WorldWideScience

Sample records for atomically flat single-crystalline

  1. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Geisler, P.; Bruening, C.; Kern, J.; Prangsma, J.C.; Wu, X.; Feichtner, Thorsten; Ziegler, J.; Weinmann, P.; Kamp, M.; Forchel, A.; Hecht, B. [Wilhelm-Conrad-Roentgen-Center for Complex Material Systems, University of Wuerzburg (Germany); Biagioni, P. [CNISM, Dipartimento di Fisica, Politecnico di Milano (Italy)

    2011-07-01

    Deep subwavelength integration of high-definition plasmonic nano-structures is of key importance for the development of future optical nanocircuitry. So far the experimental realization of proposed extended plasmonic networks remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large but thin chemically grown single-crystalline gold flakes. After immobilization on any arbitrary surface, they serve as an ideal basis for focused-ion beam milling. We present high-definition ultra-smooth gold nanostructures with reproducible nanosized features over micrometer lengthscales. By comparing multi- and single-crystalline optical antennas we prove that the latter have superior optical properties which are in good agreement with numerical simulations.

  2. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry

    CERN Document Server

    Huang, Jer-Shing; Geisler, Peter; Brüning, Christoph; Kern, Johannes; Prangsma, Jord C; Weinmann, Pia; Kamp, Martin; Forchel, Alfred; Biagioni, Paolo; Sennhauser, Urs; Hecht, Bert

    2010-01-01

    Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance for the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. So far the experimental realization of proposed extended plasmonic networks consisting of multiple functional elements remains challenging, mainly due to the multi-crystallinity of commonly used thermally evaporated gold layers. Resulting structural imperfections in individual circuit elements will drastically reduce the yield of functional integrated nanocircuits. Here we demonstrate the use of very large (>100 micron^2) but thin (<80 nm) chemically grown single-crystalline gold flakes, which, after immobilization, serve as an ideal basis for focused-ion beam milling and other top-down nanofabrication techniques on any desired substrate. Using this methodology we obtain high-definition ultrasmooth gold nanostructures with superior optical properties and reproducible nano-sized fe...

  3. Wet chemical deposition of single crystalline epitaxial manganite thin films with atomically flat surface

    International Nuclear Information System (INIS)

    We report the wet chemical deposition of single crystalline epitaxial thin films of the colossal magneto-resistive manganite La0.67Sr0.33MnO3 on the lattice-matched (001)-face of a La0.3Sr0.7Al0.65Ta0.35O3 substrate. Topographic images of these films taken with a scanning tunneling microscope show atomically flat terraces separated by steps of monatomic height. The resistivity of these films shows an insulator-metal transition at 310 K, nearly coincident with the Curie temperature of 340 K, found from magnetization measurements. The films show a magnetoresistance of 7% at 300 K and 1.2 T. Their saturation magnetization value at low temperatures is consistent with that of the bulk. - Highlights: ► Wet chemical deposition of La0.67Sr0.33MnO3 (LSMO) on a lattice-matched substrate. ► Single crystalline epitaxial LSMO films obtained. ► Flat terraces separated by monatomic steps observed by scanning tunneling microscope

  4. Single Crystalline Film of Hexagonal Boron Nitride Atomic Monolayer by Controlling Nucleation Seeds and Domains

    OpenAIRE

    Qinke Wu; Ji-Hoon Park; Sangwoo Park; Seong Jun Jung; Hwansoo Suh; Noejung Park; Winadda Wongwiriyapan; Sungjoo Lee; Young Hee Lee; Young Jae Song

    2015-01-01

    A monolayer hexagonal boron nitride (h-BN) film with controllable domain morphology and domain size (varying from less than 1 μm to more than 100 μm) with uniform crystalline orientation was successfully synthesized by chemical vapor deposition (CVD). The key for this extremely large single crystalline domain size of a h-BN monolayer is a decrease in the density of nucleation seeds by increasing the hydrogen gas flow during the h-BN growth. Moreover, the well-defined shape of h-BN flakes can ...

  5. Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation.

    Science.gov (United States)

    Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin

    2016-06-01

    A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa. PMID:27026281

  6. Atomically flat superconducting nanofilms: multiband properties and mean-field theory

    Science.gov (United States)

    Shanenko, A. A.; Aguiar, J. Albino; Vagov, A.; Croitoru, M. D.; Milošević, M. V.

    2015-05-01

    Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.

  7. Controlled synthesis of single-crystalline graphene

    Directory of Open Access Journals (Sweden)

    Wang Xueshen

    2014-02-01

    Full Text Available This paper reports the controlled synthesis of single-crystalline graphene on the back side of copper foil using CH4 as the precursor. The influence of growth time and the pressure ratio of CH4/H2 on the structure of graphene are examined. An optimized polymer-assisted method is used to transfer the synthesized graphene onto a SiO2/Si substrate. Scanning electron microscopy and Raman spectroscopy are used to characterize the graphene.

  8. Single crystalline boron carbide nanobelts:synthesis and characterization

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    This paper reports that the large-scale single crystalline boron carbide nanobelts have been fabricated through a simple carbothermal reduction method with B/B203/C/Fe powder as precursors at ll00~C.Transmission electron microscopy and selected area electron diffraction characterizations show that the boron carbide nanobelt has a B4C rhomb-centred hexagonal structure with good crystallization.Electron energy loss spectroscopy analysis indicates that the nanobelt contains only B and C,and the atomic ratio of B to C is close to 4:1.High resolution transmission electron microscopy results show that the preferential growth direction of the nanobelt is [101].A possible growth mechanism is also discussed.

  9. Method for forming single phase, single crystalline 2122 BCSCO superconductor thin films by liquid phase epitaxy

    Science.gov (United States)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal (Inventor); Solayappan, Narayanan (Inventor)

    1994-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83 K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  10. A single crystalline InP nanowire photodetector

    Science.gov (United States)

    Yan, Xin; Li, Bang; Wu, Yao; Zhang, Xia; Ren, Xiaomin

    2016-08-01

    Single crystalline nanowires are critical for achieving high-responsivity, high-speed, and low-noise nanoscale photodetectors. Here, we report a metal-semiconductor-metal photodetector based on a single crystalline InP nanowire. The nanowires are grown by a self-catalyzed method and exhibit stacking-fault-free zinc blende crystal structure. The nanowire exhibits a typical n-type semiconductor property and shows a low room temperature dark current of several hundred pA at moderate biases. A photoresponsivity of 6.8 A/W is obtained at a laser power density of 0.2 mW/cm2. This work demonstrates that single crystalline InP nanowires are good candidates for future optoelectronic device applications.

  11. Cavity polaritons in an organic single-crystalline rubrene microcavity

    Science.gov (United States)

    Tsuchimoto, Yuta; Nagai, Hikaru; Amano, Masamitsu; Bando, Kazuki; Kondo, Hisao

    2014-06-01

    We fabricated a single-crystalline rubrene microcavity using a simple solution technique and observed cavity polaritons in the microcavity at room temperature (RT). Large Rabi splitting energies were obtained from dispersion of the cavity polaritons. Furthermore, photoluminescence from the cavity polaritons was observed at RT. The findings will be of importance for the application of cavity polaritons.

  12. Propagation of plasmons in designed single crystalline silver nanostructures

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Lu, Ying-Wei; Huck, Alexander;

    2012-01-01

    We demonstrate propagation of plasmons in single crystalline silver nanostructures fabricated using a combination of a bottom-up and a top-down approach. Silver nanoplates of thickness around 65 nm and a surface area of about 100 μm2 are made using a wet chemical method. Silver nanotips and nanow...

  13. The Atomic Views of Flat Supply Chains in China

    Directory of Open Access Journals (Sweden)

    Sekhar Chattopadhyay

    2010-09-01

    Full Text Available China's domestic supply chain networks are getting flat and unbalanced despite its spectacular growth and rise to the enviable position in the global supply chain arena in recent times. The aftermath of continued investment explosion, especially in the coastal areas of the mainland, calls for an interwoven relationship of Chinese companies with the rest of the global supply chains. However, with new information and communication technologies, the real-time problems arising from this flattened supply chains are much more complex, multifaceted and multidimensional. China needs to re-think and re-focus on better alignment to the western values and cultures while managing its global business activities. This paper discusses four recently developed enterprise models in the light of several case studies conducted recently in Australia, China and India to characterise these new flat supply chains: People-Centric, Molecular Organization, Globally Dispersed and Disaggregated Value Chain. These, apparently different but inherently similar models have a vibrant architecture and system behaviour in their core and propose an alternative approach to address challenges of unbalanced domestic flat supply chains in China and helps the Chinese manufacturers to explore an approach to embrace Western values and cultures by enlarging their sphere of influence.

  14. Electric dipolar interaction assisted growth of single crystalline organic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin-ming, Cai [Material Science and Technology Division, Oak Ridge National Laboratory; Yu-Yang, Zhang [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Hao, Hu [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Li-Hong, Bao [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Li-Da, Pan [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Wei, Tang [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Guo, Li [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Shi-Xuan, Du [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Jian, Shen [Material Science and Technology Division, Oak Ridge National Laboratory; Hong-Jun, Gao [Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

    2010-01-01

    We report on a forest-like-to-desert-like pattern evolution in the growth of an organic thin film observed by using an atomic force microscope. We use a modified diffusion limited aggregation model to simulate the growth process and are able to reproduce the experimental patterns. The energy of electric dipole interaction is calculated and determined to be the driving force for the pattern formation and evolution. Based on these results, single crystalline films are obtained by enhancing the electric dipole interaction while limiting effects of other growth parameters.

  15. Single-crystalline nanoporous Nb2O5 nanotubes

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2011-01-01

    Full Text Available Abstract Single-crystalline nanoporous Nb2O5 nanotubes were fabricated by a two-step solution route, the growth of uniform single-crystalline Nb2O5 nanorods and the following ion-assisted selective dissolution along the [001] direction. Nb2O5 tubular structure was created by preferentially etching (001 crystallographic planes, which has a nearly homogeneous diameter and length. Dense nanopores with the diameters of several nanometers were created on the shell of Nb2O5 tubular structures, which can also retain the crystallographic orientation of Nb2O5 precursor nanorods. The present chemical etching strategy is versatile and can be extended to different-sized nanorod precursors. Furthermore, these as-obtained nanorod precursors and nanotube products can also be used as template for the fabrication of 1 D nanostructured niobates, such as LiNbO3, NaNbO3, and KNbO3.

  16. Single Crystalline CVD Diamond Based Devices for Power Electronics Applications

    OpenAIRE

    Adrian, Ehrnebo

    2014-01-01

    Chemical vapor deposited single-crystalline diamond has rare material properties such as thermal conductivity five times as high as copper, a wide band gap, a high breakdown field and high carrier mobilities. This makes it a very interesting material for high power, high frequency and high temperature applications. In this thesis work, metal oxide semiconductor (MOS) capacitors of diamond substrate were fabricated and analyzed. The MOS capacitor is a building block of the metal oxide semicond...

  17. Freestanding single-crystalline magnetic structures fabricated by ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenherr, P.; Bischof, A.; Boehm, B.; Eib, P.; Grimm, S.; Gross, L.; Allenspach, R., E-mail: ral@zurich.ibm.com [IBM Research – Zurich, 8803 Rüschlikon (Switzerland); Alvarado, S. F. [Department of Materials, ETH Zürich, 8093 Zürich (Switzerland)

    2015-01-19

    Starting from an ultrathin Fe film grown epitaxially on top of a GaAs(001) substrate, we show that freestanding structures can be created by ion-beam treatment. These structures are single-crystalline blisters and only a few nanometers thick. Anisotropic stress in the rim of a blister induces magnetic domain states magnetized in the direction normal to the blister edge. Experimental evidence is provided that the lateral size can be confined by starting from a nanostructured template.

  18. Single crystalline ultrathin gold nanowires: Promising nanoscale interconnects

    Directory of Open Access Journals (Sweden)

    Ahin Roy

    2013-03-01

    Full Text Available Using first principles based density functional calculation we study the mechanical, electronic and transport properties of single crystalline gold nanowires. While nanowires with the diameter less than 2 nm retain hexagonal cross-section, the larger diameter wires show a structural smoothening leading to circular cross-section. These structural changes significantly affect the mechanical properties of the wires, however, strength remains comparable to the bulk. The transport calculations reveal that the conductivity of these wires are in good agreement with experiments. The combination of good mechanical, electronic and transport properties make these wires promising as interconnects for nano devices.

  19. Synthesis and characterization of single-crystalline alumina nanowires

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing; XU Xiang-yu; ZHANG Hong-zhou; CHEN Yao-feng; XU Jun; YU Da-peng

    2005-01-01

    Alumina nanowires were synthesized on large-area silicon substrate via simple thermal evaporation method of heating a mixture of aluminum and alumina powders without using any catalyst or template. The phase structure and the surface morphology of the as-grown sample were analyzed by X-ray diffractometry(XRD) and scanning electron microscopy (SEM), respectively. The chemical composition and the microstructure of the as-grown alumina nanowires were characterized using transmission electron microscope(TEM). The nanowires are usually straight and the single crystalline has average diameter of 40 nm and length of 3 - 5 μm. The growth direction is along the [002] direction. Well aligned alumina nanowire arrays were observed on the surface of many large particles. The catalyst-free growth of the alumina nanowires was explained under the framework of a vapor-solid(VS)growth mechanism. This as-synthesized alumina nanowires could find potential applications in the fabrication of nanodevices.

  20. Electron microscope observation of single - crystalline beryllium thin foils

    International Nuclear Information System (INIS)

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3. (authors)

  1. Periodic magnetic domains in single-crystalline cobalt filament arrays

    Science.gov (United States)

    Chen, Fei; Wang, Fan; Jia, Fei; Li, Jingning; Liu, Kai; Huang, Sunxiang; Luan, Zhongzhi; Wu, Di; Chen, Yanbin; Zhu, Jianmin; Peng, Ru-Wen; Wang, Mu

    2016-02-01

    Magnetic structures with controlled domain wall pattern may be applied as potential building blocks for three-dimensional magnetic memory and logic devices. Using a unique electrochemical self-assembly method, we achieve regular single-crystalline cobalt filament arrays with specific geometric profile and crystallographic orientation, and the magnetic domain configuration can be conveniently tailored. We report the transition of periodic antiparallel magnetic domains to compressed vortex magnetic domains depending on the ratio of height to width of the wires. A "phase diagram" is obtained to describe the dependence of the type of magnetic domain and the geometrical profiles of the wires. Magnetoresistance of the filaments demonstrates that the contribution of a series of 180∘ domain walls is over 0.15 % of the zero-field resistance ρ (H =0 ) . These self-assembled magnetic nanofilaments, with controlled periodic domain patterns, offer an interesting platform to explore domain-wall-based memory and logic devices.

  2. Cold welding of copper nanowires with single-crystalline and twinned structures: A comparison study

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Wen, Yu-Hua

    2016-09-01

    In this article, molecular simulations were adopted to explore the cold welding processes of copper nanowires with both single-crystalline and fivefold twinned structures. It was verified that the twinned nanowires exhibited enhanced strength but lowered elastic limit and ductility. Both nanowires could be successfully welded through rather small loadings, although their stress-strain responses toward compression were different. Meanwhile, more stress was accumulated in the twinned nanowire due to repulsive force of the twin boundaries against the nucleation and motions of dislocations. Moreover, by characterizing the structure evolutions in the welding process, it can be ascertained that perfect atomic order was finally built at the weld region in both nanowires. This comparison study will be of great importance to future mechanical processing of metallic nanowires.

  3. Hydrogen Gas Sensors Fabricated on Atomically Flat 4H-SiC Webbed Cantilevers

    Science.gov (United States)

    Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.; Evans, Laura J.; Chen, Liang-Yu; Hunter, Gary W.; Androjna, Drago

    2007-01-01

    This paper reports on initial results from the first device tested of a "second generation" Pt-SiC Schottky diode hydrogen gas sensor that: 1) resides on the top of atomically flat 4H-SiC webbed cantilevers, 2) has integrated heater resistor, and 3) is bonded and packaged. With proper selection of heater resistor and sensor diode biases, rapid detection of H2 down to concentrations of 20 ppm was achieved. A stable sensor current gain of 125 +/- 11 standard deviation was demonstrated during 250 hours of cyclic test exposures to 0.5% H2 and N2/air.

  4. Flat metallic surface gratings with sub-10 nm gaps controlled by atomic-layer deposition

    Science.gov (United States)

    Chen, Borui; Ji, Dengxin; Cheney, Alec; Zhang, Nan; Song, Haomin; Zeng, Xie; Thomay, Tim; Gan, Qiaoqiang; Cartwright, Alexander

    2016-09-01

    Atomic layer lithography is a recently reported new technology to fabricate deep-subwavelength features down to 1–2 nm, based on combinations of electron beam lithography (EBL) and atomic layer deposition (ALD). However, the patterning area is relatively small as limited by EBL, and the fabrication yield is not very high due to technical challenges. Here we report an improved procedure to fabricate flat metallic surfaces with sub-10 nm features based on ALD processes. To demonstrate the scalability of the new manufacturing method, we combine the ALD process with large area optical interference patterning, which is particularly promising for the development of practical applications for nanoelectronics and nanophotonics with extremely strong confinement of electromagnetic fields.

  5. Control growth of single crystalline ZnO nanorod arrays and nanoflowers with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jiuju [College of Geography and Environmental Science, Zhejiang Normal University (China); Wang Zhenzhen [School of Chemistry and Chemical Engineering, Henan Normal University (China); Li Yongfang [College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology (China); Chen Jianrong; Wang Aijun, E-mail: ajwang@zjnu.cn [College of Geography and Environmental Science, Zhejiang Normal University (China)

    2013-04-15

    Single crystalline vertical nanorod arrays and nanoflowers of ZnO have been grown in situ on cheap zinc foils under hydrothermal conditions, by means of hexamethylenetetramine and ethanolamine, respectively. Their morphologies and crystal structures are characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The nanorods and flowers of ZnO grew along the {l_brace} 10 1-bar 1{r_brace} and {l_brace} 0001{r_brace} planes, respectively. Both types of ZnO display high photocatalytic ability toward the degradation of methylene orange under UV irradiation. The ZnO nanorods show better performance than that of the ZnO nanoflowers, and the {l_brace} 10 1-bar 1{r_brace} facets of the ZnO nanorods have higher photoactivity than that of the {l_brace} 000 1-bar {r_brace} or {l_brace} 10 1-bar 0{r_brace} crystal planes. This is because the weaker coordinated O atoms on the surface are more likely to be saturated by H atoms in aqueous solution, thereby releasing more free OH radicals.Graphical AbstractA facile method was developed for selective control synthesis of ZnO nanoflowers and nanorod arrays on Zinc foil, with the assistance of ethanolamine and the hexamethylenetetramine, respectively. The illustration shows the time evolution of the two ZnO structures.

  6. Equilibrium segregation of sulfur to the free surface of single crystalline titanium

    International Nuclear Information System (INIS)

    Equilibrium segregation of sulfur to the free surface of single crystalline titanium from 560 deg. C to 800 deg. C was investigated using Auger electron spectroscopy (AES) measurements. To describe the concentration evolution in the sulfur overlayer, Fick's first law was modified by adding a local function df(x)/dx, to the concentration gradient to drive the segregation starting from an initially homogeneous distribution. The diffusion equation thus derived was solved for the case f(x)=asexp (-x/ds). It was found that the solution leads to an AES intensity evolution for segregants, IS(t)=IS∞ (1-eα erfc((α)1/2)), α=Dt/ds2, which fits the experimental results extremely well. An exponentially decaying distribution of sulfur beneath the titanium surface at equilibrium was revealed by sputter depth profiling, which in turn justifies our modification to Fick's first law. Without referring to the detailed kinetics, an activation energy Ea =718 meV/atom was determined by comparing the sulfur concentration evolution at different temperatures. (author)

  7. Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation

    Science.gov (United States)

    Yan, Kai; Wu, Di; Peng, Hailin; Jin, Li; Fu, Qiang; Bao, Xinhe; Liu, Zhongfan

    2012-12-01

    Device applications of graphene such as ultrafast transistors and photodetectors benefit from the combination of both high-quality p- and n-doped components prepared in a large-scale manner with spatial control and seamless connection. Here we develop a well-controlled chemical vapour deposition process for direct growth of mosaic graphene. Mosaic graphene is produced in large-area monolayers with spatially modulated, stable and uniform doping, and shows considerably high room temperature carrier mobility of ~5,000 cm2 V-1 s-1 in intrinsic portion and ~2,500 cm2 V-1 s-1 in nitrogen-doped portion. The unchanged crystalline registry during modulation doping indicates the single-crystalline nature of p-n junctions. Efficient hot carrier-assisted photocurrent was generated by laser excitation at the junction under ambient conditions. This study provides a facile avenue for large-scale synthesis of single-crystalline graphene p-n junctions, allowing for batch fabrication and integration of high-efficiency optoelectronic and electronic devices within the atomically thin film.

  8. Advanced fabrication of single-crystalline silver nanopillar on SiO{sub 2} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Tomohiro, E-mail: tomohiro-mori@wakayama-kg.jp, E-mail: kenzo@eng.kagawa-u.ac.jp [Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, Hayashicho 2217-20, Takamatsu, Kagawa 761-0396 (Japan); Industrial Technology Center of Wakayama Prefecture, Ogura 60, Wakayama 649-6261 (Japan); Tanaka, Yasuhiro; Suzaki, Yoshifumi; Yamaguchi, Kenzo, E-mail: tomohiro-mori@wakayama-kg.jp, E-mail: kenzo@eng.kagawa-u.ac.jp [Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, Hayashicho 2217-20, Takamatsu, Kagawa 761-0396 (Japan)

    2016-01-25

    Nanoscale crystallographic textures have received very little attention in research on surface plasmons using metallic nanostructures. A single-crystalline metallic nanostructure with a controlled crystallographic texture is expected to reduce optical losses. We elucidated the grain growth mechanism in silver thin films deposited on a highly transparent SiO{sub 2} substrate by electron backscatter diffraction methods with nanoscale resolution. At higher substrate temperatures, the grain growth was facilitated but the preferred orientation was not achieved. Moreover, we fabricated a single-crystalline silver nanopillar in a (111)-oriented large growing grain, which was controlled by varying the substrate temperature during film deposition by focused ion-beam milling. Furthermore, the light intensity of the scattering spectrum was measured for a single-crystalline silver nanopillar (undersurface diameter: 200 nm) for which surface plasmon resonance was observed. The single-crystalline silver nanopillar exhibits a stronger and sharper spectrum than the polycrystalline silver nanopillar. These results can be applied to the direct fabrication of a single-crystalline silver nanopillar using only physical processing.

  9. Lattice-Matched Semiconductor Layers on Single Crystalline Sapphire Substrate

    Science.gov (United States)

    Choi, Sang; King, Glen; Park, Yeonjoon

    2009-01-01

    SiGe is an important semiconductor alloy for high-speed field effect transistors (FETs), high-temperature thermoelectric devices, photovoltaic solar cells, and photon detectors. The growth of SiGe layer is difficult because SiGe alloys have different lattice constants from those of the common Si wafers, which leads to a high density of defects, including dislocations, micro-twins, cracks, and delaminations. This innovation utilizes newly developed rhombohedral epitaxy of cubic semiconductors on trigonal substrates in order to solve the lattice mismatch problem of SiGe by using trigonal single crystals like sapphire (Al2O3) as substrate to give a unique growth-orientation to the SiGe layer, which is automatically controlled at the interface upon sapphire (0001). This technology is different from previous silicon on insulator (SOI) or SGOI (SiGe on insulator) technologies that use amorphous SiO2 as the growth plane. A cubic semiconductor crystal is a special case of a rhombohedron with the inter-planar angle, alpha = 90 deg. With a mathematical transformation, all rhombohedrons can be described by trigonal crystal lattice structures. Therefore, all cubic lattice constants and crystal planes (hkl) s can be transformed into those of trigonal crystal parameters. These unique alignments enable a new opportunity of perfect lattice matching conditions, which can eliminate misfit dislocations. Previously, these atomic alignments were thought to be impossible or very difficult. With the invention of a new x-ray diffraction measurement method here, growth of cubic semiconductors on trigonal crystals became possible. This epitaxy and lattice-matching condition can be applied not only to SiGe (111)/sapphire (0001) substrate relations, but also to other crystal structures and other materials, including similar crystal structures which have pointgroup rotational symmetries by 120 because the cubic (111) direction has 120 rotational symmetry. The use of slightly miscut (less than

  10. {116} faceted anatase single-crystalline nanosheet arrays: facile synthesis and enhanced electrochemical performances

    Science.gov (United States)

    Li, Feng; Li, Xiaoning; Peng, Ranran; Zhai, Xiaofang; Yang, Shangfeng; Fu, Zhengping; Lu, Yalin

    2014-10-01

    Single-crystalline anatase TiO2 nanosheet arrays were synthesized on a transparent conductive fluorine-doped tin oxide (FTO) substrate with a unique one-step alcohol-thermal process. The nanosheets were nearly vertically grown on the FTO substrate along their zone, and they were dominated by {116} facets. The as-fabricated {116} faceted single-crystalline anatase nanosheet arrays exhibit a much higher reduction capacity and a much better electrochemical reversibility than both {001} faceted anatase single-crystalline nanosheet arrays and P25 film. The results indicate a promising application potential for the new material in the photoelectrochemical field.Single-crystalline anatase TiO2 nanosheet arrays were synthesized on a transparent conductive fluorine-doped tin oxide (FTO) substrate with a unique one-step alcohol-thermal process. The nanosheets were nearly vertically grown on the FTO substrate along their zone, and they were dominated by {116} facets. The as-fabricated {116} faceted single-crystalline anatase nanosheet arrays exhibit a much higher reduction capacity and a much better electrochemical reversibility than both {001} faceted anatase single-crystalline nanosheet arrays and P25 film. The results indicate a promising application potential for the new material in the photoelectrochemical field. Electronic supplementary information (ESI) available: Photo of the large area STNA-116, FESEM images of STNA-001 and STNA-116 with a series of growth time, the enlarged XRD pattern, the simulated SAED pattern, the reflectance spectra, the cyclic voltammograms of P25 on the FTO substrate. See DOI: 10.1039/c4nr04248d

  11. Wurtzite-type faceted single-crystalline GaN nanotubes

    Science.gov (United States)

    Liu, Baodan; Bando, Yoshio; Tang, Chengchun; Shen, Guozhen; Golberg, Dmitri; Xu, Fangfang

    2006-02-01

    We report on the direct fabrication of single-crystalline wurtzite-type hexagonal GaN nanotubes via a newly designed, controllable, and reproducible chemical thermal-evaporation process. The nanotubes are single crystalline, have one end closed, an average outer diameter of ˜300nm, an inner diameter of ˜100nm, and a wall thickness of ˜100nm. The structure and morphology of the tubes are characterized using a scanning electron microscope and a transmission electron microscope. The cathodoluminescence of individual nanotubes is also investigated. The growth mechanism, formation kinetics, and crystallography of GaN nanotubes are finally discussed.

  12. Fabrication of Single Crystalline silicon on Glass by Smart-Cut Technique

    Institute of Scientific and Technical Information of China (English)

    SONG Hua-Qing; SHI Jing; ZHANG Miao; LIN Qing; LIN Cheng-Lu

    2003-01-01

    Single crystalline silicon films are transferred on to a glass substrate by the smart-cut technique, which is based on fT*~ ions implantation, anodic bonding and layer transfer. Structures of the resulting thin film silicon on glass (SOG) are characterized by transmission-electron microscopy, scanning electron microscopy and Raman spectroscopy. The results show that SOG substrates fabricated by the smart-cut have advantages of steep top Si/glass interface and good monocrystalline Si quality. The Hall-effect measurement indicates that the single crystalline SOG substrates have a better electrical property compared with polycrystalline silicon SOG substrates.

  13. Initial Growth of Single-Crystalline Nanowires: From 3D Nucleation to 2D Growth

    Directory of Open Access Journals (Sweden)

    Sun GZ

    2010-01-01

    Full Text Available Abstract The initial growth stage of the single-crystalline Sb and Co nanowires with preferential orientation was studied, which were synthesized in porous anodic alumina membranes by the pulsed electrodeposition technique. It was revealed that the initial growth of the nanowires is a three-dimensional nucleation process, and then gradually transforms to two-dimensional growth via progressive nucleation mechanism, which resulting in a structure transition from polycrystalline to single crystalline. The competition among the nuclei inside the nanoscaled-confined channel and the growth kinetics is responsible for the structure transition of the initial grown nanowires.

  14. Local Weak Ferromagnetism in Single-Crystalline Ferroelectric BiFeO3

    DEFF Research Database (Denmark)

    Ramazanoglu, M.; Laver, Mark; Ratcliff, W.;

    2011-01-01

    Polarized small-angle neutron scattering studies of single-crystalline multiferroic BiFeO3 reveal a long-wavelength spin density wave generated by ∼1° spin canting of the spins out of the rotation plane of the antiferromagnetic cycloidal order. This signifies weak ferromagnetism within mesoscopic...

  15. Controllable growth of ultrathin BiFeO3 from finger-like nanostripes to atomically flat films

    Science.gov (United States)

    Feng, Yu; Wang, Can; Tian, Shilu; Zhou, Yong; Ge, Chen; Guo, Haizhong; He, Meng; Jin, Kuijuan; Yang, Guozhen

    2016-09-01

    BiFeO3 (BFO) ultrathin films with nominal thicknesses from 2 to 12 nm were grown with a SrRuO3 (SRO) buffer layer on TiO2-terminated (001) SrTiO3 (STO) substrates using pulsed laser deposition. The surface morphologies and domain configurations of the thin films were investigated using atomic force microscopy and piezoelectric force microscopy. Periodical one-dimensional finger-like nanostripes of BFO on the SRO covered STO substrates were observed. With increasing thickness, the BFO ultrathin films develop from the finger-like nanostripes to an atomically flat surface. The formation of the finger-like nanostructures of BFO is related to the atomic step or terrace structure of the substrate. The BFO nanostripes and the atomically flat thin films both show good ferroelectricity. The as-grown domain orientations of the BFO ultrathin films are ascribed to the chemical terminations at the surface of the SRO layer. These results indicate that the surface morphologies and the domain configurations of BFO ultrathin films can be artificially designed by using substrates with optimized terrace structures and chemical termination, and these films are potentially useful in multifunctional nanoelectronic devices.

  16. Investigation of the nonlinear refractive index of single-crystalline thin gold films and plasmonic nanostructures

    Science.gov (United States)

    Goetz, Sebastian; Razinskas, Gary; Krauss, Enno; Dreher, Christian; Wurdack, Matthias; Geisler, Peter; Pawłowska, Monika; Hecht, Bert; Brixner, Tobias

    2016-04-01

    The nonlinear refractive index of plasmonic materials may be used to obtain nonlinear functionality, e.g., power-dependent switching. Here, we investigate the nonlinear refractive index of single-crystalline gold in thin layers and nanostructures on dielectric substrates. In a first step, we implement a z-scan setup to investigate ~100-µm-sized thin-film samples. We determine the nonlinear refractive index of fused silica, n 2(SiO2) = 2.9 × 10-20 m2/W, in agreement with literature values. Subsequent z-scan measurements of single-crystalline gold films reveal a damage threshold of 0.22 TW/cm2 and approximate upper limits of the real and imaginary parts of the nonlinear refractive index, | n 2'(Au)| film). An upper limit for the nonlinear power-dependent phase change between two propagating near-field modes is determined to Δ φ < 0.07 rad.

  17. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.

    Science.gov (United States)

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-04-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications.

  18. Single crystalline graphene synthesized by thermal annealing of humic acid over copper foils

    Science.gov (United States)

    Beall, Gary W.; Duraia, El-Shazly M.; Yu, Q.; Liu, Z.

    2014-02-01

    Production of graphene by thermal annealing on copper foil substrates has been studied with different sources of carbon. The three carbon sources include humic acid derived from leonardite, graphenol, and activated charcoal. Hexagonal single crystalline graphene has been synthesized over the copper foil substrates by thermal annealing of humic acid, derived from leonardite, in argon and hydrogen atmosphere (Ar/H2=20). The annealing temperature was varied between 1050 °C and 1100 °C at atmospheric pressure. Samples have been investigated using scanning electron microscope (SEM) and Raman spectroscopy. At lower temperatures the thermal annealing of the three carbon sources used in this study produces pristine graphene nanosheets which cover almost the whole substrate. However when the annealing temperature has been increased up to 1100 °C, hexagonal single crystalline graphene have been observed only in the case of the humic acid. Raman analysis showed the existence of 2D band around 2690 cm-1.

  19. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester.

    Science.gov (United States)

    Hwang, Geon-Tae; Park, Hyewon; Lee, Jeong-Ho; Oh, SeKwon; Park, Kwi-Il; Byun, Myunghwan; Park, Hyelim; Ahn, Gun; Jeong, Chang Kyu; No, Kwangsoo; Kwon, HyukSang; Lee, Sang-Goo; Joung, Boyoung; Lee, Keon Jae

    2014-07-23

    A flexible single-crystalline PMN-PT piezoelectric energy harvester is demonstrated to achieve a self-powered artificial cardiac pacemaker. The energy-harvesting device generates a short-circuit current of 0.223 mA and an open-circuit voltage of 8.2 V, which are enough not only to meet the standard for charging commercial batteries but also for stimulating the heart without an external power source.

  20. Experimental measurement of Young’s modulus from a single crystalline cementite

    International Nuclear Information System (INIS)

    Pure Fe–C pearlite was heat-treated and selectively etched to extract [0 0 1]- and [1 0 0]-oriented single crystalline cementite sheets. The elastic properties of the shaped cementite were measured in a simple, in situ bending test system set up inside the scanning electron microscope using a micronewton-range force sensor. The Young’s modulus experimentally measured from a single crystal sheet was lower than the value obtained from theoretical calculation

  1. Aerosol-Assisted Synthesis of Monodisperse Single-Crystalline α-Cristobalite Nanospheres

    OpenAIRE

    Jiang, Xingmao; Bao, Lihong; Cheng, Yung-Sung; Dunphy, Darren R.; Li, Xiaodong; Brinker, C. Jeffrey

    2011-01-01

    Monodisperse single-crystalline α-cristobalite nanospheres have been synthesized by hydrocarbon-pyrolysis-induced carbon deposition on amorphous silica aerosol nanoparticles, devitrification of the coated silica at high temperature, and subsequent carbon removal by oxidation. The nanosphere size can be well controlled by tuning the size of the colloidal silica precursor. Uniform, high-purity nanocrystalline α-cristobalite is important for catalysis, nanocomposites, advanced polishing, and und...

  2. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester.

    Science.gov (United States)

    Hwang, Geon-Tae; Park, Hyewon; Lee, Jeong-Ho; Oh, SeKwon; Park, Kwi-Il; Byun, Myunghwan; Park, Hyelim; Ahn, Gun; Jeong, Chang Kyu; No, Kwangsoo; Kwon, HyukSang; Lee, Sang-Goo; Joung, Boyoung; Lee, Keon Jae

    2014-07-23

    A flexible single-crystalline PMN-PT piezoelectric energy harvester is demonstrated to achieve a self-powered artificial cardiac pacemaker. The energy-harvesting device generates a short-circuit current of 0.223 mA and an open-circuit voltage of 8.2 V, which are enough not only to meet the standard for charging commercial batteries but also for stimulating the heart without an external power source. PMID:24740465

  3. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

    KAUST Repository

    Diao, Ying

    2013-06-02

    Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach - termed fluid-enhanced crystal engineering (FLUENCE) - that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s -1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. © 2013 Macmillan Publishers Limited. All rights reserved.

  4. Atomically flat interface between a single-terminated LaAlO3 substrate and SrTiO3 thin film is insulating

    Directory of Open Access Journals (Sweden)

    Z. Q. Liu

    2012-03-01

    Full Text Available The surface termination of (100-oriented LaAlO3 (LAO single crystals was examined by atomic force microscopy and optimized to produce a single-terminated atomically flat surface by annealing. Then the atomically flat STO film was achieved on a single-terminated LAO substrate, which is expected to be similar to the n-type interface of two-dimensional electron gas (2DEG, i.e., (LaO-(TiO2. Particularly, that can serve as a mirror structure for the typical 2DEG heterostructure to further clarify the origin of 2DEG. This newly developed interface was determined to be highly insulating. Additionally, this study demonstrates an approach to achieve atomically flat film growth based on LAO substrates.

  5. FY 1997 report on the study on the formation condition of hetero-structure of single-crystalline semiconductor thin films; 1997 nendo chosa hokokusho (tankessho no handotai usumaku hetero kozo no keisei joken ni kansuru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Since ion implantation causes material degradation by formation of crystalline defects, and hydrogen embrittlement deteriorates material strength, reduction of such defects has been positively studied. Study was made on a new active application of hydrogen separation into ion implantation defects. After H ion implantation of a proper depth into single-crystalline Si and SiC and successive annealing, single-crystalline films of sub-micron to several micron thick were obtained by hydrogen-induced delamination at the implantation depth due to hydrogen embrittlement in crystalline defects. The implantation depth is dependent on implantation energy. H atom forms (111) face defect through connection with dangling bond of crystalline defects. This crystal face defect forms a delamination plane through (100) face cleavage. This hydrogen embrittlement delamination by ion implantation is applicable to production of light-weight high-efficiency single-crystalline Si solar cells, and large single-crystalline SiC wafers as new resource saving process. 33 refs., 19 figs., 2 tabs.

  6. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    Science.gov (United States)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J.

    2013-06-01

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 × 10-9 s) at lower energies. Microstructural studies, conducted by X-ray diffraction (θ-2θ and φ techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO⟨111 ⟩||c-YSZ⟨001⟩ and in-plane NiO⟨110⟩||c-YSZ⟨100⟩. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min-1 for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies ease the adsorption of 4-chlorophenol, hydroxyl, and water molecules to the surface. Thus, n

  7. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J. [Department of Materials Science and Engineering, NC State University, EB-1, Raleigh, North Carolina 27695-7907 (United States)

    2013-06-21

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 Multiplication-Sign 10{sup -9} s) at lower energies. Microstructural studies, conducted by X-ray diffraction ({theta}-2{theta} and {phi} techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO<111 > Double-Vertical-Line Double-Vertical-Line c-YSZ<001> and in-plane NiO<110> Double-Vertical-Line Double-Vertical-Line c-YSZ<100>. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min{sup -1} for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies

  8. Field emission from single-crystalline CeB_6 nanowires

    Institute of Scientific and Technical Information of China (English)

    赵彦明; 欧阳柳生; 邹春云; 许军旗; 董有忠; 范庆华

    2010-01-01

    We presented a field electron emission measurement of single crystalline CeB6 nanowires.The nanowires exhibited a low turn-on electric field(7.6 V/μm at 10 μA/cm2),and the deviation of Fowler-Nordheim(F-N) plots from straight line was observed in field electron emission measurements.The field enhancement factors were obtained by separate straight line fitting.The nonlinearity in the F-N plots may be attributed to the non-uniform field electron emission of CeB6 nanowires.The field emission properties of the ...

  9. Structural and Optical Properties of Single Crystalline Bismuth Nanoparticles in Polymer

    Science.gov (United States)

    Kabir, Lutful; Mandal, Swapan K.

    We report here the structural and optical properties of Bi nanoparticles in polymer (polypyrrole) matrix. The nanoparticles are synthesized following a wet chemical route. The X-ray diffraction data clearly shows the growth of single crystalline Bi nanoparticles within the host polymer. The microstructure of the Bi nanoparticles obtained by transmission electron microscopy (TEM) reveals clearly the formation of spherical shaped nanoparticles of average size˜27 nm with a narrow size distribution. The optical absorption spectrum exhibits a distinct peak at 278 nm which is attributed to the surface plasmon band of Bi nanoparticles. The absorption spectrum is found to be described well following Mie theory.

  10. Multiple phase transitions in single-crystalline Na_{1-delta}FeAs.

    Science.gov (United States)

    Chen, G F; Hu, W Z; Luo, J L; Wang, N L

    2009-06-01

    Specific heat, resistivity, susceptibility, and Hall coefficient measurements were performed on high-quality single-crystalline Na_{1-delta}FeAs. This compound is found to undergo three successive phase transitions at around 52, 41, and 23 K, which correspond to structural, magnetic, and superconducting transitions, respectively. The Hall effect result indicates the development of energy gap at low temperature due to the occurrence of spin-density-wave instability. Our results provide direct experimental evidence of the magnetic ordering in the nearly stoichiometric NaFeAs.

  11. The recombination channels of luminescence excitation in YAG:Yb single crystalline films

    International Nuclear Information System (INIS)

    Absorption and emission spectra, luminescence decay kinetics and thermostimulated luminescence of X-ray irradiated YAG:Yb single crystalline films were studied. Two emission bands peaked at 420 and 488 nm have been detected in the investigated films. The strong thermal quenching of luminescence band at 488 nm was observed above 160 K. The influence of growth conditions and annealing in air on the lifetime of Yb3+ ion excited state in the IR spectral region have been revealed. The recombination mechanisms of the f-f transition at Yb3+ ion excitation, as well as the mechanism of lifetime shortening for the excited Yb3+ luminescence have been discussed

  12. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor.

    Science.gov (United States)

    Nomura, Kenji; Ohta, Hiromichi; Ueda, Kazushige; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2003-05-23

    We report the fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator. The device exhibits an on-to-off current ratio of approximately 106 and a field-effect mobility of approximately 80 square centimeters per volt per second at room temperature, with operation insensitive to visible light irradiation. The result provides a step toward the realization of transparent electronics for next-generation optoelectronics. PMID:12764192

  13. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics.

    Science.gov (United States)

    Hwang, Suk-Won; Park, Gayoung; Edwards, Chris; Corbin, Elise A; Kang, Seung-Kyun; Cheng, Huanyu; Song, Jun-Kyul; Kim, Jae-Hwan; Yu, Sooyoun; Ng, Joanne; Lee, Jung Eun; Kim, Jiyoung; Yee, Cassian; Bhaduri, Basanta; Su, Yewang; Omennetto, Fiorenzo G; Huang, Yonggang; Bashir, Rashid; Goddard, Lynford; Popescu, Gabriel; Lee, Kyung-Mi; Rogers, John A

    2014-06-24

    Single-crystalline silicon nanomembranes (Si NMs) represent a critically important class of material for high-performance forms of electronics that are capable of complete, controlled dissolution when immersed in water and/or biofluids, sometimes referred to as a type of "transient" electronics. The results reported here include the kinetics of hydrolysis of Si NMs in biofluids and various aqueous solutions through a range of relevant pH values, ionic concentrations and temperatures, and dependence on dopant types and concentrations. In vitro and in vivo investigations of Si NMs and other transient electronic materials demonstrate biocompatibility and bioresorption, thereby suggesting potential for envisioned applications in active, biodegradable electronic implants.

  14. Characterization and Optical Properties of the Single Crystalline SnS Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Yue GH

    2009-01-01

    Full Text Available Abstract The SnS nanowire arrays have been successfully synthesized by the template-assisted pulsed electrochemical deposition in the porous anodized aluminum oxide template. The investigation results showed that the as-synthesized nanowires are single crystalline structures and they have a highly preferential orientation. The ordered SnS nanowire arrays are uniform with a diameter of 50 nm and a length up to several tens of micrometers. The synthesized SnS nanowires exhibit strong absorption in visible and near-infrared spectral region and the direct energy gapE gof SnS nanowires is 1.59 eV.

  15. PAC studies of implanted $^{111}\\!$Ag in single-crystalline ZnO

    CERN Document Server

    Rita, E; Wahl, Ulrich; Alves, E; Lima-Lopes, Armandina Maria; Carvalho-Soares, João

    2005-01-01

    The local environment of implanted $^{111}\\!$Ag ( t$_{1/2}$=7.45d ) in single-crystalline [0001] ZnO was evaluated by means of the perturbed angular correlation (PAC) technique. Following the 60 keV low dose ($1\\!\\times\\!10^{13}$ cm$^{-2}$) $^{111}\\!$Ag implantation, the PAC measurements were performed for the as-implanted state and following 30 min in vacuum annealing steps, at temperatures ranging from 200 ºC to 1050 ºC. The results revealed that 42% of the probes are located at defect-free S$\\scriptstyle_\\textrm{Zn}$ sites ($\

  16. Single-layer MoS{sub 2} roughness and sliding friction quenching by interaction with atomically flat substrates

    Energy Technology Data Exchange (ETDEWEB)

    Quereda, J. [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049 (Spain); Castellanos-Gomez, A. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Agraït, N. [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049 (Spain); Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA-Nanociencia, E-28049 Madrid (Spain); Instituto de Ciencia de Materiales Nicolás Cabrera, Campus de Cantoblanco, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Rubio-Bollinger, G., E-mail: gabino.rubio@uam.es [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049 (Spain); Instituto de Ciencia de Materiales Nicolás Cabrera, Campus de Cantoblanco, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain)

    2014-08-04

    We experimentally study the surface roughness and the lateral friction force in single-layer MoS{sub 2} crystals deposited on different substrates: SiO{sub 2}, mica, and hexagonal boron nitride (h-BN). Roughness and sliding friction measurements are performed by atomic force microscopy. We find a strong dependence of the MoS{sub 2} roughness on the underlying substrate material, being h-BN the substrate which better preserves the flatness of the MoS{sub 2} crystal. The lateral friction also lowers as the roughness decreases, and attains its lowest value for MoS{sub 2} flakes on h-BN substrates. However, it is still higher than for the surface of a bulk MoS{sub 2} crystal, which we attribute to the deformation of the flake due to competing tip-to-flake and flake-to-substrate interactions.

  17. Orientation dependent size effects in single crystalline anisotropic nanoplates with regard to surface energy

    Energy Technology Data Exchange (ETDEWEB)

    Assadi, Abbas, E-mail: assadi@aut.ac.ir; Salehi, Manouchehr, E-mail: msalehi@aut.ac.ir; Akhlaghi, Mehdi, E-mail: makhlagi@aut.ac.ir

    2015-07-17

    In this work, size dependent behavior of single crystalline normal and auxetic anisotropic nanoplates is discussed with consideration of material surface stresses via a generalized model. Bending of pressurized nanoplates and their fundamental resonant frequency are discussed for different crystallographic directions and anisotropy degrees. It is explained that the orientation effects are considerable when the nanoplates' edges are pinned but for clamped nanoplates, the anisotropy effect may be ignored. The size effects are the highest when the simply supported nanoplates are parallel to [110] direction but as the anisotropy gets higher, the size effects are reduced. The orientation effect is also discussed for possibility of self-instability occurrence in nanoplates. The results in simpler cases are compared with previous experiments for nanowires but with a correction factor. There are still some open questions for future studies. - Highlights: • Size effects in single crystalline anisotropic nanoplates are discussed. • A generalized model is established containing some physical assumptions. • Orientation dependent size effects due to material anisotropy are explained. • Bending, instability and frequencies are studied at normal/auxetic domain.

  18. Free-Standing Two-Dimensional Single-Crystalline InSb Nanosheets.

    Science.gov (United States)

    Pan, D; Fan, D X; Kang, N; Zhi, J H; Yu, X Z; Xu, H Q; Zhao, J H

    2016-02-10

    Growth of high-quality single-crystalline InSb layers remains challenging in material science. Such layered InSb materials are highly desired for searching for and manipulation of Majorana Fermions in solid state, a fundamental research task in physics today, and for development of novel high-speed nanoelectronic and infrared optoelectronic devices. Here, we report on a new route toward growth of single-crystalline, layered InSb materials. We demonstrate the successful growth of free-standing, two-dimensional InSb nanosheets on one-dimensional InAs nanowires by molecular-beam epitaxy. The grown InSb nanosheets are pure zinc-blende single crystals. The length and width of the InSb nanosheets are up to several micrometers and the thickness is down to ∼10 nm. The InSb nanosheets show a clear ambipolar behavior and a high electron mobility. Our work will open up new technology routes toward the development of InSb-based devices for applications in nanoelectronics, optoelectronics, and quantum electronics and for the study of fundamental physical phenomena. PMID:26788662

  19. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics.

    Science.gov (United States)

    Li, Hanying; Fan, Congcheng; Fu, Weifei; Xin, Huolin L; Chen, Hongzheng

    2015-01-12

    Organic single crystals are ideal candidates for high-performance photovoltaics due to their high charge mobility and long exciton diffusion length; however, they have not been largely considered for photovoltaics due to the practical difficulty in making a heterojunction between donor and acceptor single crystals. Here, we demonstrate that extended single-crystalline heterojunctions with a consistent donor-top and acceptor-bottom structure throughout the substrate can be simply obtained from a mixed solution of C60 (acceptor) and 3,6-bis(5-(4-n-butylphenyl)thiophene-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (donor). 46 photovoltaic devices were studied with the power conversion efficiency of (0.255±0.095)% under 1 sun, which is significantly higher than the previously reported value for a vapor-grown organic single-crystalline donor-acceptor heterojunction (0.007%). As such, this work opens a practical avenue for the study of organic photovoltaics based on single crystals.

  20. PbO networks composed of single crystalline nanosheets synthesized by a facile chemical precipitation method

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Synthesis of PbO networks through a simple chemical precipitation route. • The synthesis method is rapid and low-cost. • Each network is composed of single crystalline PbO nanosheets. • A possible growth mechanism is proposed for synthesized PbO networks. - Abstract: For the field of energy storage, nanostructured lead oxide (PbO) shows immense potential for increased specific energy and deep discharge for lead acid battery technologies. In this work, PbO networks composed of single crystalline nanosheets were synthesized utilizing a simple, low cost and rapid chemical precipitation method. The PbO networks were prepared in a single reaction vessel from starting reagents of lead acetate dehydrate, ammonium hydroxide and deionized water. Lead acetate dehydrate was chosen as a reagent, as opposed to lead nitrate, to eliminate the possibility of nitrate contamination of the final product. X-ray diffraction (XRD) analysis, high resolution scanning electron microscopy (HRSEM) and high resolution transmission electron microscopy (HRTEM) analysis were used to characterize the synthesized PbO networks. The reproducible method described herein synthesized pure β-PbO (massicot) powders, with no byproducts. A possible formation mechanism for these PbO networks is proposed. The growth is found to proceed predominately in the 〈1 1 1〉 and 〈2 0 0〉 directions while being limited in the 〈0 1 1〉 direction

  1. Direct growth of single-crystalline III–V semiconductors on amorphous substrates

    Science.gov (United States)

    Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M.; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager III, Joel W.; Chrzan, Daryl C.; Javey, Ali

    2016-01-01

    The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–V's on application-specific substrates by direct growth. PMID:26813257

  2. Direct growth of single-crystalline III-V semiconductors on amorphous substrates.

    Science.gov (United States)

    Chen, Kevin; Kapadia, Rehan; Harker, Audrey; Desai, Sujay; Seuk Kang, Jeong; Chuang, Steven; Tosun, Mahmut; Sutter-Fella, Carolin M; Tsang, Michael; Zeng, Yuping; Kiriya, Daisuke; Hazra, Jubin; Madhvapathy, Surabhi Rao; Hettick, Mark; Chen, Yu-Ze; Mastandrea, James; Amani, Matin; Cabrini, Stefano; Chueh, Yu-Lun; Ager Iii, Joel W; Chrzan, Daryl C; Javey, Ali

    2016-01-01

    The III-V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III-V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III-V's on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III-V's of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III-V's on application-specific substrates by direct growth. PMID:26813257

  3. Effect of oxygen vacancy on magnetism of ZnO:Co single-crystalline nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Che, Ping, E-mail: cheping@ustb.edu.cn [Department of Chemistry and Chemical Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Shixiang; Sun, Changyan; Zhou, Hualei; Li, Weijun [Department of Chemistry and Chemical Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States)

    2013-02-15

    Co-doped ZnO single-crystalline nanorods were prepared by the modified microemulsion route. The crystalline structure, morphology, oxygen vacancy emission, and hysteresis loop at low temperature and room temperature of as-prepared materials were characterized by XRD, TEM, PL spectra, and magnetic measurement respectively. The nanorods are 60-90 nm in diameter and about 2 {mu}m in length. X-ray diffraction data, TEM images and selected area electron diffraction patterns confirm that the materials synthesized in optimal conditions are ZnO:Co single crystalline solid solution without any impurities related to Co. Magnetic measurements show that different surfactants as template in synthesis process result in ferromagnetism and paramagnetism in Zn{sub 0.95}Co{sub 0.05}O nanorods. The PL spectra show that the ferromagnetic samples exhibit strong oxygen vacancy emission whereas in the paramagnetic samples the oxygen vacancy emission is absent, indicating that the defects may stabilize ferromagnetic order in diluted magnetic semiconductors, resulting in high-temperature ferromagnetism. - Highlights: Black-Right-Pointing-Pointer Co-doped ZnO nanorods were prepared by the modified microemulsion route. Black-Right-Pointing-Pointer Different magnetic properties were observed in samples with different surfactants. Black-Right-Pointing-Pointer Oxygen vacancy may stabilize ferromagnetic order in obtained materials.

  4. Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Epitaxial growth of Ce0.8Gd0.2O2(CGO) films on (001) TiO2-terminated SrTiO3 substrates by pulsed laser deposition was investigated using in situ reflective high energy electron diffraction. The initial film growth shows a Stransky-Krastanov growth mode. However, this three-dimensional island formation is replaced by a two-dimensional island nucleation during further deposition, which results in atomically smooth CGO films. The obtained high-quality CGO films may be attractive for the electrolyte of solid-oxide fuel cells operating at low temperature. (orig.)

  5. Photochemical Modification of Single Crystalline GaN Film Using n-Alkene with Different Carbon Chain Lengths as Biolinker.

    Science.gov (United States)

    Wang, Chun; Zhuang, Hao; Huang, Nan; Heuser, Steffen; Schlemper, Christoph; Zhai, Zhaofeng; Liu, Baodan; Staedler, Thorsten; Jiang, Xin

    2016-06-14

    As a potential material for biosensing applications, gallium nitride (GaN) films have attracted remarkable attention. In order to construct GaN biosensors, a corresponding immobilization of biolinkers is of great importance in order to render a surface bioactive. In this work, two kinds of n-alkenes with different carbon chain lengths, namely allylamine protected with trifluoroacetamide (TFAAA) and 10-aminodec-1-ene protected with trifluoroacetamide (TFAAD), were used to photochemically functionalize single crystalline GaN films. The successful linkage of both TFAAA and TFAAD to the GaN films is confirmed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement. With increased UV illumination time, the intensity of the secondary ions corresponding to the linker molecules initially increases and subsequently decreases in both cases. Based on the SIMS measurements, the maximum coverage of TFAAA is achieved after 14 h of UV illumination, while only 2 h is required in the case of TFAAD to reach the situation of a fully covered GaN surface. This finding leads to the conclusion that the reaction rate of TFAAD is significantly higher compared to TFAAA. Measurements by atomic force microscopy (AFM) indicate that the coverage of GaN films by a TFAAA layer leads to an increased surface roughness. The atomic terraces, which are clearly observable for the pristine GaN films, disappear once the surface is fully covered by a TFAAA layer. Such TFAAA layers will feature a homogeneous surface topography even for reaction times of 24 h. In contrast to this, TFAAD shows strong cross-polymerization on the surface, this is confirmed by optical microscopy. These results demonstrate that TFAAA is a more suitable candidate as biolinker in context of the GaN surfaces due to its improved controllability.

  6. Generation and the role of dislocations in single-crystalline phase-change In2Se3 nanowires under electrical pulses.

    Science.gov (United States)

    Mafi, Elham; Tao, Xin; Zhu, Wenguang; Gao, Yanfei; Wang, Chongmin; Gu, Yi

    2016-08-19

    We report the observation of the generation of dislocations in single-crystal phase-change In2Se3 nanowires under electrical pulses and the impact of these dislocations on electrical properties. Particularly, we correlated the atomic-scale structural characteristics with local electrical resistance variations, by performing transmission electron microscopy and scanning Kelvin probe microscopy on the same nanowires. By coupling the experimental results with first-principles density functional theory calculations, we show that the immobile dislocations are generated via vacancy condensations. Importantly, these dislocations lead to several orders of magnitude increase in the electrical resistance, while maintaining the single crystallinity of the lattice. These results significantly advance the fundamental understanding of the structure-property relation in this phase-change material under transient electrical excitations. From a practical perspective, the significant increase in the electrical resistance, driven by the formation of dislocations, can be exploited as a new electronic state in the single-crystalline phase in this phase-change material. PMID:27389929

  7. Generation and the role of dislocations in single-crystalline phase-change In2Se3 nanowires under electrical pulses

    Science.gov (United States)

    Mafi, Elham; Tao, Xin; Zhu, Wenguang; Gao, Yanfei; Wang, Chongmin; Gu, Yi

    2016-08-01

    We report the observation of the generation of dislocations in single-crystal phase-change In2Se3 nanowires under electrical pulses and the impact of these dislocations on electrical properties. Particularly, we correlated the atomic-scale structural characteristics with local electrical resistance variations, by performing transmission electron microscopy and scanning Kelvin probe microscopy on the same nanowires. By coupling the experimental results with first-principles density functional theory calculations, we show that the immobile dislocations are generated via vacancy condensations. Importantly, these dislocations lead to several orders of magnitude increase in the electrical resistance, while maintaining the single crystallinity of the lattice. These results significantly advance the fundamental understanding of the structure-property relation in this phase-change material under transient electrical excitations. From a practical perspective, the significant increase in the electrical resistance, driven by the formation of dislocations, can be exploited as a new electronic state in the single-crystalline phase in this phase-change material.

  8. Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Schou, Jørgen;

    preparation of ultrathin seed layers in the first stage of the deposition process is often envisaged to control the growth and physical properties of the subsequent coating. This work suggests that the limitations of conventional pulsed laser deposition (PLD), performed at moderate temperature (400°C), to the......10 layers with a thickness of 4 nm, 13 nm and 22 nm, respectively, grown on Mg(100), were studied by atomic force microscopy and X-ray reflectometry....... growth of dense, gas impermeable 10 mol% gadolinia-doped ceria (CGO10) solid electrolyte can be overcome by the seeding process. In order to evaluate the seed layer preparation, the effects of different thermal annealing treatments on the morphology, microstructure and surface roughness of ultrathin CGO...

  9. Improvement of electron mobility in La:BaSnO3 thin films by insertion of an atomically flat insulating (Sr,Ba)SnO3 buffer layer

    Science.gov (United States)

    Shiogai, Junichi; Nishihara, Kazuki; Sato, Kazuhisa; Tsukazaki, Atsushi

    2016-06-01

    One perovskite oxide, ASnO3 (A = Sr, Ba), is a candidate for use as a transparent conductive oxide with high electron mobility in single crystalline form. However, the electron mobility of films grown on SrTiO3 substrates does not reach the bulk value, probably because of dislocation scattering that originates from the large lattice mismatch. This study investigates the effect of insertion of bilayer BaSnO3 / (Sr,Ba)SnO3 for buffering this large lattice mismatch between La:BaSnO3 and SrTiO3 substrate. The insertion of 200-nm-thick BaSnO3 on (Sr,Ba)SnO3 bilayer buffer structures reduces the number of dislocations and improves surface smoothness of the films after annealing as proved respectively by scanning transmission electron microscopy and atomic force microscopy. A systematic investigation of BaSnO3 buffer layer thickness dependence on Hall mobility of the electron transport in La:BaSnO3 shows that the highest obtained value of mobility is 78 cm2V-1s-1 because of its fewer dislocations. High electron mobility films based on perovskite BaSnO3 can provide a good platform for transparent-conducting-oxide electronic devices and for creation of fascinating perovskite heterostructures.

  10. Oxygen-18 surface exchange and diffusion in Li 2O-deficient single crystalline lithium niobate

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter; De Souza, Roger A.; Martin, Manfred; Masoud, Muayad; Heitjans, Paul

    2008-06-01

    18O/ 16O isotope exchange in combination with SIMS depth profiling was used to investigate oxygen transport in Li 2O-deficient single crystalline LiNbO 3 in the temperature range 983 ≤ T/K ≤ 1188 at 200 mbar oxygen. Within the limit of experimental error and for the investigated range of temperatures no significant differences between transport parallel and transport perpendicular to the c-axis were found. The following temperature dependencies were determined: for oxygen tracer diffusion D = 6.4 × 10 -3exp[-333 kJ/mol/( RT)] m 2/s; and for oxygen surface exchange k = 7.8 × 10 2exp[-288 kJ mol -1/( RT)] m/s. The activation enthalpy obtained for tracer diffusion can be interpreted as the enthalpy of migration of extrinsic oxygen vacancies induced by impurities with lower valency on niobium sites.

  11. Electromigration and potentiometry measurements of single-crystalline Ag nanowires under UHV conditions.

    Science.gov (United States)

    Kaspers, M R; Bernhart, A M; Meyer Zu Heringdorf, F-J; Dumpich, G; Möller, R

    2009-07-01

    We report on in situ electromigration and potentiometry measurements on single-crystalline Ag nanowires under ultra-high vacuum (UHV) conditions, using a four-probe scanning tunnelling microscope (STM). The Ag nanowires are grown in place by self-organization on a 4° vicinal Si(001) surface. Two of the four available STM tips are used to contact the nanowire. The positioning of the tips is controlled by a scanning electron microscope (SEM). Potentiometry measurements on an Ag nanowire were carried out using a third tip to determine the resistance per length. During electromigration measurements current densities of up to 1 × 10(8) A cm(-2) could be achieved. We use artificially created notches in the wire to initiate electromigration and to control the location of the electromigration process. At the position of the notch, electromigration sets in and is observed quasi-continuously by the SEM.

  12. Measuring the mobility of single crystalline wires and its dependence on temperature and carrier density

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Cleber A; Berengue, Olivia M; Kamimura, Hanay; Chiquito, Adenilson J [NanO LaB-Departamento de Fisica, Universidade Federal de Sao Carlos, CEP 13565-905, CP 676, Sao Carlos, Sao Paulo (Brazil); Leite, Edson R, E-mail: amorim@df.ufscar.br [Laboratorio Interdisciplinar de EletroquImica e Ceramicas, Departamento de Quimica, Universidade Federal de Sao Carlos, CEP 13565-905, CP 676, Sao Carlos, Sao Paulo (Brazil)

    2011-05-25

    Kinetic transport parameters are fundamental for the development of electronic nanodevices. We present new results for the temperature dependence of mobility and carrier density in single crystalline In{sub 2}O{sub 3} samples and the method of extraction of these parameters which can be extended to similar systems. The data were obtained using a conventional Hall geometry and were quantitatively described by the semiconductor transport theory characterizing the electron transport as being controlled by the variable range hopping mechanism. A comprehensive analysis is provided showing the contribution of ionized impurities (low temperatures) and acoustic phonon (high temperatures) scattering mechanisms to the electron mobility. The approach presented here avoids common errors in kinetic parameter extraction from field effect data, serving as a versatile platform for direct investigation of any nanoscale electronic materials.

  13. Synthesis of single crystalline CdS nanowires with polyethylene glycol 400 as inducing template

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Solvothermal technique, an one-step soft solution-processing route was successfully employed to synthesize single crystalline CdS nanowires in ethylenediamine medium at lower temperature (170 □) for 1-8 d. In this route, polyethylene glycol 400 (PEG400)was used as surfactant, which played a crucial role in preferentially oriented growth of semiconductor nanowires. Characterizations of as-prepared CdS nanowires by X-ray powder diffraction(XRD), transmission electron microscopy(TEM) indicate that the naonowires,with typical diameters of 20nm and lengths up to several micrometers, have preferential [001] orientation. Also, investigations into the physical properties of the CdS nanowires were conducted with UV-Vis absorption spectroscopy and photoluminescence emission spectroscopy. The excitonic photo-optical phenomena of the nanowires shows the potential in the practical applications.

  14. The recombination channels of luminescence excitation in YAG:Yb single crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Zakharko, Ya.M. [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo str., Lviv 79017 (Ukraine)], E-mail: zakharko@electronics.wups.lviv.ua; Luchechko, A.P. [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo str., Lviv 79017 (Ukraine); Ubizskii, S.B. [Lviv Polytechnic National University, 12, Bandera srt., Lviv 79013 (Ukraine); Syvorotka, I.I. [Scientific Research Company ' Carat' , 202, Stryjska str., Lviv 79031 (Ukraine); Martynyuk, N.V. [Lviv Polytechnic National University, 12, Bandera srt., Lviv 79013 (Ukraine); Syvorotka, I.M. [Scientific Research Company ' Carat' , 202, Stryjska str., Lviv 79031 (Ukraine)

    2007-04-15

    Absorption and emission spectra, luminescence decay kinetics and thermostimulated luminescence of X-ray irradiated YAG:Yb single crystalline films were studied. Two emission bands peaked at 420 and 488 nm have been detected in the investigated films. The strong thermal quenching of luminescence band at 488 nm was observed above 160 K. The influence of growth conditions and annealing in air on the lifetime of Yb{sup 3+} ion excited state in the IR spectral region have been revealed. The recombination mechanisms of the f-f transition at Yb{sup 3+} ion excitation, as well as the mechanism of lifetime shortening for the excited Yb{sup 3+} luminescence have been discussed.

  15. Single crystalline ZnO nanorods grown by a simple hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Zhang Qianfeng [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-09-15

    Single crystalline ZnO nanorods with wurtzite structure have been prepared by a simple hydrothermal process. The microstructure and composition of the products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, energy dispersive X-ray spectrum (EDS) and Raman spectrum. The nanorods have diameters ranging from 100 nm to 800 nm and length of longer than 10 {mu}m. Raman peak at 437.8 cm{sup -1} displays the characteristic peak of wurtzite ZnO. Photoluminescence (PL) spectrum shows a blue light emission at 441 nm, which is related to radiative recombination of photo-generated holes with singularly ionized oxygen vacancies.

  16. A simple route to the synthesis of single crystalline copper metagermanate nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei@ahut.edu.cn [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Zhang Qianfeng; Fan, C.G. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Lab of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-12-15

    Single crystalline copper metagermanate (CuGeO{sub 3}) nanowires with the diameter of 30-300 nm and length of longer than 100 {mu}m have been prepared by a simple hydrothermal deposition route. X-ray diffraction (XRD), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and Raman analyses confirm that the nanowires are orthorhombic single crystals with a main growth direction along <101>. Room temperature photoluminescence (PL) measurement shows a strong blue emission peak at 442 nm with a broad emission band. The blue emission may be ascribed to radiative recombination of oxygen vacancies and oxygen-germanium vacancies. The formation process of CuGeO{sub 3} nanowires is also discussed.

  17. Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene.

    Science.gov (United States)

    Ago, Hiroki; Ogawa, Yui; Tsuji, Masaharu; Mizuno, Seigi; Hibino, Hiroki

    2012-08-16

    For electronic applications, synthesis of large-area, single-layer graphene with high crystallinity is required. One of the most promising and widely employed methods is chemical vapor deposition (CVD) using Cu foil/film as the catalyst. However, the CVD graphene is generally polycrystalline and contains a significant amount of domain boundaries that limit intrinsic physical properties of graphene. In this Perspective, we discuss the growth mechanism of graphene on a Cu catalyst and review recent development in the observation and control of the domain structure of graphene. We emphasize the importance of the growth condition and crystallinity of the Cu catalyst for the realization of large-area, single-crystalline graphene. PMID:26295775

  18. Large-Quantity Synthesis of Single-Crystalline Metal Indium Nano/Sub-Micron Wires

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang; SHAN Xu-Dong; LIAO Zhi-Min; ZHAO Qing; XU Jun; YU Da-Peng

    2008-01-01

    Large quantities of metal indium single-crystalline wires with diameters ranging from tens of nanometres to a few micrometres were synthesized on Si substrates.Unlike traditional methods for the fabrication of nanowires or nanorods,liquid indium was squeezed out of the pores and cracks from porous an InAlN layer to form the wires.Continuous pushing out of liquid metal indium under strength,lowenng of liquid-solid interfaces and the confinement of the cracks all contribute to the growth of indium wires.Our experiments have shed some light on the possibility of synthesizing large quantities quasi-lD nano/sub-micron structures with specified cross-sectional geometry using the similar method.

  19. Interfacial electronic transport phenomena in single crystalline Fe-MgO-Fe thin barrier junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gangineni, R. B., E-mail: rameshg.phy@pondiuni.edu.in [Department of Physics, School of Physical, Chemical and Applied Sciences, Pondicherry University, R. V. Nagar, Kalapet, Pondicherry 605 014 (India); SPINTEC, UMR 8191 CEA/CNRS/UJF-Grenoble 1/Grenoble INP, INAC, 17 rue des Martyrs, F-38054 Grenoble Cedex (France); Bellouard, C., E-mail: christine.bellouard@ijl.nancy-universite.fr; Duluard, A. [Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, BP 239, 54506 Vandoeuvre (France); Negulescu, B. [Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, BP 239, 54506 Vandoeuvre (France); UFR de Sciences et Techniques, Matériaux, microélectronique, acoustique, nanotechnologies (GREMAN), University François Rabelais, Parc de Grandmont, 37200 Tours (France); Baraduc, C.; Gaudin, G. [SPINTEC, UMR 8191 CEA/CNRS/UJF-Grenoble 1/Grenoble INP, INAC, 17 rue des Martyrs, F-38054 Grenoble Cedex (France); Tiusan, C., E-mail: coriolan.tiusan@phys.utcluj.ro [Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, BP 239, 54506 Vandoeuvre (France); Department of Physics and Chemistry, Center of Superconductivity, Spintronics and Surface Science, Technical University of Cluj Napoca, Str. Memorandumului No. 28, RO-400114 Cluj-Napoca (Romania)

    2014-05-05

    Spin filtering effects in nano-pillars of Fe-MgO-Fe single crystalline magnetic tunnel junctions are explored with two different sample architectures and thin MgO barriers (thickness: 3–8 monolayers). The two architectures, with different growth and annealing conditions of the bottom electrode, allow tuning the quality of the bottom Fe/MgO interface. As a result, an interfacial resonance states (IRS) is observed or not depending on this interface quality. The IRS contribution, observed by spin polarized tunnel spectroscopy, is analyzed as a function of the MgO barrier thickness. Our experimental findings agree with theoretical predictions concerning the symmetry of the low energy (0.2 eV) interfacial resonance states: a mixture of Δ{sub 1}-like and Δ{sub 5}-like symmetries.

  20. Finite-size scaling law in single-crystalline Fe3O4 hollow nanostructures

    Science.gov (United States)

    Zhang, Xiaoping; Wang, Jun; Gao, Miao

    2016-07-01

    Single-crystalline Fe3O4 hollow nanostructures (nanoring and nanotube) have been successfully synthesized by a hydrothermal method along with a heat treatment process. The temperature dependences of the magnetization of the hollow nanostructures were measured under a high vacuum ( Curie temperatures of the nanoring and nanotube samples were found to decrease with decreasing the mean wall thickness. The Curie temperatures of the hollow magnetite nanostructures follow a finite-size scaling relation with the scaling exponent ν = 1.04 ± 0.03. By comparison with those of the zero-dimensional Fe3O4 particles and two-dimensional Fe3O4 films, we show that the scaling relation for our hollow nanostructures is in better agreement with the quasi-two-dimensional finite-size scaling law.

  1. Carrier Transport Mechanism in Single Crystalline Organic Semiconductor Thin Film Elucidated by Visualized Carrier Motion.

    Science.gov (United States)

    Matsubara, Kohei; Abe, Kentaro; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    Time-resolved microscopic second harmonic generation (TRM-SHG) measurement was conducted to evaluate temperature dependence of the anisotropic carrier transport process in 6,13-Bis(triisopropylsilylethynyl) (TIPS) pentacene single crystalline domains for two orthogonal directions. Enhancement of the electric field induced SHG (EFI-SHG) signal at the electrode edge at low temperature suggests the presence of potential drop in the injection process. We directly evaluated temperature dependence of the carrier mobility by taking into account the potential drop, and concluded that the Marcus theory is appropriate to interpret the carrier transport in anisotropic TIPS pentacene thin film. TRM-SHG method is a facile and effective way to directly visualize transport process in anisotropic materials and to evaluate injection and transport processes simultaneously. PMID:27451638

  2. Luminescent properties of Al2O3:Ce single crystalline films under synchrotron radiation excitation

    Science.gov (United States)

    Zorenko, Yu.; Zorenko, T.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Fabisiak, K.; Zhusupkalieva, G.; Fedorov, A.

    2016-09-01

    The paper is dedicated to study the luminescent and scintillation properties of the Al2O3:Ce single crystalline films (SCF) grown by LPE method onto saphire substrates from PbO based flux. The structural quality of SCF samples was investigated by XRD method. For characterization of luminescent properties of Al2O3:Ce SCFs the cathodoluminescence spectra, scintillation light yield (LY) and decay kinetics under excitation by α-particles of Pu239 source were used. We have found that the scintillation LY of Al2O3:Ce SCF samples is relatively large and can reach up to 50% of the value realized in the reference YAG:Ce SCF. Using the synchrotron radiation excitation in the 3.7-25 eV range at 10 K we have also determined the basic parameters of the Ce3+ luminescence in Al2O3 host.

  3. Macroscopic Quantum Tunneling in a Bi2Sr2CaCu2O8+δ Single Crystalline Whisker

    Science.gov (United States)

    Kubo, Yuimaru; Takahide, Yamaguchi; Ueda, Shinya; Takano, Yoshihiko; Ootuka, Youiti

    2010-06-01

    Macroscopic quantum tunneling (MQT) has been observed in an intrinsic Josephson junction (IJJ) stack of a Bi2Sr2CaCu2O8+δ (BSCCO) single crystalline whisker with high precision using a home made setup. The cross-over temperature between thermal activation and MQT was about 260 mK, and the Josephson plasma frequency was estimated to be 86 GHz. Both the thermal escape theory and the MQT theory are consistent with the experiments. These facts strongly suggest that single crystalline BSCCO whiskers are high enough quality to be used as intrinsic Josephson quantum devices such as intrinsic Josephson phase qubits. This is the first demonstration of MQT in BSCCO single crystalline whiskers.

  4. Experimental and theoretical studies of vibrational density of states in Fe3O4 single-crystalline thin films

    NARCIS (Netherlands)

    Handke, B; Kozlowski, A; Parlinski, K; Przewoznik, J; Slezak, T; Chumakov, AI; Niesen, L; Kakol, Z; Korecki, J

    2005-01-01

    This paper presents experimental and theoretical studies of lattice vibrations in a single-crystalline Fe3O4(001) thin film. The investigations were carried out in order to see how the lattice dynamics changes at the Verwey transition. Vibrational densities of states (DOS) were obtained from nuclear

  5. Heterojunction Diodes and Solar Cells Fabricated by Sputtering of GaAs on Single Crystalline Si

    Directory of Open Access Journals (Sweden)

    Santiago Silvestre

    2015-04-01

    Full Text Available This work reports fabrication details of heterojunction diodes and solar cells obtained by sputter deposition of amorphous GaAs on p-doped single crystalline Si. The effects of two additional process steps were investigated: A hydrofluoric acid (HF etching treatment of the Si substrate prior to the GaAs sputter deposition and a subsequent annealing treatment of the complete layered system. A transmission electron microscopy (TEM exploration of the interface reveals the formation of a few nanometer thick SiO2 interface layer and some crystallinity degree of the GaAs layer close to the interface. It was shown that an additional HF etching treatment of the Si substrate improves the short circuit current and degrades the open circuit voltage of the solar cells. Furthermore, an additional thermal annealing step was performed on some selected samples before and after the deposition of an indium tin oxide (ITO film on top of the a-GaAs layer. It was found that the occurrence of surface related defects is reduced in case of a heat treatment performed after the deposition of the ITO layer, which also results in a reduction of the dark saturation current density and resistive losses.

  6. Magnetic and Transport properties of single crystalline FeSi1-xGex

    Science.gov (United States)

    Yeo, Sunmog; Nakatsuji, Satoru; Bianchi, Andrea; Drymiotis, Fivos; Fisk, Zachary

    2002-03-01

    Title : Magnetic and Transport properties of single crystalline FeSi1-xGex Author : S. Yeo, S. Nakatsuji, A. D. Bianchi*, F. R. Drymiotis, Z. Fisk National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32306 The isomorphic iron intermetallic compounds FeSi and FeGe have significantly distinct ground states: Kondo insulator and ferromagnetic metal, respectively. We have recently succeeded in growing single crystals of the whole range of the solution system FeSi1-xGex and performed the susceptibility, resistivity and specific heat measurements throughout the composition range. In the Kondo insulating phase near FeSi, we find that the temperature dependence of the susceptibility is well described by a thermally activated Curie law. Starting from 622 K in the case of FeSi, the activation gap systematically decreases below 190 K for Ge concentration near xc ? 0.25. Above xc, we find the sudden appearance of a ferromagnetic phase with Curie temperature of 125 K, comparable to the gap of the neighboring Kondo insulating phase. Both resistivity and specific measurements suggest that the insulator to metal transition occurs around xc. We will show the phase diagram constructed on the basis of these results, and discuss the origin of the interesting evolution of the ground state. This works were supported by NSF-DMR-9971348 * Present address : Los Alamos National Laboratory, Los Alamos, New Mexico 87545

  7. Single-crystalline ZnO sheet Source-Gated Transistors.

    Science.gov (United States)

    Dahiya, A S; Opoku, C; Sporea, R A; Sarvankumar, B; Poulin-Vittrant, G; Cayrel, F; Camara, N; Alquier, D

    2016-01-01

    Due to their fabrication simplicity, fully compatible with low-cost large-area device assembly strategies, source-gated transistors (SGTs) have received significant research attention in the area of high-performance electronics over large area low-cost substrates. While usually based on either amorphous or polycrystalline silicon (α-Si and poly-Si, respectively) thin-film technologies, the present work demonstrate the assembly of SGTs based on single-crystalline ZnO sheet (ZS) with asymmetric ohmic drain and Schottky source contacts. Electrical transport studies of the fabricated devices show excellent field-effect transport behaviour with abrupt drain current saturation (IDS(SAT)) at low drain voltages well below 2 V, even at very large gate voltages. The performance of a ZS based SGT is compared with a similar device with ohmic source contacts. The ZS SGT is found to exhibit much higher intrinsic gain, comparable on/off ratio and low off currents in the sub-picoamp range. This approach of device assembly may form the technological basis for highly efficient low-power analog and digital electronics using ZnO and/or other semiconducting nanomaterial. PMID:26757945

  8. DC current and AC impedance measurements on boron-doped single crystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Haitao; Gaudin, O.; Jackman, R.B. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Muret, P.; Gheeraert, E. [Laboratoire d' Etudes des Proprietes Electroniques des Solides, BP166, 38042 Grenoble Cedex 9 (France)

    2003-09-01

    In this paper, we report the first measurement of impedance on boron-doped single crystalline diamond films from 0.1 Hz to 10 MHz with the temperature ranging from -100 C up to 300 C. The Cole-Cole (Z' via Z{sup ''}) plots are well fitted to a RC parallel circuit model and the equivalent Resistance and Capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 70 G{omega} at -100 C to 5 k{omega} at 300 C. The linear curve fitting from -100 C to 150 C shows the sample has an activation energy of 0.37 eV, which is consistent with the theoretical value published of this kind of material. The equivalent capacitance is maintained at the level of pF up to 300 C suggesting that no grain boundaries are being involved, as expected from a single crystal diamond. The activation energy from the dc current-temperature curves is 0.36 eV, which is consistent with the value from ac impedance. The potential of this under-used technique for diamond film analysis will be discussed. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yuliang; Xiao, Lifen; Wang, Wei; Choi, Daiwon; Nie, Zimin; Yu, Jianguo; Saraf, Laxmikant V.; Yang, Zhenguo; Liu, Jun

    2011-07-26

    Single crystalline Na4Mn9O18 nanowires were synthesized via pyrolysis of polyacrylate salt precursors prepared by in-situ polymerization of the metal salts and acrylate acid, followed by calcinations at an appropriate temperature to achieve good crystalline structure and uniform nanowire morphology with an average diameter of 50 nm. The Na4Mn9O18 nanowires have shown a high, reversible, and near theoretical sodium ion insertion capacity (128 mA h g-1 at 0.1C), excellent long cyclability (77% capacity retention for 1000 cycles at 0.5 C), along with good rate capability. Good capacity and charge-discharge stability are also observed for full cell experiments using a pyrolyzed carbon as the anode, therefore demonstrating the potential of these materials for sodium-ion batteries for large scale energy storage. Furthermore, this research shows that a good crystallinity and small particles are required to enhance the Na-ion diffusion and increase the stability of the electrode materials for long charge-discharge cycles.

  10. Nb-doped single crystalline MoS2 field effect transistor

    International Nuclear Information System (INIS)

    We report on the demonstration of a p-type, single crystalline, few layer MoS2 field effect transistor (FET) using Niobium (Nb) as the dopant. The doping concentration was extracted and determined to be ∼3 × 1019/cm3. We also report on bilayer Nb-doped MoS2 FETs with ambipolar conduction. We found that the current ON-OFF ratio of the Nb-doped MoS2 FETs changes significantly as a function of the flake thickness. We attribute this experimental observation to bulk-type electrostatic effect in ultra-thin MoS2 crystals. We provide detailed analytical modeling in support of our claims. Finally, we show that in the presence of heavy doping, even ultra-thin 2D-semiconductors cannot be fully depleted and may behave as a 3D material when used in transistor geometry. Our findings provide important insights into the doping constraints of 2D materials, in general

  11. Preservation of Seed Crystals in Feedstock Melting for Cast Quasi-Single Crystalline Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Zaoyang Li

    2013-01-01

    Full Text Available The preservation of seed crystals is important for the casting of quasi-single crystalline (QSC silicon ingots. We carried out transient global simulations of the feedstock melting process in an industrial-sized directional solidification (DS furnace to investigate key factors influencing seed preservation. The power distribution between the top and side heaters is adjusted in the conventional furnace for multicrystalline silicon ingots and in the evolved furnace with a partition block for QSC silicon ingots. The evolution of the solid-liquid interface for melting and the temperature distribution in the furnace core area are analyzed. The power distribution can influence the temperature gradient in the silicon domain significantly. However, its effect on seed preservation is limited in both furnaces. Seed crystals can be preserved in the evolved furnace, as the partition block reduces the radiant heat flux from the insulation walls to the heat exchange block and prevents the heat flowing upwards under the crucible. Therefore, the key to seed preservation is to control radiant heat transfer in the DS furnace and guarantee downward heat flux under the crucible.

  12. Nb-doped single crystalline MoS{sub 2} field effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Das, Saptarshi, E-mail: das.sapt@gmail.com, E-mail: das@anl.gov [Center for Nanoscale Material, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Division of High Energy Physics, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Demarteau, Marcellinus [Division of High Energy Physics, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Roelofs, Andreas [Center for Nanoscale Material, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-04-27

    We report on the demonstration of a p-type, single crystalline, few layer MoS{sub 2} field effect transistor (FET) using Niobium (Nb) as the dopant. The doping concentration was extracted and determined to be ∼3 × 10{sup 19}/cm{sup 3}. We also report on bilayer Nb-doped MoS{sub 2} FETs with ambipolar conduction. We found that the current ON-OFF ratio of the Nb-doped MoS{sub 2} FETs changes significantly as a function of the flake thickness. We attribute this experimental observation to bulk-type electrostatic effect in ultra-thin MoS{sub 2} crystals. We provide detailed analytical modeling in support of our claims. Finally, we show that in the presence of heavy doping, even ultra-thin 2D-semiconductors cannot be fully depleted and may behave as a 3D material when used in transistor geometry. Our findings provide important insights into the doping constraints of 2D materials, in general.

  13. SXPS studies of single crystalline CdTe/CdS interfaces

    International Nuclear Information System (INIS)

    Highlights: •Investigation of single crystalline surfaces of CdS and CdTe by SXPS. •Investigation of growth of CdS and CdTe on crystalline surfaces by SXPS and LEED. •Determination of band alignment between CdS and CdTe. -- Abstract: The interface formation between CdS and CdTe is investigated by synchrotron induced photoemission measurements at the BESSY II storage ring. CdS and CdTe layers were deposited by thermal evaporation on CdTe and CdS single crystal substrates with two different orientations for each substrate. Surface core level shifts show a passivation of dangling bonds for CdS substrates overgrown by CdTe. Te-Te bonds are found even on a 200 nm thick layer of CdS on CdTe. A valence band offset of 1.02 ± 0.05 eV, corresponding to a conduction band offset of −0.09 ± 0.05 eV is determined, independent of the substrate type and orientation and in agreement with measurements of polycrystalline interfaces. This alignment of every bands with a very small barrier for electron transfer and a maximized barrier for hole transport to the electron accepting front contact promises ideal properties for devices like CdS/CdTe hetero junction thin film solar cells

  14. Fabrications and application of single crystalline GaN for high-performance deep UV photodetectors

    Directory of Open Access Journals (Sweden)

    R. Velazquez

    2016-08-01

    Full Text Available High-quality single crystalline Gallium Nitride (GaN semiconductor has been synthesized using molecule beam epitaxy (MBE technique for development of high-performance deep ultraviolet (UV photodetectors. Thickness of the films was estimated by using surface profile meter and scanning electron microscope. Electronic states and elemental composition of the films were obtained using Raman scattering spectroscopy. The orientation, crystal structure and phase purity of the films were examined using a Siemens x-ray diffractometer radiation. The surface microstructure was studied using high resolution scanning electron microscopy (SEM. Two types of metal pairs: Al-Al, Al-Cu or Cu-Cu were used for interdigital electrodes on GaN film in order to examine the Schottky properties of the GaN based photodetector. The characterizations of the fabricated prototype include the stability, responsivity, response and recovery times. Typical time dependent photoresponsivity by switching different UV light source on and off five times for each 240 seconds at a bias of 2V, respectively, have been obtained. The detector appears to be highly sensitive to various UV wavelengths of light with very stable baseline and repeatability. The obtained photoresponsivity was up to 354 mA/W at the bias 2V. Higher photoresponsivity could be obtained if higher bias was applied but it would unavoidably result in a higher dark current. Thermal effect on the fabricated GaN based prototype was discussed.

  15. Surface Engineering of Copper Foils for Growing Centimeter-Sized Single-Crystalline Graphene.

    Science.gov (United States)

    Lin, Li; Li, Jiayu; Ren, Huaying; Koh, Ai Leen; Kang, Ning; Peng, Hailin; Xu, H Q; Liu, Zhongfan

    2016-02-23

    The controlled growth of high-quality graphene on a large scale is of central importance for applications in electronics and optoelectronics. To minimize the adverse impacts of grain boundaries in large-area polycrystalline graphene, the synthesis of large single crystals of monolayer graphene is one of the key challenges for graphene production. Here, we develop a facile surface-engineering method to grow large single-crystalline monolayer graphene by the passivation of the active sites and the control of graphene nucleation on copper surface using the melamine pretreatment. Centimeter-sized hexagonal single-crystal graphene domains were successfully grown, which exhibit ultrahigh carrier mobilities exceeding 25,000 cm(2) V(-1) s(-1) and quantum Hall effects on SiO2 substrates. The underlying mechanism of melamine pretreatments were systematically investigated through elemental analyses of copper surface in the growth process of large single-crystals. This present work provides a surface design of a catalytic substrate for the controlled growth of large-area graphene single crystals. PMID:26832229

  16. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.

    Science.gov (United States)

    Chou, Yu-Hsun; Wu, Yen-Mo; Hong, Kuo-Bin; Chou, Bo-Tsun; Shih, Jheng-Hong; Chung, Yi-Cheng; Chen, Peng-Yu; Lin, Tzy-Rong; Lin, Chien-Chung; Lin, Sheng-Di; Lu, Tien-Chang

    2016-05-11

    The recent development of plasmonics has overcome the optical diffraction limit and fostered the development of several important components including nanolasers, low-operation-power modulators, and high-speed detectors. In particular, the advent of surface-plasmon-polariton (SPP) nanolasers has enabled the development of coherent emitters approaching the nanoscale. SPP nanolasers widely adopted metal-insulator-semiconductor structures because the presence of an insulator can prevent large metal loss. However, the insulator is not necessary if permittivity combination of laser structures is properly designed. Here, we experimentally demonstrate a SPP nanolaser with a ZnO nanowire on the as-grown single-crystalline aluminum. The average lasing threshold of this simple structure is 20 MW/cm(2), which is four-times lower than that of structures with additional insulator layers. Furthermore, single-mode laser operation can be sustained at temperatures up to 353 K. Our study represents a major step toward the practical realization of SPP nanolasers. PMID:27089144

  17. Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors

    Science.gov (United States)

    Stoesser, Anna; von Seggern, Falk; Purohit, Suneeti; Nasr, Babak; Kruk, Robert; Dehm, Simone; Wang, Di; Hahn, Horst; Dasgupta, Subho

    2016-10-01

    Oxide semiconductors are considered to be one of the forefront candidates for the new generation, high-performance electronics. However, one of the major limitations for oxide electronics is the scarcity of an equally good hole-conducting semiconductor, which can provide identical performance for the p-type metal oxide semiconductor field-effect transistors as compared to their electron conducting counterparts. In this quest, here we present a bulk synthesis method for single crystalline cuprous oxide (Cu2O) nanowires, their chemical and morphological characterization and suitability as active channel material in electrolyte-gated, low-power, field-effect transistors (FETs) for portable and flexible logic circuits. The bulk synthesis method used in the present study includes two steps: namely hydrothermal synthesis of the nanowires and the removal of the surface organic contaminants. The surface treated nanowires are then dispersed on a receiver substrate where the passive electrodes are structured, followed by printing of a composite solid polymer electrolyte (CSPE), chosen as the gate insulator. The characteristic electrical properties of individual nanowire FETs are found to be quite interesting including accumulation-mode operation and field-effect mobility of 0.15 cm2 V-1 s-1.

  18. Ultrasonic synthesis, formation mechanism and optical properties of single-crystalline Pb(OH)Br microrings

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guizhen, E-mail: wangguizhen0@hotmail.com [Key Laboratory of Ministry of Education for Application Technology of Chemical Materials in Hainan Superior Resources, College of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Key Laboratory of Chinese Education Ministry for Tropical Biological Resources, Hainan University, Haikou 570228 (China); Wan Gengping [Key Laboratory of Ministry of Education for Application Technology of Chemical Materials in Hainan Superior Resources, College of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Key Laboratory of Chinese Education Ministry for Tropical Biological Resources, Hainan University, Haikou 570228 (China); Lin Shiwei; Yu Wenhui [Key Laboratory of Ministry of Education for Application Technology of Chemical Materials in Hainan Superior Resources, College of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Elliptic Pb(OH)Br microrings were synthesized by a simple sonochemical process. Black-Right-Pointing-Pointer Size distribution of the median holes could be controlled. Black-Right-Pointing-Pointer Microrings were formed by ultrasonic etching accompanying the Ostwald ripening. Black-Right-Pointing-Pointer Pb(OH)Br microrings exhibit optical properties of semiconductors. - Abstract: Novel elliptic Pb(OH)Br microrings have been controllably synthesized on a large scale by a simple sonochemical process in aqueous solution. The structure characterizations of such microrings were investigated in detail by means of X-ray powder diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The results indicate that the uniform orthorhombic phase of Pb(OH)Br microrings with good crystallinity can be obtained and such ring-like Pb(OH)Br is single crystalline with the (0 1 1) plane as the 2D exposed surface. The influence of reaction time and alkali sources on the evolution of structures has been studied. The possible hollowing growth mechanism for the Pb(OH)Br microrings has been discussed. Meanwhile, the ultraviolet-visible absorbance spectra and photoluminescence microrings show their ultraviolet absorption and green emitting behavior, indicating that the elliptic Pb(OH)Br microrings have great potential to be applied in luminescent and optoelectronic devices.

  19. Ultrasonic synthesis, formation mechanism and optical properties of single-crystalline Pb(OH)Br microrings

    International Nuclear Information System (INIS)

    Highlights: ► Elliptic Pb(OH)Br microrings were synthesized by a simple sonochemical process. ► Size distribution of the median holes could be controlled. ► Microrings were formed by ultrasonic etching accompanying the Ostwald ripening. ► Pb(OH)Br microrings exhibit optical properties of semiconductors. - Abstract: Novel elliptic Pb(OH)Br microrings have been controllably synthesized on a large scale by a simple sonochemical process in aqueous solution. The structure characterizations of such microrings were investigated in detail by means of X-ray powder diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The results indicate that the uniform orthorhombic phase of Pb(OH)Br microrings with good crystallinity can be obtained and such ring-like Pb(OH)Br is single crystalline with the (0 1 1) plane as the 2D exposed surface. The influence of reaction time and alkali sources on the evolution of structures has been studied. The possible hollowing growth mechanism for the Pb(OH)Br microrings has been discussed. Meanwhile, the ultraviolet–visible absorbance spectra and photoluminescence microrings show their ultraviolet absorption and green emitting behavior, indicating that the elliptic Pb(OH)Br microrings have great potential to be applied in luminescent and optoelectronic devices.

  20. Exfoliation of Threading Dislocation-Free, Single-Crystalline, Ultrathin Gallium Nitride Nanomembranes

    KAUST Repository

    ElAfandy, Rami T.

    2014-04-01

    Despite the recent progress in gallium nitride (GaN) growth technology, the excessively high threading dislocation (TD) density within the GaN crystal, caused by the reliance on heterogeneous substrates, impedes the development of high-efficiency, low-cost, GaN-based heterostructure devices. For the first time, the chemical exfoliation of completely TD-free, single-crystalline, ultrathin (tens of nanometers) GaN nanomembranes is demonstrated using UV-assisted electroless chemical etching. These nanomembranes can act as seeding layers for subsequent overgrowth of high-quality GaN. A model is proposed, based on scanning and transmission electron microscopy as well as optical measurements to explain the physical processes behind the formation of the GaN nanomembranes. These novel nanomembranes, once transferred to other substrates, present a unique and technologically attractive path towards integrating high-efficiency GaN optical components along with silicon electronics. Interestingly, due to their nanoscale thickness and macroscopic sizes, these nanomembranes may enable the production of flexible GaN-based optoelectronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comprehensive study of the surface morphology evolution induced by thermal annealing in single-crystalline ZnO films and ZnO bulks

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, N.; Oh, D. C. [Hoseo University, Asan (Korea, Republic of); Ko, H. J. [Korea Photonics Technology Institute, Gwangju (Korea, Republic of); Lim, D. S.; Hong, S. K. [Chungnam National University, Daejeon (Korea, Republic of); Yao, T. [Tohoku University, Sendai (Japan)

    2012-11-15

    We report on the evolution of the surface morphology induced by thermal annealing in N{sub 2} ambient over a wide temperature range of 500 - 1200 .deg. C in single-crystalline ZnO films and ZnO bulks. The surface morphology is seriously changed by the annealing temperature, and the evolution can be categorized into three regions: island growth, island agglomeration, and pit formation. Island growth at low temperatures below 700 .deg. C, is ascribed to the atomic migration to reduce surface energy, which causes surface roughening. Island agglomeration at intermediate temperatures of 700 - 900 .deg. C is ascribed to the migration and the evaporation of surface atoms, which causes surface flattening. Pit formation at high temperatures above 900 .deg. C is ascribed to the atomic evaporation by high vapor pressure, which causes surface destruction. On the other hand, the bulk lattice is continuously improved with increasing annealing temperature in the temperature regions before the surface-destruction region, which is attributed to the reduction in the numbers of point and line defects caused by recrystallization. As a result, the best surface morphology and the best bulk lattice are obtained at an annealing temperature of 900 .deg. C. The common surface-morphology evolution of ZnO films and ZnO bulks with increasing annealing temperature can be summarized using the three steps of surface roughening by island growth, surface flattening by island agglomeration, and surface destruction by pit formation.

  2. Vertical Single-Crystalline Organic Nanowires on Graphene: Solution-Phase Epitaxy and Optical Microcavities.

    Science.gov (United States)

    Zheng, Jian-Yao; Xu, Hongjun; Wang, Jing Jing; Winters, Sinéad; Motta, Carlo; Karademir, Ertuğrul; Zhu, Weigang; Varrla, Eswaraiah; Duesberg, Georg S; Sanvito, Stefano; Hu, Wenping; Donegan, John F

    2016-08-10

    Vertically aligned nanowires (NWs) of single crystal semiconductors have attracted a great deal of interest in the past few years. They have strong potential to be used in device structures with high density and with intriguing optoelectronic properties. However, fabricating such nanowire structures using organic semiconducting materials remains technically challenging. Here we report a simple procedure for the synthesis of crystalline 9,10-bis(phenylethynyl) anthracene (BPEA) NWs on a graphene surface utilizing a solution-phase van der Waals (vdW) epitaxial strategy. The wires are found to grow preferentially in a vertical direction on the surface of graphene. Structural characterization and first-principles ab initio simulations were performed to investigate the epitaxial growth and the molecular orientation of the BPEA molecules on graphene was studied, revealing the role of interactions at the graphene-BPEA interface in determining the molecular orientation. These free-standing NWs showed not only efficient optical waveguiding with low loss along the NW but also confinement of light between the two end facets of the NW forming a microcavity Fabry-Pérot resonator. From an analysis of the optical dispersion within such NW microcavities, we observed strong slowing of the waveguided light with a group velocity reduced to one-tenth the speed of light. Applications of the vertical single-crystalline organic NWs grown on graphene will benefit from a combination of the unique electronic properties and flexibility of graphene and the tunable optical and electronic properties of organic NWs. Therefore, these vertical organic NW arrays on graphene offer the potential for realizing future on-chip light sources. PMID:27438189

  3. Enhanced non-volatile resistive switching in suspended single-crystalline ZnO nanowire with controllable multiple states

    Science.gov (United States)

    Zhang, Rui; Pang, Wei; Zhang, Qing; Chen, Yan; Chen, Xuejiao; Feng, Zhihong; Yang, Jianhua; Zhang, Daihua

    2016-08-01

    Resistive switching nanostructures are a promising candidate for next-generation non-volatile memories. In this report, we investigate the switching behaviors of single-crystalline ZnO nanowires suspended in air. They exhibit significantly higher current density, lower switching voltage, and more pronounced multiple conductance states compared to nanowires in direct contact with substrate. We attribute the effect to enhanced Joule heating efficiency, reduced surface scattering, and more significantly, the positive feedback established between the current density and local temperature in the suspended nanowires. The proposed mechanism has been quantitatively examined by finite element simulations. We have also demonstrated an innovative approach to initiating the current–temperature mutual enhancement through illumination by ultraviolet light, which further confirmed our hypothesis and enabled even greater enhancement. Our work provides further insight into the resistive switching mechanism of single-crystalline one-dimensional nanostructures, and suggests an effective means of performance enhancement and device optimization.

  4. Formation of single crystalline tellurium supersaturated silicon pn junctions by ion implantation followed by pulsed laser melting

    Science.gov (United States)

    Xiyuan, Wang; Yongguang, Huang; Dewei, Liu; Xiaoning, Zhu; Xiao, Cui; Hongliang, Zhu

    2013-06-01

    Pn junctions based on single crystalline tellurium supersaturated silicon were formed by ion implantation followed by pulsed laser melting (PLM). P type silicon wafers were implanted with 245 keV 126Te+ to a dose of 2 × 1015 ions/cm2, after a PLM process (248 nm, laser fluence of 0.30 and 0.35 J/cm2, 1-5 pulses, duration 30 ns), an n+ type single crystalline tellurium supersaturated silicon layer with high carrier density (highest concentration 4.10 × 1019 cm-3, three orders of magnitude larger than the solid solution limit) was formed, it shows high broadband optical absorption from 400 to 2500 nm. Current—voltage measurements were performed on these diodes under dark and one standard sun (AM 1.5), and good rectification characteristics were observed. For present results, the samples with 4-5 pulses PLM are best.

  5. Fluorescence signals of core-shell quantum dots enhanced by single crystalline gold caps on silicon nanowires

    International Nuclear Information System (INIS)

    We use nanoscale (20-300 nm in diameter) single crystalline gold (Au)-caps on silicon nanowires (NWs) grown by the vapor-liquid-solid (VLS) growth mechanism to enhance the fluorescence photoluminescence (PL) signals of highly dilute core/shell CdSeTe/ZnS quantum dots (QDs) in aqueous solution (10-5 M). For NWs without Au-caps, as they appear, for example, after Au etching in aqua regia or buffered KI/I2-solution, essentially no fluorescence signal of the same diluted QDs could be observed. Fluorescence PL signals were measured using excitation with a laser wavelength of 633 nm. The signal enhancement by single crystalline, nanoscale Au-caps is discussed and interpreted based on finite element modeling (FEM).

  6. High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    Kazuo Uchida

    2012-12-01

    Full Text Available High-quality single crystalline twin phase NiO grown on sapphire substrates by metalorganic vapor phase epitaxy is reported. X-ray rocking curve analysis of NiO films grown at different temperatures indicates a minimum full width at half maximum of the cubic (111 diffraction peak of 0.107° for NiO film grown at as low as 550 °C. Detailed microstructural analysis by Φ scan X-ray diffraction and transmission electron microscopy reveal that the NiO film consists of large single crystalline domains with two different crystallographic orientations which are rotated relative to each other along the [111] axis by 60°. These single crystal domains are divided by the twin phase boundaries.

  7. Aligned Single-Crystalline Perovskite Microwire Arrays for High-Performance Flexible Image Sensors with Long-Term Stability.

    Science.gov (United States)

    Deng, Wei; Zhang, Xiujuan; Huang, Liming; Xu, Xiuzhen; Wang, Liang; Wang, Jincheng; Shang, Qixun; Lee, Shuit-Tong; Jie, Jiansheng

    2016-03-16

    A simple, low-cost blade-coating method is developed for the large-area fabrication of single-crystalline aligned CH3NH3PbI3 microwire (MW) arrays. The solution-coating method is applicable to flexible substrates, enabling the fabrication of MW-array-based photodetectors with excellent long-term stability, flexibility, and bending durability. Integrated devices from such photodetectors demonstrate high performance for high-resolution, flexible image sensors. PMID:26780594

  8. Magnetocrystalline anisotropy and exchange interaction of single crystalline RCo4M (R=Y,Gd,Ho; M=Al,B)

    International Nuclear Information System (INIS)

    The RCo4M compounds (R: rare earth; M: Al, B) can be obtained from RCo5 by substituting M for Co. For the first time, large single crystalline samples of RCo4M (R: Y, Gd, Ho) have been grown. Some differences have been found between the effects of Al and B substitution. In particular, a first-order magnetisation process associated with the Co sublattice is reported for RCo4B (R: Gd, Y). (orig.)

  9. Dynamic response of single crystalline copper subjected to quasi-isentropic laser and gas-gun driven loading

    Science.gov (United States)

    Meyers, M.; Jarmakani, H.; McNaney, J. M.; Schneider, M.; Nguyen, J. H.; Kad, B.

    2006-08-01

    Single crystalline copper was subjected to quasi-isentropic compression via gas-gun and laser loading at pressures between 18 GPa and 59 GPa. The deformation substructure was analyzed via transmission electron microscopy (TEM). Twins and laths were evident at the highest pressures, and stacking faults and dislocation cells in the intermediate and lowest pressures, respectively. The Preston-Tonks-Wallace (PTW) constitutive description was used to model the slip-twinning process in both cases.

  10. Nonhydrolytic colloidal synthesis of ligand-capped single-crystalline NdOCl nanocubes and their magnetic properties

    International Nuclear Information System (INIS)

    Highlights: • Single-crystalline NdOCl nanocubes were fabricated by nonhydrolytic colloidal route. • The NdOCl nanocubes have a pure tetragonal PbFCl matlockite phase. • The NdOCl nanocubes show ferromagnetism at room temperature. - Abstract: In the present study, monodisperse NdOCl nanocubes with single-crystalline structure were fabricated through a novel nonhydrolytic colloidal route, in which NdCl3⋅6H2O was only used as the neodymium source and oleylamine was the coordinating ligand as well as the surfactant. TEM image indicates that the nanostructures show cubic shape with an edge length of about 27 nm. XRD pattern and SAED analysis of numerous nanocubes indicate that the NdOCl nanocubes have a pure tetragonal PbFCl matlockite phase. HRTEM image and FFT pattern of individual NdOCl nanocubes reveal that each cube is single crystalline. Magnetization analysis suggests that the NdOCl nanocubes show ferromagnetic characteristic at room temperature. These results are significant for the investigations of rare earth-based nanocrystals. Besides, this novel nonhydrolytic colloidal route is believed to be a potential general strategy for the synthesis of monodispersed rare earth oxychlorides nanocrystals

  11. Single-crystalline spherical β-Ga2O3 particles: Synthesis, N-doping and photoluminescence properties

    International Nuclear Information System (INIS)

    We report on the synthesis of single-crystalline spherical β-Ga2O3 particles by a simple method in ambient atmosphere. No pre-treatment, catalyst, substrate, or gas flow was required during the synthesis process. The well-dispersed Ga2O3 particles display uniform spherical morphology with an average diameter of ∼200 nm. Photoluminescence studies indicate that the Ga2O3 particles exhibit a broad blue-green light emission and an interesting red light emission at room temperature. The red light emission can be further tuned by post-annealing of the particles in ammonia atmosphere. The present single-crystalline β-Ga2O3 particles with spherical morphology, uniform sub-micrometer sizes and tunable light emission are envisaged to be of high promise for applications in white-LED phosphors and optoelectronic devices. -- Highlights: ► We prepared single-crystalline spherical β-Ga2O3 particles in ambient atmosphere. ► The particles display uniform spherical morphology with an average diameter of ∼200 nm. ► The Ga2O3 particles exhibit a broad blue-green light and an interesting red light emission. ► The red light emission can be further tuned by post-annealing of the particles

  12. Growth, structure and magnetic properties of single crystalline Fe/CoO/Ag(001) bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Abrudan, R.M.

    2007-07-16

    The structural and magnetic properties of epitaxially deposited single-crystalline CoO layers and Fe/CoO bilayers on Ag(001) were investigated. CoO films on Ag(001) exhibit (1 x 1) Low Energy Electron Diffraction (LEED) patterns similar to the clean Ag(001) substrate. The vertical interlayer spacing of the CoO films, deduced from a kinematic analysis of LEED I(E) curves, is a {sub perpendicular} {sub to} /2=2.17 Aa, slightly expanded along the film normal. Scanning Tunneling Microscopy (STM) show a big improvement in the surface roughness after annealing the CoO films at 750 K in oxygen atmosphere. Magnetic measurements using the magneto-optical Kerr effect (MOKE) show a characteristic increase of the coercive field when the Fe/CoO bilayer system is cooled down from room temperature to 150 K. The ordering temperature for the antiferromagnetic layer is in the same range as the Neel temperature for bulk CoO (T{sub N}=290 K). X-ray absorption spectroscopy was employed to probe magnetic and electronic properties with elemental selectivity. Absorption spectra taken from bilayers with different amounts of deposited Fe show only a weak indication for the formation of Fe oxide at the Fe/CoO interface (0.3 ML Fe). From the spectral shape it is concluded that an FeO type of oxide is formed. X-ray Magnetic Circular Dichroism (XMCD) measurements exhibit a sizeable induced ferromagnetic signal at the Co L{sub 2,3} absorption edge, corresponding to an interface layer of 1.1 ML in which the magnetic spins couple with the Fe layer. The angular dependence of the X-ray Magnetic Linear Dichroism (XMLD) and X-ray Magnetic Circular Dichroism XMCD at both the Co and Fe L{sub 2,3} edges shows the orientation of the Co and Fe moments in the bilayers with respect to the crystallographic direction. PhotoElectron Emission Microscope (PEEM) is used to image each ferromagnetic and antiferromagnetic layer separately. Magnetic contrast due to the induced magnetic spins at the interface is also

  13. High-perfomance Ce-doped multicomponent garnet single crystalline film scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T. [Institute of Physics, Kazimierz Wielki, University in Bydgoszcz, Powstancow, Wielkopolskich str., 2, 85090, Bydgoszcz (Poland); Department of Electronics of Ivan Franko, National University of Lviv, Gen. Tarnavskiy str. 17, 79017, Lviv (Ukraine); Sidletskiy, O. [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenina str., 60, 61001, Kharkiv (Ukraine); Fedorov, A. [SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenina str., 60, 61178, Kharkiv (Ukraine); Bilski, P.; Twardak, A. [Institute of Nuclear Physic, Polish Academy of Sciences, Radzikowskiego str., 176, 31-342, Krakow (Poland)

    2015-08-15

    We report for the first time the optimized content and excellent scintillation properties of single crystalline film (SCF) scintillators of multicomponent Gd{sub 3-x}Lu{sub x} Al{sub 5-y}Ga{sub y} O{sub 12}:Ce garnet compounds grown by liquid phase epitaxy (LPE) method. The Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce and Gd{sub 3}Al{sub 2.75-2}Ga{sub 2.25-3}O{sub 12}:Ce SCF show the light yield (LY) comparable with that of high-quality bulk crystal analogues of these garnets but faster scintillation decay and very low thermoluminescence in the above room temperature range. To our knowledge, these SCF possess the highest LY values ever obtained in LPE grown garnet SCF scintillators exceeding by at least 1.5-1.6 times the values previously reported for SCF scintillators. Left figure: image of Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (PbO) (inset, left) and Gd{sub 3}Al{sub 2.35}Ga{sub 2.65}O{sub 12}:Ce (BaO) (inset, right) SCF scintillators, grown by LPE method onto Gd{sub 3}Al{sub 2.5}Ga{sub 2.5}O{sub 12} (GAGG) substrate; in the middle, green-yellow light emitting by Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (BaO) SCF under 350 nm laser illumination. Right figure: XRD pattern of (1200) planes of the Gd{sub 1.5}Lu{sub 1.5}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (PbO) (black) and Gd{sub 3}Al{sub 2.75}Ga{sub 2.25}O{sub 12}:Ce (BaO) (red) SCFs, grown onto GAGG substrates. The film/substrate lattice misfit is -0.73% and -0.3%, respectively. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. A model system for carbohydrates interactions on single-crystalline Ru surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thanh Nam

    2015-07-01

    In this thesis, I present a model system for carbohydrate interactions with single-crystalline Ru surfaces. Geometric and electronic properties of copper phthalocyanine (CuPc) on top of graphene on hexagonal Ru(0001), rectangular Ru(10 anti 10) and vicinal Ru(1,1, anti 2,10) surfaces have been studied. First, the Fermi surfaces and band structures of the three Ru surfaces were investigated by high-resolution angle-resolved photoemission spectroscopy. The experimental data and theoretical calculations allow to derive detailed information about the momentum-resolved electronic structure. The results can be used as a reference to understand the chemical and catalytic properties of Ru surfaces. Second, graphene layers were prepared on the three different Ru surfaces. Using low-energy electron diffraction and scanning tunneling microscopy, it was found that graphene can be grown in well-ordered structures on all three surfaces, hexagonal Ru(0001), rectangular Ru(10 anti 10) and vicinal Ru(1,1, anti 2,10), although they have different surface symmetries. Evidence for a strong interaction between graphene and Ru surfaces is a 1.3-1.7 eV increase in the graphene π-bands binding energy with respect to free-standing graphene sheets. This energy variation is due to the hybridization between the graphene pi bands and the Ru 4d electrons, while the lattice mismatch does not play an important role in the bonding between graphene and Ru surfaces. Finally, the geometric and electronic structures of CuPc on Ru(10 anti 10), graphene/Ru(10 anti 10), and graphene/Ru(0001) have been studied in detail. CuPc molecules can be grown well-ordered on Ru(10 anti 10) but not on Ru(0001). The growth of CuPc on graphene/Ru(10 anti 10) and Ru(0001) is dominated by the Moire pattern of graphene. CuPc molecules form well-ordered structures with rectangular unit cells on graphene/Ru(10 anti 10) and Ru(0001). The distance of adjacent CuPc molecules is 15±0.5 Aa and 13±0.5 Aa on graphene/Ru(0001

  15. Nanoscale magneto-structural coupling in as-deposited and freestanding single-crystalline Fe7Pd3 ferromagnetic shape memory alloy thin films

    Directory of Open Access Journals (Sweden)

    Anja Landgraf, Alexander M Jakob, Yanhong Ma and Stefan G Mayr

    2013-01-01

    Full Text Available Ferromagnetic shape memory alloys are characterized by strong magneto-mechanical coupling occurring at the atomic scale causing large magnetically inducible strains at the macroscopic level. Employing combined atomic and magnetic force microscopy studies at variable temperature, we systematically explore the relation between the magnetic domain pattern and the underlying structure for as-deposited and freestanding single-crystalline Fe7Pd3 thin films across the martensite–austenite transition. We find experimental evidence that magnetic domain appearance is strongly affected by the presence and absence of nanotwinning. While the martensite–austenite transition upon temperature variation of as-deposited films is clearly reflected in topography by the presence and absence of a characteristic surface corrugation pattern, the magnetic domain pattern is hardly affected. These findings are discussed considering the impact of significant thermal stresses arising in the austenite phase. Freestanding martensitic films reveal a hierarchical structure of micro- and nanotwinning. The associated domain organization appears more complex, since the dominance of magnetic energy contributors alters within this length scale regime.

  16. Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces

    Directory of Open Access Journals (Sweden)

    Armin Kleibert

    2011-01-01

    Full Text Available Background: Magnetic nanostructures and nanoparticles often show novel magnetic phenomena not known from the respective bulk materials. In the past, several methods to prepare such structures have been developed – ranging from wet chemistry-based to physical-based methods such as self-organization or cluster growth. The preparation method has a significant influence on the resulting properties of the generated nanostructures. Taking chemical approaches, this influence may arise from the chemical environment, reaction kinetics and the preparation route. Taking physical approaches, the thermodynamics and the kinetics of the growth mode or – when depositing preformed clusters/nanoparticles on a surface – the landing kinetics and subsequent relaxation processes have a strong impact and thus need to be considered when attempting to control magnetic and structural properties of supported clusters or nanoparticles.Results: In this contribution we focus on mass-filtered Fe nanoparticles in a size range from 4 nm to 10 nm that are generated in a cluster source and subsequently deposited onto two single crystalline substrates: fcc Ni(111/W(110 and bcc W(110. We use a combined approach of X-ray magnetic circular dichroism (XMCD, reflection high energy electron diffraction (RHEED and scanning tunneling microscopy (STM to shed light on the complex and size-dependent relation between magnetic properties, crystallographic structure, orientation and morphology. In particular XMCD reveals that Fe particles on Ni(111/W(110 have a significantly lower (higher magnetic spin (orbital moment compared to bulk iron. The reduced spin moments are attributed to the random particle orientation being confirmed by RHEED together with a competition of magnetic exchange energy at the interface and magnetic anisotropy energy in the particles. The RHEED data also show that the Fe particles on W(110 – despite of the large lattice mismatch between iron and tungsten – are

  17. Conducting LaAlO3/SrTiO3 heterointerfaces on atomically-flat substrates prepared by deionized-water

    Science.gov (United States)

    Connell, J. G.; Nichols, J.; Gruenewald, J. H.; Kim, D.-W.; Seo, S. S. A.

    2016-04-01

    We have investigated how the recently-developed water-leaching method for atomically-flat SrTiO3 (STO) substrates affects the transport properties of LaAlO3 (LAO) and STO heterointerfaces. Using pulsed laser deposition at identical growth conditions, we have synthesized epitaxial LAO thin-films on two different STO substrates, which are prepared by water-leaching and buffered hydrofluoric acid (BHF) etching methods. The structural, transport, and optical properties of LAO/STO heterostructures grown on water-leached substrates show the same high-quality as the samples grown on BHF-etched substrates. These results indicate that the water-leaching method can be used to grow complex oxide heterostructures with atomically well-defined heterointerfaces without safety concerns.

  18. Experimental investigation of off-stoichiometry and 3d transition metal (Mn, Ni, Cu-substitution in single-crystalline FePt thin films

    Directory of Open Access Journals (Sweden)

    Takuya Ono

    2016-05-01

    Full Text Available In L10 (fct-FePt thin films, both tuning Fe and Pt concentrations and substitution with third-metal were studied for magnetic characteristic optimization. We investigated single-crystalline FePt-X (X = Mn, Ni, Cu thin films grown epitaxially on MgO(001 substrates at a substrate temperature of 350  °C by changing Fe, Pt, and X contents, and explored the effects of off-stoichiometry and 3d-metal-substitution. The magnetic moment per atom (m of FePt-X films as a function of the effective number of valence electrons (neff in 3d metal sites follows the Slater-Pauling-type trend, by which m decreases by the neff deviation from neff = 8, independently of the X metal and the Pt concentration. The magnetic anisotropy (Ku exhibits neff dependence similar to m. This trend was almost independent of the Pt concentration after compensation using the theoretical prediction on the relation between Ku and Fe/Pt concentrations. Such a trend has been proved for stoichiometric FePt-X films, but it was clarified as robust against off-stoichiometry. The compensated Ku ( K u comp of FePt-Mn and FePt-Cu followed a similar trend to that predicted by the rigid-band model, although the K u comp of the FePt-Mn thin films dropped more rapidly than the rigid band calculation. However, it followed the recent first-principles calculation.

  19. Microstructural Properties of Single Crystalline PbTe Thin Films Grown on BaF2(111) by Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    SI Jian-Xiao; WU Hui-Zhen; XU Tian-Ning; CAO Chun-Fang; HUANG Zhan-Chao

    2005-01-01

    @@ Single crystal PbTe thin films have been grown on BaF2 (111) by using solid source molecular beam epitaxy.The studies of evolution of the surface morphology with the increasing growth temperature from 375 to 525℃by AFM show that PbTe epilayers exhibit smooth surface morphologies with atomic layer scale roughness and are crack free. It is found that for PbTe grown at 475℃, the morphology is dominated by triangles and the rms roughness is 3.987nm. Compared to the rms roughnesses of 0.432nm and 0.759nm for the samples grown at 375 and 525℃ respectively, the surface of the PbTe layer grown at 475℃ is much rougher. This roughening transition is due to the interaction between the elastic relaxation and the plastic relaxation during the strain relaxation process. In contrast to the result of the morphology that the PbTe epitaxial layer grown at 375℃ has most smooth surface, as observed from the line width of x-ray diffraction curves at higher growth temperature improves the crystal quality of the single-crystalline PbTe layer.

  20. Dissociative adsorption of molecular deuterium and thermal stability onto hydrogenated, bare and ion beam damaged poly- and single crystalline diamond surfaces

    Science.gov (United States)

    Michaelson, Sh.; Chandran, M.; Zalkind, S.; Shamir, N.; Akhvlediani, R.; Hoffman, A.

    2015-12-01

    In this work we report on dissociative adsorption of deuterium (D2) on bare, hydrogenated and ion beam bombarded polycrystalline and single crystalline diamond surfaces. Polycrystalline diamond films with an average grain size of ~ 300 nm were deposited on silicon substrates by hot filament chemical vapor deposition technique from methane/hydrogen gas mixture. Deposited films were characterized using Raman spectroscopy, atomic force microscopy and scanning electron microscopy to estimate the phase composition and microstructure. High resolution electron energy loss spectroscopy and direct recoil spectrometry were used to study hydrogen (deuterium) bonding configuration of the upper surface region. Near surface amorphization was achieved by 1 keV Ar+ implantation at ~ 1 × 1015 ions/cm2 at room temperature (RT). As deposited and Ar+ bombarded films are annealed to 500-1000 °C in ultra-high vacuum conditions and also under D2 partial pressure of 5 × 10- 6 Torr. For comparison, key experiments were repeated on the single crystal (100) diamond. Our results clearly show the preferential dissociative adsorption of D2 on low hybridized carbon (sp/sp2) states with activation temperature as low as RT, but with a lower thermal stability compared to pure diamond Csbnd D bonds.

  1. Production and characterization of nanocomposite thin films based on Ni matrix reinforced with SnO{sub 2} single-crystalline nanowires for electrical contact applications

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, F.L., E-mail: f.miguel@mx.uni-saarland.de [Saarland University, Functional Materials, 66123 Saarbrücken (Germany); Müller, R. [University of Cologne, Inorganic and Materials Chemistry, 50939 Cologne (Germany); Weinmann, M.; Hempelmann, R. [Saarland University, Physical Chemistry, 66123 Saarbrücken (Germany); Mathur, S. [University of Cologne, Inorganic and Materials Chemistry, 50939 Cologne (Germany); Mücklich, F. [Saarland University, Functional Materials, 66123 Saarbrücken (Germany)

    2014-08-01

    Highlights: • Metal-matrix nanocomposites obtained, reinforced by nanowires attached to substrate. • Nanocrystalline matrix in spite of direct-current electrodeposition being used. • Strong influence of SnO{sub 2} nanowires on surface and microstructural properties. • Previous coating of nanowires (with Ag) improved the matrix deposition. - Abstract: Nanocomposite thin films based on electrodeposited Ni matrix reinforced with SnO{sub 2} single-crystalline nanowires grown onto Si substrates by chemical vapor deposition were produced. The composites were characterized by means of scanning and transmission electron microscopy (for imaging, selected area diffraction and transmission Kikuchi diffraction), atomic force microscopy (for 3D surface profiling and roughness evaluation) and 4-point probe electrical resistivity measurements. The Ni matrices obtained were nanocrystalline in nature (41 nm crystallite mean size) even though low direct current electrodeposition was used. The topography and roughness of the samples were strongly affected by the presence of the nanowires as so was the electrical resistivity, which could be improved by Ag-coating the nanowires. A comparison with pure Ni produced in the same way is presented for determining the effects of the SnO{sub 2} nanowires.

  2. Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength

    International Nuclear Information System (INIS)

    Single crystalline thin films of Er2O3, demonstrating efficient 1.5 μm luminescence of Er3+ at room temperature were grown on Al2O3 substrate by molecular beam epitaxy. The absorption coefficient at 1.536 μm was found to reach 270 cm−1 translating in a maximal possible gain of 1390 dBcm−1. In conjunction with the 10% higher refractive index as compared to Al2O3, this opens the possibility to use Er2O3:sapphire films as short-length waveguide amplifiers in telecommunication

  3. Current-direction dependence of the transport properties in single-crystalline face-centered-cubic cobalt films

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, X.; Liang, J. H.; Chen, B. L.; Li, J. X.; Ding, Z.; Wu, Y. Z., E-mail: wuyizheng@fudan.edu.cn [Department of Physics, State Key Laboratory of Surface Physics and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Ma, D. H. [Department of Energy Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-07-28

    Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.

  4. Mechanical energy losses in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zelada, Griselda I. [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Lambri, Osvaldo Agustin [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario - CONICET, Member of the CONICET& #x27; s Research Staff, Avda. Pellegrini 250, 2000 Rosario (Argentina); Bozzano, Patricia B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, 1650 San Martin (Argentina); Garcia, Jose Angel [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)

    2012-10-15

    Mechanical spectroscopy (MS) and transmission electron microscopy (TEM) studies have been performed in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum, oriented for single slip, in order to study the dislocation dynamics in the temperature range within one third of the melting temperature. A damping peak related to the interaction of dislocation lines with both prismatic loops and tangles of dislocations was found. The peak temperature ranges between 900 and 1050 K, for an oscillating frequency of about 1 Hz. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Self-Assembled Organic Single Crystalline Nanosheet for Solution Processed High-Performance n-Channel Field-Effect Transistors.

    Science.gov (United States)

    Kim, Jin Hong; Park, Sang Kyu; Kim, Jong H; Whang, Dong Ryeol; Yoon, Won Sik; Park, Soo Young

    2016-07-01

    Submillimeter sized n-channel organic single crystalline nanosheet based on dicyanodistyrylbenzene derivative, (2E,2'E)-3,3'-(2,5-dimethoxy-1,4-pheny-lene)bis(2-(5-(4-(trifluoromethyl)phenyl)thiophen-2-yl)acrylonitrile) (Me-4-TFPTA), is developed. Strong π-π interaction, hydrogen bonding interactions derived from cyano group (CN) as well as solvent inclusion along the lateral direction play a key role in forming nanosheet morphology. Me-4-TFPTA nanosheets exhibit excellent field-effect electron mobility of up to 7.81 cm(2) v(-1) s(-1) . PMID:27165653

  6. Investigation of electrically-active deep levels in single-crystalline diamond by particle-induced charge transient spectroscopy

    Science.gov (United States)

    Kada, W.; Kambayashi, Y.; Ando, Y.; Onoda, S.; Umezawa, H.; Mokuno, Y.; Shikata, S.; Makino, T.; Koka, M.; Hanaizumi, O.; Kamiya, T.; Ohshima, T.

    2016-04-01

    To investigate electrically-active deep levels in high-resistivity single-crystalline diamond, particle-induced charge transient spectroscopy (QTS) techniques were performed using 5.5 MeV alpha particles and 9 MeV carbon focused microprobes. For unintentionally-doped (UID) chemical vapor deposition (CVD) diamond, deep levels with activation energies of 0.35 eV and 0.43 eV were detected which correspond to the activation energy of boron acceptors in diamond. The results suggested that alpha particle and heavy ion induced QTS techniques are the promising candidate for in-situ investigation of deep levels in high-resistivity semiconductors.

  7. Oriented single crystalline TiO2 nano-pillar arrays directly grown on titanium substrate in tetramethylammonium hydroxide solution

    International Nuclear Information System (INIS)

    Oriented single crystalline titanium dioxide (TiO2) nano-pillar arrays were directly synthesized on the Ti plate in tetramethylammonium hydroxide (TMAOH) solution by one-pot hydrothermal method. The samples were characterized respectively by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Results showed that the TiO2 nano-pillar with a tetrahydral bipyramidal tip grew vertically on the titanium substrate. HRTEM and Raman results confirmed that the TiO2 nano-pillar arrays were single crystalline anatase. The controls of morphology, size, and orientation of the nano-pillar could be achieved by varying the solution concentration and hydrothermal temperature. Furthermore, the special morphology of the TiO2 nano-pillar arrays was caused by the selectively absorption of the tetramethylammonium (TMA) through hydrogen bonds on the lattice planes parallel to (0 0 1) of anatase TiO2. Less grain boundaries and direct electrical pathway for electron transferring were crucial for the superior photoelectrochemical properties of the single anatase TiO2 nano-pillar arrays. This approach provides a facile in situ method to synthesize TiO2 nano-pillar arrays with a special morphology on titanium substrate.

  8. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries.

    Science.gov (United States)

    Su, Dawei; Dou, Shixue; Wang, Guoxiu

    2014-08-29

    Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}.

  9. Anisotropic surface strain in single crystalline cobalt nanowires and its impact on the diameter-dependent Young's modulus

    KAUST Repository

    Huang, Xiaohu

    2013-01-01

    Understanding and measuring the size-dependent surface strain of nanowires are essential to their applications in various emerging devices. Here, we report on the diameter-dependent surface strain and Young\\'s modulus of single-crystalline Co nanowires investigated by in situ X-ray diffraction measurements. Diameter-dependent initial longitudinal elongation of the nanowires is observed and ascribed to the anisotropic surface stress due to the Poisson effect, which serves as the basis for mechanical measurements. As the nanowire diameter decreases, a transition from the "smaller is softer" regime to the "smaller is tougher" regime is observed in the Young\\'s modulus of the nanowires, which is attributed to the competition between the elongation softening and the surface stiffening effects. Our work demonstrates a new nondestructive method capable of measuring the initial surface strain and estimating the Young\\'s modulus of single crystalline nanowires, and provides new insights on the size effect. © 2013 The Royal Society of Chemistry.

  10. Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection.

    Science.gov (United States)

    Li, Peng; Zhang, Bo; Cui, Tianhong

    2015-10-15

    Graphene biosensors reported so far are based on polycrystalline graphene flakes which are anchored on supporting substrates. The influence of grain boundary and the scattering from substrate drastically degrade the properties of graphene and conceal the performance of intrinsic graphene as a sensor. Here we report a label-free biosensor based on suspended single crystalline graphene (SCG), which can get rid of grain boundary and substrate scattering, revealing the biosensing mechanism of intrinsic graphene for the first time. Monolayer SCG flakes were derived from low pressure chemical vapor deposition (LPCVD) method. Multiplex detection of three different lung cancer tumor markers was realized. The suspended structure can largely improve the sensitivity and detection limit (0.1 pg/ml) of the sensor, and the single crystalline nature of SCG enable the biosensor to have superior uniformity compared to polycrystalline ones. The SCG sensors exhibit superb specificity and large linear detection range from 1 pg/ml to 1 μg/ml, showing the prominent advantages of graphene as a sensing material.

  11. Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries

    Science.gov (United States)

    Su, Dawei; Dou, Shixue; Wang, Guoxiu

    2014-08-01

    Single crystalline Co3O4 nanocrystals exposed with different crystal planes were synthesised, including cubic Co3O4 nanocrystals enclosed by {100} crystal planes, pseudo octahedral Co3O4 enclosed by {100} and {110} crystal planes, Co3O4 nanosheets exposed by {110} crystal planes, hexagonal Co3O4 nanoplatelets exposed with {111} crystal planes, and Co3O4 nanolaminar exposed with {112} crystal planes. Well single crystalline features of these Co3O4 nanocrystals were confirmed by FESEM and HRTEM analyses. The electrochemical performance for Li-O2 batteries shows that Co3O4 nanocrystals can significantly reduce the discharge-charge over-potential via the effect on the oxygen evolution reaction (OER). From the comparison on their catalytic performances, we found that the essential factor to promote the oxygen evolution reactions is the surface crystal planes of Co3O4 nanocrystals, namely, crystal planes-dependent process. The correlation between different Co3O4 crystal planes and their effect on reducing charge-discharge over-potential was established: {100} < {110} < {112} < {111}.

  12. Hydrothermal transformation of titanate nanotubes into single-crystalline TiO2 nanomaterials with controlled phase composition and morphology

    International Nuclear Information System (INIS)

    Single-crystalline TiO2 nanomaterials were synthesized by hydrothermally treating suspensions of H-titanate nanotubes and characterized by XRD, TEM, and HRTEM. The effects of the pH values of the suspensions and the hydrothermal temperatures on the phase composition and morphology of the obtained TiO2 nanomaterials were systematically investigated. The H-titanate nanotubes were predominately transformed into anatase nanoparticle with rhombic shape when the pH value was greater than or equal to 1.0, whereas primarily turned into rutile nanorod with two pyramidal ends at the pH value less than or equal to 0.5. We propose a possible mechanism for hydrothermal transformation of H-titanate nanotubes into single-crystalline TiO2 nanomaterials. While the H-titanate nanotubes transform into tiny anatase nanocrystallites of ca. 3 nm in size, the formed nanocrystallites as an intermediate grow into the TiO2 nanomaterials with controlled phase composition and morphology. This growth process involves the steps of protonation, oriented attachment, and Ostwald ripening.

  13. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template

    KAUST Repository

    Zhu, Jie

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. © 2014 American Chemical Society.

  14. Unit-Cell by Unit-Cell Homoepitaxial Growth Using Atomically Flat SrTiO3(001) Substrates and Pulsed Laser Deposition

    Institute of Scientific and Technical Information of China (English)

    FEI Yi-Yan; WANG Xu; LU Hui-Bin; YANG Guo-Zhen; ZHU Xiang-Dong

    2005-01-01

    @@ Using a combination of chemical etching and thermal annealing methods, we have obtained atomically flat TiO2-terminated SrTiO3 (001) with large terraces.The average width of the terrace is only determined by miscut angles.When we continuously grow tens of SrTiO3 monolayers on such a surface under pulsed laser ablation deposition condition at 621℃, the growth proceeds in a layer-by-layer mode characterized by un-damped oscillations of the specular RHEED intensity.After the growth of 180 monolayers, the surface morphology is restored to the pre-growth condition with similarly large terraces after annealing in vacuum for only 30 min, indicating efficient mass transfer on TiO2-terminated terraces.

  15. Single crystalline monoclinic La0.7Sr0.3MnO3 nanowires with high temperature ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Carretero-Genevrier, Adrian [ICMAB, Barcelona, Spain; Gazquez Alabart, Jaume [ORNL; Idrobo Tapia, Juan C [ORNL; Oro, Judith [ICMAB, Barcelona, Spain; Arbiol, Jordi [ICMAB, Barcelona, Spain; Varela del Arco, Maria [ORNL; Ferain, Etienne [Universite catholique de Louvain, Belgium (UCL); Rodriguez-Carvajal, Juan [Institut Laue-Langevin (ILL); Puig, Teresa [ICMAB, Barcelona, Spain; Mestres, Narcis [ICMAB, Barcelona, Spain; Obradors, Xavier [ICMAB, Barcelona, Spain

    2011-01-01

    Porous mixed-valent manganese oxides are a group of multifunctional materials that can be used as molecular sieves, catalysts, battery materials, and gas sensors. However, material properties and thus activity can vary significantly with different synthesis methods or process conditions, such as temperature and time. Here, we report on a new synthesis route for MnO{sub 2} and LaSr-doped molecular sieve single crystalline nanowires based on a solution chemistry methodology combined with the use of nanoporous polymer templates supported on top of single crystalline substrates. Because of the confined nucleation in high aspect ratio nanopores and of the high temperatures attained, new structures with novel physical properties have been produced. During the calcination process, the nucleation and crystallization of {var_epsilon}-MnO{sub 2} nanoparticles with a new hexagonal structure is promoted. These nanoparticles generated up to 30 {mu}m long and flexible hexagonal nanowires at mild growth temperatures (T{sub g} = 700 C) as a consequence of the large crystallographic anisotropy of {var_epsilon}-MnO{sub 2}. The nanocrystallites of MnO{sub 2} formed at low temperatures serve as seeds for the growth of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanowires at growth temperatures above 800 C, through the diffusion of La and Sr into the empty 1D-channels of {var_epsilon}-MnO{sub 2}. Our particular growth method has allowed the synthesis of single crystalline molecular sieve (LaSr-2 x 4) monoclinic nanowires with composition La{sub 0.7}Sr{sub 0.3}MnO{sub 3} and with ordered arrangement of La{sup 3+} and Sr{sup 2+} cations inside the 1D-channels. These nanowires exhibit ferromagnetic ordering with strongly enhanced Curie temperature (T{sub c} > 500 K) that probably results from the new crystallographic order and from the mixed valence of manganese.

  16. Phase identification on the intermetallic compound formed between eutectic SnIn solder and single crystalline Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Feifei; Liu, Zhi-Quan, E-mail: zqliu@imr.ac.cn; Shang, Pan-Ju; Guo, Jingdong

    2014-04-05

    Graphical abstract: Two kinds of intermetallic compounds were formed in three sublayers during interfacial reaction between eutectic SnIn solder and single crystalline Cu substrate, which are Cu(In,Sn){sub 2} layer with tetragonal crystal structure at solder side, coarse-grain Cu{sub 2}(In,Sn) sublayer and fine-grain Cu{sub 2}(In,Sn) sublayer with hexagonal crystal structure at Cu side. -- Highlights: • Reflowing at 160 °C Cu(In,Sn){sub 2} and Cu{sub 2}(In,Sn) were formed on single crystalline Cu. • Large Cu(In,Sn){sub 2} grain has tetragonal crystal structure with chunk-type morphology. • Cu(In,Sn){sub 2} layer is prone of spalling into solder in liquid soldering process. • Cu{sub 2}(In,Sn) is made up of fine and coarse sublayers with hexagonal crystal structure. • Fine Cu{sub 2}(In,Sn) grain has granular morphology and coarse one is elongated. -- Abstract: The intermetallic compound (IMC) formed between eutectic SnIn solder and single crystalline Cu substrate during reflow and solid-state aging was investigated precisely utilizing electron microscope. Two kinds of crystal structures with different morphologies were identified, which are Cu(In,Sn){sub 2} at the solder side and the Cu{sub 2}(In,Sn) at the Cu substrate side. The Cu(In,Sn){sub 2} layer with chunk-type morphology suffered spalling easily during slightly increased liquid soldering at 160 °C, and Cu{sub 2}(In,Sn) was in the form of duplex structure with coarse-grain and fine-grain sublayers. During solid-state aging at 60 °C, the morphology of fine-grain Cu{sub 2}(In,Sn) kept granule-type, while that of the coarse-grain Cu{sub 2}(In,Sn) was substrate-dependent with elongated morphology.

  17. Constructing MnO2/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    Science.gov (United States)

    Yu, Weiwei; Liu, Tiangui; Cao, Shiyi; Wang, Chen; Chen, Chuansheng

    2016-07-01

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO2 nanoparticles (MnO2/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO2 nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO2/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancement for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO2 nanoparticles.

  18. Magnetization reversal process in Fe/Si (001) single-crystalline film investigated by planar Hall effect

    Institute of Scientific and Technical Information of China (English)

    叶军; 何为; 胡泊; 汤进; 张永圣; 张向群; 陈子瑜; 成昭华

    2015-01-01

    Planar Hall effect (PHE) is introduced to investigate the magnetization reversal process in single-crystalline iron film grown on Si (001) substrate. Owing to the domain structure of iron film and the characteristics of PHE, the magnetization switches sharply in an angular range of the external field for two steps of 90◦ domain wall displacement and one step of 180◦domain wall displacement near the easy axis, respectively. However, the magnetization reversal process near hard axis is completed by only one step of 90◦ domain wall displacement and then rotates coherently. The magnetization reversal process mechanism near the hard axis seems to be a combination of coherent rotation and domain wall displacement. Furthermore, the domain wall pinning energy and uniaxial magnetic anisotropy energy can also be derived from the PHE measurement.

  19. Ultrasound-induced nitride formation on the surface of single-crystalline GaAs in cryogenic fluid

    Science.gov (United States)

    Savkina, R. K.; Smirnov, A. B.

    2015-02-01

    We have developed and successfully used a new method for structuring semiconductor surfaces that is based on the phenomenon of cavitation excited by focused ultrasound in a liquid medium. In this work, the cavitation impact of ultrasound at a frequency of ˜1 MHz and a power density of ˜15 W/cm2 on the surface of single-crystalline (001) GaAs in liquid nitrogen led to the formation of a submicron-sized relief of rippled and concentric structures with a height of up to 300 nm. Data of Raman spectroscopy and energy-dispersive X-ray spectroscopy showed the formation of GaAs1 - x N x surface compound with a nitrogen content of 5-7%.

  20. The unusually high Tc in rare-earth-doped single crystalline CaFe2As2

    Science.gov (United States)

    Wei, Fengyan; Lv, Bing; Deng, Liangzi; Meen, James K.; Xue, Yu-Yi; Chu, Ching-Wu

    2014-08-01

    In rare-earth-doped single crystalline CaFe2As2, the mysterious small volume fraction which superconducts up to 49 K, much higher than the bulk Tc ~ 30 s K, has prompted a long search for a hidden variable that could enhance the Tc by more than 30% in iron-based superconductors of the same structure. Here we report a chemical, structural and magnetic study of CaFe2As2 systematically doped with La, Ce, Pr and Nd. Coincident with the high Tc phase, we find extreme magnetic anisotropy, accompanied by an unexpected doping-independent Tc and equally unexpected superparamagnetic clusters associated with As vacancies. These observations lead us to conjecture that the tantalizing Tc enhancement may be associated with naturally occurring chemical interfaces and may thus provide a new paradigm in the search for superconductors with higher Tc.

  1. Cobalt-doping effects in single crystalline and polycrystalline EuFe2-xCoxAs2 compounds

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of Co-doped EuFe2-xCoxAs2 compounds were prepared in both of single crystalline and polycrystalline forms.The Co-doping effects on the crystal structure,electrical resistivity and magnetic susceptibility were systematically studied.Superconductivity was found in polycrystalline Co-doped samples from zero resistivity effects,with the highest onset superconducting transition temperature at 26 K in the optimum doped EuFe1.84Co0.16As2 compound.While due to the stronger competition between the superconducting order and the Eu2+ magnetic order,the zero resistivity effect is absent in the Co-doped single crystal samples.

  2. Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Kuladeep, Rajamudili; Sahoo, Chakradhar; Narayana Rao, Desai, E-mail: dnrsp@uohyd.ernet.in, E-mail: dnr-laserlab@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2014-06-02

    Laser-induced ripples or uniform arrays of continuous near sub-wavelength or discontinuous deep sub-wavelength structures are formed on single-crystalline silicon (Si) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Si wafers at normal incidence in air and by immersing them in dimethyl sulfoxide using linearly polarized Ti:sapphire fs laser pulses of ∼110 fs pulse duration and ∼800 nm wavelength. Morphology studies of laser written surfaces reveal that sub-wavelength features are oriented perpendicular to laser polarization, while their morphology and spatial periodicity depend on the surrounding dielectric medium. The formation mechanism of the sub-wavelength features is explained by interference of incident laser with surface plasmon polaritons. This work proves the feasibility of fs laser direct writing technique for the fabrication of sub-wavelength features, which could help in fabrication of advanced electro-optic devices.

  3. Synthesis of one-molecule-thick single-crystalline nanosheets of energetic material for high-sensitive force sensor.

    Science.gov (United States)

    Yang, Guangcheng; Hu, Hailong; Zhou, Yong; Hu, Yingjie; Huang, Hui; Nie, Fude; Shi, Weimei

    2012-01-01

    Energetic material is a reactive substance that contains a great amount of potential energy, which is extremely sensitive to external stimuli like force. In this work, one-molecule-thick single-crystalline nanosheets of energetic material were synthesized. Very small force applied on the nanosheet proves to lead to the rotation of the tilted nitro groups, and subsequently change of current of the nanosheet. We apply this principle to design high-sensitive force sensor. A theoretical model of force-current dependence was established based on the nanosheets' molecular packing structure model that was well supported with the high resolution XPS, AFM analysis results. An ultra-low-force with range of several picoNewton to several nanoNewton can be measured by determination of corresponding current value.

  4. Comparison of slowness profiles of lamb wave with elastic moduli and crystal structure in single crystalline silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Min, Young Jae; Yun, Gyeong Won; Kim, Kyung Min; Roh, Yuji; Kim, Young H. [Applied Acoustics Lab, Korea Science Academy of KAIST, Busan (Korea, Republic of)

    2016-02-15

    Single crystalline silicon wafers having (100), (110), and (111) directions are employed as specimens for obtaining slowness profiles. Leaky Lamb waves (LLW) from immersed wafers were detected by varying the incident angles of the specimens and rotating the specimens. From an analysis of LLW signals for different propagation directions and phase velocities of each specimen, slowness profiles were obtained, which showed a unique symmetry with different symmetric axes. Slowness profiles were compared with elastic moduli of each wafer. They showed the same symmetries as crystal structures. In addition, slowness profiles showed expected patterns and values that can be inferred from elastic moduli. This implies that slowness profiles can be used to examine crystal structures of anisotropic solids.

  5. Construction of single-crystalline supramolecular networks of perchlorinated hexa-peri-hexabenzocoronene on Au(111).

    Science.gov (United States)

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Lin, Xiao; Tan, Yuanzhi; Feng, Xinliang; Du, Shixuan; Müllen, Klaus; Gao, Hong-Jun

    2015-03-14

    The self-assembly of the perchlorinated hexa-peri-hexabenzocoronene (PCHBC) molecules on Au(111) has been studied by a low temperature scanning tunneling microscopy (STM) combining with density functional theory based first principle calculations. Highly ordered supramolecular networks with single domains limited by the terraces are formed on Au(111) substrate. High resolution images of the PCHBC molecules, confirmed by first principle simulations, are obtained. It reveals the close-packed arrangement of the PCHBC molecules on Au(111). The calculated charge distribution of PCHBC molecules shows the existence of attractive halogen-halogen interaction between neighboring molecules. Compared with the disordered adsorption of hexa-peri-hexabenzocoronene on Au(111), we conclude that the formation of attractive Cl∙∙∙Cl interactions between neighbors is the key factor to form the highly ordered, close-packed networks. Due to the steric hindrance resulted from the peripheral chlorine atoms, the PCHBC molecule is contorted and forms the doubly concave conformation, which is different from the hexa-peri-hexabenzocoronene with a planar structure. By using this supramolecular network as a template, we deposited C60 molecules on it at room temperature with low coverage. The STM images taken at low temperature show that the C60 molecules are mono-dispersed on the networks and adsorb on top of the PCHBC molecules, forming a typical concave-convex host-guest system. PMID:25770500

  6. Construction of single-crystalline supramolecular networks of perchlorinated hexa-peri-hexabenzocoronene on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Du, Shixuan, E-mail: sxdu@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn; Gao, Hong-Jun, E-mail: sxdu@iphy.ac.cn, E-mail: hjgao@iphy.ac.cn [Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Lin, Xiao [University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049 (China); Tan, Yuanzhi [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany); Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Feng, Xinliang [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany); School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Müllen, Klaus [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany)

    2015-03-14

    The self-assembly of the perchlorinated hexa-peri-hexabenzocoronene (PCHBC) molecules on Au(111) has been studied by a low temperature scanning tunneling microscopy (STM) combining with density functional theory based first principle calculations. Highly ordered supramolecular networks with single domains limited by the terraces are formed on Au(111) substrate. High resolution images of the PCHBC molecules, confirmed by first principle simulations, are obtained. It reveals the close-packed arrangement of the PCHBC molecules on Au(111). The calculated charge distribution of PCHBC molecules shows the existence of attractive halogen–halogen interaction between neighboring molecules. Compared with the disordered adsorption of hexa-peri-hexabenzocoronene on Au(111), we conclude that the formation of attractive ClCl interactions between neighbors is the key factor to form the highly ordered, close-packed networks. Due to the steric hindrance resulted from the peripheral chlorine atoms, the PCHBC molecule is contorted and forms the doubly concave conformation, which is different from the hexa-peri-hexabenzocoronene with a planar structure. By using this supramolecular network as a template, we deposited C{sub 60} molecules on it at room temperature with low coverage. The STM images taken at low temperature show that the C{sub 60} molecules are mono-dispersed on the networks and adsorb on top of the PCHBC molecules, forming a typical concave-convex host-guest system.

  7. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Highlights: • Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets were synthesized. • The flower-like hierarchical structured ZnO exhibited higher response and shorter response and recovery times. • The sensing mechanism of the flower-like hierarchical has been systematically analyzed. - Abstract: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets (FHPSCZNs) were synthesized by a one-pot wet-chemical method followed by an annealing treatment, which combined the advantages between flower-like hierarchical structure and porous single-crystalline structure. XRD, SEM and HRTEM were used to characterize the synthesized FHPSCZN samples. The sensing properties of the FHPSCZN sensor were also investigated by comparing with ZnO powder sensor, which exhibited higher response and shorter response and recovery times. The sensing mechanism of the FHPSCZN sensor has been further analyzed from the aspects of electronic transport and gas diffusion

  8. Experimental evidence for self-assembly of CeO2 particles in solution: Formation of single-crystalline porous CeO2 nanocrystals

    DEFF Research Database (Denmark)

    Tan, Hui Ru; Tan, Joyce Pei Ying; Boothroyd, Chris;

    2012-01-01

    Single-crystalline porous CeO2 nanocrystals, with sizes of ∼20 nm and pore diameters of 1-2 nm, were synthesized successfully using a hydrothermal method. Using electron tomography, we imaged the three-dimensional structure of the pores in the nanocrystals and found that the oriented aggregation ...... energy-loss spectroscopy. The oxygen vacancies might play an important role in oxygen diffusion in the crystals and the catalytic activities of single-crystalline porous CeO 2 structures. © 2011 American Chemical Society....

  9. Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition.

    Science.gov (United States)

    Peters, Aaron W; Li, Zhanyong; Farha, Omar K; Hupp, Joseph T

    2015-08-25

    Atomic layer deposition (ALD) has been employed as a new synthetic route to thin films of cobalt sulfide on silicon and fluorine-doped tin oxide platforms. The self-limiting nature of the stepwise synthesis is established through growth rate studies at different pulse times and temperatures. Additionally, characterization of the materials by X-ray diffraction and X-ray photoelectron spectroscopy indicates that the crystalline phase of these films has the composition Co9S8. The nodes of the metal-organic framework (MOF) NU-1000 were then selectively functionalized with cobalt sulfide via ALD in MOFs (AIM). Spectroscopic techniques confirm uniform deposition of cobalt sulfide throughout the crystallites, with no loss in crystallinity or porosity. The resulting material, CoS-AIM, is catalytically active for selective hydrogenation of m-nitrophenol to m-aminophenol, and outperforms the analogous oxide AIM material (CoO-AIM) as well as an amorphous CoSx reference material. These results reveal AIM to be an effective method of incorporating high surface area and catalytically active cobalt sulfide in metal-organic frameworks.

  10. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  11. Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhen [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zhang, Yong-Xing [School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000 (China); Meng, Fan-Li; Jia, Yong; Luo, Tao; Yu, Xin-Yao; Wang, Jin; Liu, Jin-Huai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Xing-Jiu, E-mail: xingjiuhuang@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-07-15

    Graphical abstract: - Highlights: • Porous single crystalline ZnO nanoplates were successfully synthesized. • The nanoplates were with 12 nm in thickness and tens nanometers in pore size. • A synergistic effect of enhanced Cr(VI) photoreduction and phenol degradation was observed. • A possible reaction mechanism was discussed. - Abstract: Porous single crystalline ZnO nanoplates were successfully synthesized through a facile and cost-effective hydrothermal process at low temperature condition, followed by annealing of the zinc carbonate hydroxide hydrate precursors. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) measurements. The porous single crystalline ZnO nanoplates are with 12 nm thickness and pore ranging from 10 nm to several tens of nanometers. The porous structure of the ZnO nanoplates caused large amount of surface defects which worked as photogenerated holes’ shallow trappers and largely restrained the recombination of photogenerated electrons and holes, resulting in a significantly high photocatalytic activity and durability toward the photoreduction of Cr(VI) under UV irradiation. Moreover, a synergistic effect, that is, increased photocatalytic reduction of Cr(VI) and degradation of phenol, can be observed. Furthermore, the synergistic photocatalytic mechanism has also been discussed. Those results present an enlightenment to employ porous single crystalline nanomaterials to remove Cr(VI) and organic pollutants simultaneously.

  12. Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction.

    Science.gov (United States)

    Xin, Xiaoye; Xu, Tao; Wang, Lan; Wang, Chuanyi

    2016-01-01

    Black brookite TiO2 single-crystalline nanosheets with outstanding photocatalytic activity toward CO2 reduction is prepared by a facile oxidation-based hydrothermal reaction method combined with post-annealing treatment. Large amount of Ti(3+) defects are introduced into the bulk of brookite nanoparticles, which increases the solar energy absorption and enhances the photocatalytic activity. PMID:27021203

  13. Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction

    OpenAIRE

    Xiaoye Xin; Tao Xu; Lan Wang; Chuanyi Wang

    2016-01-01

    Black brookite TiO2 single-crystalline nanosheets with outstanding photocatalytic activity toward CO2 reduction is prepared by a facile oxidation-based hydrothermal reaction method combined with post-annealing treatment. Large amount of Ti3+ defects are introduced into the bulk of brookite nanoparticles, which increases the solar energy absorption and enhances the photocatalytic activity.

  14. Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction

    Science.gov (United States)

    Xin, Xiaoye; Xu, Tao; Wang, Lan; Wang, Chuanyi

    2016-03-01

    Black brookite TiO2 single-crystalline nanosheets with outstanding photocatalytic activity toward CO2 reduction is prepared by a facile oxidation-based hydrothermal reaction method combined with post-annealing treatment. Large amount of Ti3+ defects are introduced into the bulk of brookite nanoparticles, which increases the solar energy absorption and enhances the photocatalytic activity.

  15. Single-crystalline MFe(2)O(4) nanotubes/nanorings synthesized by thermal transformation process for biological applications.

    Science.gov (United States)

    Fan, Hai-Ming; Yi, Jia-Bao; Yang, Yi; Kho, Kiang-Wei; Tan, Hui-Ru; Shen, Ze-Xiang; Ding, Jun; Sun, Xiao-Wei; Olivo, Malini Carolene; Feng, Yuan-Ping

    2009-09-22

    We report a general thermal transformation approach to synthesize single-crystalline magnetic transition metal oxides nanotubes/nanorings including magnetite Fe(3)O(4), maghematite gamma-Fe(2)O(3), and ferrites MFe(2)O(4) (M = Co, Mn, Ni, Cu) using hematite alpha-Fe(2)O(3) nanotubes/nanorings template. While the straightforward reduction or reduction-oxides process was employed to produce Fe(3)O(4) and gamma-Fe(2)O(3), the alpha-Fe(2)O(3)/M(OH)(2) core/shell nanostructure was used as precursor to prepare MFe(2)O(4) nanotubes via MFe(2)O(4-x) (0 MFe(2)O(4) nanocrystals with tunable size, shape, and composition have exhibited unique magnetic properties. Moreover, they have been demonstrated as a highly effective peroxidase mimic catalysts for laboratory immunoassays or as a universal nanocapsules hybridized with luminescent QDs for magnetic separation and optical probe of lung cancer cells, suggesting that these biocompatible magnetic nanotubes/nanorings have great potential in biomedicine and biomagnetic applications.

  16. Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys

    Science.gov (United States)

    Lu, Chenyang; Jin, Ke; Béland, Laurent K.; Zhang, Feifei; Yang, Taini; Qiao, Liang; Zhang, Yanwen; Bei, Hongbin; Christen, Hans M.; Stoller, Roger E.; Wang, Lumin

    2016-02-01

    Energetic ions have been widely used to evaluate the irradiation tolerance of structural materials for nuclear power applications and to modify material properties. It is important to understand the defect production, annihilation and migration mechanisms during and after collision cascades. In this study, single crystalline pure nickel metal and single-phase concentrated solid solution alloys of 50%Ni50%Co (NiCo) and 50%Ni50%Fe (NiFe) without apparent preexisting defect sinks were employed to study defect dynamics under ion irradiation. Both cross-sectional transmission electron microscopy characterization (TEM) and Rutherford backscattering spectrometry channeling (RBS-C) spectra show that the range of radiation-induced defect clusters far exceed the theoretically predicted depth in all materials after high-dose irradiation. Defects in nickel migrate faster than in NiCo and NiFe. Both vacancy-type stacking fault tetrahedra (SFT) and interstitial loops coexist in the same region, which is consistent with molecular dynamics simulations. Kinetic activation relaxation technique (k-ART) simulations for nickel showed that small vacancy clusters, such as di-vacancies and tri-vacancies, created by collision cascades are highly mobile, even at room temperature. The slower migration of defects in the alloy along with more localized energy dissipation of the displacement cascade may lead to enhanced radiation tolerance.

  17. Morphological evolution in single-crystalline Bi2Te3 nanoparticles, nanosheets and nanotubes with different synthesis temperatures

    Indian Academy of Sciences (India)

    Punita Srivastava; Kedar Singh

    2013-10-01

    A general surfactant-assisted wet chemical route has been developed for the synthesis of a variety of bismuth telluride (Bi2Te3) single-crystalline nanostructures with varied morphologies at different temperatures in which hydrazine hydrate plays as an important solvent. Bi2Te3 sheet grown nanoparticles, nanosheets and nanotubes have been synthesized by a simplest wet chemical route at 50, 70 and 100 °C within 4 h. Bi2Te3 sheet grown nanoparticles are obtained in agglomerate state and they are found with many wrinkles. Various types of Bi2Te3 nanotubes are also found which are tapered with one end open and the other closed. X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) pattern and energy dispersive X-ray (EDX) spectroscopy were employed to characterize the powder product. It is found that all nanoparticles, nanosheets and nanotubes are well-crystallized nanocrystals and morphologies of the powder products are greatly affected by different synthesis temperatures. The formation mechanisms of bismuth telluride nanostructures are also discussed.

  18. Synthesis of ternary Ni{sub 1−x}Fe{sub x}S single crystalline nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xiaoying [College of Physical Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang (China); Zhang, Zhihua [Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Wu, Rong; Li, Jin [College of Physical Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang (China); Jian, Jikang, E-mail: jikangjian@gmail.com [College of Physical Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang (China)

    2014-12-05

    Highlights: • Ternary Ni{sub 1−x}Fe{sub x}S single-crystal nanorods were synthesized by a solvothermal technique. • Crystal structures, morphology and compositions of the ternary nanorods were characterized in details. • The band gaps of the Ni{sub 1−x}Fe{sub x}S nanorods were determined by optical absorption test. - Abstract: Single-crystalline Fe-doped NiS ternary nanorods with uniform morphology have been successfully synthesized in ethylenediamine solvent by a solvothermal technique using Ni, S and FeCl{sub 2}⋅4H{sub 2}O as starting materials. The phase, morphology, compositions and microstructure of the products have been characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The results show that the Ni{sub 1−x}Fe{sub x}S nanorods are well crystallized and the highest Fe doping concentration x is about 17.51%. The addition of Fe{sup 2+} ions can facilitate the one-dimensional growth and enlarge the band gaps of the nanorods.

  19. Shape- and dimension-controlled single-crystalline silicon and SiGe nanotubes: toward nanofluidic FET devices.

    Science.gov (United States)

    Ben Ishai, Moshit; Patolsky, Fernando

    2009-03-18

    We report here on the formation of robust and entirely hollow single-crystalline silicon nanotubes, from various tubular to conical structures, with uniform and well-controlled inner diameter, ranging from as small as 1.5 up to 500 nm, and controllable wall thickness. Second, and most important, these nanotubes can be doped in situ with different concentrations of boron and phosphine to give p/n-type semiconductor nanotubes. Si(x)Ge(1-x)-alloy nanotubes can also be prepared. This synthetic approach enables independent and precise control of diameter, wall thickness, shape, taper angle, crystallinity, and chemical/electrical characteristics of the nanotubular structures obtained. Notably, diameter and wall thickness of nearly any size can be obtained. This unique advantage allows the achievement of novel and perfectly controlled high-quality electronic materials and the tailoring of the tube properties to better fit many biological, chemical, and electrical applications. Electrical devices based on this new family of electrically active nanotubular building-block structures are also described with a view toward the future realization of nanofluidic FET devices. PMID:19226180

  20. Application of single-crystalline PMN-PT and PIN-PMN-PT in high-performance pyroelectric detectors.

    Science.gov (United States)

    Yu, Ping; Ji, Yadong; Neumann, Norbert; Lee, Sang-Goo; Luo, Hasou; Es-Souni, Mohammed

    2012-09-01

    The suitability for use in pyroelectric detectors of single-crystalline doped and undoped lead indium niobate-lead magnesium niobate-lead titanate was tested and compared with high-quality Mn-doped lead magnesium niobate-lead titanate and standard lithium tantalate. Pyroelectric and dielectric measurements confirmed an increased processing and operating temperature range because of the higher phase transitions of lead indium niobate-lead magnesium niobate-lead titanate. Pyroelectric coefficients of 705 to 770 μC/m(2)K were obtained with doped and undoped lead indium niobate-lead magnesium niobate-lead titanate, which are about 70% to 80% of the pyroelectric coefficient of lead magnesium niobate-lead titanate but 4 times higher than standard lithium tantalate. Manganese doping has been proved as a solution to decrease the dielectric loss of lead magnesium niobate-lead titanate and it also works well for lead indium niobate-lead magnesium niobate-lead titanate. An outstanding specific detectivity D* of about 1.1 · 10(9) cm·Hz(1/2)/W was achieved at a frequency of 2 Hz for Mn-doped lead magnesium niobate-based detectors. PMID:23007771

  1. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    Science.gov (United States)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in ~ 1 bar of CO at ~ 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  2. Single crystalline VO2 nanosheets: A cathode material for sodium-ion batteries with high rate cycling performance

    Science.gov (United States)

    Wang, Wei; Jiang, Bo; Hu, Liwen; Lin, Zheshuai; Hou, Jungang; Jiao, Shuqiang

    2014-03-01

    In recent years, with the growing demands for large-scale applications of rechargeable batteries, the eco-friendly sodium-ion batteries with low price and high charge-discharge rates have attracted much attention. In this work, using a simple hydrothermal process, we successfully synthesize single crystalline VO2 parallel ultrathin nanosheets for the cathode material in sodium-ion batteries. Combined the XRD, XPS, electrochemical measurements with the first-principles simulations, the charge-discharge performance and the mechanism of Na insertion and extraction into/from the VO2 structure have systematically studied. The results reveal that the NaxVO2 products possess semiconductor properties and the interlayer distance almost keeps constant during charge and discharge process, which is beneficial to the transmission of Na ions. The charge and discharge process occurs between Na0.3VO2 and NaVO2. Even at a large current density of 500 mA g-1, the discharge capacity can still keep at 108 mAh g-1. As a cathode material for sodium-ion batteries, the results are outstanding and provide a possibility of large-scale applications for rechargeable sodium-ion batteries.

  3. A facile strategy to fabricate high-quality single crystalline brookite TiO2 nanoarrays and their photoelectrochemical properties

    Science.gov (United States)

    Choi, Mingi; Yong, Kijung

    2014-10-01

    Vertically aligned high-quality single crystalline brookite TiO2 nanoarrays were synthesized for the first time using an environmentally benign one-step hydrothermal reaction. They have a unique bullet-shaped structure which has a length of 700-1000 nm and a width of 150-250 nm with a sharpened tip structure. By adjusting the concentration of NaOH in hydrothermal reaction, we could also synthesize other types of TiO2 nanostructures including anatase TiO2 nanotubes/nanowires. The morphologies and crystal structures of the products were confirmed by scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. Their vertically aligned structures facilitate their application as photoanodes in photoelectrochemical cells, and the photoelectrochemical properties such as photocurrent density and open circuit voltage were measured in a three-electrode electrochemical cell with TiO2 nanoarrays, Ag/AgCl and a Pt flag as the working, reference and counter electrodes, respectively, incorporating a 0.1 M NaOH electrolyte solution. The fabricated brookite TiO2 nanoarrays exhibited a highly enhanced photocurrent density and a longer electron lifetime compared with anatase TiO2 nanoarrays with similar lengths.Vertically aligned high-quality single crystalline brookite TiO2 nanoarrays were synthesized for the first time using an environmentally benign one-step hydrothermal reaction. They have a unique bullet-shaped structure which has a length of 700-1000 nm and a width of 150-250 nm with a sharpened tip structure. By adjusting the concentration of NaOH in hydrothermal reaction, we could also synthesize other types of TiO2 nanostructures including anatase TiO2 nanotubes/nanowires. The morphologies and crystal structures of the products were confirmed by scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. Their vertically aligned structures facilitate their application as photoanodes in photoelectrochemical

  4. Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.

    Science.gov (United States)

    Choi, Jongmin; Song, Seulki; Hörantner, Maximilian T; Snaith, Henry J; Park, Taiho

    2016-06-28

    An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs. PMID:27183030

  5. 两类扇形雾喷头雾化过程比较研究%Comparative research of two kinds of flat fan nozzle atomization process

    Institute of Scientific and Technical Information of China (English)

    谢晨; 何雄奎; 宋坚利; Andreas.Herbst

    2013-01-01

      为了探究标准扇形雾喷头(ST)与防飘喷头(IDK)的雾化特性,利用雾滴粒径分析仪(PDIA)对以上2种类型喷头的雾化过程进行了试验研究与可视化图形分析.结果表明:ST喷头具有面积较大的液膜区,且具有波纹结构,破裂区内的破裂孔洞呈现不规则撕裂状;IDK 喷头液膜区面积较 ST 喷头小,具有气泡状结构,但并未发现波纹区.随着ST与IDK喷头孔径的增大,液膜长度、破裂区长度分别由20 mm增长至40 mm、10 mm增长至20 mm.随着压力的增加,ST110-03型喷头的液膜长度由35 mm降低至22 mm,雾滴体积中径由128.2μm降低至92.4μm;IDK120-03型喷头的液膜-破裂区长度由40 mm降低至30 mm,雾滴体积中径由366.4μm降低至285.3μm.该研究可为进一步研究新型防飘喷头的雾化特性以及新型喷雾设备的生产提供参考.%The objectives of this research were to study the atomization characteristics of normal flat fan nozzles and air induction flat fan nozzles which were made by the LECHLER Company by a particle droplet image analysis system (PDIA) with visualized features. Images of ST110-03 and IDK120-03 nozzles’spraying fan from orifice to 30 mm below nozzle were taken at 0.3 MPa to observe the structure of the spraying fan. Spraying visualizations were conduct from 10 to 70 mm with the interval of 10 mm below the nozzle in the spraying fan centerline of ST110-01、02、03、04 and IDK120-01、02、03、04 at 0.3 MPa to analyze the influence of orifice width on spraying sheet length. To research the influence of spraying pressure on liquid sheet length and droplet size, spraying visualizations were performed from 10 to 70mm with the interval 10mm below the nozzle in the spraying fan centerline of ST110-03 and IDK120-03 at 0.2、0.3、0.4、0.5、0.6 MPa. The results showed that there was a larger liquid sheet in the ST110-03 spraying fan. It was very easy to observe the wave formation and irregular atomization

  6. Molecular-dynamics simulations of stacking-fault-induced dislocation annihilation in pre-strained ultrathin single-crystalline copper films

    OpenAIRE

    Kolluri, Kedarnath; Gungor, M. Rauf; Maroudas, Dimitrios

    2009-01-01

    We report results of large-scale molecular-dynamics (MD) simulations of dynamic deformation under biaxial tensile strain of pre-strained single-crystalline nanometer-scale-thick face-centered cubic (fcc) copper films. Our results show that stacking faults, which are abundantly present in fcc metals, may play a significant role in the dissociation, cross-slip, and eventual annihilation of dislocations in small-volume structures of fcc metals. The underlying mechanisms are mediated by interacti...

  7. Formation of hollow and mesoporous structures in single-crystalline microcrystals of metal-organic frameworks via double-solvent mediated overgrowth

    Science.gov (United States)

    Chou, Lien-Yang; Hu, Pan; Zhuang, Jia; Morabito, Joseph V.; Ng, Ka Chon; Kao, Ya-Chuan; Wang, Shao-Chun; Shieh, Fa-Kuen; Kuo, Chun-Hong; Tsung, Chia-Kuang

    2015-11-01

    The creation of hierarchical porosity in metal-organic frameworks (MOFs) could benefit various applications of MOFs such as gas storage and separation. Having single-crystalline microcrystals instead of poly-crystalline composites is critical for these potential applications of MOFs with hierarchical porosity. We developed a room temperature synthetic method to generate uniform hollow and mesoporous zeolitic imidazolate framework-8 (ZIF-8) microcrystals with a single-crystalline structure via overgrowing a ZIF-8 shell in methanol solution on a ZIF-8 core with water adsorbed in the pores. The cavities formed as a result of the different solvent micro-environment. This double-solvent mediated overgrowth method could be applied to prepare other MOFs with hierarchical porosity.The creation of hierarchical porosity in metal-organic frameworks (MOFs) could benefit various applications of MOFs such as gas storage and separation. Having single-crystalline microcrystals instead of poly-crystalline composites is critical for these potential applications of MOFs with hierarchical porosity. We developed a room temperature synthetic method to generate uniform hollow and mesoporous zeolitic imidazolate framework-8 (ZIF-8) microcrystals with a single-crystalline structure via overgrowing a ZIF-8 shell in methanol solution on a ZIF-8 core with water adsorbed in the pores. The cavities formed as a result of the different solvent micro-environment. This double-solvent mediated overgrowth method could be applied to prepare other MOFs with hierarchical porosity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06532a

  8. Electron microscope observation of single - crystalline beryllium thin foils; Observation de lames minces monocristallines de beryllium en microscopie electronique

    Energy Technology Data Exchange (ETDEWEB)

    Antolin, J.; Poirier, J.P.; Dupouy, J.M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3<1 1 2-bar 0>. (authors) [French] On a observe en microscopie electronique par transmission des lames minces tirees d'eprouvettes monocristallines de beryllium deformees a l'ambiante. On a etudie separement les differents modes de deformation a partir de leur stade elementaire en observant les configurations de dislocations caracteristiques. Le glissement basal est caracterise a son debut par la presence de nombreux dipoles et de boucles prismatiques allongees. Des ecrouissages plus forts conduisent a la formation d'echeveaux et de gerbes qui finissent par donner une structure cellulaire. Le glissement prismatique debute par le glissement des dislocations hors du plan de base dans les plans prismatiques. On trouve egalement une structure cellulaire pour de forts ecrouissages. Dans les joints de macle, on a observe des dislocations sessiles formees par la reaction entre dislocations de macle et dislocations de glissement. Enfin l

  9. Reviews Opera: Doctor Atomic DVD: Doctor Atomic Equipment: Digital stopclock with external trigger Book: I Cyborg Book: Flat Earth: The History of an Infamous Idea Book: Mere Thermodynamics Book: CGP revision guides Book: Hiding the Elephant: How Magicians Invented the Impossible Book: Back of the Envelope Physics Web Watch

    Science.gov (United States)

    2009-07-01

    WE RECOMMEND Doctor Atomic The new Doctor Atomic opera provkes discussion on ethics I Cyborg The world's first human cyborg shares his life story in I Cyborg Flat Earth: The History of an Infamous Idea Flat Earth gives us a different perspective on creationism Mere Thermodynamics An introductory text on the three laws CGP revision guides This revision guide suits all courses and every pocket Hiding the Elephant: How Magicians Invented the Impossible The mystery of many illusions are solved in this book Back of the Envelope Physics This reference deserves a place on your bookshelf WORTH A LOOK Doctor Atomic The DVD doesn't do justice to the live performance Digital stopclock with external trigger Use these stopclocks when you need an external trigger WEB WATCH Webcasts reach out to an online audience

  10. Growth of atomically flat thin films of the electronically phase-separated manganite (La0.5Pr0.5)0.67Ca0.33MnO3

    International Nuclear Information System (INIS)

    Atomically flat and epitaxial thin films of the electronically phase-separated compound (La0.5Pr0.5)0.67Ca0.33MnO3 were grown on as-received and treated (110) NdGaO3 substrates by fine tuning of oxygen pressure during deposition. The optimal conditions were determined using surface morphology, transport, magnetization, and X-ray diffraction measurements. Optimal thin films show step flow growth mode and bulk-like physical properties compared to thin films grown in off-optimal oxygen pressures, viz. the highest maximum temperature coefficient of resistance, the highest peak resistivity temperature, and reduced coercive fields. (orig.)

  11. Single crystalline YAG:Ce phosphor for powerful solid-state sources of white light. The influence of production conditions on luminescence properties and lighting characteristics

    Science.gov (United States)

    Nizhankovskyi, S. V.; Tan'ko, A. V.; Savvin, Yu. N.; Krivonogov, S. I.; Budnikov, A. T.; Voloshin, A. V.

    2016-06-01

    It is shown that the spectral properties and spatial distribution of LED radiation with a YAG:Ce single crystalline luminescent converter significantly depend on the morphology of the converter surface. The variation of surface roughness enables one to obtain a light source with a wide range of color characteristics. As a result of optimization of converter parameters we demonstrate a possibility of creating a white light LED with correlated color temperature TCC ~ 5000-6500 K and color rendering index CRI ≈ 60-70.

  12. Temperature-Induced Metamagnetic Transition and Domain Structures of Single-Crystalline FeRh Thin Films on MgO(100)

    OpenAIRE

    Zhou, Xianzhong

    2013-01-01

    Exchange systems of FeRh with a hard magnetic layer are a promising approach for heat-assisted magnetic recording that can largely increase the storage density of hard disk drives. The FeRh alloy is known to undergo a temperature-induced metamagnetic transition from antiferromagnetic (AFM) to ferromagnetic (FM) just above the room temperature. But the AFM and FM phases coexist across the transition in single-crystalline FeRh thin lms with thin capping layers (e.g. Au, Al, or MgO). In order to...

  13. Temperature-Induced Metamagetic Transition and Domain Structure of Single-Crystalline FeRh Thin Films on MgO(100)

    OpenAIRE

    Zhou, Xianzhong

    2013-01-01

    Exchange systems of FeRh with a hard magnetic layer are a promising approach for heat-assisted magnetic recording that can largely increase the storage density of hard disk drives. The FeRh alloy is known to undergo a temperature-induced metamagnetic transition from antiferromagnetic (AFM) to ferromagnetic (FM) just above the room temperature. But the AFM and FM phases coexist across the tran- sition in single-crystalline FeRh thin films with thin capping layers (e.g. Au, Al, or MgO). In orde...

  14. Dirac Cones, Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry

    NARCIS (Netherlands)

    Kalesaki, E.; Delerue, C.; de Morais Smith, C.; Beugeling, W.; Allan, G.; Vanmaekelbergh, D.A.M.

    2014-01-01

    We study theoretically two-dimensional single-crystalline sheets of semiconductors that form a honeycomb lattice with a period below 10 nm. These systems could combine the usual semiconductor properties with Dirac bands. Using atomistic tight-binding calculations, we show that both the atomic lattic

  15. Synthesis and measurements of the optical bandgap of single crystalline complex metal oxide BaCuV2O7 nanowires by UV–VIS absorption

    International Nuclear Information System (INIS)

    Highlights: • Synthesis of single crystalline complex metal oxides BaCuV2O7 nanowires. • Surfactant free, economically favorable chemical solution deposition method. • Complex metal oxides nanowires with controlled stoichiometry. • Simply controlling the temperature and thickness of the coated film, we can easily obtain high quality BaCuV2O7 nanowires. - Abstract: The synthesis of single crystalline complex metal oxides BaCuV2O7 nanowires were attained by using surfactant free, economically favorable chemical solution deposition method. A thin layer of BaCuV2O7 nanocrystals is formed by the decomposition of complex metal oxide solution at 150 °C to provide nucleation sites for the growth of nanowires. The synthesized nanowires were typically 1–5 μm long with diameter from 50 to 150 nm. We showed that by simply controlling the temperature and thickness of the coated film, we can easily obtain high quality BaCuV2O7 nanowires. The UV–VIS absorption spectra show indirect bandgap of 2.65 ± 0.05 eV of nanowires. The temperature-dependent resistances of BaCuV2O7 nanowires agree with the exponential correlation, supporting that the conducting carriers are the quasi-free electrons. We believe that our methodology will provides a simple and convenient route for the synthesis of variety of complex metal oxides nanowires with controlled stoichiometry

  16. On the Mesoporogen-Free Synthesis of Single-Crystalline Hierarchically Structured ZSM-5 Zeolites in a Quasi-Solid-State System.

    Science.gov (United States)

    Ge, Tongguang; Hua, Zile; He, Xiaoyun; Lv, Jian; Chen, Hangrong; Zhang, Lingxia; Yao, Heliang; Liu, Ziwei; Lin, Chucheng; Shi, Jianlin

    2016-06-01

    Hierarchically structured zeolites (HSZs) have gained much academic and industrial interest owing to their multiscale pore structures and consequent excellent performances in varied chemical processes. Although a number of synthetic strategies have been developed in recent years, the scalable production of HSZs single crystals with penetrating and three-dimensionally (3-D) interconnected mesopore systems but without using a mesoscale template is still a great challenge. Herein, based on a steam-assisted crystallization (SAC) method, we report a facile and scalable strategy for the synthesis of single-crystalline ZSM-5 HSZs by using only a small amount of micropore-structure-directing agents (i.e., tetrapropylammonium hydroxide). The synthesized materials exhibited high crystallinity, a large specific surface area of 468 m(2)  g(-1) , and a pore volume of 0.43 cm(3)  g(-1) without sacrificing the microporosity (≈0.11 cm(3)  g(-1) ) in a product batch up to 11.7 g. Further, a kinetically controlled nucleation-growth mechanism is proposed for the successful synthesis of single-crystalline ZSM-5 HSZs with this novel process. As expected, compared with the conventional microporous ZSM-5 and amorphous mesoporous Al-MCM-41 counterparts, the synthesized HSZs exhibited significantly enhanced activity and stability and prolonged lifetime in model reactions, especially when bulky molecules were involved. PMID:27106662

  17. Isotropic plasticity of β-type Ti-29Nb-13Ta-4.6Zr alloy single crystals for the development of single crystalline β-Ti implants

    Science.gov (United States)

    Hagihara, Koji; Nakano, Takayoshi; Maki, Hideaki; Umakoshi, Yukichi; Niinomi, Mitsuo

    2016-07-01

    β-type Ti-29Nb-13Ta-4.6Zr alloy is a promising novel material for biomedical applications. We have proposed a ‘single crystalline β-Ti implant’ as new hard tissue replacements for suppressing the stress shielding by achieving a drastic reduction in the Young’s modulus. To develop this, the orientation dependence of the plastic deformation behavior of the Ti-29Nb-13Ta-4.6Zr single crystal was first clarified. Dislocation slip with a Burgers vector parallel to was the predominant deformation mode in the wide loading orientation. The orientation dependence of the yield stress due to dislocations was small, in contrast to other β-Ti alloys. In addition, {332} twin was found to be operative at the loading orientation around [001]. The asymmetric features of the {332} twin formation depending on the loading orientation could be roughly anticipated by their Schmid factors. However, the critical resolved shear stress for the {332} twins appeared to show orientation dependence. The simultaneous operation of slip and {332} twin were found to be the origin of the good mechanical properties with excellent strength and ductility. It was clarified that the Ti-29Nb-13Ta-4.6Zr alloy single crystal shows the “plastically almost-isotropic and elastically highly-anisotropic” nature, that is desirable for the development of ‘single crystalline β-Ti implant’.

  18. Observation of intrinsic Josephson effects in tetragonally synthesized single-crystalline NdBa2Cu3O6.65 films grown by tri-phase epitaxy

    Science.gov (United States)

    Yun, Kyung Sung; Hatano, Takeshi; Arisawa, Shunichi; Ishii, Akira; Wang, Huabing; Yamashita, Tsutomu; Iguchi, Ienari; Kawasaki, Masashi; Koinuma, Hideomi

    2008-07-01

    In this work twin-free tetragonal NdBa2Cu3O7-δ films were fabricated that exhibited superconductivity with sufficient anisotropy which produced intrinsic Josephson junction (IJJ) characteristics in the films. The intrinsic Josephson effects (IJEs) were observed in oxygen-deficient single-crystalline NdBa2Cu3O6.65 (NBCO) films grown on SrTiO3 (STO) substrates, using tri-phase epitaxy (TPE). The single-crystalline nature of NBCO films on well-matched STO substrates, and the precisely controlled oxygen content of the films, lead to the IJEs of the thin films. Furthermore, the films exhibit high anisotropy and clear multiple-branch structures, with hysteresis observed in the current-voltage characteristics. Periodic Josephson vortex-flow resistance oscillations were also observed for a magnetic field higher than 64 kOe, which was applied normal to the junctions. These results strongly support the single-crystal nature of TPE films, which play an important role in both the fundamental study and the practical applications of high-frequency devices.

  19. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lupina, L.; Zoellner, M. H.; Dietrich, B.; Capellini, G. [IHP, Im Technologiepark 25, 15236 Frankfurt, Oder (Germany); Niermann, T.; Lehmann, M. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Thapa, S. B.; Haeberlen, M.; Storck, P. [SILTRONIC AG, Hanns-Seidel-Platz 4, 81737 München (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt, Oder (Germany); BTU Cottbus, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  20. Single-crystalline CaMoO3 and SrMoO3 films grown by pulsed laser deposition in a reductive atmosphere

    International Nuclear Information System (INIS)

    Single-crystalline thin films of CaMoO3 and SrMoO3 with a Mo4+ state perovskite structure have been epitaxially grown by pulsed-laser deposition from Mo6+ state ceramic targets. Phase-pure films were obtained on nearly lattice-matched perovskite substrates using argon gas flow during the deposition. Transport properties of the films are consistent with those of paramagnetic and metallic phases, whereas the residual resistivities are far lower than those reported previously for films and bulk polycrystals. These results indicate that this growth method can be useful for exploring the interfaces and junction properties of 4d and 5d transition metal oxides that are unstable in a conventional oxidative atmosphere.

  1. Transformation of valence states and luminescence of chromium ions in the YAG:Cr, Mg and GGG:Cr, Mg single crystalline films

    Science.gov (United States)

    Zakharko, Ya. M.; Luchechko, A. P.; Syvorotka, I. M.; Syvorotka, I. I.; Ubizskii, S. B.; Melnyk, S. S.

    2005-01-01

    Peculiarities of absorption spectra and recombination luminescence of Y3Al5O12 (YAG) and Cd3Ga5O12 (GGG) single crystalline films co-doped with chromium and magnesium have been studied. The change of impurities concentration and annealing of samples in the reducing atmosphere have an influence on absorption in the visible and UV range. Using the results on absorption coefficient measurements in the band of 480 nm and in the absorption bands of Cr3+ ions, it was determined, that near 50% of the chromium ions located in octahedral sites are in the Cr4+ state in films with high chromium concentration. The investigation of thermostimulated luminescence confirms the existence of Cr2+ trap centres in the irradiated films caused by the magnesium dopant.

  2. Transformation of valence states and luminescence of chromium ions in the YAG:Cr, Mg and GGG:Cr, Mg single crystalline films

    International Nuclear Information System (INIS)

    Peculiarities of absorption spectra and recombination luminescence of Y3Al5O12 (YAG) and Cd3Ga5O12 (GGG) single crystalline films co-doped with chromium and magnesium have been studied. The change of impurities concentration and annealing of samples in the reducing atmosphere have an influence on absorption in the visible and UV range. Using the results on absorption coefficient measurements in the band of 480 nm and in the absorption bands of Cr3+ ions, it was determined, that near 50% of the chromium ions located in octahedral sites are in the Cr4+ state in films with high chromium concentration. The investigation of thermostimulated luminescence confirms the existence of Cr2+ trap centres in the irradiated films caused by the magnesium dopant. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Hierarchical hollow microflowers constructed from mesoporous single crystalline CoMn2O4 nanosheets for high performance anode of lithium ion battery

    Science.gov (United States)

    Zhang, Lixin; He, Guofeng; Lei, Shiwen; Qi, Guisheng; Jiu, Hongfang; Wang, Juan

    2016-09-01

    Hierarchical hollow microflowers constructed from mesoporous single crystalline CoMn2O4 nanosheets were synthesized by a solvothermal route followed by calcination in air. It was found that the amount of deionized water plays a key role in the formation of the well-defined hierarchical hollow structure. A possible formation mechanism of the hierarchical hollow microflowers is proposed based on the time-dependent experimental results. In addition, the unique structure of CoMn2O4 microflowers exhibits superior electrochemical performances with an initial discharge specific capacity of 1024 mA h g-1 at 1000 mA g-1 and remains at 650 mA h g-1 with a coulombic efficiency of 98.7% after 500 cycles.

  4. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    International Nuclear Information System (INIS)

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc2O3/Y2O3/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc2O3/Y2O3 buffer system a very promising template for the growth of high quality GaN layers on silicon

  5. A hierarchical nanostructure consisting of amorphous MnO 2, Mn 3O 4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors

    Science.gov (United States)

    Hu, Chi-Chang; Hung, Ching-Yun; Chang, Kuo-Hsin; Yang, Yi-Lin

    In this communication, a porous hierarchical nanostructure consisting of amorphous MnO 2 (a-MnO 2), Mn 3O 4 nanocrystals, and single-crystalline MnOOH nanowires is designed for the supercapacitor application, which is prepared by a simple two-step electrochemical deposition process. Because of the gradual co-transformation of Mn 3O 4 nanocrystals and a-MnO 2 nanorods into an amorphous manganese oxide, the cycle stability of a-MnO 2 is obviously enhanced by adding Mn 3O 4. This unique ternary oxide nanocomposite with 100-cycle CV activation exhibits excellent capacitive performances, i.e., excellent reversibility, high specific capacitances (470 F g -1 in CaCl 2), high power property, and outstanding cycle stability. The highly porous microstructures of this composite before and after the 10,000-cycle CV test are examined by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  6. Single crystalline Er{sub 2}O{sub 3}:sapphire films as potentially high-gain amplifiers at telecommunication wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A. S.; Sadofev, S.; Schäfer, P.; Kalusniak, S.; Henneberger, F., E-mail: fh@physik.hu-berlin.de [Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)

    2014-11-10

    Single crystalline thin films of Er{sub 2}O{sub 3}, demonstrating efficient 1.5 μm luminescence of Er{sup 3+} at room temperature were grown on Al{sub 2}O{sub 3} substrate by molecular beam epitaxy. The absorption coefficient at 1.536 μm was found to reach 270 cm{sup −1} translating in a maximal possible gain of 1390 dBcm{sup −1}. In conjunction with the 10% higher refractive index as compared to Al{sub 2}O{sub 3}, this opens the possibility to use Er{sub 2}O{sub 3}:sapphire films as short-length waveguide amplifiers in telecommunication.

  7. Growth of atomically flat thin films of the electronically phase-separated manganite (La{sub 0.5}Pr{sub 0.5}){sub 0.67}Ca{sub 0.33}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jeen, Hyoungjeen [University of Florida, Department of Physics, Gainesville, FL (United States); Pusan National University, Department of Physics, Busan (Korea, Republic of); Javed, Rafiya; Biswas, Amlan [University of Florida, Department of Physics, Gainesville, FL (United States)

    2016-01-15

    Atomically flat and epitaxial thin films of the electronically phase-separated compound (La{sub 0.5}Pr{sub 0.5}){sub 0.67}Ca{sub 0.33}MnO{sub 3} were grown on as-received and treated (110) NdGaO{sub 3} substrates by fine tuning of oxygen pressure during deposition. The optimal conditions were determined using surface morphology, transport, magnetization, and X-ray diffraction measurements. Optimal thin films show step flow growth mode and bulk-like physical properties compared to thin films grown in off-optimal oxygen pressures, viz. the highest maximum temperature coefficient of resistance, the highest peak resistivity temperature, and reduced coercive fields. (orig.)

  8. One-pot high-yield synthesis of single-crystalline gold nanorods using glycerol as a low-cost and eco-friendly reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Parveen, Rashida [University of São Paulo, Institute of Chemistry of São Carlos (Brazil); Gomes, Janaina F. [Universidade Federal de São Carlos, Departamento de Engenharia Química (Brazil); Ullah, Sajjad [University of São Paulo, Institute of Chemistry of São Carlos (Brazil); Acuña, José J. S. [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas (Brazil); Tremiliosi-Filho, Germano, E-mail: germano@iqsc.usp.br [University of São Paulo, Institute of Chemistry of São Carlos (Brazil)

    2015-10-15

    The formation of gold nanorods (AuNRs) has recently attracted great attention due to their shape-dependent optical properties that are important for many applications. The development of simpler and safer methods for the high-yield synthesis of AuNRs employing low-cost and easily handled reagents is thus of great importance. Here, we introduce, for the first time, a one-pot seedless method for the preparation of single-crystalline AuNRs in almost 100 % yield based on the use of glycerol in alkaline medium as an eco-friendly, low-cost and pH-tunable reducing agent. The synthesized AuNRs were characterized by UV–Vis–NIR spectroscopy, FEG–SEM and HRTEM. The effect of the presence of capping agent (CTAB) and the concentration of reactants (glycerol, NaOH and AgNO{sub 3}) on the yield and aspect ratio (AR) of AuNRs is discussed. The AR and yield of AuNRs showed a clear dependence on the pH and temperature of the reaction mixture as well as on the concentration of AgNO{sub 3} added as an auxiliary reagent. The longitudinal plasmon resonance band of the resulting AuNRs can be tuned between 620 and 1200 nm by varying the reaction conditions. AuNRs with an aspect ratio (AR) of around 4 were obtained in almost 100 % yield at room temperature and under mild reducing environment. The formation of AuNRs is faster at higher pH (>11) and higher temperature (>30 °C), but the AuNR yield is smaller (<70 %). Variation in the pH of the reaction mixture in the range 12–13.5 results in the formation of AuNRs with different ARs and in different yields (27–99 %). Detailed study of the AuNRs crystallography by HRTEM showed that the AuNRs grow in [001] direction and have a perfect single-crystalline fcc structure, free from structural faults or dislocations. The present green method, which introduces glycerol as a tunable reducing agent with a pH-dependent reducing power, can provide a more general strategy for the preparation of a wide range of metallic nanoparticles.

  9. Three-Dimensional Cu Foam-Supported Single Crystalline Mesoporous Cu2O Nanothorn Arrays for Ultra-Highly Sensitive and Efficient Nonenzymatic Detection of Glucose.

    Science.gov (United States)

    Dong, Chaoqun; Zhong, Hua; Kou, Tianyi; Frenzel, Jan; Eggeler, Gunther; Zhang, Zhonghua

    2015-09-16

    Highly sensitive and efficient biosensors play a crucial role in clinical, environmental, industrial, and agricultural applications, and tremendous efforts have been dedicated to advanced electrode materials with superior electrochemical activities and low cost. Here, we report a three-dimensional binder-free Cu foam-supported Cu2O nanothorn array electrode developed via facile electrochemistry. The nanothorns growing in situ along the specific direction of have single crystalline features and a mesoporous surface. When being used as a potential biosensor for nonenzyme glucose detection, the hybrid electrode exhibits multistage linear detection ranges with ultrahigh sensitivities (maximum of 97.9 mA mM(-1) cm(-2)) and an ultralow detection limit of 5 nM. Furthermore, the electrode presents outstanding selectivity and stability toward glucose detection. The distinguished performances endow this novel electrode with powerful reliability for analyzing human serum samples. These unprecedented sensing characteristics could be ascribed to the synergistic action of superior electrochemical catalytic activity of nanothorn arrays with dramatically enhanced surface area and intimate contact between the active material (Cu2O) and current collector (Cu foam), concurrently supplying good conductivity for electron/ion transport during glucose biosensing. Significantly, our findings could guide the fabrication of new metal oxide nanostructures with well-organized morphologies and unique properties as well as low materials cost. PMID:26305112

  10. Single crystalline SnO2 nanowires obtained from heat-treated SnO2 and C mixture and their electrochemical properties

    International Nuclear Information System (INIS)

    One-dimensional semiconductor nanostructures have demonstrated significant advantages for electrochemical electrode due to their remarkable size-dependent and structure-related properties. In this work, large-scale single-crystalline SnO2 nanowires have been successfully synthesized by thermal evaporation of a SnO2 and C powder under atmospheric conditions without any carrier gas or noble metal catalysts-coated substrate. The as-prepared samples exhibit uniform morphology with a thin diameter of 100–200 nm and length up to several tens of micrometers. The SnO2 nanowires directly grown on the initially deposition layer are found to grow along [301] direction, which is possibly dominated by a vapor–solid (VS) mechanism. The SnO2 nanowires synthesized by this simple and cheap method deliver a very high lithium storage capacity with good cycle stability and high rate capability, allowing for the achievement of high energy density and long cycle life for the next-generation energy conversion and storage devices. - Highlights: • Large-scale SnO2 nanowires were prepared by thermal evaporation without any carrier gas or noble metal catalysts. • A growth model based on vapor–solid (VS) mechanism is constructed for the formation of the 1D nanostructure. • SnO2 nanowires delivered high lithium storage capacity with good cycle stability and high rate capability

  11. High-Performance Fully Nanostructured Photodetector with Single-Crystalline CdS Nanotubes as Active Layer and Very Long Ag Nanowires as Transparent Electrodes.

    Science.gov (United States)

    An, Qinwei; Meng, Xianquan; Sun, Pan

    2015-10-21

    Long and single-crystalline CdS nanotubes (NTs) have been prepared via a physical evaporation process. A metal-semiconductor-metal full-nanostructured photodetector with CdS NTs as active layer and Ag nanowires (NWs) of low resistivity and high transmissivity as electrodes has been fabricated and characterized. The CdS NTs-based photodetectors exhibit high performance, such as lowest dark currents (0.19 nA) and high photoresponse ratio (Ilight/Idark ≈ 4016) (among CdS nanostructure network photodetectors and NTs netwok photodetectors reported so far) and very low operation voltages (0.5 V). The photoconduction mechanism, including the formation of a Schottky barrier at the interface of Ag NW and CdS NTs and the effect of oxygen adsorption process on the Schottky barrier has also been provided in detail based on the studies of CdS NTs photodetector in air and vacuum. Furthermore, CdS NTs photodetector exhibits an enhanced photosensitivity as compared with CdS NWs photodetector. The enhancement in performance is dependent on the larger surface area of NTs adsorbing more oxygen in air and the microcavity structure of NTs with higher light absorption efficiency and external quantum efficiency. It is believed that CdS NTs can potentially be useful in the designs of 1D CdS-based optoelectronic devices and solar cells.

  12. Transformation of valence states and luminescence of chromium ions in the YAG:Cr, Mg and GGG:Cr, Mg single crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Zakharko, Ya.M.; Luchechko, A.P. [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo St., Lviv 79017 (Ukraine); Syvorotka, I.M.; Syvorotka, I.I.; Melnyk, S.S. [Institute for Materials SRC ' ' Carat' ' , 202 Stryjska St., Lviv 79031 (Ukraine); Ubizskii, S.B. [Institute for Materials SRC ' ' Carat' ' , 202 Stryjska St., Lviv 79031 (Ukraine); Institute for Telecommunication, Radioelectronics and Electronic Engineering, Lviv Polytechnic National University, 12 Bandera St., Lviv 79013 (Ukraine)

    2005-01-01

    Peculiarities of absorption spectra and recombination luminescence of Y{sub 3}Al{sub 5}O{sub 12} (YAG) and Cd{sub 3}Ga{sub 5}O{sub 12} (GGG) single crystalline films co-doped with chromium and magnesium have been studied. The change of impurities concentration and annealing of samples in the reducing atmosphere have an influence on absorption in the visible and UV range. Using the results on absorption coefficient measurements in the band of 480 nm and in the absorption bands of Cr{sup 3+} ions, it was determined, that near 50% of the chromium ions located in octahedral sites are in the Cr{sup 4+} state in films with high chromium concentration. The investigation of thermostimulated luminescence confirms the existence of Cr{sup 2+} trap centres in the irradiated films caused by the magnesium dopant. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Primordial hexagonal phase formation during the bcc dezincification of the {beta} Cu-Zn single crystalline surface: Matrix instabilization and transformation path

    Energy Technology Data Exchange (ETDEWEB)

    Baruj, A. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica (CNEA), (8400) San Carlos de Bariloche, Rio Negro (Argentina); CONICET (Argentina)], E-mail: baruj@cab.cnea.gov.ar; Granada, M.; Arneodo Larochette, P. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica (CNEA), (8400) San Carlos de Bariloche, Rio Negro (Argentina); CONICET (Argentina); Sommadossi, S. [F. Ingenieria, U. N. Comahue, Buenos Aires 1400, (8300) Neuquen (Argentina); CONICET (Argentina); Troiani, H.E. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica (CNEA), (8400) San Carlos de Bariloche, Rio Negro (Argentina); CONICET (Argentina)

    2009-07-29

    Subjecting Cu-Zn samples to annealing under dynamical vacuum produces the evaporation of Zn, a process known as dezincification. Here, we study the phase transitions related to dezincification of Cu-48 at.% Zn (bcc, Beta phase) single crystalline surfaces with residual stresses due to mechanical polishing. In order to identify different steps in the dezincification process of these deformed samples we apply a combination of in situ optical microscopy and transmission electron microscopy (TEM) observations. The former allows us to control and stop the dezincification process at a specific stage of evolution while the latter allows relating surface features with structure and composition changes. Due to dezincification, the formation of an on average 4H hexagonal phase and the fcc equilibrium phase take place. TEM observations show that the bcc to 4H phase transformation occurs by a mechanism of nucleation and growth. In particular, we show evidence of the mechanism of embryo formation for the first time. During the subsequent growth process, the coalescence of transformed zones defines regions in the micron range which after subsequent prolonged dezincification transform to the final fcc equilibrium structure. These experiments provide an insight on the reason for the formation of the non-equilibrium hexagonal phase during the dezincification of electropolished (non-deformed) samples. The new experimental results evidence the heterogeneous character of the dezincification.

  14. ESR study of spin-lattice correlated clusters in single crystalline Nd{sub 0.7}Sr{sub 0.3}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Angappane, S [Department of Physics, Indian Institute of Technology Madras, Chennai-600 036 (India); Pattabiraman, M [Department of Physics, Indian Institute of Technology Madras, Chennai-600 036 (India); Rangarajan, G [Department of Physics, Indian Institute of Technology Madras, Chennai-600 036 (India); Sethupathi, K [Department of Physics, Indian Institute of Technology Madras, Chennai-600 036 (India); Varghese, Babu [Sophisticated Analytical Instrumentation Facility, Indian Institute of Technology Madras, Chennai-600 036 (India); Sastry, V S [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603 102 (India)

    2007-01-24

    We report electron spin resonance measurements in single crystalline Nd{sub 0.7}Sr{sub 0.3}MnO{sub 3} that provide evidence for the existence of spin-lattice correlated clusters above and below T{sub C} (= 205 K). The linewidth of the paramagnetic spectrum indicates the presence of strong electron-phonon interaction rather than the spin only interaction seen in other manganites. The gradual increase observed in the g value above T{sub C} is attributed to the presence of orbital correlations. The observation of ferromagnetic resonance (FMR) spectra only below 185 K (T{sub C} = 205 K) and noisy features in the FMR spectra above 140 K are ascribed to the strong competition between localization due to lattice distortions and delocalization of charge carriers. The magnetocrystalline anisotropy of the sample splits the FMR line into two below 185 K. An additional splitting observed in the FMR line is attributed to the existence of spin-lattice correlated (insulating) clusters within the ferromagnetic (metallic) phase. The influence of these clusters on the spin dynamics above and below T{sub C} is discussed.

  15. One-pot synthesis of CoNiO{sub 2} single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weimin, E-mail: dwmchem@163.com; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao [Anyang Normal University, College of Chemistry and Chemical Engineering (China); Qian, Xuefeng [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China)

    2015-09-15

    A facile one-pot solvothermal method has been developed to synthesize CoNiO{sub 2} single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO{sub 2} nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO{sub 2} nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess the promising potential application in the field of high-performance energy storage.

  16. Single-crystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} detectors for direct detection of microwave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: lime@chalmers.se; Winkler, D.; Yurgens, A. [Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-04-13

    We test radiation detectors made from single-crystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} flakes put on oxidized Si substrates. The 100-nm-thick flakes are lithographically patterned into 4×12 μm{sup 2} large rectangles embedded in thin-film log-spiral antennas. The SiO{sub 2} layer weakens the thermal link between the flakes and the bath. Two modes of radiation detection have been observed. For a bolometric type of sensors a responsivity of ∼300 V/W and a noise equivalent power of 30 nW/√(Hz) has been deduced at 70 K. Much more sensitive is the non-bolometric device showing characteristics similar to a Golay-type detector while being at least a thousand times faster. Making smaller (sub-μm) structures is expected to significantly improve the performance of these devices and makes them very competitive among other microwave and terahertz detectors.

  17. One-step synthesis route of the aligned and non-aligned single crystalline α-Si3N4 nanowires

    Institute of Scientific and Technical Information of China (English)

    shkoor; AHMAD

    2009-01-01

    This paper reports the bulk synthesis route of the aligned and non-aligned high-quality α-Si3N4 nanowires (NWS) which were grown directly from the Si substrate by vapor phase deposition at 1050℃. The as-grown products were characterized by employing XRD, SEM, HRTEM and photoluminescence. The microscopic results revealed that the products consist of single crystalline aligned and nonaligned α-Si3N4 NWs having a same diameter range of 30-100 nm and different lengths of about hundreds of microns. The XRD observation revealed that the products consist of α-phase Si3N4 NWs. The room temperature PL spectra indicated that the NWs have good emission property. The non-aligned NWs were formed at lower temperature as compared with aligned NWs. Our method is a simple and one-step procedure to synthesize the bulk-quantity and high-purity aligned and non-aligned α-Si3N4 NWs at a relatively low temperature. The possible growth mechanism was also briefly discussed.

  18. One-step synthesis route of the aligned and non-aligned single crystalline α-Si3N4 nanowires

    Institute of Scientific and Technical Information of China (English)

    Mashkoor AHMAD; ZHAO Jiong; ZHANG Fan; PAN CaoFeng; ZHU Jing

    2009-01-01

    This paper reports the bulk synthesis route of the aligned and non-aligned high-quality α-Si3N4 nanowires (NWS) which were grown directly from the Si substrate by vapor phase deposition at 1050℃. The as-grown products were characterized by employing XRD, SEM, HRTEM and photoluminescence. The microscopic results revealed that the products consist of single crystalline aligned and non-aligned α-Si3N4 NWs having a same diameter range of 30-100 nm and different lengths of about hun-dreds of microns. The XRD observation revealed that the products consist of co-phase Si3N4 NWs. The room temperature PL spectra indicated that the NWs have good emission property. The non-aligned NWs were formed at lower temperature as compared with aligned NWs. Our method is a simple and one-step procedure to synthesize the bulk-quantity and high-purity aligned and non-aligned α-Si3N4NWs at s relatively low temperature. The possible growth mechanism was also briefly discussed.

  19. Magnetotransport of single crystalline YSb

    Science.gov (United States)

    Ghimire, N. J.; Botana, A. S.; Phelan, D.; Zheng, H.; Mitchell, J. F.

    2016-06-01

    We report magnetic field dependent transport measurements on a single crystal of cubic YSb together with first principles calculations of its electronic structure. The transverse magnetoresistance does not saturate up to 9 T and attains a value of 75 000% at 1.8 K. The Hall coefficient is electron-like at high temperature, changes sign to hole-like between 110 and 50 K, and again becomes electron-like below 50 K. First principles calculations show that YSb is a compensated semimetal with a qualitatively similar electronic structure to that of isostructural LaSb and LaBi, but with larger Fermi surface volume. The measured electron carrier density and Hall mobility calculated at 1.8 K, based on a single band approximation, are 6.5× {{10}20} cm‑3 and 6.2× {{10}4} cm2 Vs‑1, respectively. These values are comparable with those reported for LaBi and LaSb. Like LaBi and LaSb, YSb undergoes a magnetic field-induced metal-insulator-like transition below a characteristic temperature T m, with resistivity saturation below 13 K. Thickness dependent electrical resistance measurements show a deviation of the resistance behavior from that expected for a normal metal; however, they do not unambiguously establish surface conduction as the mechanism for the resistivity plateau.

  20. Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-ω technique at low temperatures.

    Science.gov (United States)

    Lee, Seung-Yong; Kim, Gil-Sung; Lee, Mi-Ri; Lim, Hyuneui; Kim, Wan-Doo; Lee, Sang-Kwon

    2013-05-10

    We have successfully investigated the thermal conductivity (κ) of single-crystalline bismuth nanowires (BiNWs) with [110] growth direction, via a straightforward and powerful four-point-probe 3-ω technique in the temperature range 10-280 K. The BiNWs, which are well known as the most effective material for thermoelectric (TE) device applications, were synthesized by compressive thermal stress on a SiO2/Si substrate at 250-270 °C for 10 h. To understand the thermal transport mechanism of BiNWs, we present three kinds of experimental technique as follows, (i) a manipulation of a single BiNW by an Omni-probe in a focused ion beam (FIB), (ii) a suspended bridge structure integrating a four-point-probe chip by micro-fabrication to minimize the thermal loss to the substrate, and (iii) a simple 3-ω technique system setup. We found that the thermal transport of BiNWs is highly affected by boundary scattering of both phonons and electrons as the dominant heat carriers. The thermal conductivity of a single BiNW (d ~ 123 nm) was estimated to be ~2.9 W m(-1) K(-1) at 280 K, implying lower values compared to the thermal conductivity of the bulk (~11 W m(-1) K(-1) at 280 K). It was noted that this reduction in the thermal conductivity of the BiNWs could be due to strongly enhanced phonon-boundary scattering at the surface of the BiNWs. Furthermore, we present temperature-dependent (10-280 K) thermal conductivity of the BiNWs using the 3-ω technique.

  1. Unusually high critical current of clean P-doped BaFe{sub 2}As{sub 2} single crystalline thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, F., E-mail: fritz.kurth@ifw-dresden.de; Engelmann, J.; Schultz, L. [Institute for Metallic Materials, IFW Dresden, 01171 Dresden (Germany); TU Dresden, 01062 Dresden (Germany); Tarantini, C.; Jaroszynski, J. [Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310 (United States); Grinenko, V.; Reich, E.; Hühne, R. [Institute for Metallic Materials, IFW Dresden, 01171 Dresden (Germany); Hänisch, J. [Institute for Metallic Materials, IFW Dresden, 01171 Dresden (Germany); Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mori, Y.; Sakagami, A.; Kawaguchi, T.; Ikuta, H. [Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Holzapfel, B. [Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann von Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Iida, K., E-mail: iida@nuap.nagoya-u.ac.jp [Institute for Metallic Materials, IFW Dresden, 01171 Dresden (Germany); Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603 (Japan)

    2015-02-16

    Microstructurally clean, isovalently P-doped BaFe{sub 2}As{sub 2} (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (T{sub c}) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e., 0.33). The enhanced T{sub c} at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (J{sub c}) of over 6 MA/cm{sup 2} at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field J{sub c} exceeds 0.1 MA/cm{sup 2} at μ{sub 0}H=35 T for H‖ab and μ{sub 0}H=18 T for H‖c at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar T{sub c}. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high J{sub c} to a strong enhancement of the vortex core energy at optimal T{sub c}, driven by in-plane strain and doping. These unusually high J{sub c} make P-doped Ba-122 very favorable for high-field magnet applications.

  2. Flat for Free Flow

    Institute of Scientific and Technical Information of China (English)

    Yan Manman

    2010-01-01

    @@ Just as Thomas Fried man's famous book,The World Is Flat,if not completely flat,it is anyway tending to be shaped flat.January 1,2010 saw the formation of the China-ASEAN Free Trade Agreement(CAFTA),which was another historical event flattening majority of Asia continent for international trade.

  3. MAMA NUV Flats

    Science.gov (United States)

    Sana, Hugues

    2013-10-01

    This program is aimed at obtaining NUV-MAMA flat-field observations for the construction of pixel-to-pixel flats {p-flats} with a SNR of 100 per binned pixel. The flats are obtained with the DEUTERIUM-lamp and the MR grisms G230M. The actual choice of central wavelength and slit combination depends on the observed count level within each exposure.Note that STIS NUV-MAMA flats are taken every other cycles{i.e. during odd number cycles} in order to not drain the DEUTERIUMlamp lifetime.

  4. Strongly Gorenstein Flat Dimensions

    Institute of Scientific and Technical Information of China (English)

    Chun Xia ZHANG; Li Min WANG

    2011-01-01

    This article is concerned with the strongly Gorenstein flat dimensions of modules and rings.We show this dimension has nice properties when the ring is coherent,and extend the well-known Hilbert's syzygy theorem to the strongly Gorenstein flat dimensions of rings.Also,we investigate the strongly Gorenstein flat dimensions of direct products of rings and (almost)excellent extensions of rings.

  5. MAMA FUV Flats

    Science.gov (United States)

    Mason, Elena

    2012-10-01

    This program aims at obtaining FUV-MAMA flat-field observations to create a new p-flats with a SNR of 100 per {low resolution} pixel. The flats are obtained with the Krypton-lamp and the MR grating G140M, similarly to the cycle 17 and 18 programs. However the exact instrument setup {slit width and central wavelength} might change depending on the desired count level {which will be close to the internally allowed global rate limit}.

  6. Creating flat design websites

    CERN Document Server

    Pratas, Antonio

    2014-01-01

    This book contains practical, step-by-step tutorials along with plenty of explanation about designing your flat website. Each section is introduced sequentially, building up your web design skills and completing your website.Creating Flat Design Websites is ideal for you if you are starting on your web development journey, but this book will also benefit seasoned developers wanting to start developing in flat.

  7. Flat Pack Toy Design

    Science.gov (United States)

    Hutcheson, Brian

    2007-01-01

    In this article, the author introduces the concept of flat pack toys. Flat pack toys are designed using a template on a single sheet of letter-sized card stock paper. Before being cut out and built into a three-dimensional toy, they are scanned into the computer and uploaded to a website. With the template accessible from the website, anyone with…

  8. Flat Band Quastiperiodic Lattices

    Science.gov (United States)

    Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo

    2014-03-01

    Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.

  9. Individual energy savings for individual flats in blocks of flats

    DEFF Research Database (Denmark)

    Nielsen, Anker; Rose, Jørgen

    2014-01-01

    is distributed on the individual flats. Today, most blocks of flats have individual heat meters to save energy and to ensure a fair distribution of the cost. If all flats have the same indoor temperature, the distribution is correct. In practice, the inhabitants of the different flats maintain different indoor...... temperatures. The result is that heat flows between individual flats. This decreases the energy consumption in the flat where the owner maintains a lower temperature. The neighbouring flats will have higher energy consumption. Calculations were performed for Danish blocks of flats from 1920, 1940, 1960...

  10. Growth Mechanism and Characterization of Single-crystalline Ga-doped SnO2 Nanowires and Self-organized SnO2/Ga2O3 Heterogeneous Microcomb Structures

    Institute of Scientific and Technical Information of China (English)

    Yong Su; Liang Xu; Xue-mei Liang; Yi-qing Chen

    2008-01-01

    Single-crystalline Ga-doped SnO2 nanowires and SnO2:Ga2O3 heterogeneous microcombs were synthesized by a simple one-step thermal evaporation and condensation method.They were characterized by means of X-ray powder diffraction (XRD),field-emission scanning electron microscopy (FE-SEM),energy-dispersive X-ray spectroscopy (EDS),transmission electron microscopy (TEM) and selected-area electron diffraction (SAED).FE-SEM images showed that the products consisted of nanowires and microcombs that represent a novel morphology.XRD,SAED and EDS indicated that they were single-crystalline tetragonal SnO2.The influence of experimental conditions on the morphologies of the products is discussed.The morphology of the product showed a ribbon-like stem and nanorihbon array aligned evenly along one or both side of the nanoribbon.It was found that many Ga2O3 nanoparticles deposited on the surface of the microcombs.The major core nanoribbon grew mainly along the [110] direction and the self-organized branching nanoribbons grew epitaxially along [110] or [110] orientation from the (110) plane of the stem.A growth process was proposed for interpreting the growth of these remarkable SnO2:Ga2O3 heterogeneous microcombs.Due to the heavy doping of Ga,the emission peak in photoluminescence spectra has red-shifted as well as broadened significantly.

  11. Study of the Non-enzymatic Glucose Sensor Based on Single-crystalline Porous Palladium Nanoflowers%基于单晶多孔钯纳米花的无酶型葡萄糖传感器研究

    Institute of Scientific and Technical Information of China (English)

    王强; 王其钰; 祁琨; 管伟明; 崔小强

    2015-01-01

    The preparation method of single-crystalline porous Palladium nanoflowers and electrocatalytic performance for non-enzymatic glucose biosensor was studied. As-prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM), which confirm that the Palladium nanoflowers are single- crystalline nature and enclosed by {100} facets. Palladium nanocubes and Palladium nanooctahedrons with the same size as Palladium nanoflower were prepared, electrocatalytic performance for non- enzymatic glucose biosensor of three nanoparticles were compared. Experimental results show that Palladium nanoflowers and nanocubes enclosed by {100} have better catalytic performance than Palladium nanooctahedrons enclosed by {111} for non-enzymatic glucose biosensor. Single-crystalline porous Palladium nanoflowers have the best catalytic performance, good stability and resistance to interferences. The detection range is 0.05~6.5 mmol/L (R2=0.9984), with a detection limit of 1 µmol/L (signal-to-noise ratio of 3), and a sensitivity of 1.1721 µA/(mmol/L cm2).%悁究了单晶多孔钯纳米花的制备惣及它作为无酶型葡萄糖传感器的催化性能。通过XRD、TEM惣及HRTEM表征手段证实合成的产物为惣{100}为主导晶面的单晶多孔钯纳米花,并合成了与钯纳米花尺寸相近的钯纳米立方体和钯纳米八面体,比较了3种纳米粒子对葡萄糖的催化能力。实悚结果表明,惣{100}为主导晶面的单晶多孔钯纳米花和钯纳米立方体对葡萄糖的催化活性优于惣{111}为主导晶面的钯纳米八面体。单晶多孔的钯纳米花是3者中催化活性最强,具有较好的稳定性惣及抗干扰能力,检测范围为0.05~6.5 mmol/L (R2=0.9984),最低检测限为1µmol/L (S/N=3),灵敏度为1.1721µA/(mmol/L cm2)。

  12. Solution for Flat Roofs

    Directory of Open Access Journals (Sweden)

    Şt. Vasiliu

    2008-01-01

    Full Text Available Roofs are constructive subassemblies that are located at the top of buildings, which toghether with perimetral walls and some elements of the infrastructure belongs to the subsystem elements that close the building. An important share in the roofing is represented by the flat roofs. Flat roofs must meet the requirements of resistance to mechanical action, thermal insulation, acoustic and waterproof, fire resistance, durability and aesthetics. To meet these requirements is necessary an analysis of the component layers and materials properties that determine the durability of structural assembly.

  13. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-02-24

    Osaka Gas Co., Ltd.'s new flat-flame heat-treatment burner offers lower material costs, reduced combustion noise, and elimination of the need for a high-pressure fuel gas to provide a high-velocity combustion burner. The flat-flame burner contains an air-swirling chamber with a flame opening in one side; the wall defining the flame opening has a small thickness around the opening and a flat outer face. This construction causes the combustion gas to be forced out from the flame opening in a spiral direction by the swirling air current within the air chamber; together with the orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space, this helps assure the formation of a flat flame spreading out over a very wide area for very rapid, uniform, and highly efficient heat treatment of an article to be heated. This approach also permits the thickness of the overall device to be reduced. The supply of combustion air in the form of a swirling stream makes it possible to provide a high-velocity combustion burner without using a high-pressure fuel gas, with the advantage of satisfactory mixture of the fuel gas and combustion air and consequently markedly reduced combustion noise.

  14. Synthesis of Single-crystalline Barium Carbonate Nanowires Through a Reverse Micelle Modified Solvothermal Method%微乳水热法制备单晶BaCO3纳米线

    Institute of Scientific and Technical Information of China (English)

    邓兆; 戴英; 陈文

    2009-01-01

    利用反相胶束结合溶剂热法制备了BaCO3单晶纳米线.该方法中,油酸/正辛烷/水体系中的反相胶束起到模板作用,引导BaCO3沿一维方向生长,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、投射电子显微镜(TEM)和高分辨电子显微镜(HRTEM)对BaCO3纳米线进行了表征,结果表明,所制备的BaCO3纳米线为均匀的直线形单晶纳米线,直径为80~200 nm,长度为几百纳米到几微米.对BaCO3纳米线的形成机理进行了分析.%Single-crystalline BaCO3 nanowires were successfully synthesized in a reverse micelle modified solvothermal method.The reverse micelle in Oleic acid/n-octane/water system was proved,to work as template to guide the growth of BaCO3 along 1-dimension.The samples were characterized with Xray powder diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM),and high-resolution transmission electron microscopy (HRTEM).Results show that the BaCO3 nanowires are single-crystalline and have a uniform structure with diameters between 80 and 200 nm and lengths between hundreds of nanometers and several microns.And the formation mechanism of BaCO3 was discussed.

  15. Synthesis and measurements of the optical bandgap of single crystalline complex metal oxide BaCuV{sub 2}O{sub 7} nanowires by UV–VIS absorption

    Energy Technology Data Exchange (ETDEWEB)

    Shakir, Imran, E-mail: shakir@skku.edu [Sustainable Energy Technologies Center, King Saudi University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Shahid, Muhammad [Sustainable Energy Technologies Center, King Saudi University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Aboud, Mohamed F.A. [Sustainable Energy Technologies Center, King Saudi University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Nasr City 11371, Cairo (Egypt)

    2015-08-25

    Highlights: • Synthesis of single crystalline complex metal oxides BaCuV{sub 2}O{sub 7} nanowires. • Surfactant free, economically favorable chemical solution deposition method. • Complex metal oxides nanowires with controlled stoichiometry. • Simply controlling the temperature and thickness of the coated film, we can easily obtain high quality BaCuV{sub 2}O{sub 7} nanowires. - Abstract: The synthesis of single crystalline complex metal oxides BaCuV{sub 2}O{sub 7} nanowires were attained by using surfactant free, economically favorable chemical solution deposition method. A thin layer of BaCuV{sub 2}O{sub 7} nanocrystals is formed by the decomposition of complex metal oxide solution at 150 °C to provide nucleation sites for the growth of nanowires. The synthesized nanowires were typically 1–5 μm long with diameter from 50 to 150 nm. We showed that by simply controlling the temperature and thickness of the coated film, we can easily obtain high quality BaCuV{sub 2}O{sub 7} nanowires. The UV–VIS absorption spectra show indirect bandgap of 2.65 ± 0.05 eV of nanowires. The temperature-dependent resistances of BaCuV{sub 2}O{sub 7} nanowires agree with the exponential correlation, supporting that the conducting carriers are the quasi-free electrons. We believe that our methodology will provides a simple and convenient route for the synthesis of variety of complex metal oxides nanowires with controlled stoichiometry.

  16. Landau-Zener Bloch Oscillations with Perturbed Flat Bands.

    Science.gov (United States)

    Khomeriki, Ramaz; Flach, Sergej

    2016-06-17

    Sinusoidal Bloch oscillations appear in band structures exposed to external fields. Landau-Zener (LZ) tunneling between different bands is usually a counteracting effect limiting Bloch oscillations. Here we consider a flat band network with two dispersive and one flat band, e.g., for ultracold atoms and optical waveguide networks. Using external synthetic gauge and gravitational fields we obtain a perturbed yet gapless band structure with almost flat parts. The resulting Bloch oscillations consist of two parts-a fast scan through the nonflat part of the dispersion structure, and an almost complete halt for substantial time when the atomic or photonic wave packet is trapped in the original flat band part of the unperturbed spectrum, made possible due to LZ tunneling.

  17. Preparation of flat gold terraces for protein chip developments

    OpenAIRE

    Elie-Caille, Céline; Rauch, Jean-Yves; Rouleau, Alain; Boireau, Wilfrid

    2009-01-01

    A simple method to prepare flat gold terraces on mica for atomic force microscopy biomolecular characterisation is described. The procedure includes preheating of the substrate, metal deposition and an annealing step. All of these steps are at elevated temperatures (300–420°C). This approach allows one to prepare large flat gold terraces (200– 500 nm), which constitute ideal substrates for visualisation and characterisation of a self-assembly monolayer of biomolecules at the nanoscale. The au...

  18. Flat covers of modules

    CERN Document Server

    Xu, Jinzhong

    1996-01-01

    Since the injective envelope and projective cover were defined by Eckmann and Bas in the 1960s, they have had great influence on the development of homological algebra, ring theory and module theory. In the 1980s, Enochs introduced the flat cover and conjectured that every module has such a cover over any ring. This book provides the uniform methods and systematic treatment to study general envelopes and covers with the emphasis on the existence of flat cover. It shows that Enochs' conjecture is true for a large variety of interesting rings, and then presents the applications of the results. Readers with reasonable knowledge in rings and modules will not have difficulty in reading this book. It is suitable as a reference book and textbook for researchers and graduate students who have an interest in this field.

  19. Flat flame burner

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Y.; Mitsudomi, H.

    1976-03-09

    Osaka Gas Co., Ltd.'s new flat-flame burner has an air-swirling chamber with a flame opening in one side so constructed that combustion gas is forced out from the flame opening in a spiral direction by the swirling air current within the air chamber. The orifice effect of permitting the flame to emanate from a small opening to an unconfined outer space assures formation of a flat flame spreading out over a very wide area, thereby ensuring very rapid, uniform and highly efficient heat treatment of an article to be heated. With the present invention, moreover, it is possible to materially reduce the thickness of the overall device.

  20. Flat Earth图片

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    欢迎来到这期的光盘介绍。本月的附刊光盘中,除了每月的精彩教程外,您可在光盘中找到15张由Flat Earth友情提供的库存图片。当然还有Twixtor和最新的Acrobat Reader 7。

  1. Flat-plate heat pipe

    Science.gov (United States)

    Marcus, B. D.; Fleischman, G. L. (Inventor)

    1977-01-01

    Flat plate (vapor chamber) heat pipes were made by enclosing metal wicking between two capillary grooved flat panels. These heat pipes provide a unique configuration and have good capacity and conductance capabilities in zero gravity. When these flat plate vapor chamber heat pipes are heated or cooled, the surfaces are essentially isothermal, varying only 3 to 5 C over the panel surface.

  2. Flat conductor cable commercialization project

    Science.gov (United States)

    Hogarth, P.; Wadsworth, E.

    1977-01-01

    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.

  3. Piecewise flat gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Van de Meent, Maarten, E-mail: M.vandeMeent@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, PO Box 80.195, 3508 TD Utrecht (Netherlands)

    2011-04-07

    We examine the continuum limit of the piecewise flat locally finite gravity model introduced by 't Hooft. In the linear weak field limit, we find the energy-momentum tensor and metric perturbation of an arbitrary configuration of defects. The energy-momentum turns out to be restricted to satisfy certain conditions. The metric perturbation is mostly fixed by the energy-momentum except for its lightlike modes which reproduce linear gravitational waves, despite no such waves being present at the microscopic level.

  4. Flat feet in children

    Directory of Open Access Journals (Sweden)

    Vukašinović Zoran

    2009-01-01

    Full Text Available The authors describe flatfoot, as one of very frequent deformities in everyday medical practice. A special condition of the deformity associated with a calcaneal valgus position and complicated by a knee valgus position (as a consequence of non-treatment is described. Also, the precise anatomy of the longitudinal foot arches (medial and lateral, definition and classification of the deformity, clinical findings and therapeutic protocols are proposed. The authors especially emphasise that the need for having extensive knowledge on the differences between a flexible and rigid flatfoot, having in mind that the treatment of flexible flat foot is usually not necessary, while the treatment of rigid flatfoot is usually unavoidable.

  5. Growth and luminescent properties of scintillators based on the single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce garnet

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu, E-mail: zorenko@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials, Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Gorbenko, V. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials, Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Vasylkiv, Ja [Laboratory for Optoelectronic Materials, Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Zelenyj, A. [Danylo Halytskyy Lviv National Medical University, 79010 Lviv (Ukraine); Fedorov, A. [Institute for Scintillation Materials, NAS of Ukraine, 61001 Kharkiv (Ukraine); Kucerkova, R.; Mares, J.A.; Nikl, M. [Institute of Physics, AS CR, 16253 Prague (Czech Republic); Bilski, P.; Twardak, A. [Institute of Nuclear Physic, Polish Academy of Science, 31-342 Krakow (Poland)

    2015-04-15

    Highlights: • Single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12} garnets at x = 0 ÷ 3.0 were grown by LPE method onto YAG substrates. • Lattice constant of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12}:Ce film and the misfit m between films and YAG substrate changed linearly with increasing of Gd content. • Effective Gd{sup 3+}–Ce{sup 3+} energy transfer occurs in the Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. • Best scintillation light yield is observed in the Lu{sub 3}Al{sub 5}O{sub 12}:Ce and Lu{sub 2.4}Gd{sub 0.6}Al{sub 5}O{sub 12}:Ce films. • Increase of the Gd content in x = 1.5–2.5 range results in decreasing the scintillation LY of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. - Abstract: The work is related to the growth of scintillators based on the single crystalline films (SCF) of Ce{sup 3+} doped Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} mixed rare-earth garnets by Liquid Phase Epitaxy (LPE) method. We have shown, that full set of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} SCFs with x values ranging from 0 to 3.0 can be successfully crystallized by the LPE method onto Y{sub 3}Al{sub 5}O{sub 12} (YAG) substrates from the melt-solutions based on PbO-B{sub 2}O{sub 3} flux. The absorption, X-ray excited luminescence, photoluminescence, thermoluminescence and light yield measurements, the latter under excitation by α-particles of {sup 239}Pu and {sup 241}Am radioisotopes, were applied for their characterization.

  6. 快速热处理下镍对锗单晶电学性能的影响%Effect of Nickel on the Electrical Properties of Single-Crystalline Germanium under Rapid Thermal Processing

    Institute of Scientific and Technical Information of China (English)

    梁萍兰; 郑忠云; 张存磊; 王少锋; 席珍强

    2012-01-01

    采用磁控溅射法在n-Ge表面镀镍薄膜,通过改变快速热处理时间研究镍对锗单晶的导电型号、电阻率和少子寿命的影响,以及镍在锗中的扩散行为.结果表明:镍在锗中具有向内扩散和向外扩散两种行为,并以受主状态存在,改变了锗内部的载流子的分布;775℃热处理后,镍受主完全补偿原有的施主,使锗由n型转变为p型,随着热处理时间的增加,电阻率下降,镍受主浓度增加.即使微量的镍就可以使锗的少子寿命直线下降至零点几微秒,这表明镍在锗中会引入深能级.%In this paper, nickel film is deposited on the n-type single-crystalline germanium by the magnetron sputtering, then the effects of nickel on the single-crystalline germanium are studied by changing the time of rapid thermal processing, including the electrical properties, minority carrier lifetime and diffusion behavior of nickel. The results show that in-diffusion and out-diffusion happen simultaneously, nickel behaving as an acceptor changes the carrier distribution of germanium. With the heat treatment at 775 °C, the n-type germanium changes to p-type germanium, caused by the nickel compensating the original donor. The resistivity of germanium decreases with increasing time, accordingly, the nickel concentration existing by the acceptor state increases with increasing time. Even a small quantity of nickel can rapidly decrease the minority carrier lifetime of germanium, this shows that the level caused by the nickel is deep level.

  7. Single-crystalline EuF3 hollow hexagonal microdisks: synthesis and application as a background-free matrix for MALDI-TOF-MS analysis of small molecules and polyethylene glycols.

    Science.gov (United States)

    Chen, Zhiming; Geng, Zhirong; Shao, Dalin; Mei, Yuhua; Wang, Zhilin

    2009-09-15

    Single-crystalline EuF(3) hexagonal microdisks with hollow interior were fabricated to serve as a background-free matrix for analysis of small molecules and polyethylene glycols (PEGs) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The long-lived excited state of europium ions can transfer energy to high-energy vibrations of organic molecules, which provides the potential technological application in MALDI-TOF-MS analysis of small molecules and PEGs. The efficiency of the hollow microdisks as a novel matrix of low molecular weight compounds was verified by analysis of small peptide, amino acid, organic compounds, and hydroxypropyl beta-cyclodextrin (HP-beta-CD). The advantage of this matrix in comparison with alpha-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) was demonstrated by MALDI-TOF-MS analysis of an amino acid mixture and a peptide mixture. This matrix is successfully used for analysis of PEGs (PEG 2000, PEG 4000, PEG 8000, PEG 15000, and PEG 30000), suggesting a potential for monitoring reactions and for synthetic polymer quality control. The upper limit of detectable mass range was approximately 35,000 Da (PEG 30000). It is believed that this work will not only offer a new technique for high-speed analysis of small molecules and PEGs but also open a new field for applications of rare earth fluorides.

  8. Detection and imaging of the oxygen deficiency in single crystalline YBa{sub 2}Cu{sub 3}O{sub 7−δ} thin films using a scanning positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, M.; Gigl, T.; Hugenschmidt, C. [Lehrstuhl E21 at Physics Department and FRM II at Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, James-Franck Straße, 85748 Garching (Germany); Jany, R.; Hammerl, G. [Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstraße 1, 86135 Augsburg (Germany)

    2015-03-16

    Single crystalline YBa{sub 2}Cu{sub 3}O{sub 7−δ} (YBCO) thin films were grown by pulsed laser deposition in order to probe the oxygen deficiency δ using a mono-energetic positron beam. The sample set covered a large range of δ (0.191 < δ < 0.791) yielding a variation of the critical temperature T{sub c} between 25 and 90 K. We found a linear correlation between the Doppler broadening of the positron electron annihilation line and δ determined by X-ray diffraction. Ab-initio calculations have been performed in order to exclude the presence of Y vacancies and to ensure the negligible influence of potentially present Ba or Cu vacancies to the found correlation. Moreover, scanning with the positron beam allowed us to analyze the spatial variation of δ, which was found to fluctuate with a standard deviation of up to 0.079(5) within a single YBCO film.

  9. Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS(en)0.5 (en = ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection

    International Nuclear Information System (INIS)

    Novel single-crystalline ZnO nanosheets with porous structure have been fabricated by annealing ZnS(en)0.5 (en = ethylenediamine) complex precursor. The morphology and structure observations performed by field emission scanning electronic microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) indicate that numerous mesopores with a diameter of about 26.1 nm distribute all through each nanosheet with a high density. The transformation of structure and composition of samples obtained during thermal treatment processes were investigated by x-ray diffraction (XRD), x-ray photoelectron spectrometry (XPS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) absorption spectroscopy. The formation mechanism of the porous structure is proposed. For indoor air contaminant detection in which formaldehyde and ammonia are employed as target gases, the as-prepared ZnO nanosheets were applied for the fabrication of gas sensors. It was found that the as-fabricated sensors not only exhibit highly sensitive performance, e.g., high gas-sensing responses, short response and recovery time, but also possess significant long-term stability. It is indicated that these ZnO nanostructures could promisingly be applied in electronic devices for environmental evaluation.

  10. Ion-irradiation-assisted phase selection in single crystalline Fe7Pd3 ferromagnetic shape memory alloy thin films: from fcc to bcc along the Nishiyama-Wassermann path.

    Science.gov (United States)

    Arabi-Hashemi, A; Mayr, S G

    2012-11-01

    When processing Fe-Pd ferromagnetic shape memory thin films, selection of the desired phases and their transformation temperatures constitutes one of the largest challenges from an application point of view. In the present contribution we demonstrate that irradiation with 1.8 MeV Kr(+) ions is the method of choice to achieve this goal: Single crystalline Fe(7)Pd(3) thin films that are grown with molecular beam epitaxy on MgO (001) substrates and subsequently irradiated with ions reveal a phase transformation along the whole phase transformation path ranging from fcc austenite to bcc martensite. While for 10(14) ions/cm(2) a fcc-fct phase transformation is observed, increasing the fluence to 5 × 10(14) ions/cm(2) and 5 × 10(15) ions/cm(2) leads to a phase transformation to the bcc phase. Pole figure measurements reveal an orientation relationship for the fcc-bcc phase transformation according to Nishiyama and Wassermann.

  11. Flat Helical Nanosieves

    CERN Document Server

    Mei, Shengtao; Hussain, Sajid; Huang, Kun; Ling, Xiaohui; Siew, Shawn Yohanes; Liu, Hong; Teng, Jinghua; Danner, Aaron; Qiu, Cheng-Wei

    2016-01-01

    Compact and miniaturized devices with flexible functionalities are always highly demanded in optical integrated systems. Plasmonic nanosieve has been successfully harnessed as an ultrathin flat platform for complex manipulation of light, including holography, vortex generation and non-linear processes. Compared with most of reported single-functional devices, multi-functional nanosieves might find more complex and novel applications across nano-photonics, optics and nanotechnology. Here, we experimentally demonstrate a promising roadmap for nanosieve-based helical devices, which achieves full manipulations of optical vortices, including its generation, hybridization, spatial multiplexing, focusing and non-diffraction propagation etc., by controlling the geometric phase of spin light via over 121 thousands of spatially-rotated nano-sieves. Thanks to such spin-conversion nanosieve helical elements, it is no longer necessary to employ the conventional two-beam interferometric measurement to characterize optical ...

  12. IS THE WORLD FLAT?

    Directory of Open Access Journals (Sweden)

    Cristian Încalţărău

    2010-06-01

    Full Text Available Globalization became more and more prominent during the last decades. There is no way to argue that globalization led to more interconnected economies, facilitating the communication and the collaboration around the world. But where is this going? Doesglobalization mean uniformity or diversity? As the world begins to resemble more, the people are trying to distinguish between them more, which can exacerbate nationalistic feeling. Friedman argues that globalization made the world smaller and flatter, allowing all countries to take chance of the available opportunities equally. But is this really true? Although politic and cultural factors can stand in front of a really flat world, what is the key for Chinese and Indian success and which are theirs perspectives?

  13. Flat Bands Under Correlated Perturbations

    OpenAIRE

    Bodyfelt, Joshua D.; Leykam, Daniel; Danieli, Carlo; Yu, Xiaoquan; Flach, Sergej

    2014-01-01

    Flat band networks are characterized by coexistence of dispersive and flat bands. Flat bands (FB) are generated by compact localized eigenstates (CLS) with local network symmetries, based on destructive interference. Correlated disorder and quasiperiodic potentials hybridize CLS without additional renormalization, yet with surprising consequencies: (i) states are expelled from the FB energy $E_{FB}$, (ii) the localization length of eigenstates vanishes as $\\xi \\sim 1 / \\ln (E- E_{FB})$, (iii)...

  14. More Ricci-flat branes

    CERN Document Server

    Figueroa-O'Farrill, J M

    1999-01-01

    Certain supergravity solutions (including domain walls and the magnetic fivebrane) have recently been generalised by Brecher and Perry by relaxing the condition that the brane worldvolume be flat. In this way they obtain examples in which the brane worldvolume is a static spacetime admitting parallel spinors. In this note we simply point out that the restriction to static spacetimes is unnecessary, and in this way exhibit solutions where the brane worldvolume is an indecomposable Ricci-flat lorentzian manifold admitting parallel spinors. We discuss more Ricci-flat fivebranes and domain walls, as well as new Ricci-flat D3-branes.

  15. Is classical flat Kasner spacetime flat in quantum gravity?

    Science.gov (United States)

    Singh, Parampreet

    2016-05-01

    Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology (LQC). We find that even though the spacetime curvature vanishes at the classical level, nontrivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a physical solution of the effective spacetime description, except in a limit. The lack of a flat Kasner metric at the quantum level results from a novel feature of the loop quantum Bianchi-I spacetime: quantum geometry induces nonvanishing spacetime curvature components, making it not Ricci flat even when no matter is present. The noncurvature singularity of the classical flat Kasner spacetime is avoided, and the effective spacetime transits from a flat Kasner spacetime in asymptotic future, to a Minkowski spacetime in asymptotic past. Interestingly, for an alternate loop quantization which does not share some of the fine features of the standard quantization, flat Kasner spacetime with expected classical features exists. In this case, even with nontrivial quantum geometric effects, the spacetime curvature vanishes. These examples show that the character of even a flat classical vacuum spacetime can alter in a fundamental way in quantum gravity and is sensitive to the quantization procedure.

  16. Graphene nanoribbons production from flat carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, W. S.; Guerini, S.; Diniz, E. M., E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, São Luís - MA 65080-805 (Brazil)

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  17. Graphene nanoribbons production from flat carbon nanotubes

    International Nuclear Information System (INIS)

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons

  18. Asymptotic Flatness in Rainbow Gravity

    OpenAIRE

    Hackett, Jonathan

    2005-01-01

    A construction of conformal infinity in null and spatial directions is constructed for the Rainbow-flat space-time corresponding to doubly special relativity. From this construction a definition of asymptotic DSRness is put forward which is compatible with the correspondence principle of Rainbow gravity. Furthermore a result equating asymptotically flat space-times with asymptotically DSR spacetimes is presented.

  19. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to constr

  20. Irritated Method for Flat warts

    Institute of Scientific and Technical Information of China (English)

    LiBingxu

    2004-01-01

    Summary Background The relation between spontaneous regression of Flat warts and T cells depended immunity was confirmed. Cells immunity against HPV was induced by presenting of HPV related antigens, and thrived by cytokine and some chemistry agent. So how to make HPV which incubated in keratinocyte to present PHV antigens and keratinocyte to secret cytokine or chemistry agents should be a pursuance for dermatologist who are looking for a efficient method to deal with flat warts. Present research had exhibited inflammable agents can induce dermatitis when apply to the skin surface, so it might bring flat warts to spontaneous regression. Objective To observe the effectiveness of irritant drugs on flat warts, and at same time to understand more on the mechanism of the regression. Methods Compared with Control we treat 88 case of flat warts with retinoid gel or 3% hydrogen peroxide solution plus 5 % salicylic acid cream (HPSC). Results Both retinoid gel and HPSC reveal significant effect on flat warts. Conclusion Retinoid gel or SPHC was effective on the treatment of flat warts. The possible explanation for this is the drugs when put on the skin will induce dermatitis and dissolve or denude keratin.

  1. Is classical flat Kasner spacetime flat in quantum gravity?

    OpenAIRE

    Singh, Parampreet

    2016-01-01

    Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology. We find that even though the spacetime curvature vanishes at the classical level, non-trivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a phy...

  2. Is classical flat Kasner spacetime flat in quantum gravity?

    CERN Document Server

    Singh, Parampreet

    2016-01-01

    Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology. We find that even though the spacetime curvature vanishes at the classical level, non-trivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a physical solution of the effective spacetime description, except in a limit. The lack of a flat Kasner metric at the quantum level results from a novel feature of the loop quantum Bianchi-I spacetime: quantum geometry induces non-vanishing spacetime curvature components, making it not Ricci flat even when no matter is present. The non-curvature singularity of the classical flat Kasner spacetime is avoided, and the effective spacetime transits from a flat Kasner spacetime in asymptotic future, to a Minkowski spacetime in asym...

  3. Boundaries of flat compact surfaces

    DEFF Research Database (Denmark)

    Røgen, Peter

    1999-01-01

    This paper deals with the problem: ``Which knots or links in 3-space bound flat (immersed) compact surfaces?''. In a previous paper by the author it was proven that: Any simple closed space curve can be deformed until it bounds a flat orientable compact (Seifert) surface. The main results...... of this paper are: There exist knots that do not bound any flat compact surfaces. The lower bound of total curvature of a knot bounding an orientable non-negatively curved compact surface can, for varying knot type, be arbitrarily much greater than the infimum of curvature needed for the knot to have its knot...... type. The number of $3$-singular points (points of zero curvature or if not then of zero torsion) on the boundary of a flat immersed compact surface is greater than or equal to twice the absolute value of the Euler characteristic of the surface. A set of necessary and, in a weakened sense, sufficient...

  4. Research on Flat Solar Collector

    OpenAIRE

    Kavolynas, Antanas

    2005-01-01

    The Thesis analyzes one of the spheres of alternative energy supply – the solar energy. The main objective of the Thesis is to determine the energy rates of the solar collector and its accumulative capacity. The Paper introduces a stand on the solar collector research which consists of a flat solar collector, heat accumulator and auxiliary equipment. The research object of the Thesis is a laboratory flat solar collector and its system. The Thesis analyses the constructions of the solar collec...

  5. Wafer-Size and Single-Crystal MoSe2 Atomically Thin Films Grown on GaN Substrate for Light Emission and Harvesting.

    Science.gov (United States)

    Chen, Zuxin; Liu, Huiqiang; Chen, Xuechen; Chu, Guang; Chu, Sheng; Zhang, Hang

    2016-08-10

    Two-dimensional (2D) atomic-layered semiconductors are important for next-generation electronics and optoelectronics. Here, we designed the growth of an MoSe2 atomic layer on a lattice-matched GaN semiconductor substrate. The results demonstrated that the MoSe2 films were less than three atomic layers thick and were single crystalline of MoSe2 over the entire GaN substrate. The ultrathin MoSe2/GaN heterojunction diode demonstrated ∼850 nm light emission and could also be used in photovoltaic applications.

  6. Wafer-Size and Single-Crystal MoSe2 Atomically Thin Films Grown on GaN Substrate for Light Emission and Harvesting.

    Science.gov (United States)

    Chen, Zuxin; Liu, Huiqiang; Chen, Xuechen; Chu, Guang; Chu, Sheng; Zhang, Hang

    2016-08-10

    Two-dimensional (2D) atomic-layered semiconductors are important for next-generation electronics and optoelectronics. Here, we designed the growth of an MoSe2 atomic layer on a lattice-matched GaN semiconductor substrate. The results demonstrated that the MoSe2 films were less than three atomic layers thick and were single crystalline of MoSe2 over the entire GaN substrate. The ultrathin MoSe2/GaN heterojunction diode demonstrated ∼850 nm light emission and could also be used in photovoltaic applications. PMID:27409977

  7. On Flat Objects of Finitely Accessible Categories

    Directory of Open Access Journals (Sweden)

    Septimiu Crivei

    2013-01-01

    Full Text Available Flat objects of a finitely accessible additive category are described in terms of some objects of the associated functor category of , called strongly flat functors. We study closure properties of the class of strongly flat functors, and we use them to deduce the known result that every object of a finitely accessible abelian category has a flat cover.

  8. Liquid-gated interface superconductivity on an atomically flat film

    NARCIS (Netherlands)

    Ye, J. T.; Inoue, S.; Kobayashi, K.; Kasahara, Y.; Yuan, H. T.; Shimotani, H.; Iwasa, Y.

    2010-01-01

    Liquid/solid interfaces are attracting growing interest not only for applications in catalytic activities and energy storage(1,2), but also for their new electronic functions in electric double-layer transistors (EDLTs) exemplified by high-performance organic electronics(3-7), field-induced electron

  9. Dual polarization flat plate antenna

    Science.gov (United States)

    Kelly, Kenneth C.

    Rectangular waveguides with radiating slots are used in groups to form planar array microwave antennas with large apertures and small depth. Such flat plate antennas are widely used on spacecraft and aircraft. Typically, flat plate antennas provide fixed linear polarization. The present paper describes a new flat plate antenna which produces two coincident beams that are distinguished by their orthogonal linear polarizations. The antenna has two ports, one for each of the coicident beams. Completely external to the antenna, connecting a simple network to those terminal ports enables the antenna to provide right circular polarization from one port and left from the other. A different external network enables the antenna to have arbitrarily adjustable polarizations.

  10. The Fallacies of Flatness: Thomas Friedman's "The World Is Flat"

    Science.gov (United States)

    Abowitz, Kathleen Knight; Roberts, Jay

    2007-01-01

    Thomas Friedman's best-selling "The World is Flat" has exerted much influence in the west by providing both an accessible analysis of globalization and its economic and social effects, and a powerful cultural metaphor for globalization. In this review, we more closely examine Friedman's notion of the social contract, the moral center of his…

  11. Nonlocal gravity: Conformally flat spacetimes

    CERN Document Server

    Bini, Donato

    2016-01-01

    The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.

  12. Rotary-atomizer electric power generator

    NARCIS (Netherlands)

    Nguyen, Trieu; Tran, Tuan; Boer, de Hans; Berg, van den Albert; Eijkel, Jan C.T.

    2015-01-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centr

  13. Flat space physics from holography

    CERN Document Server

    Bousso, R

    2004-01-01

    We point out that aspects of quantum mechanics can be derived from the holographic principle, using only a perturbative limit of classical general relativity. In flat space, the covariant entropy bound reduces to the Bekenstein bound. The latter does not contain Newton's constant and cannot operate via gravitational backreaction. Instead, it is protected by - and in this sense, predicts - the Heisenberg uncertainty principle

  14. Crystal and local atomic structure of Co-doped MgFeBO_4 warwickites

    OpenAIRE

    Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Ivanova, N. B.; Zubavichus, Y. V.; Veligzhanin, A. A.; Vasiliev, A. D.; Bezmaternykh, L. N.; Bayukov, O. A.; Arauzo, A.; Bartolomé, J.; Lamonova, K. V.; Ovchinnikov, S. G.

    2014-01-01

    Single crystalline MgFeBO_4, Mg_0.5Co_0.5FeBO_4 and CoFeBO_4 have been grown by the flux method. The samples have been characterized by X-ray spectral analysis, X-ray diffraction and X-ray absorption spectroscopy. The X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra have been measured at the Fe andCoK-edges over a wide temperature range (6.5 - 300 K). The composition, the charge state and local environment of both Fe and Co atoms have b...

  15. Automatic Flatness Control of Cold Rolling Mill

    Science.gov (United States)

    Anbe, Yoshiharu; Sekiguchi, Kunio

    One of the subjects of cold rolling is a flatness of the rolled strip. Conventionally, measured strip flatness was approximated by polynomial (2th, 4th, 6th) equation across the entire strip width. This made it difficult to deal with desired loose edge or any desired flatness across the entire strip width. Also conventional flatness control was done for the entire strip width, so if there is a different flatness error among drive side and work side, conventional flatness control can not control properly. We propose independent strip flatness control among drive side and work side, and also automatic flatness control (AFC) system with arbitrary desired strip flatness. Also some applied results to cold mill are shown.

  16. Flat

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    菲亚特选在柏林举行的“面包与黄油(Bread&Butter)”青年时尚秀中发布了500柴油版车型。这款车型首先推出的是黑色和绿色车身颜色,共限量1万辆,目前已有6000辆被售出。现在,它又追加了1款车身颜色“午夜蓝”,菲亚特选择这款颜色,是因为它很接近牛仔裤的颜色,更容易吸引年轻的消费者。

  17. Focal Rigidity of Flat Tori

    CERN Document Server

    Kwakkel, Ferry; Peixoto, Mauricio

    2011-01-01

    Given a closed Riemannian manifold (M, g), there is a partition \\Sigma_i of its tangent bundle TM called the focal decomposition. The sets \\Sigma_i are closely associated to focusing of geodesics of (M, g), i.e. to the situation where there are exactly i geodesic arcs of the same length joining points p and q in M. In this note, we study the topological structure of the focal decomposition of a closed Riemannian manifold and its relation with the metric structure of the manifold. Our main result is that the flat n-tori are focally rigid, in the sense that if two flat tori are focally equivalent, then the tori are isometric up to rescaling.

  18. Parallel spinors on flat manifolds

    Science.gov (United States)

    Sadowski, Michał

    2006-05-01

    Let p(M) be the dimension of the vector space of parallel spinors on a closed spin manifold M. We prove that every finite group G is the holonomy group of a closed flat spin manifold M(G) such that p(M(G))>0. If the holonomy group Hol(M) of M is cyclic, then we give an explicit formula for p(M) another than that given in [R.J. Miatello, R.A. Podesta, The spectrum of twisted Dirac operators on compact flat manifolds, Trans. Am. Math. Soc., in press]. We answer the question when p(M)>0 if Hol(M) is a cyclic group of prime order or dim⁡M≤4.

  19. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  20. Defining Contact at the Atomic Scale

    OpenAIRE

    Cheng, Shengfeng; Robbins, Mark O.

    2010-01-01

    Molecular dynamics simulations are used to study different definitions of contact at the atomic scale. The roles of temperature, adhesive interactions and atomic structure are studied for simple geometries. An elastic, crystalline substrate contacts a rigid, atomically flat surface or a spherical tip. The rigid surface is formed from a commensurate or incommensurate crystal or an amorphous solid. Spherical tips are made by bending crystalline planes or removing material outside a sphere. In c...

  1. Investigation of structural and optical properties of GaN on flat and porous silicon

    Science.gov (United States)

    Abud, Saleh H.; Selman, Abbas M.; Hassan, Z.

    2016-09-01

    In this work, gallium nitride (GaN) layers were successfully grown on Flat-Si and porous silicon (PSi) using a radio frequency-magnetron sputtering system. Field emission scanning electron microscopy and atomic force microscopy images showed that the grown film on Flat-Si had smoother surface, even though there were some cracks on it. Furthermore, the X-ray diffraction measurements showed that the peak intensity of all the grown layers on PSi was higher than that of the grown layer on Flat-Si. Our detailed observation showed that PSi is a promising substrate to obtain GaN films.

  2. Flat colon polyps: what should radiologists know?

    Energy Technology Data Exchange (ETDEWEB)

    Ignjatovic, A. [Intestinal Imaging Centre, St Mark' s Hospital, Harrow, Middlesex (United Kingdom); Burling, D., E-mail: burlingdavid@yahoo.co.u [Intestinal Imaging Centre, St Mark' s Hospital, Harrow, Middlesex (United Kingdom); Ilangovan, R.; Clark, S.K.; Taylor, S.A.; East, J.E.; Saunders, B.P. [Intestinal Imaging Centre, St Mark' s Hospital, Harrow, Middlesex (United Kingdom)

    2010-12-15

    With the recent publication of international computed tomography (CT) colonography standards, which aim to improve quality of examinations, this review informs radiologists about the significance of flat polyps (adenomas and hyperplastic polyps) in colorectal cancer pathways. We describe flat polyp classification systems and propose how flat polyps should be reported to ensure patient management strategies are based on polyp morphology as well as size. Indeed, consistency when describing flat polyps is of increasing importance given the strengthening links between CT colonography and endoscopy.

  3. 49 CFR 231.6 - Flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  4. Flat panel display - Impurity doping technology for flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Toshiharu [Advanced Technology Planning, Sumitomo Eaton Nova Corporation, SBS Tower 9F, 10-1, Yoga 4-chome, Setagaya-ku, 158-0097 Tokyo (Japan)]. E-mail: suzuki_tsh@senova.co.jp

    2005-08-01

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified.

  5. Flat panel display - Impurity doping technology for flat panel displays

    International Nuclear Information System (INIS)

    Features of the flat panel displays (FPDs) such as liquid crystal display (LCD) and organic light emitting diode (OLED) display, etc. using low temperature poly-Si (LTPS) thin film transistors (TFTs) are briefly reviewed comparing with other FPDs. The requirements for fabricating TFTs used for high performance FPDs and system on glass (SoG) are addressed. This paper focuses on the impurity doping technology, which is one of the key technologies together with crystallization by laser annealing, formation of high quality gate insulator and gate-insulator/poly-Si interface. The issues to be solved in impurity doping technology for state of the art and future TFTs are clarified

  6. An extension to flat band ferromagnetism

    Science.gov (United States)

    Gulacsi, M.; Kovacs, G.; Gulacsi, Z.

    2014-11-01

    From flat band ferromagnetism, we learned that the lowest energy half-filled flat band gives always ferromagnetism if the localized Wannier states on the flat band satisfy the connectivity condition. If the connectivity conditions are not satisfied, ferromagnetism does not appear. We show that this is not always the case namely, we show that ferromagnetism due to flat bands can appear even if the connectivity condition does not hold due to a peculiar behavior of the band situated just above the flat band.

  7. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    Science.gov (United States)

    Nandy, Atanu; Chakrabarti, Arunava

    2015-11-01

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign.

  8. Atom Chips

    CERN Document Server

    Folman, R; Cassettari, D; Hessmo, B; Maier, T; Schmiedmayer, J; Folman, Ron; Krüger, Peter; Cassettari, Donatella; Hessmo, Björn; Maier, Thomas

    1999-01-01

    Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems.

  9. Non-Perturbative Flat Direction Decay

    CERN Document Server

    Basboll, A; Riva, F; West, S M; Basboll, Anders; Maybury, David; Riva, Francesco; West, Stephen M.

    2007-01-01

    We argue that supersymmetric flat direction vevs can decay non-perturbatively via preheating. Considering the case of a single flat direction, we explicitly calculate the scalar potential in the unitary gauge for a U(1) theory and show that the mass matrix for excitations around the flat direction has non-diagonal entries which vary with the phase of the flat direction vev. Furthermore, this mass matrix has 2 zero eigenvalues (associated with the excitations along the flat direction) whose eigenstates change with time. We show that these 2 light degrees of freedom are produced copiously in the non-perturbative decay of the flat direction vev. We also comment on the application of these results to the MSSM flat direction H_uL.

  10. Flat lens for seismic waves

    CERN Document Server

    Brule, Stephane; Guenneau, Sebastien

    2016-01-01

    A prerequisite for achieving seismic invisibility is to demonstrate the ability of civil engineers to control seismic waves with artificially structured soils. We carry out large-scale field tests with a structured soil made of a grid consisting of cylindrical and vertical holes in the ground and a low frequency artificial source (< 10 Hz). This allows the identification of a distribution of energy inside the grid, which can be interpreted as the consequence of an effective negative refraction index. Such a flat lens reminiscent of what Veselago and Pendry envisioned for light opens avenues in seismic metamaterials to counteract the most devastating components of seismic signals.

  11. Abrasion of flat rotating shapes

    OpenAIRE

    Roth, A.E.; Marques, C. M.; Durian, D. J.

    2010-01-01

    We report on the erosion of flat linoleum "pebbles" under steady rotation in a slurry of abrasive grit. To quantify shape as a function of time, we develop a general method in which the pebble is photographed from multiple angles with respect to the grid of pixels in a digital camera. This reduces digitization noise, and allows the local curvature of the contour to be computed with a controllable degree of uncertainty. Several shape descriptors are then employed to follow the evolution of dif...

  12. National construction, Denmark. Flat roofs

    Energy Technology Data Exchange (ETDEWEB)

    Rode, C.

    1995-04-01

    The Paris meeting of IEA Annex 24 (held in the spring of 1991) declared a set of typical building constructions, the Heat, Air and Moisture characteristics of which should be dealt with as part of the Annex work. Each type of construction was assigned to one or more countries as their National Construction, and it has been the responsibility of each country to prepare a report on what may be regarded as common knowledge in the country on the hygrothermal behaviour of their construction. This knowledge is in part due to experimental work carried out by research bodies in the countries, and due to experience form practice. This report has two main sections: Section 2 gives a general overview of the design of the most common variants of flat roofs and common knowledge reported for such roofs. Section 3 gives an account of research projects carried out in Denmark on flat roofs to analyze their hygrothermal performance. Whenever possible, an emphasis will be put on the hygrothermal consequences of thermally insulating such constructions. (EG) 19 refs.

  13. An Atomic-Scale X-ray View of Functional Oxide Films

    Science.gov (United States)

    Tung, I.-Cheng

    atomically controlled synthesis of single-crystalline La3Ni2O7. By building upon this knowledge, I have completed the first to date study of in situ surface X-ray scattering during homoepitaxial MBE growth of SrTiO3, which demonstrates codeposition is consistent with a 2D island growth mode with SrTiO3 islands, but shuttered deposition proceeds by the growth of SrO islands which then restructure into atomically flat SrTiO3 layer during the deposition of the TiO2. From this point, we have conducted a detailed microscopic study of epitaxial LaNiO3 ultrathin films grown on SrTiO3 (001) by using reactive MBE with in situ surface X-ray diffraction and ex situ soft XAS to explore the influence of polar mismatch on the resulting structural and electronic properties. Overall, this thesis highlights the power of artificial confinement to harness control over competing phases in complex oxides with atomic-scale precision.

  14. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  15. Representability of Hom Implies Flatness

    Indian Academy of Sciences (India)

    Nitin Nitsure

    2004-02-01

    Let be a projective scheme over a noetherian base scheme , and let $\\mathcal{F}$ be a coherent sheaf on . For any coherent sheaf $\\mathcal{E}$ on , consider the set-valued contravariant functor $\\hom_{(\\mathcal{E},\\mathcal{F})}$ on -schemes, defined by $\\hom_{(\\mathcal{E},\\mathcal{F})}(T)=\\mathrm{Hom}(\\mathcal{E}_T,\\mathcal{F}_T)$ where $\\mathcal{E}_T$ and $\\mathcal{F}_T$ are the pull-backs of $\\mathcal{E}$ and $\\mathcal{F}$ to $X_T=X×_s T$. A basic result of Grothendieck ([EGA], III 7.7.9) says that if $\\mathcal{F}$ is flat over then $\\hom_{(\\mathcal{E},\\mathcal{F})}$ is representable for all $\\mathcal{E}$. We prove the converse of the above, in fact, we show that if is a relatively ample line bundle on over such that the functor $\\hom_{(L^{-n},\\mathcal{F})}$ is representable for infinitely many positive integers , then $\\mathcal{F}$ is flat over . As a corollary, taking $X=S$, it follows that if $\\mathcal{F}$ is a coherent sheaf on then the functor $T\\mapsto H^0(T,\\mathcal{F}_T)$ on the category of -schemes is representable if and only if $\\mathcal{F}$ is locally free on . This answers a question posed by Angelo Vistoli. The techniques we use involve the proof of flattening stratification, together with the methods used in proving the author's earlier result (see [N1]) that the automorphism group functor of a coherent sheaf on is representable if and only if the sheaf is locally free.

  16. Flat laminated microbial mat communities

    Science.gov (United States)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  17. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  18. Flat conductor cable design, manufacture, and installation

    Science.gov (United States)

    Angele, W.; Hankins, J. D.

    1973-01-01

    Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.

  19. Flat-band engineering of mobility edges

    Science.gov (United States)

    Danieli, Carlo; Bodyfelt, Joshua D.; Flach, Sergej

    2015-06-01

    Properly modulated flat-band lattices have a divergent density of states at the flat-band energy. Quasiperiodic modulations are known to host a metal-insulator transition already in one space dimension. Their embedding into flat-band geometries consequently allows for a precise engineering and fine tuning of mobility edges. We obtain analytic expressions for singular mobility edges for two flat-band lattice examples. In particular, we engineer cases with arbitrarily small energy separations of mobility edge, zeroes, and divergencies.

  20. On the mechanism of anisotropic etching of silicon

    NARCIS (Netherlands)

    Elwenspoek, M.

    1993-01-01

    A new model is proposed that explains the anisotropy of the etch rate of single crystalline silicon in certain etchants. It is inspired from theories of crystal growth. We assume that the (111)-face is flat on an atomic scale. Then the etch rate should be governed by a nucleation barrier of one atom

  1. Production of annular flat-topped vortex beams

    Institute of Scientific and Technical Information of China (English)

    Jiannong Chen; Yongjiang Yu; Feifei Wang

    2011-01-01

    @@ A model of an annular flat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.%A model of an annular fiat-topped vortex beam based on multi-Gaussian superimposition is proposed. We experimentally produce this beam with a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The power of the beam is concentrated on a single-ring structure and has an extremely strong radial intensity gradient. This beam facilitates various applications ranging from Sisyphus atom cooling to micro-particle trapping.

  2. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  3. Atom interferometry

    International Nuclear Information System (INIS)

    We will first present a development of the fundamental principles of atom interferometers. Next we will discuss a few of the various methods now available to split and recombine atomic De Broglie waves, with special emphasis on atom interferometers based on optical pulses. We will also be particularly concerned with high precision interferometers with long measurement times such those made with atomic fountains. The application of atom interferometry to the measurement of the acceleration due to gravity will be detailed. We will also develop the atom interferometry based on adiabatic transfer and we will apply it to the measurement of the photon recoil in the case of the Doppler shift of an atomic resonance caused by the momentum recoil from an absorbed photon. Finally the outlook of future developments will be given. (A.C.)

  4. Radiation monitor training program at Rocky Flats

    International Nuclear Information System (INIS)

    The Rocky Flats Radiation Monitor Training Program is tailored to train new health physics personnel in the field of radiation monitoring. The purpose of the prescribed materials and media is to be consistent in training in all areas of Rocky Flats radiation monitoring job involvement

  5. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat

    2014-09-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ\\' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ\\' state. © 2014 Elsevier Ltd.

  6. Communication: Two types of flat-planes conditions in density functional theory.

    Science.gov (United States)

    Yang, Xiaotian Derrick; Patel, Anand H G; Miranda-Quintana, Ramón Alain; Heidar-Zadeh, Farnaz; González-Espinoza, Cristina E; Ayers, Paul W

    2016-07-21

    Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, Nα and Nβ, has a derivative discontinuity on a line segment where the number of electrons, Nα + Nβ, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, Nα - Nβ, is an integer, but does not have a discontinuity associated with an integer number of electrons. Type 2 flat planes are rare-we observed just 15 type 2 flat-planes conditions out of the 4884 cases we tested-but their mere existence has implications for the design of exchange-correlation energy density functionals. To facilitate the development of functionals that have the correct behavior with respect to both fractional number of electrons and fractional spin polarization, we present a dataset for the chromium atom and its ions that can be used to test new functionals.

  7. Communication: Two types of flat-planes conditions in density functional theory

    Science.gov (United States)

    Yang, Xiaotian Derrick; Patel, Anand H. G.; Miranda-Quintana, Ramón Alain; Heidar-Zadeh, Farnaz; González-Espinoza, Cristina E.; Ayers, Paul W.

    2016-07-01

    Using results from atomic spectroscopy, we show that there are two types of flat-planes conditions. The first type of flat-planes condition occurs when the energy as a function of the number of electrons of each spin, Nα and Nβ, has a derivative discontinuity on a line segment where the number of electrons, Nα + Nβ, is an integer. The second type of flat-planes condition occurs when the energy has a derivative discontinuity on a line segment where the spin polarization, Nα - Nβ, is an integer, but does not have a discontinuity associated with an integer number of electrons. Type 2 flat planes are rare—we observed just 15 type 2 flat-planes conditions out of the 4884 cases we tested—but their mere existence has implications for the design of exchange-correlation energy density functionals. To facilitate the development of functionals that have the correct behavior with respect to both fractional number of electrons and fractional spin polarization, we present a dataset for the chromium atom and its ions that can be used to test new functionals.

  8. Atomic physics

    International Nuclear Information System (INIS)

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 23Po,2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 23Po level of helium-like krypton

  9. Long-range Rocky Flats utilization study

    International Nuclear Information System (INIS)

    The purpose of this Study was to provide information concerning the Rocky Flats Plant and its operations that will be useful to the Nation's decision-makers in determining the long-range future of the Plant. This Study was conducted under the premise that national defense policy must be supported and, accordingly, the capabilities at Rocky Flats must be maintained there or at some other location(s). The Study, therefore, makes no attempt to speculate on how possible future changes in national defense policy might affect decisions regarding the utilization of Rocky Flats. Factors pertinent to decisions regarding Rocky Flats, which are included in the Study, are: physical condition of the Plant and its vulnerabilities to natural phenomena; risks associated with plutonium to Plant workers and the public posed by postulated natural phenomena and operational accidents; identification of alternative actions regarding the future use of the Rocky Flats Plant with associated costs and time scales; local socioeconomic impacts if Rocky Flats operations were relocated; and potential for other uses if Rocky Flats facilities were vacated. The results of the tasks performed in support of this Study are summarized in the context of these five factors

  10. Atomic physics

    CERN Document Server

    Born, Max

    1989-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  11. Flatness Control Using Roll Coolant Based on Predicted Flatness Variation in Cold Rolling Mills

    Science.gov (United States)

    Dohmae, Yukihiro; Okamura, Yoshihide

    Flatness control for cold rolling mills is one of the important technologies for improving of product quality and productivity. In particular, poor flatness leads to strip tearing in the extreme case and, moreover, it significantly reduces productivity. Therefore, various flatness control system has been developed. The main actuators for flatness control are classified into two types; one is mechanical equipment such as roll bender, the other is roll coolant, which controls thermal expansion of roll. Flatness variation such as center buckle or edge wave is mainly controlled by mechanical actuator which has high response characteristics. On another front, flatness variation of local zone can be controlled by roll coolant although one's response is lower than the response of mechanical actuator. For accomplishing good flatness accuracy in cold rolling mills, it is important to improve the performance of coolant control moreover. In this paper, a new coolant control method based on flatness variation model is described. In proposed method, the state of coolant spray on or off is selected to minimize the flatness deviation by using predicted flatness variation. The effectiveness of developed system has been demonstrated by application in actual plant.

  12. AdS/Ricci-flat correspondence

    International Nuclear Information System (INIS)

    We present a comprehensive analysis of the AdS/Ricci-flat correspondence, a map between a class of asymptotically locally AdS spacetimes and a class of Ricci-flat spacetimes. We provide a detailed derivation of the map, discuss a number of extensions and apply it to a number of important examples, such as AdS on a torus, AdS black branes and fluids/gravity metrics. In particular, the correspondence links the hydrodynamic regime of asymptotically flat black p-branes or the Rindler fluid with that of AdS. It implies that this class of Ricci-flat spacetimes inherits from AdS a generalized conformal symmetry and has a holographic structure. We initiate the discussion of holography by analyzing how the map acts on boundary conditions and holographic 2-point functions

  13. Flat-package DIP handling tool

    Science.gov (United States)

    Angelou, E.; Fraser, R.

    1977-01-01

    Device, using magnetic attraction, can facilitate handling of integrated-circuit flat packages and prevent contamination and bent leads. Tool lifts packages by their cases and releases them by operation of manual plunger.

  14. Fuzzy Neural Model for Flatness Pattern Recognition

    Institute of Scientific and Technical Information of China (English)

    JIA Chun-yu; SHAN Xiu-ying; LIU Hong-min; NIU Zhao-ping

    2008-01-01

    For the problems occurring in a least square method model,a fuzzy model,and a neural network model for flatness pattern recognition,a fuzzy neural network model for flatness pattern recognition with only three-input and three-output signals was proposed with Legendre orthodoxy polynomial as basic pattern,based on fuzzy logic expert experiential knowledge and genetic-BP hybrid optimization algorithm.The model not only had definite physical meanings in its inner nodes,but also had strong self-adaptability,anti-interference ability,high recognition precision,and high velocity,thereby meeting the demand of high-precision flatness control for cold strip mill and providing a convenient,practical,and novel method for flatness pattern recognition.

  15. Loop Quantum Gravity and Asymptotically Flat Spaces

    OpenAIRE

    Arnsdorf, Matthias

    2000-01-01

    After motivating why the study of asymptotically flat spaces is important in loop quantum gravity, we review the extension of the standard framework of this theory to the asymptotically flat sector based on the GNS construction. In particular, we provide a general procedure for constructing new Hilbert spaces for loop quantum gravity on non-compact spatial manifolds. States in these Hilbert spaces can be interpreted as describing fluctuations around fiducial fixed backgrounds. When the backgr...

  16. High performance flat plate solar collector

    Science.gov (United States)

    Lansing, F. L.; Reynolds, R.

    1976-01-01

    The potential use of porous construction is presented to achieve efficient heat removal from a power producing solid and is applied to solar air heaters. Analytical solutions are given for the temperature distribution within a gas-cooled porous flat plate having its surface exposed to the sun's energy. The extracted thermal energy is calculated for two different types of plate transparency. Results show the great improvement in performance obtained with porous flat plate collectors as compared with analogous nonporous types.

  17. Topological properties of flat electroencephalography's state space

    Science.gov (United States)

    Ken, Tan Lit; Ahmad, Tahir bin; Mohd, Mohd Sham bin; Ngien, Su Kong; Suwa, Tohru; Meng, Ong Sie

    2016-02-01

    Neuroinverse problem are often associated with complex neuronal activity. It involves locating problematic cell which is highly challenging. While epileptic foci localization is possible with the aid of EEG signals, it relies greatly on the ability to extract hidden information or pattern within EEG signals. Flat EEG being an enhancement of EEG is a way of viewing electroencephalograph on the real plane. In the perspective of dynamical systems, Flat EEG is equivalent to epileptic seizure hence, making it a great platform to study epileptic seizure. Throughout the years, various mathematical tools have been applied on Flat EEG to extract hidden information that is hardly noticeable by traditional visual inspection. While these tools have given worthy results, the journey towards understanding seizure process completely is yet to be succeeded. Since the underlying structure of Flat EEG is dynamic and is deemed to contain wealthy information regarding brainstorm, it would certainly be appealing to explore in depth its structures. To better understand the complex seizure process, this paper studies the event of epileptic seizure via Flat EEG in a more general framework by means of topology, particularly, on the state space where the event of Flat EEG lies.

  18. Flat H Frangible Joint Evolution

    Science.gov (United States)

    Diegelman, Thomas E.; Hinkel, Todd J.; Benjamin, Andrew; Rochon, Brian V.; Brown, Christopher W.

    2016-01-01

    Space vehicle staging and separation events require pyrotechnic devices. They are single-use mechanisms that cannot be tested, nor can failure-tolerant performance be demonstrated in actual flight articles prior to flight use. This necessitates the implementation of a robust design and test approach coupled with a fully redundant, failure-tolerant explosive mechanism to ensure that the system functions even in the event of a single failure. Historically, NASA has followed the single failure-tolerant (SFT) design philosophy for all human-rated spacecraft, including the Space Shuttle Program. Following the end of this program, aerospace companies proposed building the next generation human-rated vehicles with off-the-shelf, non-redundant, zero-failure-tolerant (ZFT) separation systems. Currently, spacecraft and launch vehicle providers for both the Orion and Commercial Crew Programs (CCPs) plan to deviate from the heritage safety approach and NASA's SFT human rating requirements. Both programs' partners have base-lined ZFT frangible joints for vehicle staging and fairing separation. These joints are commercially available from pyrotechnic vendors. Non-human-rated missions have flown them numerous times. The joints are relatively easy to integrate structurally within the spacecraft. In addition, the separation event is debris free, and the resultant pyro shock is lower than that of other design solutions. It is, however, a serious deficiency to lack failure tolerance. When used for critical applications on human-rated vehicles, a single failure could potentially lead to loss of crew (LOC) or loss of mission (LOM)). The Engineering and Safety & Mission Assurance directorates within the NASA Johnson Space Center took action to address this safety issue by initiating a project to develop a fully redundant, SFT frangible joint design, known as the Flat H. Critical to the ability to retrofit on launch vehicles being developed, the SFT mechanisms must fit within the same

  19. Andean flat subduction maintained by slab tunneling

    Science.gov (United States)

    Schepers, Gerben; van Hinsbergen, Douwe; Kosters, Martha; Boschman, Lydian; McQuarrie, Nadine; Spakman, Wim

    2016-04-01

    In two segments below the Andean mountain belt, the Nazca Plate is currently subducting sub-horizontally below South America over a distance of 200-300 km before the plate bends into the mantle. Such flat slab segments have pronounced effects on orogenesis and magmatism and are widely believed to be caused by the downgoing plate resisting subduction due to its local positive buoyancy. In contrast, here we show that flat slabs primarily result from a local resistance against rollback rather than against subduction. From a kinematic reconstruction of the Andean fold-thrust belt we determine up to ~390 km of shortening since ~50 Ma. During this time the South American Plate moved ~1400 km westward relative to the mantle, thus forcing ~1000 km of trench retreat. Importantly, since the 11-12 Ma onset of flat slab formation, ~1000 km of Nazca Plate subduction occurred, much more than the flat slab lengths, which leads to our main finding that the flat slabs, while being initiated by arrival of buoyant material at the trench, are primarily maintained by locally impeded rollback. We suggest that dynamic support of flat subduction comes from the formation of slab tunnels below segments with the most buoyant material. These tunnels trap mantle material until tearing of the tunnel wall provides an escape route. Fast subduction of this tear is followed by a continuous slab and the process can recur during ongoing rollback of the 7000 km wide Nazca slab at segments with the most buoyant subducting material, explaining the regional and transient character of flat slabs. Our study highlights the importance of studying subduction dynamics in absolute plate motion context.

  20. A Simple Method to Synthesize α-MnO2 and β-MnO2 Single-crystalline Nanorods%简单方法合成α-MnO2和β-MnO2单晶纳米棒

    Institute of Scientific and Technical Information of China (English)

    宋旭春; 郑遗凡; 林深; 王芸

    2007-01-01

    Single-crystalline α-MnO2 andβ-MnO2 nanorods were prepared directly by facile hydrothermal process at 150 ℃ and 220 ℃, respectively. The as-synthesized α-MnO2 and β-MnO2 nanorods were investigated by XRD, TEM,SEM, and EDS. The temperature was found to play important roles in controlling the synthesis of α-MnO2 and β-MnO2 nanorods.%通过简单的水热方法分别在150℃和220℃选择控制合成了单晶α-MnO2和β-MnO2纳米棒.并用扫描电镜(SEM)、透射电镜(TEM)、能谱元素分析(EDX)、粉末X射线衍射(XRD)对产物进行了表征.结果表明,在水热反应过程中,温度在控制合成α-MnO2和β-MnO2纳米棒中起到重要作用.

  1. Inorganic single crystalline fibers for dual-readout calorimetry

    CERN Document Server

    Pauwels, Kristof; Lecoq, Paul

    This thesis focuses on the improvement of the energy resolution of hadron calorimeters. The approach is based on dual-readout, which consists in the simultaneous detection of both scintillation and Cherenkov light. The comparison of these two signals allows a compensation of the energy fluctuations, which are inherent to the detection of hadronic showers. Lutetium aluminium garnets (LuAG), which are efficient scintillators when activated with rare-earth dopants (i.e. Cerium), can also act as Cherenkov radiators when undoped. Both undoped and doped crystals can then be assembled to build an efficient dual-readout calorimeter. With the objective to investigate the feasibility of this concept, the effects of the doping concentration and the use of various co-dopant on the light output and the timing properties of LuAG were studied. The growth method was demonstrated to induce significant differences in the nature and concentration of structural defects. The optimum geometry, which is based on single-crystals sha...

  2. Sharp and Bright Photoluminescence Emission of Single Crystalline Diacetylene Nanoparticles

    CERN Document Server

    Kima, Seokho; Kima, Hyeong Tae; Cuic, Chunzhi; Park, Dong Hyuk

    2016-01-01

    Amorphous nanoparticles (NPs) of diacetylene (DA) molecules were prepared by using a reprecipitation method. After crystallization through solvent-vapor annealing process, the highly crystalline DA NPs show different structural and optical characteristics compared with the amorphous DA NPs. The single crystal structure of DA NPs was confirmed by high-resolution transmission electron microscopy (HR-TEM) and wide angle X-ray scattering (WAXS). The luminescence color and photoluminescence (PL) characteristics of the DA NPs were measured using color charge-coupled device (CCD) images and high-resolution laser confocal microscope (LCM). The crystalline DA NPs emit bright green light emission compared with amorphous DA NPs and the main PL peak of the crystalline DA NPs exhibits relative narrow and blue shift phenomena due to enhanced interaction between DA molecular in the nano-size crystal structure.

  3. Planar-integrated single-crystalline perovskite photodetectors

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-11-09

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors.

  4. Performance analysis of field exposed single crystalline silicon modules

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, O.S.; Saurabh, Sriparn; Shil, S.K.; Pant, P.C.; Kumar, Rajesh; Kumar, Arun; Bandopadhyay, Bibek [Solar Energy Centre, Ministry of New and Renewable Energy, Block-14, CGO Complex, Lodhi Road, New Delhi - 110003 (India)

    2010-09-15

    This paper presents results on the field performance degradation of mono-crystalline silicon PV modules from 11 PV module manufacturers under identical field conditions. The modules were installed in both fixed tilt and manual tracking modes. The data were monitored using a CR23X Data logger and I-V curves were taken using SPI 240A Sun simulator. The performance parameters analyzed are V{sub oc}, I{sub sc}, P{sub max}, I{sub mp}, V{sub mp} and the fill factor, as a function of time of field exposure. Qualitative studies are made on physically visible defects such as EVA coloration, cell de-laminations, corrosion of solar cell grid, corrosion of end strip connected in the terminal box, failure of by-pass diode, detachment of the terminal box, tearing of tedlar sheet, etc. The effect of field exposure on the performance parameters indicates that the qualification standard (s) needs to be reviewed and revised if the modules are to perform for {proportional_to}20 years under actual field conditions in India. (author)

  5. Cantilever surface stress sensors with single-crystalline silicon piezoresistors

    DEFF Research Database (Denmark)

    Rasmussen, Peter Andreas; Hansen, Ole; Boisen, Anja

    2005-01-01

    We present a cantilever with piezoresistive readout optimized for measuring the static deflection due to isotropic surface stress on the surface of the cantilever [Sens. Actuators B 79(2-3), 115 (2001)]. To our knowledge nobody has addressed the difference in physical regimes, and its influence o...

  6. The influence of instrumental parameters on the adhesion force in a flat-on-flat contact geometry

    Science.gov (United States)

    Çolak, Arzu; Wormeester, Herbert; Zandvliet, Harold J. W.; Poelsema, Bene

    2014-07-01

    Atomic force microscopy (AFM) has been used to measure the adhesion force between a flat Si(0 0 1) wafer and a micrometer sized flat silicon AFM tip. Force-distance curves have been recorded at different setpoints in order to elucidate their individual effect on the derived adhesion force. No dependence of the derived adhesion force on the applied load has been detected, making sure that no plastic changes in the morphology of either tip and/or sample occur. Other setpoints as the residence time of the tip at the substrate, the relative humidity, the size of the tip and the retraction velocity of the tip have been varied systematically. We have found that the adhesion force depends strongly on the velocity of the z-piezo and the tip size while, at least within the 0.5-41 s time window, the residence time does not have any measurable effect on the adhesion force. The time scale of the retraction varies between 0.2 and 25 s. The increase of the adhesion force with increasing retraction speed is ascribed to the viscous force. Finally, the adhesion force increases with increasing relative humidity.

  7. The influence of instrumental parameters on the adhesion force in a flat-on-flat contact geometry

    Energy Technology Data Exchange (ETDEWEB)

    Çolak, Arzu; Wormeester, Herbert, E-mail: h.wormeester@utwente.nl; Zandvliet, Harold J.W.; Poelsema, Bene

    2014-07-01

    Atomic force microscopy (AFM) has been used to measure the adhesion force between a flat Si(0 0 1) wafer and a micrometer sized flat silicon AFM tip. Force–distance curves have been recorded at different setpoints in order to elucidate their individual effect on the derived adhesion force. No dependence of the derived adhesion force on the applied load has been detected, making sure that no plastic changes in the morphology of either tip and/or sample occur. Other setpoints as the residence time of the tip at the substrate, the relative humidity, the size of the tip and the retraction velocity of the tip have been varied systematically. We have found that the adhesion force depends strongly on the velocity of the z-piezo and the tip size while, at least within the 0.5–41 s time window, the residence time does not have any measurable effect on the adhesion force. The time scale of the retraction varies between 0.2 and 25 s. The increase of the adhesion force with increasing retraction speed is ascribed to the viscous force. Finally, the adhesion force increases with increasing relative humidity.

  8. Atomic secrecy

    International Nuclear Information System (INIS)

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  9. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography.

  10. Aspects of warm-flat directions

    CERN Document Server

    Matsuda, Tomohiro

    2009-01-01

    We consider the evolution of the flat direction when there is a significant dissipation of the kinetic energy. The field may obtain Hubble-scale mass, but a slow-roll is possible due to the damping caused by the dissipation. Besides the damping effect, radiation may be created continuously by the dissipation and may enhance the fluctuations of the field. These effects may alter the usual cosmological scenarios associated with the flat direction. An example is the Affleck-Dine mechanism in which the dissipation may create significant (both qualitative and quantitative) discrepancies between the cold and the warm scenarios. We discuss several mechanisms of generating curvature perturbations that can be related to the warm-flat direction.

  11. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  12. The flat phase of quantum polymerized membranes

    CERN Document Server

    Coquand, O

    2016-01-01

    We investigate the flat phase of quantum polymerized phantom membranes by means of a nonperturbative renormalization group approach. We first implement this formalism for general quantum polymerized membranes and derive the flow equations that encompass both quantum and thermal fluctuations. We then deduce and analyze the flow equations relevant to study the flat phase and discuss their salient features : quantum to classical crossover and, in each of these regimes, strong to weak coupling crossover. We finally illustrate these features in the context of free standing graphene physics.

  13. Scalar Curvature and Intrinsic Flat Convergence

    CERN Document Server

    Sormani, Christina

    2016-01-01

    Herein we present open problems and survey examples and theorems concerning sequences of Riemannian manifolds with uniform lower bounds on scalar curvature and their limit spaces. Examples of Gromov and of Ilmanen which naturally ought to have certain limit spaces do not converge with respect to smooth or Gromov-Hausdorff convergence. Thus we focus here on the notion of Intrinsic Flat convergence, developed jointly with Wenger. This notion has been applied successfully to study sequences that arise in General Relativity. Gromov has suggested it should be applied in other settings as well. We first review intrinsic flat convergence, its properties, and its compactness theorems, before presenting the applications and the open problems.

  14. Asymptotically flat and regular Cauchy data

    CERN Document Server

    Dain, S

    2002-01-01

    I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.

  15. 8. Asymptotically Flat and Regular Cauchy Data

    Science.gov (United States)

    Dain, Sergio

    I describe the construction of a large class of asymptotically flat initial data with non-vanishing mass and angular momentum for which the metric and the extrinsic curvature have asymptotic expansions at space-like infinity in terms of powers of a radial coordinate. I emphasize the motivations and the main ideas behind the proofs.

  16. Design scenarios for flat panel photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2011-01-01

    Evaluation of the potential of algae production for biofuel and other products at various locations throughout the world requires assessment of algae productivity under varying light conditions and different reactor layouts. A model was developed to predict algae biomass production in flat panel pho

  17. Promoting Employability in a "Flat" World

    Science.gov (United States)

    Parker, Polly

    2008-01-01

    T. L. Friedman (2005) described a "flat" world platform where competition and collaboration take place in real time among people all over the planet. Implications exist for people to assume responsibility for managing their own careers and ensuring their own security in a global economy. This article addresses those challenges from both the…

  18. Improving the durability of flat roof constructions

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1999-01-01

    as there is no easy method of drying it. To be able to dry the insulation, and thereby regain the functional requirements of the roofing system, two new solutions for insulating flat roofs with existing materials are proposed for high density mineral wool and expanded polystyrene. Monitoring equipment are part...

  19. Chemically patterned flat stamps for microcontact printing

    NARCIS (Netherlands)

    Sharpe, Ruben B.A.; Burdinski, Dirk; Huskens, Jurriaan; Zandvliet, Harold J.W.; Reinhoudt, David N.; Poelsema, Bene

    2005-01-01

    Locally oxidized patterns on flat poly(dimethylsiloxane) stamps for microcontact printing were used as a platform for the transfer of a hydrophilic fluorescent ink to a glass substrate. The contrast was found to be limited. These locally oxidized patterns were conversely used as barriers for the tra

  20. Vortices in theories with flat directions

    NARCIS (Netherlands)

    Achucarro, A; Davis, AC; Pickles, M; Urrestilla, J

    2002-01-01

    In theories with flat directions containing vortices, such as supersymmetric QED, there is a vacuum selection effect in the allowed asymptotic configurations. We explain the role played by gauge fields in this effect and give a simple criterion for determining what vacua will be chosen, namely, thos

  1. 40 CFR 230.42 - Mud flats.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Mud flats. 230.42 Section 230.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on...

  2. Flat deformation theorem and symmetries in spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Llosa, Josep [Departament de Fisica Fonamental, Universitat de Barcelona (Spain); Carot, Jaume [Departament de Fisica, Universitat de les Illes Balears (Spain)

    2009-03-07

    The flat deformation theorem states that given a semi-Riemannian analytic metric g on a manifold, locally there always exists a two-form F, a scalar function c, and an arbitrarily prescribed scalar constraint depending on the point x of the manifold and on F and c, say PSI(c, F, x) = 0, such that the deformed metric eta = cg - epsilonF{sup 2} is semi-Riemannian and flat. In this paper we first show that the above result implies that every (Lorentzian analytic) metric g may be written in the extended Kerr-Schild form, namely eta{sub ab} := ag{sub ab} - 2bk{sub (al{sub b})} where eta is flat and k{sub a}, l{sub a} are two null covectors such that k{sub a}l{sup a} = -1; next we show how the symmetries of g are connected to those of eta, more precisely; we show that if the original metric g admits a conformal Killing vector (including Killing vectors and homotheties), then the deformation may be carried out in a way such that the flat deformed metric eta 'inherits' that symmetry.

  3. Flat deformation theorem and symmetries in spacetime

    CERN Document Server

    Llosa, Josep

    2008-01-01

    The \\emph{flat deformation theorem} states that given a semi-Riemannian analytic metric $g$ on a manifold, there always exists a two-form $F$, a scalar function $c$, and an arbitrarily prescribed scalar constraint depending on the point $x$ of the manifold and on $F$ and $c$, say $\\Psi (c, F, x)=0$, such that the \\emph{deformed metric} $\\eta = cg -\\epsilon F^2$ is semi-Riemannian and flat. In this paper we first show that the above result implies that every (Lorentzian analytic) metric $g$ may be written in the \\emph{extended Kerr-Schild form}, namely $\\eta_{ab} := a g_{ab} - 2 b k_{(a} l_{b)}$ where $\\eta$ is flat and $k_a, l_a$ are two null covectors such that $k_a l^a= -1$; next we show how the symmetries of $g$ are connected to those of $\\eta$, more precisely; we show that if the original metric $g$ admits a Conformal Killing vector (including Killing vectors and homotheties), then the deformation may be carried out in a way such that the flat deformed metric $\\eta$ `inherits' that symmetry.

  4. η-Invariant and Flat Vector Bundles

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We present an alternate definition of the mod Z component of the AtiyahPatodi-Singer η invariant associated to (not necessary unitary) fiat vector bundles, which identifies explicitly its real and imaginary parts. This is done by combining a deformation of flat connections introduced in a previous paper with the analytic continuation procedure appearing in the original article of Atiyah, Parodi and Singer.

  5. Minimal Flat Resolutions of Artinian Modules

    Institute of Scientific and Technical Information of China (English)

    Sh. Payrovi

    2005-01-01

    The purpose of this paper is to establish connection between the minimal flat resolutions of Artinian modules and the concept of cosequences in commutative algebra.The main result of this paper leads to a characterization of local Cohen-Macaulay rings in terms of vanishing property of the dual Bass numbers of certain Artinian modules.

  6. MSSM flat direction as a curvaton

    CERN Document Server

    Enqvist, Kari; Kasuya, S; Mazumdar, A; Enqvist, Kari; Jokinen, Asko; Kasuya, Shinta; Mazumdar, Anupam

    2003-01-01

    We study in detail the possibility that the flat directions of the Minimal Supersymmetric Standard Model (MSSM) could act as a curvaton and generate the observed adiabatic density perturbations. For that the flat direction energy density has to dominate the Universe at the time when it decays. We point out that this is not possible if the inflaton decays into MSSM degrees of freedom. If the inflaton is completely in the hidden sector, its decay products do not couple to the flat direction, and the flat direction curvaton can dominate the energy density. This requires the absence of a Hubble-induced mass for the curvaton, e.g. by virtue of the Heisenberg symmetry. In the case of hidden radiation, $n=9$ is the only admissible direction; for other hidden equations of state, directions with lower $n$ may also dominate. We show that the MSSM curvaton is further constrained severely by the damping of the fluctuations, and as an example, demonstrate that in no-scale supergravity it would fragment into $Q$ balls rath...

  7. Atomic arias

    Science.gov (United States)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  8. Atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.E.; Kukla, K.; Cheng, S. [Univ. of Toledo, OH (United States)] [and others

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  9. Flat-on-flat, nonconstrained, compression molded polyethylene total knee replacement.

    Science.gov (United States)

    Ritter, M A; Worland, R; Saliski, J; Helphenstine, J V; Edmondson, K L; Keating, E M; Faris, P M; Meding, J B

    1995-12-01

    Flat-on-flat, posterior cruciate ligament-sparing total knee prostheses recently have shown problems of wear, loosening, and multiple design changes. Two thousand one Anatomical Graduated Components total knee arthroplasties with compression molded, nonmodular polyethylene tibial components were done between 1983 and 1991 at 3 institutions. All knees were evaluated clinically and radiographically every 2 to 3 years; 71 knees were seen in followup > 10 years. There were 8 failures secondary to revision (5 tibial failures; 2 secondary to metalosis from patellar polyethylene dissociation; and 3 femoral failures) resulting in a 98% survival rate at 10 years. The tibial design was flat-on-flat with a compression molded polyethylene that the authors believe is the primary reason for its success. PMID:7497689

  10. Efficient flat metasurface lens for terahertz imaging.

    Science.gov (United States)

    Yang, Quanlong; Gu, Jianqiang; Wang, Dongyang; Zhang, Xueqian; Tian, Zhen; Ouyang, Chunmei; Singh, Ranjan; Han, Jiaguang; Zhang, Weili

    2014-10-20

    Metamaterials offer exciting opportunities that enable precise control of amplitude, polarization and phase of the light beam at a subwavelength scale. A gradient metasurface consists of a class of anisotropic subwavelength metamaterial resonators that offer abrupt amplitude and phase changes, thus enabling new applications in optical device design such as ultrathin flat lenses. We propose a highly efficient gradient metasurface lens based on a metal-dielectric-metal structure that operates in the terahertz regime. The proposed structure consists of slotted metallic resonator arrays on two sides of a thin dielectric spacer. By varying the geometrical parameters, the metasurface lens efficiently manipulates the spatial distribution of the terahertz field and focuses the beam to a spot size on the order of a wavelength. The proposed flat metasurface lens design is polarization insensitive and works efficiently even at wide angles of incidence. PMID:25401626

  11. Towards a flat 45%-efficient concentrator module

    Science.gov (United States)

    Mohedano, Rubén; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Miñano, Juan C.; Benitez, Pablo; Sorgato, S.; Falicoff, Waqidi

    2015-09-01

    The so-called CCS4FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations.

  12. Flat-spectrum, variable radio sources

    International Nuclear Information System (INIS)

    The general behavior of flat-spectrum (compact) radio sources is examined in terms of adiabatic-jet models. Two puzzling properties - namely, (1) the broad, rather flat spectrum (over a large range of radio frequencies) and (2) the relatively slow decay of burst amplitude (with decreasing radio frequency) - are explained. Acceptable models are characterized by the following: (1) a nearly conical, adiabatic jet, with conserved magnetic flux transverse to the axis of the jet; (2) prolonged injection (for which the duration of an event exceeds the apparent transit time scale); and (3) a transparent spectral index which is not too steep. It is suggested that the acceleration mechanism in the core of compact jets may differ substantially from that far from the core, producing a flatter electron number index s = 1.4-2.6. 42 references

  13. Flat roof integration. CPT solar (AET IV)

    Energy Technology Data Exchange (ETDEWEB)

    Chianese, D.; Pola, I.; Bernasconi, A.; Bura, E.; Cereghetti, N.; Realini, A.; Pasinelli, P.; Rioggi, S.

    2007-11-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) takes a look at a 15.4 kWp solar power installation in Trevano, Switzerland, that features flexible amorphous silicon triple-junction modules, mounted nearly horizontally and directly laminated to flexible polyolefin membranes that form the covering of a flat roof. The main objective of this study was to verify in which order of magnitude the better thermal behaviour of amorphous silicon cells can compensate for losses due to the quasi-horizontal roof integration (lower irradiation and higher reflection), and thus be competitive in the flat roof construction and refurbishment markets. The modules used and their characteristics are described. Performance, temperature levels and energy-production are reviewed for the panels of the installation. The performance of the inverter used is also reviewed. Data on temperatures and production are presented in graphical form and optical losses are examined.

  14. History of Rocky Flats waste streams

    International Nuclear Information System (INIS)

    An analysis of the waste streams at Rocky Flats was done to provide information for the Waste Certification program. This program has involved studying the types and amounts of retrievable transuranic (TRU) waste from Rocky Flats that is stored at the Idaho National Engineering Laboratory (INEL). The information can be used to estimate the types and amounts of waste that will need to be permanently stored in the Waste Isolation Pilot Plant (WIPP). The study covered mostly the eight-year period from June 1971 to June 1979. The types, amounts, and plutonium content of TRU waste and the areas or operations responsible for generating the waste are summarized in this waste stream history report. From the period studied, a total of 24,546,153 lbs of waste containing 211,148 g of plutonium currently occupies 709,497 cu ft of storage space at INEL

  15. Gorenstein flatness and injectivity over Gorenstein rings

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Let R be a Gorenstein ring.We prove that if I is an ideal of R such that R/I is a semi-simple ring,then the Gorenstein flat dimension of R/I as a right R-module and the Gorenstein injective dimension of R/I as a left R-module are identical.In addition,we prove that if R→S is a homomorphism of rings and SE is an injective cogenerator for the category of left S-modules,then the Gorenstein flat dimension of S as a right R-module and the Gorenstein injective dimension of E as a left R-module are identical.We also give some applications of these results.

  16. Standard specification for silvered flat glass mirror

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification covers the requirements for silvered flat glass mirrors of rectangular shape supplied as cut sizes, stock sheets or as lehr ends and to which no further processing (such as edgework or other fabrication) has been done. 1.2 This specification covers the quality requirements of silvered annealed monolithic clear and tinted flat glass mirrors up to 6 mm (¼ in.) thick. The mirrors are intended to be used indoors for mirror glazing, for components of decorative accessories or for similar uses. 1.3 This specification does not address safety glazing materials nor requirements for mirror applications. Consult model building codes and other applicable standards for safety glazing applications. 1.4 Mirrors covered in this specification are not intended for use in environments where high humidity or airborne corrosion promoters, or both, are consistently present (such as swimming pool areas, ocean-going vessels, chemical laboratories and other corrosive environments). 1.5 The dimensional val...

  17. Towards a flat 45%-efficient concentrator module

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, Rubén, E-mail: rmohedano@lpi-europe.com; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Sorgato, S.; Falicoff, Waqidi [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid (Spain); Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Madrid (Spain)

    2015-09-28

    The so-called CCS{sup 4}FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations.

  18. Perturbations of spiky strings in flat spacetimes

    CERN Document Server

    Bhattacharya, Soumya; Panigrahi, Kamal L

    2016-01-01

    Perturbations of a class of semiclassical strings known today as spiky strings, are studied using the well-known Jacobi equations for small normal deformations of an embedded timelike surface. It is shown that there exists finite normal perturbations of the spiky string worldsheets embedded in a $2+1$ dimensional flat spacetime. Such perturbations lead to a rounding off the spikes, which, in a way, demonstrates the stable nature of the unperturbed worldsheet. The same features appear for the dual spiky string solution and in the spiky as well as their dual solutions in $3+1$ dimensional flat spacetime. Our results are based on exact solutions of the corresponding Jacobi equations which we obtain and use while constructing the profiles of the perturbed configurations.

  19. Shrinkage and trajectory of the flat jet with inclination angle

    Institute of Scientific and Technical Information of China (English)

    Shufeng Ye; Yusheng Xie; Hongzhi Guo; Ye Huang; Shantong Jin

    2003-01-01

    The performance of the flat jet with an inclination angle was investigated by a water model. A mathematical model for theshrinkage and the trajectory of the flat jet with an inclination angle was derived theoretically and verified by experimental data of thewater model. The experimental results indicate that the inclination angle (α) has no influence on the shrinkage of the flat jet, theshrinkage of the flat jet along the width direction decreases with the increasing of the initial velocity at the exit (u0) and the initialthickness of the flat jet (t0). Enough bigger initial exit velocity (u0) and initial thickness can suppress the shrinkage of the flat jetalong the width direction and keep the flat jet stabilized. In addition, the trajectory of the flat jet with an inclination angle is parabolicand must be taking into consideration when to determine the striking distance.

  20. Wash Flats Management Plan Chincoteague National Wildlife Refuge 1980

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Wash Flats impoundments comprise an area of approximately 1,200 acres. Prior to 1963, the Wash Flats was subject to periodic wash-over during extremely high...

  1. Differential flat control for rotorcraft trajectory tracking

    OpenAIRE

    Nan Zhang; Geanina Andrei; Antoine Drouin; Felix Mora-Camino

    2009-01-01

    The purpose of this communication is to investigate the usefulness of the differential flatness control approach to solve the trajectory tracking problem for a four rotor aircraft. After introducing simplifying assumptions, the flight dynamics equations for the four rotor aircraft are considered. A trajectory tracking control structure based on a two layer non linear approach is then proposed. A supervision level is introduced to take into account the actuators limitations.

  2. Stable flatness of nonarchimedean hyperenveloping algebras

    OpenAIRE

    Schmidt, Tobias

    2008-01-01

    Let L be a p-adic local field and g a finite dimensional Lie algebra over L. We show that its hyperenveloping algebra F(g) is a stably flat completion of its universal enveloping algebra. As a consequence the relative cohomology for the locally convex algebra F(g) coincides with the underlying Lie algebra cohomology. Final version. Some minor items corrected. Appeared in Journal of Algebra (2010).

  3. Immobilization of Rocky Flats graphite fines residues

    International Nuclear Information System (INIS)

    The Savannah River Technology Center (SRTC) is developing an immobilization process for graphite fines residues generated during nuclear materials production activities at the Rocky Flats Environmental Technology Site (Rocky Flats). The continued storage of this material has been identified as an item of concern. The residue was generated during the cleaning of graphite casting molds and potentially contains reactive plutonium metal. The average residue composition is 73 wt% graphite, 15 wt% calcium fluoride (CaF2), and 12 wt% plutonium oxide (PuO2). Approximately 950 kg of this material are currently stored at Rocky Flats. The strategy of the immobilization process is to microencapsulate the residue by mixing with a sodium borosilicate (NBS) glass frit and heating at nominally 700 C. The resulting waste form would be sent to the Waste Isolation Pilot Plant (WIPP) for disposal. Since the PuO2 concentration in the residue averages 12 wt%, the immobilization process was required to meet the intent of safeguards termination criteria by limiting plutonium recoverability based on a test developed by Rocky Flats. The test required a plutonium recovery of less than 4 g/kg of waste form when a sample was leached using a nitric acid/CaF2 dissolution flowsheet. Immobilization experiments were performed using simulated graphite fines with cerium oxide (CeO2) as a surrogate for PuO2 and with actual graphite fines residues. Small-scale surrogate experiments demonstrated that a 4:1 frit to residue ratio was adequate to prevent recovery of greater than 4 g/kg of cerium from simulated waste forms. Additional experiments investigated the impact of varying concentrations of CaF2 and the temperature/heating time cycle on the cerium recovery. Optimal processing conditions developed during these experiments were subsequently demonstrated at full-scale with surrogate materials and on a smaller scale using actual graphite fines

  4. Vortices in Theories with Flat Directions

    CERN Document Server

    Achúcarro, A; Pickles, M; Urrestilla, J

    2002-01-01

    In theories with flat directions containing vortices, such as supersymmetric QED, there is a vacuum selection effect in the allowed asymptotic configurations. We explain the role played by gauge fields in this effect and extend this to an abelian model with N=2 supersymmetry. In this case the magnetic flux spreads over an arbitrarily large area. We comment on the possible cosmological implications and the implications for superstring inspired magnetic confinement scenarios in N=2 abelian Higgs theories.

  5. Superheater Tube Flat Wall Stationary Temperature Field

    Directory of Open Access Journals (Sweden)

    Parpiev A.T.

    2016-01-01

    Full Text Available The BKZ-220-100-9 steam generator platen superheater tube flat wall stationary temperature fields analysis have been made. The six steel grades, using in boiler fabrication, namely, St. 10, St. 20, 12H1MF, 15HM, 1H18N9T and 12H18N12T, have been used. The temperature curves calculation has been made by using outer and inner surface heat-transfer coefficients nine different combinations.

  6. Soil decontamination at Rocky Flats Plant

    International Nuclear Information System (INIS)

    A description is given of work being done at Rocky Flats Plant (RFP) to decontaminate soil contaminated with plutonium-239. How the contamination came about is described, as well as what has been done to contain it while decontamination methods are being developed. The purpose of the work is to decontaminate the soil so that it can be returned to the site instead of having to package, ship, and store it

  7. Superfluidity in topologically nontrivial flat bands.

    Science.gov (United States)

    Peotta, Sebastiano; Törmä, Päivi

    2015-11-20

    Topological invariants built from the periodic Bloch functions characterize new phases of matter, such as topological insulators and topological superconductors. The most important topological invariant is the Chern number that explains the quantized conductance of the quantum Hall effect. Here we provide a general result for the superfluid weight Ds of a multiband superconductor that is applicable to topologically nontrivial bands with nonzero Chern number C. We find that the integral over the Brillouin-zone of the quantum metric, an invariant calculated from the Bloch functions, gives the superfluid weight in a flat band, with the bound Ds⩾|C|. Thus, even a flat band can carry finite superfluid current, provided the Chern number is nonzero. As an example, we provide Ds for the time-reversal invariant attractive Harper-Hubbard model that can be experimentally tested in ultracold gases. In general, our results establish that a topologically nontrivial flat band is a promising concept for increasing the critical temperature of the superconducting transition.

  8. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  9. Cold atom microtraps above a videotape surface

    International Nuclear Information System (INIS)

    Much progress has been made in the last two years towards miniaturizing magnetic traps for cold atoms. This will enable manipulation of coherent samples of atoms, such as Bose-Einstein condensates, or single atoms, on the scale of the atomic de Broglie wavelength. This thesis concerns an array of microscopic magnetic potentials formed close to the surface of magnetized videotape, when a uniform bias field is applied. The recorded magnetization is a 100 μm sine wave, which covers a 12.5mm x 22mm piece of commercial videotape. This videotape is glued flat onto a thin glass substrate and is gold coated by evaporation so that atoms can be trapped close to the surface in a mirror-MOT. An 'atom chip' has been developed, incorporating the videotape and current-carrying wires located below the magnetized surface. A single wire and bias field create a magnetic tube potential, oriented parallel with the microtraps and with a quadrupole radial field. This allows the mirror-MOT to be compressed and distorted in order to match it to a magnetic trap formed by the same wire and bias field. Increasing the bias field and reducing the wire current further compresses the atom cloud and brings it closer to the surface, until it is fully transferred to the videotape microtraps. The atom cloud is confined axially by the potential produced by two parallel current-carrying wires with 8mm separation. This is the first demonstration of loading cold atoms into microtraps formed above a permanently magnetized surface. It is interesting to compare the properties of such traps with those formed above current carrying wires. We present measurements of the lifetimes of trapped atom clouds as a function of height and trap frequency. These results suggest that this technology may prove to be a promising basis for future experiments with atom chips. (author)

  10. Sub-monolayer growth of Ag on flat and nanorippled SiO2 surfaces

    Science.gov (United States)

    Bhatnagar, Mukul; Ranjan, Mukesh; Jolley, Kenny; Smith, Roger; Mukherjee, Subroto

    2016-05-01

    In-situ Rutherford Backscattering Spectrometry (RBS) and Molecular Dynamics (MD) simulations have been used to investigate the growth dynamics of silver on a flat and the rippled silica surface. The calculated sticking coefficient of silver over a range of incidence angles shows a similar behaviour to the experimental results for an average surface binding energy of a silver adatom of 0.2 eV. This value was used to parameterise the MD model of the cumulative deposition of silver in order to understand the growth mechanisms. Both the model and the RBS results show marginal difference between the atomic concentration of silver on the flat and the rippled silica surface, for the same growth conditions. For oblique incidence, cluster growth occurs mainly on the leading edge of the rippled structure.

  11. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Klug, Jeffrey A., E-mail: jklug@anl.gov; Emery, Jonathan D.; Martinson, Alex B. F.; Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Weimer, Matthew S. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Yanguas-Gil, Angel; Elam, Jeffrey W. [Energy Systems Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Seifert, Sönke; Schlepütz, Christian M. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Hock, Adam S. [Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Chemical Science and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-11-15

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er{sub 2}O{sub 3} ALD on amorphous ALD alumina and single crystalline sapphire.

  12. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    International Nuclear Information System (INIS)

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire

  13. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    Science.gov (United States)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  14. Absolute flatness testing of skip-flat interferometry by matrix analysis in polar coordinates.

    Science.gov (United States)

    Han, Zhi-Gang; Yin, Lu; Chen, Lei; Zhu, Ri-Hong

    2016-03-20

    A new method utilizing matrix analysis in polar coordinates has been presented for absolute testing of skip-flat interferometry. The retrieval of the absolute profile mainly includes three steps: (1) transform the wavefront maps of the two cavity measurements into data in polar coordinates; (2) retrieve the profile of the reflective flat in polar coordinates by matrix analysis; and (3) transform the profile of the reflective flat back into data in Cartesian coordinates and retrieve the profile of the sample. Simulation of synthetic surface data has been provided, showing the capability of the approach to achieve an accuracy of the order of 0.01 nm RMS. The absolute profile can be retrieved by a set of closed mathematical formulas without polynomial fitting of wavefront maps or the iterative evaluation of an error function, making the new method more efficient for absolute testing.

  15. REVIEW OF PERFORMANCE AND ANALYSIS ISI FLAT PLATE COLLECTOR WITH MODIFIED FLAT PLATE COLLECTOR

    Directory of Open Access Journals (Sweden)

    MR.Y.Y.NANDURKAR

    2012-03-01

    Full Text Available The market of solar water heater of natural circulation type (thermo-siphon is fast growing in India. Initial cost of the solar water heater system at present is high because of store type design. It is necessary to make the product more popular by reducing the cost. This is possible by reducing area of liquid flat plate collector by increasing tube diameter and reducing riser length. Hence it is essential to make solar water heater in affordable range of the general public class. Present work is based on review of comparative performance and analysis of ISI flat plate collector with modified flat plat collector. The paper will be helpful for those who are working in the area of solar water heating system and their use in domestic areas.

  16. Buyers’ Attitude and Preference towards Flat/Apartments

    Directory of Open Access Journals (Sweden)

    R. Renganathan

    2015-04-01

    Full Text Available Nowadays people would like to have and live in their own house. Because of the growing population and lack of sufficient place, cities cannot grow horizontally. Building promoters and contractors in real estate industry are concentrating on the construction of flats/apartments even in cities like Trichy/Tamilnadu. In order to thrive and excel in the competitive environment flat promoters have to understand the expectations, tastes, preferences and lifestyle of the buyers. Two hundred and fifty customers who were living in the flats at Trichy area were included for this study. Findings of this study reveal that people living in the flats are giving importance to location of the flat, price, Swimming pool, Surveillance camera, living space, parking facility, lighting facility, lift and safety. This study will be useful for the customers to express about their opinion with regard to various aspects of flats and also useful for the flat promoters to understand about their buyers.

  17. Jet Screech Reduction with Perforated Flat Reflector

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the present experimental study, investigations have been carried out to evaluate the performance of the new control technique of jet screech with different perforated flat reflectors. Mainly two types of porous flat reflectors had been used in the experiment. One reflector (reflector-V) designed for placing the reflector surface vertical to the jet axis, when, another type of reflector (reflector-H) designed for placing the reflecting surface horizontal to the jet axis. In both cases the reflectors had been placed at the nozzle (base tube with uniform cross-sectional area)exit. The diameter of the reflector-V was 15D when the diameter of the reflector-H was 10D. The porous area of the reflector-V was 6D and 4.5D for reflector-H where D indicated the diameter of the nozzle exit. The placement of the reflector at the exit of the nozzle reduces the sound pressure at the nozzle exit. Thus the muted sound can not excite the unstable disturbance at the nozzle exit and the loop of the feedback mechanism disappeared, finally,the generation of jet screech be cancelled. The suction space located at the back side of the porous surface of the reflector-V improves the efficiency of the screech control technique. However, in the case of reflector-H, the receptivity process of feedback loop had been controlled by reducing the disturbances at the effective shock fronts as well as at the nozzle exit. The performance of the proposed method was verified with a flat reflector concept and good performance in jet screech suppression has been confirmed in the case of porous reflector.

  18. Neutrinos from flat-spectrum radio quasars

    Science.gov (United States)

    Mannheim, K.; Stanev, T.; Biermann, P. L.

    1992-01-01

    The GRO observation (Hartman et al., 1992) of a very strong flux of gamma rays with an energy index close to 2 from the distant quasar 3C279 and other extragalactic flat-spectrum radio sources is in very good agreement with models that advocate the important role of very high energy protons and nuclei in the energy transport in AGN. Protons and nuclei cool by interactions on the nonthermal fields in the nuclear jet of the AGN and generate gamma ray and neutrino fluxes. Ultra high energy neutrinos could be observed with sensitive air shower experiments in outbursts as powerful as the one seen by GRO.

  19. Flexible Polyhedral Surfaces with Two Flat Poses

    Directory of Open Access Journals (Sweden)

    Hellmuth Stachel

    2015-05-01

    Full Text Available We present three types of polyhedral surfaces, which are continuously flexible and have not only an initial pose, where all faces are coplanar, but pass during their self-motion through another pose with coplanar faces (“flat pose”. These surfaces are examples of so-called rigid origami, since we only admit exact flexions, i.e., each face remains rigid during the motion; only the dihedral angles vary. We analyze the geometry behind Miura-ori and address Kokotsakis’ example of a flexible tessellation with the particular case of a cyclic quadrangle. Finally, we recall Bricard’s octahedra of Type 3 and their relation to strophoids.

  20. Flat plate electrohydrodynamic heat pipe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Loehrke, R.I.; Sebits, D.R.

    1975-07-01

    Performance capabilities of electrohydrodynamic (EHD) flat heat pipes were investigated using Freon 113 and Freon 11 as working fluids. All of the pipes employed straight rod electrodes to form axial liquid flow channels and tranverse grooves for capillary surface wetting. Results show: (1) the EHD pipe will prime under load; (2) voltage controlled conductance can be achieved by varying the active area of the evaporator; and (3) the average evaporator conductances measured in these experiments were consistent with those obtained in other experiments with heat pipes of similar surface geometry using the same or similar working fluids.

  1. Ultrabarrier Flexible Substrates for Flat Panel Displays

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Paul E.; Graff, Gordon L.; Gross, Mark E.; Martin, Peter M.; Shi, Ming-Kun; Hall, Michael G.; Mast, Eric S.; Bonham, Charles C.; Bennett, Wendy D.; Sullivan, Michael B.

    2001-05-01

    We describe a flexible, transparent plastic substrate for flat panel display applications. Using roll-coating techniques, we apply a composite thin film barrier to commercially available polymers, which restricts moisture and oxygen permeation to undetectable levels. The barrier film can be capped with a thin film of transparent conductive oxide in the same roll-coater, yielding an engineered substrate (Barix™) for next generation, rugged, lightweight or flexible displays. The substrate is sufficiently impermeable to moisture and oxygen for application to moisture-sensitive display applications, such as organic light emitting displays (OLEDs). This enables, for the first time, lightweight and flexible emissive organic displays.

  2. Geotechnical risk analysis by flat dilatometer (DMT)

    Science.gov (United States)

    Amoroso, Sara; Monaco, Paola

    2015-04-01

    In the last decades we have assisted at a massive migration from laboratory testing to in situ testing, to the point that, today, in situ testing is often the major part of a geotechnical investigation. The State of the Art indicates that direct-push in situ tests, such as the Cone Penetration Test (CPT) and the Flat Dilatometer Test (DMT), are fast and convenient in situ tests for routine site investigation. In most cases the DMT estimated parameters, in particular the undrained shear strength su and the constrained modulus M, are used with the common design methods of Geotechnical Engineering for evaluating bearing capacity, settlements etc. The paper focuses on the prediction of settlements of shallow foundations, that is probably the No. 1 application of the DMT, especially in sands, where undisturbed samples cannot be retrieved, and on the risk associated with their design. A compilation of documented case histories that compare DMT-predicted vs observed settlements, was collected by Monaco et al. (2006), indicating that, in general, the constrained modulus M can be considered a reasonable "operative modulus" (relevant to foundations in "working conditions") for settlement predictions based on the traditional linear elastic approach. Indeed, the use of a site investigation method, such as DMT, that improve the accuracy of design parameters, reduces risk, and the design can then center on the site's true soil variability without parasitic test variability. In this respect, Failmezger et al. (1999, 2015) suggested to introduce Beta probability distribution, that provides a realistic and useful description of variability for geotechnical design problems. The paper estimates Beta probability distribution in research sites where DMT tests and observed settlements are available. References Failmezger, R.A., Rom, D., Ziegler, S.R. (1999). "SPT? A better approach of characterizing residual soils using other in-situ tests", Behavioral Characterics of Residual Soils, B

  3. Prunus hybrids rootstocks for flat peach

    OpenAIRE

    Pilar Legua; Jorge Pinochet; María Ángeles Moreno; Juan José Martínez; Francisca Hernández

    2012-01-01

    Peach (Prunus persica L.) is the most important stone fruit tree grown in Spain and is the second most important fruit crop in Europe. The influence of eight Prunus rootstocks (GF-677, Krymsk® 86, PADAC 97-36, PADAC 99-05, PADAC 9912-03, PADAC 0024-01, PAC 0021-01 and PAC 0022-01) on vigor, yield and fruit quality traits of 'UFO 3' flat peach cultivar was studied. The highest trunk cross sectional area was exhibited by GF-677 and the lowest by PADAC 99-05, while intermediate values were found...

  4. Comment on "Conformally flat stationary axisymmetric metrics"

    CERN Document Server

    Barnes, A; Senovilla, José MM

    2003-01-01

    Garcia and Campuzano claim to have found a previously overlooked family of stationary and axisymmetric conformally flat spacetimes, contradicting an old theorem of Collinson. In both these papers it is tacitly assumed that the isometry group is orthogonally transitive. Under the same assumption, we point out here that Collinson's result still holds if one demands the existence of an axis of symmetry on which the axial Killing vector vanishes. On the other hand if the assumption of orthogonal transitivity is dropped, a wider class of metrics is allowed and it is possible to find explicit counterexamples to Collinson's result.

  5. The ADM mass of asymptotically flat hypersurfaces

    CERN Document Server

    de Lima, Levi Lopes

    2011-01-01

    We provide integral formulae for the ADM mass of asymptotically flat hypersurfaces in Riemannian manifolds with a certain warped product structure in a neighborhood of infinity, thus extending Lam's recent results on Euclidean graphs to this broader context. As applications we exhibit, in any dimension, new classes of manifolds for which versions of the Positive Mass and Riemannian Penrose inequalities hold and discuss a notion of quasi-local mass in this setting. The proof explores a novel connection between the co-vector defining the ADM mass of a hypersurface as above and the Newton tensor associated to its shape operator, which takes place in the presence of an ambient Killing field.

  6. Flat conductor cable for electrical packaging

    Science.gov (United States)

    Angele, W.

    1972-01-01

    Flat conductor cable (FCC) is relatively new, highly promising means for electrical packaging and system integration. FCC offers numerous desirable traits (weight, volume and cost savings, flexibility, high reliability, predictable and repeatable electrical characteristics) which make it extremely attractive as a packaging medium. FCC, today, finds wide application in everything from integration of lunar equipment to the packaging of electronics in nuclear submarines. Described are cable construction and means of termination, applicable specifications and standards, and total FCC systems. A list of additional sources of data is also included for more intensive study.

  7. Dissipation and oscillatory solvation forces in confined liquids studied by small-amplitude atomic force spectroscopy

    NARCIS (Netherlands)

    Beer, de Sissi; Ende, van den Dirk; Mugele, Frieder

    2010-01-01

    We determine conservative and dissipative tip–sample interaction forces from the amplitude and phase response of acoustically driven atomic force microscope (AFM) cantilevers using a non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering) and atomically flat su

  8. Effects of atomic geometry and electronic structure of platinum surfaces on molecular adsorbates studied by gap-mode SERS.

    Science.gov (United States)

    Hu, Jian; Tanabe, Masahiro; Sato, Jun; Uosaki, Kohei; Ikeda, Katsuyoshi

    2014-07-23

    Surface enhanced Raman scattering (SERS) spectra of organic monolayers were measured on various types of polycrystalline and single crystalline Pt substrates with nanometric or atomic surface features, including heteroepitaxial Pt monolayers, using sphere-plane type nanogap structures. Although atomic geometry and electronic structures of a metal surface significantly influence metal-molecule interactions, such effects are often hindered in conventional SERS measured on a roughened surface because of the spectral information averaging at various adsorption sites. In this study, the use of atomically defined Pt surfaces revealed detailed surface effects; the observed preferential adsorption geometry on each surface was well explained by atomic surface arrangements. The peak shift of the intramolecular vibration in the anchor group was in good agreement with the variation of the d-band center of Pt substrates. Moreover, in electrochemical SERS study the Stark shift of an extramolecular vibrational mode at around 400 cm(-1), which is not accessible in infrared absorption spectroscopy, was monitored on an atomically defined heteroepitaxial Pt monolayer electrode. PMID:24802029

  9. Single phase ZnO submicrotubes as a replica of electrospun polymer fiber template by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyeong-Man, E-mail: gmkim@ceit.es [CEIT and TECNUN, University of Navarra, Paseo de Mikeletegi 48, 20009 Donostia-San Sebastian (Spain); Lee, Seung-Mo [Nano-Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajungbukno, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Knez, Mato [Nanomaterials Group, CIC nanoGUNE, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian (Spain); Simon, Paul [Max-Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, D-01187 Dresden (Germany)

    2014-07-01

    Free-standing and highly interconnected ZnO tubes consisting of nanostructured single phase grains are fabricated by atomic layer deposition (ALD) combined with the electrospinning technique. Hereby, electrospun poly(vinyl pyrrolidone) fiber mat is used as a soft template for coating with zinc oxide. The deposition is conducted onto the template at 70 °C by using diethylzinc and water as ALD precursors. The crystal structure, microstructure and optical properties of the ZnO deposited layers are studied in detail by transmission electron microscopy and X-ray diffraction before and after calcination. After calcination in air at 500 °C for 4 h the morphology of the wedge-like grains transforms into platelet-like structures with lattice parameters similar to those of the standard bulk polycrystalline ZnO. The resulting nanostructured ZnO tubes exhibit unique optical properties, which arose from the quantum-confinement of ZnO thin films prepared by ALD. The measured band gap energies for both the as-deposited and the calcined ZnO films are much lower than that of bulk ZnO or the single crystalline ZnO. Furthermore, the ultraviolet light is completely absorbed in both cases. The self-supported free-standing polycrystalline ZnO tubes can be easily handled and are bearing high potential for future applications related to catalysis, electronics, photonics, sensing, medicine and controlled drug release. - Highlights: • ZnO tubes were replicated from the electrospun fibers by atomic layer deposition. • ZnO tubes exhibited unique optical properties from their quantum-confinement. • Band gap energies for ZnO films are much lower than for single crystalline ZnO. • Ultraviolet light is completely absorbed by ZnO tubes. • Such self-supported ZnO tubes can be reclaimed for use in future applications.

  10. Pure and Zn-doped Pt Clusters go Flat and Upright on MgO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lu; Dadras, Mostafa J.; Alexandrova, Anastassia N.

    2014-12-28

    Pure and doped sub-nanoclusters can exhibit superb catalytic activity, which, however, strongly depends on their size, shape, composition, and the nature of the support. This work is about surface-deposited sub-nano Pt-based clusters, which are promising catalysts for the reactions of dehydrogenation. Using density functional theory and ab initio calculations, and an ab initio genetic algorithm for finding the global minima of clusters, we found a peculiar effect that Pt₅ and Pt₄Zn clusters exhibit upon deposition on MgO(100). Both of them change shapes from the gas phase 3-D form to a planar form, and they stand upright on the support. Several reasons are responsible for this behaviour. In part, clusters go flat due to the electron transfer from the support. Indeed, the anionic Pt₅- and Pt₄Zn- species are flat also in the gas phase. Charging induces the second-order Jahn–Teller effect (or partial covalency) facilitated by the recruitment of the higher-energy 6p atomic orbitals on Pt into the valence manifold, and that is the reason for the planarization of the anions. Secondly, clusters maximize interactions with the surface O atoms (resulting in further favouring of 2-D structures over 3-D), and avoid contacts with surface Mg atoms (resulting in upright morphologies).

  11. Exergetic optimization of flat plate solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Farahat, S.; Sarhaddi, F.; Ajam, H. [Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan 98164-161 (Iran)

    2009-04-15

    In this paper, an exergetic optimization of flat plate solar collectors is developed to determine the optimal performance and design parameters of these solar to thermal energy conversion systems. A detailed energy and exergy analysis is carried out for evaluating the thermal and optical performance, exergy flows and losses as well as exergetic efficiency for a typical flat plate solar collector under given operating conditions. In this analysis, the following geometric and operating parameters are considered as variables: the absorber plate area, dimensions of solar collector, pipes' diameter, mass flow rate, fluid inlet, outlet temperature, the overall loss coefficient, etc. A simulation program is developed for the thermal and exergetic calculations. The results of this computational program are in good agreement with the experimental measurements noted in the previous literature. Finally, the exergetic optimization has been carried out under given design and operating conditions and the optimum values of the mass flow rate, the absorber plate area and the maximum exergy efficiency have been found. Thus, more accurate results and beneficial applications of the exergy method in the design of solar collectors have been obtained. (author)

  12. Cosmological consequences of supersymmetric flat directions

    CERN Document Server

    Riva, Francesco; Sarkar, Subir; Giudice, Gian

    In this work we analyze various implications of the presence of large field vacum expectation values (VEVs) along supersymmetric flat direct ions during the early universe. First, we discuss supersymmetric leptogenesis and the grav itino bound. Supersym- metric thermal leptogenesis with a hierarchical right-han ded neutrino mass spectrum normally requires the mass of the lightest right-handed neu trino to be heavier than about 10 9 GeV. This is in conflict with the upper bound on the reheating t empera- ture which is found by imposing that the gravitinos generate d during the reheating stage after inflation do not jeopardize successful nucleosy nthesis. We show that a solution to this tension is actually already incorporated i n the framework, because of the presence of flat directions in the supersymmetric scalar potential. Massive right- handed neutrinos are efficiently produced non-thermally and the observed baryon asymmetry can be explained even for a reheating temperature respecting the grav- itino bound...

  13. Risk, media, and stigma at Rocky Flats

    International Nuclear Information System (INIS)

    Public responses to nuclear technologies are often strongly negative. Events, such as accidents or evidence of unsafe conditions at nuclear facilities, receive extensive and dramatic coverage by the news media. These news stories affect public perceptions of nuclear risks and the geographic areas near nuclear facilities. One result of these perceptions, avoidance behavior, is a form of technological stigma that leads to losses in property values near nuclear facilities. The social amplification of risk is a conceptual framework that attempts to explain how stigma is created through media transmission of information about hazardous places and public perceptions and decisions. This paper examines stigma associated with the US Department of energy's Rocky Flats facility, a major production plant in the nation's nuclear weapons complex, located near Denver, Colorado. This study, based upon newspaper analyses and a survey of Denver area residents, finds that the social amplification theory provides a reasonable framework for understanding the events and public responses that took place in regard to Rocky Flats during a 6-year period, beginning with an FBI raid of the facility in 1989

  14. Maxey Flats in situ waste grouting demonstration

    International Nuclear Information System (INIS)

    The Maxey Flats Disposal Site located in Fleming County, Kentucky was added to the US EPA National Priority List in 1986 and is currently being evaluated for remediation and closure under the CERCLA/Superfund program. The Commonwealth of Kentucky has cosponsored a program with the US DOE Low Level Waste Management Program to demonstrate various remedial technologies which may be applied to source containment at the Maxey Flats site. This paper describes the field demonstration of in-situ waste grouting using a particulate (cement) grout. This demonstration is a follow-on to a similar demonstration using a solution grout. Both programs were designed to develop injection techniques, to assess the ability of the grout to fill the accessible voids within the waste/backfill matrix, to measure the reduction in the hydraulic conductivity of the waste/backfill matrix, and to determine the operational difficulties in implementing a site-wide grouting program. The paper concludes with lessons-learned during the project and estimated costs for full scale implementation

  15. Development of flat panel digital radiography system

    International Nuclear Information System (INIS)

    We developed the Digital Radiography System CXDI-11 which digitizes the X-ray image in high quality by using a self-developed flat panel detector. The CXDI-11 has a large image area of 43 cm x 43 cm (17'' x 17''), and it can display the image on the pre-view monitor after only 3 seconds of exposure. In this report, we present the principle and the physical characteristics of the CXDI-11. The X-ray detector installed in the CXDI-11 is a combination of a rare-earth scintillator and an amorphous silicon flat panel detector (LANMIT). The X-ray is converted to the visible fluorescent light at the scintillator and the light is detected by the LANMIT. The image-processed data is transferred to the DICOM3.0 conformed devices such as the diagnosis work station, the archiver and the laser imager through the network. We also show some measurement results of the dynamic range, the pre-sampling Modulation Transfer Function and the tube voltage dependent sensitivity. The CXDI-11 is superior in real time operation and image quality, thus it is the digital radiography system of the next generation. (author)

  16. Asymptotically flat space-times: an enigma

    Science.gov (United States)

    Newman, Ezra T.

    2016-07-01

    We begin by emphasizing that we are dealing with standard Einstein or Einstein-Maxwell theory—absolutely no new physics has been inserted. The fresh item is that the well-known asymptotically flat solutions of the Einstein-Maxwell theory are transformed to a new coordinate system with surprising and (seemingly) inexplicable results. We begin with the standard description of (Null) asymptotically flat space-times described in conventional Bondi-coordinates. After transforming the variables (mainly the asymptotic Weyl tensor components) to a very special set of Newman-Unti (NU) coordinates, we find a series of relations totally mimicking standard Newtonian classical mechanics and Maxwell theory. The surprising and troubling aspect of these relations is that the associated motion and radiation does not take place in physical space-time. Instead these relations takes place in an unusual inherited complex four-dimensional manifold referred to as H-space that has no immediate relationship with space-time. In fact these relations appear in two such spaces, H-space and its dual space \\bar{H}.

  17. Pond fractals in a tidal flat.

    Science.gov (United States)

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces. PMID:26651668

  18. Doping Scheme in Atomic Chain Electronics

    Science.gov (United States)

    Toshishige, Yamada

    1997-01-01

    Due to the dramatic reduction in MOS size, there appear many unwanted effects. In these small devices, the number of dopant atoms in the channel is not macroscopic and electrons may suffer significantly different scattering from device to device since the spatial distribution of dopant atoms is no longer regarded as continuous. This prohibits integration, while it is impossible to control such dopant positions within atomic scale. A fundamental solution is to create electronics with simple but atomically precise structures, which could be fabricated with recent atom manipulation technology. All the constituent atoms are placed as planned, and then the device characteristics are deviation-free, which is mandatory for integration. Atomic chain electronics belongs to this category. Foreign atom chains or arrays form devices, and they are placed on the atomically flat substrate surface. We can design the band structure and the resultant Fermi energy of these structures by manipulating the lattice constant. Using the tight-binding theory with universal parameters, it has been predicted that isolated Si chains and arrays are metallic, Mg chains are insulating, and Mg arrays have metallic and insulating phases [1]. The transport properties along a metallic chain have been studied, emphasizing the role of the contact to electrodes [2]. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along die chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome

  19. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  20. Optimization of Neutral Atom Imagers

    Science.gov (United States)

    Shappirio, M.; Coplan, M.; Balsamo, E.; Chornay, D.; Collier, M.; Hughes, P.; Keller, J.; Ogilvie, K.; Williams, E.

    2008-01-01

    The interactions between plasma structures and neutral atom populations in interplanetary space can be effectively studied with energetic neutral atom imagers. For neutral atoms with energies less than 1 keV, the most efficient detection method that preserves direction and energy information is conversion to negative ions on surfaces. We have examined a variety of surface materials and conversion geometries in order to identify the factors that determine conversion efficiency. For chemically and physically stable surfaces smoothness is of primary importance while properties such as work function have no obvious correlation to conversion efficiency. For the noble metals, tungsten, silicon, and graphite with comparable smoothness, conversion efficiency varies by a factor of two to three. We have also examined the way in which surface conversion efficiency varies with the angle of incidence of the neutral atom and have found that the highest efficiencies are obtained at angles of incidence greater then 80deg. The conversion efficiency of silicon, tungsten and graphite were examined most closely and the energy dependent variation of conversion efficiency measured over a range of incident angles. We have also developed methods for micromachining silicon in order to reduce the volume to surface area over that of a single flat surface and have been able to reduce volume to surface area ratios by up to a factor of 60. With smooth micro-machined surfaces of the optimum geometry, conversion efficiencies can be increased by an order of magnitude over instruments like LENA on the IMAGE spacecraft without increase the instruments mass or volume.

  1. Examination of the anisotropy of the wetting behaviour of liquid Al-Cu alloys on single crystalline oriented Al{sub 2}O{sub 3}-substrates; Untersuchung der Anisotropie im Benetzungsverhalten fluessiger Al-Cu Legierungen auf einkristallinen orientierten Al{sub 2}O{sub 3}-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Julianna

    2011-02-04

    The wetting behaviour of liquid Al-Cu alloys and pure metals on oriented single crystalline Al{sub 2}O{sub 3}-substrates was examined, utilising the sessile drop technique. Measurements were performed at moderate temperatures of 1100 C, where the alloys are liquid. Different Al{sub 2}O{sub 3}-surfaces were studied, which are terminated by the crystallographic planes (0001), (11 anti 20), and (1 anti 102), also called C-, A-, and R-surfaces. After deposition, pure Cu-droplets show an exponential increase of the wetting angle to a value of about 115 for all investigated Al{sub 2}O{sub 3}-surfaces. The timescale of this increase is of the order of 100 s. The effect of surface- and interfacial energies on the wetting angle is discussed considering Young's equation. The most probable reason for its time-dependence seems to be an increase of the interfacial energy due to deoxidation of the droplet. Therefore it is reasonable to regard the isotropic contact angle value as the intrinsic one of the Cu/Al{sub 2}O{sub 3} system. In contrast, the wetting angle of pure Al metal with the different Al{sub 2}O{sub 3}-substrates shows a qualitatively different behaviour. In this system, it rises from about 90 to 115 roughly for C-substrates, twice as fast as in the Cu case but to a comparable value. On the other substrates a wetting angle of about 90 establishes immediately, and no pronounced time dependence is obvious. In order to study changes in the wetting behaviour of Al-Cu-alloys, which is isotropic for Cu and anisotropic for Al-rich alloys, contact angles of Al{sub 50}Cu{sub 50}, Al{sub 30}Cu{sub 70} und Al{sub 17}Cu{sub 83} on Al{sub 2}O{sub 3} were determined. For each alloy composition the wetting angle is about 120 after 300 s. The initial values on distinct surfaces hardly differ and become non-wetting with increasing Cu-content. Hence, anisotropy decreases. To determine the work of adhesion of the solid-liquid interface, the temperature- and composition

  2. Cold atom microtraps above a videotape surface

    CERN Document Server

    Retter, J A

    2002-01-01

    Much progress has been made in the last two years towards miniaturizing magnetic traps for cold atoms. This will enable manipulation of coherent samples of atoms, such as Bose-Einstein condensates, or single atoms, on the scale of the atomic de Broglie wavelength. This thesis concerns an array of microscopic magnetic potentials formed close to the surface of magnetized videotape, when a uniform bias field is applied. The recorded magnetization is a 100 mu m sine wave, which covers a 12.5mm x 22mm piece of commercial videotape. This videotape is glued flat onto a thin glass substrate and is gold coated by evaporation so that atoms can be trapped close to the surface in a mirror-MOT. An 'atom chip' has been developed, incorporating the videotape and current-carrying wires located below the magnetized surface. A single wire and bias field create a magnetic tube potential, oriented parallel with the microtraps and with a quadrupole radial field. This allows the mirror-MOT to be compressed and distorted in order t...

  3. Atomically engineering Cu/Ta interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Edmund Blackburn, III (, Sandia National Laboratories, Albuquerque, NM); Zhou, Xiao Wang

    2007-09-01

    This report summarizes the major research and development accomplishments for the late start LDRD project (investment area: Enable Predictive Simulation) entitled 'Atomically Engineering Cu/Ta Interfaces'. Two ultimate goals of the project are: (a) use atomistic simulation to explore important atomistic assembly mechanisms during growth of Cu/Ta multilayers; and (b) develop a non-continuum model that has sufficient fidelity and computational efficiency for use as a design tool. Chapters 2 and 3 are essentially two papers that address respectively these two goals. In chapter 2, molecular dynamics simulations were used to study the growth of Cu films on (010) bcc Ta and Cu{sub x}Ta{sub 1-x} alloy films on (111) fcc Cu. The results indicated that fcc crystalline Cu films with a (111) texture are always formed when Cu is grown on Ta. The Cu films are always polycrystalline even when the Ta substrate is single crystalline. These polycrystalline films are composed of grains with only two different orientations, which are separated by either orientational grain boundaries or misfit dislocations. Periodic misfit dislocations and stacking fault bands are observed. The Cu film surface roughness was found to decrease with increasing adatom energy. Due to a Cu surface segregation effect, the Cu{sub x}Ta{sub 1-x} films deposited on Cu always have a higher Cu composition than that used in the vapor mixture. When Cu and Ta compositions in the films are comparable, amorphous structures may form. The fundamental origins for all these phenomena have been studied in terms of crystallography and interatomic interactions. In chapter 3, a simplified computational method, diffusional Monte Carlo (dMC) method, was developed to address long time kinetic processes of materials. Long time kinetic processes usually involve material transport by diffusion. The corresponding microstructural evolution of materials can be analyzed by kinetic Monte Carlo simulation methods, which

  4. Flatness and Profile Integration Control Model for Tandem Cold Mills

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Using the effective matrix methods of flatness and profile control synthetically, the flatness and profile in- tegration control scheme for tandem cold mills is built in order to increase flatness and profile control precision of tan- dem cold mills. Corresponding control strategies are adopted for various control objectives of different stands and the coordination control strategies of various stands are given, which makes the on-line flatness control cooperate with on-line profile control and implements the parallel control of different stands. According to the measured flatness and profile data of some 1550 mm tandem cold mills, the control scheme is verified and the result indicates that the scheme has high flatness and profile control precision with steady and reliable control process. A new way and method is supplied for researching shade control of tandem cold mills.

  5. Holography of 3D Asymptotically Flat Black Holes

    CERN Document Server

    Fareghbal, Reza

    2014-01-01

    We study the asymptotically flat rotating hairy black hole solution of a three-dimensional gravity theory which is given by taking flat-space limit (zero cosmological constant limit) of New Massive Gravity (NMG). We propose that the dual field theory of the flat-space limit of NMG can be described by a Contracted Conformal Field Theory (CCFT). Using Flat/CCFT correspondence we construct a stress tensor which yields the conserved charges of the asymptotically flat black hole solution. Furthermore, by taking appropriate limit of the Cardy formula in the parent CFT, we find a Cardy-like formula which reproduces the Wald's entropy of the 3D asymptotically flat black hole.

  6. Integrin-Specific Mechanoresponses to Compression and Extension Probed by Cylindrical Flat-Ended AFM Tips in Lung Cells

    OpenAIRE

    Irene Acerbi; Tomás Luque; Alícia Giménez; Marta Puig; Noemi Reguart; Ramon Farré; Daniel Navajas; Jordi Alcaraz

    2012-01-01

    Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM) tips with ~1 µm(2) cross-section area. Tips were uncoated or coated with either integrin-specific (RGD) or non-specific (RGE/BSA) molecules, brought into contact with lung epithelial cells...

  7. Rocky Flats experience with SDM/70

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J. W.

    1979-01-01

    SDM/70 is a comprehensive system for developing systems. It employs a series of phases designed for consistent, orderly progress through the entire system development life cycle, with heavy emphasis on interaction with the users in the early phases and straightforward, but thorough, documentation throughout. The overall package includes a standard structure of tasks and steps for each phase, methods guidelines, many good forms and tutorials on state-of-the-art techniques. It has guidelines for estimating costs and schedules, approaches for improving project management, and ways to match the effort to the size and type of project (even for small applications or maintenance and enhancement of existing systems). Reasons for adoption of a new methodology by the Computing and Information Systems Department at Rocky Flats are reviewed. The choice of SDM/70 is described, and the status after about a year's experience, including the benefits perceived during that time, is discussed. (RWR)

  8. FREE VIBRATION ANALYSIS OF FLAT THIN MEMBRANE

    Directory of Open Access Journals (Sweden)

    S.P. HARSHA

    2012-08-01

    Full Text Available This paper presents the vibration analysis for predicating the behavior of flat thin inflatable membrane structure. This is having rectangular shaped with a thickness in millimeter fabricated using the various smart materials. Within structural member, it is subjected to pre-stress rather than bending or moments. The deployable structure has the low weight (minimal mass to achieve high acceleration; large area & durable (easily withstand the temperature changes, micrometeoroid hazards in outer space. The objective of this paper is to optimize the smart material for the space satellite technology so that the light weight inflatable structure attracts in satellite application. The observations show the good agreement between finite element and analytical results.

  9. Knitting Force Measurement on Flat Knitting Machines

    Directory of Open Access Journals (Sweden)

    A. Fouda

    2014-01-01

    Full Text Available Knittability can be defined as the ability of yarns to run on knitting machines without problems. Knittability can be achieved when less stress is applied on the knitting machine parts by the knitting yarns. This paper presents a novel measuring system for the knitting force needed to perform knitting yarns on flat knitting machine based on data acquisition system (DAS. The proposed system is used to measure the knitting force at different machine settings and different properties of the knitting yarns to determine the optimal production conditions. For this reason, three types of knitted fabric structures (single jersey, Rib 1 × 1, and full cardigan with three different loop lengths and five different twists of ply yarn were produced. The obtained results showed the optimal yarn ply twist factor (αe which gave minimum knitting force (less stress on needles or knitting yarns at different loop lengths for each structure.

  10. Perfect Multi-Channel Flat Reflectors

    CERN Document Server

    Asadchy, V S; Elsakka, A; Albooyeh, M; Tretyakov, S A

    2016-01-01

    Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here we introduce a concept of multi-channel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions or polarization states simultaneously and independently. In particular, we reveal a possibility to create perfect multi-channel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three fundamental classes of multi-channel mirrors. Together they form a basis of all possible reflection functionalities achievable with flat periodically modulated reflectors. To demonstrate the potential of the introduced concept, we design and experimentally test one of the basis multi-channel reflectors, confirming the desired multi-channel response. Furthermore, by extending the concept to reflectors suppor...

  11. Incompressible Polaritons in a Flat Band.

    Science.gov (United States)

    Biondi, Matteo; van Nieuwenburg, Evert P L; Blatter, Gianni; Huber, Sebastian D; Schmidt, Sebastian

    2015-10-01

    We study the interplay of geometric frustration and interactions in a nonequilibrium photonic lattice system exhibiting a polariton flat band as described by a variant of the Jaynes-Cummings-Hubbard model. We show how to engineer strong photonic correlations in such a driven, dissipative system by quenching the kinetic energy through frustration. This produces an incompressible state of photons characterized by short-ranged crystalline order with period doubling. The latter manifests itself in strong spatial correlations, i.e., on-site and nearest-neighbor antibunching combined with extended density-wave oscillations at larger distances. We propose a state-of-the-art circuit QED realization of our system, which is tunable in situ.

  12. Topological flat bands from dipolar spin systems.

    Science.gov (United States)

    Yao, N Y; Laumann, C R; Gorshkov, A V; Bennett, S D; Demler, E; Zoller, P; Lukin, M D

    2012-12-28

    We propose and analyze a physical system that naturally admits two-dimensional topological nearly flat bands. Our approach utilizes an array of three-level dipoles (effective S=1 spins) driven by inhomogeneous electromagnetic fields. The dipolar interactions produce arbitrary uniform background gauge fields for an effective collection of conserved hard-core bosons, namely, the dressed spin flips. These gauge fields result in topological band structures, whose band gap can be larger than the corresponding bandwidth. Exact diagonalization of the full interacting Hamiltonian at half-filling reveals the existence of superfluid, crystalline, and supersolid phases. An experimental realization using either ultracold polar molecules or spins in the solid state is considered.

  13. Loop Quantum Gravity and Asymptotically Flat Spaces

    Science.gov (United States)

    Arnsdorf, Matthias

    2002-12-01

    Remarkable progress has been made in the field of non-perturbative (loop) quantum gravity in the last decade or so and it is now a rigorously defined kinematical theory (c.f. [5] for a review and references). We are now at the stage where physical applications of loop quantum gravity can be studied and used to provide checks for the consistency of the quantisation programme. Equally, old fundamental problems of canonical quantum gravity such as the problem of time or the interpretation of quantum cosmology need to be reevaluated seriously. These issues can be addressed most profitably in the asymptotically flat sector of quantum gravity. Indeed, it is likely that we should obtain a quantum theory for this special case even if it is not possible to quantise full general relativity. The purpose of this summary is to advertise the extension of loop quantum gravity to this sector that was developed in [1]...

  14. Traversable asymptotically flat wormholes in Rastall gravity

    CERN Document Server

    Moradpour, H

    2016-01-01

    Having introduced the Rastall gravitational theory, and by virtue of the fact that this theory has two unknown parameters, we take the Newtonian limit to define a new parameter for Rastall gravitational theory; a useful dimensionless parameter for simplifying calculations in the Rastall framework. Equipped with basics of the theory, we study the properties of traversable asymptotically flat wormholes in Rastall framework. Then, we investigate the possibility of supporting such geometries by a source with the same state parameter as that of the baryonic matters. Our survey indicates that the parameters of Rastall theory affect the wormhole parameters. It also shows the weak energy condition is violated for all of the studied cases. We then come to investigate the possibility of supporting such geometries by a source of negative energy density and the same state parameter as that of dark energy. Such dark energy-like sources have positive radial and transverse pressures.

  15. Atomic Energy Basics, Understanding the Atom Series.

    Science.gov (United States)

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  16. Geometric origin of superfluidity in the Lieb lattice flat band

    OpenAIRE

    Julku, Aleksi; Peotta, Sebastiano; Vanhala, Tuomas; Kim, Dong-Hee; Törmä, Päivi

    2016-01-01

    The ground state and transport properties of the Lieb lattice flat band in the presence of an attractive Hubbard interaction are considered. It is shown that the superfluid weight can be large even for an isolated and strictly flat band. Moreover the superfluid weight is proportional to the interaction strength and to the quantum metric, a band structure invariant obtained from the flat-band Bloch functions. These predictions are amenable to verification with ultracold gases and may explain t...

  17. Flat connection, conformal field theory and quantum group

    International Nuclear Information System (INIS)

    General framework of linear first order differential equation for four-point conformal block is studied by using flat connection. Integrability and SL2 invariance restrict possible form of flat connection. Under a special ansatz classical Yang-Baxter equation appears as an integrability condition and the WZW model turns to be unique conformal field theory in that case. Monodromy property of conformal block can be easily determined by the flat connection. 11 refs

  18. Creation Of Constructed Tidal Flats Using Ocean Dredged Sediment

    Science.gov (United States)

    Park, S.; Yi, B.; Lee, I.; Sung, K.

    2007-12-01

    The enforcement of London dumping convention (1972) and protocols (1996) which are comprehensive assessment system for ocean dumping wastes needs environmentally sound treatment and/or reuse of dredged sediment. Creation of constructed tidal flats using dredged sediments could be one of the useful alternatives among other dredged sediment treatments. In this study, the pilot-scale constructed tidal flats with 4 different mixing ratio of ocean dredged sediment were constructed in Nakdong river estuary, Korea. The reed was transplanted from the adjacent reed community after construction, and then the survival and growth rate of the planted reed was measured. Also the changes of Chemical Oxygen Demand (COD), Ignition loss (IL), and the heterotrophic microbial numbers were monitored. The survival rate of the planted reed decreased as the mixing ratio of dredged sediment increased. The survival rate of reed in the constructed tidal flat with 100% dredged sediment was 54% while that in the tidal flat with 0% dredged sediment (original soil of Nakdong river estuary) was 90%. There was little difference of length and diameter of the reed shoot among the 4 different constructed tidal flats. 30% of COD and 9% of IL in the tidal flat with 100% dredged sediment decreased after 202 day, however, the consistent tendency in the change of COD and IL in the other tidal flats was not found possibly due to the open system. It was suggested that the construction of tidal flats using ocean dredged sediment can be possible considering the growth rate of transplanted reeds and the contaminated ocean dredged sediment might be biologically remediated considering the results of decrease of organic matter and increased heterotrophic microbial number in the tidal flat with 100% dredged sediment. However, the continuous monitoring on the vegetation and various environmental factors in the constructed tidal flats should be necessary to evaluate the success of creation of constructed flats using

  19. Constitution method of flat-band. Harmony played by molecules

    International Nuclear Information System (INIS)

    This paper introduces the constitution method of a tight-binding model where flat-band appears. Firstly, it describes the display of tight-binding model using the second quantization, as well as the constitution of the eigenstate, graph, and hopping matrix. Then, it takes up the flat-band that robustly appears regardless of the details of elements of the hopping matrix, and introduces the constitution method of flat-band for each of bipartite graph and non-bipartite graph. This type of flat-band in the case of bipartite depends on difference in the number of the sites of A sublattice and B sublattice. On the other hand, the flat-band that depends on the details of elements of the hopping matrix appears when the energy levels of molecules embedded on the lattice resonate. The following are described on this type of flat-band: (1) system where rings with magnetic flux that are seemingly not related to flat-band combine, (2) flat-band of decorated square lattice, and (3) relationship between flat-band and localization state. (A.O.)

  20. Teach us atom structure

    International Nuclear Information System (INIS)

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  1. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon

    2006-08-15

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  2. Atomic phase diagram

    Institute of Scientific and Technical Information of China (English)

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  3. Effects of co-implanted oxygen or aluminum atoms on hydrogen migration and damage structure in multiple-beam irradiated Al sub 2 O sub 3

    CERN Document Server

    Katano, Y; Yamamoto, S; Nakazawa, T; Yamaki, D; Noda, K

    2000-01-01

    Depth profiles of implanted H atoms were measured for single crystalline Al sub 2 O sub 3 samples irradiated at 923 K with dual or triple beams of 0.25 MeV H-, 0.6 MeV He-, 2.4 MeV O-ions or 2.6 MeV Al-ions. The peaks occur at 1.55 and 1.45 mu m in the depth profiles measured for the H + Al dual beam irradiation and H + O dual beam case, respectively. The ratio of the peak areas is over 4, which is much larger than the implanted H atom ratio of 1.1, indicating that implanted Al atoms suppress the mobility of H atoms. However, the ratio becomes almost 1 between the triple beam samples with H + He + O-ions and with H + He + Al-ions at comparable doses. The fact demonstrates that implanted He atoms overwhelm the effects of the implanted self-cation/anion excess atoms on the migration behaviors of implanted hydrogen and radiation produced point defects, with the resulting sluggish cavity growth observed.

  4. Semiconductor fabrication techniques for producing an ultra-flat reflective slit

    Science.gov (United States)

    Vandervelde, Thomas E.; Cabral, Michael J.; Wilson, John; Skrutskie, Michael

    2006-06-01

    The most difficult aspects in manufacturing a reflective slit substrate are achieving a precisely fabricated slit surrounded by an optically flat surface. A commonly used technique is to polish a metal substrate that has a slit cut by electric discharge machine (EDM) methods. This process can produce 'optically flat' surfaces; however, the EDM can produce a slit with edge roughness on the order of 10 microns and a RMS field roughness of ~1 micron. Here, we present a departure from these traditional methods and employ the advantages inherent in integrated circuit fabrication. By starting with a silicon wafer, we begin with a nearly atomically flat surface. In addition, the fabrication tools and methodologies employed are traditionally used for high precision applications: this allows for the placement and definition of the slit with high accuracy. If greater accuracy in slit definition is required, additional tools, such as a focused ion beam, are used to define the slit edge down to tens of nanometers. The deposition of gold, after that of a suitable bonding layer, in an ultra-high vacuum chamber creates a final surface without the need of polishing. Typical results yield a surface RMS-roughness of approximately 2nm. Most of the techniques and tools required for this process are commonly available at research universities and the cost to manufacture said mirrors is a small fraction of the purchase price of the traditional ones.

  5. Portable low-cost flat panel detectors for real-time digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Iovea, Mihai; Neagu, Marian; Stefanescu, Bogdan; Mateiasi, Gabriela; Porosnicu, Ioana; Angheluta, Elena [Accent Pro 2000 S.R.L., Bucharest (Romania)

    2015-07-01

    The X-ray inspection is one of the most common used non-destructive testing methods in industry applications, but for the portable X-ray digital solution are not so many accessible, low-cost and versatile detection devices. The efficiency of a non-destructive X-ray portable device is represented by the quality of digital images, by its low acquisition time combined with a high resolution, in condition of low noise and at an affordable cost. The paper presents two X-ray portable imaging systems developed by us, suitable also for aerospace NDT applications, which are also very versatile for being easily adapted for other fields that requires mobile solutions. The first device described in the paper represent a portable large-size (210 mm X 550 mm) and high-resolution (27/54 microns) flat panel detector based on linear translation of a X-Ray TDI detector, destined for various components/parts real-time transmission measurements. The second system it is also a flat panel detectors, with a size of 510 mm X 610 mm, with the detector size from 0.2 mm until 1.5 mm, which can operate by applying the dual-energy method, very useful for discriminating materials by evaluating their Atomic effective number. The high resolution and low-cost of this flat-panels widens their applicability by covering large requirements, from identifying unwanted materials within a structure until detection of very thin cracks in complex components.

  6. Cold Matter Assembled Atom-by-Atom

    CERN Document Server

    Endres, Manuel; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D

    2016-01-01

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a novel platform for the deterministic preparation of regular arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of over 50 atoms in less than 400 ms. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach enables controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.

  7. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiaodong, E-mail: xdhan@bjut.edu.cn [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology (China); Wang, Lihua; Yue, Yonghai [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology (China); Zhang, Ze, E-mail: zezhang@zju.edu.cn [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology (China); Department of Materials Science, National Key Lab of Silicon Materials, Zhejiang University (China)

    2015-04-15

    In this review, we briefly introduce our in situ atomic-scale mechanical experimental technique (ASMET) for transmission electron microscopy (TEM), which can observe the atomic-scale deformation dynamics of materials. This in situ mechanical testing technique allows the deformation of TEM samples through a simultaneous double-tilt function, making atomic-scale mechanical microscopy feasible. This methodology is generally applicable to thin films, nanowires (NWs), tubes and regular TEM samples to allow investigation of the dynamics of mechanically stressed samples at the atomic scale. We show several examples of this technique applied to Pt and Cu single/polycrystalline specimens. The in situ atomic-scale observation revealed that when the feature size of these materials approaches the nano-scale, they often exhibit “unusual” deformation behaviours compared to their bulk counterparts. For example, in Cu single-crystalline NWs, the elastic–plastic transition is size-dependent. An ultra-large elastic strain of 7.2%, which approaches the theoretical elasticity limit, can be achieved as the diameter of the NWs decreases to ∼6 nm. The crossover plasticity transition from full dislocations to partial dislocations and twins was also discovered as the diameter of the single-crystalline Cu NWs decreased. For Pt nanocrystals (NC), the long-standing uncertainties of atomic-scale plastic deformation mechanisms in NC materials (grain size G less than 15 nm) were clarified. For larger grains with G<∼10 nm, we frequently observed movements and interactions of cross-grain full dislocations. For G between 6 and 10 nm, stacking faults resulting from partial dislocations become more frequent. For G<∼6 nm, the plasticity mechanism transforms from a mode of cross-grain dislocation to a collective grain rotation mechanism. This grain rotation process is mediated by grain boundary (GB) dislocations with the assistance of GB diffusion and shuffling. These in situ atomic

  8. The Psycholinguistics of Literacy in a Flat World

    Science.gov (United States)

    Horning, Alice S.

    2009-01-01

    If Friedman is right that the world is "flat," we need to understand the linguistic implications of that claim. In this increasingly flat world, classical critical literacy is both urgently needed and poorly understood from a linguistic perspective. Three claims based on research on reading can improve both the understanding of the common…

  9. The World Is Not Flat: Can People Reorient Using Slope?

    Science.gov (United States)

    Nardi, Daniele; Newcombe, Nora S.; Shipley, Thomas F.

    2011-01-01

    Studies of spatial representation generally focus on flat environments and visual input. However, the world is not flat, and slopes are part of most natural environments. In a series of 4 experiments, we examined whether humans can use a slope as a source of allocentric, directional information for reorientation. A target was hidden in a corner of…

  10. Tom Friedman on Education in the "Flat World"

    Science.gov (United States)

    School Administrator, 2008

    2008-01-01

    In his best-selling book, "The World Is Flat," Thomas Friedman describes that the real world is becoming "flat." He describes how 10 forces are "flattening" the 21st century--making it easier for people in India, China and around the world to compete with Americans and others who had triumphed the century before. This article presents an interview…

  11. New face-centered photonic square lattices with flat bands

    CERN Document Server

    Zhang, Yiqi; Li, Changbiao; Zhang, Zhaoyang; Zhang, Yanpeng; Xiao, Min

    2016-01-01

    We report two new classes of face-centered photonic square lattices with flat bands which we call the Lieb-I and the Lieb-II lattices. There are 5 and 7 sites in the corresponding unit cells of the simplest Lieb-I and Lieb-II lattices, respectively. The number of flat bands $m$ in the new Lieb lattices is related to the number of sites $N$ in the unit cell by $m=(N-1)/2$. Physical properties of the lattices with even and odd number of flat bands are different. We also consider localization of light in such Lieb lattices. If the input beam excites the flat-band mode, it will not diffract during propagation, owing to the strong localization in the flat-band mode. For the Lieb-II lattice, we also find that the beam will oscillate and still not diffract during propagation, because of the intrinsic oscillating properties of certain flat-band modes. The period of oscillation is determined by the energy difference between the two flat bands. This study provides a new platform for the investigation of flat-band modes...

  12. The Generation of Curved Clathrin Coats from Flat Plaques

    NARCIS (Netherlands)

    Otter, den Wouter K.; Briels, Wim J.

    2011-01-01

    Flat clathrin lattices or ‘plaques’ are commonly believed to be the precursors to clathrin-coated buds and vesicles. The sequence of steps carrying the flat hexagonal lattice into a highly curved polyhedral cage with exactly 12 pentagons remains elusive, however, and the large numbers of disrupted i

  13. Free energy of topologically massive gravity and flat space holography

    OpenAIRE

    Grumiller, Daniel; Merbis, Wout

    2015-01-01

    We calculate the free energy from the on-shell action for topologically massive gravity with negative and vanishing cosmological constant, thereby providing a first principles derivation of the free energy of BTZ black holes and flat space cosmologies. We summarize related recent checks of flat space holography.

  14. The Discourses of OERs: How "Flat" Is This World?

    Science.gov (United States)

    dos Santos, Andreia Inamorato

    2008-01-01

    This paper proposes Critical Discourse Analysis (Fairclough, 2000) as a tool for identifying the various discourses that can be found in the provision of open educational resources. The argument will be built upon the concept of a "flat world", a powerful metaphor used by Friedman in his famous book "The World is Flat" (2005). The discussion will…

  15. On the Picard group of a compact flat projective variety

    NARCIS (Netherlands)

    Michelacakis, NJ

    1996-01-01

    In this note, we describe the Picard group of the class of compact, smooth, flat, projective varieties. In view of Charlap's work and Johnson's characterization, we construct line bundles over such manifolds as the holonomy-invariant elements of the Neron-Severi group of a projective flat torus cove

  16. Scalar Flat Metrics of Eguchi-Hanson Type

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao

    2004-01-01

    We use a new method to construct a class of asymptotically locally flat, scalar flat metrics. These metrics were constructed via algebraic geometry method by LeBrun before and provide counterexamples to the generalized positive action conjecture of Hawking and Pope.

  17. Temporal bed level variations in the Yangtze tidal flats (abstract)

    NARCIS (Netherlands)

    Yan, H.; Van Prooijen, B.C.

    2013-01-01

    The Yangtze River is one of the largest rivers in the world and the longest one in Asia. Its estuary forms an important entrance for shipping, but is also a key ecological system. Especially the inter-tidal flats are valuable habitats. The health and integrity of the estuarine tidal flat are however

  18. Dependences of the Casimir-Polder interaction between an atom and a cavity wall on atomic and material properties

    CERN Document Server

    Mostepanenko, V M; Caride, A O; Klimchitskaya, G L; Zanette, S I

    2006-01-01

    The Casimir-Polder and van der Waals interactions between an atom and a flat cavity wall are investigated under the influence of real conditions including the dynamic polarizability of the atom, actual conductivity of the wall material and nonzero temperature of the wall. The cases of different atoms near metal and dielectric walls are considered. It is shown that to obtain accurate results for the atom-wall interaction at short separations, one should use the complete tabulated optical data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. At relatively large separations in the case of a metal wall, one may use the plasma model dielectric function to describe the dielectric properties of wall material. The obtained results are important for the theoretical interpretation of experiments on quantum reflection and Bose-Einstein condensation.

  19. Effect of formulated glyphosate and adjuvant tank mixes on atomization from aerial application flat fan nozzles

    Science.gov (United States)

    This study was designed to determine if the present USDA ARS Spray Nozzle models based on water plus non-ionic surfactant spray solutions could be used to estimate spray droplet size data for different spray formulations through use of experimentally determined correction factors or if full spray fo...

  20. Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap.

    Science.gov (United States)

    Palacio, Irene; Celis, Arlensiú; Nair, Maya N; Gloter, Alexandre; Zobelli, Alberto; Sicot, Muriel; Malterre, Daniel; Nevius, Meredith S; de Heer, Walt A; Berger, Claire; Conrad, Edward H; Taleb-Ibrahimi, Amina; Tejeda, Antonio

    2015-01-14

    Graphene nanoribbons grown on sidewall facets of SiC have demonstrated exceptional quantized ballistic transport up to 15 μm at room temperature. Angular-resolved photoemission spectroscopy (ARPES) has shown that the ribbons have the band structure of charge neutral graphene, while bent regions of the ribbon develop a bandgap. We present scanning tunneling microscopy and transmission electron microscopy of armchair nanoribbons grown on recrystallized sidewall trenches etched in SiC. We show that the nanoribbons consist of a single graphene layer essentially decoupled from the facet surface. The nanoribbons are bordered by 1-2 nm wide bent miniribbons at both the top and bottom edges of the nanoribbons. We establish that nanoscale confinement in the graphene miniribbons is the origin of the local large band gap observed in ARPES. The structural results presented here show how this gap is formed and provide a framework to help understand ballistic transport in sidewall graphene.

  1. Reducing interface recombination for Cu(In,Ga)Se2 by atomic layer deposited buffer layers

    International Nuclear Information System (INIS)

    Partial CuInGaSe2 (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnOx buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide

  2. Beam uniformity of flat top lasers

    Science.gov (United States)

    Chang, Chao; Cramer, Larry; Danielson, Don; Norby, James

    2015-03-01

    Many beams that output from standard commercial lasers are multi-mode, with each mode having a different shape and width. They show an overall non-homogeneous energy distribution across the spot size. There may be satellite structures, halos and other deviations from beam uniformity. However, many scientific, industrial and medical applications require flat top spatial energy distribution, high uniformity in the plateau region, and complete absence of hot spots. Reliable standard methods for the evaluation of beam quality are of great importance. Standard methods are required for correct characterization of the laser for its intended application and for tight quality control in laser manufacturing. The International Organization for Standardization (ISO) has published standard procedures and definitions for this purpose. These procedures have not been widely adopted by commercial laser manufacturers. This is due to the fact that they are unreliable because an unrepresentative single-pixel value can seriously distort the result. We hereby propose a metric of beam uniformity, a way of beam profile visualization, procedures to automatically detect hot spots and beam structures, and application examples in our high energy laser production.

  3. Prunus hybrids rootstocks for flat peach

    Directory of Open Access Journals (Sweden)

    Pilar Legua

    2012-02-01

    Full Text Available Peach (Prunus persica L. is the most important stone fruit tree grown in Spain and is the second most important fruit crop in Europe. The influence of eight Prunus rootstocks (GF-677, Krymsk® 86, PADAC 97-36, PADAC 99-05, PADAC 9912-03, PADAC 0024-01, PAC 0021-01 and PAC 0022-01 on vigor, yield and fruit quality traits of 'UFO 3' flat peach cultivar was studied. The highest trunk cross sectional area was exhibited by GF-677 and the lowest by PADAC 99-05, while intermediate values were found on the other rootstocks. The highest yield efficiency was found on PADAC 99-05, PAC 0021-01, PAC 0022-01 and PADAC 0024-01 and the lowest was shown on Krymsk® 86. The fruit quality parameters measured were color, fruit and stone weights, equatorial diameter, pulp thickness, pulp yield, firmness, pH, soluble solids content and titratable acidity. 'UFO 3' grafted on GF-677 resulted in the largest fruit weight, while the smallest was on PADAC 99-05. Fruits of 'UFO 3' showed a tendency to have higher firmness, higher red colored skin and RI when grafted on PADAC 99-05.

  4. Chemically patterned flat stamps for microcontact printing.

    Science.gov (United States)

    Sharpe, Ruben B A; Burdinski, Dirk; Huskens, Jurriaan; Zandvliet, Harold J W; Reinhoudt, David N; Poelsema, Bene

    2005-07-27

    Locally oxidized patterns on flat poly(dimethylsiloxane) stamps for microcontact printing were used as a platform for the transfer of a hydrophilic fluorescent ink to a glass substrate. The contrast was found to be limited. These locally oxidized patterns were conversely used as barriers for the transfer of hydrophobic n-octadecanethiol. In this case a good contrast was obtained, but the pattern was found to be susceptible to defects (cracks) in the barrier layer. Local stamp surface oxidation and subsequent modification with 1H,1H,2H,2H-perfluorodecyltrichlorosilane, for use as a barrier in the transfer of n-octadecanethiol, 16-mercaptohexadecanoic acid, and octanethiol, resulted in remarkably good contrast and stable patterns. The improved ink transfer control is ascribed to the reduction of undesired surface spreading and a superior mechanical stability of the stamp pattern. This new approach substantially expands the applicability of microcontact printing and provides a tool for the faithful reproduction of even extremely low filling ratio patterns.

  5. Flat belt continuously variable high speed drive

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, E.L.

    1992-02-01

    A study was undertaken at Kumm Industries funded by DOE in the NBS/DOE Energy-Related Inventions Program starting in August 1990 to design, construct and test a novel very high speed flat belt drive. The test arrangement as shown in Figure 1 consists of a multiple belt-pulley configuration that transmits power from a low speed (2000--4000 RPM) input to a small pulley turbine'' (27,000 to 55,000 RPM) and then to the low speed output variable radius pulley (2000--5000 RPM) via a special self-active tensioner. Transmitting 25 HP to and from the turbine'' corresponds to obtaining 50 HP in one direction only in a possible turbo compounded engine application. The high speed of the turbine'' belts, i.e. 100 meters/sec. at 55,000 RPM, while transferring substantial power is a new much higher operating regime for belts. The study showed that the available belts gave overall test rig efficiencies somewhat above 80% for the higher speeds (50,000 RPM) and higher powers (corresponding to above 90% in the turbocompound application) and a significantly better efficiencies at slightly lower speeds. The tests revealed a number of improved approaches in the design of such high speed drives. It appears that there is considerable possibility for further improvement and application of such equipment.

  6. Seismic hazard analysis at Rocky Flats Plant

    International Nuclear Information System (INIS)

    A probabilistic seismic hazard analysis is being conducted for the DOE Rocky Flats Plan, Jefferson County, Colorado. This is part of the overall review of the seismic exposure to facilities being conducted by DOE. The study has four major elements. (1) The historical seismicity in Colorado is being reviewed and synthesized to estimate historical rates of earthquake activity in the region of the site. (2) The geologic and tectonic evidence in Colorado and along the Front Range is being reviewed to determine appropriate seismic zones, potentially active faults, and constraints on fault slip rates. (3) Earthquake ground motion equations are being derived based on seismological knowledge of the earth's crust. Site specific soil amplification factors are also being developed using on-site shear wave velocity measurements. (4) The probability of exceedence of various seismic ground motion levels is being calculated based on the inputs developed on tectonic sources, faults, ground motion, and soil amplification. Deterministic ground motion estimates are also being made. This study is a state-of-the-art analysis of seismic hazard. It incorporates uncertainties in the major aspects governing seismic hazard, and has a documented basis founded on solid data interpretations for the ranges of inputs used. The results will be a valid basis on which to evaluate plant structures, equipment, and components for seismic effects

  7. Surface composition of BaTiO{sub 3}/SrTiO{sub 3}(001) films grown by atomic oxygen plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, A.; Stanescu, D.; Jegou, P.; Magnan, H. [CEA, IRAMIS, SPCSI, F-91191 Gif-sur-Yvette (France); Mocuta, C. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Jedrecy, N. [Institut des Nano Sciences de Paris, UPMC-Sorbonne Universites, CNRS-UMR7588, 75005 Paris (France)

    2012-12-01

    We have investigated the growth of BaTiO{sub 3} thin films deposited on pure and 1% Nb-doped SrTiO{sub 3}(001) single crystals using atomic oxygen assisted molecular beam epitaxy and dedicated Ba and Ti Knudsen cells. Thicknesses up to 30 nm were investigated for various layer compositions. We demonstrate 2D growth and epitaxial single crystalline BaTiO{sub 3} layers up to 10 nm before additional 3D features appear; lattice parameter relaxation occurs during the first few nanometers and is completed at {approx}10 nm. The presence of a Ba oxide rich top layer that probably favors 2D growth is evidenced for well crystallized layers. We show that the Ba oxide rich top layer can be removed by chemical etching. The present work stresses the importance of stoichiometry and surface composition of BaTiO{sub 3} layers, especially in view of their integration in devices.

  8. MULTIPHOTON IONIZATION OF ATOMS

    OpenAIRE

    Mainfray, G.

    1985-01-01

    Multiphoton ionization of one-electron atoms, such as atomic hydrogen and alkaline atoms, is well understood and correctly described by rigorous theoretical models. The present paper will be devoted to collisionless multiphoton ionization of many-electron atoms as rare gases. It induces removal of several electrons and the production of multiply charged ions. Up to Xe5+ ions are produced in Xe atoms. Doubly charged ions can be produced, either by simultaneous excitation of two electrons, or b...

  9. Matter-wave propagation in optical lattices: geometrical and flat-band effects

    Science.gov (United States)

    Metcalf, Mekena; Chern, Gia-Wei; Di Ventra, Massimiliano; Chien, Chih-Chun

    2016-04-01

    The geometry of optical lattices can be engineered, allowing the study of atomic transport along paths arranged in patterns that are otherwise difficult to probe in the solid state. A question feasible to atomic systems is related to the speed of matter-wave propagation as a function of the lattice geometry. To address this issue, we investigated, theoretically, the quantum transport of noninteracting and weakly-interacting ultracold fermionic atoms in several 2D optical lattice geometries. We find that the triangular lattice has a higher propagation velocity compared to the square lattice, and the cross-linked square lattice has an even faster propagation velocity. The increase results from the mixing of the momentum states which leads to different group velocities in quantum systems. Standard band theory provides an explanation and allows for a systematic way to search and design systems with controllable matter-wave propagation. Moreover, the presence of a flat band such as in a two-leg ladder geometry leads to a dynamical density discontinuity due to its localized atoms. Possible realizations of those dynamical phenomena are discussed.

  10. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  11. Evaluation of Interaction Between Flat Car and Container at Dynamic Coupling of Flat Cars

    Directory of Open Access Journals (Sweden)

    Nikitchenko Andrew

    2016-01-01

    Full Text Available Innovative materials and structures are analyzed in this paper. To calculate the strength of the collision of flat wagons for the transport of large containers, there is no clear methodology for determining effort interaction between the container and the platform. At high longitudinal acceleration of the container, it is set in motion, and the consideration of this problem in a static setting impossible. The relevance of this work is to develop a methodology that is based on the equations of motion and considers dynamic interaction between container and platform.

  12. The Modelling of Flat Fluidised Photoreactors.

    Science.gov (United States)

    Iatridis, D.

    Available from UMI in association with The British Library. The present research constitutes a systematic study towards the modelling and design of flat plate fluidised photoreactors. Light transmitted through a fluidised photoreactor (transmittance) and light reflected from the reactor (reflectance) have been measured by new optical techniques. These two important design variables were correlated with relevant fluidisation parameters. The average light transmittance was found to increase with bed expansion, the square root of particle diameter and inversely with bed thickness. On the other hand, the average light reflectance was found to decrease with bed height and particle diameter. The correlations found for light transmittance and reflectance with the fluidised parameters were tested with experimental data using two types of particles of different optical characteristics. The form of these correlations was not affected by the type of particles used. The light energy retained within a fluidised photoreactor, "light absorption", was evaluated by an energy balance from the measured values of light transmittance and reflectance. The light absorption data obtained were regressed for two different types of particles. For 13X zeolites the average light absorption by the bed was found to increase with the second power of bed height and the square root of particle diameter and reactor thickness. For Co-Mo-Al_2O _3 the average light absorption by the bed was found to increase with particle diameter and inversely with bed height. A theoretical study was made using the light energy retained within the reactor to promote a photochemical reaction of first order with respect to reactant concentration and to light absorption. The fluidised bed was treated as a single phase continuously stirred tank reactor (CSTR). The conversion of the reactant was found to increase with the light absorption and decrease with flow rate. This modelling approach may be extended to more complex

  13. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  14. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  15. On-Line Flatness Measurement in the Steelmaking Industry

    Directory of Open Access Journals (Sweden)

    Rubén Usamentiaga

    2013-08-01

    Full Text Available Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain.

  16. Self-organized one-atom thick fractal nanoclusters via field-induced atomic transport

    Science.gov (United States)

    Batabyal, R.; Mahato, J. C.; Das, Debolina; Roy, Anupam; Dev, B. N.

    2013-08-01

    We report on the growth of a monolayer thick fractal nanostructures of Ag on flat-top Ag islands, grown on Si(111). Upon application of a voltage pulse at an edge of the flat-top Ag island from a scanning tunneling microscope tip, Ag atoms climb from the edge onto the top of the island. These atoms aggregate to form precisely one-atom thick nanostructures of fractal nature. The fractal (Hausdorff) dimension, DH = 1.75 ± 0.05, of this nanostructure has been determined by analyzing the morphology of the growing nanocluster, imaged by scanning tunneling microscopy, following the application of the voltage pulse. This value of the fractal dimension is consistent with the diffusion limited aggregation (DLA) model. We also determined two other fractal dimensions based on perimeter-radius-of-gyration (DP) and perimeter-area (D'P) relationship. Simulations of the DLA process, with varying sticking probability, lead to different cluster morphologies [P. Meakin, Phys. Rev. A 27, 1495 (1983)]; however, the value of DH is insensitive to this difference in morphology. We suggest that the morphology can be characterized by additional fractal dimension(s) DP and/or D'P, besides DH. We also show that within the DLA process DP = DH [C. Amitrano et al., Phys. Rev. A 40, 1713 (1989)] is only a special case; in general, DP and DH can be unequal. Characterization of fractal morphology is important for fractals in nanoelectronics, as fractal morphology would determine the electron transport behavior.

  17. THE ORNL ATOM PROBE

    OpenAIRE

    Miller, M

    1986-01-01

    The ORNL Atom Probe is a microanalytical tool for studies in materials science. The instrument is a combination of a customized version of the vacuum system of the VG FIM-100 atom probe, an ORNL-designed microcomputer-controlled digital timing system, and a double curved CEMA Imaging Atom Probe detector. The atom probe combines four instruments into one - namely a field ion microscope, an energy compensated time-of-flight mass spectrometer, an imaging atom probe, and a pulsed laser atom probe.

  18. A New Triangular Flat Shell Element With Drilling Rotations

    DEFF Research Database (Denmark)

    Damkilde, Lars

    2008-01-01

    A new flat triangular shell element has been developed based on a newly developed triangular plate bending element by the author and a new triangular membrane element with drilling degrees of freedom. The advantage of the drilling degree of freedom is that no special precautions have to be made...... in connecting with assembly of elements. Due to the drilling rotations all nodal degrees of freedom have stiffness, and therefore no artificial suppression of degrees of freedom are needed for flat or almost flat parts of the shell structure....

  19. Is there a flatness problem in classical cosmology?

    CERN Document Server

    Helbig, Phillip

    2011-01-01

    I briefly review the flatness problem within the context of classical cosmology and examine some of the debate in the literature with regard to its definition and even the question whether it exists. I then present some new calculations for cosmological models which will collapse in the future; together with previous work by others for models which will expand forever, this allows one to examine the flatness problem quantitatively for all cosmological models. This leads to the conclusion that the flatness problem does not exist, not only for the cosmological models corresponding to the currently popular values of lambda_0 and Omega_0 but indeed for all Friedmann-Lema\\^itre models.

  20. Flat structures on the deformations of Gepner chiral rings

    CERN Document Server

    Belavin, A

    2016-01-01

    We propose a simple method for the computation of the flat coordinates and Saito primitive forms on Frobenius manifolds of the deformations of Jacobi rings associated with isolated singularities. The method is based on using a conjecture about integral representations for the flat coordinates and on the Saito cohomology theory. This reduces the computation to a simple linear problem. We consider the case of the deformed Gepner chiral rings. The knowledge of the flat structures of Frobenius manifolds can be used for exact solution of the models of the topological conformal field theories corresponding to these chiral rings.

  1. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    Science.gov (United States)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  2. ECC water spreading width for flat plate

    International Nuclear Information System (INIS)

    To investigate the characteristics of water jet spreading width induced by Direct Vessel Injection(DVI), a steady state and separate effect test focusing on the effect of the downcomer curvature was performed using a rectangular flat-plate air-water open channel test facility. Comparative tests using various scaled diameter(D) of water jet nozzle, channel gap(W), water jet velocity(VJET), and forced cross air-flow(Vc) on the water film are performed for the Korean Next Generation Reactor(KNGR) during the late reflood phase of LBLOCA. A simplified and visible thin acryl plates were used. The air-water channel has a nearly full height in height between DVI and coldleg. The channel gap and the diameter of water injection nozzle have scaled ratios of 1/50 ∼ 1/10 by volume scaling method. The cross flow is introduced in the airwater channel to investigate the cross flow effects on the ECC water jet spreading width. The major parameters measured in the experiments are the film width of ECC water, the shifted degree of water film boundary by the cross air flow, and the attachment liquid fraction to total injected water in the region of front plate against water injected wall plate. It was found out that (1) If the test scale is increased, for the typical film spreading width without any cross flow, the film width is linearly increased at the bottom of air-water channel except at the top of film. (2) If the cross flow is induced on the liquid film for the test scale of 1:51.68, the highly shifted film shape is formed (3) If the test scale and the water injection velocity are increased, the attachment ratio of liquid on the front plate is sharply increased. (4) The attachment ratio of liquid on the front plate is strongly increased by cross flow. In the case of 9.52 scaled test, the attachment ratio of liquid is affected by both the cross flow and the water injection velocity

  3. Software Simulates Sight: Flat Panel Mura Detection

    Science.gov (United States)

    2008-01-01

    In the increasingly sophisticated world of high-definition flat screen monitors and television screens, image clarity and the elimination of distortion are paramount concerns. As the devices that reproduce images become more and more sophisticated, so do the technologies that verify their accuracy. By simulating the manner in which a human eye perceives and interprets a visual stimulus, NASA scientists have found ways to automatically and accurately test new monitors and displays. The Spatial Standard Observer (SSO) software metric, developed by Dr. Andrew B. Watson at Ames Research Center, measures visibility and defects in screens, displays, and interfaces. In the design of such a software tool, a central challenge is determining which aspects of visual function to include while accuracy and generality are important, relative simplicity of the software module is also a key virtue. Based on data collected in ModelFest, a large cooperative multi-lab project hosted by the Optical Society of America, the SSO simulates a simplified model of human spatial vision, operating on a pair of images that are viewed at a specific viewing distance with pixels having a known relation to luminance. The SSO measures the visibility of foveal spatial patterns, or the discriminability of two patterns, by incorporating only a few essential components of vision. These components include local contrast transformation, a contrast sensitivity function, local masking, and local pooling. By this construction, the SSO provides output in units of "just noticeable differences" (JND) a unit of measure based on the assumed smallest difference of sensory input detectable by a human being. Herein is the truly amazing ability of the SSO, while conventional methods can manipulate images, the SSO models human perception. This set of equations actually defines a mathematical way of working with an image that accurately reflects the way in which the human eye and mind behold a stimulus. The SSO is

  4. Presenting the Bohr Atom.

    Science.gov (United States)

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  5. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  6. Locally conformal flat Riemannian manifolds with constant principal Ricci curvatures and locally conformal flat C-spaces

    CERN Document Server

    Ivanov, S; Ivanov, Stefan; Petrova, Irina

    1997-01-01

    It is proved that every locally conformal flat Riemannian manifold all of whose Jacobi operators have constant eigenvalues along every geodesic is with constant principal Ricci curvatures. A local classification (up to an isometry) of locally conformal flat Riemannian manifold with constant Ricci eigenvalues is given in dimensions 4,5,6,7 and 8. It is shown that any n-dimensional $(4\\leq n \\leq 8)$ locally conformal flat Riemannian manifold with constant principal Ricci curvatures is a Riemannian locally symmetric space.

  7. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 1981 calendar year. The report begins with a...

  8. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 1984

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 1984 calendar year. The report begins with a...

  9. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 1982

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 1982 calendar year. The report begins with a...

  10. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 1986

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 1986 calendar year. The report begins with a...

  11. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 1996 calendar year. The report begins with a...

  12. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 2001

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 2001 calendar year. The report begins with a...

  13. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 1997

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 1997 calendar year. The report begins with a...

  14. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 2000

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 2000 calendar year. The report begins with a...

  15. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 1985 calendar year. The report begins with a...

  16. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 1998

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 1998 calendar year. The report begins with a...

  17. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 1983

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 1983 calendar year. The report begins with a...

  18. Yukon Flats National Wildlife Refuge : Narrative Report : Calendar Year 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Yukon Flats National Wildlife Refuge outlines Refuge accomplishments during the 1987 calendar year. The report begins with a...

  19. Non-conformally flat initial data for binary compact objects

    CERN Document Server

    Uryu, Koji; Friedman, John L; Gourgoulhon, Eric; Shibata, Masaru

    2009-01-01

    A new method is described for constructing initial data for a binary neutron-star (BNS) system in quasi-equilibrium circular orbit. Two formulations for non-conformally flat data, waveless (WL) and near-zone helically symmetric (NHS), are introduced; in each formulation, the Einstein-Euler system, written in 3+1 form on an asymptotically flat spacelike hypersurface, is exactly solved for all the metric components including the spatially non-conformally flat part, and for irrotational flow. A numerical method applicable to both formulations is explained with an emphasis on the imposition of a spatial gauge condition. Results are shown for solution sequences of irrotational BNSs with matter approximated by a parametrized equations of state that uses a few segments of polytropic equations of state. WL/NHS formulations correct the results from the conformally flat -- Isenberg-Wilson-Mathews (IWM) -- formulation. Binding energy or total angular momentum of solution sequences computed within the IWM formulation are...

  20. Yukon Flats National Wildlife Refuge Fishery. Management Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Yukon Flats National Wildlife Refuge Fishery Management Plan (Fishery Plan) provides comprehensive management direction to insure that fish species and habitats...

  1. Multiscale flat norm signatures for shapes and images

    Energy Technology Data Exchange (ETDEWEB)

    Sandine, Gary [Los Alamos National Laboratory; Morgan, Simon P [Los Alamos National Laboratory; Vixie, Kevin R [WASHINGTON STATE UNIV.; Clawson, Keth [WASHINGTON STATE UNIV.; Asaki, Thomas J [WASHINGTON STATE UNIV.; Price, Brandon [WALLA WALLA UNIV.

    2009-01-01

    In this paper we begin to explore the application of the multiscale flat norm introduced in Morgan and Vixie to shape and image analysis. In particular, we look at the use of the multiscale flat norm signature for the identification of shapes. After briefly reviewing the multiscale flat norm, the L{sup 1}TV functional and the relation between these two, we introduce multiscale signatures that naturally follow from the multiscale flat norm and its components. A numerical method based on the min-cut, max-flow graph-cut is briefly recalled. We suggest using L{sup 2} minimization, rather than the usual Crofton's formula based approximation, for choosing the required weights. The resulting weights have the dual benefits of being analytically computable and of giving more accurate approximations to the anisotropic TV energy. Finally, we demonstrate the usefulness of the signatures on simple shape classification tasks.

  2. BTZ extensions of globally hyperbolic singular flat spacetimes

    CERN Document Server

    Brunswic, Léo

    2016-01-01

    Minkowski space is the local model of 3 dimensionnal flat spacetimes. Recent progress in the description of globally hyperbolic flat spacetimes showed strong link between Lorentzian geometry and Teichm{\\"u}ller space. We notice that Lorentzian generalisations of conical singularities are useful for the endeavours of descripting flat spacetimes, creating stronger links with hyperbolic geometry and compactifying spacetimes. In particular massive particles and extreme BTZ singular lines arise naturally. This paper is three-fold. First, prove background local properties which will be useful for future work. Second, generalise fundamental theorems of the theory of globally hyperbolic flat spacetimes. Third, defining BTZ-extension and proving it preserves Cauchy-maximality and Cauchy-completeness.

  3. Northern Mariana Islands Marine Monitoring Team Reef Flat Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Commonwealth of the Northern Mariana Islands' (CNMI) interagency marine monitoring team conducts surveys on reef flat areas on the islands of Saipan, Tinian and...

  4. Deer Flat National Wildlife Refuge: Narrative Report: 1979: Calendar Year

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Deer Flat National Wildlife Refuge outlines Refuge accomplishments during the 1979 calendar year. The report begins with an introduction...

  5. Theoretical study of a flat eddy current probe

    International Nuclear Information System (INIS)

    A mathematical model for the computation of the impedance of an eddy current probe has been determined in the case of flat product testing. Various applications are discussed with particular emphasis on ferromagnetic materials

  6. Certification, self-calibration, and uncertainty in testing optical flats

    Science.gov (United States)

    Evans, Chris J.

    2010-10-01

    Many different approaches may be taken in the certification of reference flats used for acceptance testing of optical quality surfaces. Measurement services offered by national measurement institutes cover a limited size range and the uncertainties associated with the transfer of a calibration must be considered when data from any testing service is used in quality assurance. In-situ self-calibration using a full area variant of the 3-flat test enables the lowest possible uncertainty. The first part of this paper shows the options for external calibration and certification as a function of flat size, and orientation. Next the conditions that must be met to achieve traceability, according to the requirements of ISO 17025, will be discussed. Finally hardware and procedures will be described, and data presented, showing traceable measurement of a 450 mm aperture flat with nm level uncertainties.

  7. Material Flow Modification in a FSW Through Introduction of Flats

    Science.gov (United States)

    Schneider, Judy; Brooke, Shane; Nunes, Arthur C.

    2016-02-01

    Friction stir welding (FSW) is a solid-state process in which a non-consumable weld tool is used to stir metal together to obtain a fully consolidated weld seam. There is controversy regarding the contributions of various attributes of the pin design, especially with regards to flats and flutes. In this study, similar FSWs made with threaded cylindrical pin-tools having 0, 1, 2, 3, 4, and 5 flats were compared. Slight increases in torque were noted with increasing flats. Significant changes in the FSW structure with varying numbers of flats were observed, but without significant changes in tensile strength. Changes in the textural banding shape, the addition of sub-bands, and a new set of bands from coalescence of band kinks constitute the structural changes observed. Explanations of these structural changes in terms of tool interactions with the FSW metal are offered.

  8. Antiprotonic Helium Atoms

    OpenAIRE

    Kartavtsev, O. I.

    1995-01-01

    Metastable antiprotonic helium atoms $^{3,4}\\! H\\! e\\bar pe$ have been discovered recently in experiments of the delayed annihilation of antiprotons in helium media. These exotic atoms survive for an enormous time (about tens of microseconds) and carry the extremely large total angular momentum $L\\sim 30-40$. The theoretical treatment of the intrinsic properties of antiprotonic helium atoms, their formation and collisions with atoms and molecules is discussed.

  9. Atomic Scale Plasmonic Switch

    OpenAIRE

    Emboras, A.; Niegemann, J.; Ma, P; Haffner, C; Pedersen, A.; Luisier, M.; Hafner, C; Schimmel, T.; Leuthold, J.

    2016-01-01

    The atom sets an ultimate scaling limit to Moore’s law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocat...

  10. Atomizing nozzle and process

    Science.gov (United States)

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  11. Atoms Talking to SQUIDs

    CERN Document Server

    Hoffman, J E; Kim, Z; Wood, A K; Anderson, J R; Dragt, A J; Hafezi, M; Lobb, C J; Orozco, L A; Rolston, S L; Taylor, J M; Vlahacos, C P; Wellstood, F C

    2011-01-01

    We present a scheme to couple trapped $^{87}$Rb atoms to a superconducting flux qubit through a magnetic dipole transition. We plan to trap atoms on the evanescent wave outside an ultrathin fiber to bring the atoms to less than 10 $\\mu$m above the surface of the superconductor. This hybrid setup lends itself to probing sources of decoherence in superconducting qubits. Our current plan has the intermediate goal of coupling the atoms to a superconducting LC resonator.

  12. On Locally Conformally Flat Gradient Shrinking Ricci Solitons

    OpenAIRE

    Cao, Xiaodong; Wang, Biao; Zhang, Zhou

    2008-01-01

    In this paper, we first apply an integral identity on Ricci solitons to prove that closed locally conformally flat gradient Ricci solitons are of constant sectional curvature. We then generalize this integral identity to complete noncompact gradient shrinking Ricci solitons, under the conditions that the Ricci curvature is bounded from below and the Riemannian curvature tensor has at most exponential growth. As a consequence of this identity, we classify complete locally conformally flat grad...

  13. Benchmarking and performance improvement at Rocky Flats Technology Site

    International Nuclear Information System (INIS)

    The Rocky Flats Environmental Technology Site has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes

  14. Analysis of Flat-Plate Solar Array and Solar Lantern

    Directory of Open Access Journals (Sweden)

    P. L. N. V. Aashrith

    2014-05-01

    Full Text Available A very detailed theortical analysis of a solar array has been carried out based on established values of solar radiation data to predict the performance of solar lamp . The analysis is based on established theory about flat-plate collectors. Top heat loss coefficient (Ut, Bottom heat loss coefficient (Ub, Overall heat loss coefficient (Ul, Useful energy (Qu, efficiency (hp of the flat-plate solar array and efficiency (hl of the solar lantern has been calculated.

  15. Analysis of Flat-Plate Solar Array and Solar Lantern

    OpenAIRE

    P. L. N. V. Aashrith; M. Sameera Sarma

    2014-01-01

    A very detailed theortical analysis of a solar array has been carried out based on established values of solar radiation data to predict the performance of solar lamp . The analysis is based on established theory about flat-plate collectors. Top heat loss coefficient (Ut), Bottom heat loss coefficient (Ub), Overall heat loss coefficient (Ul), Useful energy (Qu), efficiency (hp) of the flat-plate solar array and efficiency (hl) of the solar lantern has been calculated.

  16. Sintered Nickel Powder Wicks for Flat Vertical Heat Pipes

    OpenAIRE

    Geir Hansen; Erling Næss; Kolbeinn Kristjansson

    2015-01-01

    The fabrication and performance of wicks for flat heat pipe applications produced by sintering a filamentary nickel powder has been investigated. Tape casting was used as an intermediate step in the wick production process. Thermogravimetric analysis was used to study the burn-off of the organic binder used and to study the oxidation and reduction processes of the nickel. The wicks produced were flat, rectangular and intended for liquid transport in the upwards vertical direction. Rate-of-ris...

  17. A Flat Interface Nerve Electrode With Integrated Multiplexer

    OpenAIRE

    Lertmanorat, Zeng; Montague, F. W; Durand, Dominique M.

    2009-01-01

    One of the goals of peripheral nerve cuff electrode development is the design of an electrode capable of selectively activating a specific population of axons in a common nerve trunk. Several designs such as the round spiral electrode or the flat interface nerve electrode (FINE) have shown such ability. However, multiple contact electrodes require many leads, making the implantation difficult and potentially damaging to the nerve. Taking advantage of the flat geometry of the FINE, multiplexer...

  18. Trajectory tracking for robot manipulators using differential flatness

    Directory of Open Access Journals (Sweden)

    Elkin Veslin Diaz

    2011-05-01

    Full Text Available  This paper proposes applying differential flatness to robot manipulator trajectory tracking. The trajectories for each generalised coordinate are proposed as a function and the corresponding input must be found to guarantee tracking. It is shown that the position in the generalised coordinates and their derivatives are flat inputs which, together with a PD controller, could determine (with some restrictions manipulator movement having minimal deviation throughout its trajectory in both plane movements and in space. 

  19. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  20. Flatness-based pre-compensation of laser diodes

    CERN Document Server

    Rouchon, A Abichou S Elasmi P

    2007-01-01

    A physical nonlinear dynamical model of a laser diode is considered. We propose a feed-forward control scheme based on differential flatness for the design of input-current modulations to compensate diode distortions. The goal is to transform without distortion a radio-frequency current modulation into a light modulation leaving the laser-diode and entering an optic fiber. We prove that standard physical dynamical models based on dynamical electron and photons balance are flat systems when the current is considered as control input, the flat output being the photon number (proportional to the light power). We prove that input-current is an affine map of the flat output, its logarithm and their time-derivatives up to order two. When the flat output is an almost harmonic signal with slowly varying amplitude and phase, these derivatives admit precise analytic approximations. It is then possible to design simple analogue electronic circuits to code approximations of the nonlinear computations required by our flat...

  1. THE FLAT TAX - A COMPARATIVE STUDY OF THE EXISTING MODELS

    Directory of Open Access Journals (Sweden)

    Schiau (Macavei Laura - Liana

    2011-07-01

    Full Text Available In the two last decades the flat tax systems have spread all around the globe from East and Central Europe to Asia and Central America. Many specialists consider this phenomenon a real fiscal revolution, but others see it as a mistake as long as the new systems are just a feint of the true flat tax designed by the famous Stanford University professors Robert Hall and Alvin Rabushka. In this context this paper tries to determine which of the existing flat tax systems resemble the true flat tax model by comparing and contrasting their main characteristics with the features of the model proposed by Hall and Rabushka. The research also underlines the common features and the differences between the existing models. The idea of this kind of study is not really new, others have done it but the comparison was limited to one country. For example Emil Kalchev from New Bulgarian University has asses the Bulgarian income system, by comparing it with the flat tax and concluding that taxation in Bulgaria is not simple, neutral and non-distortive. Our research is based on several case studies and on compare and contrast qualitative and quantitative methods. The study starts form the fiscal design drawn by the two American professors in the book The Flat Tax. Four main characteristics of the flat tax system were chosen in order to build the comparison: fiscal design, simplicity, avoidance of double taxation and uniformity of the tax rates. The jurisdictions chosen for the case study are countries all around the globe with fiscal systems which are considered flat tax systems. The results obtained show that the fiscal design of Hong Kong is the only flat tax model which is built following an economic logic and not a legal sense, being in the same time a simple and transparent system. Others countries as Slovakia, Albania, Macedonia in Central and Eastern Europe fulfill the requirement regarding the uniformity of taxation. Other jurisdictions avoid the double

  2. Single Atom Plasmonic Switch

    CERN Document Server

    Emboras, Alexandros; Ma, Ping; Haffner, Christian; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2015-01-01

    The atom sets an ultimate scaling limit to Moores law in the electronics industry. And while electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling-similar to electronics-is only limited by the atom. More precisely, we introduce an electrically controlled single atom plasmonic switch. The switch allows for fast and reproducible switching by means of the relocation of an individual or at most - a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ration of 10 dB and operation at room temperature with femtojoule (fJ) power consumption for a single switch operation. This demonstration of a CMOS compatible, integrated quantum device allowing to control photons at the single-atom level opens intriguing perspectives for a fully i...

  3. Interferometry with atoms

    International Nuclear Information System (INIS)

    Optics and interferometry with matter waves is the art of coherently manipulating the translational motion of particles like neutrons, atoms and molecules. Coherent atom optics is an extension of techniques that were developed for manipulating internal quantum states. Applying these ideas to translational motion required the development of techniques to localize atoms and transfer population coherently between distant localities. In this view position and momentum are (continuous) quantum mechanical degrees of freedom analogous to discrete internal quantum states. In our contribution we start with an introduction into matter wave optics in sect. 1, discuss coherent atom optics and atom interferometry techniques for molecular beams in sect. 2 and for trapped atoms in sect. 3. In sect. 4 we then describe tools and experiments that allow to probe the evolution of quantum states of many-body systems by atom interference.

  4. Experimental study of a water-mist jet issuing normal to a heated flat plate

    Directory of Open Access Journals (Sweden)

    Vouros Andreas

    2016-01-01

    Full Text Available A parametric experimental study on the development of a round jet spray impacting a smooth, heated, flat plate has been accomplished. The main objective of this effort was to provide information characterizing the flow structure of a developing mist jet, issuing vertically towards an upward facing, horizontal heated plate, by means of simultaneous droplet size and velocity measurements. Phase Doppler Anemometry was used, providing also information on liquid volume flux. The fine spray of small atomized droplets (0.5-5.0 μm, was generated using a medical nebulizer. Two low Reynolds number jets (Re=2952, 3773 issuing from a cylindrical pipe have been tested. The distance between the jets’ exit and the plate was 50 cm. A stainless steel non-magnetic flat plate of dimensions 1000x500x12mm3 was used as target wall. Constant heat flux boundary conditions were established during measurements. Results indicate that the heat flux from the plate is influencing the evolution of the spray jet, diminishing its velocity and turbulence. Average droplet sizes are affected little by the heat flux, although for the non-heated sprays, droplet sizes increase at locations very close to the plate. A significant effect on droplet volume flow rate is also reported.

  5. Correlated phases of bosons in the flat lowest band of the dice lattice.

    Science.gov (United States)

    Möller, G; Cooper, N R

    2012-01-27

    We study correlated phases occurring in the flat lowest band of the dice-lattice model at flux density one-half. We discuss how to realize this model, also referred to as the T(3) lattice, in cold atomic gases. We construct the projection of the model to the lowest dice band, which yields a Hubbard Hamiltonian with interaction-assisted hopping processes. We solve this model for bosons in two limits. In the limit of large density, we use Gross-Pitaevskii mean-field theory to reveal time-reversal symmetry breaking vortex lattice phases. At low density, we use exact diagonalization to identify three stable phases at fractional filling factors ν of the lowest band, including a classical crystal at ν = 1/3, a supersolid state at ν = 1/2, and a Mott insulator at ν = 1.

  6. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  7. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy.

    Science.gov (United States)

    Lee, Jung Ah; Lim, Young Rok; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-21

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes. PMID:27640642

  8. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  9. True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-09-15

    Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5 nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6 nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

  10. Magnetotelluric Data, Central Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Central Yucca Flat, Profile 1, as shown in figure 1. No interpretation of the data is included here.

  11. Magnetotelluric Data, Northern Frenchman Flat, Nevada Test Site Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Williams; B.D. Rodriguez, and T. H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Frenchman Flat Profile 3, as shown in Figure 1. No interpretation of the data is included here.

  12. Magnetotelluric Data, Southern Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Southern Yucca Flat, Profile 4, as shown in Figure 1. No interpretation of the data is included here.

  13. Minimal supersymmetric standard model flat direction as a curvaton

    International Nuclear Information System (INIS)

    We study in detail the possibility that the flat directions of the minimal supersymmetric standard model (MSSM) could act as a curvaton and generate the observed adiabatic density perturbations. For that the flat direction energy density has to dominate the Universe at the time when it decays. We point out that this is not possible if the inflaton decays into MSSM degrees of freedom. If the inflaton is completely in the hidden sector, its decay products do not couple to the flat direction, and the flat direction curvaton can dominate the energy density. This requires the absence of a Hubble-induced mass for the curvaton, e.g. by virtue of the Heisenberg symmetry. In the case of hidden radiation, n=9 is the only admissible direction; for other hidden equations of state, directions with lower n may also dominate. We show that the MSSM curvaton is further constrained severely by the damping of the fluctuations, and as an example, demonstrate that in no-scale supergravity it would fragment into Q balls rather than decay. Damping of fluctuations can be avoided by an initial condition, which for the n=9 direction would require an initial curvaton amplitude of ∼10-2Mp, thereby providing a working example of the MSSM flat direction curvaton

  14. Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Hultqvist, Adam; Bent, Stacey F. [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States); Li, Jian V.; Kuciauskas, Darius; Dippo, Patricia; Contreras, Miguel A.; Levi, Dean H. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2015-07-20

    Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.

  15. Single atom microscopy.

    Science.gov (United States)

    Zhou, Wu; Oxley, Mark P; Lupini, Andrew R; Krivanek, Ondrej L; Pennycook, Stephen J; Idrobo, Juan-Carlos

    2012-12-01

    We show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity. PMID:23146658

  16. Evaluation of the deformation value of an optical flat under gravity

    International Nuclear Information System (INIS)

    The flatness of an optical surface can be evaluated using a Fizeau interferometer. There is strong demand for ensuring that the measurement uncertainty of flatness is of nanometer order over a measurement range of 300 mm or more; however, the measurement range and measurement uncertainty of flatness at the National Metrology Institute of Japan (NMIJ) are 300 mm and 10 nm, respectively. In a Fizeau flatness interferometer, the gap distance between the reference flat and the specimen is measured. To obtain the absolute profile of the specimen, the absolute profile of the reference flat should be measured in advance. The three-flat test is one of the methods used to measure the absolute profile of a reference flat. The reference flat, however, deforms under the force of gravity, and its absolute deformation value cannot be determined by the three-flat test. The deformation value of the reference flat can be corrected by the finite element method (FEM) analysis; however, it is difficult to ensure the validity of the analysis and there is a large uncertainty component of the Fizeau flatness interferometer. To verify the FEM analysis, we developed a scanning deflectometric profiler (SDP) that does not require a reference flat and can directly measure a profile. We calibrated an optical flat using a Fizeau flatness interferometer and the SDP. Finally, the deformation value of the reference flat under the force of gravity was evaluated by comparing the measurement results. (paper)

  17. Cascade of negative muons in atoms

    International Nuclear Information System (INIS)

    A study is made of the evolution of a negative muon captured in an atom and the formalism of energy loss associated with the muonic atom. The principal goals are to calculate reliability the muon x-ray intensities, given the initial population of the muonic orbits, to invert the problem and deduce the initial distribution from the x-ray intensities, to provide a reasonably simple and convenient tool to correlate observations, and finally, to systematize some questions of theoretical interest. The early part of the history of the muon in matter, including the atomic capture and classical phase of the atomic cascade are reviewed. In the quantal treatment of the transition rates, both radiative and electron Auger transitions are considered. In general, multipolarities up to E3 and K, L, and M electronic shells are fully investigated. Multipole radiation is treated in the conventinal way and pesents no special problems. Magnetic type transitions between states with different principal quantum numbers are shown to be small. Auger electron ejection rates are more complicated and several approximations have been adopted. The basic results have been computed in terms of elemetary functions. In the Auger transitions we have shown that magnetic multipoles can be safety neglected. The relative sizes of the rates corresponding to different multipoles are systematically studied. A comparison of results is made with atomic photoelectric effect data and with the nuclear internal conversion coefficients. A general agreement is found, except around shell thresholds. The existing data of muonic x-ray intensities in iron and thallium are analyzed in a systematic way. It is found that for Fe the initial l-distribution is almost flat, whereas that for T1 is weighted towards the high l values, sharper than statistical. As a result of the investigations and in order to make our findings usable, a computer program has been developed. 36 references

  18. Atomic homodyne detection of weak atomic transitions.

    Science.gov (United States)

    Gunawardena, Mevan; Elliott, D S

    2007-01-26

    We have developed a two-color, two-pathway coherent control technique to detect and measure weak optical transitions in atoms by coherently beating the transition amplitude for the weak transition with that of a much stronger transition. We demonstrate the technique in atomic cesium, exciting the 6s(2)S(1/2) --> 8s(2)S(1/2) transition via a strong two-photon transition and a weak controllable Stark-induced transition. We discuss the enhancement in the signal-to-noise ratio for this measurement technique over that of direct detection of the weak transition rate, and project future refinements that may further improve its sensitivity and application to the measurement of other weak atomic interactions.

  19. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  20. Advances in atomic physics

    Directory of Open Access Journals (Sweden)

    Tharwat M. El-Sherbini

    2015-09-01

    Full Text Available In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics.