; Pearlson, G D
2012-01-01
Naturalistic paradigms such as movie watching or simulated driving that mimic closely real-world complex activities are becoming more widely used in functional magnetic resonance imaging (fMRI) studies both because of their ability to robustly stimulate brain connectivity and the availability of analysis methods which are able to capitalize on connectivity within and among intrinsic brain networks identified both during a task and in resting fMRI data. In this paper we review over a decade of work from our group and others on the use of simulated driving paradigms to study both the healthy brain as well as the effects of acute alcohol administration on functional connectivity during such paradigms. We briefly review our initial work focused on the configuration of the driving simulator and the analysis strategies. We then describe in more detail several recent studies from our group including a hybrid study examining distracted driving and compare resulting data with those from a separate visual oddball task (Fig. 6). The analysis of these data was performed primarily using a combination of group independent component analysis (ICA) and the general linear model (GLM) and in the various studies we highlight novel findings which result from an analysis of either 1) within-network connectivity, 2) inter-network connectivity, also called functional network connectivity, or 3) the degree to which the modulation of the various intrinsic networks were associated with the alcohol administration and the task context. Despite the fact that the behavioral effects of alcohol intoxication are relatively well known, there is still much to discover on how acute alcohol exposure modulates brain function in a selective manner, associated with behavioral alterations. Through the above studies, we have learned more regarding the impact of acute alcohol intoxication on organization of the brain's intrinsic connectivity networks during performance of a complex, real-world cognitive
Kim, Tae-Ho; Jo, Yong-Hyun; Soo-Wohn; Adhikari, Rajesh; Cho, Sung-Hun
2015-09-01
This Paper reports the photocatalytic activity of g-C3N4/NaTaO3 hybrid composite photocatalysts synthesized by ball-mill method. The g-C3N4 and NaTaO3 were individually prepared by Solid state reaction and microwave hydrothermal process, respectively. The g-C3N4/NaTaO3 composite showed the enhanced photocatalytic activity for degradation of rhodamine B dye (Rh. B) under simulated solar light irradiation. The results revealed that the band-gap energy absorption edge of hybrid composite samples was shifted to a longer wavelength as compared to NaTaO3 and the 50 wt% g-C3N4/NaTaO3 hybrid composite exhibited the highest percentage (99.6%) of degradation of Rh. B and the highest reaction rate constant (0.013 min(-1)) in 4 h which could be attributed to the enhanced absorption of the hybrid composite photocatalyst in the UV-Vis region. Hence, these results suggest that the g-C3N4/NaTaO3 hybrid composite exhibits enhanced photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation in comparison to the commercial NaTaO3. PMID:26716296
Directory of Open Access Journals (Sweden)
Alejandro del Amo Sancho
2014-03-01
Full Text Available The high energy demand on buildings requires efficient installations and the integration of renewable energy to achieve the goal of reducing energy consumption using traditional energy sources. Usually, solar energy generation and heating loads have different profiles along a day and their maximums take place at different moments. In addition, in months in which solar production is higher, the heating demands are the minimum (hot water is consumed only domestically in summer. Cooling machines (absorption and adsorption allow using thermal energy to chill a fluid. This heat flow rate could be recovered from solar collectors or any other heat source. The aim of this study is to integrate different typologies of solar hybrid (photovoltaic and thermal collectors with cooling machines getting solar trigeneration and concluding the optimal combination for building applications. The heat recovered from the photovoltaic module is used to provide energy to these cooling machines getting a double effect: to get a better efficiency on PV modules and to cool the building. In this document the authors analyse these installations, their operating conditions, dimensions and parameters, in order to get the optimal installation in three different European cities. This work suggests that in a family house in Madrid, the optimal combination is to use CPVT with azimuthally tracking and absorption machine. In this case, the solar trigeneration system using 55 m2 of collector area saves the cooling loads and 79% of the heating load in the house round the year.
Simulation of modified hybrid noise reduction algorithm to enhance the speech quality
International Nuclear Information System (INIS)
Speech is the most essential method of correspondence of humankind. Cell telephony, portable hearing assistants and, hands free are specific provisions in this respect. The performance of these communication devices could be affected because of distortions which might augment them. There are two essential sorts of distortions that might be recognized, specifically: convolutive and additive noises. These mutilations contaminate the clean speech and make it unsatisfactory to human audiences i.e. perceptual value and intelligibility of speech signal diminishes. The objective of speech upgrade systems is to enhance the quality and understandability of speech to make it more satisfactory to audiences. This paper recommends a modified hybrid approach for single channel devices to process the noisy signals considering only the effect of background noises. It is a mixture of pre-processing relative spectral amplitude (RASTA) filter, which is approximated by a straight forward 4th order band-pass filter, and conventional minimum mean square error short time spectral amplitude (MMSE STSA85) estimator. To analyze the performance of the algorithm an objective parameter called Perceptual estimation of speech quality (PESQ) is measured. The results show that the modified algorithm performs well to remove the background noises. SIMULINK implementation is also performed and its profile report has been generated to observe the execution time. (author)
Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick
2015-06-15
This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.
Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics
Cleveland, Mathew A.; Gentile, Nick
2015-06-01
This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.
Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics
International Nuclear Information System (INIS)
This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems
Böckmann, Marcus; Doltsinis, Nikos L; Marx, Dominik
2010-01-21
A nonadiabatic hybrid quantum and molecular mechanical (na-QM/MM) molecular dynamics scheme has been implemented recently combining the nonadiabatic Car-Parrinello molecular dynamics method by Doltsinis and Marx [Phys. Rev. Lett. 2002, 88, 166402] with the QM/MM coupling approach by Laio et al. [J. Chem. Phys. 2002, 116, 6941]. Here an extensive validation of the underlying, density functional theory based, electronic structure methods by comparison to CASPT2 ab initio data is presented for the case of azobenzene. The "on the fly" na-QM/MM method is then applied to study Z-->E and E-->Z photoisomerization of azobenzene in a bulk liquid environment. The isomerization mechanism is found to be a pedal motion of the central CN horizontal lineNC group in both cases. While the Z-->E reaction is barely affected by the environment, E-->Z photoisomerization is slowed down considerably in the liquid compared to the gas phase. This effect is due to the fact that reorientation of the phenyl rings is significantly hindered in the liquid by steric nearest neighbor interactions. Nonradiative decay is found to be substantially faster for Z-AB (subpicosecond regime) than for E-AB (picosecond regime). The main molecular motions responsible for nonadiabatic coupling have been identified as the oscillations in the NN and CN bond lengths, the CNN bond angles, and the CNNC dihedral angle. PMID:19928885
Hybrid Rendering Architecture for Realtime and Photorealistic Simulation of Robot-Assisted Surgery.
Müller, Sebastijan; Bihlmaier, Andreas; Irgenfried, Stephan; Wörn, Heinz
2016-01-01
In this paper we present a method for combining realtime and non-realtime (photorealistic) rendering with open source software. Realtime rendering provides sufficient realism and is a good choice for most simulation and regression testing purposes in robot-assisted surgery. However, for proper end-to-end testing of the system, some computer vision algorithms require high fidelity images that capture more minute details of the real scene. One of the central practical obstacles to combining both worlds in a uniform way is creating models that are suitable for both kinds of rendering paradigms. We build a modeling pipeline using open source tools that builds on established, open standards for data exchange. The result is demonstrated through a unified model of the medical OpenHELP phantom used in the Gazebo robotics simulator, which can at the same time be rendered with more visual fidelity in the Cycles raytracer. PMID:27046586
Design of prestressed concrete precast road bridges with hybrid simulated annealing
Martí Albiñana, José Vicente; Gonzalez Vidosa, Fernando; Yepes Piqueras, Víctor; Alcalá González, Julián
2013-01-01
This paper describes one approach to the analysis and design of prestressed concrete precast road bridges, with double U-shaped cross-section and isostatic spans. The procedure used to solve the combinatorial problem is a variant of simulated annealing with a neighborhood move based on the mutation operator from the genetic algorithms (SAMO). This algorithm is applied to the economic cost of these structures at different stages of manufacturing, transportation and construction. The problem in...
Particle transport simulation of lower-hybrid current drive experiments on the Versator II tokamak
Energy Technology Data Exchange (ETDEWEB)
Chen, K.h.; Luckhardt, S.C.; Mayberry, M.J.; Porkolab, M.
1987-09-01
The one-dimensional particle transport equation has been solved numerically to simulate temporal and spatial evolutions of density behavior observed during 800MHz and 2.45GHz LHCD experiments. In order to fit the 800MHz profiles, the inward pinch velocity has to be increased several fold. However, for the 2.45GHz case, the reduction of the diffusive loss near the periphery seems to be needed.
Determination of spallation residues in thin target: toward an hybrid reactor lead target simulation
International Nuclear Information System (INIS)
The production of spallation primary residual nuclei in thin target has been studied by measurement of isotopic yields distributions for several systems. Issues relevant for the design of accelerator-driven systems are presented. Monte-Carlo code abilities to reproduce data are studied in details; it is shown that calculations do not reproduce data in a satisfactory way. Future work orientations leading to an improvement of thin targets calculations and ultimately to a thick target simulation are discussed. (author)
Stanzione, Francesca; Jayaraman, Arthi
2016-05-01
In-silico design of polymeric biomaterials requires molecular dynamics (MD) simulations that retain essential atomistic/molecular details (e.g., explicit water around the biofunctional macromolecule) while simultaneously achieving large length and time scales pertinent to macroscale function. Such large-scale atomistically detailed macromolecular MD simulations with explicit solvent representation are computationally expensive. One way to overcome this limitation is to use an adaptive resolution scheme (AdResS) in which the explicit solvent molecules dynamically adopt either atomistic or coarse-grained resolution depending on their location (e.g., near or far from the macromolecule) in the system. In this study we present the feasibility and the limitations of AdResS methodology for studying polyethylene glycol (PEG) in adaptive resolution water, for varying PEG length and architecture. We first validate the AdResS methodology for such systems, by comparing PEG and solvent structure with that from all-atom simulations. We elucidate the role of the atomistic zone size and the need for calculating thermodynamic force correction within this AdResS approach to correctly reproduce the structure of PEG and water. Lastly, by varying the PEG length and architecture, we study the hydration of PEG, and the effect of PEG architectures on the structural properties of water. Changing the architecture of PEG from linear to multiarm star, we observe reduction in the solvent accessible surface area of the PEG, and an increase in the order of water molecules in the hydration shells. PMID:27108869
International Nuclear Information System (INIS)
An effort to design and build a modeling and simulation framework to assess the economic viability of Nuclear Hybrid Energy Systems (NHES) was undertaken in fiscal year 2015 (FY15). The purpose of this report is to document the various tasks associated with the development of such a framework and to provide a status on its progress. Several tasks have been accomplished. First, starting from a simulation strategy, a rigorous mathematical formulation has been achieved in which the economic optimization of a Nuclear Hybrid Energy System is presented as a constrained robust (under uncertainty) optimization problem. Some possible algorithms for the solution of the optimization problem are presented. A variation of the Simultaneous Perturbation Stochastic Approximation algorithm has been implemented in RAVEN and preliminary tests have been performed. The development of the software infrastructure to support the simulation of the whole NHES has also moved forward. The coupling between RAVEN and an implementation of the Modelica language (OpenModelica) has been implemented, migrated under several operating systems and tested using an adapted model of a desalination plant. In particular, this exercise was focused on testing the coupling of the different code systems; testing parallel, computationally expensive simulations on the INL cluster; and providing a proof of concept for the possibility of using surrogate models to represent the different NHES subsystems. Another important step was the porting of the RAVEN code under the Windows™ operating system. This accomplishment makes RAVEN compatible with the development environment that is being used for dynamic simulation of NHES components. A very simplified model of a NHES on the electric market has been built in RAVEN to confirm expectations on the analysis capability of RAVEN to provide insight into system economics and to test the capability of RAVEN to identify limit surfaces even for stochastic constraints. This
Energy Technology Data Exchange (ETDEWEB)
Bragg-Sitton, Shannon Michelle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard Doin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
An effort to design and build a modeling and simulation framework to assess the economic viability of Nuclear Hybrid Energy Systems (NHES) was undertaken in fiscal year 2015 (FY15). The purpose of this report is to document the various tasks associated with the development of such a framework and to provide a status on its progress. Several tasks have been accomplished. First, starting from a simulation strategy, a rigorous mathematical formulation has been achieved in which the economic optimization of a Nuclear Hybrid Energy System is presented as a constrained robust (under uncertainty) optimization problem. Some possible algorithms for the solution of the optimization problem are presented. A variation of the Simultaneous Perturbation Stochastic Approximation algorithm has been implemented in RAVEN and preliminary tests have been performed. The development of the software infrastructure to support the simulation of the whole NHES has also moved forward. The coupling between RAVEN and an implementation of the Modelica language (OpenModelica) has been implemented, migrated under several operating systems and tested using an adapted model of a desalination plant. In particular, this exercise was focused on testing the coupling of the different code systems; testing parallel, computationally expensive simulations on the INL cluster; and providing a proof of concept for the possibility of using surrogate models to represent the different NHES subsystems. Another important step was the porting of the RAVEN code under the Windows™ operating system. This accomplishment makes RAVEN compatible with the development environment that is being used for dynamic simulation of NHES components. A very simplified model of a NHES on the electric market has been built in RAVEN to confirm expectations on the analysis capability of RAVEN to provide insight into system economics and to test the capability of RAVEN to identify limit surfaces even for stochastic constraints. This
Atomistic simulations of thiol-terminated modifiers for hybrid photovoltaic interfaces
Energy Technology Data Exchange (ETDEWEB)
Malloci, G. [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Petrozza, A. [Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, I-20133 Milano (Italy); Mattoni, A., E-mail: mattoni@iom.cnr.it [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy)
2014-06-02
Small aromatic molecules such as benzene or pyridine derivatives are often used as interface modifiers (IMs) at polymer/metal oxide hybrid interfaces. We performed a theoretical investigation on prototypical thiol-terminated IMs aimed at improving the photovoltaic performances of poly(3-hexylthiophene)/TiO{sub 2} devices. By means of first-principles calculations in the framework of the density functional theory we investigate 3-furanthiol (3FT), 4-mercaptobenzoicacid (4MB), and 6-isoquinolinethiol (6QT) molecules. We discuss the role of these molecules as modifiers alternative to 4-mercaptopyridine (4MP) which has recently shown to induce a large improvement in the overall power conversion efficiency of mesoporous films of TiO{sub 2} infiltrated by poly(3-hexylthiophene). The IMs investigated are expected to keep the beneficial features of 4MP giving at the same time the possibility to further tune the interlayer properties (e.g., its thickness, stability, and density). Dense interlayers of 6QT turn out to be slightly unstable since the titania substrate induces a compressive strain in the molecular film. On the contrary, we predict very stable films for both 3FT and 4MB molecules, which makes them interesting candidates for future experimental investigations. - Highlights: • We performed a theoretical investigation on thiol-terminated interface modifiers. • We investigate 3-furanthiol (3FT), 4-mercaptobenzoicacid (4MB), and 6-isoquinolinethiol molecules. • We discuss the role of these molecules as modifiers alternative to 4-mercaptopyridine. • Dense interlayers of 6-isoquinolinethiol turn out to be slightly unstable. • We predict very stable self-assembled thin-films for both 3FT and 4MB molecules.
Directory of Open Access Journals (Sweden)
He SY
2016-06-01
Full Text Available Siyu He,1 Jose Gomez-Tames,1 Wenwei Yu1,2 1Medical System Engineering Department, Graduate School of Engineering, 2Center for Frontier Medical Engineering, Chiba University, Chiba, Japan Abstract: As one of neurological tests, needle electromygraphy exam (NEE plays an important role to evaluate the conditions of nerves and muscles. Neurology interns and novice medical staff need repetitive training to improve their skills in performing the exam. However, no training systems are able to reproduce multiple pathological conditions to simulate real needle electromyogram exam. For the development of a robotic simulator, three components need to be realized: physical modeling of upper limb morphological features, position-dependent electromyogram generation, and needle localization; the latter is the focus of this study. Our idea is to couple two types of sensing mechanism in order to acquire the needle-tip position with high accuracy. One is to segment the needle from camera images and calculate its insertion point on the skin surface by a top-hat transform algorithm. The other is voltage-based depth measurement, in which a conductive tissue-like phantom was used to realize both needle-tip localization and physical sense of needle insertion. For that, a pair of electrodes was designed to generate a near-linear voltage distribution along the depth direction of the tissue-like phantom. The accuracy of the needle-tip position was investigated by the electric field potential and camera hybridization. The results showed that the needle tip could be detected with an accuracy of 1.05±0.57 mm. Keywords: needle-tip localization, needle EMG exam, top-hat transform, tissue-like phantom, voltage distribution simulation
Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao
2016-07-01
The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional
Real-time 3-D hybrid simulation of Titan's plasma interaction during a solar wind excursion
Directory of Open Access Journals (Sweden)
S. Simon
2009-09-01
Full Text Available The plasma environment of Saturn's largest satellite Titan is known to be highly variable. Since Titan's orbit is located within the outer magnetosphere of Saturn, the moon can leave the region dominated by the magnetic field of its parent body in times of high solar wind dynamic pressure and interact with the thermalized magnetosheath plasma or even with the unshocked solar wind. By applying a three-dimensional hybrid simulation code (kinetic description of ions, fluid electrons, we study in real-time the transition that Titan's plasma environment undergoes when the moon leaves Saturn's magnetosphere and enters the supermagnetosonic solar wind. In the simulation, the transition between both plasma regimes is mimicked by a reversal of the magnetic field direction as well as a change in the composition and temperature of the impinging plasma flow. When the satellite enters the solar wind, the magnetic draping pattern in its vicinity is reconfigured due to reconnection, with the characteristic time scale of this process being determined by the convection of the field lines in the undisturbed plasma flow at the flanks of the interaction region. The build-up of a bow shock ahead of Titan takes place on a typical time scale of a few minutes as well. We also analyze the erosion of the newly formed shock front upstream of Titan that commences when the moon re-enters the submagnetosonic plasma regime of Saturn's magnetosphere. Although the model presented here is far from governing the full complexity of Titan's plasma interaction during a solar wind excursion, the simulation provides important insights into general plasma-physical processes associated with such a disruptive change of the upstream flow conditions.
Samejima, Masaki; Negoro, Keisuke; Mitsukuni, Koshichiro; Akiyoshi, Masanori
We propose a finding method of business risk factors on qualitative and quantitative hybrid simulation in time series. Effect ratios of qualitative arcs in the hybrid simulation vary output values of the simulation, so we define effect ratios causing risk as business risk factors. Finding business risk factors in entire ranges of effect ratios is time-consuming. It is considered that probability distributions of effect ratios in present time step and ones in previous time step are similar, the probability distributions in present time step can be estimated. Our method finds business risk factors in only estimated ranges effectively. Experimental results show that a precision rate and a recall rate are 86%, and search time is decreased 20% at least.
International Nuclear Information System (INIS)
Two-dimensional hybrid simulations of perpendicular collisionless shocks are modeled after potential laboratory conditions that are attainable in the LArge Plasma Device (LAPD) at the University of California, Los Angeles Basic Plasma Science Facility. The kJ class 1053 nm Nd:Glass Raptor laser will be used to ablate carbon targets in the LAPD with on-target energies of 100-500 J. The ablated debris ions will expand into ambient, partially ionized hydrogen or helium. A parameter study is performed via hybrid simulation to determine possible conditions that could lead to shock formation in future LAPD experiments. Simulation results are presented along with a comparison to an analytical coupling parameter
Hybrid simulation of wake-vortex evolution during landing on flat terrain and with plate line
International Nuclear Information System (INIS)
Highlights: • Simulation of the wake of a landing aircraft using a novel RANS-LES coupling method. • End effects appear after touchdown leading to rapid circulation decay and core radius growth. • Wake vortices are subjected to complex three dimensional transport and deformation. • Characteristic vortex evolution phases are accelerated by ground proximity. • Plate lines trigger accelerated vortex decay interfering favorably with end effects. - Abstract: Wake-vortex evolution during approach and landing of a long range aircraft is investigated. The simulations cover final approach, touchdown on the tarmac, and the evolution of the wake after touchdown. The wake is initialized using a high fidelity Reynolds-averaged Navier–Stokes solution of the flow field around an aircraft model. The aircraft in high-lift configuration with deployed flaps and slats is swept through a ground fixed domain. The further development of the vortical wake is investigated by large-eddy simulation until final decay. The results show the formation of a pronounced shear layer at the ground and an increase in circulation in ground proximity, caused by the wing in ground effect. Disturbances at disconnected vortex ends, so-called end effects, appear after touchdown and propagate along the wake vortices against the flight direction. They lead to a circulation decay of the rolled-up wake vortices, combined with a growth of the core radius to 300% of its initial value. After touchdown wake vortices are subjected to strong three-dimensional deformations and linkings with the ground. The complete vortex evolution, including roll-up and decay, is accelerated in ground proximity. Additionally the effect of a plate line installed in front of the runway is studied with this method. The plates cause disturbances of the vortices propagating to either side and interacting with the end effects. The plate line further accelerates the vortex decay, reducing the circulation rapidly by another 25
Simulating capacitive cross-talk effects in dc-coupled hybrid silicon pixel detectors
Energy Technology Data Exchange (ETDEWEB)
Bonvicini, V. [INFN, Trieste (Italy); Pindo, M. [INFN, Milan (Italy)
1995-09-01
An electrical model of a (5)(5) pixel matrix has been developed. Cross-talk effects following the passage of an ionising event in the central pixel have been investigated with the help of the simulation program PSPICE; a small- signal equivalent circuit of a front-end charge sensitive preamplifier has been used for the analysis. The possibility to exploit the inter pixel capacitive coupling to substantially reduce the number of red out channels, provided that a suitable analogue front-end electronics is used, has been discussed.
A Matlab-Based Simulation for Hybrid Electric Motorcycle%基于Matlab的混合动力摩托车仿真研究
Institute of Scientific and Technical Information of China (English)
邵定国; 李永斌; 汪信尧; 江建中
2003-01-01
This paper presents a simulation and modeling package based on Matlab for a parallel hybrid electric motorcycle (HEM).The package consists of several main detailed models: internal combustion engine (ICE), motor, continuously variable transmission(CVT), battery, energy management system (EMS) etc. Each component is built as a library, and can be connected together accord-ing to the parallel HEM's topology. Simulation results, such as ICE power demand, motor power demand, battery instantaneous state-of-charge (SOC), pollution emissions etc. are given and discussed. Lastly experimental data verify our simulation results.
Nasseri, M.; Zahraie, B.; Ajami, N. K.; Solomatine, D. P.
2014-04-01
Multi-model (ensemble, or committee) techniques have shown to be an effective way to improve hydrological prediction performance and provide uncertainty information. This paper presents two novel multi-model ensemble techniques, one probabilistic, Modified Bootstrap Ensemble Model (MBEM), and one possibilistic, FUzzy C-means Ensemble based on data Pattern (FUCEP). The paper also explores utilization of the Ordinary Kriging (OK) method as a multi-model combination scheme for hydrological simulation/prediction. These techniques are compared against Bayesian Model Averaging (BMA) and Weighted Average (WA) methods to demonstrate their effectiveness. The mentioned techniques are applied to the three monthly water balance models used to generate stream flow simulations for two mountainous basins in the South-West of Iran. For both basins, the results demonstrate that MBEM and FUCEP generate more skillful and reliable probabilistic predictions, outperforming all the other techniques. We have also found that OK did not demonstrate any improved skill as a simple combination method over WA scheme for neither of the basins.
Excitable laser processing network node in hybrid silicon: analysis and simulation.
Nahmias, Mitchell A; Tait, Alexander N; Shastri, Bhavin J; de Lima, Thomas Ferreira; Prucnal, Paul R
2015-10-01
The combination of ultrafast laser dynamics and dense on-chip multiwavelength networking could potentially address new domains of real-time signal processing that require both speed and complexity. We present a physically realistic optoelectronic simulation model of a circuit for dynamical laser neural networks and verify its behavior. We describe the physics, dynamics, and parasitics of one network node, which includes a bank of filters, a photodetector, and excitable laser. This unconventional circuit exhibits both cascadability and fan-in, critical properties for the large-scale networking of information processors based on laser excitability. In addition, it can be instantiated on a photonic integrated circuit platform and requires no off-chip optical I/O. Our proposed processing system could find use in emerging applications, including cognitive radio and low-latency control. PMID:26480191
Bhattacharya, Amitabh
2013-11-01
An efficient algorithm for simulating Stokes flow around particles is presented here, in which a second order Finite Difference method (FDM) is coupled to a Boundary Integral method (BIM). This method utilizes the strong points of FDM (i.e. localized stencil) and BIM (i.e. accurate representation of particle surface). Specifically, in each iteration, the flow field away from the particles is solved on a Cartesian FDM grid, while the traction on the particle surface (given the the velocity of the particle) is solved using BIM. The two schemes are coupled by matching the solution in an intermediate region between the particle and surrounding fluid. We validate this method by solving for flow around an array of cylinders, and find good agreement with Hasimoto's (J. Fluid Mech. 1959) analytical results.
Energy Technology Data Exchange (ETDEWEB)
Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph
2012-07-31
This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.
International Nuclear Information System (INIS)
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5RE,0.3RE), where RE is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k⊥≫k∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δEz)/(δBy )∼ω/k∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet
Energy Technology Data Exchange (ETDEWEB)
Guo, Zhifang [Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hong, Minghua; Du, Aimin [Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); Lin, Yu; Wang, Xueyi [CAS Key Lab of Geoscience Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Physics Department, Auburn University, 206 Allison Laboratory, Auburn, Alabama 36849-5311 (United States); Wu, Mingyu; Lu, Quanming, E-mail: qmlu@ustc.edu.cn [CAS Key Lab of Geoscience Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China); Collaborative Innovation Center of Astronautical Science and Technology (China)
2015-02-15
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R{sub E},0.3R{sub E}), where R{sub E} is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k{sub ⊥}≫k{sub ∥} are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE{sub z})/(δB{sub y} )∼ω/k{sub ∥} of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
Kourafalou, Vassiliki H.; Peng, Ge; Kang, Heesook; Hogan, Patrick J.; Smedstad, Ole-Martin; Weisberg, Robert H.
2009-02-01
The South Florida Hybrid Coordinate Ocean Model (SoFLA-HYCOM) encompasses a variety of coastal regions (the broad Southwest Florida shelf, the narrow Atlantic Keys shelf, the shallow Florida Bay, and Biscayne Bay) and deep regions (the Straits of Florida), including Marine Protected Areas (the Florida Keys Marine Sanctuary and the Dry Tortugas Ecological Reserve). The presence of the strong Loop Current/Florida Current system and associated eddies connects the local and basin-wide dynamics. A multi-nested approach has been developed to ensure resolution of coastal-scale processes and proper interaction with the large scale flows. The simulations are free running and effects of data assimilation are introduced through boundary conditions derived from Global Ocean Data Assimilation Experiment products. The study evaluates the effects of boundary conditions on the successful hindcasting of circulation patterns by a nested model, applied on a dynamically and topographically complex shelf area. Independent (not assimilated) observations are employed for a quantitative validation of the numerical results. The discussion of the prevailing dynamics that are revealed in both modeled and observed patterns suggests the importance of topography resolution and local forcing on the inner shelf to middle shelf areas, while large scale processes are found to dominate the outer shelf flows. The results indicate that the successful hindcasting of circulation patterns in a coastal area that is characterized by complex topography and proximity to a large scale current system requires a dynamical downscaling approach, with simulations that are nested in a hierarchy of data assimilative outer models.
Florinski, V.; Heerikhuisen, J.; Niemiec, J.; Ernst, A.
2016-08-01
The nearly circular band of energetic neutral atom emission dominating the field of view of the Interplanetary Boundary Explorer (IBEX ) satellite, is most commonly attributed to the effect of charge exchange of secondary pickup ions (PUIs) gyrating about the magnetic field in the outer heliosheath and the interstellar space beyond. Several models for the PUI dynamics of this mechanism have been proposed, each requiring either strong or weak scattering of the initial pitch angle. Conventional wisdom states that ring distributions tend to generate waves and scatter onto a shell on timescales too short for charge exchange to occur. We performed a careful study of ring and thin shell proton distribution stability using theoretical tools and hybrid plasma simulations. We show that the kinetic behavior of a freshly injected proton ring is a far more complicated process than previously thought. In the presence of a warm Maxwellian core, narrower rings could be more stable than broader toroidal distributions. The scattered rings possess a fine structure that can only be revealed using very large numbers of macroparticles in a simulation. It is demonstrated that a “stability gap” in ring temperature exists where the protons could retain large gyrating anisotropies for years, and the wave activity could remain below the level of the ambient magnetic fluctuations in interstellar space. In the directions away from the ribbon, however, a partial shell distribution is more likely to be unstable, leading to significant scattering into one hemisphere in velocity space. The process is accompanied by turbulence production, which is puzzling given the very low level of magnetic fluctuations measured in the outer heliosheath by Voyager 1.
Guo, Zhifang; Hong, Minghua; Lin, Yu; Du, Aimin; Wang, Xueyi; Wu, Mingyu; Lu, Quanming
2015-02-01
In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E ×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x ,z ) =(-10.5 RE,0.3 RE) , where RE is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k⊥≫k∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δEz)/(δBy )˜ω/k∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.
Plasma and fields in the wake of Rhea: 3-D hybrid simulation and comparison with Cassini data
Directory of Open Access Journals (Sweden)
E. Roussos
2008-03-01
Full Text Available Rhea's magnetospheric interaction is simulated using a three-dimensional, hybrid plasma simulation code, where ions are treated as particles and electrons as a massless, charge-neutralizing fluid. In consistency with Cassini observations, Rhea is modeled as a plasma absorbing obstacle. This leads to the formation of a plasma wake (cavity behind the moon. We find that this cavity expands with the ion sound speed along the magnetic field lines, resulting in an extended depletion region north and south of the moon, just a few Rhea radii (R_{Rh} downstream. This is a direct consequence of the comparable thermal and bulk plasma velocities at Rhea. Perpendicular to the magnetic field lines the wake's extension is constrained by the magnetic field. A magnetic field compression in the wake and the rarefaction in the wake sides is also observed in our results. This configuration reproduces well the signature in the Cassini magnetometer data, acquired during the close flyby to Rhea on November 2005. Almost all plasma and field parameters show an asymmetric distribution along the plane where the corotational electric field is contained. A diamagnetic current system is found running parallel to the wake boundaries. The presence of this current system shows a direct corelation with the magnetic field configuration downstream of Rhea, while the resulting j×B forces on the ions are responsible for the asymmetric structures seen in the velocity and electric field vector fields in the equatorial plane. As Rhea is one of the many plasma absorbing moons of Saturn, we expect that this case study should be relevant for most lunar-type interactions at Saturn.
International Nuclear Information System (INIS)
According to intuition and theories of diffusion, consumer preferences develop along with technological change. However, most economic models designed for policy simulation unrealistically assume static preferences. To improve the behavioral realism of an energy-economy policy model, this study investigates the ''neighbor effect'', where a new technology becomes more desirable as its adoption becomes more widespread in the market. We measure this effect as a change in aggregated willingness to pay under different levels of technology penetration. Focusing on hybrid-electric vehicles (HEVs), an online survey experiment collected stated preference (SP) data from 535 Canadian and 408 Californian vehicle owners under different hypothetical market conditions. Revealed preference (RP) data was collected from the same respondents by eliciting the year, make and model of recent vehicle purchases from regions with different degrees of HEV popularity: Canada with 0.17% new market share, and California with 3.0% new market share. We compare choice models estimated from RP data only with three joint SP-RP estimation techniques, each assigning a different weight to the influence of SP and RP data in coefficient estimates. Statistically, models allowing more RP influence outperform SP influenced models. However, results suggest that because the RP data in this study is afflicted by multicollinearity, techniques that allow more SP influence in the beta estimates while maintaining RP data for calibrating vehicle class constraints produce more realistic estimates of willingness to pay. Furthermore, SP influenced coefficient estimates also translate to more realistic behavioral parameters for CIMS, allowing more sensitivity to policy simulations. (author)
International Nuclear Information System (INIS)
Magneto-rheological (MR) fluid dampers can be used to reduce the traffic induced vibration in highway bridges and protect critical structural components from fatigue. Experimental verification is needed to verify the applicability of the MR dampers for this purpose. Real-time hybrid simulation (RTHS), where the MR dampers are physically tested and dynamically linked to a numerical model of the highway bridge and truck traffic, provides an efficient and effective means to experimentally examine the efficacy of MR dampers for fatigue protection of highway bridges. In this paper a complex highway bridge model with 263 178 degrees-of-freedom under truck loading is tested using the proposed convolution integral (CI) method of RTHS for a semiactive structural control strategy employing two large-scale 200 kN MR dampers. The formation of RTHS using the CI method is first presented, followed by details of the various components in the RTHS and a description of the implementation of the CI method for this particular test. The experimental results confirm the practicability of the CI method for conducting RTHS of complex systems. (paper)
Catauro, M.; Bollino, F.; Papale, F.
2016-05-01
The health of astronauts, during space flight, is threatened by bone loss induced by microgravity, mainly attributed to an imbalance in the bone remodeling process. In the present work, the response to the microgravity of bone cells has been studied using the SAOS-2 cell line grown under the condition of weightlessness, simulated by means of a Random Positioning Machine (RPM). Cell viability after 72 h of rotation has been evaluated by means of WST-8 assay and compared to that of control cells. Although no significant difference between the two cell groups has been observed in terms of viability, F-actin staining showed that microgravity environment induces cell apoptosis and altered F-actin organization. To investigate the possibility of hindering the trend of the cells towards the death, after 72 h of rotation the cells have been seeded onto biocompatible ZrO2/PCL hybrid coatings, previously obtained using a sol-gel dip coating procedure. WST-8 assay, carried out after 24 h, showed that the materials are able to inhibit the pro-apoptotic effect of microgravity on cells.
International Nuclear Information System (INIS)
A lower hybrid ray tracing package has been adapted for use in the PPPL 1-D tokamak transport code TRANSP. The code LHRAY has been written in OLYMPUS format and is suitable for use as a separate simulation program or in conjunction with TRANSP. The generality of the OLYMPUS conventions was chosen in order to make LHRAY easily transferable to other OLYMPUS style transport codes such as BALDUR. The details of LHRAY are described in this report. The physical model documented in our first progress report has been used with one major modification. Instead of solving the 1-D Fokker-Planck equations numerically to give the electron distribution function F/sub e/ in the presence of a background electric field, we have approximated F/sub e/ analytically using the theory of Liu et al for runaway electron distributions. The organization of LHRAY is given and the naming conventions are noted. Finally, preliminary results are presented. Program documentation and a listing of the code are included as appendices
Li, Linmin; Li, Baokuan
2016-03-01
In ladle metallurgy, bubble-liquid interaction leads to complex phase structures. Gas bubble behavior, as well as the induced slag layer behavior, plays a significant role in the refining process and the steel quality. In the present work, a mathematical model using the large eddy simulation (LES) is developed to investigate the bubble transport and slag layer behavior in a water model of an argon-stirred ladle. The Eulerian volume of fluid model is adopted to track the liquid steel-slag-air free surfaces while the Lagrangian discrete phase model is used for tracking and handling the dynamics of discrete bubbles. The bubble coalescence is considered using O'Rourke's algorithm to solve the bubble diameter redistribution and bubbles are removed after leaving the air-liquid interface. The turbulent liquid flow that is induced by bubble-liquid interaction is solved by LES. The slag layer fluactuation, slag droplet entrainment and spout eye open-close phenomenon are well revealed. The bubble diameter distribution and the spout eye size are compared with the experiment. The results show that the hybrid Eulerian-Lagrangian-LES model provides a valid modeling framework to predict the unsteady gas bubble-slag layer coupled behaviors.
Ueda, H. O.; Omura, Y.; Matsumoto, H
1998-01-01
Excitation of upper hybrid waves associated with the ionospheric heating experiments is assumed to be essential in explaining some of the features of stimulated electromagnetic emissions (SEE). A direct conversion process is proposed as an excitation mechanism of the upper hybrid waves where the energy of an obliquely propagating electromagnetic pump wave is converted into the electrostatic upper hybrid waves due to small-scale density irregularities. We performed electromagnetic particle-in-...
Hybrid Models: Bridging Particle and Continuum Scales in Hydrodynamic Flow Simulations
Flekkoy, Eirik G.; McNamara, Sean; Maloy, Jorgen; Maloy, Knut; Feder, Jens; Wagner, Geri
Different models for the coupling of field and particle descriptions are introduced and examined. For the purpose of establishing how a molecular description may be coupled to a continuum description of the same physical system, we study a molecular dynamics system coupled to a Navier-Stokes description within the same physical space. A simple toy model version of this system is studied as well, i.e., a system of random walkers coupled to the diffusion equation. These coupling schemes are shown to work in the sense that they provide a seamless coupling between the different representations. In order to establish a sufficiently computationally efficient method for the simulation of gas-grain flow, we introduce a model where the grains are described explicitly but where the gas is described only through its continuum pressure field. It is shown that this model easily produces macroscopic structures, such as the bubbles in fluidized beds. The model is also used to study a novel bubble instability observed experimentally in the flow of gas-grain systems in simple tubes.
Directory of Open Access Journals (Sweden)
Meysam Haddadi
2012-07-01
Full Text Available Modeling line in non standard way occurs when layout constraints and inappropriate placing customer is limited for taking customer service by the servant. The aim of this study is providing a mixed model for analyzing the system of non-standard line with Considering the limitations of the layout with Using the concepts and principles of queuing theory So that the main parameters of the model for this type of system can be calculated and The basis of queuing systems with non-standard parameters may be considered. In these nonstandard systems, because of special arrangement of servants, there are some delay times for giving services and exit. The use of simulation tools to demonstrate the relatively low efficiency of CNG (Compressed Natural Gas stations in Iran, To provide an optimum combination of servers (Fuel nozzle Also more efficient layout for the CNG stations has Studied. Manufacturing firms and service managers can use this model and evaluate and analysis their own system and get a better recognition of their system. One of the most widely used queuing systems in the country are CNG stations, in consideration high investment cost and land value in large cities, so we decided to studied on this area as one of the servicing activities.
Ordered particles versus ordered pointers in the hybrid ordered plasma simulation (HOPS) code
International Nuclear Information System (INIS)
From a computational standpoint, particle simulation calculations for plasmas have not adapted well to the transitions from scalar to vector processing nor from serial to parallel environments. They have suffered from inordinate and excessive accessing of computer memory and have been hobbled by relatively inefficient gather-scatter constructs resulting from the use of indirect indexing. Lastly, the many-to-one mapping characteristic of the deposition phase has made it difficult to perform this in parallel. The authors' code sorts and reorders the particles in a spatial order. This allows them to greatly reduce the memory references, to run in directly indexed vector mode, and to employ domain decomposition to achieve parallelization. The field model solves pre-maxwell equations by interatively implicit methods. The OSOP (Ordered Storage Ordered Processing) version of HOPS keeps the particle tables ordered by rebuilding them after each particle pushing phase. Alternatively, the RSOP (Random Storage Ordered Processing) version keeps a table of pointers ordered by rebuilding them. Although OSOP is somewhat faster than RSOP in tests on vector-parallel machines, it is not clear this advantage will carry over to massively parallel computers
ZnO/zeolite hybrid nanostructures: synthesis, structure, optical properties, and simulation
International Nuclear Information System (INIS)
Zinc oxide nanostructures were grown on zeolite substrates using a thermal evaporation method. Nanostructures were synthesized by varying the temperature of the reacting mixture, the temperature gradient between this and the substrate, the deposition time, and the presence/absence of Au catalyst on the zeolite substrate. Morphology, structure, and optical properties were investigated using X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy. Systematic changes were observed in the amount, shape, and optical properties of the nanostructures grown on zeolite. Nanostructures grown at higher temperatures demonstrated more intense blue/green emission peaks associated with defects. In addition, ZnO nanostructures grown in the absence of Au catalysts were found to exhibit appreciably larger defect density in comparison to the structures grown on Au-coated surfaces. The presence of active sites on zeolite surface and their interaction with the zinc and oxygen species has been investigated using semi-empirical molecular orbital methods. - Highlights: • ZnO nanostructures are grown on zeolite membranes by thermal evaporation methods. • Morphology/optical properties depend on growth temperature and catalyst. • Absence of catalyst induces defects as evidenced in the visible emission spectra. • Semiempirical simulations indicate interaction between ZnO and zeolite surface
Simulations of sooting turbulent jet flames using a hybrid flamelet/stochastic Eulerian field method
Consalvi, Jean-Louis; Nmira, Fatiha; Burot, Daria
2016-03-01
The stochastic Eulerian field method is applied to simulate 12 turbulent C1-C3 hydrocarbon jet diffusion flames covering a wide range of Reynolds numbers and fuel sooting propensities. The joint scalar probability density function (PDF) is a function of the mixture fraction, enthalpy defect, scalar dissipation rate and representative soot properties. Soot production is modelled by a semi-empirical acetylene/benzene-based soot model. Spectral gas and soot radiation is modelled using a wide-band correlated-k model. Emission turbulent radiation interactions (TRIs) are taken into account by means of the PDF method, whereas absorption TRIs are modelled using the optically thin fluctuation approximation. Model predictions are found to be in reasonable agreement with experimental data in terms of flame structure, soot quantities and radiative loss. Mean soot volume fractions are predicted within a factor of two of the experiments whereas radiant fractions and peaks of wall radiative fluxes are within 20%. The study also aims to assess approximate radiative models, namely the optically thin approximation (OTA) and grey medium approximation. These approximations affect significantly the radiative loss and should be avoided if accurate predictions of the radiative flux are desired. At atmospheric pressure, the relative errors that they produced on the peaks of temperature and soot volume fraction are within both experimental and model uncertainties. However, these discrepancies are found to increase with pressure, suggesting that spectral models describing properly the self-absorption should be considered at over-atmospheric pressure.
Directory of Open Access Journals (Sweden)
Lan-Rong Dung
2016-01-01
Full Text Available A new battery simulator based on a hybrid model is proposed in this paper for dynamic discharging behavior and runtime predictions in existing electronic simulation environments, e.g., PSIM, so it can help power circuit designers to develop and optimize their battery-powered electronic systems. The hybrid battery model combines a diffusion model and a switching overpotential model, which automatically switches overpotential resistance mode or overpotential voltage mode to accurately describe the voltage difference between battery electro-motive force (EMF and terminal voltage. Therefore, this simulator can simply run in an electronic simulation software with less computational efforts and estimate battery performances by further considering nonlinear capacity effects. A linear extrapolation technique is adopted for extracting model parameters from constant current discharging tests, so the EMF hysteresis problem is avoided. For model validation, experiments and simulations in MATLAB and PSIM environments are conducted with six different profiles, including constant loads, an interrupted load, increasing and decreasing loads and a varying load. The results confirm the usefulness and accuracy of the proposed simulator. The behavior and runtime prediction errors can be as low as 3.1% and 1.2%, respectively.
Cook, J W S; Dendy, R O
2010-01-01
We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a regime relevant to tokamak fusion plasmas, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes under conditions approximating the outer mid-plane edge in a large tokamak, through which there pass confined centrally born fusion products on banana orbits that have large radial excursions. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the in...
Energy Technology Data Exchange (ETDEWEB)
Guildenbecher, Daniel R.; Gao, Jian; Reu, Phillip L.; Chen, Jun
2013-01-01
The accuracy of digital in-line holography to detect particle position and size within a 3D domain is evaluated with particular focus placed on detection of nonspherical particles. Dimensionless models are proposed for simulation of holograms from single particles, and these models are used to evaluate the uncertainty of existing particle detection methods. From the lessons learned, a new hybrid method is proposed. This method features automatic determination of optimum thresholds, and simulations indicate improved accuracy compared to alternative methods. To validate this, experiments are performed using quasi-stationary, 3D particle fields with imposed translations. For the spherical particles considered in experiments, the proposed hybrid method resolves mean particle concentration and size to within 4% of the actual value, while the standard deviation of particle depth is less than two particle diameters. Initial experimental results for nonspherical particles reveal similar performance.
International Nuclear Information System (INIS)
The (1+2) dimensional (1-D in real space and 2-D in momentum space) relativistic Fokker-Planck code combined with the ray-tracing code has been newly developed for analyzing the lower hybrid current drive (LHCD) on tokamak plasmas. This numerical code calculates the 2-D MHD equilibrium, ray-tracing, and Fokker-Planck analyses self-consistently. The simulations have been carried out by using the code, and the results were compared with experiments on the lower hybrid current drive in JT-60. As a result, the obtained simulation results agreed with the experimental results on the current drive efficiency and the current density profile (or the plasma internal inductance). (author)
Gaudray, Gordon
2015-01-01
Remote hybrid power systems (RHPS) serve local off-grid loads or various island grids when no grid extension is possible. They combine renewable resources, conventional generators and energy storage systems in order to balance the load at any moment, while ensuring power quality and energy security similar to large centralized grids. Modelling such a complex system is crucial for carrying out proper simulations for predicting the system’s behavior and for optimal sizing of components. The mod...
Institute of Scientific and Technical Information of China (English)
方哲梅; 王明哲; 杨翠蓉
2011-01-01
提出一种以Petri网为仿真进程控制,以着色Petri网与Matlab交互为主题的混杂仿真跨平台构架.该仿真构架通过运用和扩展着色Petri网中替代变迁的概念,结合融合库所和折叠功能,实现了混杂系统的复杂逻辑建模和连续系统内嵌.同时,着色Petri网的分析功能在一定程度上缓解了逻辑结构复杂的混杂系统检验困难的问题.最后通过一个混杂系统实例的建模与仿真分析,验证了该平台的可行性与逻辑检验的有效性,为复杂混杂系统的建模与仿真提供了一条新途径.%This paper proposes a cross-platform framework for hybrid simulation based on the interaction between colored Petri net (CPN) and Matlab, using Petri net as a tool for simulation process control. Utilizing and extending the concept of substitution transition, with the function of fusion place and folding, this framework can accomplish complex logical modeling and establishment of imbedded continuous process for hybrid systems. Besides, the analytical function of CPN reduces difficulty in logical verification for hybrid systems with complex logical behaviors. Finally, by modeling, simulation and analysis of a simple instance, feasibility of the platform and validity of the logic are shown. It provides a new method of modeling and simulation for large and complicated hybrid systems.
Saito, Kenichiro; Koizumi, Eiko; Koizumi, Hideya
2012-09-01
In our previous study, we introduced a new hybrid approach to effectively approximate the total force on each ion during a trajectory calculation in mass spectrometry device simulations, and the algorithm worked successfully with SIMION. We took one step further and applied the method in massively parallel general-purpose computing with GPU (GPGPU) to test its performance in simulations with thousands to over a million ions. We took extra care to minimize the barrier synchronization and data transfer between the host (CPU) and the device (GPU) memory, and took full advantage of the latency hiding. Parallel codes were written in CUDA C++ and implemented to SIMION via the user-defined Lua program. In this study, we tested the parallel hybrid algorithm with a couple of basic models and analyzed the performance by comparing it to that of the original, fully-explicit method written in serial code. The Coulomb explosion simulation with 128,000 ions was completed in 309 s, over 700 times faster than the 63 h taken by the original explicit method in which we evaluated two-body Coulomb interactions explicitly on one ion with each of all the other ions. The simulation of 1,024,000 ions was completed in 2650 s. In another example, we applied the hybrid method on a simulation of ions in a simple quadrupole ion storage model with 100,000 ions, and it only took less than 10 d. Based on our estimate, the same simulation is expected to take 5-7 y by the explicit method in serial code.
International Nuclear Information System (INIS)
Recent 3D hybrid simulation of a plasma current-carrying column revealed two regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to appearance of large-scale axial perturbations and eventually to the bending of the plasma column. In the second regime, with five times larger Hall parameter, small-scale perturbations dominated and no bending of the plasma column was observed. Simulation results are compared to recent experimental data, including laser probing, x-ray spectroscopy and time-gated x-ray imaging during wire array implosions at NTF
International Nuclear Information System (INIS)
Highlights: • SA and GA based optimization for loading pattern has been carried out. • The LEOPARD and MCRAC codes for a typical PWR have been used. • At high annealing rates, the SA shows premature convergence. • Then novel crossover and mutation operators are proposed in this work. • Genetic Algorithms exhibit stagnation for small population sizes. - Abstract: A comparative study of the Simulated Annealing and Genetic Algorithms based optimization of loading pattern with power profile flattening as the goal, has been carried out using the LEOPARD and MCRAC neutronic codes, for a typical 300 MWe PWR. At high annealing rates, Simulated Annealing exhibited tendency towards premature convergence while at low annealing rates, it failed to converge to global minimum. The new ‘batch composition preserving’ Genetic Algorithms with novel crossover and mutation operators are proposed in this work which, consistent with the earlier findings (Yamamoto, 1997), for small population size, require comparable computational effort to Simulated Annealing with medium annealing rates. However, Genetic Algorithms exhibit stagnation for small population size. A hybrid Genetic Algorithms (Simulated Annealing) scheme is proposed that utilizes inner Simulated Annealing layer for further evolution of population at stagnation point. The hybrid scheme has been found to escape stagnation in bcp Genetic Algorithms and converge to the global minima with about 51% more computational effort for small population sizes
Directory of Open Access Journals (Sweden)
Adel Abdelnaby
2013-06-01
Full Text Available Reinforced concrete bridge piers are subjected to complex loading conditions under earthquake ground motions. Bridge geometric irregularities and asymmetries result in combined actions imposed on the piers as a combination of displacements and rotations in all six degrees of freedom at the pier-deck juncture. Existing analytical tools have proven their inadequacy in representing the actual behavior of piers under these combined actions, particularly in their inelastic range. The objective of this investigation is to develop a fundamental understanding of the effects of these combined actions on the performance of RC piers and the resulting system response. This paper describes a part of the CABER project that verifies the numerical hybrid simulation of the curved bridge. In this part two models were introduced, a whole model and a sub-structured hybrid model. The whole model was established using the Zeus-NL analysis platform, which is capable of performing inelastic nonlinear response history analysis of the whole curved bridge. The hybrid model was divided into three modules which comprised the deck, left and right piers, and the middle pier of the bridge. The three modules were modeled by Zeus-NL as a static analysis module interface. The simulation coordinator (SimCor software was utilized to communicate between these modules using a Pseudo-Dynamic time integration scheme. Results obtained from both models were compared and conclusions were drawn.
Martins, Luís Barreiros; Brito, J. M. O.; Rocha, A. M. D.; Martins, Jorge
2009-01-01
There are several possible configurations and technologies for the powertrains of electric and hybrid vehicles, but most of them will include advanced energy storage systems comprising batteries and ultra-capacitors. Thus, it will be of capital importance to evaluate the power and energy involved in braking and the fraction that has the possibility of being regenerated. The Series type Plug-in Hybrid Electric Vehicle (SPHEV), with electric traction and a small Internal Co...
International Nuclear Information System (INIS)
A hybrid atomization and breakup model was developed for the simulation of the fuel injection processes of multi-hole injectors for direct injection spark ignition (DISI) gasoline engines. In modeling primary breakup, a competition between the Huh–Gosman and Kelvin–Helmholtz (KH) breakup mechanisms was adopted. In addition to the two breakup mechanisms above, the Rayleigh–Taylor (RT) model was selected as a third competing mechanism in simulating secondary breakup. The hybrid model was implemented in the Star-CD software to simulate the effect of the background and injection pressures on the breakup processes of gasoline jets in a constant volume vessel, and on the mixture stratification of a wall-guided DISI gasoline engine with a newly-designed cavity in the piston. Results indicate that a higher background pressure intensifies the aerodynamically induced breakup along the tip of spray although it tends to reduce the overall breakup of spray. The spray atomization enhanced by increasing injection pressures is more pronounced at elevated background pressures. With the retard of fuel injection timing, the inhomogeneity of mixture increases in the DISI gasoline engine. Double injection with elevated second injection pressure can reduce the overall inhomogeneity of the mixture and effectively direct the mixture towards the spark plug. - Highlights: •A hybrid breakup model was developed to simulate injection process in a DISI engine. •Higher fuel injection pressure enhances breakup and evaporation at the spray tip. •Single fuel injection leads to a narrow spark timing range. •Two-stage fuel injection improves the homogeneity of the mixture. •The second injection with higher fuel pressure decreases over-rich mixture
Research on Hybrid Vehicle Drivetrain
Xie, Zhongzhi
Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.
Modeling and Simulation of Parallel Plug-in Hybrid Electric Bus%插电式并联混合动力客车建模及仿真
Institute of Scientific and Technical Information of China (English)
范彪; 袁景敏; 李建鹏; 袁月会; 舒红
2011-01-01
基于Advisor软件中并联混合动力客车仿真模型，建立插电式并联双离合器混合动力客车仿真模型，并对发动机、电机、传动系和电池等进行参数匹配；分析电力辅助控制策略，利用正交设计对其控制参数进行优选研究。仿真结果表明，动力系统主要参数及整车控制策略设计合理，满足整车性能要求。%Based on the simulation model of a parallel plug-in hybrid electric bus in the Advisor software, a simulation model for a parallel plug-in hybrid electric bus which has two clutches is established. Main parameters of the engine, motor, transmission and batteries are matched. The electric-assistant control strategy is analyzed and its control parameters are optimized parameters of powertrain and the demands. by orthogonal design method. The simulation results show that the design PHEV＇s control strategy are reasonable and satisfy the vehicle＇s performance