WorldWideScience

Sample records for atomic vapor laser

  1. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  2. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.

    1986-09-01

    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  3. Atomic fluorescence method for determination of concentration of alkali metal vapor using a laser source

    Energy Technology Data Exchange (ETDEWEB)

    Budkin, L.A.; Okhotnikov, O.G.; Pak, G.T.; Pikhtelev, A.I.; Puzanov, S.L.

    1984-04-01

    An experimental investigation into the temperature dependence of the cesium vapor concentration has been carried out within the 20-80 deg C temperature range on the base of the atomic fluorescence method with the use of a semiconductor laser. The relation allowing one to study the alkali metal atomic concentration as a function of the vapor temperature and also the method sensitivity as a function of the laser intensity has been derived using the balance equations. A good agreement of the experimental results with estimated ones has been obtained. The method sensitivity has been found to grow with the laser intensity.

  4. Repetitively pulsed SPER laser using transitions in Cd atoms. [Segmented plasma source of metal vapor

    Energy Technology Data Exchange (ETDEWEB)

    Apollonov, V.V.; Sirotkin, A.A. (Institut Obshchei Fiziki, Moscow (USSR))

    1989-08-01

    The repetitively pulsed operation of a laser with a segmented plasma source of metal vapor using transitions in Cd I atoms (at wavelengths of 1.43 and 3.955 microns) is reported. The mean power of laser radiation at the pump pulse repetition rate of 2 kHz amounted to 36 and 20 mW for 1.43 and 3.955 microns, respectively. Mechanisms which limit the maximum pulse repetition rate are considered, and ways to enhance the laser output energy characteristics are proposed. 7 refs.

  5. Ultrafast laser-driven Rabi oscillations of a trapped atomic vapor.

    Science.gov (United States)

    Lee, Han-gyeol; Kim, Hyosub; Ahn, Jaewook

    2015-02-15

    We consider the Rabi oscillation of an atom ensemble of Gaussian spatial distribution interacting with ultrafast laser pulses. Based on an analytical model calculation, we show that its dephasing dynamics is solely governed by the size ratio between the atom ensemble and the laser beam, and that every oscillation peak of the inhomogeneously broadened Rabi flopping falls on the homogeneous Rabi oscillation curve. The results are verified experimentally with a cold rubidium vapor in a magneto-optical trap. As a robust means to achieve higher-fidelity population inversion of the atom ensemble, we demonstrate a spin-echo type R(x)(π/2)R(y)(π)R(x)(π/2) composite interaction as well.

  6. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  7. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  8. Atomic iodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program.

  9. Two Step Excitation in Hot Atomic Sodium Vapor.

    Science.gov (United States)

    Docters, Bernd; Wrachtrup, Jörg; Gerhardt, Ilja

    2017-09-18

    A two step excitation scheme in hot atomic sodium vapor is experimentally investigated. The observed effects reflect a coupling between the 32S, 32P and the 32D states. We present the relative dependence on detuning of the two utilized lasers around λ = 589 nm and 819 nm. Unlike expected, we achieve a higher detuning dependence of the probe and the coupling laser by a factor of approximately three. The presented work aimed for a Rydberg excitation and quantum light storage. Such schemes are usually implemented with a red laser on the D-line transition and a coupling laser of shorter (typically blue) wavelength. Due to the fact that higher P-Rydberg states are approximately two times higher in energy than the 32D state, a two photon transition from the atomic excited 32P state to a Rydberg P state is feasible. This might circumvent laser frequency doubling whereby only two lasers might mediate a three photon process. The scheme of adding three k-vectors allows for electromagnetically induced transparency experiments in which the resulting k-vector can be effectively reduced to zero. By measurements utilizing electric fields and an analysis of the emission spectrum of the atomic vapor, we can exclude the excitation of the P-P two photon transition.

  10. Two Step Excitation in Hot Atomic Sodium Vapor

    OpenAIRE

    Docters, Bernd; Wrachtrup, J?rg; Gerhardt, Ilja

    2017-01-01

    A two step excitation scheme in hot atomic sodium vapor is experimentally investigated. The observed effects reflect a coupling between the 32S, 32P and the 32D states. We present the relative dependence on detuning of the two utilized lasers around ??=?589?nm and 819?nm. Unlike expected, we achieve a higher detuning dependence of the probe and the coupling laser by a factor of approximately three. The presented work aimed for a Rydberg excitation and quantum light storage. Such schemes are u...

  11. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  12. Lasers, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. Basic information for understanding the laser is provided including discussion of the electromagnetic spectrum, radio waves, light and the atom, coherent light, controlled…

  13. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    Science.gov (United States)

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  14. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    Science.gov (United States)

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  15. Atoms, Light, and Lasers

    Science.gov (United States)

    Bellac, Michel Le

    2014-11-01

    Up to now, the spatial properties of quantum particles played no more than a secondary role: we only needed the de Broglie relation (1.4) which gives the quantum particles wavelength, and our discussion of the quantum properties of photons was based mainly on their polarization, which is an internal degree of freedom of the photon. The probability amplitudes which we used did not involve the positions or velocities of the particles, which are spatial, or external degrees of freedom. In the present chapter, we shall introduce spatial dependence by defining probability amplitudes a(ěc r) that are functions of the position ěc r. In full generality, a(ěc r) is a complex number, but we shall avoid this complication and discuss only cases where the probability amplitudes may be taken real. For simplicity, we also limit ourselves to particles propagating along a straight line, which we take as the Ox axis: x will define the position of the particle and the corresponding probability amplitude will be a function of x, a(x). In our discussion, we shall need to introduce the so-called potential well, where a particle travels back and forth between two points on the straight line. One important particular case is the infinite well, where the particle is confined between two infinitely high walls over which it cannot pass. This example is not at all academic, and we shall meet it again in Chapter 6 when explaining the design of a laser diode! Furthermore, it will allow us to introduce the notion of energy level, to write down the Heisenberg inequalities, to understand the interaction of a light wave with an atom and finally to explain schematically the principles of the laser.

  16. Nonlinear optical properties of atomic vapor and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Doseok [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    This thesis contains the study of highly forbidden resonant second harmonic generation (SHG) in atomic potassium vapor using tunable picosecond pulses. Various output characteristics of vapor SHG have been investigated including the input intensity dependence, potassium vapor density dependence, buffer gas pressure dependence, and spatial profile. Recently, the discovery of new nonlinear optical crystals such as barium borate (β-BaB2O4, BBO) and lithium borate (LiB3O5, LBO) has greatly improved the performance of a tunable coherent optical devices based on optical parametric generation and amplification. In the second part of this thesis, a homebuilt picosecond optical parametric generator/amplifier (OPG/OPA) system is described in detail, including its construction details and output characteristics. This laser device has found many useful applications in spectroscopic studies including surface nonlinear optical spectroscopy via sum-frequency generation (SFG). The last part of this thesis reports studies on multiphoton-excited photoluminescence from porous silicon and GaN. Multiphoton excitation and photoluminescence can give numerous complementary information about semiconductors not obtainable with one-photon, above-bandgap excitation.

  17. METHODS OF SAMPLE THERMAL MODIFICATION BY MEANS DOUBLE VAPORIZATION IN TWO STEP ATOMIZER FOR ATOMIC ABSORPTION ANALYSIS

    OpenAIRE

    Grinshtein, Ilia; Vilpan, Yuri; Saraev, Alexei; Vasilieva, Lubov

    2000-01-01

    After sample vaporization in two-step atomizer with a purged vaporizer sample vapors can be transferred into preheated or into non-heated atomizer. In the last case the atomizer walls trap the vapors and then the sample is second time vaporized and atomized by heating the atomizer. Thermal pre-treatment of a sample using this double vaporization makes possible the direct analysis of samples with strongly interfering matrices including solids. The technique was used for the direct determinatio...

  18. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  19. New Medical Applications Of Metal Vapor Lasers

    Science.gov (United States)

    Anderson, Robert S.; McIntosh, Alexander I.

    1989-06-01

    The first medical application for metal vapor lasers has been granted marketing approval by the FDA. This represents a major milestone for this technology. Metalaser Technologies recently received this approval for its Vasculase unit in the treatment of vascular lesions such as port wine stains, facial telangiectasia and strawberry hemangiomas.

  20. Collinear laser spectroscopy of francium using online rubidium vapor neutralization and amplitude modulated lasers

    Science.gov (United States)

    Sell, J. F.; Gulyuz, K.; Sprouse, G. D.

    2009-12-01

    Performing collinear laser spectroscopy on low intensity radioactive beams requires sensitive detection techniques. We explain our apparatus to detect atomic resonances in neutralized F208-210r ion beams at beam energies of 5 keV and intensities of 105 s-1. Efficient neutralization (≥80%) is accomplished by passing the beam through a dense Rb vapor. Increased detection efficiency is achieved by amplitude modulating the exciting laser to decrease the scattered light background, allowing fluorescence detection only when the laser is near its minimum in the modulation cycle. Using this technique in a collinear geometry we achieve a background reduction by a factor of 180 and a signal-to-noise increase of 2.2, with the lifetime of the atomic state playing a role in the efficiency of this process. Such laser modulation will also produce sidebands on the atomic spectra which we illustrate.

  1. [Laser vaporization of the prostate: all as it should be?].

    Science.gov (United States)

    Reich, O; Seitz, M

    2008-04-01

    Laser vaporization of the prostate currently occupies a prominent place among the surgical options for treatment of benign prostatic syndrome. Particularly the so-called GreenLight laser vaporization with the KTP (80 W) or LBO (120 W) laser has become remarkably widespread throughout the world. There are already 100 of these GreenLight laser systems in use in Germany alone. The introduction of a separate DRG for "laser vaporization" is expected to further increase the significance of this surgical technique. The aim of this study is to evaluate laser vaporization as a whole and to identify possible differences between the different lasers.

  2. Laser Control of Atoms and Molecules

    CERN Document Server

    Letkhov, V S

    2007-01-01

    This text treats laser light as a universal tool to control matter at the atomic and molecular level, one of the most exciting applications of lasers. Lasers can heat matter, cool atoms to ultra-low temperatures where they show quantum collective behaviour, and can act selectively on specific atoms and molecules for their detection and separation.

  3. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  4. Switching and counting with atomic vapors in photonic-crystal fibers

    DEFF Research Database (Denmark)

    Peyronel, Thibault; Bajcsy, Michal; Hofferberth, Sebastian

    2012-01-01

    We review our recent experiments demonstrating a hollow-core photonic-crystal fiber loaded with laser-cooled atomic vapor as a system for all-optical switching with pulses containing few hundred photons. Additionally, we discuss the outlooks for improving the efficiency of this switching scheme a...... and present preliminary results geared toward using the system as a photon-number resolving detector....

  5. Laser manipulation of atoms and nanofabrication

    NARCIS (Netherlands)

    Jurdík, Erich

    2001-01-01

    Fundamental interaction processes between atoms and photons are exploited to control external degrees of freedom of the atoms. Laser light, when properly tuned near an atomic resonance, exerts such forces that the atoms are repelled from or attracted to the regions with low light intensities. We use

  6. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    Science.gov (United States)

    Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.

    1996-08-27

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.

  7. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit

    2014-09-18

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  8. A high-performance Raman-Ramsey Cs vapor cell atomic clock

    Science.gov (United States)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Yun, Peter; Guérandel, Stéphane; de Clercq, Emeric; Boudot, Rodolphe

    2017-03-01

    We demonstrate a high-performance coherent-population-trapping (CPT) Cs vapor cell atomic clock using the push-pull optical pumping technique in the pulsed regime, allowing the detection of high-contrast and narrow Ramsey-CPT fringes. The impact of several experimental parameters onto the clock resonance and short-term fractional frequency stability, including the laser power, the cell temperature, and the Ramsey sequence parameters, has been investigated. We observe and explain the existence of a slight dependence on laser power of the central Ramsey-CPT fringe line-width in the pulsed regime. We report also that the central fringe line-width is commonly narrower than the expected Ramsey line-width given by 1 / ( 2 T R ) , with TR the free-evolution time, for short values of TR. The clock demonstrates a short-term fractional frequency stability at the level of 2.3 × 10 - 13 τ - 1 / 2 up to 100 s averaging time, mainly limited by the laser amplitude modulation noise. Comparable performances are obtained in the conventional continuous wave regime, with the use of an additional laser power stabilization setup. The pulsed interaction allows to reduce significantly the clock frequency sensitivity to laser power variations, especially for high values of TR. This pulsed CPT clock, ranking among the best microwave vapor cell atomic frequency standards, could find applications in telecommunication, instrumentation, defense or satellite-based navigation systems.

  9. The role of coherent excitation and collisional energy transfer in atomic vapor filters and photon detectors

    Science.gov (United States)

    Correll, Tiffany Lee

    Many optical techniques, including laser Doppler velocimetry, free space optical communications, and chemical imaging, require-or can be enhanced by-high spectral resolution photon detection. Such detection is characterized by spectral discrimination on the order of GHz or MHz i.e., approximately 10-4 nm in the near-infrared region. This spectral resolution has recently been achieved by exploiting the narrow absorption features of gas phase atoms. Absorption of light by alkali vapors is intrinsically selective and can be monitored by detecting the fluorescence resulting from laser excitation coupled to selectively excited atomic states. Imaging can be accomplished by spatially expanding the excitation lasers into two dimensions. Fluorescence photons are only created and detected when the interrogated object is forced to scatter radiation of an energy precisely matching one of the transitions of a pre-determined optimal excitation/fluorescence scheme. Devices based on resonance fluorescence photon detection have recently been described using cesium atoms. In this work, the sensitivity and spectral resolution of cesium-based photon detectors were evaluated and improved. To this end, initial experiments focused on laser induced fluorescence in room temperature cesium vapor. The fluorescence response of the detector was augmented by the use of cesium-induced collisional excitation energy transfer between states involved in the chosen excitation scheme. Additional studies focused on helium and argon-induced collisions in the vapor to increase the signal output while maintaining adequate spatial resolution in imaging mode. The probability or cross section of helium-cesium collisions at the operating temperature of the detector was determined by use of a simplified rate equation model. The spectral response of the detector was improved by the use of coherent optical effects resulting from the interaction of a multi-level atomic system with narrowband radiation. Superior

  10. 248-NM Laser Photolysis of CHBr3/O-Atom Mixtures: Kinetic Evidence for UV CO(A)-Chemiluminescence in the Reaction of Methylidyne Radicals With Atomic Oxygen

    National Research Council Canada - National Science Library

    Vaghjiani, Ghanshyam L

    2005-01-01

    4TH Positive and Cameron band emissions from electronically excited CO have been observed for the first time in 248-nm pulsed laser photolysis of a trace amount of CHBr3 vapor in an excess of O-atoms...

  11. Spectroscopic observation of copper vapor laser

    Science.gov (United States)

    Ueguri, Shigeo; Hara, Kazuhiko; Iwata, Akihiko; Ueda, Yoshihiro; Tabata, Norikazu

    Time-resolved spectrograms of a Cu-vapor laser plasma were obtained. The discharge was generated in Ne or He buffer gas within an Al2O3 ceramic tube. The electrodes were Mo tubes. The observations were made over the wavelength range from 200 to 650 nm. The spectra from the discharge plasma were mainly composed of Cu I and Ne I or He I. Molecular lines, Na D lines, and H Balmer lines were also observed. From the Inglis-Teller formula applied to the observed H Balmer lines, the average electron density was estimated at about 10 to the 14th/cu cm. The time-resolved spectrograms were obtained with a spectrometer and a boxcar averager during several tens of microsecs after the initiation of pulse discharge.

  12. Update on Greenlight laser vaporization (PVP) 2014.

    Science.gov (United States)

    Rieken, Malte; Bachmann, Alexander

    2015-04-01

    To asses the (1) outcomes and (2) intraoperative, perioperative, and long-term complications of photoselective vaporization of the prostate (PVP) with Greenlight laser. A systematic review of outcomes and complications of PVP was conducted. The article selection process was performed according to PRISMA guidelines and included publications published between 2009 and 2014. All generations of PVP (80, 120, 180 W) lead to a significant improvement of micturition symptoms (IPSS, QoL) and voiding parameters (Q max, PVR volume) during follow-up. Data on sexual function are heterogeneous and suggest a trend toward decline in erectile function in men with sustained preoperative erection. The rate of intraoperative complications is low. Data on peri- and postoperative complications show a large variation that mainly can be attributed to heterogeneity in documentation. PVP leads to a statistically significant and clinically relevant improvement of voiding parameters and micturition symptoms in patients with prostates technique is characterized by a high degree of intra- and perioperative safety. Long-term evidence on functional outcomes and complications beyond 3 years from RCTs is currently missing for all generations of the Greenlight laser.

  13. Laser Prostatectomy: Holmium Laser Enucleation and Photoselective Laser Vaporization of the Prostate

    Science.gov (United States)

    Bostanci, Yakup; Kazzazi, Amir; Djavan, Bob

    2013-01-01

    Historically, transurethral resection of the prostate has been the gold standard for the treatment of benign prostatic hyperplasia (BPH). Laser technology has been used to treat BPH for > 15 years. Over the past decade, it has gained wide acceptance by experienced urologists. This review provides an evidence-based update on laser surgery for BPH with a focus on photoselective laser vaporization and holmium laser enucleation of the prostate surgeries and assesses the safety, efficacy, and durability of these techniques. PMID:23671400

  14. Coupling a thermal atomic vapor to an integrated ring resonator

    CERN Document Server

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2016-01-01

    Strongly interacting atom-cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candidates because they can be scalably fabricated and interconnected with waveguides and optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach provides a key step towards miniaturization and scalability of atom-cavity systems.

  15. Laser Technology in Commercial Atomic Clocks

    Science.gov (United States)

    Lutwak, R.

    2006-05-01

    Commercial atomic frequency standards (AFS) are deployed in diverse civilian, military, and aerospace applications, ranging from high-precision measurement and calibration to navigation, communications and, of course, timekeeping. Currently, commercially available AFS include magnetically-selected cesium beam frequency standards and hydrogen masers and lamp-pumped rubidium oscillators. Despite the revolution in atomic physics and laboratory-scale AFS brought about by the advent of the tunable laser in the early 1970s, commercial AFS invariably rely on more conventional atomic physics technology developed in the 1950s. The reason for this lack of advancement of commercial AFS technology is the relatively poor reliability and environmental sensitivity of narrow-linewidth single-mode laser sources at atomic resonance wavelengths. Over the past 8 years, Symmetricom, in collaboration with laser manufacturers, has developed specialized laser sources for commercial AFS applications. These laser devices, optimized for high spectral purity and long-term reliability, will enable a new generation of commercial AFS. This talk will briefly describe two laser-based atomic frequency standard development programs at Symmetricom. The Chip-Scale Atomic Clock, two orders of magnitude smaller and lower power than any commercial AFS, will enable atomic timing accuracy in portable battery-powered applications. The Optically-Pumped Cesium Beam Frequency Standard, under development for deployment onboard the GPS-III satellite constellation, will provide enhanced short-term stability and longer lifetime compared to magnetically-selected cesium beam AFS.

  16. Detection of vapor phase mercury species by laser fluorescence methods

    Science.gov (United States)

    Tong, Xiaomei

    Several mercury species emissions have been identified in off-gases from industrial processes. At present, there is no commercial continuous emission monitoring (CEM) technique or instrumentation to reliably monitor volatile mercury species emissions from industrial stacks. Conventional measurement methods, such as cold vapor trap based techniques for elemental mercury, have difficulty in achieving both high sensitivity and the fast time resolution required for real-time monitoring. This doctoral research work gives a systematic study of potential methods for real-time trace detection of volatile elemental mercury and mercury compounds in industrial stack gases. It is based on laser-induced fluorescence techniques; photofragment fluorescence spectroscopy for detection of volatile mercury compounds, and resonance fluorescence for detection of elemental mercury. The capabilities and limitations of these detection techniques are investigated in this dissertation. Detection of mercury compounds is a challenge since they are non-fluorescent. With photofragment fluorescence spectroscopy, target compound concentrations are related to the fluorescence intensity from an excited fragment. In this doctoral research work, low concentrations of mercuric bromide vapor in an atmospheric pressure flow cell are irradiated by a focused laser beam at 222nm. Photofragment fluorescence is monitored at 253.7nm. Two detection schemes, Charge Coupled Device (CCD) and photomultiplier tube (PMT), are applied for the measurement of photofragment fluorescence. The performances of these two systems are compared in the dissertation. A supersonic jet is combined with resonance fluorescence for detection of elemental mercury vapor. With test gas expanded into a vacuum, fluorescence quenching and spectral broadening are reduced. In the experiment, the gas jet is crossed with a laser beam at 253.7nm to excite atomic fluorescence, which is distinguished from the elastic background by time gating

  17. Contact laser vaporization of the prostate for benign prostatic hypertrophy

    Science.gov (United States)

    Gomella, Leonard G.; Lotfi, M. A.; Milam, Douglas F.; Albala, David; Reagan, Gary

    1994-05-01

    The contact laser applications for the removal of the enlarged prostate are distinctly different than the majority of non-contact Nd:YAG lasers that rely on coagulation necrosis and delayed sloughing. Contact Nd:YAG laser allows cutting, coagulation and vaporization of tissue with minimal penetration beyond the contact surface. Using the contact laser prostatectomy technique, the contact laser probe directly touches and immediately vaporizes the prostatic tissue under the probe. The net result is the immediate removal of the obstructing tissue, in a manner similar to the standard electrosurgical TURP. This immediate removal of tissue offers the patient treated with the contact laser the potential for decreased catheter time and a more rapid resolution of symptoms. Our initial experience suggests that the contact technique may be better suited for the smaller prostate gland (i.e. less than 30 gm). The contact laser may also be used for a procedure termed the `laser assisted TURP': a standard electrosurgical TURP is performed and the contact laser is used for hemostasis. Several investigators have reported non-randomized results of the contact technique with good outcomes. A prospective randomized trial of the contact laser prostatectomy vrs the electrosurgical TURP is underway. The contact laser vaporization of the prostate holds great promise for the treatment of symptomatic benign prostatic hypertrophy: it is virtually bloodless and allows immediate visualization of the TUR defect.

  18. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK

    2006-07-01

    Full Text Available Single walled carbon nanotubes were synthesized by the laser vaporization of graphite composite targets in a tube furnace. Two pulsed Nd:Yag lasers operating at fundamental (1064 nm) and 2 nd harmonic (532 nm) were combined, focused and evaporated...

  19. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  20. A slow gravity compensated atom laser

    DEFF Research Database (Denmark)

    Kleine Büning, G.; Will, J.; Ertmer, W.

    2010-01-01

    We report on a slow guided atom laser beam outcoupled from a Bose–Einstein condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser beam can be controlled by compensating the gravitational acceleration and we reach residual accelerations as low as 0.0027 g. The outcoupling...... mechanism allows for the production of a constant flux of 4.5×106 atoms per second and due to transverse guiding we obtain an upper limit for the mean beam width of 4.6 μm. The transverse velocity spread is only 0.2 mm/s and thus an upper limit for the beam quality parameter is M 2=2.5. We demonstrate...... the potential of the long interrogation times available with this atom laser beam by measuring the trap frequency in a single measurement. The small beam width together with the long evolution and interrogation time makes this atom laser beam a promising tool for continuous interferometric measurements....

  1. Selective laser vaporization of polypropylene sutures and mesh

    Science.gov (United States)

    Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

    2012-02-01

    Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

  2. Vaporization behavior of non-stoichiometric refractory carbide materials and direct observations of the vapor phase using laser diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Wantuck, P.J.; Rehse, S.J.; Wallace, T.C. Sr.

    1993-09-01

    Transition metal and actinide carbides, such as ZrC or NbC and UC or ThC, exhibit a wide range of stoichiometry, and therefore vaporize incongruently. At long times, steady state vaporization can be achieved where relative concentrations of atomic species on solid surface equals that in the gas phase. The surface composition under these steady state conditions is termed the congruently vaporizing composition, (CVC). Modeling the vaporization or corrosion behavior of this dynamic process is complex and requires an understanding of how the surface composition changes with time and a knowledge of CVC, which is both temperature and atmosphere dependent. This paper describes vaporization and corrosion behavior of non-stoichiometric refractory carbide materials and, as an example, describes a thermokinetic model that characterizes the vaporization behavior of the complex carbide U{sub x}Zr{sub 1-x}C{sub y} in hydrogen at 2500 to 3200 K. This model demonstrates that steady state corrosion of U{sub x}Zr{sub l-x}C{sub y} is rate limited by gaseous transport of Zr where partial pressure of Zr is determined by CVC. This paper also briefly describes efforts to image and characterize the vapor phase above the surface of ZrC in static and flowing gas environments using planar laser induced fluorescence. We have developed the method for monitoring and controlling the corrosion behavior of nuclear fuels in nuclear thermal rockets. However, the techniques described can be used, to image boundary layers, and could be used verifying corrosion models.

  3. Multicharged optical vortices induced in a dissipative atomic vapor system

    CERN Document Server

    Zhang, Yiqi; Wu, Zhenkun; Yuan, Chenzhi; Wang, Ruimin; Lu, Keqing; Zhang, Yanpeng

    2013-01-01

    We investigate numerically the dynamics of optical vortex beams carrying different topological charges, launched in a dissipative three level ladder type nonlinear atomic vapor. We impose the electromagnetically induced transparency (EIT) condition on the medium. Linear, cubic, and quintic susceptibilities, considered simultaneously with the dressing effect, are included in the analysis. Generally, the beams slowly expand during propagation and new vortices are induced, commonly appearing in oppositely charged pairs. We demonstrate that not only the form and the topological charge of the incident beam, but also its growing size in the medium greatly affect the formation and evolution of vortices. We formulate common rules for finding the number of induced vortices and the corresponding rotation directions, stemming from the initial conditions of various incident beams, as well as from the dynamical aspects of their propagation. The net topological charge of the vortex is conserved during propagation, as it sh...

  4. Conservation laws and laser cooling of atoms

    CERN Document Server

    Giuliani, Giuseppe

    2015-01-01

    The straightforward application of energy and linear momentum conservation to the absorption/emission of photons by atoms--first outlined by Schr\\"odinger in 1922--allows to establish the essential features of laser cooling of two levels atoms at low laser intensities. The minimum attainable average kinetic energy of the atoms depends on the ratio $\\Gamma/E_R$ between the natural linewidth and the recoil energy and tends to $E_R$ as $\\Gamma/E_R$ tends to zero. This treatment is valid for any value of the ratio $\\Gamma/E_R$ and contains the semiclassical theory of laser cooling as the limiting case in which $E_R\\ll \\Gamma$.

  5. Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns

    Science.gov (United States)

    Zhang, Chentao; Zhang, Jianhuan; Lin, Kun; Huang, Yuanqing

    2017-05-01

    An automatic setup based on the laser-assisted chemical vapor deposition method has been developed for the rapid synthesis of graphene patterns. The key components of this setup include a laser beam control and focusing unit, a laser spot monitoring unit, and a vacuum and flow control unit. A laser beam with precision control of laser power is focused on the surface of a nickel foil substrate by the laser beam control and focusing unit for localized heating. A rapid heating and cooling process at the localized region is induced by the relative movement between the focalized laser spot and the nickel foil substrate, which causes the decomposing of gaseous hydrocarbon and the out-diffusing of excess carbon atoms to form graphene patterns on the laser scanning path. All the fabrication parameters that affect the quality and number of graphene layers, such as laser power, laser spot size, laser scanning speed, pressure of vacuum chamber, and flow rates of gases, can be precisely controlled and monitored during the preparation of graphene patterns. A simulation of temperature distribution was carried out via the finite element method, providing a scientific guidance for the regulation of temperature distribution during experiments. A multi-layer graphene ribbon with few defects was synthesized to verify its performance of the rapid growth of high-quality graphene patterns. Furthermore, this setup has potential applications in other laser-based graphene synthesis and processing.

  6. Compact atom interferometer using single laser

    Science.gov (United States)

    Chiow, Sheng-Wey; Yu, Nan

    2017-04-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. The complexity of required laser system and the size of vacuum chamber driven by optical access requirement limit the applicability of such technology in size, weight, and power (SWaP) challenging environments, such as in space. For instance, a typical physics package of AI includes six viewports for laser cooling and trapping, two for AI beams, and two more for detection and a vacuum pump. Similarly, a typical laser system for an AI includes two lasers for cooling and repumping, and two for Raman transitions as AI beam splitters. In this presentation, we report our efforts in developing a miniaturized atomic accelerometer for planetary exploration. We will describe a physics package configuration having minimum optical access (thus small volume), and a laser and optics system utilizing a single laser for the sensor operation. Preliminary results on acceleration sensitivity will be discussed. We will also illustrate a path for further packaging and integration based on the demonstrated concepts. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  7. High intensity laser interactions with atomic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, T

    2000-08-07

    The development of ultrashort pulse table top lasers with peak pulse powers in excess of 1 TW has permitted an access to studies of matter subject to unprecedented light intensities. Such interactions have accessed exotic regimes of multiphoton atomic and high energy-density plasma physics. Very recently, the nature of the interactions between these very high intensity laser pulses and atomic clusters of a few hundred to a few thousand atoms has come under study. Such studies have found some rather unexpected results, including the striking finding that these interactions appear to be more energetic than interactions with either single atoms or solid density plasmas. Recent experiments have shown that the explosion of such clusters upon intense irradiation can expel ions from the cluster with energies from a few keV to nearly 1 MeV. This phenomenon has recently been exploited to produce DD fusion neutrons in a gas of exploding deuterium clusters. Under this project, we have undertaken a general study of the intense femtosecond laser cluster interaction. Our goal is to understand the macroscopic and microscopic coupling between the laser and the clusters with the aim of optimizing high flux fusion neutron production from the exploding deuterium clusters or the x-ray yield in the hot plasmas that are produced in this interaction. In particular, we are studying the physics governing the cluster explosions. The interplay between a traditional Coulomb explosion description of the cluster disassembly and a plasma-like hydrodynamic explosion is not entirely understood, particularly for small to medium sized clusters (<1000 atoms) and clusters composed of low-Z atoms. We are focusing on experimental studies of the ion and electron energies resulting from such explosions through various experimental techniques. We are also examining how an intense laser pulse propagates through a dense medium containing these clusters.

  8. Energy balance in laser-irradiated vaporizing droplets.

    Science.gov (United States)

    Zardecki, A; Armstrong, R L

    1988-09-01

    The interactions of vaporizing aerosols with a high energy laser beam are analyzed in the diffusive vaporization regime. This is the regime in which diffusive mass transport and conductive energy transport dominate the aerosol-beam interactions. A numerical analysis of the coupled aerosol-beam equations allows us to compute the energy conversion of the incident laser pulse. The plots showing the functional form of the pulse shape and the fractional energy conversion are given to illustrate the interactions for a wide range of pulse energies. A new term describing the droplet radius shrinking in time, similar in form to that recently analyzed by Davies and Brock, is included.

  9. Electrospun Polymer Fiber Lasers for Applications in Vapor Sensing

    DEFF Research Database (Denmark)

    Krämmer, Sarah; Laye, Fabrice; Friedrich, Felix

    2017-01-01

    A sensing approach based on laser emissionfrom polymer fiber networks is presented. Poly(methyl methacrylate) (PMMA) fibers doped with a laser dye are fabricated by electrospinning. They form random loop resonators, which show laser emission upon optical pumping. The shift of the spectral positio...... in the transient shift of the lasing peaks can be used to discriminate ethanol and methanol vapor in mixtures of them. The sensing mechanism is expected to be applicable to other solvent vapors that cause polymer swelling.......A sensing approach based on laser emissionfrom polymer fiber networks is presented. Poly(methyl methacrylate) (PMMA) fibers doped with a laser dye are fabricated by electrospinning. They form random loop resonators, which show laser emission upon optical pumping. The shift of the spectral position...... feature excellent sensing performance due to the large overlap (more than 80%) of light field and transducer. The shift of the laser modes results from the swelling of the polymer when exposed to solvent vapors. Due to distinctly different diffusion coefficients in polymers, the uptake dynamics reflected...

  10. Laser controlled atom source for optical clocks

    Science.gov (United States)

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-11-01

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.

  11. Laser Cooling of Neutral Atoms.

    Science.gov (United States)

    1983-12-01

    wave monochromatic field interactint, with the atomic beam, the above assumption is justified. If the external field is a standing wave, and the atomo ...Substitute for the time derivatives using Schrodingers wave equation and perform some algebra to obtain, Integrate over the second term by parts twice...exponents into sin’s and cos’s. Calculating the indicated magnitude is tedious but straightforward. The real and imaginary parts of the equation are squared

  12. Quantum state engineering with single atom laser

    Science.gov (United States)

    Stefanov, V. P.

    2017-11-01

    On the basis of quantum stochastic trajectories approach it is shown that a single atom laser with coherent pumping can generate not only coherent states, but squeezed and Fock states, when different schemes of detection are followed by coherent feedback pulses or feedforward actions.

  13. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  14. Treatment of vulvar intraepithelial neoplasia with CO(2) laser vaporization and excision surgery.

    Science.gov (United States)

    Leufflen, Léa; Baermann, Pauline; Rauch, Philippe; Routiot, Thierry; Bezdetnava, Lina; Guillemin, Francois; Desandes, Emmanuel; Marchal, Frederic

    2013-10-01

    To evaluate the recurrence rate after a single treatment of vulvar intraepithelial neoplasia (VIN) with CO(2) laser vaporization. Fifty women with usual-type or differentiated VIN (grades 2 and 3) treated with CO(2) laser vaporization or surgery excision (cold knife or CO(2) laser) were retrospectively evaluated. Of the 50 patients, 41 (82.0%) had usual-type VIN and 9 (18.0%) had differentiated VIN. Moreover, 24 (48.0%) were treated with surgery excision and 26 (52.0%) underwent CO(2) laser vaporization. Laser-treated patients were significantly younger (p vaporization groups (p vaporization treatment (p vaporization requires regular, close, and extended monitoring.

  15. Microfabricated vapor cells filled with a cesium dispensing paste for miniature atomic clocks

    Science.gov (United States)

    Maurice, V.; Rutkowski, J.; Kroemer, E.; Bargiel, S.; Passilly, N.; Boudot, R.; Gorecki, C.; Mauri, L.; Moraja, M.

    2017-04-01

    A method for filling alkali vapor cells with cesium from a dispensing paste is proposed and its compliance with miniature atomic clock applications is evaluated. The paste is an organic-inorganic composition of cesium molybdate, zirconium-aluminum powder, and a hybrid organic-inorganic binder. It is compatible with collective deposition processes such as micro-drop dispensing, which can be done under ambient atmosphere at the wafer-level. After deposition and sealing by anodic bonding, cesium is released from the consolidated paste through local heating with a high power laser. Linear absorption signals have been observed over one year in several cells, showing a stable atomic density. For further validation of this technology for clock applications, one cell has been implemented in a coherent population trapping clock setup to monitor its frequency stability. A fractional frequency aging rate around -4.4 × 10-12 per day has been observed, which is compliant with a clock frequency instability below 1 × 10-11 at one day integration time. This filling method can drastically reduce the cost and the complexity of alkali vapor cell fabrication.

  16. Observation of atomic carbon during photodissociation of nitrotoluenes in the vapor phase

    Science.gov (United States)

    Eilers, Hergen; Diez-y-Riega, Helena

    2014-05-01

    We perform laser-induced photodissociation fluorescence spectroscopy on mononitrotoluenes (MNTs) and dinitrotoluenes (DNTs) in the vapor phase and observe the spectrally overlapping fluorescence from nitric oxide (NO) and carbon (C). Energy-dispersive x-ray spectroscopy (EDS) and Raman spectroscopy of deposits found in the sample chamber confirm the presence of carbon. By comparing the observed fluorescence intensities with the Franck-Condon factors for NO, we are able to identify the presence or absence of fluorescence from carbon. 2-nitrotoluene and 4- nitrotoluene show carbon fluorescence for gate delays of up to 500 ns, while 2,4-dinitrotolune, 3,4-dinitrotolune, and 2,6-dinitrotolune show carbon fluorescence for gate delays of at least up to 1500 ns. The spectroscopic signal from atomic carbon in the vapor phase is observed at concentrations as low as 10 ppt. Based upon the observed S/N, detection at even lower concentrations appears feasible. Several non-nitrotoluene molecules including nitrobenzene, benzene, toluene, and CO2, are tested under identical conditions, but do not show any carbon emission. The presence of extra NO (simulation of NO pollutants) in the samples improves the S/N ratio for the detection of carbon. Energy transfer from laser-excited molecular nitrogen to NO, multiple decomposition channels in the electronic excited state of the nitrotoluene molecules, and interaction of NO with the excited-state decomposition process of the nitrotoluene molecules may all play a role.

  17. Bose–Einstein condensation in a vapor of sodium atoms in an electric field

    Energy Technology Data Exchange (ETDEWEB)

    You, Pei-Lin, E-mail: youpeli@163.com

    2016-06-15

    Bose–Einstein condensation (BEC) at normal temperature (T=343K) has been observed because an electric field was first applied. There are two ways to achieve phase transition: lower the temperature of Bose gas or increase its density. This article provides more appropriate method: increase the voltage. In theory, 3s and 3p states of sodium are not degenerate, but Na may be polar atom doesnot conflict with quantum mechanics because it is hydrogen-like atom. Our innovation lies in we applied an electric field used for the orientation polarization. Na vapor was filled in a cylindrical capacitor. In order to determine the polarity of sodium, we measured the capacitance at different temperatures. If Na is non-polar atom, its capacitance should be independent of temperature because the nucleus of atom is located at the center of the electron cloud. But our experiment shows that its capacitance is related to temperature, so Na is polar atom. In order to achieve Na vapor phase transition, we measured the capacitance at different voltages. From the entropy of Na vapor S=0, the critical voltage V{sub c}=68volts. When Vatoms are in random orientation S>0; when V>V{sub c}, the atoms become aligned with the field S<0, phase transition occurred. When V=390 volts »V{sub c}, the capacitance decreased from C=1.9C{sub 0} to C≈C{sub 0} (C{sub 0} is the vacuum capacitance), this result implies that almost all the Na atoms (more than 98%) are aligned with the field, Na vapor entered quasi-vacuum state. We create a BEC with 2.506×10{sup 17} atoms, condensate fraction reached 98.9%. This is BEC in momentum space. Our experiment shows that if a Bose gas enters quasi-vacuum state, this also means that it underwent phase transition and generates BEC. Therefore, quasi-vacuum state of alkali gas is essentially large-scale BEC. This is an unexpected discovery. BEC and vacuum theory are two unrelated research areas, but now they are closely linked together. The maximum

  18. New applications of copper vapor lasers in micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

    1994-11-09

    We have developed a copper vapor laser based micromachinig system using advanced beam quality control and precision wavefront tilting technologies. Precision microdrilling has been demonstrated through percussion drilling and trepanning using this system. With a 30-W copper vapor from running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250-W copper vapor laser have also been demonstrated with good result. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone.

  19. Low energy neutral beam production by laser vaporization of metals

    OpenAIRE

    Breton, C.; De Michelis, C.; Hecq, W.; Mattioli, M.

    1980-01-01

    We have quantitatively studied the production of low energy (0.1-10 eV) metal neutral beams by laser vaporization of thin metal foils. For the experimental geometry available on the TFR tokamak, this technique results in the injection of 1015 neutrals in a time of ∼ 300 μs.

  20. Nd:Glass-Raman laser for water vapor dial

    Science.gov (United States)

    Kagann, R. H.; Petheram, J. C.; Rosenberg, A.

    1986-01-01

    A tunable solid-state Raman shifted laser which was used in a water vapor Differential Absorption Lidar (DIAL) system at 9400 A is described. The DIAL transmitter is based on a tunable glass laser operating at 1.06 microns, a hydrogen Raman cell to shift the radiation to 1.88 microns, and a frequency doubling crystal. The results of measurements which characterize the output of the laser with respect to optimization of optical configuration and of Raman parameters were reported. The DIAL system was also described and preliminary atmospheric returns shown.

  1. Energy characteristics of a transverse-discharge copper vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Artem' ev, A.Y.; Babeiko, Y.A.; Bakhtin, O.M.; Borovich, B.L.; Vasil' ev, L.A.; Gerts, V.E.; Nalegach, E.P.; Ratnikov, G.E.; Tatarintsev, L.V.; Ul' yanov, A.N.

    1980-09-01

    A study was made of the basic energy characteristics of a transverse-discharge copper vapor laser. The average laser output power in the yellow and green lasing components was determined as a function of the amplitude and repetition frequency of the excitation pulses, temperature of the discharge tube walls, and buffer gas pressure. The current-voltage characteristics of the discharge were investigated. An average laser output power of 75 W was obtained, at a pulse repetition frequency of 3 kHz.

  2. Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors

    Science.gov (United States)

    Dąbrowski, M.; Chrapkiewicz, R.; Wasilewski, W.

    2016-11-01

    Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light-direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons.

  3. Semiclassical treatment of laser excitation of the hydrogen atom

    DEFF Research Database (Denmark)

    Billing, Gert D.; Henriksen, Niels Engholm; Leforestier, C.

    1992-01-01

    We present an alternative method for studying excitation of atoms in intense laser fields. In the present paper we focus upon the optical harmonic generation by hydrogen atoms.......We present an alternative method for studying excitation of atoms in intense laser fields. In the present paper we focus upon the optical harmonic generation by hydrogen atoms....

  4. The one year outcome after KTP laser vaporization of the prostate according to the calculated vaporized volume.

    Science.gov (United States)

    Ku, Ja Hyeon; Cho, Jeong Yeon; Cho, Sung Yong; Kim, Soo Woong; Paick, Jae-Seung

    2009-12-01

    The aim of this study was to develop a new simple method for measuring the vaporized volume and to evaluate the outcome of high-power potassium-titanyl-phosphate (KTP) photoselective laser vaporization. A total of 65 patients, with a mean age of 67.7 yr (range 53 to 85), were included in the primary analysis. The vaporized volume was calculated as the pre-operative volume minus the immediate post-operative volume plus the volume of the defect. For all patients, the subjective and objective parameters improved significantly after surgery. Six and 12 months after surgery, the group with a smaller vaporized volume (vaporized volume (>or=15 g). There were no differences in the change of the maximum flow rate and post-void residual based on the vaporized volume. Our findings suggest that the subjective improvement, after a high-power KTP laser vaporization, may be dependent on the vaporized volume obtained after the procedure.

  5. Laser Cooling and Trapping of Neutral Atoms

    Science.gov (United States)

    1992-07-01

    Weiner, Dept of Chemistry, University of Maryland.) Studies of ultra cold collisions in traps can probe the lowest energy interactions of atoms but are...Ramsey resonance. The experimental set up is shown in fig. 10. VL.-Abt) T ~5cm :- TE, avity 9.2GH,7input/ =. molasses VL molasses fluorecence " TOF~~ sinl...implies that there is a rich resonant structure to be probed by superimposing a separately tunable laser on the trap laser. Unfortunately, we cannot tune

  6. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  7. Metal Vapor Visible Laser Kinetics Program

    Science.gov (United States)

    1976-02-01

    collisional relaxation by HBr and HCC, respectively. These E-*V processes are exo- thermic by 1125 and H00 cm , respectively for HBr and...transition amplitude to build up while the colliding electron is relatively far from the target atom. The cross section is thus not very sensitive to...reaction cell and flashlamps were enclosed in an insulated box to which two 1000 W electric heat guns were attached; (3) the quartz windows of the cell

  8. Treatment of genital lesions with diode laser vaporization.

    Science.gov (United States)

    de Lima, Mário Maciel; de Lima, Mário Maciel; Granja, Fabiana

    2015-05-08

    Genital warts caused by human papillomavirus (HPV) infection are the most common sexually transmitted disease leading to anogential lesions. Although the laser therapy has been shown to be effective in a number of conditions, the use of laser diode vaporization in urological applications and the understanding on its effectiveness as a treatment for various urological conditions is limited. Therefore, the aim of this study was to evaluate the efficacy of diode laser vaporization as a treatment for genital lesions. Patients presenting with genital lesions at the urology outpatient clinic at Coronel Mota Hospital, between March 2008 and October 2014, were enrolled into the study. Data collected included age, gender, duration of the lesion, site of the lesion and numbers of the lesions, length of follow-up, recurrence of lesions after treatment and whether there were any complications. A total of 92 patients were enrolled in the study; 92.4% (n = 85) male; mean age (± SD) 27.92 ± 8.272 years. The patients presented with a total of 296 lesions, with a median of 3 lesions each, including penis (n = 78), urethra (n = 4) lesions, and scrotum (n = 2) lesions. Lesions ranged in size from 0.1 to 0.5 cm(2), most commonly 0.3 cm(2) (n = 38; 41.3%), 0.4 cm(2) (n = 21; 22.8%) or 0.5 cm(2) (n = 20; 21.7%). Patients most commonly reported that they had their lesions for a duration of 12 (n = 29; 31.5%) or 6 months (n = 23; 25.0%). Eighteen patients (19.6%) had a recurrence after their 1(st)/conventional treatment. There were no incidences of post-operative infection or complications from the laser diode vaporization. Laser diode vaporization can be considered as an alternative method for treating genital lesions in urology, with satisfactory results in terms of pain, aesthetic and minimal recurrence.

  9. EPA Method 245.1: Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry

    Science.gov (United States)

    SAM lists this method for preparation and analysis of aqueous liquid and drinking water samples. This method will determine mercuric chloride and methoxyethylmercuric acetate as total mercury using cold vapor atomic absorption spectrometry.

  10. Gravitational Wave Detection with Single-Laser Atom Interferometers

    Science.gov (United States)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  11. Ambient femtosecond laser vaporization and nanosecond laser desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Flanigan, Paul; Levis, Robert

    2014-01-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 10(13) W cm(-2) desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  12. Enthalpy model for heating, melting, and vaporization in laser ablation

    Directory of Open Access Journals (Sweden)

    Vasilios Alexiades

    2010-09-01

    Full Text Available Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu target in a helium (He background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a self-consistent way.

  13. Laser-modified electron scattering from a slowly ionising atom

    Science.gov (United States)

    Fiordilino, E.; Mittleman, M. H.

    1983-01-01

    When an electron scatters from an atom in the presence of a laser field which is resonant with an atomic transition, off-shell effects enter into the cross section. These only become significant at higher laser intensities where the atom may also be ionised by the laser. Cross-sections are obtained for electron-atom scattering in which these off-shell effects appear and in which the slow ionisation of the atom by the laser is included. Experiments are suggested in which simplifications can occur and which still retain these 'exotic' effects.

  14. Copper-vapor laser in medical practice: gynecology

    Science.gov (United States)

    Chvykov, Vladimir V.; Zazulya, O. I.; Zemskov, Konstantin I.

    1993-10-01

    About 100 patients were treated for cervical erosion, cervical leukoplakia, and vulval warts in the Gynecology Department of the adult polyclinic of the Zelenograd Center of Medicine. Copper vapor laser (CVL) was used with output average power up to 4 W in two lines (510 nm, 578 nm). Pulse repetition rate was about 10 kHz, pulselength approximately 20 - 40 ns. Four to twelve procedures were sufficient to recover.

  15. Linear Atom Guides: Guiding Rydberg Atoms and Progress Toward an Atom Laser

    Science.gov (United States)

    Traxler, Mallory A.

    In this thesis, I explore a variety of experiments within linear, two-wire, magnetic atom guides. Experiments include guiding of Rydberg atoms; transferring between states while keeping the atoms contained within the guide; and designing, constructing, and testing a new experimental apparatus. The ultimate goal of the atom guiding experiments is to develop a continuous atom laser. The guiding of 87Rb 59D5/2 Rydberg atoms is demonstrated. The evolution of the atoms is driven by the combined effects of dipole forces acting on the center-of-mass degree of freedom as well as internal-state transitions. Time delayed microwave and state-selective field ionization, along with ion detection, are used to investigate the evolution of the internal-state distribution as well as the Rydberg atom motion while traversing the guide. The observed decay time of the guided-atom signal is about five times that of the initial state. A population transfer between Rydberg states contributes to this lengthened lifetime, and also broadens the observed field ionization spectrum. The population transfer is attributed to thermal transitions and, to a lesser extent, initial state-mixing due to Rydberg-Rydberg collisions. Characteristic signatures in ion time-of-flight signals and spatially resolved images of ion distributions, which result from the coupled internal-state and center-of-mass dynamics, are discussed. Some groups have used a scheme to make BECs where atoms are optically pumped from one reservoir trap to a final state trap, irreversibly transferring those atoms from one trap to the other. In this context, transfer from one guided ground state to another is studied. In our setup, before the atoms enter the guide, they are pumped into the | F = 1, mF = --1> state. Using two repumpers, one tuned to the F = 1 → F' = 0 transition (R10) and the other tuned to the F = 1 → F' = 2 transition (R12), the atoms are pumped between these guided states. Magnetic reflections within the guide

  16. Lapping of chemical vapor deposited diamond films using copper vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Baik, Y.J. [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    1999-04-01

    Laser lapping of diamond films is performed with focused beam of copper vapor laser. Both spherical and rod-shape laser beam are used. Diamond surface is scanned at various scan speeds(0.125, 0.5, 0.75 mm/sec) and beam shifts(5, 10, 20, 40, 100 {mu}m). At 0.125 mm/sec, 10 {mu}m scan condition, the level difference of diamond surface of about 700 {mu}m over 20 mm is reduced to 200 {mu}m. In addition, surface roughness is also improved from 3.53 {mu}m to 2.47 {mu}m at 5 {mu}m beam shift. But, at higher beam shift than 10{mu}m, laser scan makes the surface rougher, which is considered to be due to the non uniform spatial distribution of laser energy. It is concluded that homogenized laser beam with high average power is needed for large area laser lapping of diamond films at appreciable rates. 12 refs., 9 figs.

  17. Laser stabilisation for velocity-selective atomic absorption

    NARCIS (Netherlands)

    Meijer, H.A.J.; Meulen, H.P. van der; Ditewig, F.; Wisman, C.J.; Morgenstern, R.

    1987-01-01

    A relatively simple method is described for stabilising a dye laser at a frequency ν = ν0 + νc in the vicinity of an atomic resonance frequency ν0. The Doppler effect is exploited by looking for atomic fluorescence when a laser beam is crossed with an atomic beam at certain angles αi. Absolute

  18. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    Science.gov (United States)

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  19. Features of active-medium formation for lasers with a sectioned plasma source of metal vapor

    Energy Technology Data Exchange (ETDEWEB)

    Apollonov, V.V.; Derzhavin, S.I.; Prokhorov, A.M.; Sirotkin, A.A.

    1988-06-01

    Experimental results are presented on active-medium formation mechanisms in a laser with a sectioned plasma source of metal vapor (a SPER laser). The following processes were observed in the laser active medium: buffer-gas preionization; mixing of metal vapor and buffer gas during plasma expansion; plasma-chemical reactions in the expanding plasma; and a collisional mechanism of plasma cooling.

  20. An atom in a multi-frequency laser emission field

    Energy Technology Data Exchange (ETDEWEB)

    Delone, N.B.; Kovarskii, V.A.; Masalov, A.V.; Perelman, N.F.

    1980-01-01

    An analysis of the features of the interaction between a nonmonochromatic multi-frequency laser emission field and an isolated atom is given. The multi-photon excitation and non-linear ionization of the atom during the excitation of the atomic levels by the laser emission field are examined. Specific cases of the interaction between the atom and the field are examined in detail: the case of a broad laser emission laser spectrum (rapid field fluctuations) and the case of a narrow spectrum (slow fluctuation). The available experimental data relating to these problems are analyzed.

  1. Hybrid optical pumping of K and Rb atoms in a paraffin coated vapor cell

    Science.gov (United States)

    Li, Wenhao; Peng, Xiang; Budker, Dmitry; Wickenbrock, Arne; Pang, Bo; Zhang, Rui; Guo, Hong

    2017-10-01

    Dynamic hybrid optical pumping effects with a radio-frequency-field-driven nonlinear magneto-optical rotation (RF NMOR) scheme are studied in a dual-species paraffin coated vapor cell. By pumping K atoms and probing $^{87}$Rb atoms, we achieve an intrinsic magnetic resonance linewidth of 3 Hz and the observed resonance is immune to power broadening and light-shift effects. Such operation scheme shows favorable prospects for atomic magnetometry applications.

  2. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    Science.gov (United States)

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  3. Collinear laser spectroscopy of atomic cadmium

    CERN Document Server

    Frömmgen, Nadja; Bissell, Mark L.; Bieroń, Jacek; Blaum, Klaus; Cheal, Bradley; Flanagan, Kieran; Fritzsche, Stephan; Geppert, Christopher; Hammen, Michael; Kowalska, Magdalena; Kreim, Kim; Krieger, Andreas; Neugart, Rainer; Neyens, Gerda; Rajabali, Mustafa M.; Nörtershäuser, Wilfried; Papuga, Jasna; Yordanov, Deyan T.

    2015-01-01

    Hyperfine structure $A$ and $B$ factors of the atomic $5s\\,5p\\,\\; ^3\\rm{P}_2 \\rightarrow 5s\\,6s\\,\\; ^3\\rm{S}_1$ transition are determined from collinear laser spectroscopy data of $^{107-123}$Cd and $^{111m-123m}$Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with $s_{1/2}$ and $d_{5/2}$ nuclear ground states and isomeric $h_{11/2}$ states is evaluated and a linear relationship is observed for all nuclear states except $s_{1/2}$. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic $5s\\,5p\\,\\; ^3\\mathrm{P}_2$ level is derived from multi-configuration Dirac-Hartree-Fock calculatio...

  4. The physics of laser polarized muonic atoms

    Science.gov (United States)

    Cates, G. D.

    This past research period we carried out a successful experiment at LAMPF in collaboration with Syracuse University in which we used lasers to produce polarized muonic He-3. Samples of nuclear polarized He-3 were produced by spin-exchange with optically pumped rubidium vapor. Unpolarized muons were stopped in the gas, and became polarized due to their hyperfine interaction with the He-3 nucleus. We determined that a muon polarization of approximately 8 percent results with a He-3 target polarization of 100 percent. The high statistical accuracy of our result gives us a firm handle on a theoretical question of great importance to future work involving muons and polarized He-3. Currently, we are working toward a new experiment at LAMPF, for which we have just submitted a proposal requesting running time this coming summer. The experiment utilizes a new technique for producing polarized muonic He-3, a technique we believe has the potential for producing practical polarizations that in principle could be as high as 75 percent, and in practice may exceed 25 to 50 percent. We call this new technique direct spin-exchange (DSE) because it is based on spin-exchange collisions between neutral muonic helium and an optically pumped vapor of Rb. It is direct because, in contrast to the technique we used last summer, the He-3 nucleus is not involved in the spin-exchange process. We have proposed the use of DSE to study the induced pseudoscalar form factor of He-3. Finally, we describe an experiment to measure the spin dependent structure function of the neutron at SLAC. Princeton played an important role in the design and proposal of this experiment, including hosting a meeting to explore the technical feasibility of the polarized He-3 target.

  5. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W

    1982-01-01

    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  6. Simple and Compact Nozzle Design for Laser Vaporization Sources

    CERN Document Server

    Kokish, M G; Odom, B C

    2015-01-01

    We have developed and implemented a compact transparent nozzle for use in laser vaporization sources. This nozzle eliminates the need for an ablation aperture, allowing for a more intense molecular beam. We use this nozzle to prepare a molecular beam of aluminum monohydride (AlH) suitable for ion trap loading of AlH$^+$ via photoionization in ultra-high vacuum. We demonstrate stable AlH production over hour time scales using a liquid ablation target. The long-term stability, low heat load and fast ion production rate of this source are well-suited to molecular ion experiments employing destructive state readout schemes requiring frequent trap reloading.

  7. Laser scar revision: comparison of CO2 laser vaporization with and without simultaneous pulsed dye laser treatment.

    Science.gov (United States)

    Alster, T S; Lewis, A B; Rosenbach, A

    1998-12-01

    Over the past decade, the 585-nm pulsed dye laser (PDL) has been used successfully to treat a variety of cutaneous vascular lesions as well as hypertrophic scars. Laser scar revision has been revolutionized by the recent development of high-energy, pulsed carbon dioxide (CO2) laser systems. These new CO2 lasers allow controlled vaporization of thin layers of skin while minimizing damage to surrounding dermal structures. To determine the effect of a high-energy, pulsed CO2 laser alone and in combination with a 585-nm PDL on nonerythematous hypertrophic scars. Twenty patients with nonerythematous hypertrophic scars were treated with a high-energy, pulsed CO2 laser. One-half of each scar was additionally treated with the 585-nm PDL laser. Sequential clinical and photographic analyses were performed independently by two blinded assessors. In addition, erythema reflectance spectrometry measurements were obtained from the scars before and at regular postoperative intervals. Global assessment scores and erythema spectrometry measurements were significantly improved after laser treatment. Combination CO2 and PDL laser treatment resulted in more significant improvement than CO2 laser irradiation alone. Concomitant use of the high-energy, pulsed CO2 and PDL laser systems was superior to CO2 laser vaporization alone for revision of nonerythematous hypertrophic scars. Once again, the vascular specificity of the 585-nm PDL has been linked to improvement in hypertrophic scar tissue.

  8. The Physics of Spin-Polarized Atomic Vapors.

    Science.gov (United States)

    1985-01-01

    angular momen- 5 512 turn, while an atom with spin greater than -L is like a "• capacitor with dielectric material between its plates. This...laminated plastic circular- (F,)PUMP TF _L- ize material . Thus the pmnp-phase signal is + I (FF) I + q(K K ) no 2 )AF(F)p,.p (49) (57) $ np-j~a.. 2In...spin-relaxation data described in this paper. In- cause the 769.9-nm DI absorption line of K atoms is n- dependent magnectic -decoupling experiments 3

  9. Introduction to the theory of laser-atom interactions

    CERN Document Server

    Mittleman, Marvin H

    1993-01-01

    In response to the explosion of theories and experiments since the appearance of the first edition, the author has revised and expanded his basic text New sections include up-to-date discussions of multiphoton ionization, and electron-atom and atom-atom scattering in laser fields, reaffirming the work's position as the standard introduction to the field

  10. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  11. Unraveling the solid-liquid-vapor phase transition dynamics at the atomic level with ultrafast x-ray absorption near-edge spectroscopy.

    Science.gov (United States)

    Dorchies, F; Lévy, A; Goyon, C; Combis, P; Descamps, D; Fourment, C; Harmand, M; Hulin, S; Leguay, P M; Petit, S; Peyrusse, O; Santos, J J

    2011-12-09

    X-ray absorption near-edge spectroscopy (XANES) is a powerful probe of electronic and atomic structures in various media, ranging from molecules to condensed matter. We show how ultrafast time resolution opens new possibilities to investigate highly nonequilibrium states of matter including phase transitions. Based on a tabletop laser-plasma ultrafast x-ray source, we have performed a time-resolved (∼3  ps) XANES experiment that reveals the evolution of an aluminum foil at the atomic level, when undergoing ultrafast laser heating and ablation. X-ray absorption spectra highlight an ultrafast transition from the crystalline solid to the disordered liquid followed by a progressive transition of the delocalized valence electronic structure (metal) down to localized atomic orbitals (nonmetal-vapor), as the average distance between atoms increases.

  12. Development of a new laser heating system for thin film growth by chemical vapor deposition

    Science.gov (United States)

    Fujimoto, Eiji; Sumiya, Masatomo; Ohnishi, Tsuyoshi; Lippmaa, Mikk; Takeguchi, Masaki; Koinuma, Hideomi; Matsumoto, Yuji

    2012-09-01

    We have developed a new laser heating system for thin film growth by chemical vapor deposition (CVD). A collimated beam from a high-power continuous-wave 808 nm semiconductor laser was directly introduced into a CVD growth chamber without an optical fiber. The light path of the heating laser inside the chamber was isolated mechanically from the growth area by bellows to protect the optics from film coating. Three types of heat absorbers, (10 × 10 × 2 mm3) consisting of SiC, Ni/NiOx, or pyrolytic graphite covered with pyrolytic BN (PG/PBN), located at the backside of the substrate, were tested for heating performance. It was confirmed that the substrate temperature could reach higher than 1500 °C in vacuum when a PG/PBN absorber was used. A wide-range temperature response between 400 °C and 1000 °C was achieved at high heating and cooling rates. Although the thermal energy loss increased in a H2 gas ambient due to the higher thermal conductivity, temperatures up to 1000°C were achieved even in 200 Torr H2. We have demonstrated the capabilities of this laser heating system by growing ZnO films by metalorganic chemical vapor deposition. The growth mode of ZnO films was changed from columnar to lateral growth by repeated temperature modulation in this laser heating system, and consequently atomically smooth epitaxial ZnO films were successfully grown on an a-plane sapphire substrate.

  13. Determination of total mercury by vapor generation in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Poznan Technical University, Poznan (Poland)

    2008-07-01

    The analytical performance of non-chromatographic coupled hydride generation, integrated atom trap (HG-IAT) atomizer flame absorption spectrometry (FAAS) systems were evaluated for the determination of total mercury in environmental samples. Mercury, using formation of mercury vapors were atomized in air-acetylene flame-heated IAT. A new design of vapor generation integrated atom trap flame atomic absorption spectrometry (VG-IAT-FAAS) hyphenated technique that would exceed the operational capabilities of existing arrangements was investigated. This novel approach enables to decrease the detection limit down to low pg mL{sup -1} levels. The concentration detection limit, defined as 3 times the blank standard deviation was 0.4 ng mL{sup -1}. For a 120 s in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 750 folds for Hg, using vapor generation-atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed by RSD, was 9.3% (n = 6) for Hg. Reference and real sample materials were analyzed. The accuracy of the method was verified by the use of certified reference materials and by aqueous standard calibration technique. The measured Hg content, in reference materials, were in satisfactory agreement with the certified values, The hyphenated technique was applied for mercury determinations in coal fly ash, sewage and water.

  14. Laser Cooling and Trapping of Neutral Mercury Atoms Using an Optically-Pumped External-Cavity Semiconductor Laser

    Science.gov (United States)

    Paul, Justin; Lytle, Christian; Jones, R. Jason

    2011-05-01

    The level structure of the Hg atom is similar to other alkaline earth-like atoms, offering the possibility to realize an extremely high quality resonance factor (Q) on the ``clock'' transition (1S0- 3P0) when confined in an optical lattice at the Stark-shift free wavelength. A key feature of the Hg system is the reduced uncertainty due to black-body induced Stark shifts, making it an interesting candidate as an optical frequency standard. One challenge to laser-cooling neutral Hg atoms is finding a reliable source for cooling on the 1S0-3 P1 transition at 253.7 nm. We employ an optically pumped semiconductor laser (OPSEL) operating at 1015 nm, whose frequency is quadrupled in two external-cavity doubling stages to generate over 120 mW at 253.7 nm. With this new laser source we have trapped Hg199 from a background vapor in a standard MOT. We trap up to 2 × 106 atoms with a 1/e2 radius of our MOT of ~310 microns, corresponding to a density of 1.28 × 1010 atoms/cm3. We report on the progress of our Hg system and plans for precision lattice-based spectroscopy of the clock transition. Support for this work is supported through the U.S. Air Force Office of Scientific Research (AFOSR) through grant no. FA9550-09-1-0563.

  15. PHARAO space atomic clock: new developments on the laser source

    Science.gov (United States)

    Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.

    2017-11-01

    The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.

  16. Chemical Vapor Deposition of Atomically-Thin Molybdenum Disulfide (MoS2)

    Science.gov (United States)

    2015-03-01

    DISULFIDE ( MoS2 ) Daniel Kaplan Kendall Mills Venkataraman Swaminathan March 2015 Approved for public release...4. TITLE AND SUBTITLE CHEMICAL VAPOR DEPOSITION OF ATOMICALLY-THIN MOLYBDENUM DISULFIDE ( MoS2 ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER...distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A method of synthesizing monolayers of molybdenum disulfide ( MoS2 ) via

  17. Vapor generation – atomic spectrometric techniques. Expanding frontiers through specific-species preconcentration. A review

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Raúl A.; Pacheco, Pablo H.; Cerutti, Soledad [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Martinez, Luis D., E-mail: ldm@unsl.edu.ar [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina)

    2015-05-22

    This article reviews 120 articles found in SCOPUS and specific Journal cites corresponding to the terms ‘preconcentration’; ‘speciation’; ‘vapor generation techniques’ and ‘atomic spectrometry techniques’ in the last 5 years. - Highlights: • Recent advances in vapor generation and atomic spectrometry were reviewed. • Species-specific preconcentration strategies after and before VG were discussed. • New preconcentration and speciation analysis were evaluated within this framework. - Abstract: We review recent progress in preconcentration strategies associated to vapor generation techniques coupled to atomic spectrometric (VGT-AS) for specific chemical species detection. This discussion focuses on the central role of different preconcentration approaches, both before and after VG process. The former was based on the classical solid phase and liquid–liquid extraction procedures which, aided by automation and miniaturization strategies, have strengthened the role of VGT-AS in several research fields including environmental, clinical, and others. We then examine some of the new vapor trapping strategies (atom-trapping, hydride trapping, cryotrapping) that entail improvements in selectivity through interference elimination, but also they allow reaching ultra-low detection limits for a large number of chemical species generated in conventional VG systems, including complete separation of several species of the same element. This review covers more than 100 bibliographic references from 2009 up to date, found in SCOPUS database and in individual searches in specific journals. We finally conclude by giving some outlook on future directions of this field.

  18. Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Flanigan, Paul; Levis, Robert

    2014-06-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  19. Fiber laser system for cesium and rubidium atom interferometry

    CERN Document Server

    Diboune, Clément; Bidel, Yannick; Cadoret, Malo; Bresson, Alexandre

    2016-01-01

    We present an innovative fiber laser system for both cesium and rubidium manipulation. The architecture is based on frequency conversion of two lasers at 1560 nm and 1878 nm. By taking advantage of existing fiber components at these wavelengths, we demonstrate an all fiber laser system delivering 350 mW at 780 nm for rubidium and 210 mW at 852 nm for cesium. This result highlights the promising nature of such laser system especially for Cs manipulation for which no fiber laser system has been reported. It offers new perspectives for the development of atomic instruments dedicated to onboard applications and opens the way to a new generation of atom interferometers involving three atomic species $^{85}$Rb, $^{87}$Rb and $^{133}$Cs for which we propose an original laser architecture.

  20. Application of copper vapor laser for fluid-dynamic measurement in a shock tube

    Science.gov (United States)

    Sekimoto, Kiyohide; Yamaguchi, Shigeru; Yamaguchi, Yutaka C.; Amemiya, Takashi

    1993-01-01

    This paper describes the features of the copper vapor laser developed in IHI Research Center for measurement of high-speed fluid, and the preliminary results of observed measurement on actual fluid flow in a shock tube. The copper vapor laser we have developed selects two different wavelengths (green or yellow) and couples them with an optical fiber. Further, in correspondence with external triggering from a shock tube or other devices, it is possible to freely set the timing for generation of laser pulses. Applying the copper vapor laser for the schlieren light source, we were able to visualize the formation of shock waveforms around an airfoil placed in a shock tube.

  1. Contribution to the Study of Optical Properties of a Dielectric Medium (Atomic Vapor) Using the Lorentz Model

    OpenAIRE

    Benosman, H; T. Benouaz; A CHIKHAOUI

    2012-01-01

    Optical properties of a dielectric medium consisting of an atomic vapor are investigated theoretically using the model of elastically bound electrons. This model describes the interaction of an electromagnetic field with the bound electrons to the vapor atoms [7]. In this paper, we propose a formalism which takes into accurate the effect of the number of electrons on the vapor index. We use the approximation of free electrons (no interaction between free electrons)...

  2. New Class of Excimer-Pumped Atomic Lasers (XPALS)

    Science.gov (United States)

    2017-01-27

    AFRL-AFOSR-VA-TR-2017-0019 New Class of Excimer-Pumped Atomic Lasers (XPALS) James Eden UNIVERSITY OF ILLINOIS CHAMPAIGN 506 S WRIGHT ST 364 HENRY...TITLE AND SUBTITLE New Class of Excimer-Pumped Atomic Lasers (XPALS) 5a. CONIKA\\.INUMBER FA9550-13- 1-0006 5b.GRANT NUMBER Sc. f’ftOGRAM ELEMENT...cxcitcd state-excited state reaction rates. We ore pleased to report that the main goal orthis program, the viability of nn atomic laser having a

  3. Search for a permanent EDM using laser cooled radioactive atom

    Science.gov (United States)

    Kawamura, Hirokazu; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kato, T.; Nataraj, H. S.; Sato, T.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2014-03-01

    The search for the electric-dipole moment (EDM) of laser-cooled francium (Fr) atoms could lead to a measurement for the electron EDM. It is predicted that the electron EDM would be enhanced by approximately three orders of magnitude in heavy atoms such as Fr. Laser-cooling and trapping techniques are expected to suppress statistical and systematic errors in precision measurements. The magneto-optical trap was achieved using stable rubidium in a developing factory of laser-cooled radioactive atoms. In light of the results from the rubidium experiments, we found that an upgrade of each apparatus is preferred for Fr trapping.

  4. Search for a permanent EDM using laser cooled radioactive atom

    Directory of Open Access Journals (Sweden)

    Kawamura Hirokazu

    2014-03-01

    Full Text Available The search for the electric-dipole moment (EDM of laser-cooled francium (Fr atoms could lead to a measurement for the electron EDM. It is predicted that the electron EDM would be enhanced by approximately three orders of magnitude in heavy atoms such as Fr. Laser-cooling and trapping techniques are expected to suppress statistical and systematic errors in precision measurements. The magneto-optical trap was achieved using stable rubidium in a developing factory of laser-cooled radioactive atoms. In light of the results from the rubidium experiments, we found that an upgrade of each apparatus is preferred for Fr trapping.

  5. Sodium vapor cell laser guide star experiments for continuous wave model validation

    Science.gov (United States)

    Pedreros Bustos, Felipe; Holzlöhner, Ronald; Budker, Dmitry; Lewis, Steffan; Rochester, Simon

    2016-07-01

    Recent numerical simulations and experiments on sodium Laser Guide Star (LGS) have shown that a continuous wave (CW) laser with circular polarization and re-pumping should maximize the fluorescent photon return flux to the wavefront sensor for adaptive optics applications. The orientation and strength of the geomagnetic field in the sodium layer also play an important role affecting the LGS return ux. Field measurements of the LGS return flux show agreement with the CW LGS model, however, fluctuations in the sodium column abundance and geomagnetic field intensity, as well as atmospheric turbulence, induce experimental uncertainties. We describe a laboratory experiment to measure the photon return flux from a sodium vapor cell illuminated with a 589 nm CW laser beam, designed to approximately emulate a LGS under controlled conditions. Return flux measurements are carried out controlling polarization, power density, re-pumping, laser linewidth, and magnetic field intensity and orientation. Comparison with the numerical CW simulation package Atomic Density Matrix are presented and discussed.

  6. Optically pumped semiconductor lasers for atomic and molecular physics

    Science.gov (United States)

    Burd, S.; Leibfried, D.; Wilson, A. C.; Wineland, D. J.

    2015-03-01

    Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. We are developing a source for laser cooling and spectroscopy of Mg+ ions at 280 nm, based on a frequency quadrupled OPSL with the gain chip fabricated at the ORC at Tampere Univ. of Technology, Finland. This OPSL system could serve as a prototype for many other sources used in atomic and molecular physics.

  7. Laser Source for Atomic Gravity Wave Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an Atom Interferometry-based gravity wave detector (vs Optical Interferometry). Characterize a high power laser. Use Goddard Space Flight Center Mission...

  8. Laser vaporization of extravasation type of mucocele of the lower lip with 940-nm diode laser

    Directory of Open Access Journals (Sweden)

    G Agarwal

    2013-01-01

    Full Text Available A 43-year-old male presented with an asymptomatic swelling of the lower labial mucosa. Examination revealed that the tip of maxillary canine was causing trauma on the affected side. A diagnosis of extravasation type of mucocele was established clinically. Vaporization of the mucocele was done with a 940-nm diode laser in contact mode. The lesion healed uneventfully and there has been no recurrence for 3 months.

  9. Numerical investigation of vessel heating using a copper vapor laser and a pulsed dye laser in treating vascular skin lesions

    Science.gov (United States)

    Pushkareva, A. E.; Ponomarev, I. V.; Isaev, A. A.; Klyuchareva, S. V.

    2018-02-01

    A computer simulation technique was employed to study the selective heating of a tissue vessel using emission from a pulsed copper vapor laser and a pulsed dye laser. The depth and size of vessels that could be selectively and safely removed were determined for the lasers under examination.

  10. Chemical oxygen-iodine laser with atomic iodine generated via fluorine atoms

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čenský, Miroslav; Špalek, Otomar; Kodymová, Jarmila; Picková, Irena; Jakubec, Ivo

    2008-01-01

    Roč. 345, č. 1 (2008), 14-22 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen–iodine laser * COIL Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.961, year: 2008

  11. A Laser Stabilization System for Rydberg Atom Physics

    Science.gov (United States)

    2015-09-06

    A Laser Stabilization System for Rydberg Atom Physics We purchased 2 dual wavelength ultrastable ultralow expansion glass cavities along with optics...term locking could be achieved for 2 photon Rydberg atom excitation. Both systems were offset locked using a high bandwidth resonant electro-optic...Rydberg Atom Physics Report Title We purchased 2 dual wavelength ultrastable ultralow expansion glass cavities along with optics and electronics to

  12. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  13. Chemical Vapor Deposition and Atomic Layer Deposition of Coatings for Mechanical Applications

    Science.gov (United States)

    Doll, G. L.; Mensah, B. A.; Mohseni, H.; Scharf, T. W.

    2010-01-01

    Chemical vapor deposition (CVD) of films and coatings involves the chemical reaction of gases on or near a substrate surface. This deposition method can produce coatings with tightly controlled dimensions and novel structures. Furthermore, the non-line-of-sight-deposition capability of CVD facilitates the coating of complex-shaped mechanical components. Atomic layer deposition (ALD) is also a chemical gas phase thin film deposition technique, but unlike CVD, it utilizes “self-limiting” surface adsorption reactions (chemisorption) to control the thickness of deposited films. This article provides an overview of CVD and ALD, discusses some of their fundamental and practical aspects, and examines their advantages and limitations versus other vapor processing techniques such as physical vapor deposition in regard to coatings for mechanical applications. Finally, site-specific cross-sectional transmission electron microscopy inside the wear track of an ALD ZnO/ZrO2 8 bilayers nanolaminate coating determined the mechanisms that control the friction and wear.

  14. Lithium triborate laser vaporization of the prostate using the 120 W, high performance system laser: high performance all the way?

    Science.gov (United States)

    Hermanns, Thomas; Strebel, Daniel D; Hefermehl, Lukas J; Gross, Oliver; Mortezavi, Ashkan; Müller, Alexander; Eberli, Daniel; Müntener, Michael; Michel, Maurice S; Meier, Alexander H; Sulser, Tullio; Seifert, Hans-Helge

    2011-06-01

    Technical modifications of the 120 W lithium-triborate laser have been implemented to increase power output, and prevent laser fiber degradation and loss of power output during laser vaporization of the prostate. However, visible alterations at the fiber tip and the subjective impression of decreasing ablative effectiveness during lithium-triborate laser vaporization indicate that delivering constantly high laser power remains a relevant problem. Thus, we evaluated the extent of laser fiber degradation and loss of power output during 120 W lithium-triborate laser vaporization of the prostate. We investigated 46 laser fibers during routine 120 W lithium-triborate laser vaporization in 35 patients with prostatic bladder outflow obstruction. Laser beam power was measured at baseline and after the application of each 25 kJ during laser vaporization. Fiber tips were microscopically examined after the procedure. Mild to moderate degradation at the emission window occurred in all fibers, associated with a loss of power output. A steep decrease to a median power output of 57.3% of baseline was detected after applying the first 25 kJ. Median power output at the end of the defined 275 kJ lifespan of the fibers was 48.8%. Despite technical refinements of the 120 W lithium-triborate laser fiber degradation and significantly decreased power output are still detectable during the procedure. Laser fibers are not fully appropriate for the high power delivery of the new system. There is still potential for further improvement in the laser performance. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Enhanced synthesis of Sn nanowires with aid of Se atom via physical vapor transport

    Science.gov (United States)

    Cai, Huacheng; Wang, Wendong; Liu, Peiwen; Wang, Guangming; Liu, Ankang; He, Zhe; Cheng, Zhaofang; Zhang, Shengli; Xia, Minggang

    2015-06-01

    We demonstrate tin (Sn) nanowires growth enhanced by Selenium (Se) atoms via physical vapor transport (PVT) method. The Raman spectroscopy, X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy show that Sn nanowires are synthesized with a large quantity, good quality and high purity of Sn. The growth of Sn nanowires is attributed to Solid-Vapor-Liquid mechanism. The effects of gold nanoparticles catalyst, Si substrate, and Se atoms on Sn nanowires growth are discussed in detail. We find that Se atom plays a key role in the growth of Sn nanowires. The gaseous Sn atoms are absorbed by the eutectic alloy droplets of Se-Au at first. Then Sn atoms precipitate at the liquid-solid phase interface due to a supersaturated solution and form a one-dimensional nanostructure. In all, this PVT method could provide a simple and quick way to synthesize monocrystalline Sn nanowires with an advantage in both quality and quantity. The optical transmittance of Sn nanowires thin film with 2 μm2 density approaches 85-90% in visible wavelength. Therefore, the Sn nanowires thin film can be applied to transparent electrode along with their metallic property.

  16. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  17. Risk factors for treatment failure of CO2 laser vaporization in cervical intraepithelial neoplasia 2.

    Science.gov (United States)

    Yoon, Bo Sung; Seong, Seok Ju; Song, Taejong; Kim, Mi-La; Kim, Mi Kyoung

    2014-07-01

    The aim of our study was to evaluate the risk factors for treatment failure of CO2 laser vaporization in patients with cervical intraepithelial neoplasia 2 (CIN2). Medical records of patients who received either shallow or deep CO2 laser vaporization with biopsy-proven CIN2 during March 2007 to April 2011 were reviewed retrospectively. After laser vaporization, liquid-based cytology and human papilloma virus (HPV) DNA testing were checked in every follow-up visit. Treatment failure was defined when the follow-up biopsy was more than CIN2, needing secondary surgical treatment. During that period, 141 patients with CIN2 underwent CO2 laser vaporization. After laser ablation, 14 of 141 women needed the secondary treatment, a success rate of laser vaporization of 90.1 %. In multivariate analysis, the previous loop electrosurgical excision procedure (LEEP) history (adjusted OR = 13.649; P value = 0.025) and the ablation depth (adjusted OR = 11.279; P value = 0.006) were independent factors associated with treatment failure. Both ablation depth and previous LEEP history were the important factors increasing the risk for the treatment failure of CO2 laser vaporization in CIN2.

  18. Two-Photon Coherent Atomic Absorption of Multiple Laser Beams

    Science.gov (United States)

    Li, Ming-Chiang

    2006-05-01

    Physical processes on two-photon coherent atomic absorption of multiple laser beams were discussed about thirty years ago [M. C. Li, Bull. Am. Phys. Soc. 20, 654 (1975)]. These processes can be divided into two distinct groups. In the first group, laser beams are from a single source, and in the second group laser beams are from two different sources [M. C. Li, Phys. Rev. A 22 (1980) 1323]. Several experiments in the first group were carried out and have led to the 2005 Nobel Prize in physics. The second group is more interesting. Beside atoms are in random motion, two photons are from different sources. Classically, it is impossible for atoms to transit coherently in the absorption process, but quantum mechanically, such a transition is possible and that is one of the spooky phenomena in quantum mechanic. To assure the coherent transition, each photon as absorbed by the atom must have two possible paths of choices. If one photon has the choice and other one is not, then the atomic transitions cannot be coherent. Around1990, there were very active experimental pursuits on such a spooky phenomenon of two photons emitted from crystal parametric down conversion. The present talk will review various spooky phenomena associated with two-photon coherent atomic absorption. Hope that the talk will stimulate the interest on the long neglected experimental front on two-photon coherent atomic absorption from two different laser sources.

  19. Laser Assisted Free-Free Transition in Electron - Atom Collision

    Science.gov (United States)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  20. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    Science.gov (United States)

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  1. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    Science.gov (United States)

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  2. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  3. Pseudomonas aeruginosa septic trapezo-metacarpal arthritis after prostate laser vaporization.

    Science.gov (United States)

    Lepetit, C; Le Gal, S; Michon, J; Collon, S; Tillou, X

    2015-08-01

    Prostatic laser vaporization resection is a new and fast growing technique. Most publications compare this technique to the standard diathermic snare prostate resection without considering its particular complications. Septic arthritis of the trapezio-metacarpal joint is particularly rare if it has a haematogenous origin. We present here the case of a 65-year-old man with an isolated trapezio-metacarpal Pseudomonas aeruginosa arthritis with a haematogenous origin following a laser vaporization prostate resection.

  4. Efficiency of photodesorption of Rb atoms collected on polymer organic film in vapor-cell

    CERN Document Server

    Atutov, Sergey N; Chubakov, Pavel A; Plekhanov, Alexander I

    2010-01-01

    The efficiency of photodesorption of Rb atoms previously collected on polymer organic film has been studied in detail. This study was carried out in a glass cell of which the inner surface was covered with (poly)dimethylsiloxane (PDMS) film and illuminated by a photographic flash lamp. The desorption dynamic of the Rb atoms density in the cell caused by the illumination was studied using an Rb resonance lamp as a source of probing light. It was determined that about 25 percent of the total Rb atoms embedded on the cell walls can be desorbed by single flash from the lamp and almost 50 percent are desorbed by a sequence of several light pulses. Our result might help to construct an efficient light-driven source of atoms for a new type magneto optical trap for atoms in extremely low vapor density or very weak atomic flux of such artificial alkaline atoms as Francium. We believe that the collection and photodesorption of particles could be used for the development of sensors for the trace detection of various ele...

  5. REVIEW ARTICLE: Towards a random laser with cold atoms

    Science.gov (United States)

    Guerin, W.; Mercadier, N.; Michaud, F.; Brivio, D.; Froufe-Pérez, L. S.; Carminati, R.; Eremeev, V.; Goetschy, A.; Skipetrov, S. E.; Kaiser, R.

    2010-02-01

    Atoms can scatter light and they can also amplify it by stimulated emission. From this simple starting point, we examine the possibility of realizing a random laser in a cloud of laser-cooled atoms. The answer is not obvious as both processes (elastic scattering and stimulated emission) seem to exclude one another: pumping atoms to make them behave as an amplifier drastically reduces their scattering cross-section. However, we show that even the simplest atom model allows the efficient combination of gain and scattering. Moreover, the supplementary degrees of freedom that atoms offer allow the use of several gain mechanisms, depending on the pumping scheme. We thus first study these different gain mechanisms and show experimentally that they can induce (standard) lasing. We then present how the constraint of combining scattering and gain can be quantified, which leads to an evaluation of the random laser threshold. The results are promising and we draw some prospects for a practical realization of a random laser with cold atoms.

  6. Recirculation of Laser Power in an Atomic Fountain

    Science.gov (United States)

    Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.

    2007-01-01

    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present

  7. Atom in a femtosecond bichromatic laser field

    Indian Academy of Sciences (India)

    color pulsed laser field of duration 2.12 fs consisting of a fundamental frequency ω and one of its harmonics. We study the ... restrictions need to be imposed on the type of laser pulse and that solutions can, in principle, be ... The electric field vector consists of a fundamental and its Фth harmonic, i.e.,. = 0(Ш). [ sin( Ш) +. 1. 4.

  8. Atomically abrupt silicon-germanium axial heterostructure nanowires synthesized in a solvent vapor growth system.

    Science.gov (United States)

    Geaney, Hugh; Mullane, Emma; Ramasse, Quentin M; Ryan, Kevin M

    2013-04-10

    The growth of Si/Ge axial heterostructure nanowires in high yield using a versatile wet chemical approach is reported. Heterostructure growth is achieved using the vapor zone of a high boiling point solvent as a reaction medium with an evaporated tin layer as the catalyst. The low solubility of Si and Ge within the Sn catalyst allows the formation of extremely abrupt heterojunctions of the order of just 1-2 atomic planes between the Si and Ge nanowire segments. The compositional abruptness was confirmed using aberration corrected scanning transmission electron microscopy and atomic level electron energy loss spectroscopy. Additional analysis focused on the role of crystallographic defects in determining interfacial abruptness and the preferential incorporation of metal catalyst atoms near twin defects in the nanowires.

  9. Imaging Microwave and DC Magnetic Fields in a Vapor-Cell Rb Atomic Clock

    CERN Document Server

    Affolderbach, Christoph; Bandi, Thejesh; Horsley, Andrew; Treutlein, Philipp; Mileti, Gaetano

    2015-01-01

    We report on the experimental measurement of the DC and microwave magnetic field distributions inside a recently-developed compact magnetron-type microwave cavity, mounted inside the physics package of a high-performance vapor-cell atomic frequency standard. Images of the microwave field distribution with sub-100 $\\mu$m lateral spatial resolution are obtained by pulsed optical-microwave Rabi measurements, using the Rb atoms inside the cell as field probes and detecting with a CCD camera. Asymmetries observed in the microwave field images can be attributed to the precise practical realization of the cavity and the Rb vapor cell. Similar spatially-resolved images of the DC magnetic field distribution are obtained by Ramsey-type measurements. The T2 relaxation time in the Rb vapor cell is found to be position dependent, and correlates with the gradient of the DC magnetic field. The presented method is highly useful for experimental in-situ characterization of DC magnetic fields and resonant microwave structures,...

  10. Backward-emitted sub-Doppler fluorescence from an optically thick atomic vapor

    Science.gov (United States)

    Carvalho, João Carlos de Aquino; Laliotis, Athanasios; Chevrollier, Martine; Oriá, Marcos; Bloch, Daniel

    2017-10-01

    Literature mentions only incidentally a sub-Doppler contribution in the excitation spectrum of the backward fluorescence of a dense vapor. This contribution is here investigated on Cs vapor, both on the first resonance line (894 nm) and on the weaker second resonance line (459 nm). We show that in a strongly absorbing medium, the quenching of excited atoms moving towards a window irradiated under near normal incidence reduces the fluorescence on the red side of the excitation spectrum. Atoms moving slowly towards the window produce a sub-Doppler velocity-selective contribution, whose visibility is here improved by applying a frequency-modulation technique. This sub-Doppler feature, induced by a surface quenching combined with a short absorption length for the incident irradiation, exhibits close analogies with the narrow spectra appearing with thin vapor cells. We also show that a normal incidence irradiation is essential for the sub-Doppler feature to be observed, while it should be independent of the detection geometry.

  11. Search for electron EDM with laser cooled radioactive atom

    Science.gov (United States)

    Inoue, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, T.; Kawamura, H.; Nataraj, H. S.; Sato, T.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2013-05-01

    The permanent electric dipole moment (EDM) of the elementary particle has the sensitivity to the CP violation in the theories beyond the standard model (SM). The search for the EDM constitutes the stringent test to discriminate between the SM and beyond it. We plan to perform the electron EDM search by using the laser cooled francium (Fr) atom which has the largest enhancement factor of the electron EDM in the alkali atoms. In this paper, the present status of the laser cooled Fr factory that is being constructed at Cyclotron and Radioisotope Center (CYRIC), Tohoku University are reported.

  12. Laser sources for precision spectroscopy on atomic strontium.

    Science.gov (United States)

    Poli, N; Ferrari, G; Prevedelli, M; Sorrentino, F; Drullinger, R E; Tino, G M

    2006-04-01

    We present a new laser setup designed for high-precision spectroscopy on laser cooled atomic strontium. The system, which is entirely based on semiconductor laser sources, delivers 200 mW at 461 nm for cooling and trapping atomic strontium from a thermal source, 4 mW at 497 nm for optical pumping from the metastable P23 state, 12 mW at 689 nm on linewidth less than 1 kHz for second-stage cooling of the atomic sample down to the recoil limit, 1.2 W at 922 nm for optical trapping close to the "magic wavelength" for the 0-1 intercombination line at 689 nm. The 689 nm laser was already employed to perform a frequency measurement of the 0-1 intercombination line with a relative accuracy of 2.3 x 10(-11), and the ensemble of laser sources allowed the loading in a conservative dipole trap of multi-isotopes strontium mixtures. The simple and compact setup developed represents one of the first steps towards the realization of a transportable optical standards referenced to atomic strontium.

  13. Controlling atomic structures and photoabsorption processes by an infrared laser

    OpenAIRE

    Tong, X. M.; Toshima, N.

    2010-01-01

    We propose a theoretical method to calculate the infrared (IR) laser-assisted photoabsorption cross sections over a broad energy range by a single calculation. In this method we define an initial wave function as the product of the dipole operator and the atomic ground state, propagate the initial wave function in the IR laser field with different initial phases, then calculate the generalized autocorrelation function, which is defined as the averaged value of the autocorrelation function ove...

  14. Chemical vapor deposition of atomically thin materials for membrane dialysis applications

    Science.gov (United States)

    Kidambi, Piran; Mok, Alexander; Jang, Doojoon; Boutilier, Michael; Wang, Luda; Karnik, Rohit; Microfluidics; Nanofluidics Research Lab Team

    2015-11-01

    Atomically thin 2D materials like graphene and h-BN represent a new class of membranes materials. They offer the possibility of minimum theoretical membrane transport resistance along with the opportunity to tune pore sizes at the nanometer scale. Chemical vapor deposition has emerged as the preferable route towards scalable, cost effective synthesis of 2D materials. Here we show selective molecular transport through sub-nanometer diameter pores in graphene grown via chemical vapor deposition processes. A combination of pressure driven and diffusive transport measurements shows evidence for size selective transport behavior which can be used for separation by dialysis for applications such as desalting of biomolecular or chemical solutions. Principal Investigator

  15. Bowls made of Laser Light to Corral Ultracold Atoms

    Science.gov (United States)

    Thomas, John

    2010-10-01

    Using stable lasers, it is now possible to create nearly perfect bowls made of pure light, which are smaller than a piece of lint and store atoms for several minutes in an ultrahigh vacuum environment. These almost frictionless bowls are ideal for cooling atoms by evaporation, the same way that alcohol cools the skin. In just a few seconds, atoms trapped in the bowl are cooled to temperatures of ten of billionths of a degree above absolute zero, where the de Broglie wavelength is several microns. These ultracold atoms occupy the quantum energy levels of the bowl, producing a giant quantum system that can be directly observed using laser flash photography. I will describe our laser trapping methods and show how they can be use to study a unique quantum gas of spin-up and spin-down ^6Li atoms, which are fermions that obey the Pauli exclusion principle. I will describe how this ultracold atomic gas now tests predictions in nearly all fields of physics, from high temperature superconductors to neutron stars, the quark-gluon plasma of the Big Bang, and even string theory.

  16. Histologic comparison of the pulsed dye laser and copper vapor laser effects on pig skin

    Energy Technology Data Exchange (ETDEWEB)

    Tan, O.T.; Stafford, T.J.; Murray, S.; Kurban, A.K. (Boston Univ. Medical Center, MA (USA))

    1990-01-01

    Albino pig skin was exposed to the copper vapor (CVL) and flash-lamp pulsed dye (PDL) lasers at 578 nm with a 3 mm diameter spotsize over a range of fluences until purpura and whitening were first established. The total irradiation time was the parameter that was varied in order for the CVL to reach the desired fluence. The lowest fluence producing each clinical endpoint was designated the threshold fluence: 34 J/cm{sup 2} was required to produce purpura using the CVL compared to 7.5 J/cm{sup 2} with the PDL laser. Histologically, skin exposed to purpura fluences from the CVL revealed the presence of constricted, disrupted papillary dermal blood vessels with trapped RBC's within them which were unlike those exposed to PDL where the irradiated vessels were dilated and packed with masses of intravascular agglutinated RBC's. The whitening threshold fluences for the CVL and PDL lasers were 67 J/cm{sup 2} and 29 J/cm{sup 2}, respectively. Streaming of epidermal cells and dermal collagen denaturation were observed in CVL irradiated skin, compared to occasional dyskeratotic epidermal cells and focal dermal collagen denaturation following PDL exposure. The mechanisms responsible for the clinical and histologic changes produced by the two laser systems are discussed.

  17. Characterization of the atomic emission in inconel 718 alloy metal vapor arcs

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L.; Peebles, H.C.; Bertram, L.A.; Hareland, W.A.; Zanner, F.J.

    1986-01-01

    Visible and uv emission spectroscopy was used to identify and study various atomic species in the plasma of a vacuum arc furnace during a remelt of Inconel 718. The studies were carried out at a base pressure of 10 mtorr, and with the furnace backfilled with CO to a total pressure of 100 mtorr. Various emitting species were identified, and the internal energy distributions of a number of these species were mapped out using Boltzmann plots. Internal temperatures of 6000 to 7000/sup 0/K were measured for the neutral atomic species in the low pressure arc, while a value of 11,600/sup 0/K was obtained for the ion temperature. In addition, the density of the highly volatile element Mn in the interelectrode region was found to be greatly enhanced compared to its relative abundance in the bulk alloy, indicating the importance of vaporization in determining the atomic composition of the arc plasma. Increasing the furnace pressure resulted in an increase in the temperature of the neutral species of 1500 to 4000/sup 0/K, and an apparent suppression of the Mn vaporization rate.

  18. Atoms and molecules interacting with light atomic physics for the laser era

    CERN Document Server

    Straten, Peter van der

    2016-01-01

    This in-depth textbook with a focus on atom-light interactions prepares students for research in a fast-growing and dynamic field. Intended to accompany the laser-induced revolution in atomic physics, it is a comprehensive text for the emerging era in atomic, molecular and optical science. Utilising an intuitive and physical approach, the text describes two-level atom transitions, including appendices on Ramsey spectroscopy, adiabatic rapid passage and entanglement. With a unique focus on optical interactions, the authors present multi-level atomic transitions with dipole selection rules, and M1/E2 and multiphoton transitions. Conventional structure topics are discussed in some detail, beginning with the hydrogen atom and these are interspersed with material rarely found in textbooks such as intuitive descriptions of quantum defects. The final chapters examine modern applications and include many references to current research literature. The numerous exercises and multiple appendices throughout enable advanc...

  19. Preparation of nanowire specimens for laser-assisted atom probe tomography.

    Science.gov (United States)

    Blumtritt, H; Isheim, D; Senz, S; Seidman, D N; Moutanabbir, O

    2014-10-31

    The availability of reliable and well-engineered commercial instruments and data analysis software has led to development in recent years of robust and ergonomic atom-probe tomographs. Indeed, atom-probe tomography (APT) is now being applied to a broader range of materials classes that involve highly important scientific and technological problems in materials science and engineering. Dual-beam focused-ion beam microscopy and its application to the fabrication of APT microtip specimens have dramatically improved the ability to probe a variety of systems. However, the sample preparation is still challenging especially for emerging nanomaterials such as epitaxial nanowires which typically grow vertically on a substrate through metal-catalyzed vapor phase epitaxy. The size, morphology, density, and sensitivity to radiation damage are the most influential parameters in the preparation of nanowire specimens for APT. In this paper, we describe a step-by-step process methodology to allow a precisely controlled, damage-free transfer of individual, short silicon nanowires onto atom probe microposts. Starting with a dense array of tiny nanowires and using focused ion beam, we employed a sequence of protective layers and markers to identify the nanowire to be transferred and probed while protecting it against Ga ions during lift-off processing and tip sharpening. Based on this approach, high-quality three-dimensional atom-by-atom maps of single aluminum-catalyzed silicon nanowires are obtained using a highly focused ultraviolet laser-assisted local electrode atom probe tomograph.

  20. Sub-Doppler laser cooling of potassium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Landini, M. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy); Dipartimento di fisica, Universita di Trento, I-38123 Povo (Trento) (Italy); Roy, S.; Carcagni, L.; Trypogeorgos, D. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); Fattori, M.; Inguscio, M.; Modugno, G. [LENS and Dipartimento di Fisica e Astronomia, Universita di Firenze, I-50019 Sesto Fiorentino (Italy); INFN, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy)

    2011-10-15

    We investigate the sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of system and an adiabatic ramping of the laser parameters allows us to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25{+-}3 {mu}K and 47{+-}5 {mu}K in high-density samples of the two isotopes {sup 39}K and {sup 41}K, respectively. Our findings should find application to other atomic systems.

  1. Complementary treatment with oral pidotimod plus vitamin C after laser vaporization for female genital warts: a prospective study.

    Science.gov (United States)

    Zervoudis, S; Iatrakis, G; Peitsidis, P; Peitsidou, A; Papandonopolos, L; Nikolopoulou, M K; Papadopoulos, L; Vladareanu, R

    2010-01-01

    This is a prospective study to assess a complementary treatment for genital warts after laser vaporization. 62 patients were enrolled in two randomized groups: Al: laser vaporization alone. A2: laser vaporization, followed with Pidotimod plus vitamin C for 2 1/2 months. The latter treatment shortened the time of warts remission and marginally decreased the rate of the warts' recurrence: 81% versus 67% (N.S.). Despite the non-significant difference, this complementary treatment seems to have some efficiency.

  2. Search for a permanent EDM with laser cooled radioactive atom

    Science.gov (United States)

    Sakemi, Yasuhiro

    2014-09-01

    To explore the mechanism for the generation of the matter-antimatter asymmetry in the universe, the study on fundamental symmetry violation using the trapped radioactive atoms with laser cooling techniques is being promoted. An Electric Dipole Moment (EDM) of the elementary particle is a good prove to observe the phenomena beyond the Standard Model. A finite value of EDM means the violation of the time reversal symmetry, and the CP violation under the CPT invariance. In paramagnetic atoms, an electron EDM results in an atomic EDM enhanced by the factor of the 3rd power of the charge of the nucleus due the relativistic effects. A heaviest alkali element francium (Fr), which is the radioactive atom, has the largest enhancement factor K ~ 895 in atomic system. Then, we are developing a high intensity laser cooled Fr factory at Cyclotron and Radioisotope Center (CYRIC), Tohoku University to search for the EDM of Fr with the accuracy of 10-29 e cm. To overcome the current accuracy limit of the EDM, it is necessary to realize the high intensity Fr source and to reduce the systematic error due to the motional magnetic field and inhomogeneous applied field. To reduce the dominant component of the systematic errors mentioned above, we will confine the Fr atoms in the small region with the Magneto-Optical Trap (MOT) and optical lattice using the laser cooling and trapping techniques. The construction of the experimental apparatus is making progress, and the new thermal ionizer already produces the Fr of ~ 10 6 ions/s with the primary beam intensity 200 nA. The extracted Fr ion beam is transported to the neutralizer, which is located 10 m downstream, and the produced neutral Fr atoms are introduced into the MOT to load the next trapping system such as the optical dipole force trap and optical lattice. The coherence time will be increased in the laser trapping system, and the present status of the experiment will be reported.

  3. Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor

    CERN Document Server

    Zhang, Yiqi; Belić, Milivoj R; Wu, Zhenkun; Zhang, Yanpeng

    2015-01-01

    In an atomic vapor, a honeycomb lattice can be constructed by utilizing the three-beam interference method. In the method, the interference of the three beams splits the dressed energy level periodically, forming a periodic refractive index modulation with the honeycomb profile. The energy band topology of the honeycomb lattice can be modulated by frequency detunings, thereby affecting the appearance (and disappearance) of Dirac points and cones in the momentum space. This effect can be usefully exploited for the generation and manipulation of topological insulators.

  4. Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Wu, Zhenkun [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-12-15

    In an atomic vapor, a honeycomb lattice can be constructed by utilizing the three-beam interference method. In the method, the interference of the three beams splits the dressed energy level periodically, forming a periodic refractive index modulation with the honeycomb profile. The energy band topology of the honeycomb lattice can be modulated by frequency detunings, thereby affecting the appearance (and disappearance) of Dirac points and cones in the momentum space. This effect can be usefully exploited for the generation and manipulation of topological insulators.

  5. Ex vivo efficacy evaluation of laser vaporization for treatment of benign prostatic hyperplasia using a 300-W high-power laser diode with a wavelength of 980 nm

    Science.gov (United States)

    Takada, Junya; Honda, Norihiro; Hazama, Hisanao

    2014-01-01

    Background and Objective: Laser vaporization of the prostate is considered to be a promising treatment for benign prostatic hyperplasia (BPH), and efficiency of vaporization and hemostasis are both important parameters for such treatment. In this study, we used a high-power laser diode with a wavelength of 980 nm to obtain high vaporization efficiency with good hemostasis. The objective of this study is to evaluate the efficacy of laser vaporization for treatment of BPH in ex vivo experiments using a 300-W high-power laser diode with a wavelength of 980 nm quantitatively. Materials and Methods: An ex vivo experimental setup simulating clinical treatment situation was constructed. Bovine prostate tissue was used as a sample. The power setting was 100, 150, 200, 250, or 300 W, and the irradiation time was 0.5, 1, or 2 s. After laser irradiation, vaporized and coagulated depths were measured. Results: The vaporized depth increased with the laser power and irradiation time, and the results confirmed that the high-power laser diode could efficiently vaporize the prostate tissue. Coagulated depth increased as the laser power became higher. Conclusions: Laser vaporization of prostate tissue using a high-power laser diode with a wavelength of 980 nm represents a promising treatment for BPH; this method exhibits high vaporization efficiency and good hemostasis. However, operators must be aware of the risk of postoperative perforation of the prostatic capsule caused by coagulation of deep regions that cannot be visualized by endoscopic observation. PMID:25368442

  6. Ex vivo efficacy evaluation of laser vaporization for treatment of benign prostatic hyperplasia using a 300-W high-power laser diode with a wavelength of 980 nm.

    Science.gov (United States)

    Takada, Junya; Honda, Norihiro; Hazama, Hisanao; Awazu, Kunio

    2014-09-30

    Laser vaporization of the prostate is considered to be a promising treatment for benign prostatic hyperplasia (BPH), and efficiency of vaporization and hemostasis are both important parameters for such treatment. In this study, we used a high-power laser diode with a wavelength of 980 nm to obtain high vaporization efficiency with good hemostasis. The objective of this study is to evaluate the efficacy of laser vaporization for treatment of BPH in ex vivo experiments using a 300-W high-power laser diode with a wavelength of 980 nm quantitatively. An ex vivo experimental setup simulating clinical treatment situation was constructed. Bovine prostate tissue was used as a sample. The power setting was 100, 150, 200, 250, or 300 W, and the irradiation time was 0.5, 1, or 2 s. After laser irradiation, vaporized and coagulated depths were measured. The vaporized depth increased with the laser power and irradiation time, and the results confirmed that the high-power laser diode could efficiently vaporize the prostate tissue. Coagulated depth increased as the laser power became higher. Laser vaporization of prostate tissue using a high-power laser diode with a wavelength of 980 nm represents a promising treatment for BPH; this method exhibits high vaporization efficiency and good hemostasis. However, operators must be aware of the risk of postoperative perforation of the prostatic capsule caused by coagulation of deep regions that cannot be visualized by endoscopic observation.

  7. A new laser cooling method for lithium atom interferometry

    Science.gov (United States)

    Kim, Geena

    An atom interferometer offers means to measure physical constants and physical quantities with a high precision, with relatively low cost and convenience as a table-top experiment. A precision measurement of a gravitational acceleration can test fundamental physics concepts such as Einstein equivalence principle (EEP). We identified that the two lithium isotopes (7Li and 6Li) have an advantage for the test of EEP, according to the standard model extension (SME). We aim to build the world's first lithium atom interferometer and test the Einstein equivalence principle. We demonstrate a new laser cooling method suitable for a lithium atom interferometer. Although lithium is often used in ultra-cold atom experiments for its interesting physical properties and measurement feasibility, it is more difficult to laser cool lithium than other alkali atoms due to its unresolved hyperfine states, light mass (large recoil velocity) and high temperature from the oven. Typically, standard laser cooling techniques such as Zeeman slowers and magneto-optical traps are used to cool lithium atoms to about 1 mK, and the evaporative cooling method is used to cool lithium atoms to a few muK for Bose-Einstein condensate (BEC) experiments. However, for the atom interferometry purpose, the evaporative cooling method is not ideal for several reasons: First, its cooling efficiency is so low (0.01 % or less) that typically only 104-105 atoms are left after cooling when one begins with 10. 9 atoms. More atoms in anatom interferometer are needed to have a better signal to noise ratio. Second, an evaporative cooling is used to make a BEC, but we do not need a BEC to make an atom interferometer. In an atom interferometer, a high density of atoms as in a BEC should be avoided since it causes a phase shift due to atom interactions. Third, a setup for an evaporative cooling requires intricate RF generating coils or a high power laser. With a simple optical lattice and a moderate laser power (100 m

  8. Vaporize, anatomically vaporize or enucleate the prostate? The flexible use of the GreenLight laser.

    Science.gov (United States)

    Cindolo, Luca; Ruggera, Lorenzo; Destefanis, Paolo; Dadone, Claudio; Ferrari, Giovanni

    2017-03-01

    , respectively) with 2.5% of long-term stress urinary incontinence (conservatively managed). The reintervention rate was 6%. Late complications were associated at univariate analysis with pharmacological therapy (combination therapy vs. alpha blockers alone vs. none: p value = 0.042) and with the surgical approach (standard PVP vs. anatomical PVP vs. GreenLEP p value = 0.011). The patients' perception of satisfaction was 68% "greatly improved", 27% "improved", 4% "not changed" and 1% "worsened" with no differences between techniques. The availability of three different GreenLight laser techniques allows surgeons with different skills to safety use this technology that remains effective with high patient satisfaction. Anatomical vaporization seems to guarantee the best balance between functional outcomes, surgical procedures and complications.

  9. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  10. Laser source of neutral atoms for collective field particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskiy, Yu.A.; Mironov, V.E.; Sarantsev, V.P.; Sil' nov, S.M.; Sotnichenko, E.A.; Ter-Martirosyan, Z.A.; Shestakov, B.A.

    1984-03-01

    Laser sources for collective-field particle accelerators, of ions of almost all chemical elements, operate in deep vacuum (10/sup -8/ -10/sup -9/ torr) and in a strong alternating magnetic field (up to 20 kOe, 50 Hz). Under such conditions a laser source is required to deliver an atom flux of 10/sup 11/ -10/sup 12/ in pulses of 10-100 ms duration from a target to electron rings. Such a laser source has been designed for the collective-field heavy-ion accelerator at the Joint Institute of Nuclear Research. It consists of a laser, focusing lens, and conical target of the material whose atoms are to be extracted. The equipment is laid out with the compressor tube mounted on a support inside the vacuum chamber and the laser source in front of the window on the extension of the compressor tube axis. This construction can be modified for large electron rings, with axicon optics that reshape the incoming laser beam into an annular beam for electron rings with radii longer than 8 cm or by moving the laser source from the axial location to a peripheral location relative to the compressor tube for electron rings with radii of 30-35 cm. These three variants of such a laser source were evaluated in an experimental test stand, with a Q-switched YAG:Nd/sup 3 +/ laser (wavelength lambda = 1.06 ..mu..m) emitting radiation pulses of 0.06 J energy and 10 ns duration, and with lead, aluminum, iron, or copper used as target material. The results of measurements, accurate within 20%, indicate that the laser source is most effective with lead targets and least effective with copper targets. 9 references, 9 figures.

  11. Frequency-tunable microwave field detection in an atomic vapor cell

    Science.gov (United States)

    Horsley, Andrew; Treutlein, Philipp

    2016-05-01

    We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the σ+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high-resolution microwave imaging system [Horsley et al., New J. Phys. 17, 112002 (2015)], this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.

  12. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2016-11-01

    Full Text Available Hexagonal boron nitrite (h-BN is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  13. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Cleveland, Danielle; Stchur, Peter; Hou, Xiandeng; Yang, Karl X; Zhou, Jack; Michel, Robert G

    2005-12-01

    It has been shown that an increase in sensitivity and selectivity of detection of an analyte can be achieved by tuning the ablation laser wavelength to match that of a resonant gas-phase transition of that analyte. This has been termed resonant laser ablation (RLA). For a pulsed tunable nanosecond laser, the data presented here illustrate the resonant enhancement effect in pure copper and aluminum samples, chromium oxide thin films, and for trace molybdenum in stainless steel samples, and indicate two main characteristics of the RLA phenomenon. The first is that there is an increase in the number of atoms ablated from the surface. The second is that the bandwidth of the wavelength dependence of the ablation is on the order of 1 nm. The effect was found to be virtually identical whether the atoms were detected by use of a microwave-induced plasma with atomic emission detection, by an inductively coupled plasma with mass spectrometric detection, or by observation of the number of laser pulses required to penetrate through thin films. The data indicate that a distinct ablation laser wavelength dependence exists, probably initiated via resonant radiation trapping, and accompanied by collisional broadening. Desorption contributions through radiation trapping are substantiated by changes in crater morphology as a function of wavelength and by the relatively broad linewidth of the ablation laser wavelength scans, compared to gas-phase excitation spectra. Also, other experiments with thin films demonstrate the existence of a distinct laser-material interaction and suggest that a combination of desorption induced by electronic transition (DIET) with resonant radiation trapping could assist in the enhancement of desorption yields. These results were obtained by a detailed inspection of the effect of the wavelength of the ablation laser over a narrow range of energy densities that lie between the threshold of laser-induced desorption of species and the usual analytical

  14. Sub-natural $N$-type Resonance in Cesium Atomic Vapor: splitting in magnetic fields

    CERN Document Server

    Slavov, D; Sarkisyan, D; Mirzoyan, R; Krasteva, A; Wilson-Gordon, A D; Cartaleva, S

    2013-01-01

    The sub-natural-width $N$-type resonance in {\\Lambda}-system, on the $D_2$ line of Cs atoms is studied for the first time in the presence of a buffer gas (neon) and the radiations of two continuous narrow band diode lasers. $L$ = 1 cm long cell is used to investigate $N$-type process. The $N$-type resonance in a magnetic field for $^{133}$Cs atoms is shown to split into seven or eight components, depending on the magnetic field and laser radiation directions. The results obtained indicate that levels $F_g$ = 3, 4 are initial and final in the N resonance formation. The experimental results with magnetic field agree well with the theoretical curves.

  15. Rb atomic magnetometer toward EDM experiment with laser cooled francium atoms

    Science.gov (United States)

    Inoue, Takeshi; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Ko; Kawamura, Hirokazu; Sakamoto, Kosuke; Uchiyama, Aiko; Asahi, Koichiro; Yoshimi, Akihiro; Sakemi, Yasuhiro

    2014-09-01

    A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield. We prepared the cell coated with an anti-relaxation material and measured the relaxation time. A degauss of the shield was performed to eliminate the residual field. We will report the present status of the magnetometer. A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield

  16. Defining optimal laser-fiber sweeping angle for effective tissue vaporization using 180 W 532 nm lithium triborate laser.

    Science.gov (United States)

    Ko, Woo Jin; Choi, Benjamin B; Kang, Hyun Wook; Rajabhandharaks, Danop; Rutman, Matthew; Osterberg, E Charles

    2012-04-01

    The goal of this study is to identify the most efficient sweeping angle (SA) during photoselective vaporization of the prostate (PVP). Experiments were conducted with GreenLight XPS™ laser at 120 and 180 W. Ten blocks of porcine kidney were used for each SA (0, 15, 30, 45, 60, 90, and 120 degrees). Vaporization efficiency was assessed by the amount of tissue removed per time. The coagulation zone (CZ) thickness was also measured. Maximal vaporization rate (VR) was achieved at SA 15 and 30 degrees. Irrespective of power, VR increased and CZ decreased linearly with decreasing SA from 120 to 30 degrees. The CZ was the thinnest at SA 30 degrees. Optimal vaporization occurred at a SA of 15 degrees and 30 degrees with the lowest CZ at 30 degrees. Contrary to a previous recommendation for a wider SA (60 degrees or greater), a narrower SA (30 degrees) achieved the maximal tissue vaporization efficiency.

  17. Optically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor

    Science.gov (United States)

    Gharavipour, M.; Affolderbach, C.; Gruet, F.; Radojičić, I. S.; Krmpot, A. J.; Jelenković, B. M.; Mileti, G.

    2017-06-01

    We introduce and demonstrate an experimental method, optically-detected spin-echo (ODSE), to measure ground-state relaxation times of a rubidium (Rb) atomic vapor held in a glass cell with buffer-gas. The work is motivated by our studies on high-performance Rb atomic clocks, where both population and coherence relaxation times (T 1 and T 2, respectively) of the ‘clock transition’ (52S1/2 | {F}g = 1,{m}F=0> ≤ftrightarrow | {F}g=2,{m}F=0> ) are relevant. Our ODSE method is inspired by classical nuclear magnetic resonance spin-echo method, combined with optical detection. In contrast to other existing methods, like continuous-wave double-resonance (CW-DR) and Ramsey-DR, principles of the ODSE method allow suppression of decoherence arising from the inhomogeneity of the static magnetic field across the vapor cell, thus enabling measurements of intrinsic relaxation rates, as properties of the cell alone. Our experimental result for the coherence relaxation time, specific for the clock transition, measured with the ODSE method is in good agreement with the theoretical prediction, and the ODSE results are validated by comparison to those obtained with Franzen, CW-DR and Ramsey-DR methods. The method is of interest for a wide variety of quantum optics experiments with optical signal readout.

  18. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  19. Direct atomic absorption determination of cadmium and lead in strongly interfering matrices by double vaporization with a two-step electrothermal atomizer

    Science.gov (United States)

    Grinshtein, Ilia L.; Vilpan, Yuri A.; Saraev, Alexei V.; Vasilieva, Lubov A.

    2001-03-01

    Thermal pretreatment of a sample using double vaporization in a two-step atomizer with a purged vaporizer makes possible the direct analysis of samples with strongly interfering matrices including solids. A porous-graphite capsule or a filter inserted into the vaporizer is used for solid sample analysis. The technique was used for the direct determination of Cd and Pb in human urine, potatoes, wheat, bovine liver, milk powder, grass-cereal mixtures, caprolactam, bituminous-shale and polyvinyl chloride plastic without chemical modification or any other sample pretreatment.

  20. Expansion of the laser ablation vapor plume into a background gas: Part A, Analysis

    OpenAIRE

    Wen, Sy-Bor; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2006-01-01

    A study of the gas dynamics of the vapor plume generated during laser ablation was conducted including a counterpropagating internal shock wave. The density, pressure, and temperature distributions between the external shock wave front and the sample surface were determined by solving the integrated conservation equations of mass, momentum, and energy. The positions of the shock waves and the contact surface (boundary that separates the compressed ambient gas and the vapor plume) were ob...

  1. Atomic electron correlations in intense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    DiMauro, L.F.; Sheehy, B.; Walker, B. [Brookhaven National Lab., Upton, NY (United States); Agostini, P.A. [SPAM, Gif Sur Yvette (France). Centre d`Etudes de Saclay; Kulander, K.C. [Lawrence Livermore National Lab., CA (United States)

    1998-11-01

    This talk examines two distinct cases in strong optical fields where electron correlation plays an important role in the dynamics. In the first example, strong coupling in a two-electron-like system is manifested as an intensity-dependent splitting in the ionized electron energy distribution. This two-electron phenomenon (dubbed continuum-continuum Autler-Townes effect) is analogous to a strongly coupled two-level, one-electron atom but raises some intriguing questions regarding the exact nature of electron-electron correlation. The second case examines the evidence for two-electron ionization in the strong-field tunneling limit. Although their ability to describe the one-electron dynamics has obtained a quantitative level of understanding, a description of the two (multiple) electron ionization remains unclear.

  2. [The use of laser vaporization for the treatment of benign prostatic hyperplasia].

    Science.gov (United States)

    Ustinov, D V; Kholtobin, D P; Kul'chavenia, E V; Aĭzikovich, B I

    2013-01-01

    Results of use of UroBeam laser diode in 72 patients with benign prostatic hyperplasia (BPH) were analyzed. Average prostate volume was 67.29 +/- 26.72 cm3, the duration of vaporization--69.2 +/- 23.7 min. Blood loss was minimal. In the period from 2 weeks to 4 months after surgery, 9 patients have developed acute urinary retention. In the early postoperative period, acute prostatitis was diagnosed in 7 patients and was jugulated using drug treatment. The laser vaporization of BPH led to a three-fold reduction in the severity of urinary disorders and increase the urinary flow rate. The combination of laser vaporization of the prostate with transurethral resection of the prostate allow to improve the recovery of urination after surgery.

  3. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2013-01-01

    Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...

  4. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    CERN Document Server

    Joulaei, Atefeh; Berti, Nicolas; Kasparian, Jerome; Mirzanejhad, Saeed; Muggli, Patric

    2016-01-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment.

  5. A portable laser system for high precision atom interferometry experiments

    CERN Document Server

    Schmidt, Malte; Giorgini, Antonio; Tino, Guglielmo M; Peters, Achim

    2010-01-01

    We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for the portable gravimeter GAIN, an atom interferometer that will be capable of performing high precision gravity measurements directly at sites of geophysical interest. This laser system is designed to be compact, mobile and robust, yet it still offers improvements over many conventional laboratory-based laser systems. Our system is contained in a standard 19" rack and emits light at five different wavelengths simultaneously on up to 12 fibre ports at a total output power of 800 mW. These wavelengths can be changed and switched between ports in less than a microsecond. The setup includes two phase-locked Raman lasers with a phase noise spectral density of less than 1 \\mu rad/sqrt(Hz) in the frequency range in which our gravimeter is most sensitive to noise. We characterize this laser system and evaluate the performance limits it imposes on an interferometer.

  6. Strongly interacting atom lasers in three-dimensional optical lattices.

    Science.gov (United States)

    Hen, Itay; Rigol, Marcos

    2010-10-29

    We show that the dynamical melting of a Mott insulator in a three-dimensional lattice leads to condensation at nonzero momenta, a phenomenon that can be used to generate strongly interacting atom lasers in optical lattices. For infinite on-site repulsion, the case considered here, the momenta at which bosons condense are determined analytically and found to have a simple dependence on the hopping amplitudes. The occupation of the condensates is shown to scale linearly with the total number of atoms in the initial Mott insulator. Our results are obtained by using a Gutzwiller-type mean-field approach, gauged against exact-diagonalization solutions of small systems.

  7. Sub-microsecond vapor plume dynamics under different keyhole penetration regimes in deep penetration laser welding

    Science.gov (United States)

    Chen, Xin; Pang, Shengyong; Shao, Xinyu; Wang, Chunming; Zhang, Xiaosi; Jiang, Ping; Xiao, Jianzhong

    2017-05-01

    It is well-known that distinct vapor plume dynamics occur during deep penetration laser welding under different keyhole penetration states. However, there is little knowledge about the physical characteristics of vapor plumes (velocity, pressure, flow patterns, etc) located inside transient keyholes of varying penetration regimes in laser welding. This lack of knowledge is primarily because mesoscale vapor plumes are highly dynamic and generally invisible. Based on a well-tested three-dimensional multiphase laser welding model, we conducted a computational study on vapor plume dynamics inside transient keyholes during the fiber laser welding of 304 austenite stainless steel as a function of keyhole penetration regimes. We observed three keyhole regimes of penetration: full penetration, partial penetration and no penetration. We then physically analyzed the vapor plumes in these regimes. We determined that the vapor plume velocities and pressures in all three regimes were uneven and oscillated following the dynamic keyhole with a characteristic timescale in sub-microseconds. Only when the keyhole approached the full penetration regime did vapor plumes begin to violently eject from the bottom of the keyhole opening, whereas in the partial penetration regime, even when the bottom part of the keyhole was open, most of the vapor plume ejected from the upper keyhole opening. This latter observation was similar to that in the no penetration mode. We studied the physical mechanism of this behavior by analyzing the keyhole temperature and vapor plume velocity distributions. We determined that the upward ejection of the vapor plume from the upper keyhole opening was the result of an uneven micro-meter scale boiling phenomenon of the transient keyhole governed by Fresnel absorptions dependent on the local inclination angle of the keyhole wall. Similarly, we determined that the ejection of the vapor plume from the bottom of the keyhole opening resulted from pressure

  8. Single-photon cesium Rydberg excitation spectroscopy using 3186-nm UV laser and room-temperature vapor cell

    Science.gov (United States)

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2017-09-01

    We demonstrate a single-photon Rydberg excitation spectroscopy of cesium (Cs) atoms in a room-temperature vapor cell. Cs atoms are excited directly from 6S1/2 ground state to nP3/2 (n = 70 - 100) Rydberg states with a 318.6 nm ultraviolet (UV) laser,and Rydberg excitation spectra are obtained by transmission enhancement of a probe beam resonant to Cs 6S1/2, F = 4 - 6P3/2, F' = 5 transition as partial population on F = 4 ground state are transferred to Rydberg state .Analysis reveals that the observed spectra are velocity-selective spectroscopy of Rydberg state, from which the amplitude and linewidth influenced by lasers'Rabi frequency have been investigated. Fitting to energies of Cs nP3/2 (n = 70 -100) states, the determined quantum defect is 3.56671(42). The demodulated spectra can also be employed as frequency references to stabilize the UV laser frequency to specific Cs Rydberg transition.

  9. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing.

    Science.gov (United States)

    Ly, Sonny; Rubenchik, Alexander M; Khairallah, Saad A; Guss, Gabe; Matthews, Manyalibo J

    2017-06-22

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results. Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.

  10. Production of CW and mode-locked atom lasers

    Science.gov (United States)

    Bouyer, P.; Rangwala, S. A.; Thywissen, J. H.; Le Coq, Y.; Gerbier, F.; Richard, S.; Delannoy, G.; Aspect, A.

    2002-06-01

    Nous étudions les propriétés des faisceaux cohérents atomique à partir d'un condensat de Bose Einstein. Grâce à un contrôle précis du coupleur de sortie, il est possible, comme en optique, de produire des faisceaux laser monomodes, multiples ou mode-lockés. De plus, on peut montrer que la propagation du faisceau peut être décrite par des matrices ABCD similaires à celles qui sont utilisées en optique. Néanmoins, les interactions entre atomes, qui sont inexistantes entre les photons, conduisent quelques différences entre les propriétés de collimation des lasers atomes et photoniques.

  11. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK et al.

    2006-02-27

    Full Text Available Single-walled carbon nanotubes were synthesised by the laser vaporisation of graphite composite targets in a tube furnace. Two pulsed Nd:YAG lasers operating at fundamental (1 064 nm) and 2nd harmonic (532 nm) were combined, focused and evaporated...

  12. Two-Color Laser Resonance Ionization Spectroscopy of Zirconium Atoms

    Science.gov (United States)

    Hasegawa, Shuichi; Nagamoto, Daisuke

    2017-10-01

    We have performed two-color laser resonance ionization spectroscopy of zirconium atoms to measure the energies of excited states below the third ionization limit. The number of intermediate states that we observed is 19, and energies deduced from the experiments agree with previous data. Complex ionization spectra of the excited states were observed through the intermediate states. The values of the first, second, and third ionization limits were derived from the Rydberg series of the spectra with quantum defect theory.

  13. Iodine vapor staining for atomic number contrast in backscattered electron and X-ray imaging.

    Science.gov (United States)

    Boyde, Alan; Mccorkell, Fergus A; Taylor, Graham K; Bomphrey, Richard J; Doube, Michael

    2014-12-01

    Iodine imparts strong contrast to objects imaged with electrons and X-rays due to its high atomic number (53), and is widely used in liquid form as a microscopic stain and clinical contrast agent. We have developed a simple technique which exploits elemental iodine's sublimation-deposition state-change equilibrium to vapor stain specimens with iodine gas. Specimens are enclosed in a gas-tight container along with a small mass of solid I2 . The bottle is left at ambient laboratory conditions while staining proceeds until empirically determined completion (typically days to weeks). We demonstrate the utility of iodine vapor staining by applying it to resin-embedded tissue blocks and whole locusts and imaging them with backscattered electron scanning electron microscopy (BSE SEM) or X-ray microtomography (XMT). Contrast is comparable to that achieved with liquid staining but without the consequent tissue shrinkage, stain pooling, or uneven coverage artefacts associated with immersing the specimen in iodine solutions. Unmineralized tissue histology can be read in BSE SEM images with good discrimination between tissue components. Organs within the locust head are readily distinguished in XMT images with particularly useful contrast in the chitin exoskeleton, muscle and nerves. Here, we have used iodine vapor staining for two imaging modalities in frequent use in our laboratories and on the specimen types with which we work. It is likely to be equally convenient for a wide range of specimens, and for other modalities which generate contrast from electron- and photon-sample interactions, such as transmission electron microscopy and light microscopy. © 2014 The Authors. Microscopy Research Technique published by Wiley Periodocals, Inc.

  14. Absorption of Irrigation Fluid During Thulium Laser Vaporization of the Prostate.

    Science.gov (United States)

    Müllhaupt, Gautier; Abt, Dominik; Mordasini, Livio; Köhle, Olivia; Engeler, Daniel S; Lüthi, Andreas; Sauter, Rafael; Schmid, Hans-Peter; Schwab, Christoph

    2017-04-01

    To assess the prevalence and extent of irrigation fluid absorption during thulium laser vaporization of the prostate. Fifty-four patients undergoing thulium laser vaporization of the prostate were prospectively included into the trial at a tertiary referral center. Isotonic saline containing 1% ethanol was used for intraoperative irrigation. Absorption of irrigation fluid was measured periodically during the operation using the expired breath ethanol technique. Among others, intra- and postoperative changes in biochemical and hematological laboratory findings were assessed. Absorption of irrigation fluid was detected in 7 out of 54 (13%) patients with a median absorption volume of 265 mL (227-615). No significant differences of intra- and postoperative blood parameters were observed between absorbers and nonabsorbers. No risk factor (i.e., age, prostate size, surgery duration, applied energy, and amount of irrigation fluid) for the occurrence of fluid absorption could be identified. Absorption of irrigation fluid also occurs during thulium laser vaporization of the prostate and should be kept in mind, especially in patients at a high cardiovascular risk. However, compared with previously assessed resection and vaporization techniques, thulium vaporization might have a favorable safety profile regarding fluid absorption.

  15. Parcs:. a Laser-Cooled Atomic Clock in Space

    Science.gov (United States)

    Heavner, T. P.; Hollberg, L. W.; Jefferts, S. R.; Robinson, H. G.; Sullivan, D. B.; Walls, F. L.; Ashby, N.; Klipstein, W. M.; Maleki, L.; Seidel, D. J.; Thompson, R. J.; Wu, S.; Young, L.; Mattison, E. M.; Vessot, R. F. C.; Demarchi, A.

    2002-04-01

    This paper describes progress toward the development of a Primary Atomic Reference Clock in Space (PARCS) and reviews the scientific and technical objectives of the PARCS mission. PARCS is a collaborative effort involving the National Institute of Standards and Technology (NIST), the University of Colorado, the Jet Propulsion Laboratory (JPL), the Harvard Smithsonian Center for Astrophysics (SAO) and the Politecnico di Torino. Space systems for this experiment include a laser-cooled cesium atomic clock and a GPS frequency-comparison and orbit determination system, along with a hydrogen maser that serves as both a local oscillator for the cesium clock and a reference against which certain tests of gravitational theory can be made. In the microgravity environment of the International Space Station (ISS), cesium atoms can be launched more slowly through the clock's microwave cavity, thus significantly reducing a number of troubling effects (including several critical systematic effects), so clock performance can be substantially improved beyond that achieved on earth.

  16. Circular Dichroism in Laser-Assisted Ion-Atom Collisions

    Science.gov (United States)

    Feuerstein, Bernold; Thumm, Uwe

    2003-05-01

    We investigate theoretically the effects of a strong laser field on the dynamics of ion-atom collisions. The time-dependent Schrödinger equation is solved on a numerical grid for a reduced dimensionality model of the scattering system. The single active electron system is confined to the two dimensions of the scattering plane, which also includes the laser electric field vector. This allows the study of the influence of the laser intensity and polarization (linear, circular, elliptic) on the collision dynamics (capture and ionization probabilities) The projectile follows a classical trajectory with impact parameter b. We found a strong circular dirchroism in the capture probability P(b) for slow proton-hydrogen collisions. First results will be presented and discussed. Supported in part by NSF (grant PHY-0071035) and Division of Chemical Sciences, Office of Basic Energy Scienes, Office of Energy Research, US DOE.

  17. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  18. Management of infantile subglottic hemangioma: Laser vaporization, submucous resection, intubation, or intralesional steroids?

    NARCIS (Netherlands)

    L.J. Hoeve (Hans); G.L.E. Küppers (G. L E); C.D.A. Verwoerd (Carel)

    1997-01-01

    textabstractThe infantile subglottic hemangioma can be treated in various ways. The results of the treatment used in the Sophia Children's Hospital, intralesional steroids and intubation (IS + I), are discussed and compared with the results of other current treatment methods: CO2 laser vaporization,

  19. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    Science.gov (United States)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  20. Absorption of irrigation fluid occurs frequently during high power 532 nm laser vaporization of the prostate.

    Science.gov (United States)

    Hermanns, Thomas; Grossmann, Nico C; Wettstein, Marian S; Fankhauser, Christian D; Capol, Janine C; Poyet, Cédric; Hefermehl, Lukas J; Zimmermann, Matthias; Sulser, Tullio; Müller, Alexander

    2015-01-01

    Absorption of irrigation fluid was not detected during GreenLight™ laser vaporization of the prostate using the first generation 80 W laser. However, data are lacking on intraoperative irrigation fluid absorption using the second generation 120 W high power laser. We assessed whether fluid absorption occurs during high power laser vaporization of the prostate. We performed this prospective investigation at a tertiary referral center in patients undergoing 120 W laser vaporization for prostatic bladder outlet obstruction. Normal saline containing 1% ethanol was used for intraoperative irrigation. The expired breath ethanol concentration was measured periodically during the operation using an alcometer. The volume of saline absorption was calculated from these concentrations. Intraoperative changes in hematological and biochemical blood parameters were also recorded. Of 50 investigated patients 22 (44%) had a positive breath ethanol test. Median absorption volume in the absorber group was 725 ml (range 138 to 3,452). Ten patients absorbed more than 1,000 ml. Absorbers had a smaller prostate, more capsular perforation, higher bleeding intensity and more laser energy applied during the operation. Three patients (13%) had symptoms potentially related to fluid absorption. Hemoglobin, hematocrit and serum chloride were the only blood parameters that changed significantly in the absorber group. The changes were significantly different than those in nonabsorbers. Fluid absorption occurs frequently during high power laser vaporization of the prostate. This should be considered in patients who present with cardiopulmonary or neurological symptoms during or after the procedure. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Raabe, D

    2017-04-01

    The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DEFF Research Database (Denmark)

    Hsu, M.T.L.; Hetet, G.; Peng, A.

    2006-01-01

    The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We...

  3. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  4. Carbon-dioxide laser vaporization of the Bartholin gland cyst: a retrospective analysis on 200 cases.

    Science.gov (United States)

    Fambrini, Massimiliano; Penna, Carlo; Pieralli, Annalisa; Fallani, Maria Grazia; Andersson, Karin L; Lozza, Virginia; Scarselli, Gianfranco; Marchionni, Mauro

    2008-01-01

    To evaluate the effectiveness of carbon-dioxide laser vaporization as definitive treatment for Bartholin gland cyst. Retrospective analysis (Canadian Task Force classification II-3). University teaching hospital. A consecutive series of 200 patients with monolateral or bilateral Bartholin gland cyst. A standardized technique of cyst vaporization performed by carbon-dioxide laser in outpatient setting and local anesthesia. Records of all patients were reviewed for anamnestic information, anatomic parameters, intraoperative and postoperative outcomes, and follow-up data. Seven patients having bilateral cyst were treated in a single session; 207 procedures were performed. The cyst mean size was 6.3 +/- 2.3 cm (95% CI 5.93-6.67). All treatments were completed in outpatient regimen and local anesthesia with a median operative time of 17 minutes (range: 7-45). Three (1.5%) cases of intraoperative major bleeding were observed. The cure rate of a single laser treatment was 95.7%. The 9 patients with recurrent disease observed during follow-up underwent carbon-dioxide laser reintervention by the same therapeutic strategy with a 100% cure rate after 2 or 3 treatments. Carbon-dioxide laser vaporization of Bartholin gland cyst represents a safe and effective procedure with complete healing and positive follow-up outcomes. Further randomized trials should be conducted to confirm these findings and to establish the best surgical strategy.

  5. Nuclear-driven flashlamp pumping of the atomic iodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Miley, G.H.

    1992-03-01

    This report is a study of the atomic iodine laser pumped with nuclear- excited XeBr fluorescence. Preliminary experiments, conducted in the TRIGA reactor investigated the fluorescence of the excimer XeBr under nuclear pumping with {sup 10}B and {sup 3}He, for use as a flashlamp gas to stimulate the laser. These measurements included a determination of the fluorescence efficiency (light emitted in the wavelength region of interest, divided by energy deposited in the gas) of XeBr under nuclear pumping, with varying excimer mixtures. Maximum fluorescence efficiencies were approximately 1%. In order to better understand XeBr under nuclear excitation, a kinetics model of the system was prepared. The model generated the time-dependant concentrations of 20 reaction species for three pulse sizes, a TRIGA pulse, a fast burst reactor pulse, and an e-beam pulse. The modeling results predicted fluorescence efficiencies significantly higher (peak efficiencies of approximately 10%) than recorded in the fluorescence experiments. The cause of this discrepancy was not fully determined. A ray tracing computer model was also prepared to evaluate the efficiency with which nuclear-induced fluorescence generated in one cavity of a laser could be coupled into another cavity containing an iodine lasant. Finally, an experimental laser cell was constructed to verify that nuclear-induced XeBr fluorescence could be used to stimulate a laser. Lasing was achieved at 1.31 micron in the TRIGA using C{sub 3}F{sub 7}I, a common iodine lasant. Peak laser powers were approximately 20 mW. Measured flashlamp pump powers at threshold agreed well with literature values, as did lasant pressure dependency on laser operation.

  6. Efficiency of conversion of XeCl laser radiation for SRS in metal vapor and hydrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Yu.I.; Ivanov, N.G.; Kovalenko, S.E.; Losev, V.F.; Panchenko, Yu.N.; Prokop' ev, V.S.

    1994-01-01

    One of the most effective methods of obtaining high-power coherent emission in the visible region of the spectrum is to convert UV emission of excimer lasers in stimulated Raman scattering (SRS) by electron transitions of metal atoms and vibrational transitions of hydrogen molecules. At present the maximum conversion efficiency with respect to the number of photons [eta][sub f] was realized in lead vapor, 80% at [lambda] = 458 nm and 88% in hydrogen molecules for S[sub 1] at [lambda] = 352 nm. At the same time the conversion efficiency in other metal vapors, and also in higher hydrogen Stokes components S[sub 2], S[sub 3], etc. is much lower than the limiting values for Ba, [eta][sub f] [approx equal] 21%, and for S[sub 2] and S[sub 3] respectively [eta][sub f] = 68% and 50%. It is quite difficult to determine from experimental data the optimal conditions for realizing the best efficiency of conversion into some particular component, or to compare these efficiencies, owing to the differences between the experimental conditions and the recording procedures. In many cases the causes of different conversion efficiencies in SRS remain completely unexplained. The level of the realized SRS energy does not exceed as a rule a hundred millijoules, and the pulse duration tens of nanoseconds. The authors present here the results of an experimental investigation of SRS efficiency in metal vapor and in hydrogen, using the pumping beam of a high-grade millijoule XeCl laser with pulse duration 15 nsec and with a joule-level pump beam with pulse duration 200 nsec.

  7. CARBON-DIOXIDE LASER VAPORIZATION IN EARLY GLOTTIC CARCINOMA

    NARCIS (Netherlands)

    MAHIEU, HF; PATEL, P; ANNYAS, AA

    Objective: Presently, widely employed treatment modalities for early glottic carcinoma include radiation therapy, surgical excision, and carbon dioxide laser excision. All these treatments have good oncological results, but poor or questionable functional-results in terms of quality of voice and

  8. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Science.gov (United States)

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  9. GreenLight laser vs diode laser vaporization of the prostate: 3-year results of a prospective nonrandomized study.

    Science.gov (United States)

    Guo, Sanwei; Müller, Georg; Bonkat, Gernot; Püschel, Heike; Gasser, Thomas; Bachmann, Alexander; Rieken, Malte

    2015-04-01

    Laser vaporization of the prostate is one of the alternatives to transurethral resection of the prostate. Short-term studies report a comparable outcome after laser vaporization with the 532 nm 120-W GreenLight high-performance system (HPS) laser and the 980 nm 200 W high-intensity diode (diode) laser. In this study, we analyzed the intermediate-term results of both techniques. From January 2007 to January 2008, 112 consecutive patients with symptomatic benign prostate enlargement were nonrandomly assigned to treatment with the GreenLight laser or the diode laser. Perioperative parameters, postoperative functional outcome, complications, and the reoperation rate at 3 years were analyzed. Improvement of voiding symptoms (International Prostate Symptom Score, quality-of-life) and micturition parameters (maximum flow rate, postvoid residual volume) showed no significant difference between the HPS group and the diode group. A significantly higher reoperation rate was observed in the diode group in comparison to the HPS group (37.5% vs 8.9%, p=0.0003) due to obstructive necrotic tissue (16.1% vs 0%, p=0.0018), bladder neck stricture (16.1% vs 1.8%, p=0.008), and persisting or recurrent adenoma (5.4% vs 7.1%, p=0.70), respectively. Both lasers lead to comparable improvement of voiding parameters and micturition symptoms. Treatment with the 200 W diode laser led to a significantly higher reoperation rate, which might be attributed to a higher degree of coagulation necrosis. Thus, a careful clinical application of this diode laser type is warranted.

  10. Laser photoacoustic detection of the essential oil vapors of thyme, mint, and anise

    Science.gov (United States)

    El-Kahlout, A. M.; Al-Jourani, M. M.; Abu-Taha, M. I.; Laine, Derek C.

    1998-07-01

    Photoacoustic studies of the vapors of the essential oils of thyme, mint and anise have been made using a line-tunable waveguide CO2 laser in conjunction with a heat-pipe type of photoacoustic vapor sample cell operated over the temperature range 20 - 180 degree(s)C. Identifying spectral fingerprint features are found in the 9 - 10 micrometers spectral region for each of the three essential oils investigated. The principal features of the photoacoustic spectrum of each essential oil are associated with the dominant chemicals present i.e. thymol in thyme oil, menthol in mint and anethole in anise.

  11. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic co...... compounds. We model the physics as a change in the top mirror loss caused by swelling of the polymer upon absorbing the target volatile organic compound. Further we show how acetone vapors at 82 000 ppm concentration can change the polymer coated VCSEL output power by 20 mu W....

  12. Three-dimensional kinetic and fluid dynamic modeling and three iterative algorithms for side-pumped alkali vapor lasers

    Science.gov (United States)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2017-11-01

    Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor lasers, a comprehensive physical model with three cyclically iterative algorithms for simulating the three-dimensional pump and laser intensities as well as temperature distribution in the vapor cell of side-pumped alkali vapor lasers is established. Comparison with measurement of a static side-pumped cesium vapor laser with a diffuse type hollow cylinder cavity, and with classical and modified models is made. Influences of flowed velocity and pump power on laser power are calculated and analyzed. The results have demonstrated that for high-power side-pumped alkali vapor lasers, it is necessary to take into account the three-dimensional distributions of pump energy, laser energy and temperature in the cell to simultaneously obtain the thermal features and output characteristics. Therefore, the model can deepen the understanding of the complete kinetic and fluid dynamic mechanisms of a side-pumped alkali vapor laser, and help with its further experimental design.

  13. Vapor emissions resulting from Nd:YAG laser interaction with tooth structure.

    Science.gov (United States)

    Gelskey, S C; White, J M; Gelskey, D E; Kremers, W

    1998-11-01

    The Neodymium:yttrium aluminum garnet (Nd:YAG) dental laser has been cleared by the United States Food and Drug Administration (FDA) for marketing in intraoral soft tissue treatment. The efficacy and safety of the Nd:YAG laser in the treatment of hard dental tissue as well as the effects of dental irradiation on the pulp and periodontium have been investigated. Odors resulting from laser irradiation have been reported, but the nature and toxicity of associated decomposition vapors is unknown and the health consequences of their inhalation have not yet been studied. The purpose of this in vitro study was to identify vapors emitted during interaction of the Nd:YAG laser with carious human enamel and dentin and sound enamel and dentin coated with organic ink. Vapor emissions were collected from prepared sections of extracted human teeth receiving laser irradiation of 100 mJ and 10 Hz for a duration of 1, 10, or 60 s. Emissions were collected by means of charcoal absorption tubes, and subsequently analyzed using a Gas Chromatograph equipped with Mass Selective (GC/MS) and Flame Ionization Detectors to identify the chemical constituents of the vapors. No compounds were identified in Nd:YAG laser-treated caries, enamel and dentin. No volatile vapors were identified from samples of tooth materials exposed to the laser for 1 or 10 s. Camphor was positively identified in the test sample which consisted of India ink-coated dentin and the reference sample of India ink-coated glass beads, both exposed to the laser for 60 s. 2,5-norbornadiene was tentatively identified in these samples. The Threshold Limit Value (TLV) of camphor is 2 ppm with a Lethal Dose Level (LDLo) of 50 mg/kg (human oral), while the TLV and LDLo of 2,5-norbornadiene is unknown. Occupational and public health safety measures are discussed in this article. Further research is needed to quantify the compounds produced and to determine their toxicity to patients and to dental care providers.

  14. On-line laser spectroscopy with thermal atomic beams

    CERN Document Server

    Thibault, C; De Saint-Simon, M; Duong, H T; Guimbal, P; Huber, G; Jacquinot, P; Juncar, P; Klapisch, Robert; Liberman, S; Pesnelle, A; Pillet, P; Pinard, J; Serre, J M; Touchard, F; Vialle, J L

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a CW tunable dye laser interacts at right angles with a thermal atomic beam. /sup 76-98/Rb, /sup 118-145 /Cs and /sup 208-213/Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while /sup 30-31/Na and /sup 38-47/K have been studied by setting the apparatus directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. The hyperfine structure, spins and isotope shifts of the alkali isotopes and isomers are measured. (8 refs).

  15. Search for permanent EDM using laser cooled Fr atoms

    Science.gov (United States)

    Kawamura, Hirokazu; Aoki, T.; Arikawa, H.; Ezure, S.; Furukawa, T.; Harada, K.; Hatakeyama, A.; Hatanaka, K.; Hayamizu, T.; Imai, K.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, T.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2013-03-01

    The existence of a non-zero electric dipole moment (EDM) implies the violation of time reversal symmetry. As the time-reversal symmetry violation predicted by the Standard Model (SM) for the electron EDM is too small to be observed with current experimental techniques and any a non-zero EDM would indicate new physics beyond the SM. The tiny signal from the electron EDM is enhanced in the heavy atoms such as francium (Fr). We are constructing the laser-cooled Fr factory to search for the electron EDM.

  16. Search for permanent EDM using laser cooled Fr atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirokazu, E-mail: kawamura@cyric.tohoku.ac.jp [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Arikawa, H.; Ezure, S. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Harada, K. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Hayamizu, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Imai, K. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S.; Sato, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Shimizu, Y. [Tohoku University, Department of Physics (Japan); Wakasa, T. [Kyushu University, Department of Physics (Japan); Yoshida, H. P. [Osaka University, Research Center for Nuclear Physics (Japan); and others

    2013-03-15

    The existence of a non-zero electric dipole moment (EDM) implies the violation of time reversal symmetry. As the time-reversal symmetry violation predicted by the Standard Model (SM) for the electron EDM is too small to be observed with current experimental techniques and any a non-zero EDM would indicate new physics beyond the SM. The tiny signal from the electron EDM is enhanced in the heavy atoms such as francium (Fr). We are constructing the laser-cooled Fr factory to search for the electron EDM.

  17. Electron scattering by laser-excited barium atoms

    Science.gov (United States)

    Register, D. F.; Trajmar, S.; Jensen, S. W.; Poe, R. T.

    1978-01-01

    Inelastic and superelastic scattering of 30- and 100-eV electrons by laser-excited 6s 6p 1P and subsequent cascade-populated 6s 6p 3P, 6s 5d 1D, and 6s 5d 3D Ba atoms have been observed. Absolute differential cross sections for the singlet and relative scattering intensities for the triplet species have been determined in the 5 to 20 deg angular region. Under the present conditions excitations dominate over deexcitations.

  18. Atomic Physics at Accelerators Laser Spectroscopy and Applications

    CERN Document Server

    Letokhov, V

    2003-01-01

    From 19 to 24 September, 1999, the First European Conference Atomic physics at Accelerators: Laser Spectroscopy and Applications (APAC'99) was held at University of Mainz and Schloss Waldhausen (Budenheim, Germany) under the chairmanship of H. Backe and G. Huber. The idea of this up-to-date conference was associated with the 65th anniversary of Professor Ernst Otten (University of Mainz) who, together with H. Kluge, contributed much to the development of this work at CERN, University of Mainz, and Darmstadt. (17 refs).

  19. Clinical predictors of oral leukoplakia recurrence following CO₂ laser vaporization.

    Science.gov (United States)

    Chainani-Wu, Nita; Lee, Dustin; Madden, Erin; Sim, Chelsia; Collins, Kornelia; Silverman, Sol

    2015-11-01

    The objective of this study was to determine whether risk of early leukoplakia recurrence (within 3 months) following carbon dioxide (CO2) laser removal varies by clinical characteristics including lesion size, site and accessibility of margins. A retrospective cohort study included patients with oral leukoplakia who had their first CO2 laser surgery for removal of oral leukoplakia between 2005 and 2010 at the UCSF oral medicine clinic. Twenty-six patients with 32 separate lesions met the eligibility criteria after a clinic database search was followed by review of clinical notes and biopsy reports from existing patient charts. Data analysis included computation of summary statistics, and logistic regression analyses to evaluate recurrence of leukoplakia by clinical characteristics of the lesions. Patient data and the characteristics of lesions were evaluated as possible predictors of early recurrence following laser removal; these included age, sex, duration, size, appearance and histopathology of the lesion. The only one that reached statistical significance was poor accessibility of the margins of the lesion (vs. good accessibility, OR = 24.57 (95% CI: 1.59-16.68), p = 0.016); the probability for trend for good, questionable, and poor accessibility was 0.0028. This finding remained significant after controlling for age, sex, duration and size of lesion. Four out of five lesions with poor accessibility showed recurrence at 3 months. Of these, three involved the gingiva and one the lateral tongue. This study has identified poor accessibility of the lesion margins as a predictor for early recurrence of leukoplakia following laser removal. Other variables evaluated did not reach statistical significance, possibly due to lack of power. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Applicability of multisyringe chromatography coupled to cold-vapor atomic fluorescence spectrometry for mercury speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guzman-Mar, J.L.; Hinojosa-Reyes, L. [Department of Chemistry Sciences, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, Pedro de Alba s/n, C.P. 66451 San Nicolas de los Garza, Nuevo Leon (Mexico); Serra, A.M. [Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca (Spain); Hernandez-Ramirez, A. [Department of Chemistry Sciences, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, Pedro de Alba s/n, C.P. 66451 San Nicolas de los Garza, Nuevo Leon (Mexico); Cerda, V., E-mail: victor.cerda@uib.es [Department of Chemistry, University of the Balearic Islands, E-07122 Palma de Mallorca (Spain)

    2011-12-05

    Graphical abstract: An automatic system, based on the applicability of multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) detection is developed for mercury speciation. Highlights: Black-Right-Pointing-Pointer The on-line coupling of MSC to CV/AFS was developed for mercury speciation analysis. Black-Right-Pointing-Pointer The speciation of MeHg{sup +}, Hg{sup 2+} and EtHg{sup +} was achieved on a RP C18 monolithic column. Black-Right-Pointing-Pointer The hyphenated system provided higher sample throughput compared to HPLC-CV/AFS. Black-Right-Pointing-Pointer The limits of detection for mercury species were comparable or better than those reported by HPLC-CV/AFS. Black-Right-Pointing-Pointer The developed method also provided low instrumental and operational costs. - Abstract: In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg{sup 2+}), methylmercury (MeHg{sup +}) and ethylmercury (EtHg{sup +}) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3{sigma}) were found to be 0.03, 0.11 and 0.09 {mu}g L{sup -1} for MeHg{sup +}, Hg{sup 2+} and EtHg{sup +}, respectively. The relative standard deviation (RSD, n = 6) of the

  1. Nanocell with a pressure-controlled Rb atomic vapor column thickness: Critical influence of the thickness on optical processes

    Science.gov (United States)

    Sargsyan, A.; Amiryan, A.; Cartaleva, S.; Sarkisyan, D.

    2017-07-01

    A new device is designed: it consists of a nanocell (NC) filled with Rb atom vapors and placed in a vacuum chamber. When the pressure in the chamber changes in the range 0-1 atm, the NC thickness is smoothly varied in the range L = 140-1700 nm, which is caused by the pressure-induced deformation of thin garnet windows in the chamber. The pressure dependence has excellent reproducibility even after many hundreds of cycles of letting in of air and its complete pumping out from the chamber. The accuracy of setting required thickness L is much better than in the wedge-gap NCs to be moved mechanically that were used earlier. The processes of Faraday rotation (FR) of a polarization plane, resonance absorption, and fluorescence are studied using the D 1-line narrow-band continuous laser radiation when the thickness changes from L = λ/2 (398 nm) to L = 2λ (1590 nm) at a step λ/2. The FR signal is shown to be maximal at L = λ/2 and 3λ/2 and to have the minimum spectral width (≈60 MHz). At L = λ and 2λ, the FR signal is minimal and has the maximum spectral width (≈200 MHz). The resonance absorption demonstrates the same oscillating behavior; however, the effect in the case of FR is much more pronounced. The oscillating effect is absent for resonance fluorescence: its spectral width and amplitude increase monotonically with L. The detected effects are explained and possible applications are noted.

  2. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Leal, L.O. [Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km.7.5, E-07122 Palma de Mallorca (Spain); Elsholz, O. [Hamburg University of Applied Sciences, Lohbruegger Kirchstrasse 65, 21033 Hamburg (Germany); Forteza, R. [Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km.7.5, E-07122 Palma de Mallorca (Spain); Cerda, V. [Department of Chemistry, University of the Balearic Islands, Carretera de Valldemossa km.7.5, E-07122 Palma de Mallorca (Spain)]. E-mail: victor.cerda@uib.es

    2006-07-28

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl{sub 2} in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L{sup -1}. The detection limit (3{sigma} {sub b}/S) achieved is 5 ng L{sup -1}. The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L{sup -1} Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples.

  3. Speciation of methylmercury and ethylmercury by gas chromatography cold vapor atomic fluresence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boggess, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Existing models and simulants of tank disposition media at SRS have presumed the presence of high concentrations of inorganic mercury. However, recent quarterly tank analyses show that mercury is present as organomercurial species at concentrations that may present challenges to remediation and disposition and may exceed the Saltstone Waste Acceptance Criteria (WAC). To-date, methylmercury analysis for Savannah River Remediation (SRR) has been performed off-site by Eurofins Scientific (Lancaster, PA). A series of optimization and validation experiments has been performed at SRNL, which has resulted in the development of on-site organomercury speciation capabilities using purge and trap gas chromatography coupled with thermal desorption cold vapor atomic fluorescence spectroscopy (P&T GC/CVAFS). Speciation has been achieved for methylmercury, with a method reporting limit (MRL) values of 1.42 pg for methylmercury. Results obtained by SRNL from the analysis of past quarterly samples from tanks 21, 40, and 50 have demonstrated statistically indistinguishable concentration values compared with the concentration data obtained from Eurofins, while the data from SRNL has demonstrated significantly improved precision and processing time.

  4. Muonic atoms in super-intense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahbaz, Atif

    2009-01-28

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent {gamma}-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  5. Impact of preoperative haemoglobin concentrations on the efficiency of KTP-laser vaporization of the prostate.

    Science.gov (United States)

    Buse, Stephan; Gilfrich, Christian; Hatiboglu, Gencay; Huber, Johannes; Bedke, Jens; Pfitzenmaier, Jesco; Haferkamp, Axel; Hohenfellner, Markus

    2009-06-01

    The potassium-titanyl-phoshate laser (KTP laser) device produces light (wavelength of 532 nm) that is absorbed by haemoglobin, thus releasing thermal energy. This reaction causes vaporization of the tissue. We tested whether preoperative haemoglobin concentrations (Hb) affect the efficiency of the 80 W KTP laser, thus affecting the energy applied. We assessed 164 patients undergoing KTP-laser vaporization for benign prostate hyperplasia from January 2005 to July 2006 at Heidelberg University Hospital. We prospectively collected data on patients' demographics, urodynamics, Hb, prostate volume, and energy applied. We calculated the correlation between preoperative Hb and surgery energy applied and we adjusted it for prostate volume. We further compared the postoperative urinary flow and residual volume results in non-low-Hb and in low-Hb patients. The mean age was 68.8 (+/-8.8 years), the median prostate volume 50.0 mL (interquartile range 40-80), the median preoperative urinary flow 10.1 mL/s (interquartile range 7.1-14.0), the median surgery duration 70.0 min (interquartile range 50-92.75), the median preoperative Hb 144.5 g/L (interquartile range 132-151), and the median applied energy 209.5 kJ (interquartile range 156.5-272.75). The unadjusted correlation between preoperative Hb and applied energy was -0.089 (P 0.05). Functional results did not differ between low-Hb and non-low-Hb patients (P > 0.05 for urinary flow and postvoid volume). Haemoglobin concentrations, in the range of clinically encountered values, do not affect the efficiency of 80 W KTP-laser vaporization of the prostate. This laser technique is thus applicable in patients with low haemoglobin concentrations without concerns about efficiency.

  6. Kinetics of laser pulse vaporization of uranium dioxide by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.

    1981-11-01

    Safety analyses of nuclear reactors require knowledge of the evaporation behavior of UO/sub 2/ at temperatures well above the melting point of 3140 K. In this study, rapid transient heating of a small spot on a UO/sub 2/ specimen was accomplished by a laser pulse, which generates a surface temperature excursion. This in turn vaporizes the target surface and the gas expands into vacuum. The surface temperature transient was monitored by a fast-response automatic optical pyrometer. The maximum surface temperatures investigated range from approx. 3700 K to approx. 4300 K. A computer program was developed to simulate the laser heating process and calculate the surface temperature evolution. The effect of the uncertainties of the high temperature material properties on the calculation was included in a sensitivity study for UO/sub 2/ vaporization. The measured surface temperatures were in satisfactory agreements.

  7. Laser-induced fluorescence with an OPO system. Part II: direct determination of lead content in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF).

    Science.gov (United States)

    Le Bihan, A; Lijour, Y; Giamarchi, P; Burel-Deschamps, L; Stephan, L

    2003-03-01

    Fluorescence was induced by coupling a laser with an optical parametric oscillator (OPO) to develop an analytical method for the direct determination of lead content, at ultra-trace level, in seawater by electrothermal atomization-laser-excited atomic fluorescence (ETA-LEAF). The optimization of atomization conditions, laser pulse energy, and mainly temporal parameters allowed us to reach a 3 fg detection limit (0.3 ng L(-1)) despite the low repetition rate of the device. The expected error on predicted concentrations of lead, at trace levels, in seawater was below 15%.

  8. Dynamics and Energetics of the Explosive Vaporization of Fog Droplets by a 10.6-microm Laser Pulse.

    Science.gov (United States)

    Kafalas, P; Herrmann, J

    1973-04-01

    The explosive vaporization of individual water droplets (5 microm to 25 microm radius) by a 10.6-microm laser pulse has been observed with a high speed schlieren photography system. The hot vapor and the shock wave produced by the explosive vaporization can be clearly seen in the schlieren photographs. The expansion rate of the heated air mass has been measured. Factors affecting the shape of the volume of heated air are discussed, and the energy balance of the process is considered.

  9. Continuous Water Vapor Mass Flux and Temperature Measurements in a Model Scramjet Combustor Using a Diode Laser Sensor

    National Research Council Canada - National Science Library

    Upschulte, B. L; Miller, M. F; Allen, M. G; Jackson, K; Gruber, M; Mathur, T

    1998-01-01

    A sensor for simultaneous measurements of water vapor density, temperature and velocity has been developed based on absorption techniques using room temperature diode lasers (InGaAsP) operating at 1.31 micrometers...

  10. Raman spectral features of single walled carbon nanotubes synthesized by laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK

    2006-07-05

    Full Text Available synthesized boxshadowdwnSemi-conductor tubes were favoured boxshadowdwnImproved crystallinity as indicated by narrower line- widths. Thank You Acknowledgements to the CSIR NLC for support on carbon nanotube research ... www.csir.co.za Experimental……..cont. Experimental parameters • two laser combined and vaporize a composite target • target in a tube furnace in continuous flow of Argon • temperature kept at 1000 OC • Ar flow of 200 sccm • Pressure at 375 Torr...

  11. Synthesis of Cobalt Oxides Thin Films Fractal Structures by Laser Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    P. Haniam

    2014-01-01

    Full Text Available Thin films of cobalt oxides (CoO and Co3O4 fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures.

  12. Energy characteristics of a transverse-discharge copper-vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Artemev, A.Yu.; Babeiko, Yu.A.; Bakhtin, O.M.; Borovich, B.L.; Vasilev, L.A.; Gerts, V.E.; Nalegach, E.P.; Ratnikov, G.E.; Tatarintsev, L.V.; Ulianov, A.N.

    1980-09-01

    Experimental results on the characteristics of a transverse-discharge copper-vapor laser are presented. The average power of stimulated emission in the yellow and green lines is studied as a function of excitation pulse amplitude and repetition rate, temperature of discharge chamber walls, and buffer gas pressure. The volt-ampere characteristics of the discharge were determined. An average radiation power of 75 W was achieved for a pulse repetition rate of 3 kHz.

  13. A novel vaporization-enucleation technique for benign prostate hyperplasia using 120-W HPS GreenLight™ laser: Seoul technique II in comparison with vaporization and previously reported modified vaporization-resection technique.

    Science.gov (United States)

    Yoo, Sangjun; Park, Juhyun; Cho, Sung Yong; Cho, Min Chul; Jeong, Hyeon; Son, Hwancheol

    2017-12-01

    We developed a novel vaporization-enucleation technique (Seoul II), which consists of vaporization-enucleation of the prostate using 120-W HPS GreenLight laser, and enucleated prostate resection using bipolar devices for tissue removal. We compared the outcomes of the Seoul II with vaporization and a previously reported modified vaporization-resection technique (Seoul I). Among patients with benign prostate hyperplasia who underwent transurethral surgery using GreenLight laser at our institute, 347 patients with prostate volume ≥ 40 ml were included. The impact of surgical techniques on efficacy and postoperative functional outcomes was compared. No difference was found in baseline characteristics, although the prostate volume was marginally greater in Seoul II (p = 0.051). Prostate volume reduction per operation time (p techniques. In multivariate analysis, postoperative 12-month I-PSS for Seoul II was significantly superior to vaporization (p vaporization (p = 0.014) and Seoul I (p = 0.048). Seoul II showed improved efficacy and voiding functional maintenance over postoperative 12 months in patients with prostate volume ≥ 40 ml compared with vaporization and Seoul I. This technique could be easily accepted by clinicians who are familiar with GreenLight lasers and add flexibility to surgery without additional equipment.

  14. Determination of mercury by electrochemical cold vapor generation atomic fluorescence spectrometry using polyaniline modified graphite electrode as cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianjuan [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gan Wuer, E-mail: wgan@ustc.edu.c [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan Lingzhong; Zhang Hanchang; He Youzhao [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-02-15

    An electrochemical cold vapor generation system with polyaniline modified graphite electrode as cathode material was developed for Hg (II) determination by coupling with atomic fluorescence spectrometry. This electrochemical cold vapor generation system with polyaniline/graphite electrode exhibited higher sensitivity; excellent stability and lower memory effect compared with graphite electrode electrochemical cold vapor generation system. The relative standard deviation was 2.7% for eleven consecutive measurements of 2 ng mL{sup -1} Hg (II) standard solution and the mercury limit of detection for the sample blank solution was 1.3 rg mL{sup -1} (3sigma). The accuracy of the method was evaluated through analysis of the reference materials (GBW09101) (Human hair) and GBW (08517) (Laminaria Japonica Aresch) and the proposed method was successfully applied to the analysis of human hairs.

  15. Tratamento da endometriose induzida cirurgicamente em coelhas pelo Laser de Vapor de Cobre (LVC The treatment of endometriosis induced surgically in rabbits using copper vapor laser (CVL

    Directory of Open Access Journals (Sweden)

    Maurício Paulo Ângelo Mieli

    2002-09-01

    Full Text Available OBJETIVO: Avaliar o uso do laser de vapor de cobre no tratamento da endometriose cirurgicamente induzida em coelhas.MÉTODOS: 42 coelhas da raça New Zealand foram submetidas à indução experimental da endometriose, de acordo com técnica cirúrgica padronizada. Após 30 dias da indução, um grupo de 29 animais foi submetido ao tratamento pelo laser de vapor de cobre (LVC em tempos que variaram de 2, 5, 15, 30 e 60 segundos e, outro grupo de 13 coelhas, serviu como controle, tendo-se realizado apenas a laparotomia, sem que fosse realizado algum tratamento. Após 15 dias da segunda laparotomia realizou-se avaliação histopatológica quanto à presença de endometriose, glândulas e estroma. RESULTADOS: O modelo experimental de indução da endometriose foi adequado, com 100% de eficácia. O tratamento com LVC mostrou-se eficiente, com destruição da doença em 31,00 % dos casos. Nas coelhas tratadas que ainda tinham a lesão, houve diminuição em 69,85 % na quantidade de glândulas. A destruição do estroma aconteceu em 41,38% dos casos, no grupo laser. CONCLUSÃO: Os resultados mostraram que o LVC é uma ferramenta adequada para o tratamento da endometriose, como o observado em coelhas.OBJECTIVE: To evaluate the use of copper vapor laser in treatment of the surgically induced endometriosis in rabbits. METHODS: 42 New Zeland rabbits were submitted to the experimental induction of the endometriosis, in agreement with standardized surgical technique. After 30 days of the induction, a group of 29 animals was submitted to the treatment by copper vapor laser (CVL in times that varied of 2, 5, 15, 30 and 60 seconds and, other group of 13 rabbits served as control without any treatment. After 15 days of the second laparotomy, histopatologic evaluations have done with relationship to the endometriosis presence, glands and estroma. RESULTS: The experimental model of endometriosis induction was adequated, with 100% of effectiveness. The treatment

  16. Optimal laser fiber rotational movement during photoselective vaporization of the prostate in a bovine ex-vivo animal model.

    Science.gov (United States)

    Osterberg, E Charles; Kauffman, Eric C; Kang, Hyun Wook; Koullick, Ed; Choi, Benjamin B

    2011-07-01

    Photoselective vaporization of the prostate (PVP) has emerged as an effective debulking procedure for prostatic urinary obstruction. Surgical technique for the most efficient vaporization has, however, received little scientific investigation. We used an ex-vivo bovine prostate model to investigate how variation in the angle of laser fiber rotational movement ("sweeping") affects prostate tissue vaporization efficiency. Experiments were conducted using the GreenLight™ HPS 120W laser system. A single surgeon performed a clinical PVP video analysis, forming the basis of our study design. Sixty bovine prostate specimens were vaporized using an ex-vivo chamber equipped with computer-assisted axial movements. Specimens were vaporized at a fixed sweeping speed (0.5 sweeps/sec) and variable sweeping angles (0, 15, 30, 60, 90, and 120 degrees). The volume of tissue vaporized was calculated from cross sections and compared by a two-sample t test. Clinical PVP video analysis of a single experienced surgeon showed a mean angle of 47.7 degrees with 25% of vaporization between 0 and 30 degrees. Ex-vivo analysis showed larger sweeping angles generated wider but more superficial vaporization defects, leading to smaller vaporized volumes. Specifically, vaporization volumes with angles of 0, 15, or 30 degrees were significantly greater than those with rotational angles of 45, 60, and 90 degrees (1.5-3.0 X; Pvaporization efficiency.

  17. Geometric optics with atomic beams scattered by a detuned standing laser wave

    CERN Document Server

    Prants, S V; Konkov, L E

    2012-01-01

    We report on theoretical and numerical study of propagation of atomic beams crossing a detuned standing-wave laser beam in the geometric oprics limit. The interplay between external and internal atomic degrees of freedom is used to manipulate the atomic motion along the optical axis by light. By adjusting the atom-laser detuning, we demonstrate how to focus, split and scatter atomic beams in a real experiment. The novel effect of chaotic scattering of atoms at a regular near-resonant standing wave is found numerically and explained qualitatively. Some applications of the effects found are discussed.

  18. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    Science.gov (United States)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  19. Determination of Mercury in Mainstream Cigarette Smoke by Conventional and Amalgamation Cold Vapor Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    McDaniel RL

    2014-12-01

    Full Text Available A method for differentiation of gas- and particulate-phase mercury in mainstream cigarette smoke was developed using electrostatic precipitation (EP as the trap for the particulate phase and impingers containing acidic potassium permanganate solution as the trap for the gas-phase portion. The mercury collected from the gas phase was analyzed by conventional cold vapor atomic absorption spectrometry (CVAAS and the particulate phase was analyzed by gold amalgamation CVAAS. Cigarettes were smoked under two smoking regimes, FTC (35-mL puff volume, 2 s puff duration and one puff every 60 s and an alternative (45-mL puff volume, 2 s puff duration, one puff every 30 s and 50% of any ventilation holes blocked currently recommended by the Massachusetts Department of Health. For the 1R4F reference cigarette smoked under the FTC smoking regime, the mercury found in the particulate phase was less than 0.2 ng/cig, compared with 4.9 ng/cig in the gas phase. By changing smoking parameters, the mercury concentration in mainstream smoke was found to change proportional to the delivery of cigarette smoke condensate (CSC for the same type of cigarette. However, the mercury level for different types of cigarettes smoked under the same smoking parameters had no linear relationship with CSC delivery. Spiked recovery was 98% AA± 8% for gas-phase mercury and 97% AA± 2% for the particulate phase. These results indicate that the analytical method developed is suitable for the determination of mercury in mainstream smoke. For routine analytical work in a smoking laboratory, only the gas phase needs to be analyzed for determination of mercury in mainstream smoke because the amount of mercury in the particulate phase is negligible.

  20. Efficient copper vapor laser using metal (Cu, Ag) chlorides in thermal insulation and performance with new prism resonator configurations.

    Science.gov (United States)

    Singh, Bijendra

    2012-12-01

    A copper vapor laser based on the use of copper chloride and silver chloride mixture embedded inside the laser head thermal insulation is successfully demonstrated. The use of external HCl generator cell containing zirconium chloride normally used for its kinetically enhanced mode of operation is completely eliminated. With this new configuration laser power of ~70 W was achieved from a wide aperture ~47-50 mm bore discharge tube with input power of ~5 kW and overall high efficiency of ~1.4% without external supply of HCl vapors to the laser head. In a typical operational cycle the laser initially operates as low temperature CuCl laser with startup time of few minutes and output power of ~10 W during low tube temperature range of ~300-500 °C. Thereafter, the laser transforms itself into efficient kinetically enhanced copper vapor laser (CVL) at high temperature range of ~1200-1600 °C with maximum laser output power of ~70 W. This dual mode of operation observed in a single CVL system is unique and has not been reported so far in any high temperature copper vapor laser. New resonator configurations, namely, the prism resonator in stable and unstable form are successfully demonstrated for the first time in a copper vapor laser to achieve low divergence beam with dramatic increase in misalignment tolerance to ~25 mrad, which is an improvement of about ~50 times compared to standard CVLs with conventional spherical or plane-plane resonators. With these new resonator configurations the CVL functions almost as an "alignment free laser" system with significantly reduced beam divergence of ~0.2 mrad and high optical extraction efficiency of ~70%-80%.

  1. Penning collisions of laser-cooled metastable helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Dos Santos, F.; Leonard, J.; Sinatra, A.; Wang, Junmin; Leduc, M. [Dept. de Physique, Ecole Normale Superieure, Paris (France); Perales, F. [Lab. de Physique des Lasers, Univ. Paris-Nord, Villetaneuse (France); Saverio Pavone, F. [Dept. of Physics, Univ. of Perugia, Via Pascoli, Perugia (Italy); Lens and INFM, Firenze (Italy); Rasel, E. [Univ. Hannover (Germany); Unnikrishnan, C.S. [TIFR, Mumbai (India)

    2001-04-01

    We present experimental results on the two-body loss rates in a magneto-optical trap of metastable helium atoms. Absolute rates are measured in a systematic way for several laser detunings ranging from -5 to -30 MHz and at different intensities, by monitoring the decay of the trap fluorescence. The dependence of the two-body loss rate coefficient {beta} on the excited state (2{sup 3}P{sub 2}) and metastable state (2{sup 3}S{sub 1}) populations is also investigated. From these results we infer a rather uniform rate constant K{sub sp} = (1{+-}0.4) x 10{sup -7} cm{sup 3}/s. (orig.)

  2. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    Science.gov (United States)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  3. Uniformity of quantum well heterostructure GaAlAs lasers grown by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Scifres, D.R.; Burnham, R.D.; Bernstein, M.; Chung, H.; Endicott, F.; Mosby, W.; Tramontana, J.; Walker, J.; Yingling, R.D. Jr.

    1982-09-15

    The threshold current density, laser wavelength, grown layer thickness, reverse breakdown voltage, and far-field radiation pattern as a function of position on the grown wafer are reported for broad area multiple quantum well GaAlAs heterostructure lasers grown by metalorganic chemical vapor deposition. It is found that the layer thickness varies across a 1.5-in. sample by as much as 20% at the outer edges of the water, leading to a lasing wavelength shift of as much as 150 A owing to the quantum size effect. It is shown that this thickness variation has only a small effect on the threshold current density across the water such that the uniformity of threshold current density is comparable to that reported previously for molecular beam epitaxy-grown conventional double heterostructure lasers.

  4. Efficient, high rep rate, large-bore kinetically enhanced copper vapor laser with low (thermal assembly.

    Science.gov (United States)

    Singh, Bijendra; Subramaniam, V V; Daultabad, S R; Chakraborty, Ashim

    2009-10-01

    Large-bore kinetically enhanced copper vapor laser (CVL) based on new thermal assembly consisting of different density zones of insulation material (alumina fiber) around the discharge tube is demonstrated for the first time with efficiency eta > or = 1% at extremely low specific input power (SIP) of insulation material, efficiency of approximately 1.2% was achieved at lowest SIP of approximately 0.75 kW/l. Net reduction in the input power of approximately 1 kW was observed on using this thermal assembly as compared to nonprofiled thermal assembly. These results show significant improvement (25%-30%) at low input requirements of the laser on using new thermal assembly around the discharge tube with overall electro-optical efficiency eta > or = 1%. Maximum laser power achieved from the laser was approximately 78 W at approximately 9.8 kHz rep rate with efficiency of approximately 1.4%. This large-bore CVL is also capable of operating efficiently (eta approximately 1%) at high rep rate of -17 kHz with maximum laser power of approximately 50 W. Performance of the laser under various operating conditions is also presented in this short paper.

  5. Interaction of intense laser pulses with atomic clusters: Measurements of ion emission, simulations and applications

    Energy Technology Data Exchange (ETDEWEB)

    Tisch, J.W.G. E-mail: john.tisch@ic.ac.uk; Hay, N.; Mendham, K.J.; Springate, E.; Symes, D.R.; Comley, A.J.; Mason, M.B.; Gumbrell, E.T.; Ditmire, T.; Smith, R.A.; Marangos, J.P.; Hutchinson, M.H.R

    2003-05-01

    This review paper provides a general introduction to the interaction of intense (>10{sup 15} W cm{sup -2}), femtosecond laser pulses with atomic clusters in the size range 500-10{sup 5} atoms. A nanoplasma model of the laser-cluster interaction is used to elucidate the underlying physics. Measurements of ion emission from the laser-cluster interaction are presented together with numerical simulations. Emerging applications are described.

  6. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  7. Fast-ion-beam laser probing of ion-source energy distributions and atomic structure

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Richard A., E-mail: rholt@uwo.ca; Rosner, S. David [University of Western Ontario, Physics and Astronomy Department (Canada)

    2013-04-15

    Collinear fast-ion-beam laser spectroscopy is a very high resolution probe for measuring ion-beam energy distributions and atomic structure parameters of interest in nuclear physics, atomic physics, and astrophysics. We have used offline 10-keV beams of atomic ions and a CW laser system to study the behavior of a Penning ion source and to measure hyperfine structure, isotope shifts, atomic lifetimes, spontaneous-emission branching fractions, oscillator strengths, and absolute wavelengths of a variety of atomic species from the lanthanide and transition-metal groups.

  8. Tunable dual-frequency laser source for coherent population trapping cesium atomic clocks

    Science.gov (United States)

    Camargo, F. A.; Georges, P.; Lucas-Leclin, G.; Baili, G.; Morvan, L.; Dolfi, D.; Holleville, D.; Guerandel, S.; Sagnes, I.

    2017-11-01

    Coherent population trapping (CPT) has been demonstrated as an interesting technique for miniature atomic frequency references [1,2] and quantum information. It is based on the coupling of the two hyperfine ground states of an alkali atom - namely cesium (133Cs) for atomic clocks - through excitation to a common atomic level by two phase-coherent laser fields nearly resonant with the atomic transitions. The frequency difference between the two laser fields is tuned at the atomic frequency splitting in the microwave range, equal to 9.192 GHz for 133Cs atoms. Outputs powers in the mW range and narrow-linewidth emission (<500 kHz) are required for the two laser beams.

  9. [Greenlight-XPS laser vaporization, the new standard of treatment in men with myasthenia gravis and benign prostatic obstruction]?

    Science.gov (United States)

    Husillos-Alonso, Adrián; Simón-Rodríguez, Carlos; Bolufer-Moragues, Eduardo; López-Martín, Leticia; Carbonero-García, Manuel; González-Enguita, Carmen

    2015-05-01

    Patients with Benign Prostatic Obstruction (BPO) and Myasthenia Gravis (MG) treated with Transurethral Resection of the prostate (TURP) show a high incidence of urinary incontinence due to unnoticed damage to muscle fibres of the external sphincter. Photoselective laser vaporization could be an alternative treatment based on the hypothesis that using Laser as energy source in the treatment of BPH prevents sphincter damage because the energy is not transmitted outside the fiber tip. We report the case of a man diagnosed of MG and symptomatic BPO treated satisfactorily with photoselective laser vaporization (GreenLight-XPS). Patient did not experienced postoperative secondary incontinence. Laser photoselective vaporization (GreenLight-XPS) could be the standard treatment for men with MG and BPO, whose prostate volume is less than 60 cc who are candidates for surgical treatment. Despite the extremely low incidence of these cases, further investigations are needed to confirm this affirmation.

  10. LASERS: Atomic xenon recombination laser excited by thermal ionizing radiation from a magnetoplasma compressor and discharge

    Science.gov (United States)

    Kamrukov, A. S.; Kozlov, N. P.; Opekan, A. G.; Protasov, Yu S.; Rudoĭ, I. G.; Soroka, A. M.

    1989-07-01

    A description is given and the results are reported of the first photoionization-recombination laser using atomic xenon excited by thermal ionizing radiation from a plasma. The pump source was a multichannel plasmadynamic discharge in magnetoplasma compressors, which was ignited in the active medium of the laser. When the composition of the working mixture was optimal (Xe:Ar = 1:250) and the total pressure was 1 atm, the output energy was ~ 0.5 J in the form of pulses of ~ 10 μs duration and the maximum specific output energy represented by laser radiation was 1-2 J/liter. The unsaturated gain was 27 m - 1. A kinetic laser scheme was proposed and analyzed. It allowed for the processes of photoionization, ion conversion, dissociative recombination, interaction of excited states with electron and buffer gases, etc. An important role played by heating of the active medium during pumping was demonstrated and it explained the observed characteristics of the spatial and temporal structure of the lasing process, particularly bleaching of large volumes of the active medium. The potential output energy of the laser was considered and specific constructions were proposed to attain a lasing efficiency amounting to a few percent.

  11. CO(2) laser vaporization as primary therapy for human papillomavirus lesions. A prospective observational study.

    Science.gov (United States)

    Savoca, S; Nardo, L G; Rosano, T F; D'Agosta, S; Nardo, F

    2001-12-01

    Human papillomavirus manifestations occur with increased frequency and severity amongst sexually active people. Several therapeutic approaches have been suggested to treat this viral disease. The aim of this prospective observational study was to assess the effectiveness of CO(2) laser vaporization for human papillomavirus warts. Eighty healthy sexually active women with cytologically, colposcopically and histologically diagnosed human papillomavirus urogenital and perianal warts were enrolled and then treated by CO(2) laser (16-18 W). Male partners were also investigated, and interferon-beta was eventually administered. All patients were then followed up for twelve months consecutively. At twelve-month follow-up, warts clearance was observed in 70 (87.5%) women. Recurrence was reported in ten (12.5%) women with multiple partners and affected by flat or endophytic condiloma of the cervix. Moreover, there were no complaints of pain, scar tissue deformity or other side effects. CO(2) laser vaporization is an effective, as well as safe and simple therapeutic approach for treatment of human papillomavirus warts. Its use should be encouraged for condyloma acuminata not associated with malignancy, as well as during pregnancy.

  12. Virological and cytological clearance in laser vaporization and conization for cervical intra-epithelial neoplasia grade 3.

    Science.gov (United States)

    Mariya, Tasuku; Nishikawa, Akira; Sogawa, Kanae; Suzuki, Riri; Saito, Masae; Kawamata, Akari; Shimizu, Ayumi; Nihei, Takehito; Sonoda, Tomoko; Saito, Tsuyoshi

    2016-12-01

    Cervical intra-epithelial neoplasia (CIN) is the precancerous stage of cervical cancer. Standard treatment for high-grade CIN is conization of the cervix. The risk of preterm birth following conization has been discussed recently. In contrast, laser vaporization is believed not to affect perinatal outcome, but the long-term effectiveness of each surgical procedure is still unclear. The aim of this prospective unmatched-cohort study was therefore to compare virological and cytological clearance and recurrence risk between conization and vaporization for CIN3. Subject consisted of CIN3 patients treated at the present hospital between 2007 to 2011 and followed up until December 2014. One hundred and one patients were treated with laser conization, and 137 with vaporization. The surgical procedure was selected on the basis of colposcopy, pathological grade and patient's hope for pregnancy. There were no significant differences in cure rate, human papilloma virus (HPV) clearance rate or recurrence rates between the conization and vaporization groups. Risk ratio of recurrence for each surgical procedure adjusted for age and HPV persistence status were analyzed on Cox proportional hazards modeling. Recurrence risk ratio for patients treated by vaporization was 6.21 (95%CI: 0.65-59.19; P = 0.111) compared with conization and there were no significant differences. No adverse pregnancy outcome was observed in the vaporization group compared with conization. Laser vaporization is useful for young patients with CIN3 who hope for pregnancy in the future. © 2016 Japan Society of Obstetrics and Gynecology.

  13. Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films

    Science.gov (United States)

    Besling, W. F. A.; Goossens, A.; Meester, B.; Schoonman, J.

    1998-01-01

    Laser-induced chemical vapor deposition of silicon carbonitride thin films has been investigated using a continuous wave CO2 laser in parallel configuration with the substrate. The reactant gases in this process, hexamethyl disilazane and ammonia, are rapidly heated by CO2 laser radiation due to their absorption of the laser energy. Polymerlike silicon carbonitride films or agglomerated nanosized particles are formed depending on process conditions. Dense, smooth films or nanostructured deposits have been synthesized at low substrate temperatures (Tssilicon and can be obtained with controlled microstructures. Surface morphology, composition, and type of chemical bonding have been studied with electron microscopy and spectroscopic analysis and are correlated to the most important laser process parameters. X-ray photoelectron spectroscopy and reflectance Fourier transform infrared spectroscopy show that the deposits consist of Si-N, Si-C, and Si-O bonds, linked together in a x-ray amorphous, polymerlike structure. The nitrogen content is about 40% and can be varied by adding ammonia to the reactant gas flow. The layers are readily contaminated with oxygen after exposure to air, caused by hydrolysis and/or oxidation.

  14. Vaporization of the prostate with 150-w thulium laser: complications with 6-month follow-up.

    Science.gov (United States)

    Vargas, César; García-Larrosa, Alejandro; Capdevila, Santiago; Laborda, Ainhoa

    2014-07-01

    Purpose: To analyze the efficacy and safety of vaporization of the prostate (VP) with the 150-W thulium:yttrium-aluminum-garnet (Tm:YAG) laser. In a prospective series of 55 patients with small- and medium-size prostates undergoing major outpatient surgery (MOS), the primary objectives were to analyze changes in maximum flow (Qmax) and International Prostate Symptom Score (IPSS) after 6 months. Immediate (30 days) complications were subsequently recorded. An increase in mean Qmax of 9.33 mL/s (95% confidence interval [CI] of the mean difference 6.73-11.93; Ptechnique with other procedures.

  15. Fabrication of GaAs-Mo-Si structures by metalorganic chemical vapor deposition and laser annealing

    Science.gov (United States)

    Okakmoto, K.; Imai, T.

    1983-06-01

    After depositing undoped polycrystalline GaAs layers on Mo layers by means of metal-organic chemical vapor deposition, the samples were immersed in SnCl2-dissolved methanol in order to undergo annealing through irradiation by a Q-switched ruby laser. Recrystallization and doping of the GaAs layers was carried out succesfully, and Schottky characteristics were observed between the top GaAs layer and the Mo layer underneath. The barrier height was measured to be 0.53 eV.

  16. Simultaneous time-averaged measurements of gas temperature and electron density in a copper-vapor laser using hydrogen emission spectroscopy

    Science.gov (United States)

    Blau, P.; Smilanski, I.; Rosenwaks, S.

    1992-08-01

    Measurements of the gas temperature and electron density in the plasma of a 100 W copper-vapor laser are presented. These parameters are simultaneously deduced from the Doppler and Stark broadening of the first four Balmer lines of the hydrogen atom emission. The analysis of the Doppler and Stark broadening involves evaluation of all other line-broadening mechanisms, including natural, pressure (van der Waals and resonance), instrumental, self-absorption, and fine-structure splitting. Iterative algorithm is employed to deconvolve the different line-shape components. The longitudinally integrated, time-averaged temperature and electron density are measured along the laser axis and found to be 4300 K and 1.3 × 1013 cm-3, respectively.

  17. Development of Laser Light Sources for Trapping Radioactive Francium Atoms Toward Tests of Fundamental Symmetries

    Science.gov (United States)

    Harada, Ken-ichi; Ezure, Saki; Hayamizu, Tomohiro; Kato, Ko; Kawamura, Hirokazu; Inoue, Takeshi; Arikawa, Hiroshi; Ishikawa, Taisuke; Aoki, Takahiro; Uchiyama, Aiko; Itoh, Masatoshi; Ando, Shun; Aoki, Takatoshi; Hatakeyama, Atsushi; Hatanaka, Kichiji; Imai, Kenichi; Murakami, Tetsuya; Shimizu, Yasuhiro; Sato, Tomoya; Wakasa, Tomotsugu; Yoshida, Hidetomo P.; Sakemi, Yasuhiro

    We have developed laser light sources and a magneto-optical trap system for cooling and trapping radioactive francium (Fr) atoms. Because Fr is the heaviest alkali element, a Fr atom exhibits high sensitivity to symmetry violation effects such as atomic parity nonconservation (APNC) and the electron electric dipole moment (eEDM). A laser cooling and trapping technique reduces the systematic errors due to the Doppler effect and the motion-induced magnetic field effect caused by the velocity of atoms. Thus, optically cooled and trapped Fr atoms are among a few promising candidates considered for APNC and eEDM measurements. Frequency stabilization of laser light is required for any stable measurement involving trapped radioactive atoms, including Fr. Since the hyperfine splitting in iodine molecules (127I2) is close to the resonance frequency of the Fr D2 line, we performed frequency modulation spectroscopy of hyperfine structures of I2.

  18. A compact and robust diode laser system for atom interferometry on a sounding rocket

    CERN Document Server

    Schkolnik, V; Wenzlawski, A; Grosse, J; Kohfeldt, A; Döringshoff, K; Wicht, A; Windpassinger, P; Sengstock, K; Braxmaier, C; Krutzik, M; Peters, A

    2016-01-01

    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone towards space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 liters and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technol...

  19. High power diode laser vaporization of the prostate: preliminary results for benign prostatic hyperplasia.

    Science.gov (United States)

    Erol, Ali; Cam, Kamil; Tekin, Ali; Memik, Omur; Coban, Soner; Ozer, Yavuz

    2009-09-01

    Vaporization techniques using lasers have gained wide acceptance for benign prostatic hyperplasia as an alternative to transurethral prostate resection. The high power, 980 nm wavelength diode laser is a new promising alternative with a more rapid ablation rate and excellent hemostatic properties, as shown in ex vivo and in vivo animal models. We prospectively evaluated vaporization efficiency of the high power, 980 nm diode laser for bladder outlet obstruction due to benign prostatic hyperplasia. A total of 47 consecutive patients were included in the study. Inclusion criteria were maximal flow rate 12 ml per second or less with voided volume 150 ml or greater, International Prostate Symptom Score 12 or greater and quality of life score 3 or greater. Patients with a history of neurogenic voiding dysfunction, chronic prostatitis, or prostate or bladder cancer were excluded from analysis. Preoperative maximal flow rate, post-void residual urine, International Prostate Symptom Score, quality of life, International Index of Erectile Function-5, prostate specific antigen and prostate volume were compared with values at 3 and 6 months. Complications were assessed. Month 3 assessment revealed that the mean +/- SD International Prostate Symptom Score decreased significantly from 21.93 +/- 4.88 to 10.31 +/- 3.79 (p = 0.0001). The mean maximal flow rate increased significantly from 8.87 +/- 2.18 to 17.51 +/- 4.09 ml per second (p = 0.0001). Quality of life score changed considerably compared to baseline. All of these values showed slight improvement at month 6. There was no deterioration in erectile function according to the International Index of Erectile Function-5 short form. Post-void residual urine decreased significantly. Prostate volume and prostate specific antigen reductions were also significant. The most common postoperative complications were retrograde ejaculation (13 of 41 patients or 31.7%) and irritative symptoms (11 of 47 or 23.4%), which subsided in the

  20. Laser Programs Highlights 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, H.; Cassady, C.

    1999-12-01

    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  1. Modeling of Laser Vaporization and Plume Chemistry in a Boron Nitride Nanotube Production Rig

    Science.gov (United States)

    Gnoffo, Peter A.; Fay, Catharine C.

    2012-01-01

    Flow in a pressurized, vapor condensation (PVC) boron nitride nanotube (BNNT) production rig is modeled. A laser provides a thermal energy source to the tip of a boron ber bundle in a high pressure nitrogen chamber causing a plume of boron-rich gas to rise. The buoyancy driven flow is modeled as a mixture of thermally perfect gases (B, B2, N, N2, BN) in either thermochemical equilibrium or chemical nonequilibrium assuming steady-state melt and vaporization from a 1 mm radius spot at the axis of an axisymmetric chamber. The simulation is intended to define the macroscopic thermochemical environment from which boron-rich species, including nanotubes, condense out of the plume. Simulations indicate a high temperature environment (T > 4400K) for elevated pressures within 1 mm of the surface sufficient to dissociate molecular nitrogen and form BN at the base of the plume. Modifications to Program LAURA, a finite-volume based solver for hypersonic flows including coupled radiation and ablation, are described to enable this simulation. Simulations indicate that high pressure synthesis conditions enable formation of BN vapor in the plume that may serve to enhance formation of exceptionally long nanotubes in the PVC process.

  2. Frequency-doubled telecom fiber laser for a cold atom interferometer using optical lattices

    Science.gov (United States)

    Theron, Fabien; Bidel, Yannick; Dieu, Emily; Zahzam, Nassim; Cadoret, Malo; Bresson, Alexandre

    2017-06-01

    A compact and robust frequency-doubled telecom laser system at 780 nm is presented for a rubidium cold atom interferometer using optical lattices. Adopting an optical switch at 1.5 μm and a dual-wavelength second harmonic generation system, only one laser amplifier is required for the laser system. Our system delivers a 900 mW laser beam with a detuning of 110 GHz for the optical lattice and a 650 mW laser beam with an adjustable detuning between 0 and -1 GHz for the laser cooling, the detection and the Raman transitions.

  3. Frequency doubled telecom fiber laser for a cold atom interferometer using optical lattices

    CERN Document Server

    Theron, Fabien; Dieu, Emily; Zahzam, Nassim; Cadoret, Malo; Zahzam, Nassim; Bresson, Alexandre

    2016-01-01

    A compact and robust laser system, based on a frequency-doubled telecom laser, providing all the lasers needed for a rubidium cold atom interferometer using optical lattices is presented. Thanks to an optical switch at 1.5 \\mu m and a dual-wavelength second harmonic generation system, only one laser amplifier is needed for all the laser system. Our system delivers at 780 nm a power of 900 mW with a detuning of 110 GHz for the optical lattice and a power of 650 mW with an adjustable detuning between 0 and -1 GHz for the laser cooling, the detection and the Raman transitions.

  4. Reactions of pulsed-laser evaporated lithium atoms with O 2 and N 2O

    Science.gov (United States)

    Andrews, Lester; Saffell, Wendy; Yustein, Jason T.

    1994-12-01

    Pulsed laser evaporated Li atoms were codeposited with O 2 in excess argon at 12 K. The same LiO 2 and LiO 2Li products were observed that were formed with thermal Li atoms. However, with N 2O the LiO product was observed in contrast to thermal Li atom reactions. Excess kinetic energy in the laser evaporated Li atoms provided activation energy for the abstraction reaction. In addition the extremely large yield of O 4- observed in O 2 experiments provides evidence for photoelectron emission from the lithium metal surface.

  5. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow

    Science.gov (United States)

    Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang

    2017-07-01

    Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.

  6. Fabrication and characterization of a cell electrostimulator device combining physical vapor deposition and laser ablation

    Science.gov (United States)

    Aragón, Angel L.; Pérez, Eliseo; Pazos, Antonio; Bao-Varela, Carmen; Nieto, Daniel

    2017-08-01

    In this work we present the process of fabrication and optimization of a prototype of a cell electrostimulator device for medical application combining physical vapor deposition and laser ablation. The fabrication of the first prototype begins with a deposition of a thin layer of 200 nm of aluminium on a borosilicate glass substrate using physical vapor deposition (PVD). In the second stage the geometry design of the electrostimulator is made in a CAD-like software available in a Nd:YVO4 Rofin Power line 20E, operating at the fundamental wavelength of 1064 nm and 20 ns pulse width. Choosing the proper laser parameters the negative of the electrostimulator desing is ablated. After that the glass is assembled between two polycarbonate sheets and a thick sheet of polydimethylsiloxane (PDMS). The PDMS sheet has a round hole in where cells are placed. There is also included a thin soda-lime silicate glass (100 μm) between the electrostimulator and the PMDS to prevent the cells for being in contact with the electric circuit. In order to control the electrical signal applied to the electrostimulator is used a digital I/O device from National Instruments (USB-6501) which provides 5 V at the output monitored by a software programmed in LabVIEW. Finally, the optical and electrical characterization of the cell electrostimulator device is presented.

  7. Ablation of soft tissue at 6.45 μm using a strontium vapor laser

    Science.gov (United States)

    Mackanos, Mark A.; Ivanov, Borislav; Soldatov, Anatoly N.; Kostadinov, I.; Mendenhall, Marcus H.; Piston, David W.; Haglund, Richard F., Jr.; Jansen, E. D.

    2004-07-01

    A gas discharge strontium vapor laser has been shown to operate with up to 90% of its light emitted at 6.45 μm. We have investigated the use of this laser as a potential stand-alone, tabletop alternative to the FEL for ablation of soft tissue. This custom-made laser currently delivers up to 2.4 watts of average power at 13 kHz pulse repetition rate (range 5-20 kHz). Despite a poor spatial beam profile the laser has been shown to ablate both water and soft tissue. However, current pulse energies (Schlieren) imaging and macroscopic white light imaging showed micro-explosions but at a rate well below the pulse repetition frequency. Histological analysis of ablation craters in bovine muscle exhibited significant collateral thermal damage, consistent with the high pulse frequency, thermal superposition and heat diffusion. Efforts to increase the pulse energy in order to achieve the threshold for pulse-to-pulse ablation are ongoing and will be discussed.

  8. Inversion symmetry breaking of atomic bound states in strong and short laser fields

    CERN Document Server

    Stooß, Veit; Ott, Christian; Blättermann, Alexander; Ding, Thomas; Pfeifer, Thomas

    2015-01-01

    In any atomic species, the spherically symmetric potential originating from the charged nucleus results in fundamental symmetry properties governing the structure of atomic states and transition rules between them. If atoms are exposed to external electric fields, these properties are modified giving rise to energy shifts such as the AC Stark-effect in varying fields and, contrary to this in a constant (DC) electric field for high enough field strengths, the breaking of the atomic symmetry which causes fundamental changes in the atom's properties. This has already been observed for atomic Rydberg states with high principal quantum numbers. Here, we report on the observation of symmetry breaking effects in Helium atoms for states with principal quantum number n=2 utilizing strong visible laser fields. These findings were enabled by temporally resolving the dynamics better than the sub-optical cycle of the applied laser field, utilizing the method of attosecond transient absorption spectroscopy (ATAS). We ident...

  9. Construction and characterization of external cavity diode lasers for atomic physics.

    Science.gov (United States)

    Hardman, Kyle S; Bennetts, Shayne; Debs, John E; Kuhn, Carlos C N; McDonald, Gordon D; Robins, Nick

    2014-04-24

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included.

  10. Continuous-Wave Alkali Vapor Laser Pumped by a Ti-sapphire Laser with Narrow Linewidth

    Science.gov (United States)

    Cai, H.; An, G. F.; Dai, K.; Wang, Y.; Zhang, W.; Han, J. H.; Rong, K. P.; Yu, H.; Wang, S. Y.; Wang, H. Y.; Xue, L. P.; Zhou, J.

    2017-06-01

    We have experimentally demonstrated the continuous wave rubidium and cesium lasers pumped by a Ti-sapphire laser with the linewidth of about 5 MHz. The pump and laser beams were orthogonally polarized and they can be separated by a polarized beam splitter (PBS). Two 4-cm-long cells were respectively filled with metallic rubidium and cesium as well as 300 Torr ethane as a buffer gas. A series of output couplers at different cell temperatures have been used and the optimal parameters have been found for earning the highest output. As a result, we have achieved a maximum output power of 111 mW with the optical to optical efficiency of 18.4% for a rubidium laser and a maximum output power of 136 mW with the optical to optical efficiency of 30% for a cesium laser, respectively. By considering there are no anti-reflection coatings on the surfaces of two cell end-windows, the output should be improved if the transmission attenuation is effectively decreased in the future.

  11. Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser

    Science.gov (United States)

    Uspenskiy, S. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Mironov, V. D.; Prokopova, N. M.; Tret'yakov, E. V.

    2015-03-01

    This work is devoted to the research of welding plume during high power ytterbium fiber laser welding of a titanium alloy in the Ar shielding gas environment. High speed video observation of a vapor-plasma plume for visualization of processes occurring at laser welding was carried out. The coefficient of the inverse Bremsstrahlung absorption of laser radiation is calculated for a plasma welding plume by results of spectrometer researches. The conclusion deals with the impact of plasma on a high-power fiber laser radiation.

  12. The generation and detection of high flux atomic oxygen for physical vapor deposition thin film growth

    NARCIS (Netherlands)

    Ingle, N.J.C.; Hammond, R.H.; Beasley, M.R.; Blank, David H.A.

    1999-01-01

    The growth of many epitaxial thin-film oxides is significantly enhanced with the use of an oxidizing agent such as atomic oxygen, ozone, or NO2. We developed a flow-through microwave plasma source to generate large atomic oxygen fluxes while maintaining vacuum pressures of less that 1×10¿4 Torr.

  13. Electron-atom potential scattering assisted by a bichromatic elliptically polarized laser field

    Science.gov (United States)

    Korajac, Arman; Habibović, Dino; Čerkić, Aner; Busuladžić, Mustafa; Milošević, Dejan B.

    2017-10-01

    Electron-atom potential scattering assisted by a bichromatic (two-component) elliptically polarized laser field is analyzed in the frame of the S-matrix theory. The second Born approximation is applied in the expansion of the S-matrix element. The first term in the expansion corresponds to the single scattering, while the second term in the expansion corresponds to the double scattering of electrons on atomic targets. The double scattering is possible in the presence of a laser field. The electron that has scattered on an atomic target may be driven back by the laser field and scatter again on the same atom. The double-scattered electrons may have considerably higher energies than those that scattered only once. We have investigated the dependence of the energy spectrum on various laser-field and incident electron parameters. The calculated electron energy spectra show the plateau-like structures with abrupt cutoffs. These cutoffs are explained by a classical analysis.

  14. Site Specificity in Femtosecond Laser Desorption of Neutral H Atoms from Graphite(0001)

    DEFF Research Database (Denmark)

    Frigge, R.; Hoger, T.; Siemer, B.

    2010-01-01

    Femtosecond laser excitation and density functional theory reveal site and vibrational state specificity in neutral atomic hydrogen desorption from graphite induced by multiple electronic transitions. Multimodal velocity distributions witness the participation of ortho and para pair states of che...

  15. Generation of atomic iodine via fluorine for chemical oxygen-iodine laser

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Špalek, Otomar; Čenský, Miroslav; Picková, Irena; Kodymová, Jarmila; Jakubec, Ivo

    2007-01-01

    Roč. 334, - (2007), s. 167-174 ISSN 0301-0104 R&D Projects: GA ČR GA202/05/0359 Grant - others:USAF European Office for Research and Development(XE) FA 8655-05-M-4027 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z40320502 Keywords : atomic iodine * atomic fluorine * chemical oxygen-iodine laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.805, year: 2007

  16. Photoselective vaporization of the prostate using the 180W lithium triborate laser.

    Science.gov (United States)

    Chung, Amanda S J; Chabert, Charles; Yap, Hin-Wai; Lam, Jimmy; Awad, Nader; Nuwayhid, Fadi; Redwig, Frank; Rashid, Prem; Woo, Henry H

    2012-05-01

    Photoselective vaporization of the prostate (PVP) is widely used to treat benign prostatic obstruction (BPO), but there is little experience reported on the new more powerful 180W lithium triborate (LBO) laser. This study evaluates the safety and efficacy of using the 180W LBO laser to treat BPO by examining a multicentre Australian experience. Retrospective review of prospectively collected data on all men treated by 180W LBO laser PVP by eight urologists across six Australian hospitals, from July 2011 to August 2011, was performed. Perioperative and functional outcomes were examined at baseline and 3 months. Of the 85 men (median age 70 years, prostate volume 51 cm(3)) identified, 27% (23/85) were in urinary retention and 44% (37/85) were taking antiplatelet/anticoagulant medication. Median operating time was 46 min, laser time 27 min, energy use 211 kJ, post-operative duration of catheterization 15 h and hospitalization 22 h. Functional outcomes from baseline to 3 months, respectively, were for IPSS 25-7; QoL 5-2; Qmax 7.7-18.4; and PVR 147-38. All improvements were statistically significant (P < 0.01). Thirty-eight percent (32/85) of patients experienced at least one adverse event. Most adverse events were low Clavien-Dindo grade I-II. There were five grade III, two grade IV and no grade V adverse events. Sixty per cent (51/85) of men were able to be discharged home voiding successfully without a catheter within 24-h post-PVP. Our early multicentre Australian experience indicates the 180W LBO laser PVP is an efficacious and safe treatment for BPO. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  17. Mid-IR laser absorption diagnostics for hydrocarbon vapor sensing in harsh environments

    Science.gov (United States)

    Klingbeil, Adam Edgar

    unburned fuel, engine performance can be characterized and future engine designs can be improved to utilize all of the fuel supplied to the engine. Simultaneous measurement of absorption at two wavelengths is used as a basis for hydrocarbon detection in severe environments. A novel wavelength-tunable mid-IR laser is modified to rapidly switch between two wavelengths, improving the versatility of this laser system. The two-wavelength technique is then exploited to measure vapor concentration while rejecting interferences such as scattering from liquid droplets and absorption from other species. This two-wavelength laser is also used to simultaneously determine temperature and vapor concentration. These techniques, in combination with the library of temperature-dependent hydrocarbon spectra, lay the groundwork necessary to develop fuel diagnostics for laboratory experiments and tests in pulse detonation engines and internal combustion engines. The temperature-dependent spectroscopy of gasoline is examined to develop a sensor for fuel/air ratio in an internal combustion engine. A wavelength was selected for good sensitivity to gasoline concentration. A spectroscopic model is developed that uses the relative concentrations of five structural classes to predict the absorption spectrum of gasoline samples with varying composition. The model is tested on 21 samples of gasoline for temperatures ranging from 300 to 1200 K, showing good agreement between model and measurements over the entire temperature range. Finally, a two-wavelength diagnostic was developed to measure the post-evaporation temperature and n-dodecane concentration in an aerosol-laden shock tube. The experimental data validate a model which calculates the effects of shock-wave compression on a two-phase mixture. The measured post-shock temperature and vapor concentration compare favorably for gas-phase and aerosol experiments. The agreement between the two fuel-loading techniques verifies that this aerosol shock

  18. Output rate of atom lasers in a Raman-type output-coupling scheme

    Science.gov (United States)

    Wu, Ying; Yang, Xiaoxue

    2000-07-01

    We present a theory to derive the output rate of an atom laser consisting of an interacting Bose-Einstein condensate in a magnetic trap and two additional rf fields transferring trapped atoms to a repelled Zeeman sublevel via an intermediate untrapped Zeeman sublevel. We explicitly obtain the dependence of the output rate Γout on various characteristic parameters such as a coupling parameter (the Rabi frequency), the atom number density in the center of the condensate, and the strength of the atom-atom interaction.

  19. Ultra-trace determination of methylmercuy in seafood by atomic fluorescence spectrometry coupled with electrochemical cold vapor generation

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Wenchuan, E-mail: zuhongshuai@126.com [Beijing Institute of Technology, College of Chemistry, Beijing 100081 (China); Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Wang, Zhenghao [Beijing Normal University, College of Chemistry, Beijing 100875 (China)

    2016-03-05

    Highlights: • Methylmercury detection by ECVG-AFS without pre-separation by HPLC is proposed. • Methylmercury is atomized by direct electrochemical reduction with no reductant. • Remarkably better sensitivity is obtained than the traditional HPLC-UV-AFS method. • Glassy carbon is the best cathode material to generate Hg vapor from methylmercury. - Abstract: A homemade electrochemical flow cell was adopted for the determination of methylmercury. The cold vapor of mercury atoms was generated from the surface of glassycarbon cathode through the method of electrolytic reduction and detected by atomic fluorescence spectroscopy subsequently. The operating conditions were optimized with 2 ng mL{sup −1} methylmercury standard solution. The caliberation curve was favorably linear when the concentrations of standard HgCH{sub 3}{sup +} solutions were in the range of 0.2–5 ng mL{sup −1}(as Hg). Under the optimized conditions, the limit of detection (LOD) for methylmercury was 1.88 × 10{sup −3} ng mL{sup −1} and the precision evaluated by relative standard deviation was 2.0% for six times 2 ng mL{sup −1} standard solution replicates. The terminal analytical results of seafood samples, available from local market, showed that the methylmercury content ranged within 3.7–45.8 ng g{sup −1}. The recoveries for methylmercury spiked samples were found to be in the range of 87.6–103.6% and the relative standard deviations below 5% (n = 6)were acquired, which showed this method was feasible for real sample analysis.

  20. Development of long life pulse power supply for copper vapor laser. Do joki laser yo chojumyo reiki dengen no kaihatsu. ; Saidai shutsuryoku unten oyobi laser hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T.; Goto, N.; Nemoto, K. (Central Research Inst. of Electric Power Industry, Tokyo (Japan))

    1990-04-01

    Long life pulse power supply for Cu vapor laser was developed. This is composed of the pulse generation circuit and the pulse compression circuit. Current pulse of 10 mu second pulse width is generated in the pulse generating circuit by switching electric charge on the condensor charged through GTO (gate turn off) thyristors. The pulse compression circuit makes the current pulse fast to 300ms utilizing the difference of inductance at the saturation and the unsaturation on the circuit which uses a reactor having saturable property using a ferromagnetic substance for the core as the magnetic switch. The operation was carried out at the GTO generasting full power. Co base amorphous alloy of low loss was used for the core of saturable inductor and the circuit efficiency of 77% could be obtained by suppressing the heat generation in core even at 4,000Hz operation. The full output power of 8.2kW was possible which corresponds to 100W class laser oscillation. Repeated Cu vapor laser oscillation of 30W succeeded at the condition of 4,000Hz and power supply output of 5.9kW. 7 refs., 21 figs., 8 tabs.

  1. Improving Raman velocimetry of laser-cooled cesium atoms by spin-polarization

    OpenAIRE

    Chabé, Julien; Lignier, Hans; Szriftgiser, Pascal; Garreau, Jean Claude

    2007-01-01

    12 pages, 6 figures, Elsevier style, to appear in Opt. Commun; International audience; We study the peformances of Raman velocimetry applied to laser-cooled, spin-polarized, cesium atoms. Atoms are optically pumped into the F=4, m=0 ground-state Zeeman sublevel, which is insensitive to magnetic perturbations. High resolution Raman stimulated spectroscopy is shown to produce Fourier-limited lines, allowing, in realistic experimental conditions, atomic velocity selection to one-fiftieth of a re...

  2. Prostate vaporization in the treatment of benign prostatic hyperplasia by using a 200-w high-intensity diode laser.

    Science.gov (United States)

    Chiang, Po-Hui; Chen, Chien-Hsu

    2010-07-01

    The recent introduction of high-power 200-W diode laser vaporization of the prostate has resulted in new interest in minimally invasive surgery for the treatment of benign prostatic hyperplasia (BPH). Although clinical reports are still limited, experimental ex vivo or in vivo models have demonstrated that this laser device offers improved ablative and hemostatic abilities. Some preliminary clinical results have proven that this laser technique can efficiently improve the symptoms of BPH. However, this still requires long-term evidence to support the use of this laser device. In this article, we review the latest experience with this laser technique and compare other laser systems in the treatment of BPH in recent years.

  3. Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrieva, O., E-mail: o.dmitrieva@mpie.de [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Choi, P., E-mail: p.choi@mpie.de [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Gerstl, S.S.A. [Imago Scientific Instruments, Madison, WI 53711 (United States); Ponge, D.; Raabe, D. [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)

    2011-05-15

    A precipitation hardened maraging TRIP steel was analyzed using a pulsed laser atom probe. The laser pulse energy was varied from 0.3 to 1.9 nJ to study its effect on the measured chemical compositions and spatial resolution. Compositional analyses using proximity histograms did not show any significant variations in the average matrix and precipitate compositions. The only remarkable change in the atom probe data was a decrease in the ++/+ charge state ratios of the elements. The values of the evaporation field used for the reconstructions exhibit a linear dependence on the laser pulse energy. The adjustment of the evaporation fields used in the reconstructions for different laser pulse energies was based on the correlation of the obtained cluster shapes to the TEM observations. No influence of laser pulse energy on chemical composition of the precipitates and on the chemical sharpness of their interfaces was detected. -- Research highlights: {yields} Changing the laser pulse energy in pulsed-laser atom probe could induce some changes in the analysis results of complex steels. {yields} Decreases in the evaporation fields and the ++/+ charge state ratios were detected with raising laser energy. {yields} Chemical composition of the intermetallic precipitates and the interface sharpness were not influenced by changing the laser energy.

  4. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  5. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qingyang, E-mail: liuqingyang0807@yahoo.com.c [Beijing Center for Physical and Chemical Analysis, Beijing 100089 (China)

    2010-07-15

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg{sup 0}, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL{sup -1} for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury (n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  6. Prospective evaluation of ambulatory laser vaporization of the prostate for benign prostatic hyperplasia.

    Science.gov (United States)

    Berquet, Gaetan; Corbel, Luc; Della Negra, Emmanuel; Huet, Romain; Trifard, François; Codet, Yann; Boulière, Fabien; Verhoest, Grégory; Vincendeau, Sébastien; Bensalah, Karim; Mathieu, Romain

    2015-07-01

    Photoselective vaporization of the prostate (PVP) is an alternative to transurethral resection of the prostate in the surgical treatment of benign prostatic hyperplasia (BPH). Our objective was to prospectively evaluate the feasibility, safety, and efficacy of ambulatory photoselective vaporization of the prostate for benign prostatic hyperplasia. We prospectively collected data of all consecutive patients who underwent ambulatory PVP with the Greenlight(®) laser 180-W XPS at two centers between May 2012 and June 2013. Patients' characteristics, perioperative data, postoperative outcomes, complications, and patient's satisfaction were evaluated. Successful ambulatory care procedure was defined as the ability to leave the hospital in the evening of the operation. The ambulatory procedure was intended in 134 patients. Mean age was 67 years. Mean prostate volume was 54 ml, and Median American Society Anesthesiologists (ASA) score was 2. Ambulatory procedure was successful in 121 patients (90%). At 3 months, International Prostate Symptom Score (7.3 ± 4.9), maximal urinary flow rate (20.8 ± 7.6 ml/s), postvoid residual urine (19.2 ± 71 ml), and quality of life (1.6 ± 1.4) were significantly improved (P ambulatory care. Failure to complete ambulatory procedure was mostly related to logistical problem (70% of the cases). Ambulatory PVP is feasible with functional results and complications comparable to that of traditional hospitalization. Ambulatory care yields high patient's satisfaction. © 2015 Wiley Periodicals, Inc.

  7. In vitro study on the vaporization ratio of 2-microm laser in human prostatic tissue.

    Science.gov (United States)

    Yang, Yong; Sun, Dongchong; Wei, Zhitao; Xu, Feng; Hong, Baofa; Zhang, Xu

    2010-04-01

    In this study, the vaporization ratio of the 2-mum laser in the prostatic tissue with benign prostatic hyperplasia was examined in vitro, to explore a technique to estimate the clearance rate of prostatic tissue during the transurethral vaporesection of the prostate. A total of 9 fresh prostatic tissue specimens were obtained by open surgery and the wet weight of the prostatic tissue were measured immediately after the sample collection. Under the simulated conditions of transurethral vaporesection of the prostate by 2-microm laser, each prostate gland was completely vaporesected into fragments with a diameter of less than 1.0 cm in vitro. After the vaporesection, the whole fragments of prostatic tissue were collected and measured. Then the lost weight of prostatic tissue, the weight of the collected prostatic tissue and the ratio of the lost weight of prostatic tissue to the wet weight of the prostate glandular organ specimen were calculated. The correlation between the weight of collected prostatic tissue and the weight of the whole glandular organ was analyzed. All the experimental procedures were carried out by one operator. Wet weight of the prostatic gland specimen and the weight of the harvested prostatic tissues after the procedure were recorded. With respect to the wet weight of prostate gland specimen, the percentage of the weight of collected prostatic tissue was (34.45 + or - 1.51) %, and the percentage of the lost weight of prostatic tissue was (65.55 + or - 1.51)%. Satisfactory linear relationship was observed between the weight of collected prostatic tissue and the wet weight of prostate gland specimen [y = 3.245 x -6.475 (t=15.097, P=0.000)]. It is concluded that under the simulated conditions of transurethral vaporesection of the prostate by 2-mum laser, the vaporization ratio of prostatic tissue can be calculated on the basis of the weight of collected prostatic tissue, and thereby the clearance of prostatic tissue during the formal operation by 2

  8. Therapeutic effect of laser vaporization for vaginal intraepithelial neoplasia following hysterectomy due to premalignant and malignant lesions.

    Science.gov (United States)

    Wang, Yan; Kong, Wei-Min; Wu, Yu-Mei; Wang, Jian-Dong; Zhang, Wei-Yuan

    2014-06-01

    The aim of this study was to evaluate the therapeutic effect of laser vaporization for vaginal intraepithelial neoplasia (VAIN) after hysterectomy in Chinese women and to identify factors affecting persistence/recurrence. Twenty-eight VAIN patients after hysterectomy due to cervical intraepithelial neoplasia (group 1) and 11 VAIN patients due to cervical cancer (group 2) were reviewed retrospectively. All patients were treated with at least one episode of laser vaporization between 2010 and 2011, and then followed up every 3 months for at least 1 year. Cox regression analysis was used to identify independent factors predicting persistence/recurrence. All VAIN patients achieved remission after two episodes of laser treatment, with 85.7% complete regression in group 1 and 54.5% in group 2. The first episode of the treatment had a significantly higher success rate in group 1 than in group 2 (46.2% vs 0.0%). All patients had no recurrence during a mean follow-up time of 22.8-27.8 months (range 12-39 months). However, infection persisted in 21 (61.8%) of 34 human-papillomavirus-positive patients after laser vaporization. Severity of VAIN was the only significant independent predictor of persistence/recurrence after one episode of the treatment (adjusted odds ratio, 4.08; 95% confidence interval, 1.28-12.96; P = 0.017). Laser treatments were well tolerated with no major side-effects. Laser vaporization may be a useful option for the treatment of VAIN after hysterectomy. However, a follow-up is required to assess the long-term efficacy of laser treatment. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  9. Species-resolved laser-probing investigations of the hydrodynamics of KrF excimer and copper vapor laser ablation processing of materials

    Science.gov (United States)

    Ventzek, Peter L. G.; Gilgenbach, Ronald M.; Ching, Chi H.; Lindley, R. A.

    1993-06-01

    Hydrodynamic phenomena from KrF excimer laser ablation (10-3-20 J/cm2) of polyimide, polyethyleneterephthalate, and aluminum are diagnosed by laser beam deflection, schlieren photography, shadowgraphy, laser-induced-fluorescence and dye-laser- resonance absorption photography (DLRAP). Experiments were performed in vacuum and gaseous environments (10-5 to 760 Torr). In vacuum, the DLRAP diagnostic shows species-resolved plume expansion which is consistent with that of a reflected rarefaction wave. Increasing the background gas pressure reveals the formation of sound/shock compared to CN in the laser-ablated polyimide (Vespel) plume/shock in inert (e.g. argon) and reactive (e.g. air) gases. At low pressures (less than 10 Torr) Al and CN species are in close contact with the shock front. As the pressure increases, the species front tends to recede, until at high pressures (over 200 Torr) the species are restrained to only a few mm above the target surface. After sufficient expansion, Al and CN are no longer detectable; only the shadowgraph of the hot gas plume remains. Since CN is observable in both inert and reactive environments, it can be concluded that CN is not a reaction product between the background gas and the ablated species. By way of comparison to excimer laser ablation processing of materials, copper vapor laser machined polyimide and polymethylmethacrylate (transparent to green and yellow copper vapor laser light) are also investigated. The two polymers are observed to have markedly different machined surfaces. Hydrodynamic effects for the copper vapor laser machined materials are investigated using HeNe laser beam deflection.

  10. Coherent Population Trapping Resonances in Cs Atomic Vapor Layers of Micrometric Thickness

    Directory of Open Access Journals (Sweden)

    A. Krasteva

    2011-01-01

    Full Text Available We report on a novel behavior of the electromagnetically induced absorption (EIA resonance observed on the D2 line of Cs for atoms confined in cells with micrometric thickness. With the enhancement of light intensity, the EIA resonance amplitude suffers from fast reduction, and even at very low intensity (W < 1 mW/cm2, resonance sign reversal takes place and electromagnetically induced transparency (EIT resonance is observed. Similar EIA resonance transformation to EIT one is not observed in conventional cm-size cells. A theoretical model is proposed to analyze the physical processes behind the EIA resonance sign reversal with light intensity. The model involves elastic interactions between Cs atoms as well as elastic interaction of atom micrometric-cell windows, both resulting in depolarization of excited state which can lead to the new observations. The effect of excited state depolarization is confirmed also by the fluorescence (absorption spectra measurement in micrometric cells with different thicknesses.

  11. Compact tunable diode laser with diffraction-limited 1 Watt for atom cooling and trapping

    Science.gov (United States)

    Stry, Sandra; Hildebrandt, Lars; Sacher, Joachim; Buggle, Christian; Kemmann, Mark; von Klitzing, Wolf

    2004-06-01

    Since the introduction of laser-cooling techniques for neutral atoms, the enhancement of high-power lasers with excellent spectral and spatial quality has been an important research subject. We report a new principle of using high-power laserdiodes directly in an external cavity. The very compact design offers an output power of up to 1 W and an excellent beam quality (M2 < 1.2). The coupling efficiency for a single mode fiber exceeds 60%. The center wavelength can be tuned between 775 nm and 785 nm. This laser operates single mode with a mode-hop free tuning range of up to 15 GHz without current modulation and a side-mode suppression better than 55 dB. Demonstrating the suitability for neutral atom cooling we used this laser as light source in the production of a BEC of over a million 87Rb atoms.

  12. Is light narrowing possible with dense-vapor paraffin coated cells for atomic magnetometers?

    Science.gov (United States)

    Han, Runqi; Balabas, Mikhail; Hovde, Chris; Li, Wenhao; Roig, Hector Masia; Wang, Tao; Wickenbrock, Arne; Zhivun, Elena; You, Zheng; Budker, Dmitry

    2017-12-01

    We investigated the operation of an all-optical rubidium-87 atomic magnetometer with amplitude-modulated light. To study the suppression of spin-exchange relaxation, three schemes of pumping were implemented with room-temperature and heated paraffin coated vacuum cells. Efficient pumping and accumulation of atoms in the F=2 ground state were obtained. However, the sought-for narrowing of the resonance lines has not been achieved. A theoretical analysis of the polarization degree is presented to illustrate the absence of light narrowing due to radiation trapping at high temperature.

  13. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    Science.gov (United States)

    Choudhary, B. S.; Singh, A.; Tanwar, S.; Tyagi, P. K.; Kumar, M. Senthil; Kushvaha, S. S.

    2016-04-01

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surface with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.

  14. Holmium:YAG transurethral incision versus laser photoselective vaporization for benign prostatic hyperplasia in a small prostate.

    Science.gov (United States)

    Elshal, Ahmed M; Elkoushy, Mohamed A; Elmansy, Hazem M; Sampalis, John; Elhilali, Mostafa M

    2014-01-01

    We assess the perioperative, short-term and long-term functional outcomes of treating bladder outlet obstruction secondary to a small prostate by 1 of 2 laser techniques. A retrospective review using a prospectively maintained database was performed of patients treated for bladder outlet obstruction secondary to a prostate smaller than 40 ml. Patients who were treated with GreenLight™ photoselective vaporization of the prostate or holmium laser transurethral incision of the prostate were included in the study. From January 2002 through December 2010, 191 cases of 1,682 laser prostate surgeries were described. GreenLight photoselective vaporization of the prostate was performed in 144 (75.4%) cases and holmium laser transurethral incision of the prostate was performed in 47 (24.6%) cases. A significantly shorter mean operating time, hospital stay and catheter duration were observed in the holmium laser transurethral incision of the prostate group (30.3 ± 16 minutes, 0.8 ± 0.8 days and 1.3 ± 1.9 days, respectively) than in the photoselective vaporization of the prostate group (45.8 ± 22 minutes, 0.3 ± 0.4 days and 0.4 ± 0.6 days, respectively, p transurethral incision of the prostate there were reductions in mean International Prostate Symptom Score, quality of life score and residual urine with improvement of mean maximal flow rate of 55.3% and 52.8%, 49.2% and 49%, 45% and 78.1%, and 67.4% and 35.4%, respectively. Subjective and objective urine flow parameters were comparable at different followup points. There was no significant difference between the 2 groups in terms of early and late complications (p >0.05). Reoperation rates were 10.4% and 6.4% in the photoselective vaporization of the prostate and holmium laser transurethral incision of the prostate groups, respectively (p >0.05). The mean estimated cost per holmium laser transurethral incision of the prostate procedure was significantly lower than per photoselective vaporization of the prostate

  15. Laser-excitation atomic fluorescence spectroscopy in a helium microwave-induced plasma

    Science.gov (United States)

    Schroeder, Timothy S.

    The focus of this dissertation is to report the first documented coupling of helium microwave induced plasmas (MIPs) to laser excitation atomic fluorescence spectroscopy. The ability to effectively produce intense atomic emission from both metal and nonmetal analytes gives helium microwave induced plasmas a greater flexibility than the more commonly utilized argon inductively coupled plasma (ICP). Originally designed as an element selective detector for non-aqueous chromatography applications at low applied powers (500 W). The helium MIP has been shown to be a very powerful analytical atomic spectroscopy tool. The development of the pulsed dye laser offered an improved method of excitation in the field of atomic fluorescence. The use of laser excitation for atomic fluorescence was a logical successor to the conventional excitation methods involving hollow cathode lamps and continuum sources. The highly intense, directional, and monochromatic nature of laser radiation results in an increased population of atomic species in excited electronic states where atomic fluorescence can occur. The application of laser excitation atomic fluorescence to the analysis of metals in a helium microwave induced plasma with ultrasonic sample nebulization was the initial focus of this work. Experimental conditions and results are included for the aqueous characterization of manganese, lead, thallium, and iron in the helium MIP- LEAFS system. These results are compared to previous laser excitation atomic fluorescence experimentation. The effect of matrix interferences on the analytical fluorescence signal was also investigated for each element. The advantage of helium MIPs over argon ICPs in the determination of nonmetals in solution indicates that the helium MIP is an excellent candidate for laser excitation atomic fluorescence experiments involving nonmetals such as chlorine, bromine, iodine, and sulfur. Preliminary investigations into this area are reported, including documentation

  16. Can we predict the outcome of 532 nm laser photoselective vaporization of the prostate? Time to event analysis.

    Science.gov (United States)

    Elshal, Ahmed M; Elmansy, Hazem M; Elhilali, Mostafa M

    2012-11-01

    We evaluated the safety, efficacy and predictability of the long-term outcome of GreenLight™ (532 nm laser) photoselective vaporization of the prostate to treat patients with lower urinary tract symptoms secondary to benign prostatic hyperplasia. We performed a longitudinal study of patients who underwent GreenLight (532 nm laser) photoselective vaporization of the prostate at our center between June 2002 and November 2011. All patient data were prospectively maintained in the prostate unit database. Two types of laser equipment were used, including the KTP in 91 cases (31.6%) and the GreenLight HPS™ in 197 (68.4%). Larger glands were treated with HPS and KTP photoselective vaporization (mean ± SD volume 45.6 ± 22.5 and 39.6 ± 15.2 ml, respectively, p vaporization with the KTP laser, we noted a 59.1% and 61.8% decrease in the International Prostate Symptom Score, and a 140.7% and 118.4% improvement in the maximal urine flow rate at 1 and 5 years, respectively. Similarly, after prostate vaporization with the HPS we observed a 65.1% and 62.1% decrease in the International Prostate Symptom Score, and a 123.1% and 107.3% improvement in the maximal urine flow rate at 1 and 4 years, respectively. At a mean of 40.5 months (range 3 to 114) of followup reoperation was indicated in 7.6% of cases. The overall rates of bladder neck contracture, de novo urethral stricture and residual/recurrent adenoma were 3.4% (10 cases), 2.1% (6) and 2.1% (6) with no statistically significant difference between vaporization with the KTP and HPS lasers. Most adverse events occurred during year 1 postoperatively. More bladder neck contractures developed after vaporization was done in smaller glands (p vaporization of the prostate seems to be safe and effective for lower urinary tract symptoms secondary to benign prostatic hyperplasia. A long lasting, successful outcome is predictable. With careful surveillance during year 1 postoperatively and early intervention for adverse events, a

  17. Towards non-classical light storage via atomic-vapor Raman scattering

    NARCIS (Netherlands)

    Wal, C.H. van der; Eisaman, M.D.; Zibrov, A.S.; André, A.; Phillips, D.F.; Walsworth, R.L.; Lukin, M.D.

    2003-01-01

    We present experimental work that investigates whether quantum information carried by light can be stored via reversible mapping of the quantum state of such light onto a collective atomic coherence. Such a quantum memory could be utilized to allow quantum communication over long, lossy channels.

  18. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Flores, Erico Marlon de Moraes [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)], E-mail: flores@quimica.ufsm.br

    2009-06-15

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L{sup - 1} KBr in 6 mol L{sup - 1} HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L{sup - 1} HCl and 2.5% m/v NaBH{sub 4} solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g{sup - 1} for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  19. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Duarte, Fábio Andrei; Bizzi, Cezar Augusto; Antes, Fabiane Goldschmidt; Dressler, Valderi Luiz; Flores, Érico Marlon de Moraes

    2009-06-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  20. Selective laser vaporization of polypropylene mesh used in treatment of female stress urinary incontinence and pelvic organ prolapse: preliminary studies using a red diode laser.

    Science.gov (United States)

    Burks, David; Rosenbury, Sarah B; Kennelly, Michael J; Fried, Nathaniel M

    2012-04-01

    The most common mesh-related complication experienced by patients undergoing transvaginal polypropylene synthetic slings for stress urinary incontinence (SUI) and transvaginal pelvic organ prolapse (POP) repair with mesh is vaginal mesh erosion. More than half of the patients who experience erosion from synthetic mesh require surgical excision which is technically challenging and risks damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI and POP. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm(2) , pulse duration of 100 milliseconds, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ∼200-µm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples was performed, ex vivo. Temperature mapping of suture/mesh samples with a thermal camera was also conducted. Selective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232°C, respectively, while direct laser irradiation of tissue alone resulted in only a 1°C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal elevation in the adjacent tissue. This technique may be useful for treatment of eroded mesh after SUI or POP procedures that require surgical revision. Copyright © 2012 Wiley Periodicals, Inc.

  1. Atomic-resolution measurements with a new tunable diode laser-based interferometer

    DEFF Research Database (Denmark)

    Silver, R.M.; Zou, H.; Gonda, S.

    2004-01-01

    We develop a new implementation of a Michelson interferometer designed to make measurements with an uncertainty of less than 20 pm. This new method uses a tunable diode laser as the light source, with the diode laser wavelength continuously tuned to fix the number of fringes in the measured optical...... path. The diode laser frequency is measured by beating against a reference laser. High-speed, accurate frequency measurements of the beat frequency signal enables the diode laser wavelength to be measured with nominally 20-pm accuracy for the measurements described. The new interferometer design...... is lightweight and is mounted directly on an ultra-high vacuum scanning tunneling microscope capable of atomic resolution. We report the simultaneous acquisition of an atomic resolution image, while the relative lateral displacement of the tip along the sample distance is measured with the new tunable diode...

  2. NATO Advanced Study Institute on Laser Interactions with Atoms, Solids,and Plasmas

    CERN Document Server

    1994-01-01

    The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include ...

  3. Photoselective vaporization prostatectomy: experience with a novel 180 W 532 nm lithium triborate laser and fiber delivery system in living dogs.

    Science.gov (United States)

    Malek, Reza S; Kang, Hyun Wook; Peng, Yihlih Steven; Stinson, Douglas; Beck, Michael T; Koullick, Ed

    2011-02-01

    We studied vaporization parameters, and anatomical and histopathological outcomes of photoselective vaporization of the prostate with the novel GreenLight™ XPS™ 180 W, 532 nm lithium triborate laser and MoXy™ fiber in a survival model of living dogs. We compared these findings with those of the existing GreenLight HPS™ 120 W 532 nm lithium triborate laser photoselective vaporization of the prostate in living dogs. Eight dogs underwent antegrade photoselective vaporization of the prostate with the 180 W laser delivered through a new 750 μm (vs the existing 600 μm core diameter), 50% larger, spot sized, side firing fiber. Four dogs were sacrificed 3 hours and 8 weeks postoperatively, respectively. We recorded laser energy and time. Prostates were sectioned, measured and histologically analyzed after hematoxylin and eosin, triphenyltetrazolium chloride or Gomori trichrome staining and compared with a normal control. Photoselective vaporization of the prostate with the 180 W laser bloodlessly created a 76% larger cavity (mean 11.8 vs 6.7 cm(3), p = 0.014), vaporized tissue at a 77% higher rate (mean 2.3 vs 1.3 cm(3) per minute, p = 0.03) and did so in 37% less time per volume vaporized (0.5 vs 0.8 minutes per cm(3), p = 0.003). Hematoxylin and eosin, and triphenyltetrazolium chloride staining histologically revealed a 33% thicker mean coagulation zone vs that of 120 W laser photoselective vaporization of the prostate (2.0 ± 0.4 vs 1.5 ± 0.3 mm, p vaporization of the prostate with the MoXy fiber has a significantly higher vaporization rate and speed with a deeper hemostatic coagulation zone but favorable tissue interaction and healing equal to those of HPS 120 W laser photoselective vaporization of the prostate in dogs. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. Laser-Assisted Field Evaporation and Three-Dimensional Atom-by-Atom Mapping of Diamond Isotopic Homojunctions.

    Science.gov (United States)

    Mukherjee, Samik; Watanabe, Hideyuki; Isheim, Dieter; Seidman, David N; Moutanabbir, Oussama

    2016-02-10

    It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.

  5. Holmium laser enucleation versus photoselective vaporization for prostatic adenoma greater than 60 ml: preliminary results of a prospective, randomized clinical trial.

    Science.gov (United States)

    Elmansy, Hazem; Baazeem, Abdulaziz; Kotb, Ahmed; Badawy, Hesham; Riad, Essam; Emran, Ashraf; Elhilali, Mostafa

    2012-07-01

    To our knowledge we report the first single center, prospective, randomized study comparing holmium laser enucleation and high performance GreenLight™ prostate photoselective vaporization as surgical treatment of prostatic adenomas greater than 60 ml. A total of 80 patients with a large prostatic adenoma were randomly assigned to surgical treatment with holmium laser enucleation or photoselective vaporization. International Prostate Symptom Score, International Index of Erectile Function-15, maximum flow rate, post-void residual urine, serum prostate specific antigen and transrectal ultrasound volume were recorded. Patient baseline characteristics were similar for holmium laser enucleation and photoselective vaporization. Operative time and catheter removal time were almost equal in the 2 groups (p = 0.7 and 0.2, respectively). Eight vaporization cases were converted to transurethral prostate resection or holmium laser enucleation intraoperatively due to bleeding. A significantly higher maximum flow rate and lower post-void residual urine were noted in holmium laser cases during the entire followup (at 1 year each p = 0.02). However, no significant difference in International Prostate Symptom Score, quality of life or International Index of Erectile Function-15 was detected. Prostate volume and serum PSA decreased 78% and 88% in the holmium laser group, and 52% and 60% in the vaporization group, respectively. Holmium laser enucleation and photoselective vaporization are effective for lower urinary tract symptoms due to a large prostatic adenoma. Early subjective functional results (maximum flow rate and post-void residual urine) of holmium laser enucleation appear to be superior to those of photoselective vaporization. In our hands cases intended to be treated with photoselective vaporization were at 22% risk of conversion to another modality. This could reflect our determination to vaporize to the capsule in all vaporization cases. Copyright © 2012 American

  6. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  7. The safety and efficacy of aspirin intake in photoselective vaporization laser treatment of benign prostate hyperplasia

    Directory of Open Access Journals (Sweden)

    Shao IH

    2013-03-01

    Full Text Available I-Hung Shao,1,* Chen-Pang Hou,1,* Shao-Ming Chen,3 Chien-Lun Chen,1,2 Yu-Hsiang Lin,1 Phei-Lang Chang,1,2 Ke-Hung Tsui1,2 1Department of Urology, 2Bioinformation Center, Chang Gung Memorial Hospital-Linko and Chang Gung University College of Medicine, 3Department of Urology, Taipei City Hospital, Heping Campus, Taipei, Taiwan, People's Republic of China *These authors contributed equally to this work Abstract: Endoscopic surgical treatment has become an option to treat benign prostate hyperplasia. We evaluated the safety and effectiveness of photoselective vaporization of the prostate (PVP in patients. We evaluated preoperative and perioperative parameters, functional outcomes, and adverse events up to 12 months postoperatively of patients on oral anticoagulation therapy undergoing PVP, and compared the results with patients who did not take anticoagulation therapy. A total of 89 patients who received photoselective vaporization laser for benign prostate hyperplasia from May 2006 to February 2011 in our hospital were enrolled in our study. The patients were divided into two groups based on whether or not they were taking oral aspirin; 23 (25.8% patients were taking aspirin derivatives (aspirin group, and 66 (74.2% were not taking aspirin derivatives (control group. The mean prostate volume (58.8 mL vs 51 mL; P = 0.16 and mean energy consumption (235,268 J vs 289,793 J; P = 0.097 were comparable between the aspirin group and control group. The average postoperative results of hemoglobin were 13.4 mg/dL for the aspirin group versus 13.9 mg/dL for the control group (P = 0.327. A significantly higher maximum flow rates and 80% improved post-void residual urine were noted during the followup. Postoperatively all variable showed significant improvement starting at month 1 of followup and remained improved for the 12 month followup. Postoperative complications were low and comparable between groups. PVP was characterized by excellent hemostatic

  8. Study of helium and beryllium atoms with strong and short laser field; Etude des atomes d'helium et de beryllium en champ laser intense et bref

    Energy Technology Data Exchange (ETDEWEB)

    Laulan, St

    2004-09-01

    We present a theoretical study of the interaction between a two-active electron atom and an intense (10{sup 14} to 10{sup 15} W/cm{sup 2}) and ultrashort (from a few 10{sup -15} to a few 10{sup -18} s) laser field. In the first part, we describe the current experimental techniques able to produce a coherent radiation of high power in the UV-XUV regime and with femtosecond time duration. A theoretical model of a laser pulse is defined with such characteristics. Then, we develop a numerical approach based on B-spline functions to describe the atomic structure of the two-active electron system. A spectral non perturbative method is proposed to solve the time dependent Schroedinger equation. We focalize our attention on the description of the atomic double continuum states. Finally, we expose results on the double ionization of helium and beryllium atoms with intense and short laser field. In particular, we present total cross section calculations and ejected electron energy distributions in the double continuum after one- and two-photon absorption. (author)

  9. Multiphoton resonant ionization of hydrogen atom exposed to two-colour laser pulses

    Institute of Scientific and Technical Information of China (English)

    Wang Pei-Jie; Fang Yan

    2008-01-01

    This paper studies the multiphoton resonant ionization by two-colour laser pulses in the hydrogen atom by solving the time-dependent Schr(o)dinger equation.By fixing the parameters of fundamental laser field and scanning the frequency of second laser field,it finds that the ionization probability shows several resonance peaks and is also much larger than the linear superposition of probabilities by applying two lasers separately.The enhancement of the ionization happens when the system is resonantly pumped to the excited states by absorbing two or more colour photons non-sequentially.

  10. [Comparative study on the effects of LEEP and laser CO(2) vaporization in cervical intraepithelial neoplasia II].

    Science.gov (United States)

    Sun, Lu-Lu; Cao, Dong-Yan; Bian, Mei-Lu; Wei, Li-Hui; Yang, Jia-Xin; Yang, Li; Cheng, Ning-Hai; Wang, You-Fang; Cheng, Xue-Mei; Hu, Li-Jun; Lang, Jing-He; Shen, Keng

    2010-11-23

    to compare the effect and complications of loop electro-surgical excision procedure (LEEP) and laser CO(2) vaporization in the treatment of cervical intraepithelial neoplasia II. a total of 338 CINII women were recruited into this multi-center comparative study. The diagnosis was confirmed by histopathological examination for cervical epithelial cell abnormalities. And colposcopic examination was submitted to LEEP (n = 195) or laser CO(2) vaporization (n = 143) respectively. A post-treatment follow-up of 3, 6 and 12 months was carried out to compare the effect of two methods. among 195 women undergoing LEEP, the frequency of cure, persistent and recurrent CIN was 89.2% (n = 174), 4.1% (n = 8) and 3.6% (n = 7) respectively. And among 143 women receiving laser CO(2) vaporization, the frequency of cure, persistent and recurrent CIN was 86.7% (n = 124), 4.9% (n = 7) and 0.70% (n = 1) respectively. There was no statistical difference in cure rates, persistence or recurrence of CIN (P > 0.05). The recovery time, the operative frequency and intra-operative blood loss were significantly different in two groups. both LEEP and CO(2) vaporization are both effective and reliable for the treatment of cervical intraepithelial neoplasia II. However, pathological specimens may be harvested during LEEP. It is of vital importance to conduct preoperative colposcopic assessment and standard postoperative follow-ups.

  11. Efficacy and Safety of Transurethral Photoselective Greenlight(™) Laser Vaporization for the Treatment of Orthotopic Ureteroceles in Adults.

    Science.gov (United States)

    Liu, Cuilong; Chen, Weihao; Xie, Changliang; Guan, Weimin; Zhao, Yubo; Ouyang, Yun; Xu, Yansheng; Wu, Yiguang; Wang, Xiyou; Wang, Yi; Zhang, Xinyu

    2015-06-01

    This study aimed to retrospectively evaluate the safety and efficacy of transurethral photoselective Greenlight(™) laser vaporization in adult patients with orthotopic ureterocele. Thirty adult patients diagnosed with orthotopic urecterocele were recruited at our center. Transurethral photoselective Greenlight laser vaporization was used as the exclusive technique for endoscopic management during the study period. Information, including age, gender, mode of presentation, ureterocele size, vesicoureteral reflux, hydronephrosis status, and incidence of reoperation, were collected for evaluation. Our series included 12 men and 18 women. The mean patient age at presentation was 30.5 years (range, 18-62 years). The mean size of ureterocele was 18 mm (range, 10-41 mm). All patients successfully underwent transurethral photoselective Greenlight laser to vaporize the ureterocele. The operation ranged from 13 min to 38 min (mean 19.6 min). The average blood loss was vaporization is safe, effective, and efficient for the management of orthotopic urecteroceles in adults. Therefore, this technique should be considered as the initial treatment in most patients.

  12. Theory and computation of few-electron atoms in intense laser fields

    CERN Document Server

    Moore, L

    2001-01-01

    experimental peak laser intensity measurement. At 780 nm preliminary results of a comparable calculation of double-ionization are given. In anticipation of a high intensity, high frequency radiation source becoming available in Germany by 2003, a calculation at 14 nm has also been performed. Momentum distributions have revealed the new process of double-electron above threshold ionization. In this process both electrons absorb excess photons during double-ionization. The study of the helium atom-exposed to an intense laser field forms the topic of this thesis. In the context of laser-atom interactions, a laser is said to be intense if the force it exerts on an electron in an atomic orbital is comparable to the force experienced by that electron due to the binding atomic potential. The electronic response of the helium atom to an intense laser field is governed by the interactions of the two electrons between themselves, with the nucleus and with the field. The problem therefore is the fundamental three-body p...

  13. Precise calibration of few-cycle laser pulses with atomic hydrogen

    Science.gov (United States)

    Wallace, W. C.; Kielpinski, D.; Litvinyuk, I. V.; Sang, R. T.

    2017-12-01

    Interaction of atoms and molecules with strong electric fields is a fundamental process in many fields of research, particularly in the emerging field of attosecond science. Therefore, understanding the physics underpinning those interactions is of significant interest to the scientific community. One crucial step in this understanding is accurate knowledge of the few-cycle laser field driving the process. Atomic hydrogen (H), the simplest of all atomic species, plays a key role in benchmarking strong-field processes. Its wide-spread use as a testbed for theoretical calculations allows the comparison of approximate theoretical models against nearly-perfect numerical solutions of the three-dimensional time-dependent Schrödinger equation. Until recently, relatively little experimental data in atomic H was available for comparison to these models, and was due mostly due to the difficulty in the construction and use of atomic H sources. Here, we review our most recent experimental results from atomic H interaction with few-cycle laser pulses and how they have been used to calibrate important laser pulse parameters such as peak intensity and the carrier-envelope phase (CEP). Quantitative agreement between experimental data and theoretical predictions for atomic H has been obtained at the 10% uncertainty level, allowing for accurate laser calibration intensity at the 1% level. Using this calibration in atomic H, both accurate CEP data and an intensity calibration standard have been obtained Ar, Kr, and Xe; such gases are in common use for strong-field experiments. This calibration standard can be used by any laboratory using few-cycle pulses in the 1014 W cm‑2 intensity regime centered at 800 nm wavelength to accurately calibrate their peak laser intensity to within few-percent precision.

  14. Differential cross sections for ionization and excitation of laser-aligned atoms by electron impact

    Science.gov (United States)

    Murray, Andrew

    2012-06-01

    Differential cross section measurements will be presented for electron impact ionization and excitation of atoms prepared using high resolution continuous wave laser radiation. In the case of ionization, low energy coplanar asymmetric (e,2e) experiments were performed from laser excited Mg atoms that were aligned using radiation around 285nm. The atoms were subjected to linearly polarized radiation whose polarization vector was varied from in the plane to perpendicular to the scattering plane. Ionization measurements were then conducted from the laser-excited 3P state, and the differential cross section determined. By careful analysis of the laser pumping, these measurements were directly compared to those from the ground state. Such experiments provide valuable information on the ionization of aligned targets. In the second experiment to be described here, a resonant enhancement cavity has been placed around the interaction region and super-elastic scattering measurements have been carried out from laser-excited atoms inside the cavity. This new technique opens up many new targets for study, since the cavity increases the effective intensity of the laser radiation that is exciting the atoms by a factor of up to 50. As such, new ionization and excitation measurements are possible using deep UV radiation where the laser power is only a few mW. Results from calcium will be presented, and progress towards studies from silver, copper and gold will be discussed. We are also advancing this new technique to allow simultaneous excitation from the hyperfine levels of different targets (such as Rb), which will allow the method to be adopted in different fields, such as laser cooling and trapping.

  15. Neutral Atom Lithography With Multi-Frequency Laser Fields

    National Research Council Canada - National Science Library

    Elliott, Daniel S; Janes, David B

    2006-01-01

    In this final report we describe our efforts in exposing self-assembled molecular monolayers to a beam of neutral sodium atoms and chemically etching the resulting substrate and characterization of the resulting surface...

  16. Superluminal propagation of pulsed pseudo-thermal light in atomic vapor.

    Science.gov (United States)

    Bae, In-Ho; Cho, Young-Wook; Lee, Hee Jung; Kim, Yoon-Ho; Moon, Han Seb

    2010-09-13

    We report an experimental demonstration of slow and superluminal propagation of pseudo-thermal (chaotic) light in the Λ-type system of the 5S(1/2)-5P(1/2) transition of (87)Rb atom. The slowed propagation of pulsed pseudo-thermal light was demonstrated in an electromagnetically-induced transparency medium while the superluminal propagation was demonstrated with the enhanced absorption scheme where the coupling field takes the form of a standing wave.We have also demonstrated that the photon number statistics of the pseudo-thermal light is preserved for both the subluminal and superluminal cases.

  17. Interference of nitrite and nitrogen dioxide on mercury and selenium determination by chemical vapor generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Nunes, Dayana [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900, Santa Maria, RS (Brazil); Pereira dos Santos, Eliane Pereira [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900, Santa Maria, RS (Brazil); Barin, Juliano Smanioto [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900, Santa Maria, RS (Brazil); Mortari, Sergio Roberto [Curso de Ciencias Farmaceuticas, Centro Universitario Franciscano, UNIFRA, 97010-032, Santa Maria, RS (Brazil); Dressler, Valderi Luiz [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900, Santa Maria, RS (Brazil); Moraes Flores, Erico Marlon de [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900, Santa Maria, RS (Brazil)]. E-mail: flores@quimica.ufsm.br

    2005-06-30

    In this study, a systematic investigation was performed concerning the interference of nitrogen oxides on the determination of selenium and mercury by hydride generation atomic absorption spectrometry (HG AAS) and cold vapor atomic absorption spectrometry (CV AAS). The effect of nitrate, nitrite and NO{sub 2} dissolved in the condensed phase was evaluated. No effect of NO{sub 3} {sup -} on Se and Hg determination was observed up to 100 mg of sodium nitrate added to the reaction vessel. The Se signal was reduced by about 80% upon the addition of 6.8 mg NO{sub 2} {sup -}. For Hg, no interference of nitrite was observed up to 20 mg of NO{sub 2} {sup -}. A complete suppression of the Se signal was observed when gaseous NO{sub 2} was introduced into analytical solutions. For Hg, a signal decrease between 8 and 13% occurred. For Se, bubbling argon or heating the solution was not able to recover the original absorbance values, whereas Hg signals were recovered with these procedures. When gaseous NO{sub 2} was passed directly into the atomizer, Se signals decreased similarly to when NO{sub 2} was bubbled in analytical solutions. The addition of urea, hydroxylamine hydrochloride and sulfamic acid (SA) was investigated to reduce the NO{sub 2} effect in sample digests containing residual NO{sub 2}, but only SA was effective in reducing the interference. Based on the results, it is possible to propose the use of SA to prevent interferences in Se and Hg determinations by HG AAS and CV AAS, respectively.

  18. Laser Cooling, Trapping, and Bose-Einstein Condensation of Atoms and Molecules

    Science.gov (United States)

    Leduc, Michèle; Dugué, Julien; Simonet, Juliette

    2009-04-01

    In this paper we first focus on the methods developed to control the position and the velocity of atoms, taking advantage of the radiative forces exerted on atoms placed in a laser beam. Temperatures in the range of μK can be reached for dilute atomic clouds trapped under vacuum in a very small region of space. The application to fountain clocks based on cold cesium atoms is presented. We then describe the characterization and the main features of Bose-Einstein condensates, a new state of matter of purely quantum origin, which can be obtained by subsequent evaporative cooling. The methods in use for cooling molecules are considered, in particular the collision processes or the photoassociation of cold atoms. The possibility of changing interactions between ultracold particles is also explained and photoassociation is illustrated by the recent experiments of our group dealing with metastable helium atoms.

  19. Quantum-classical correspondence in chaotic dynamics of laser-driven atoms

    Science.gov (United States)

    Prants, S. V.

    2017-04-01

    This paper is a review article on some aspects of quantum-classical correspondence in chaotic dynamics of cold atoms interacting with a standing-wave laser field forming an optical lattice. The problem is treated from both (semi)classical and quantum points of view. In both approaches, the interaction of an atomic electic dipole with the laser field is treated quantum mechanically. Translational motion is described, at first, classically (atoms are considered to be point-like objects) and then quantum mechanically as a propagation of matter waves. Semiclassical equations of motion are shown to be chaotic in the sense of classical dynamical chaos. Point-like atoms in an absolutely deterministic and rigid optical lattice can move in a random-like manner demonstrating a chaotic walking with typical features of classical chaos. This behavior is explained by random-like ‘jumps’ of one of the atomic internal variable when atoms cross nodes of the standing wave and occurs in a specific range of the atom-field detuning. When treating atoms as matter waves, we show that they can make nonadiabatic transitions when crossing the standing-wave nodes. The point is that atomic wave packets split at each node in the same range of the atom-field detuning where the classical chaos occurs. The key point is that the squared amplitude of those semiclassical ‘jumps’ equal to the quantum Landau-Zener parameter which defines the probability of nonadiabatic transitions at the nodes. Nonadiabatic atomic wave packets are much more complicated compared to adiabatic ones and may be called chaotic in this sense. A few possible experiments to observe some manifestations of classical and quantum chaos with cold atoms in horizontal and vertical optical lattices are proposed and discussed.

  20. Laser spectroscopy of the antiprotonic helium atom – its energy levels and state lifetimes

    CERN Document Server

    Hidetoshi, Yamaguchi

    2003-01-01

    The antiprotonic atom is a three-body exotic system consisting of an antiproton, an electron and a helium nucleus. Its surprising longevity was found and has been studied for more than 10 years. In this work, transition energies and lifetimes of this exotic atom were systematically studied by using the antiproton beam of AD(Antiproton Decelerator) facility at CERN, with an RFQ antiproton decelerator, a narrow-bandwidth laser, Cerenkov counters with fast-response photomultiplier tubes, and cryogenic helium target systems. Thirteen transition energies were determined with precisions of better than 200 ppb by a laser spectroscopy method, together with the elimination of the shift effect caused by collisions with surrounding atoms. Fifteen lifetimes (decay rates) of short-lived states were determined from the time distributions of the antiproton-annihilation signals and the resonance widths of the atomic spectral lines. The relation between the magnitude of the decay rates and the transition multipolarity was inv...

  1. Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling

    CERN Document Server

    Liu, Jie

    2014-01-01

    The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...

  2. Quantum interference effects in a Λ-type atom interacting with two short laser pulse trains

    Science.gov (United States)

    Buica, Gabriela

    2014-10-01

    We study the quantum interference between the excitation pathways in a three-level Λ-type atom interacting with two short laser pulse trains under the conditions of electromagnetically induced transparency. The probability amplitude equations which describe the interaction of a three-level Λ-type atom with two laser pulse trains are numerically solved. We derive analytical expressions for the population of the upper excited state for resonant laser pulse trains with a rectangular temporal profile. By varying the parameters of the laser pulse trains such as area of a single pulse, detuning, repetition period, and number of individual pulses, we analyze the quantum interference between the excitation pathways in terms of the upper excited state population.

  3. Atom-at-a-time laser resonance ionization spectroscopy of nobelium.

    Science.gov (United States)

    Laatiaoui, Mustapha; Lauth, Werner; Backe, Hartmut; Block, Michael; Ackermann, Dieter; Cheal, Bradley; Chhetri, Premaditya; Düllmann, Christoph Emanuel; van Duppen, Piet; Even, Julia; Ferrer, Rafael; Giacoppo, Francesca; Götz, Stefan; Heßberger, Fritz Peter; Huyse, Mark; Kaleja, Oliver; Khuyagbaatar, Jadambaa; Kunz, Peter; Lautenschläger, Felix; Mistry, Andrew Kishor; Raeder, Sebastian; Ramirez, Enrique Minaya; Walther, Thomas; Wraith, Calvin; Yakushev, Alexander

    2016-10-27

    Optical spectroscopy of a primordial isotope has traditionally formed the basis for understanding the atomic structure of an element. Such studies have been conducted for most elements and theoretical modelling can be performed to high precision, taking into account relativistic effects that scale approximately as the square of the atomic number. However, for the transfermium elements (those with atomic numbers greater than 100), the atomic structure is experimentally unknown. These radioactive elements are produced in nuclear fusion reactions at rates of only a few atoms per second at most and must be studied immediately following their production, which has so far precluded their optical spectroscopy. Here we report laser resonance ionization spectroscopy of nobelium (No; atomic number 102) in single-atom-at-a-time quantities, in which we identify the ground-state transition 1S01P1. By combining this result with data from an observed Rydberg series, we obtain an upper limit for the ionization potential of nobelium. These accurate results from direct laser excitations of outer-shell electrons cannot be achieved using state-of-the-art relativistic many-body calculations that include quantum electrodynamic effects, owing to large uncertainties in the modelled transition energies of the complex systems under consideration. Our work opens the door to high-precision measurements of various atomic and nuclear properties of elements heavier than nobelium, and motivates future theoretical work.

  4. Atom-at-a-time laser resonance ionization spectroscopy of nobelium

    Science.gov (United States)

    Laatiaoui, Mustapha; Lauth, Werner; Backe, Hartmut; Block, Michael; Ackermann, Dieter; Cheal, Bradley; Chhetri, Premaditya; Düllmann, Christoph Emanuel; van Duppen, Piet; Even, Julia; Ferrer, Rafael; Giacoppo, Francesca; Götz, Stefan; Heßberger, Fritz Peter; Huyse, Mark; Kaleja, Oliver; Khuyagbaatar, Jadambaa; Kunz, Peter; Lautenschläger, Felix; Mistry, Andrew Kishor; Raeder, Sebastian; Ramirez, Enrique Minaya; Walther, Thomas; Wraith, Calvin; Yakushev, Alexander

    2016-10-01

    Optical spectroscopy of a primordial isotope has traditionally formed the basis for understanding the atomic structure of an element. Such studies have been conducted for most elements and theoretical modelling can be performed to high precision, taking into account relativistic effects that scale approximately as the square of the atomic number. However, for the transfermium elements (those with atomic numbers greater than 100), the atomic structure is experimentally unknown. These radioactive elements are produced in nuclear fusion reactions at rates of only a few atoms per second at most and must be studied immediately following their production, which has so far precluded their optical spectroscopy. Here we report laser resonance ionization spectroscopy of nobelium (No; atomic number 102) in single-atom-at-a-time quantities, in which we identify the ground-state transition 1S0 1P1. By combining this result with data from an observed Rydberg series, we obtain an upper limit for the ionization potential of nobelium. These accurate results from direct laser excitations of outer-shell electrons cannot be achieved using state-of-the-art relativistic many-body calculations that include quantum electrodynamic effects, owing to large uncertainties in the modelled transition energies of the complex systems under consideration. Our work opens the door to high-precision measurements of various atomic and nuclear properties of elements heavier than nobelium, and motivates future theoretical work.

  5. Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps

    Science.gov (United States)

    Block, Michael

    2017-11-01

    The X. international workshop on "Application of Lasers and Storage Devices in Atomic Nuclei Research" took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.

  6. Combined laser and atomic force microscope lithography on aluminum: Mask fabrication for nanoelectromechanical systems

    DEFF Research Database (Denmark)

    Berini, Abadal Gabriel; Boisen, Anja; Davis, Zachary James

    1999-01-01

    A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production of nanoelectromecha......A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production...

  7. Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Block, Michael, E-mail: m.block@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany)

    2017-11-15

    The X. international workshop on “Application of Lasers and Storage Devices in Atomic Nuclei Research” took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.

  8. Discrete Energies of a Weakly Outcoupled Atom Laser Beam Outside the Bose–Einstein Condensate Region

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno

    2014-12-01

    Full Text Available We consider the possibility of a discrete set of energies of a weakly outcoupled atom laser beam to the homogeneous Schrödinger equation with anisotropic harmonic trap in Cartesian coordinates outside the Bose–Einstein condensate region. This treatment is used because working in the cylindrical coordinates is not really possible, even though we implement the cigar-shaped trap case. The Schrödinger equation appears to replace a set of two-coupled Gross– Pitaevskii equations by enabling the weak-coupling assumption. This atom laser can be produced in a simple way that only involves extracting the atoms in a condensate from by using the radio frequency field. We initially present the relation between condensates as sources and atom laser as an output by exploring the previous work of Riou et al. in the case of theoretical work for the propagation of atom laser beams. We also show that even though the discrete energies are obtained by means of an approaching harmonic oscillator, degeneracy is only available in two states because of the anisotropic external potential

  9. Comparing laser interferometry and atom interferometry approaches to space-based gravitational-wave measurement

    Science.gov (United States)

    Ira Thorpe, James; Jennrich, Oliver; McNamara, Paul; Baker, John G.

    2012-07-01

    The science enabled by a space-based low-frequency gravitational-wave instrument is a high-priority objective of the international astronomy community. Mission concepts based on laser interferometry, such as the Laser Interferometer Space Antenna (LISA), have been thoroughly studied and determined to be capable of delivering significant science returns. Ongoing developments in laboratory atom interferometry techniques have inspired new gravitational-wave mission concepts. We present a comparative analysis of LISA-like light interferometer systems and atom interferometer systems for gravitational-wave detection. Specific attention is paid to the sources of instrumental noise that are most important for light interferometer systems. We find that the response to laser frequency noise is identical in light interferometer and atom interferometer systems and that similar mitigation strategies (e.g. multiple-arm interferometers) must be employed to reach interesting gravitational wave sensitivities. Response to acceleration of the optical platforms is slightly different, allowing smaller spacecraft separations in the atom interferometry approach, but the acceleration noise requirements are similar. Based on this analysis, we find no clear advantage of the atom interferometry approach over traditional laser interferometry.

  10. Study on laser-irradiated Au plasmas by detailed configuration accounting atomic physics

    Science.gov (United States)

    Lan, Ke; Qiao, Xiumei; Song, Peng; Zheng, Wudi; Qing, Bo; Zhang, Jiyan

    2017-10-01

    We coupled the one-dimensional multi-group radiation hydrodynamic code RDMG with the MBDCA atomic physics package, which uses the Matrix-Block Method to solve the coupled rate equations of the Detailed Configuration Accounting (DCA) non-LTE model, and applied the coupled code RDMG-MBDCA with different flux limiters fe to simulate a laser-irradiated CH-tamped Au disk experiment at the SGII laser facility. From our simulations, we found that a higher fe leads to faster laser ablation, earlier x-ray breakout time with a higher maximum x-ray flux, and an x-ray spectrum with a higher intensity. However, for the same fe, the simulation from RDMG with the DCA model shows a slower electron thermal conduction between the laser absorption region and the electron thermal conduction than that with the average-atom model. From our investigation, we can say that it is the lower ionization from DCA in the electron thermal conduction region which causes the slower electron thermal conduction between the two regions. The electron thermal conduction from DCA can be increased remarkably when the atomic processes of dielectronic capture and auto-ionization are turned off in simulation. This indicates that the atomic transition rate coefficients are important in determining the heat conduction and the plasma status for laser generated plasmas.

  11. Analysis of Amphiphilic Lipids and Hydrophobic Proteins Using Nonresonant Femtosecond Laser Vaporization with Electrospray Post-Ionization

    Science.gov (United States)

    Brady, John J.; Judge, Elizabeth J.; Levis, Robert J.

    2011-04-01

    Amphiphilic lipids and hydrophobic proteins are vaporized at atmospheric pressure using nonresonant 70 femtosecond (fs) laser pulses followed by electrospray post-ionization prior to being transferred into a time-of-flight mass spectrometer for mass analysis. Measurements of molecules on metal and transparent dielectric surfaces indicate that vaporization occurs through a nonthermal mechanism. The molecules analyzed include the lipids 1-monooleoyl-rac-glycerol, 1,2-dihexanoyl- sn-glycero-3-phosphocholine, 1,2-dimyristoyl- sn-glycero-3-phosphocholine, and the hydrophobic proteins gramicidin A, B, and C. Vaporization of lipids from blood and milk are also presented to demonstrate that lipids in complex systems can be transferred intact into the gas phase for mass analysis.

  12. 6th International Workshop on Application of Lasers in Atomic Nuclei Research

    CERN Document Server

    Błaszczak, Z; Marinova, K; LASER 2004

    2006-01-01

    6th International Workshop on Application of Lasers in Atomic Nuclei Research, LASER 2004, held in Poznan, Poland, 24-27 May, 2004 Researchers and graduate students interested in the Mössbauer Effect and its applications will find this volume indispensable. The volume presents the most recent developments in the methodology of Mössbauer spectroscopy. Reprinted from Hyperfine Interactions (HYPE) Volume 162, 1-4

  13. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    Science.gov (United States)

    Inoue, T.; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A.; Aoki, T.; Asahi, K.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Yoshimi, A.; Sakemi, Y.

    2015-04-01

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  14. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T., E-mail: inoue-t@cyric.tohoku.ac.jp [Tohoku University, Frontier Research Institute of Interdisciplinary Sciences (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S. [Indian Institute of Technology Roorkee (India); and others

    2015-04-15

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  15. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  16. Determination of sulfur content in steel by laser-produced plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A.; Ortiz, M. [Unidad de Fisica Atomica y Laseres, Instituto de Investigacion Basica, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain); Campos, J. [Catedra de Fisica Atomica Experimental, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    1995-11-01

    Sulfur content in steel samples has been determined by laser-produced plasma atomic emission spectroscopy with the use of a Q-switch Nd:YAG laser. With the use of time-resolved spectroscopy employing an OMA III (EG&G) as detector, a detection limit of 70 ppm and a precision of 7{percent} have been obtained. Calibration curves are linear, and no noticeable matrix effects have been observed. {copyright} {ital 1995 Society for Applied Spectroscopy.}

  17. Correlated Multielectron Dynamics in Ultrafast Laser Pulse Interactions with Atoms

    Science.gov (United States)

    Rudenko, A.; Zrost, K.; Feuerstein, B.; de Jesus, V. L.; Schröter, C. D.; Moshammer, R.; Ullrich, J.

    2004-12-01

    We present the results of the detailed experimental study of multiple ionization of Ne and Ar by 25 and 7fs laser pulses. Whereas in multiple ionization of Ar different mechanisms, involving field ionization steps and recollision-induced excitations, play a role, for Ne only one channel, where the highly correlated instantaneous emission of up to four electrons is triggered by a recollisional electron impact, is found to be important. Using few-cycle pulses we are able to suppress those processes that occur on time scales longer than one laser cycle.

  18. Determination of inorganic and total mercury by vapor generation atomic absorption spectrometry using different temperatures of the measurement cell

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, Luiz Eduardo [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Goldschmidt, Fabiane [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Paniz, Jose Neri Gottfried [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Moraes Flores, Erico Marlon de [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil); Dressler, Valderi Luiz [Universidade Federal de Santa Maria, Departamento de Quimica, Campus de Camobi, 97105900 Santa Maria, RS (Brazil)]. E-mail: valdres@quimica.ufsm.br

    2005-06-30

    A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg{sup 2+} or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 deg. C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg{sup 2+} concentrations. Parameters such as the type of acid (HCl or HNO{sub 3}) and its concentration, reductant (NaBH{sub 4}) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg{sup 2+} and total Hg determinations were: 1.0 mol l{sup -1} HCl as carrier solution, carrier flow rate of 3.5 ml min{sup -1}, 0.1% (m/v) NaBH{sub 4}, reductant flow rate of 1.0 ml min{sup -1} and carrier gas flow rate of 200 ml min{sup -1}. The relative standard deviation (RSD) is lower than 5.0% for a 1.0 {mu}g l{sup -1} Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g{sup -1}. Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l{sup -1} HCl solution for analyte extraction. The Hg{sup 2+} and CH{sub 3}Hg{sup +} concentrations found were in agreement with certified ones.

  19. Atomic number scaling of the nickel-like soft x-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Daido, H.; Ninomiya, S.; Imani, T. [Osaka Univ., Suita, Osaka (Japan). Inst. of Laser Engineering] [and others

    1997-03-30

    The authors report the review of the experimental results obtained at the Institute of Laser Engineering, Osaka University, of the soft X-ray lasing in various Ni-like ions whose atomic numbers range from 47(Ag) to 66(Dy). The lasing wavelengths are between 14 nm and 5 nm. X-ray lasing in these materials were obtained when the plasma profiles were properly controlled in time and space by irradiation of curved slab targets with multiple laser pulses. They also describe the original work of the atomic physics calculations which provide the transition energies, transition probabilities and other atomic constants for Ni-like ion species whose atomic numbers range from 36 to 92 calculated with GRASP code (multi-configuration Dirac Fock code) and YODA code (relativistic distorted wave code). Based on these atomic constants, they have calculated the kinetics of the population inversion with a simplified rate equation model in conjunction with a one-dimensional hydrodynamic code to find out the desired pumping conditions. They show a possibility for significant improvement in the pumping efficiency with the use of a picosecond laser irradiating a properly configured preformed plasma. Finally, a simplified estimation of the pumping efficiency is described based on the atomic constants and plasma physics issues.

  20. Evaluation of different treatment modalities for vulvar intraepithelial neoplasia (VIN): CO(2) laser vaporization, photodynamic therapy, excision and vulvectomy.

    Science.gov (United States)

    Hillemanns, Peter; Wang, Xiuli; Staehle, Stefanie; Michels, Wolfgang; Dannecker, Christian

    2006-02-01

    To evaluate various treatment modalities for vulvar intraepithelial neoplasia (VIN) in relation to possible risk factors for recurrence. Retrospective review of 93 patients with VIN treated by CO(2) laser vaporization, photodynamic therapy with aminolevulinic acid (PDT), excision or vulvectomy. 40.4% of the 47 patients with laser vaporization, 48.1% of 27 patients with PDT, 42% of 12 patients with local excision and none of the 7 patients treated by vulvectomy experienced a relapse within a mean follow-up of 53.7 months. The risk for recurrence significantly increased with VIN grade (P = 0.02), multifocal VIN disease (P = 0.01), multicentric intraepithelial neoplasia (P = 0.05) and high-risk HPV infection (P VIN have high recurrence rates, especially in patients with HPV infection and multifocal disease. Therefore, careful long-term surveillance is mandatory.

  1. Pulsed laser vaporization synthesis of boron loaded few layered graphene (Conference Presentation)

    Science.gov (United States)

    Tennyson, Wesley D.; Tian, Mengkun; More, Karren L.; Geohegan, David B.; Puretzky, Alexander A.; Papandrew, Alexander B.; Rouleau, Christopher M.; Yoon, Mina

    2017-02-01

    The bulk production of loose graphene flakes and its doped variants are important for energy applications including batteries, fuel cells, and supercapacitors as well as optoelectronic and thermal applications. While laser-based methods have been reported for large-scale synthesis of single-wall carbon nanohorns (SWNHs), similar large-scale production of graphene has not been reported. Here we explored the synthesis of doped few layered graphene by pulsed laser vaporization (PLV) with the goal of producing an oxidation resistant electrode support for solid acid fuel cells. PLV of graphite with various amounts of boron was carried out in mixtures in either Ar or Ar/H2 at 0.1 MPa at elevated temperatures under conditions typically used for synthesis of SWNHs. Both the addition of hydrogen to the background argon, or the addition of boron to the carbon target, was found to shift the formation of carbon nanohorns to two-dimensional flakes of a new form of few-layer graphene material, with sizes up to microns in dimension as confirmed by XRD and TEM. However, the materials made with boron exhibited superior resistance to carbon corrosion in the solid acid fuel cell and thermal oxidation resistance in air compared to similar product made without boron. Mechanisms for the synthesis and oxidation resistance of these materials will be discussed based upon detailed characterization and modeling. •Synthesis science was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. Material processing and characterization science supported by ARPA-E under Cooperative Agreement Number DE-AR0000499 and as a user project at the Center for Nanophase Materials Sciences, a Department of Energy Office of Science User Facility.

  2. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  3. Efficient second harmonic generation in beta-barium borate by a diffraction-limited copper vapor laser.

    Science.gov (United States)

    Pini, R; Salimbeni, R; Toci, G; Vannini, M

    1992-05-20

    The diffraction-limited beam of a copper vapor laser employing a self-filtering unstable resonator was used to induce second harmonic generation in a nonlinear crystal of beta-barium borate. Despite the moderate emission characteristics of our small-scale laser device (1.5-W average power, 25-kW peak power at 511 nm), we obtained average and peak power conversion efficiencies of approximately 20 and 30%, respectively, which improved on the previously reported results by a factor of 2.

  4. Numerical simulation of transient, incongruent vaporization induced by high power laser

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.H.

    1981-01-01

    A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems is studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.

  5. Vapor cell based sodium laser guide star mechanism study lab-bench

    Science.gov (United States)

    Wang, Hongyan; Li, Lihang; Luo, Ruiyao; Li, Lei; Ning, Yu; Xi, Fengjie; Xu, Xiaojun

    2016-07-01

    Sodium laser guide star (LGS) is the key for the success of modern adaptive optics (AO) supported large ground based telescopes, however, for many field applications, Sodium LGS's brightness is still a limited factor. Large amounts of theoretical efforts have been paid to optimize Sodium LGS exciting parameters, that is, to fully discover potential of harsh environment surrounding mesospheric extreme thin sodium atoms under resonant excitation, whether quantum or Monte Carlo based. But till to now, only limited proposals are demonstrated with on-sky test due to the high cost and engineering complexities. To bridge the gap between theoretical modeling and on-sky test, we built a magnetic field controllable sodium cell based lab-bench, which includes a small scale sum-frequency single mode 589nm laser, with added amplitude, polarization, and phase modulators. We could perform quantitative resonant fluorescence study under single, multi-frequency, side-band optical re-pumping exciting with different polarization, also we could perform optical field modulation to study Larmor precession which is considered as one of devils of Sodium LGS, and we have the ability to generate beams contain orbital angular moment. Our preliminary sodium cell based optical re-pumping experiments have shown excellent consistence with Bloch equation predicted results, other experimental results will also be presented in the report, and these results will give a direct support that sodium cell based lab-bench study could help a Sodium LGS scientists a lot before their on-sky test.

  6. Laser wavelength effects on ionic and atomic emission from tin plasmas

    Science.gov (United States)

    Campos, D.; Harilal, S. S.; Hassanein, A.

    2010-04-01

    We investigated the effects of laser wavelength on atomic and ionic emission from Sn plasmas. Plasmas were produced using planar Sn targets excited with 10.6 μm carbon dioxide (CO2) and 1.06 μm neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers. Two-dimensional spectral imaging of visible emission showed that continuum emission was significantly more intense in the CO2 laser produced plasma (LPP) whereas line emission was considerably more extensive in the Nd:YAG LPP. Faraday cup analysis showed that ion profiles were narrower with CO2 LPPs although they possessed higher kinetic energies.

  7. Algorithm for Evaluation of Temperature 3D-Distribution of a Vapor Cell in a Diode End-pumped Alkali Laser System

    Science.gov (United States)

    Han, J. H.; Wang, Y.; Cai, H.; An, G. F.; Rong, K. P.; Yu, H.; Wang, S. Y.; Wang, H. Y.; Zhang, W.; Xue, L. P.; Zhou, J.

    2017-06-01

    We develop a new 3D-model to evaluate the light characteristics and the thermal features of a cesium-vapor laser end-pumped by a laser diode. The theoretical model is based on the principles of both heat transfer and laser kinetics. The 3-dimensional population density distribution and temperature distribution are both systematically obtained and analyzed. The methodology is thought to be useful for realization of a high-powered diode-pumped alkali laser (DPAL) in the future.

  8. Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, J. M.; Schmid, Beat; Russell, P. B.; Podolske, James R.; Redemann, Jens; Diskin, G. S.

    2008-10-29

    In January-February 2003 the 14-channel NASA Ames Airborne Tracking Sunphotometer 30 (AATS) and the NASA Langley/Ames Diode Laser Hygrometer (DLH) were flown on the NASA DC-8 aircraft. AATS measured column water vapor on the aircraft-to-sun path, while DLH measured local water vapor in the free stream between the aircraft fuselage and an outboard engine cowling. The AATS and DLH measurements were compared for two DC-8 vertical profiles by differentiating the AATS column measurement and/or integrating the DLH local measurement over the altitude range of each profile (7.7-10 km and 1.2-12.5 km). These comparisons extend, for the first time, tests of AATS water vapor retrievals to altitudes >~6 km and column contents <0.1 g cm-2. To our knowledge this is the first time suborbital spectroscopic water vapor measurements using the 940-nm band have been tested in conditions so high and dry. For both profiles layer water vapor (LWV) from AATS and DLH were highly correlated, with r2 0.998, rms difference 7.2% and bias (AATS minus DLH) 0.9%. For water vapor densities AATS and DLH had r2 0.968, rms difference 27.6%, and bias (AATS minus DLH) -4.2%. These results compare favorably with previous comparisons of AATS water vapor to in situ results for altitudes <~6 km, columns ~0.1 to 5 g cm-2 and densities ~0.1 to 17 g m-3.

  9. Atomic oxygen effects on thin film space coatings studied by spectroscopic ellipsometry, atomic force microscopy, and laser light scattering

    Science.gov (United States)

    Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.

    1992-01-01

    The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.

  10. Quantum-mechanical theory including angular momenta analysis of atom-atom collisions in a laser field

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1978-01-01

    The problem of two atoms colliding in the presence of an intense radiation field, such as that of a laser, is investigated. The radiation field, which couples states of different electronic symmetry, is described by the number state representation while the electronic degrees of freedom (plus spin-orbit interaction) are discussed in terms of a diabatic representation. The total angular momentum of the field-free system and the angular momentum transferred by absorption (or emission) of a photon are explicitly considered in the derivation of the coupled scattering equations. A model calculation is discussed for the Xe + F collision system.

  11. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions.

    Science.gov (United States)

    Elliot, Alan J; Malek, Gary A; Lu, Rongtao; Han, Siyuan; Yu, Haifeng; Zhao, Shiping; Wu, Judy Z

    2014-07-01

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ~1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  12. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Science.gov (United States)

    Elliot, Alan J.; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Yu, Haifeng; Zhao, Shiping; Wu, Judy Z.

    2014-07-01

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ˜1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  13. Control of RILIS lasers at IGISOL facilities using a compact atomic beam reference cell

    Energy Technology Data Exchange (ETDEWEB)

    Kron, T., E-mail: kron@uni-mainz.de [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany); Ferrer-Garcia, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica (Belgium); Lecesne, N. [GANIL, CEA/DSM-CNRS/IN2P3 (France); Sonnenschein, V. [University of Jyvaeskylae, Department of Physics (Finland); Raeder, S. [TRIUMF - Canada' s National Laboratory for Nuclear and Particle Physics (Canada); Rossnagel, J.; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany)

    2013-04-15

    The choice and proper operation of the laser systems for laser ion sources at on-line facilities using multi-step resonance ionization processes is the basis for production of intense and pure radioactive ion beams. These pave the way for numerous fundamental studies in nuclear and astrophysics. A comparison between systems of medium or high repetition rate pulsed tunable lasers based on dyes or crystals as active medium has been carried out at the IGISOL facility at Louvain-la-Neuve. The importance of properly controlling the operation conditions of the individual lasers via a reference atomic beam chamber is highlighted and design and implementation of such a compact device for permanent monitoring as well as possible regulation of the various laser parameters of relevance is discussed.

  14. Dynamics of Radiation and Atoms in Ultrahigh Intensity Laser Fields

    Science.gov (United States)

    2013-12-31

    excitation in strong and ultrastrong optical frequency fields. Advances in laser technology continue to push the boundaries of this interaction in...possible ultrastrong magnetic fields and the electron cyclotron frequency in the bound state can create dynamics, such as is the case for `cycloatoms...promise of increasing the returning rescattering electron energy led to advances in the production of HHG. In addition to (e,2e) and HHG rescattering

  15. Imaging Pulsed Laser Deposition oxide growth by in-situ Atomic Force Microscopy

    NARCIS (Netherlands)

    Wessels, W. A.; Bollmann, T. R. J.; Post, D.; Koster, G.; Rijnders, G.

    2017-01-01

    To visualize the topography of thin oxide films during growth, thereby enabling to study its growth behavior quasi real-time, we have designed and integrated an atomic force microscope (AFM) in a pulsed laser deposition (PLD) vacuum setup. The AFM scanner and PLD target are integrated in a single

  16. Coherent phase control of excitation of atoms by bichromatic laser radiation in an electric field

    NARCIS (Netherlands)

    Astapenko, VA

    A new method for coherent phase control of excitation of atoms in a discrete spectrum under the action of bichromatic laser radiation with the frequency ratio 1 : 2 is analysed. An important feature of this control method is the presence of a electrostatic field, which removes the parity selection

  17. Optimization of transfer of laser-cooled atom cloud to a quadrupole ...

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... We present here our experimental results on transfer of laser-cooled atom cloud to a quadrupole magnetic trap. We show that by choosing appropriately the ratio of potential energy in magnetic trap to kinetic energy of cloud in molasses, we can obtain the maximum phase-space density in the magnetic trap.

  18. Total mercury determination in different tissues of broiler chicken by using cloud point extraction and cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Shah, A Q; Kazi, T G; Baig, J A; Afridi, H I; Kandhro, G A; Arain, M B; Kolachi, N F; Wadhwa, S K

    2010-01-01

    A cloud point extraction (CPE) method has been developed for the determination of total mercury (Hg) in different tissues of broiler chicken by cold vapor atomic absorption spectrometry (CVAAS). The broiler chicken tissues (leg, breast, liver and heart) were subjected to microwave assisted digestion in a mixture of nitric acid and hydrogen peroxide (2:1 ratio), prior to preconcentration by CPE. Various parameters such as the amount of ammonium O,O-diethyldithiophosphate (DDTP), concentrations of Triton X-114, equilibrium temperature, time and centrifugation have been studied in order to find the best conditions for the determination of mercury. For validation of proposed method a certified reference material, DORM-2 was used. No significant difference p>0.05 was observed between the experimental results and the certified values of CRM (paired t-test). The limit of detection and quantitation obtained under the optimal conditions were 0.117 and 0.382 microg/kg, respectively. The accumulation of Hg in different tissues were found in the order of, liver>muscles>heart. The concentration of Hg in chicken tissues were found in the range of 1.57-2.75, 1.40-2.27, 1.55-4.22, and 1.39-2.61 microg/kg in leg, breast, liver and heart, respectively. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.

    Science.gov (United States)

    Egberts, Philip; Han, Gang Hee; Liu, Xin Z; Johnson, A T Charlie; Carpick, Robert W

    2014-05-27

    Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.

  20. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    Science.gov (United States)

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level). Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Atomic-layer chemical-vapor-deposition of TiN thin films on Si(100) and Si(111)

    CERN Document Server

    Kim, Y S; Kim, Y D; Kim, W M

    2000-01-01

    An atomic-layer chemical vapor deposition (AL-CVD) system was used to deposit TiN thin films on Si(100) and Si(111) substrates by cyclic exposures of TiCl sub 4 and NH sub 3. The growth rate was measured by using the number of deposition cycles, and the physical properties were compared with those of TiN films grown by using conventional deposition methods. To investigate the growth mechanism, we suggest a growth model for TiN n order to calculate the growth rate per cycle with a Cerius program. The results of the calculation with the model were compared with the experimental values for the TiN film deposited using the AL-CVD method. The stoichiometry of the TiN film was examined by using Auger electron spectroscopy, and the chlorine and the oxygen impurities were examined. The x-ray diffraction and the transmission electron microscopy results for the TiN film exhibited a strong (200) peak and a randomly oriented columnar microstructure. The electrical resistivity was found to decrease with increasing deposit...

  2. Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples.

    Science.gov (United States)

    Bagheri, Habib; Naderi, Mehrnoush

    2009-06-15

    A new method based on single-drop microextraction (SDME) combined with electrothermal vaporization atomic absorption spectroscopy (ETV-AAS) was developed for the trace determination of mercury in water samples. A microdrop of m-xylene was applied as the extraction solvent. After extraction, the microdrop was introduced, directly, into a graphite furnace of AAS. Some important extraction parameters such as type of solvent, volume of solvent, sample stirring, ionic strength, sample pH, chelating agent concentration, sample temperature, and extraction time were investigated and optimized. The highest possible microdrop volume of 10 microL, a sampling temperature of 27 degrees C, and use of m-xylene containing dithizone, as complexing agent, are major parameters led to achieve a high enrichment factor of 970. Under the optimized conditions, the detection limit of the method was 0.01 microg L(-1) and the relative standard deviation was 6.1% (n=7). The proposed method has been successfully applied to the determination of Hg in two river water samples. The effects of interfering species such as Pt, Pd, Cu, Au, and Bi, having the tendency to form complexes with dithizone, at two concentration levels of 100 and 1000 microg L(-1) were also studied.

  3. Effects of intermittent atomization on the properties of Al-doped ZnO thin films deposited by aerosol-assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linjie; Wang, Lixin [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Qin, Xiujuan, E-mail: qinxj@ysu.edu.cn [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Cui, Li [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); Shao, Guangjie [Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2016-04-30

    Al-doped ZnO (AZO) thin films were prepared on glass substrates with different atomization interval times by aerosol-assisted chemical vapor deposition method. The structure, morphology, and optical and electrical properties were investigated by X-ray diffractometer, atomic force microscope, UV-vis double beam spectrophotometer and 4 point probe method. ZnO thin films exhibited strong growth orientation along the (002) plane and the crystalline was affected by the atomization interval time. All the films had high transmittance and the films with interval times of 2 min and 4 min had good haze values for the transparent conducting oxide silicon solar cell applications. The AZO thin film had the best optical and electrical properties when the atomization interval time was 4 min. This is very important for the optoelectronic device applications. The surface morphology of AZO films depended on the atomization interval time. - Highlights: • Intermittent atomization is proved to be an effective measure. • Atomization interval time has an important influence on the crystallinity of films. • The surface morphology of ZnO films depends on atomization interval time. • Different hazes can be obtained by changing the atomization interval time.

  4. High power laser source for atom cooling based on reliable telecoms technology with all fibre frequency stabilisation

    Science.gov (United States)

    Legg, Thomas; Farries, Mark

    2017-02-01

    Cold atom interferometers are emerging as important tools for metrology. Designed into gravimeters they can measure extremely small changes in the local gravitational field strength and be used for underground surveying to detect buried utilities, mineshafts and sinkholes prior to civil works. To create a cold atom interferometer narrow linewidth, frequency stabilised lasers are required to cool the atoms and to setup and measure the atom interferometer. These lasers are commonly either GaAs diodes, Ti Sapphire lasers or frequency doubled InGaAsP diodes and fibre lasers. The InGaAsP DFB lasers are attractive because they are very reliable, mass-produced, frequency controlled by injection current and simply amplified to high powers with fibre amplifiers. In this paper a laser system suitable for Rb atom cooling, based on a 1560nm DFB laser and erbium doped fibre amplifier, is described. The laser output is frequency doubled with fibre coupled periodically poled LiNbO3 to a wavelength of 780nm. The output power exceeds 1 W at 780nm. The laser is stabilised at 1560nm against a fibre Bragg resonator that is passively temperature compensated. Frequency tuning over a range of 1 GHz is achieved by locking the laser to sidebands of the resonator that are generated by a phase modulator. This laser design is attractive for field deployable rugged systems because it uses all fibre coupled components with long term proven reliability.

  5. Tunable frequency-stabilization of UV laser using a Hallow-Cathode Lamp of atomic thallium

    CERN Document Server

    Chen, Tzu-Ling; Shy, Jow-Tsong; Liu, Yi-Wei

    2013-01-01

    A frequency-stabilized ultraviolet laser system, locked to the thallium resonant transition of 377.5 nm, was demonstrated using a novel bichromatic spectroscopy technique for tuning the zero-crossing laser-lock point. The atomic thallium system is a promising candidate in atomic parity violation and permanent electric dipole moment experiments, and its 377.5 nm 6P1/2->7S1/2 transition is important for thallium laser cooling and trapping experiment. The pressure shift, owing to the high pressure bu?er gas of the hollow-cathode lamp, was observed using an atomic beam resonance as reference. Such a shift was corrected by adjusting the peak ratio of the two Doppler-free saturation pro?les resulted from two pumping beams with a 130 MHz frequency di?erence. The resulted frequency stability of the ultraviolet laser is ?0.5 MHz at 0.1 sec integration time. This scheme is compact and versatile for stabilizing UV laser systems, which acquire a sub-MHz stability and frequency tunability.

  6. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  7. X-ray emission simulation from hollow atoms produced by high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Zhidkov, A. [Japan Atomic Energy Research Inst., Kansai Research Establishment, Neyagawa, Osaka (Japan); Suto, Keiko [Nara Women' s Univ., Graduate School of Human Culture, Nara (Japan); Kagawa, Takashi [Nara Women' s Univ., Department of Physics, Nara (Japan)

    2001-10-01

    We theoretically study the x-ray emission from hollow atoms produced by collisions of multiply charged ions accelerated by a short pulse laser with a solid or foil. By using the multistep-capture-and-loss (MSCL) model a high conversion efficiency to x-rays in an ultrafast atomic process is obtained. It is also proposed to apply this x-ray emission process to the x-ray source. For a few keV x-rays this x-ray source has a clear advantage. The number of x-ray photons increases as the laser energy becomes larger. For a laser energy of 10 J, the number of x-ray photons of 3x10{sup 11} is estimated. (author)

  8. Laser CO2 vaporization for high-grade cervical intraepithelial neoplasia: a long-term follow-up series.

    Science.gov (United States)

    Fallani, Maria Grazia; Penna, Carlo; Fambrini, Massimiliano; Marchionni, Mauro

    2003-10-01

    The goal of this study was to evaluate the effectiveness of laser CO(2) vaporization for conservative treatment of ectocervical high-grade cervical intraepithelial neoplasia (CIN) particularly by the evaluation of the reappearance risk of disease in long-term follow-up. One hundred fifty-nine patients were submitted to CO(2) laser vaporization for high-grade CIN and followed up for a minimum of 5 years. Selection of cases, depth of ablation, complications, and cure rate (percentage of treated patients in whom there was no recurrent/persistent high-grade CIN at the 5-year follow-up examination) were retrospectively evaluated. Selected cases for colposcopy were submitted to a 6-mm mean depth of vaporization without intra- or postoperative complications. The cure rate for a single treatment was 97.5% and a satisfactory colposcopic follow-up was possible in 99.4% of treated patients. No case of invasive carcinoma occurred after a mean follow-up of 7.1 years. Four cases (2.5%) were high-grade CIN persistence observed after a mean time of 3.75 months, suggesting incomplete destruction of the deepest part of the lesion involving the glandular crypt base. Long-term follow-up proves that laser CO(2) vaporization still has a place in the treatment of CIN. In selected cases it represents a safe alternative for conization in the treatment of high-grade CIN, but colposcopic expertise is essential for adequate preoperative selection of cases.

  9. Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; Nalda, R. de; Castillejo, M., E-mail: marta.castillejo@iqfr.csic.es

    2017-01-15

    Highlights: • Plume species in infrared ns laser ablation of ZnS studied by low-order harmonic generation. • Different spatiotemporal properties of harmonics from atoms and nanoparticles. • Results compared with calculations of optical frequency up-conversion in perturbative regime. - Abstract: Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear

  10. Laser Induced Fluorescence for Singly Ionized Atomic Iodine

    Science.gov (United States)

    Steinberger, Thomas; Scime, Earl

    2017-10-01

    While xenon is the standard propellant for a wide range of plasma thrusters, xenon is expensive and xenon propellant systems require heavy compressed gas tanks, pressure regulators, and other bulky hardware. Iodine has similar mass and is much easier to acquire than xenon. Iodines natural state of matter at room temperature is solid and is easily sublimated to gas with a simple heating element. This advantage for iodine is also a significant challenge when developing gas handling systems for iodine. Another challenge for iodine thrusters is a lack of well-defined spectroscopic diagnostics for single ionized iodine, specifically, a lack of a demonstrated laser induced fluorescence (LIF) scheme. We present emission spectroscopy measurements of iodine ion emission from the 6p5P3 - 5d5D4o transition at 695.878 nm and the 6p5P3 - 6s5S2o transition at 516.12 nm as a function of pressure and microwave power for a microwave excited iodine plasma in a sealed quartz cell at a pressure of 1 mTorr. The 5d5D4o state is metastable and was identified by Hargus et al. [48th AIAA Joint Propulsion, 2012] as a strong candidate for an iodine ion LIF scheme. We will also present preliminary LIF measurements using a tunable dye laser operating at 695.878 nm. Special thanks to Dr. William Hargus Jr. and Air Force Research Laboratory at Edwards AFB.

  11. Laser programs highlights, July--August 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Laser research at LLNL is divided into five major programmatic areas: inertial confinement fusion (ICF), uranium atomic vapor laser isotope separation (U-AVLIS), special (plutonium) isotope separation (SIS), laser technology, and advanced applications. We have made important progress this past year in each of these areas. This report covers the current state of these 5 areas.

  12. Analytic description of elastic electron-atom scattering in an elliptically polarized laser field

    Science.gov (United States)

    Flegel, A. V.; Frolov, M. V.; Manakov, N. L.; Starace, Anthony F.; Zheltukhin, A. N.

    2013-01-01

    An analytic description of laser-assisted electron-atom scattering (LAES) in an elliptically polarized field is presented using time-dependent effective range (TDER) theory to treat both electron-laser and electron-atom interactions nonperturbatively. Closed-form formulas describing plateau features in LAES spectra are derived quantum mechanically in the low-frequency limit. These formulas provide an analytic explanation for key features of the LAES differential cross section. For the low-energy region of the LAES spectrum, our result generalizes the Kroll-Watson formula to the case of elliptic polarization. For the high-energy (rescattering) plateau in the LAES spectrum, our result generalizes prior results for a linearly polarized field valid for the high-energy end of the rescattering plateau [Flegel , J. Phys. BJPAPEH0953-407510.1088/0953-4075/42/24/241002 42, 241002 (2009)] and confirms the factorization of the LAES cross section into three factors: two field-free elastic electron-atom scattering cross sections (with laser-modified momenta) and a laser field-dependent factor (insensitive to the scattering potential) describing the laser-driven motion of the electron in the elliptically polarized field. We present also approximate analytic expressions for the exact TDER LAES amplitude that are valid over the entire rescattering plateau and reduce to the three-factor form in the plateau cutoff region. The theory is illustrated for the cases of e-H scattering in a CO2-laser field and e-F scattering in a midinfrared laser field of wavelength λ=3.5μm, for which the analytic results are shown to be in good agreement with exact numerical TDER results.

  13. Analysis of Thermally Denatured Depth in Laser Vaporization for Benign Prostatic Hyperplasia using a Simulation of Light Propagation and Heat Transfer (secondary publication)

    Science.gov (United States)

    Takada, Junya; Honda, Norihiro; Hazama, Hisanao; Ioritani, Naomasa

    2016-01-01

    Background and Aims: Laser vaporization of the prostate is expected as a less invasive treatment for benign prostatic hyperplasia (BPH), via the photothermal effect. In order to develop safer and more effective laser vaporization of the prostate, it is essential to set optimal irradiation parameters based on quantitative evaluation of temperature distribution and thermally denatured depth in prostate tissue. Method: A simulation model was therefore devised with light propagation and heat transfer calculation, and the vaporized and thermally denatured depths were estimated by the simulation model. Results: The results of the simulation were compared with those of an ex vivo experiment and clinical trial. Based on the accumulated data, the vaporized depth strongly depended on the distance between the optical fiber and the prostate tissue, and it was suggested that contact laser irradiation could vaporize the prostate tissue most effectively. Additionally, it was suggested by analyzing thermally denatured depth comprehensively that laser irradiation at the distance of 3 mm between the optical fiber and the prostate tissue was useful for hemostasis. Conclusions: This study enabled quantitative and reproducible analysis of laser vaporization for BPH and will play a role in clarification of the safety and efficacy of this treatment. PMID:28765672

  14. Comparison of precursor infiltration into polymer thin films via atomic layer deposition and sequential vapor infiltration using in-situ quartz crystal microgravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Padbury, Richard P.; Jur, Jesse S., E-mail: jsjur@ncsu.edu [Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-07-01

    Previous research exploring inorganic materials nucleation behavior on polymers via atomic layer deposition indicates the formation of hybrid organic–inorganic materials that form within the subsurface of the polymer. This has inspired adaptations to the process, such as sequential vapor infiltration, which enhances the diffusion of organometallic precursors into the subsurface of the polymer to promote the formation of a hybrid organic–inorganic coating. This work highlights the fundamental difference in mass uptake behavior between atomic layer deposition and sequential vapor infiltration using in-situ methods. In particular, in-situ quartz crystal microgravimetry is used to compare the mass uptake behavior of trimethyl aluminum in poly(butylene terephthalate) and polyamide-6 polymer thin films. The importance of trimethyl aluminum diffusion into the polymer subsurface and the subsequent chemical reactions with polymer functional groups are discussed.

  15. Mercury speciation in sea food by flow injection cold vapor atomic absorption spectrometry using selective solid phase extraction.

    Science.gov (United States)

    Vereda Alonso, E; Siles Cordero, M T; García de Torres, A; Cañada Rudner, P; Cano Pavón, J M

    2008-10-19

    An on-line inorganic and organomercury species separation, preconcentration and determination system consisting of cold vapor atomic absorption spectrometry (CV-AAS or CV-ETAAS) coupled to a flow injection (FI) method was studied. The inorganic mercury species was retained on a column (i.d., 3 mm; length 3 cm) packed to a height of 0.7 cm with a chelating resin aminopropyl-controlled pore glass (550 A) functionalized with [1,5-bis (2 pyridyl)-3-sulphophenyl methylene thiocarbonohydrazyde] placed in the injection valve of a simple flow manifold. Methylmercury is not directly determined. Previous oxidation of the organomercurial species permitted the determination of total mercury. The separation of mercury species was obtained by the selective retention of inorganic mercury on the chelating resin. The difference between total and inorganic mercury determined the organomercury content in the sample. The inorganic mercury was removed on-line from the microcolumn with 6% (m/v) thiourea. The mercury cold vapor generation was performed on-line with 0.2% (m/v) sodium tethrahydroborate and 0.05% (m/v) sodium hydroxide as reducing solution. The determination was performed using CV-AAS and CV-ETAAS, both approaches have been used and compared for the speciation of mercury in sea food. A detection limit of 10 and 6 ng l(-1) was achieved for CV-AAS and CV-ETAAS, respectively. The precision for 10 replicate determinations at the 1 microg l(-1) Hg level was 3.5% relative standard deviation (R.S.D.), calculated from the peak heights obtained. Both approaches were validated with the use of two certified reference materials and by spiking experiments. By analyzing the two biological certified materials, it was evident that the difference between the total mercury and inorganic mercury corresponds to methylmercury. The concentrations obtained by both techniques were in agreement with the certified values or with differences of the certified values for total Hg(2+) and CH(3)Hg

  16. Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization

    Science.gov (United States)

    Yowell, Leonard; Nikolaev, Pavel; Gorelik, Olga; Allada, Rama Kumar; Sosa, Edward; Arepalli, Sivaram

    2013-01-01

    The "soft-bake" method is a simple and reliable initial purification step first proposed by researchers at Rice University for single-walled carbon nanotubes (SWCNT) produced by high-pressure carbon mon oxide disproportionation (HiPco). Soft-baking consists of annealing as-produced (raw) SWCNT, at low temperatures in humid air, in order to degrade the heavy graphitic shells that surround metal particle impurities. Once these shells are cracked open by the expansion and slow oxidation of the metal particles, the metal impurities can be digested through treatment with hydrochloric acid. The soft-baking of SWCNT produced by pulsed-laser vaporization (PLV) is not straightforward, because the larger average SWCNT diameters (.1.4 nm) and heavier graphitic shells surrounding metal particles call for increased temperatures during soft-bake. A part of the technology development focused on optimizing the temperature so that effective cracking of the graphitic shells is balanced with maintaining a reasonable yield, which was a critical aspect of this study. Once the ideal temperature was determined, a number of samples of raw SWCNT were purified using the soft-bake method. An important benefit to this process is the reduced time and effort required for soft-bake versus the standard purification route for SWCNT. The total time spent purifying samples by soft-bake is one week per batch, which equates to a factor of three reduction in the time required for purification as compared to the standard acid purification method. Reduction of the number of steps also appears to be an important factor in improving reproducibility of yield and purity of SWCNT, as small deviations are likely to get amplified over the course of a complicated multi-step purification process.

  17. Hydrogen analysis in solid samples by utilizing He metastable atoms induced by TEA CO{sub 2} laser plasma in He gas at 1 atm

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Muliadi [Program of Nuclear Power and Energy Safety Engineering, Graduate School of Engineering, University of Fukui, Fukui 910-8507 (Japan); Idris, Nasrullah [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh, Aceh 23111 (Indonesia); Fukumoto, Kenichi; Niki, Hideaki [Program of Nuclear Power and Energy Safety Engineering, Graduate School of Engineering, University of Fukui, Fukui 910-8507 (Japan); Sakan, Fujio [Department of Material Science, Faculty of Engineering, University of Fukui, Fukui 910-8507 (Japan); Maruyama, Tadashi [Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku Yokohama 226-8503 (Japan); Kurniawan, Koo Hendrik; Lie, Tjung Jie [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kagawa, Kiichiro [Department of Physics, Faculty of Education and Regional Studies, University of Fukui (Japan)], E-mail: kagawa@edu00.f-edu.fukui-u.ac.jp

    2007-12-15

    A TEA CO{sub 2} laser (350 mJ-1.5 J, 10.6 {mu}m, 200 ns, 10 Hz) was focused onto a metal sub-target under He as host gas at 1 atmospheric pressure with a small amount of impurity gas, such as water and ethanol vapors. It was found that the TEA CO{sub 2} laser with the help of the metal sub-target is favorable for generating a strong, large volume helium gas breakdown plasma at 1 atmospheric pressure, in which the helium metastable-excited state was then produced overwhelmingly. While the metal sub-target itself was never ablated. The helium metastable-excited state produced after the strong helium gas breakdown plasma was considered to play an important role in exciting the atoms. This was confirmed by the specific characteristics of the detected H{alpha} emission, namely the strong intensity with low background, narrow spectral width, and the long lifetime. This technique can be used for gas and solid samples analysis. For nonmetal solid analysis, a metal mesh was introduced in front of the nonmetal sample surface to help initiation of the helium gas breakdown plasma. For metal sample, analysis can be carried out by combining the TEA CO{sub 2} laser and an Nd-YAG laser where the Nd-YAG laser is used to ablate the metal sample. The ablated atoms from the metal sample are then sent into the region of helium gas breakdown plasma induced by the TEA CO{sub 2} laser to be excited through the helium metastable-excited state. This technique can be extended to the analysis of other elements, not limited only to hydrogen, such as halogens.

  18. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    Science.gov (United States)

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  19. Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.

    Science.gov (United States)

    Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2015-09-15

    We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.

  20. Early Experiences of Contact Laser Vaporization of the Prostate using the 980 nm High Power Diode Laser for Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Miyazaki, Hideyo; Hirano, Yoshikazu; Kato, Shinobu; Ioritani, Naomasa; Ichikawa, Takaharu; Takamoto, Hitoshi; Homma, Yukio

    2017-06-02

    We report early experiences of contact laser vaporization of the prostate for symptomatic benign prostatic hyperplasia (BPH). A total of 80 patients recruited at four institutions in Japan from April 2013 through September 2014 underwent contact laser vaporization of the prostate using 980 nm high power diode laser with an end-firing fiber in the contact mode. Patients were followed prospectively at 1 day, 2, 4, 8, 12, and 24 weeks, postoperatively per protocol, and at 1 and 2 years post-protocol. Of 76 eligible patients, 64 (84.2%) achieved more than 50% decrease in International Prostate Symptom Score at 24 weeks (95% confidence interval: 74.0-91.6%), clearing the pre-fixed non-inferiority efficacy level to transurethral resection of the prostate (65%). Symptom scores, maximum flow rate, post-void residual urine, and prostate volume showed significant improvements at 12 and 24 weeks after the surgery. Perioperative complications included transient urinary retention (n = 20), retrograde ejaculation (5), bladder neck contracture (4), urethral stricture (3), stone in prostatic bed (3), bladder stone (2), bladder perforation (1), bladder deformity (1), and transient urgency incontinence (1). Urinary retention and bladder neck contracture occurred almost exclusively at one institution. Improved symptom scores, maximum flow rate, and post-void residual urine observed at 24 weeks remained virtually unchanged at 1 and 2 years. Early experience of contact laser vaporization in Japan showed efficacy comparable to transurethral resection of the prostate as a surgical procedure for BPH at 24 weeks. Long-term efficacy of the procedure remains uncertain. © 2017 John Wiley & Sons Australia, Ltd.

  1. Continuous atom laser with Bose-Einstein condensates involving three-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, A V; Michinel, H; Novoa, D [Area de Optica, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain); Olivieri, D N, E-mail: avcarpentier@uvigo.e [Area de Linguaxes e sistemas informaticos, Escola Superior de EnxenerIa Informatica, Universidade de Vigo, As Lagoas s/n, Ourense, ES-32004 (Spain)

    2010-05-28

    We demonstrate, through numerical simulations, the emission of a coherent continuous matter wave of constant amplitude from a Bose-Einstein condensate in a shallow optical dipole trap. The process is achieved by spatial control of the variations of the scattering length along the trapping axis, including elastic three-body interactions due to dipole interactions. In our approach, the outcoupling mechanism is atomic interactions, and thus, the trap remains unaltered. We calculate analytically the parameters for the experimental implementation of this continuous wave atom laser.

  2. Influence of the atomic mass of the background gas on laser ablation plume propagation

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2008-01-01

    A combination of time-of-flight ion probe measurements and gas dynamical modeling has been used to investigate the propagation of a laser ablation plume in gases of different atomic/molecular weight. The pressure variation of the ion time-of-flight was found to be well described by the gas...... dynamical model of Predtechensky and Mayorov (Appl. Supercond. 1:2011, 1993). In particular, the model describes how the pressure required to stop the plume in a given distance depends on the atomic/molecular weight of the gas, which is a feature that cannot be explained by standard point...

  3. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.J. [University of California, Department of Applied Mechanics and Engineering Science, Urey Hall, Mali Code 0339, San Diego, La Jolla, CA (United States)

    2000-03-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  4. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M., E-mail: Masaki.Hori@mpq.mpg.de [Max-Planck-Institut fuer Quantenoptik (Germany); Dax, A. [University of Tokyo, Department of Physics (Japan); Soter, A. [Max-Planck-Institut fuer Quantenoptik (Germany)

    2012-12-15

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth {Gamma}{sub pl} {approx} 6 MHz, pulse energy 50-100 mJ, and output wavelength {lambda} = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth {Gamma}{sub pl} {approx} 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  5. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    Science.gov (United States)

    Hori, M.; Dax, A.; Soter, A.

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth Γpl ˜ 6 MHz, pulse energy 50-100 mJ, and output wavelength λ = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth Γpl ˜ 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  6. Two photon laser spectroscopy of antiprotonic helium atoms at CERN’s AD

    CERN Document Server

    Hori, M

    2014-01-01

    The ASACUSA collaboration of CERN has carried out two-photon laser spectroscopy of antiprotonic helium atoms using counter-propagating ultraviolet laser beams. This excited some non-linear transitions of the antiproton at the wavelengths λ = 139.8–197.0 nm, in a way that reduced the thermal Doppler broadening of the observed resonances. The resulting narrow spectral lines allowed the measurement of three transition frequencies with fractional precisions of 2.3–5 parts in 109. By comparing these values with three-body QED calculations, the antiproton-to-electron mass ratio was derived as 1836.1526736(23). We briefly review these results.

  7. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms

    DEFF Research Database (Denmark)

    Pfeiffer, Adrian N.; Cirelli, Claudio; Smolarski, Mathias

    2012-01-01

    In the research area of strong-laser-field interactions and attosecond science1, tunnelling of an electron through the barrier formed by the electric field of the laser and the atomic potential is typically assumed to be the initial key process that triggers subsequent dynamics1, 2, 3. Here we use...... the attoclock technique4 to obtain experimental information about the electron tunnelling geometry (the natural coordinates of the tunnelling current flow) and exit point. We confirm vanishing tunnelling delay time, show the importance of the inclusion of Stark shifts5, 6 and report on multi-electron effects...

  8. Influence of the atomic mass of the background gas on laser ablation plume propagation

    Science.gov (United States)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2008-09-01

    A combination of time-of-flight ion probe measurements and gas dynamical modeling has been used to investigate the propagation of a laser ablation plume in gases of different atomic/molecular weight. The pressure variation of the ion time-of-flight was found to be well described by the gas dynamical model of Predtechensky and Mayorov (Appl. Supercond. 1:2011, 1993). In particular, the model describes how the pressure required to stop the plume in a given distance depends on the atomic/molecular weight of the gas, which is a feature that cannot be explained by standard point-blast-wave descriptions of laser ablation plume expansion in gas.

  9. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  10. Towards the measurement of the electron EDM with laser cooled francium atoms

    Science.gov (United States)

    Kawamura, Hirokazu; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Sakamoto, K.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Yoshida, H. P.; Wakasa, T.; Sakemi, Y.

    2014-09-01

    The electric dipole moment (EDM) of a particle is a probe into new physics beyond the standard model. The electron EDM might be observed with an enhancement in heavier paramagnetic atoms. Francium (Fr), whose electron structure is useful for laser-cooling and trapping, has a large enhancement factor. Fr produced at high temperature via a fusion reaction will be laser-cooled and trapped in an optical lattice where the EDM is measured. The magneto-optical trapping of Fr is required in advance of the lattice trapping. The technique observing a small number of atoms makes it easy to search for the resonant frequency of Fr. The improvement of the beam purity should lead to a more efficient trap. The techniques towards Fr trapping and EDM measurement have been developed. The electric dipole moment (EDM) of a particle is a probe into new physics beyond the standard model. The electron EDM might be observed with an enhancement in heavier paramagnetic atoms. Francium (Fr), whose electron structure is useful for laser-cooling and trapping, has a large enhancement factor. Fr produced at high temperature via a fusion reaction will be laser-cooled and trapped in an optical lattice where the EDM is measured. The magneto-optical trapping of Fr is required in advance of the lattice trapping. The technique observing a small number of atoms makes it easy to search for the resonant frequency of Fr. The improvement of the beam purity should lead to a more efficient trap. The techniques towards Fr trapping and EDM measurement have been developed. Supported by MEXT/JSPS KAKENHI Grants (21104005, 25610112 and 26220705) and Tohoku University's Focused Research Project.

  11. Transmission and time delay properties of an integrated system consisting of atomic vapor cladding on top of a micro ring resonator.

    Science.gov (United States)

    Stern, Liron; Levy, Uriel

    2012-12-17

    In this paper we analyze the transmission and time delay properties of light propagating through a microring resonator (MRR) consisting of a solid core waveguide surrounded by an atomic vapor cladding. Using the atomic effective susceptibility of Rubidium we derive the complex transmission spectrum of the integrated system. We show, that when the system is under-coupled, the transmission can exceed the standalone MRR's background transmission and is accompanied by enhanced positive time delay. It is shown that in this case the contrast of the atomic lines is greatly enhanced. This allows achieving high optical densities at short propagation length. Furthermore, owing to its features such as small footprint, high tunability, and high delay-transmission product, this system may become an attractive choice for chip scale manipulations of light.

  12. Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography.

    Science.gov (United States)

    Kolli, R Prakash

    2017-01-01

    Residual hydrogen (H2) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation. Increased insight into the behavior of residual H2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography. The results indicate that the total residual hydrogen concentration, HTOT, in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important. The pulse energy has the greatest influence on the quantity HTOT, which is consistently less than 0.1 at.% at a value of 80 pJ.

  13. New approaches in deep laser cooling of magnesium atoms for quantum metrology

    Science.gov (United States)

    Prudnikov, O. N.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.; Bonert, A. E.; Tropnikov, M. A.; Goncharov, A. N.

    2016-09-01

    Two approaches for solving the long-standing problem of deep laser cooling of neutral magnesium atoms are proposed. The first one uses optical molasses with orthogonal linear polarizations of light waves. The second approach involves a ‘nonstandard’ magneto-optical trap (NMOT) composed of light waves with elliptical polarizations (in general). Both the widely used semiclassical approach based on the Fokker-Planck equation and quantum treatment fully taking into account the recoil effect are employed for theoretical analysis. The results show the possibility of obtaining temperatures lower than 100 µK simultaneously with a large number of cold atoms ~106 ÷ 107. A new velocity-selective cooling technique allowing one to reach the microkelvin temperature range is also proposed. This technique may have some advantages over, for instance, the shallow-dipole-trap technique utilized by other authors. In the case of magnesium atoms this new technique may be used for obtaining a large number of ultracold atoms (T ~ 1 µK, N  >  105). Such a large number of ultracold atoms is crucial issue for metrological and many other applications of cold atoms.

  14. Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.

    Science.gov (United States)

    La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M

    2017-04-01

    The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.

  15. CO2 laser vaporization in the treatment of cervical human papillomavirus infection in women with abnormal Papanicolaou smears

    DEFF Research Database (Denmark)

    Ruge, S; Felding, C; Skouby, S O

    1992-01-01

    In a randomized study, we have evaluated the treatment of cervical human papillomavirus (HPV) lesions by CO2 laser vaporization. Fifty patients with abnormal Papanicolaou smears and histological evidence of cervical HPV infection associated or not with cervical intraepithelial neoplasia (CIN) grade...... I were randomized to either a treatment or a control group. The cervical swabs were obtained every 3 months in both groups and examined for HPV type 16 DNA by the polymerase chain reaction. After a follow-up period of 12 months no significant differences were found between the laser treatment...... in their cervical smears at 12 months' follow-up was identical in the two groups, supporting the hypothesis that HPV is a persistent infection during which the virus is widespread in the vaginal epithelium....

  16. Characterization of the photocurrents generated by the laser of atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nanoscience and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Iglesias, Vanessa [International Iberian Nanotechnology Laboratory, 4715-330 Braga (Portugal); Lewis, David [Nanonics Imaging, Har Hotzvim, Jerusalem 91487 (Israel); Niu, Jiebin; Long, Shibing; Liu, Ming [Laboratory of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Hofer, Alexander; Frammelsberger, Werner; Benstetter, Guenther [Deggendorf Institute of Technology, Edlmairstr. 6+8, 94469 Deggendorf (Germany); Scheuermann, Andrew; McIntyre, Paul C. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-08-15

    The conductive atomic force microscope (CAFM) has become an essential tool for the nanoscale electronic characterization of many materials and devices. When studying photoactive samples, the laser used by the CAFM to detect the deflection of the cantilever can generate photocurrents that perturb the current signals collected, leading to unreliable characterization. In metal-coated semiconductor samples, this problem is further aggravated, and large currents above the nanometer range can be observed even without the application of any bias. Here we present the first characterization of the photocurrents introduced by the laser of the CAFM, and we quantify the amount of light arriving to the surface of the sample. The mechanisms for current collection when placing the CAFM tip on metal-coated photoactive samples are also analyzed in-depth. Finally, we successfully avoided the laser-induced perturbations using a two pass technique: the first scan collects the topography (laser ON) and the second collects the current (laser OFF). We also demonstrate that CAFMs without a laser (using a tuning fork for detecting the deflection of the tip) do not have this problem.

  17. Spectroscopy with Laser-cooled Francium and Progress on Atomic Parity Non-conservation

    Science.gov (United States)

    Zhang, Jiehang

    Francium, the heaviest alkali, possesses a unique combination of structural simplicity and great sensitivity to effects such as atomic parity non-conservation (APNC). We report in this thesis our progress towards measuring weak-interaction physics in a low energy system: the francium atom. We have built a new generation of high-efficiency laser cooling and trapping facility at TRIUMF national laboratory in Canada. We constructed a precision science chamber and demonstrate francium atom transfer into the precision trap, where the electromagnetic field environments can be exquisitely controlled such that weak-interaction studies via optical and microwave excitations can take place. We perform laser spectroscopy measurements of the hyperfine structure and isotope shifts in a chain of francium isotopes near the neutron closed shell (N = 126), including both ground and isomeric nuclear states. These measurements provide a basis for benchmarking state of the art atomic theory, as well as future nuclear structure calculations in Fr, necessary for interpreting the weak-interaction studies. These developments lay important foundations for precision parity non-conservation measurements with francium.

  18. Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers

    DEFF Research Database (Denmark)

    Stern, Stephan; Holmegaard, Lotte; Filsinger, Frank

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Cohere...... Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers.......We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent...

  19. An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    CERN Document Server

    Eismann, Ulrich; Canalias, Carlota; Zukauskas, Andrius; Trénec, Gérard; Vigué, Jacques; Chevy, Frédéric; Salomon, Christophe

    2011-01-01

    We present an all solid-state narrow line-width laser source emitting $670\\,\\mathrm{mW}$ output power at $671\\,\\mathrm{nm}$ delivered in a diffraction-limited beam. The source is based on a frequency-doubled diode-end-pumped ring laser operating on the ${^4F}_{3/2} \\rightarrow {^4I}_{13/2}$ transition in Nd:YVO$_4$. By using periodically-poled potassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over $100\\,\\rm GHz$ is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented.

  20. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  1. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.

    Science.gov (United States)

    Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J

    2007-07-01

    The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer. Copyright 2007 Wiley-Liss, Inc.

  2. Monitoring of temperature increase and tissue vaporization during laser interstitial thermotherapy of ex vivo swine liver by computed tomography.

    Science.gov (United States)

    Schena, E; Saccomandi, P; Giurazza, F; Del Vescovo, R; Mortato, L; Martino, M; Panzera, F; Di Matteo, F M; Beomonte Zobel, B; Silvestri, S

    2013-01-01

    Laser interstitial thermotherapy (LITT) is a minimally invasive technique used to thermally destroy tumour cells. Being based on hyperthermia, LITT outcome depends on the temperature distribution inside the tissue. Recently, CT scan thermometry, based on the dependence of the CT number (HU) on tissue temperature (T) has been introduced during LITT; it is an attractive approach to monitor T because it overcomes the concerns related to the invasiveness. We performed LITT on nine ex vivo swine livers at three different laser powers, (P=1.5 W, P=3 W, P=5 W) with a constant treatment time t=200 s; HU is averaged on two ellipsoidal regions of interest (ROI) of 0.2 cm2, placed at two distances from the applicator (d=3.6 mm and d=8.7 mm); a reference ROI was placed away from the applicator (d=30 mm). The aim of this study is twofold: 1) to evaluate the effect of the T increase in terms of HU variation in ex vivo swine livers undergoing LITT; and 2) to estimate the P value for tissue vaporization. To the best of our knowledge, this is the first study focused on the HU variation in swine livers undergoing LITT at different P. The reported findings could be useful to assess the effect of LITT on the liver in terms of both T changes and tissue vaporization, with the aim to obtain an effective therapy.

  3. Methods of Soft Tissue Emulsification Using a Mechanism of Ultrasonic Atomization Inside Gas or Vapor Cavities and Associated Systems and Devices

    Science.gov (United States)

    Sapozhnikov, Oleg A. (Inventor); Bailey, Michael R. (Inventor); Crum, Lawrence A. (Inventor); Khokhlova, Tatiana D. (Inventor); Khokhlova, Vera A. (Inventor); Simon, Julianna C. (Inventor); Wang, Yak-Nam (Inventor)

    2016-01-01

    The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.

  4. Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter.

    Science.gov (United States)

    Wulfmeyer, V

    1998-06-20

    An all-solid-state laser transmitter for a water-vapor and temperature differential absorption lidar (DIAL) system in the near infrared is introduced. The laser system is based on a master-slave configuration. As the slave laser a Q-switched unidirectional alexandrite ring laser is used, which is injection seeded by the master laser, a cw Ti:sapphire ring laser. It is demonstrated that this laser system has, what is to my knowledge, the highest frequency stability (15 MHz rms), narrowest bandwidth (99.99%) of all the laser transmitters developed to date in the near infrared. These specifications fulfill the requirements for water-vapor measurements with an error caused by laser properties of specifications are maintained during long-term operation in the field. The single-mode operation of this laser system makes the narrow-band detection of the DIAL backscatter signal possible. Thus the system has the potential to be used for accurate temperature measurements and for simultaneous DIAL and Doppler wind measurements.

  5. Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Hirohito; Muraki, Susumu; Endo, Hiroki; Bandow, Shunji; Iijima, Sumio, E-mail: bandow@meijo-u.ac.j [Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya 468-8502 (Japan)

    2010-08-25

    Nanometer-scale carbon particles driven by the pulsed-laser vaporization of pelletized pure carbon powder at 1000 {sup 0}C in a hydrogen-containing environment show anomalous magnetism like a superparamagnet, while the sample prepared in 100% of Ar does not show such magnetism. The observed magnetism was unchanged over months in the ambient. The structure of this nanomaterial resembles the foam of a laundry detergent and transmission electron microscopy indicates a clear corrugated line contrast. On the other hand, a sample without strong magnetism does not give such an image contrast. The x-ray diffraction pattern coincides with that of graphite and no other peak is detected. Thermogravimetry indicates that all samples completely burn out up to approx. 820 {sup 0}C and no material remains after combustion, indicating that the sample does not contain impurity metals. Magnetization is easily saturated by {approx} 10 000 G at 280 K with no hysteresis, but the hysteresis appears at 4.2 K. This phenomenon is explained by introducing a crystalline anisotropy which restricts the motion of the magnetic moment and stabilizes the remnant magnetization at zero magnetic field. Magnitudes of the saturation magnetization are in the range of 1-5 emu G g{sup -1} at 4.2 K, which correspond to 0.002-0.01 Bohr magneton per carbon atom. This concentration may be increased by ten times or more, because only about 4-10% of particles have a magnetic domain in the present samples.

  6. Probing parity nonconservation effects with laser cooled and trapped francium atoms

    Science.gov (United States)

    Kalita, Mukut; Aubin, Seth; Behr, John; Collister, Robert; Dehart, Austin; Gorelov, Alexandre; Garcia, Eduardo; Gwinner, Gerald; Kossin, Michael; Livermore, David; Orozco, Luis; Pearson, Matt; FrPNC Collaboration

    2016-09-01

    Measurements of parity nonconservation (PNC) effects in atomic systems test the Standard Model at low energies. We are developing an experiment to probe PNC effect in neutral francium atoms. Francium ions produced at the ISAC radioactive beam facility at TRIUMF are neutralized using a zirconium foil. The foil is momentarily heated and the released atoms are first trapped in a capture magneto optical trap (MOT). Then, the atoms are transported with about 50% efficiency to another MOT in a science chamber. In this chamber, in one experiment the 7S to 8S atomic transition will be probed using a laser beam, and in another experiment the ground state hyperfine transition will be probed using a microwave beam. In this talk I will report on recent developments towards the measurements. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work is also supported by NSERC from Canada, the DOE and NSF from the USA and CONACYT from Mexico.

  7. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  8. Effects of Optical Dopants and Laser Wavelength on Atom Probe Tomography Analyses of Borosilicate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaonan; Schreiber, Daniel K.; Neeway, James J.; Ryan, Joseph V.; Du, Jincheng

    2017-10-02

    Atom probe tomography (APT) is a novel analytical microscopy method that provides three dimensional elemental mapping with sub-nanometer spatial resolution and has only recently been applied to insulating glass and ceramic samples. In this paper, we have studied the influence of the optical absorption in glass samples on APT characterization by introducing different transition metal optical dopants to a model borosilicate nuclear waste glass (international simple glass). A systematic comparison is presented of the glass optical properties and the resulting APT data quality in terms of compositional accuracy and the mass spectra quality for two APT systems: one with a green laser (532 nm, LEAP 3000X HR) and one with a UV laser (355 nm, LEAP 4000X HR). These data were also compared to the study of a more complex borosilicate glass (SON68). The results show that the analysis data quality such as compositional accuracy and total ions collected, was clearly linked to optical absorption when using a green laser, while for the UV laser optical doping aided in improving data yield but did not have a significant effect on compositional accuracy. Comparisons of data between the LEAP systems suggest that the smaller laser spot size of the LEAP 4000X HR played a more critical role for optimum performance than the optical dopants themselves. The smaller spot size resulted in more accurate composition measurements due to a reduced background level independent of the material’s optical properties.

  9. Atomic xenon recombination laser excited by thermal ionizing radiation from a magnetoplasma compressor and discharge

    Science.gov (United States)

    Kamrukov, A. S.; Kozlov, Nicolay P.; Opekan, A. G.; Protasov, Yuri S.; Rudoi, I. G.; Soroka, A. M.

    1991-09-01

    A description is given and the results are reported of the first photoionization-recombination laser using atomic xenon excited by thermal ionizing radiation from a plasma. The pump source was a multichannel plasmadynamic in magnetoplasma compressors, which was ignited in the active medium of the laser. When the composition of the working mixture was optimal (Xe:Ar equals 1:250) and the total pressure was 1 atm, the output energy was approximately 0.5 in the form of pulses of approximately 10 microsecond(s) duration, and maximum specific output energy represented by laser radiation was 1-2 J/l. The unsaturated gain was 27 m. A kinetic laser scheme was proposed and analyzed. It allowed for the processes of photoionization, ion conversion, dissociative recombination, interaction of excited states with electron and buffer gases, etc. An important role played by heating of the active medium during pumping was demonstrated; it explained the observed characteristics of the spatial and temporal structure of the lasing process, particularly bleaching of large volumes of the active medium. The potential output energy of the laser was considered, and specific constructions were proposed to attain a lasing efficiency amounting to a few percent.

  10. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    Science.gov (United States)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  11. Low-Drift Coherent Population Trapping Clock Based on Laser-Cooled Atoms and High-Coherence Excitation Fields

    Science.gov (United States)

    Liu, Xiaochi; Ivanov, Eugene; Yudin, Valeriy I.; Kitching, John; Donley, Elizabeth A.

    2017-11-01

    A compact cold-atom coherent population trapping clock in which laser-cooled atoms are interrogated with highly coherent coherent population trapping fields under free fall is presented. The system achieves fractional frequency instability at the level of 3 ×10-13 on the time scale of an hour. The clock may lend itself to portable applications since the atoms typically fall only 1.6 mm during the typical interrogation period of 18 ms.

  12. 7th International Workshop on Application of Lasers in Atomic Nuclei Research “Nuclear Ground and Isometric State Properties”

    CERN Document Server

    Błaszczak, Z; Marinova, K; LASER 2006

    2007-01-01

    7th International Workshop on Application of Lasers in Atomic Nuclei Research, LASER 2004, held in Poznan, Poland, May 29-June 01, 2006 Researchers and PhD students interested in recent results in the nuclear structure investigation by laser spectroscopy, the progress of the experimental technique and the future developments in the field will find this volume indispensable. Reprinted from Hyperfine Interactions (HYPE) Volume ???

  13. Nuclear-driven flashlamp pumping of the atomic iodine laser. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miley, G.H.

    1992-03-01

    This report is a study of the atomic iodine laser pumped with nuclear- excited XeBr fluorescence. Preliminary experiments, conducted in the TRIGA reactor investigated the fluorescence of the excimer XeBr under nuclear pumping with {sup 10}B and {sup 3}He, for use as a flashlamp gas to stimulate the laser. These measurements included a determination of the fluorescence efficiency (light emitted in the wavelength region of interest, divided by energy deposited in the gas) of XeBr under nuclear pumping, with varying excimer mixtures. Maximum fluorescence efficiencies were approximately 1%. In order to better understand XeBr under nuclear excitation, a kinetics model of the system was prepared. The model generated the time-dependant concentrations of 20 reaction species for three pulse sizes, a TRIGA pulse, a fast burst reactor pulse, and an e-beam pulse. The modeling results predicted fluorescence efficiencies significantly higher (peak efficiencies of approximately 10%) than recorded in the fluorescence experiments. The cause of this discrepancy was not fully determined. A ray tracing computer model was also prepared to evaluate the efficiency with which nuclear-induced fluorescence generated in one cavity of a laser could be coupled into another cavity containing an iodine lasant. Finally, an experimental laser cell was constructed to verify that nuclear-induced XeBr fluorescence could be used to stimulate a laser. Lasing was achieved at 1.31 micron in the TRIGA using C{sub 3}F{sub 7}I, a common iodine lasant. Peak laser powers were approximately 20 mW. Measured flashlamp pump powers at threshold agreed well with literature values, as did lasant pressure dependency on laser operation.

  14. High-power thulium laser vaporization of the prostate: short-term outcomes of safety and effectiveness.

    Science.gov (United States)

    Pariser, Joseph J; Famakinwa, Olufenwa J; Pearce, Shane M; Chung, Doreen E

    2014-11-01

    The thulium laser was introduced in 2005 for the treatment of benign prostatic hyperplasia (BPH). Enucleation studies from outside North America show comparable efficacy and lower morbidity to transurethral resection of the prostate. A few studies exist describing outcomes of vaporization, the most commonly used technique for urologists. We present our 3-month outcomes of thulium laser vaporization of the prostate (ThuVP). From December 2010 to October 2013, 68 men underwent ThuVP using the 150 W CyberTM(®). Data were collected on demographics, comorbidities, intraoperative measures, complications, serum parameters, maximum flow rate (Qmax), postvoid residual (PVR), International Prostate Symptom Score (IPSS), quality-of-life (QoL) score, and prostate-specific antigen. Patients were evaluated at 1 week, 1 month, and 3 months postoperatively. Nine patients were excluded for known prostate cancer. The mean age was 66±10 years, with a mean prostate size of 57±30 mL. At baseline, the mean IPSS was 19.9±8.0, QoL score was 4.5±1.1, Qmax was 5.2±4.5 mL/sec, and PVR was 220±397 mL. The mean laser time was 35±18 minutes, and energy used was 234±139 kJ. Forty-seven (78%) patients were discharged the day of surgery. No blood transfusions were administered with a mean drop in hemoglobin of 0.7±0.8 g/dL (pvaporization of the prostate appears to be a safe and effective outpatient technique for the treatment of BPH with durable outcomes at 3 months.

  15. The effect of laser-fiber sweeping speed on the efficiency of photoselective vaporization of the prostate in an ex vivo bovine model.

    Science.gov (United States)

    Kauffman, Eric C; Kang, Hyun Wook; Choi, Benjamin B

    2009-09-01

    Recommendations for efficient photoselective vaporization of the prostate (PVP) include a side-to-side rotational laser-fiber "sweeping" motion, yet scientific study of this technique is lacking. We investigated whether the speed of laser-fiber sweeping affects tissue vaporization efficiency. PVP was performed using the 120-W GreenLight high-performance system. Video analysis of a surgeon performing PVP was carried out to identify sweeping speeds used clinically. PVP efficiency was subsequently tested at four different sweeping speeds using two manipulations of an ex vivo bovine prostate model, including (1) excised prostate tissues (n = 40) in a vaporization chamber equipped with motorized laser-fiber movements; (2) retrograde endoscopic vaporization (n = 80) within whole lower urinary tracts. Vaporized cavity sizes and coagulative margins were measured by liquid-paraffin molding and histologic cross-sectioning approaches. Video analysis of clinical PVP showed wide variability in sweeping speed, mostly ranging between 0.5 and 2.0 (mean 1.50) sweeps/second. Using either manipulation of the ex vivo bovine prostate model described above, PVP at lower sweeping speeds (0.5 and 1.0 sweeps/second) removed significantly more tissue (up to twofold) compared with higher sweeping speeds (1.5 and 2.0 sweeps/second), with significant albeit minimal reductions in coagulation margins. In this ex vivo prostate model, our results suggest that vaporization efficiency is compromised with faster laser-fiber sweeping. This finding counters principles of traditional transurethral resection of the prostate, in which faster axial movement toward the surgeon removes tissue more efficiently. This study highlights that PVP technique can be tested in a scientific manner, identifying optimal parameters for achieving maximal tissue vaporization efficiency.

  16. Attosecond polarization control in atomic RABBITT-like experiments assisted by a circularly polarized laser

    Science.gov (United States)

    Boll, D. I. R.; Fojón, O. A.

    2017-12-01

    We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets.

  17. Molecular and atomic ultra trace analysis by laser induced fluorescence with OPO system and ICCD camera.

    Science.gov (United States)

    Burel, L; Giamarchi, P; Stephan, L; Lijour, Y; Le Bihan, A

    2003-06-13

    This paper presents a synthesis of some analytical potentialities of an equipment designed for both laser induced molecular and atomic fluorescence in the field of ultra-trace analysis (ng l(-1)). Excitation of fluorescence was performed with a pulsed Nd:Yag laser coupled to an optical parametric oscillator (OPO). Fluorescence spectra were recorded with a spectrograph and an intensified charge-coupled device (ICCD). The high energy and the tunability of the excitation combined with the sensitivity of the ICCD and the time-resolution provide better limit of detection (LOD) and selectivity. By molecular fluorescence, some major organic contaminants in the environment were studied, i.e. polycyclic aromatic hydrocarbons (PAHs) (benzo[a]pyrene and hydroxypyrene) and a pesticide (carbaryl). The LODs achieved by direct analysis were far below the restricted European values for tap water. Analysis was performed in water containing humic acids using time resolution to avoid the matrix fluorescence. By electro thermal atomisation-laser excited atomic fluorescence (ETA-LEAF), we detected traces of aluminium and lead in seawater. Some general considerations about the signal to noise ratio optimisation are reported. LODs reached the femtogram level.

  18. Atomic force microscopy visualization of injuries in Enterococcus faecalis surface caused by Er,Cr:YSGG and diode lasers

    Science.gov (United States)

    López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa

    2015-01-01

    Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770

  19. Efficient enhancement of below-threshold harmonic generation by laser-driven excited states of Cs atom

    Science.gov (United States)

    Guo, Qiao-Ling; Li, Peng-Cheng; Zhou, Xiao-Xin; Chu, Shih-I.

    2018-03-01

    We propose an efficient method for the enhancement of below-threshold harmonic generation (BTHG) by mid-infrared laser-driven excited states of a Cs atom. The BTHG is calculated by solving three-dimensional time-dependent Schrödinger equation accurately and efficiently using the time-dependent generalized pseudospectral method. We adopt an excited state as the initial state of a Cs atom. As a result, the BTHG is significantly enhanced by two orders of magnitude compared with the case of the initial ground state. Furthermore, we find that a single vacuum-ultraviolet pulse can be generated by mid-infrared laser-driven excited states by superposing several below-threshold harmonics of a Cs atom. Our finding suggests that the generation of below-threshold harmonics by laser-driven excited states of an atom can provide a powerful methodology for the production of intense vacuum-ultraviolet pulses.

  20. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  1. Laser Vaporization of the Prostate With the 180-W XPS-Greenlight Laser in Patients With Ongoing Platelet Aggregation Inhibition and Oral Anticoagulation.

    Science.gov (United States)

    Lee, Daniel J; Rieken, Malte; Halpern, Joshua; Zhao, Fujun; Pueschel, Heike; Chughtai, Bilal; Kaplan, Steven A; Lee, Richard K; Bachmann, Alexander; Te, Alexis E

    2016-05-01

    To characterize the safety and efficacy of the 180-W XPS-Greenlight laser in patients on systemic anticoagulation. A retrospective analysis of 384 patients who underwent photoselective vaporization of the prostate with the 180-W XPS-laser between 2010 and 2013 at two centers in the United States and Switzerland was performed. The primary outcome was the intraoperative and postoperative complication rates for those on anticoagulation undergoing photoselective vaporization of the prostate. The secondary outcome was International Prostate Symptom Scores, postvoid residual, maximum flow rate, and prostate-specific antigen levels. Of 384 patients, aspirin, clopidogrel, and warfarin were used in 146 (38%), 34 (8.9%), and 57 (14.8%) patients, respectively. Single-drug, two-drug, and three-drug combinations were used in 142 (35.5%), 37 (9.3%), and 7 (1.7%) of the cases. Median lasing time (39 min vs 36 min; P = .99) and number of fibers used (1.0 vs 1.0; P = .63) were comparable between patients on vs off systemic anticoagulation. Postoperatively, urinary symptoms (International Prostate Symptom Score, quality of life) and objective voiding parameters (maximum flow rate, postvoid residual) improved in both groups of patients. During a maximum follow-up of 2 years, patients on vs off systemic anticoagulation did not show any significant differences in the rate of postoperative urinary tract infection (3.8% vs 5.1%; P = .71), retention (5.1% vs 5.9%; P = .71), urethral stricture (1.5% vs none, P = .05), and reoperation (2.2% vs 1.5%; P = .49). The primary limitation is the retrospective nature of the study. Photovaporization of the prostate with the 180-W XPS-laser is a safe and effective minimal-invasive treatment option for patients on systemic anticoagulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Does prostate configuration affect the efficacy and safety of GreenLight HPS™ laser photoselective vaporization prostatectomy (PVP)?

    Science.gov (United States)

    Gu, Xiao; Strom, Kurt; Spaliviero, Massimiliano; Wong, Carson

    2013-02-01

    We evaluate the efficacy and safety of GreenLight HPS™ laser photoselective vaporization prostatectomy (PVP) for the treatment of benign prostatic hyperplasia (BPH) with different prostate configuration. Patients were stratified into two groups: bilobe (group I) and trilobe (group II) BPH. Transurethral PVP was performed using a 120 W GreenLight HPS™ side-firing laser system. American Urological Association Symptom Score (AUASS), Quality of Life (QoL) score, maximum flow rate (Q max), and postvoid residual (PVR) were measured preoperatively and at 1 and 4 weeks and 3, 6, 12, 18, 24 and 36 months postoperatively. A number of 160 consecutive patients were identified (I: 86, II: 74). Among the preoperative parameters, there were significant differences (p  0.05). Significant differences (p  0.05). The incidences of adverse events were low and similar in both groups. Our experience suggests that BPH configuration has little effect on the efficacy and safety of GreenLight HPS™ laser PVP.

  3. Safety, efficacy and reliability of 180-W GreenLight laser technology for prostate vaporization: review of the literature.

    Science.gov (United States)

    Castellan, Pietro; Castellucci, Roberto; Schips, Luigi; Cindolo, Luca

    2015-05-01

    The aim of this study is to investigate the efficacy and safety of 180-W XPS GreenLight laser technology for photoselective prostate vaporization. A systematic search of the electronic databases was performed. Inclusion criteria were: full-text peer-reviewed journal article, with original data analysis that evaluates the feasibility and the outcome only of 180-W XPS GL laser system. Data at baseline and during follow-up have been taken into account. Intra-operative and postoperative (functional results and complications) data were collected and analyzed. We found 165 articles in our research, among which only nine articles were selected (total 991 patients). A certain grade of variability is present in all the studies in terms of scientific design, sample size and methods of reporting functional results and complications. Nevertheless, a homogenous benefit for patients in terms of symptom score improvement, post-void residual volume reduction and urinary max flow rate improvement was shown. According to Clavien-Dindo classification, 292 (83.7%) adverse events were recorded ≤ grade 2. Adverse events ≥ grade 3 were 57 (16.3%), among which bleeding, urinary retention and residual obstructive tissue represented the wide majority. No mortality was reported. Male sexual function was poorly investigated. The 180-W XPS GL laser technique is feasible and safe, with a remarkable clinical benefit. Long-term evidence on outcomes and complications are suitable even in the sphere of male sexuality.

  4. Holmium laser ablation of the prostate versus photoselective vaporization of prostate 60 cc or less: short-term results of a prospective randomized trial.

    Science.gov (United States)

    Elzayat, Ehab A; Al-Mandil, Majid S; Khalaf, Ismail; Elhilali, Mostafa M

    2009-07-01

    We report on the first randomized trial to our knowledge comparing holmium laser ablation and photoselective vaporization of the prostate in patients with a small to moderate size prostate. Between March 2005 and April 2007, 109 patients with lower urinary tract symptoms secondary to benign prostatic hyperplasia and prostate size 60 cc or smaller were randomized to photoselective vaporization of the prostate (52) or holmium laser ablation of the prostate (57). All patients were evaluated by preoperative and postoperative International Prostate Symptom Score, peak flow rate and post-void residual urine volume, measurement of prostate specific antigen and transrectal ultrasound prostate volume. Followup evaluations were performed during visits at 1, 3, 6 and 12 months. Mean +/- SD preoperative prostate volume was 33.1 +/- 14.5 and 37.3 +/- 13.6 cc in the holmium laser ablation group and the photoselective vaporization group, respectively. Holmium laser ablation of the prostate required more operating time than photoselective vaporization (69.8 vs 55.5 minutes, p = 0.008). In the holmium laser ablation group the International Prostate Symptom Score improved from 20 +/- 6.8 to 6.2 +/- 3.9 and peak urinary flow rate increased from 6.7 +/- 3.9 to 17.2 +/- 8 ml per second. In the photoselective vaporization group the International Prostate Symptom Score improved from 18.4 +/- 6.6 to 8.2 +/- 6.2 and peak urinary flow rate increased from 6.4 +/- 3.9 to 18.4 +/- 8.4 ml per second. Urethral stricture rates were 1.7% vs 5.7%, bladder neck contractures were 3.5% vs 7.7% and revaporization rates were 3.5% vs 1.9% in the holmium laser ablation and photoselective vaporization groups, respectively. Holmium laser ablation and photoselective vaporization of the prostate are safe and effective in patients with benign prostatic hyperplasia with a small to moderate size prostate. Both procedures are easy to learn but holmium laser ablation of the prostate requires a longer operating

  5. Al-free active region laser diodes at 894 nm for compact Cesium atomic clocks

    Science.gov (United States)

    Von Bandel, N.; Bébé Manga Lobé, J.; Garcia, M.; Larrue, A.; Robert, Y.; Vinet, E.; Lecomte, M.; Drisse, O.; Parillaud, O.; Krakowski, M.

    2015-03-01

    Time-frequency applications are in need of high accuracy and high stability clocks. Compact industrial Cesium atomic clocks optically pumped is a promising area that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of laser diodes that are used for atomic pumping. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for earth applications. This work will provide key experience for further space technology qualification. We are in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894nm (D1 line of Cesium) and 852nm (D2 line). The use of D1 line for pumping will provide simplified clock architecture compared to D2 line pumping thanks to simpler atomic transitions and larger spectral separation between lines in the 894nm case. Also, D1 line pumping overcomes the issue of unpumped "dark states" that occur with D2 line. The modules should provide narrow linewidth (<1MHz), very good reliability in time and, crucially, be insensitive to optical feedback. The development of the 894nm wavelength is grounded on our previous results for 852nm DFB. Thus, we show our first results from Al-free active region with InGaAsP quantum well broad-area lasers (100μm width, with lengths ranging from 2mm to 4mm), for further DFB operation at 894nm. We obtained low internal losses below 2cm-1, the external differential efficiency is 0.49W/A with uncoated facets and a low threshold current density of 190A/cm², for 2mm lasers at 20°C.

  6. Multiphoton laser wave-mixing absorption spectroscopy for samarium using a graphite furnace atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Maniaci, Michael J.; Tong, William G. E-mail: william.tong@sdsu.edu

    2004-07-30

    Nonlinear laser wave-mixing optical technique is presented as a sensitive atomic spectroscopic method for the analysis of rare earth elements using an unmodified commercially available graphite furnace (GF) atomizer. A simple nonplanar backward-scattering degenerate four-wave mixing optical arrangement offers sub-picogram detection sensitivity with sub-Doppler Lorentzian-broadened resolution. Nonlinear wave mixing is an unusually sensitive absorption-based optical method that offers both excellent detection sensitivity and sub-Doppler spectral resolution. A mass detection limit of 0.7 pg and a concentration detection limit of 70 pg/ml are determined for a rare earth element, samarium, using the 429.7-nm excitation line.

  7. Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-15

    A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.

  8. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati

    2017-09-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  9. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi

    2011-05-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  10. Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhang; Chong Kang; Wang Qingtao; Lei Cheng; Zheng Caiping, E-mail: zhangyang@hrbeu.edu.cn [College of Science, Harbin Engineering University, Harbin 150001 (China)

    2011-02-01

    At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.

  11. Intra- and intercycle interference of electron emission in laser assisted XUV atomic ionization

    CERN Document Server

    Gramajo, Ana Alicia; Garibotti, Carlos Roberto; Arbó, Diego

    2016-01-01

    We study the ionization of atomic hydrogen in the direction of polarization due to a linearly polarized XUV pulse in the presence a strong field IR. We describe the photoelectron spectra as an interference problem in the time domain. Electron trajectories steming from different optical laser cycles give rise to intercycle interference energy peaks known as sidebands. These sidebands are modulated by a grosser structure coming from the intracycle interference of the two electron trajectories born during the same optical cycle. We make use of a simple semiclassical model which offers the possibility to establish a connection between emission times and the photoelectron kinetic energy. We compare the semiclassical predictions with the continuum-distorted wave strong field approximation and the ab initio solution of the time dependent Schr\\"odinger equation. We analyze such interference pattern as a function of the time delay between the IR and XUV pulse and also as a function of the laser intensity.

  12. Low-phase noise and high-power laser for Bragg atom interferometer

    Science.gov (United States)

    Cheng, Yuan; Zhang, Ke; Chen, Le-Le; Xu, Wen-Jie; Luo, Qin; Zhou, Min-Kang; Hu, Zhong-Kun

    2017-09-01

    We present a laser system with low-phase noise and an output power up to 8.8 W at 780 nm for driving Bragg transitions in a 87Rb fountain. An optical phase-locked loop (OPLL) is employed to restrain the phase noise that arises from the spatial separation of the two Bragg beams at low frequencies. The residual phase variance is suppressed by two orders around 400 Hz. A Mach-Zehnder Bragg atom interferometer, based on the four-photon recoil scheme, has been realized using this laser system. This interferometer shows a resolution of 5 ×1 0-9g at an integration time of 1200 s for gravity measurements.

  13. Low-phase noise and high-power laser for Bragg atom interferometer

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    2017-09-01

    Full Text Available We present a laser system with low-phase noise and an output power up to 8.8 W at 780 nm for driving Bragg transitions in a   87Rb fountain. An optical phase-locked loop (OPLL is employed to restrain the phase noise that arises from the spatial separation of the two Bragg beams at low frequencies. The residual phase variance is suppressed by two orders around 400 Hz. A Mach-Zehnder Bragg atom interferometer, based on the four-photon recoil scheme, has been realized using this laser system. This interferometer shows a resolution of 5×10−9g at an integration time of 1200 s for gravity measurements.

  14. Optical field ionization of atoms and ions using ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fittinghoff, David Neal [Univ. of California, Davis, CA (United States)

    1993-12-01

    This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-run laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He+2, Ne+2 and Ar+2. The ion yields for He+1, Ne+1 and Ar+1 agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser-matter interactions and production of high-density plasmas. This work involved: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-ran ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields for three noble gases using linear, circular and elliptical polarizations of laser pulses at 614-nm and 800-nm. The measurements are some of the first measurements for pulse widths as low as 120-fs.

  15. Laser-Induced Fluorescence Measurements for Optical Single Atom Detection for Nuclear Astrophysics

    Science.gov (United States)

    Parzuchowski, Kristen; Singh, Jaideep; Wenzl, Jennifer; Frisbie, Dustin; Johnson, Maegan

    2016-09-01

    We propose a new highly selective detector to measure rare nuclear reactions relevant for nuclear astrophysics. Our primary interest is the 22Ne(α , n) 25Mg reaction, which is a primary source of neutrons for the s-process. Our proposed detector, in conjunction with a recoil separator, captures the recoil products resulting from the reaction in a cryogenically frozen thin film of solid neon. The fluorescence spectra of the captured atoms is shifted from the absorption spectra by hundreds of nanometers. This allows for the optical detection of individual fluorescence photons against a background of intense excitation light. We will describe our initial studies of laser-induced fluorescence of Yb and Mg in solid Ne. Neon is an attractive medium because it is optically transparent and provides efficient, pure, stable, & chemically inert confinement for a wide variety of atomic and molecular species. Yb is used as a test atom because of its similar atomic structure to Mg and much brighter fluorescence signal. This work is supported by funds from Michigan State University.

  16. Interaction of laser-cooled $^{87}$Rb atoms with higher order modes of an optical nanofiber

    CERN Document Server

    Kumar, Ravi; Maimaiti, Aili; Deasy, Kieran; Frawley, Mary C; Chormaic, Síle Nic

    2013-01-01

    Optical nanofibers can be used to confine light to submicron regions and are very promising for the realization of optical fiber-based quantum networks using cold, neutral atoms. Light propagating in the higher order modes of a nanofiber has a greater evanescent field extension around the waist in comparison with the fundamental mode, leading to a stronger interaction with the surrounding environment. In this work, we report on the integration of a few-mode, optical nanofiber, with a waist diameter of ~700 nm, into a magneto-optical trap for $^{87}$Rb atoms. The nanofiber is fabricated from 80 $\\mu$m diameter fiber using a brushed hydrogen-oxygen flame pulling rig. We show that absorption by laser-cooled atoms around the waist of the nanofiber is stronger when probe light is guided in the higher order modes than in the fundamental mode. As predicted by Masalov and Minogin*, fluorescent light from the atoms coupling in to the nanofiber through the waist has a higher pumping rate (5.8 times) for the higher-orde...

  17. Speciation of inorganic- and methyl-mercury in biological matrixes by electrochemical vapor generation from an L-cysteine modified graphite electrode with atomic fluorescence spectrometry detection.

    Science.gov (United States)

    Zhang, Wang-Bing; Yang, Xin-An; Dong, Yong-Ping; Xue, Jing-Jing

    2012-11-06

    A novel nonchromatographic speciation technique for ultratrace inorganic mercury (Hg(2+)) and methylmercury (CH(3)Hg(+)) in biological materials is developed and validated by electrolytic vapor generation (EVG) coupled with atomic fluorescence spectrometry (AFS). The studies show that CH(3)Hg(+) and Hg(2+) can be converted to Hg vapor efficiently on an l-cysteine modified graphite cathode, which has never been reported before. We observe that only Hg(2+) can be converted efficiently to Hg vapor at low current mode (0.2 A). While at high current mode (2.2 A), both CH(3)Hg(+) and Hg(2+) can be reduced efficiently. As a result, we successfully establish an exact and sensitive method based on the current control to detect mercury speciation for the first time. The factors of electrolytic conditions have been optimized, and the potential mechanism is discussed. Under the optimal conditions, the detection limits (3s) of Hg(2+) and CH(3)Hg(+) in aqueous solutions are 0.098 and 0.073 μg L(-1), respectively. The relative standard deviations for 6 replicate determinations of 2 μg L(-1) Hg are determined as 3.2% and 4.7% for Hg(2+) and CH(3)Hg(+). The accuracy of the method is verified through the analysis of certified reference materials (CRM, NRC-DORM-2), and the proposed method has been applied satisfactorily to the determination of mercury speciation in several seafood samples by calibration curve mode.

  18. Ionisation D'atomes Par un Laser Carbon Dioxide Intense Par L'effet Tunnel

    Science.gov (United States)

    Xiong, Wei

    Cette these decrit des experiences d'ionisation d'atomes (Xe et K) par un laser CO_2 intense. Des spectrometres de masse et d'energie electronique ont ete developpes pour mesurer le nombre d'ions crees et l'energie des electrons acceleres par le gradient spatial du champ laser. Des details sur ces mesures sont fournis et justifies. On a mesure des energies d'electrons jusqu'a 1000eV, a une intensite de 10^{14} W/cm^2. Les mesures experimentales sont comparees avec deux types de theorie, qui decrivent le processus d'ionisation dans deux limites: l'interaction entre electron et noyau est beaucoup plus forte que celle entre electron et champ laser (processus multiphotonique), ou l'inverse (effect tunnel). Les resultats montrent que la courbe du nombre d'ions crees en fonction de l'intensite n'est pas tres sensible aux details du processus d'ionsisation. Par contre les spectres d'energie des electrons dependent fortement du processus d'ionisation, et on peut en deduire le taux d'ionisation. On trouve que la theorie multiphotonique ne fournit pas une explication satisfaisante aux resultats experimentaux, mais que la theorie de l'effet tunnel s'ajuste bien si on suppose que le seuil d'ionisation peut etre deplace legerement par le champ laser. Le deplacement necessaire du seuil est estime dans cette these, mais une explication theorique reste a trouver.

  19. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    Science.gov (United States)

    Cross, Jon B.; Cremers, David A.

    1988-01-01

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  20. Influence of instrument conditions on the evaporation behavior of uranium dioxide with UV laser-assisted atom probe tomography

    Science.gov (United States)

    Valderrama, B.; Henderson, H. B.; Gan, J.; Manuel, M. V.

    2015-04-01

    Atom probe tomography (APT) provides the ability to detect subnanometer chemical variations spatially, with high accuracy. However, it is known that compositional accuracy can be affected by experimental conditions. A study of the effect of laser energy, specimen base temperature, and detection rate is performed on the evaporation behavior of uranium dioxide (UO2). In laser-assisted mode, tip geometry and standing voltage also contribute to the evaporation behavior. In this investigation, it was determined that modifying the detection rate and temperature did not affect the evaporation behavior as significantly as laser energy. It was also determined that three laser evaporation regimes are present in UO2. Very low laser energy produces a behavior similar to DC-field evaporation, moderate laser energy produces the desired laser-assisted field evaporation characteristic and high laser energy induces thermal effects, negatively altering the evaporation behavior. The need for UO2 to be analyzed under moderate laser energies to produce accurate stoichiometry distinguishes it from other oxides. The following experimental conditions providing the best combination of mass resolving power, accurate stoichiometry, and uniform evaporation behavior: 50 K, 10 pJ laser energy, a detection rate of 0.003 atoms per pulse, and a 100 kHz repetition rate.

  1. UV-photochemical vapor generation of selenium for atomic absorption spectrometry: Optimization and 75Se radiotracer efficiency study

    Czech Academy of Sciences Publication Activity Database

    Rybínová, M.; Musil, Stanislav; Červený, J.; Vobecký, Miloslav; Rychlovský, P.

    2016-01-01

    Roč. 123, SEP (2016), s. 134-142 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : UV-photochemical vapor generation * Selenium * 75Se radiotracer Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.241, year: 2016

  2. Prospects of odd and even harmonic generation by an atom in a high-intensity laser field

    Science.gov (United States)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2017-05-01

    A new approach for studying the spontaneous emission of an atomic system in the presence of a high-intensity laser field is used to study the process of harmonic generation. The analysis is based on consideration of quantum system interaction, with the quantized field modes being in the vacuum state, while the intense laser field is considered to be classically beyond perturbation theory. The numerical analysis of the emission from the single one-electron 1D atom irradiated by the femtosecond laser pulse of a Ti:Sa laser is discussed. It is demonstrated that not only odd, but also even harmonics can be emitted if the laser field is strong enough. The origin of the appearance of even harmonics is studied. The obtained results are compared with those found in the framework of the semiclassical approach that is widely used to study harmonic generation. It is found that the semiclassical approach is inapplicable in the strong-field limit.

  3. Efficacy of a vaporization-resection of the prostate median lobe enlargement and vaporization of the prostate lateral lobe for benign prostatic hyperplasia using a 120-W GreenLight high-performance system laser: the effect on storage symptoms.

    Science.gov (United States)

    Kim, Kang Sup; Choi, Sae Woong; Bae, Woong Jin; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung-Hoo; Lee, Ji Youl; Hwang, Tae-Kon; Kim, Sae Woong

    2015-05-01

    GreenLight laser photoselective vaporization of the prostate (PVP) was established as a minimally invasive procedure to treat patients with benign prostatic hyperplasia (BPH). However, it may be difficult to achieve adequate tissue removal from a large prostate, particularly those with an enlarged median lobe. The purpose of this study was to investigate the feasibility and clinical effect of a 120-W GreenLight high-performance system laser vaporization-resection for an enlarged prostate median lobe compared with those of only vaporization. A total of 126 patients from January 2010 to January 2014 had an enlarged prostate median lobe and were included in this study. Ninety-six patients underwent vaporization only (VP group), and 30 patients underwent vaporization-resection for an enlarged median lobe (VR group). The clinical outcomes were International Prostate Symptoms Score (IPSS), quality of life (QOL), maximum flow rate (Q max), and post-void residual urine volume (PVR) assessed at 1, 3, 6, and 12 months postoperatively between the two groups. The parameters were not significantly different preoperatively between the two groups, except for PVR. Operative time and laser time were shorter in the VR group than those in the VP group. (74.1 vs. 61.9 min and 46.7 vs. 37.8 min; P = 0.020 and 0.013, respectively) and used less energy (218.2 vs. 171.8 kJ, P = 0.025). Improved IPSS values, increased Q max, and a reduced PVR were seen in the two groups. In particular, improved storage IPSS values were higher at 1 and 3 months in the VR group than those in the VP group (P = 0.030 and 0.022, respectively). No significant complications were detected in either group. Median lobe tissue vaporization-resection was complete, and good voiding results were achieved. Although changes in urinary symptoms were similar between patients who received the two techniques, shorter operating time and lower energy were superior with the vaporization-resection technique. In

  4. [Evaluation of 80-W and 120-W GreenLight laser vaporization for benign prostatic hyperplasia in high-risk patients].

    Science.gov (United States)

    Zang, Ya-Chen; Shan, Yu-Xi; Xue, Bo-Xin; Yang, Dong-Rong; Gao, Jie; Sun, Chuan-Yang; Cui, Yong

    2012-05-01

    To investigate and compare the effectiveness and safety of 80-W GreenLight laser vaporization and GreenLight high-performance system (HPS) 120-W laser vaporization for the treatment of benign prostatic hyperplasia (BPH) in high-risk patients. We allocated 290 high-risk patients with BPH to two groups to receive 80-W (n = 220) and HPS 120-W GreenLight laser vaporization (n = 70). We recorded and compared the pre-, intra- and post-operative clinical data of the two groups. The operations were successful in both of the groups. There were statistically significant differences in the prostate volume, IPSS, Qmax and PVR before and after surgery (P 0.05). The operation time, lasing time and energy consumption were (56.5 +/- 22.6) min, (31.2 +/- 10.3) min and (159.8 +/- 29.0) kJ in the 80-W group, as compared with (45.1 +/- 20.4) min, (24.6 +/- 8.3) min and (134.2 +/- 23.3) kJ in the 120 W group, with significant differences between the two (P vaporization of the prostate is a safe and effective procedure for the treatment of BPH, and the new HPS 120-W laser therapy, with its advantages of easier operation and shorter surgical time, is an even better minimally invasive option for elderly high-risk patients.

  5. Laser-assisted electron scattering in strong-field ionization of dense water vapor by ultrashort laser pulses

    Science.gov (United States)

    Wilke, M.; Al-Obaidi, R.; Moguilevski, A.; Kothe, A.; Engel, N.; Metje, J.; Kiyan, I. Yu; Aziz, E. F.

    2014-08-01

    We report on strong-field ionization of dense water gas in a short infrared laser pulse. By employing a unique combination of photoelectron spectroscopy with a liquid micro-jet technique, we observe how the character of electron emission at high kinetic energies changes with the increase of the medium density. This change is associated with the process of laser-assisted electron scattering (LAES) on neighboring particles, which becomes a dominant mechanism of hot electron emission at higher medium densities. The manifestation of this mechanism is found to require densities that are orders of magnitude lower than those considered for heating the laser-generated plasmas via the LAES process. The experimental results are supported by simulations of the LAES yield with the use of the Kroll-Watson theory.

  6. Different CO2 laser vaporization protocols for the therapy of oral precancerous lesions and precancerous conditions: a 10-year follow-up.

    Science.gov (United States)

    Deppe, Herbert; Mücke, Thomas; Hohlweg-Majert, Bettina; Hauck, Wolfgang; Wagenpfeil, Stefan; Hölzle, Frank

    2012-01-01

    Use of the CO(2) laser (λ = 10.6 μm, continuous wave, defocused) is an established procedure for the treatment of premalignant lesions. Through employment of the sp-mode as well as scanners, thermal laser effects can be reduced but, on the other hand, a lesser degree of destruction of dysplastic cells could lead to an increased recurrence rate. The purpose of this study was to prospectively evaluate the recurrence rates resulting from different methods of CO(2) laser vaporization. From May 1995 to May, 2005, 145 patients with a total of 148 premalignant lesions of the oral mucosa were treated in a prospective clinical study. Sixty-two lesions in 62 patients were vaporized with the defocused CO(2) laser (group 1). In a further 45 lesions (43 patients, group 2), a scanner was additionally employed. In the remaining 41 lesions (40 patients, group 3), vaporization was carried out in the sp-mode in which the scanner was also used. In September, 2005, recurrence rates in the three groups were evaluated. Use of the scanner in sp-mode resulted in the most irregular tissue vaporization. This can be accounted for by the irregular paths of the laser beam and the pulsed delivery of the laser energy. Statistically significant lowest recurrence rates were yielded by the defocused cw-technique followed by the cw-scanner and the sp-mode. These results indicate that for CO(2) laser treatment of premalignant lesions of the oral mucosa, the best results can be achieved with the defocused technique. It may be assumed that other methods with lesser penetration of thermal effects (e.g. sp, scanner) do not reach the deeper-lying cells and, consequently, render higher rates of recurrence.

  7. Laser vaporization of the dorsal turbinate as an alternative method of accessing and evaluating the paranasal sinuses.

    Science.gov (United States)

    Morello, Samantha L; Parente, Eric J

    2010-10-01

    To report a technique for stoma creation into the conchofrontal sinus (CFS) through the dorsal turbinate and to evaluate stoma as a site for sinoscopy. Prospective experimental study. Cadaveric equine heads (n=2) and normal adult horses (5). Technique feasibility was established on 2 cadaver heads. A diode laser fiber with a contact probe was passed into the nasal passage through a custom built, laser introducer rod (LIR). A videoendoscope was passed ventral to the LIR. A site on the caudal, medial aspect of the turbinate overlying the dorsal conchal sinus (DCS) was identified. A stoma to facilitate endoscope passage was created through the turbinate and sinoscopy performed to identify structures within the CFS and caudal maxillary sinus (CMS) and to evaluate the quality of the approach. The procedure was then performed in standing, sedated horses. Time required, laser energy used and complications were recorded. Endoscopy was performed ≥5 weeks postoperatively to assess stoma size and long-term effects of the procedure. A stoma was successfully created through the turbinate in both cadaveric skulls and in 4 horses; the stoma persisted for ≥5 weeks. The location of the stoma in 1 horse precluded sinoscopy. Laser vaporization of the dorsal turbinate through the nasal passage creates a stoma that lasts for at least 5 weeks providing a portal to the paranasal sinuses. Based on experience in 1 horse stoma location is critical to ensure adequate endoscope manipulation and sinoscopy. Standing endoscopic sinusotomy within the nasal cavity through the DCS is an alternative to more invasive sinusotomy techniques with fewer potential complications and a cosmetic result. © Copyright 2010 by The American College of Veterinary Surgeons.

  8. Comparing the treatment outcomes of potassium-titanyl-phosphate laser vaporization and transurethral electroresection for primary nonmuscle-invasive bladder cancer: A prospective, randomized study.

    Science.gov (United States)

    Xu, Yansheng; Guan, Weimin; Chen, Weihao; Xie, Changliang; Ouyang, Yun; Wu, Yiguang; Liu, Cuilong

    2015-04-01

    In urology, potassium-titanyl-phosphate (KTP) laser is mainly used in the treatment of benign prostatic hyperplasia with a low rate of intraoperative and postoperative complications. A prospective, randomized study was undertaken to investigate the treatment outcomes of KTP laser vaporization for primary non-muscle-invasive bladder tumors (NMIBTs) as compared with conventional monopolar transurethral resection of bladder tumors (TURBT). This study was designed as a prospective, randomized trial. After institutional review board approval, 229 consecutive patients with NMIBTs were randomized to 2 groups. Among them, 116 patients underwent KTP laser vaporization of a bladder tumor (laser group) and 113 patients underwent standard transurethral electroresection of the bladder tumors using monopolar loop electrode (TURBT group). According to the prognostic factors for recurrence, all patients were divided into low, intermediate or high risk subgroups. The clinical data were recorded and compared between the two groups. Eighty-nine patients in laser group and 94 in TURBT group were evaluable for the study end points. The preoperative characteristics of the patients were comparable in the two groups. There was no statistical difference in operation time between the two groups. Patients in the laser group had fewer perioperative complications and more patients needed bladder irrigation in the TURBT group. Compared with laser group, patients in the TURBT group had longer catheterization time and hospitalization duration. There were no statistical differences in the oncologic results in term of 2-year recurrence rates as compared between the two groups. Our study demonstrated that using KTP laser, transurethral vaporization is an effective and safe treatment for the patients with primary NMIBT. Compared with traditional TURBT, the KTP laser surgery had fewer perioperative complications and similar oncological results. © 2015 Wiley Periodicals, Inc.

  9. Comparison of techniques for transurethral laser prostatectomy: standard photoselective vaporization of the prostate versus transurethral laser enucleation of the prostate.

    Science.gov (United States)

    Elterman, Dean S; Chughtai, Bilal; Lee, Richard; Kurlander, Lauren; Yip-Bannicq, Marika; Kaplan, Steven A; Te, Alexis E

    2013-06-01

    Transurethral laser enucleation of the prostate (TLEP) using the potassium-titanyl-phosphate (KTP) laser offers an alternative technique to traditional photovaporization. The study objective was to determine the comparative efficacy between transurethral photovaporization of the prostate (PVP) with a TLEP technique using the 80W 532 nm KTP laser. A series of 97 vs 170 patients who underwent PVP vs TLEP, respectively, with the KTP laser system at Weill Cornell Medical College from September 2001 to May 2009 was studied retrospectively. Outcome measures included laser time, prostate volume lased per unit time, International Prostate Symptom Score (IPSS), postvoid residual (PVR), and maximum flow rate (Qmax). Statistical analyses were performed using the Shapiro-Wilk, Mann-Whitney, Wilcoxon, and unpaired t tests. Baseline parameters were similar between groups, although volume was greater in the TLEP group (83 vs 63 cc, P=0.04). Median laser time was longer in the TLEP group (90 vs 50 min, P<0.001) with a higher median energy used (308 vs 165 kJ, P<0.001). The volume lased per unit time was shorter, however, for TLEP (0.92 cc/min) than for PVP (1.26 cc/min). A greater median number of fibers were used in TLEP (2.5 vs 2.0, P=0.001). Improvements in median IPSS and PVR were seen in the TLEP group (5.0, P<0.001; 55.5, P=0.02, respectively) but not in the PVP group (P=0.40 and 0.30). Median Qmax and prostate-specific antigen (PSA) level improved similarly in both groups. Final IPSS was lower for the TLEP group (P<0.001), but other final parameters were statistically equivalent. In our series, both PVP and TLEP techniques were safe and effective. Although changes in Qmax and PSA were similar between the two techniques, improvement in urinary symptoms and PVR was superior with the TLEP technique. The TLEP technique was a more efficient method for laser prostatectomy.

  10. The use and development of ion dispensers for laser-cooled atomic ion experiments

    Science.gov (United States)

    Hucul, David; Christensen, Justin E.; Hudson, Eric R.; Campbell, Wesley C.

    2017-04-01

    Fast, reliable, efficient loading of ions in ion traps is important for laser cooled ion trapping experiments. We utilize a simple surface ionization technique where ions are directly emitted from a platinum surface upon sublimation. This technique of direct ion production has wide applicability to ion trapping experiments and should apply to the direct production of positively charged atomic and molecular species as well as molecular anions. We experimentally demonstrate the ease and flexibility of this technique by directly producing calcium, strontium, cesium, barium, and potassium ions from a heated platinum surface. In addition, this technique is useful for loading rare isotopes into an ion trap. We experimentally demonstrate this by loading large numbers barium ions into an ion trap and distilling rare, isotopically pure ion chains through voltage control and laser heating and cooling. These techniques are directly applicable to the loading of 133Ba+ ions, a candidate qubit that combines the favorable atomic structure of 171Yb+, long-lived metastable states to ensure high fidelity detection, and visible optical transitions to leverage existing optical technologies.

  11. Tunable diode-laser induced fluorescence on Al and Ti atoms in low pressure magnetron discharges

    Energy Technology Data Exchange (ETDEWEB)

    Vitelaru, C; Minea, T M; Boisse-Laporte, C; Bretagne, J [Laboratoire de Physique des Gaz et Plasmas, UMR 8578 CNRS, Universite Paris Sud-XI, 91405 Orsay Cedex (France); Aniculaesei, C; Popa, G [Physics Department, Faculty of Physics Al I Cuza University, Bd. Carol No 11, Iasi, 700506 (Romania); De Poucques, L, E-mail: catalin.vitelaru@u-psud.f [Institut Jean Lamour, CNRS - UHP Nancy, UPV-Metz, Faculte des Sciences et Techniques, boulevard des aiguillettes, BP 70239 - 54506 Vandoeuvre les Nancy Cedex (France)

    2010-03-31

    Two different blue light laser diodes were used to investigate two types of atoms, namely Ti with resonance transition centred at {lambda}{sub 0}(Ti) = 398.289 nm and Al with {lambda}{sub 0}(Al) = 394.512 nm. Tunable diode-laser induced fluorescence offers local information on two groups of sputtered particles-non-thermalized and thermalized. The anisotropic velocity distribution functions (vdfs) are characterized probing the plasma along two directions: parallel to the target, v{sub r}, and perpendicular to it, v{sub z}. Measurements were performed in two plasma reactors both having planar magnetron cathodes with circular symmetry but with Ti and Al targets of different magnet strengths and diameters. The similar results of the vdf space dependence for these magnetron systems confirm the general behaviour of sputtered species transport. These similarities are related to the circular geometry and fundamentals of sputtering whereas differences are due to each specific sputtered element. The experimental results also show the effect of current density on the shape of vdf for Ti and Al. An increase in the current intensity implies a linear increase in the relative density of energetic sputtered atoms while the group of thermalized ones appears unaffected in the high current density regime.

  12. Nobel Prize in Physics 1997 "for development of methods to cool and trap atoms with laser light" : Steven Chu, Claude Cohen-Tannoudji and William D. Phillips

    CERN Multimedia

    1998-01-01

    Prof.S. Chu presents "the manipulation of atoms and bio-molecules by laser light" : a brief history of the laser cooling and trapping of atoms developed over the past 15 years will be presented. The cooling and trapping technology is already being applied in numerous areas of science and engineering. Applications to be discussed include atomic clocks, atom interferometers, as well as studies in polymer dynamics and protein motion.

  13. Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL for Profiling Water Vapor in the Lower Troposphere

    Directory of Open Access Journals (Sweden)

    Kevin S. Repasky

    2013-11-01

    Full Text Available A laser transmitter has been developed and incorporated into a micro-pulse differential absorption lidar (DIAL for water vapor profiling in the lower troposphere as an important step towards long-term autonomous field operation. The laser transmitter utilizes two distributed Bragg reflector (DBR diode lasers to injection seed a pulsed tapered semiconductor optical amplifier (TSOA, and is capable of producing up to 10 mJ of pulse energy with a 1 ms pulse duration and a 10 kHz pulse repetition frequency. The on-line wavelength of the laser transmitter can operate anywhere along the water vapor absorption feature centered at 828.187 nm (in vacuum depending on the prevailing atmospheric conditions, while the off-line wavelength operates at 828.287 nm. This laser transmitter has been incorporated into a DIAL instrument utilizing a 35.6 cm Schmidt-Cassegrain telescope and fiber coupled avalanche photodiode (APD operating in the photon counting mode. The performance of the DIAL instrument was demonstrated over a ten-day observation period. During this observation period, data from radiosondes were used to retrieve water vapor number density profiles for comparisons with the number density profiles retrieved from the DIAL data.

  14. Manipulating Neutral Atoms and Molecules by Strong Non-Resonant Laser Fields

    Science.gov (United States)

    Vilensky, Mark

    Manipulating neutral particles by laser light has been of great interest during the last decade. The main effort is placed on atom cooling together with atomic beam deceleration, deflection, focusing, mirroring, and related aspects of atom optics. In the present thesis we provide indepth analytical and numerical analysis of the optical shaker approach to non-resonant laser cooling, and propose new methods for deceleration and cooling atoms/molecules in a feedback-controlled bistable cavity. Moreover, application of the latter technique to cooling of a micromechanical object is also proposed and analyzed. In the Introduction we review the current state-of-the-art cooling techniques and provide a brief history of their development. Chapter I presents in-depth analysis of the optical shaker operation; we study the issue of the detection of the dipole force in the far zone, which is the main building block of the optical shaker technique. The effects of the finite response time of the detectors and of the phase modulator are modeled numerically. The thresholds for cooling are estimated analytically and verified numerically. Minimal requirements for the stability of the laser sources are formulated. Perturbation theory analysis of the heating rate of an ensemble of particles embedded in a non-stationary sinusoidal (non-harmonic) potential is provided. In addition, a preliminary study of the adaptive cooling strategy is outlined. Chapter II presents a new method for deceleration of a single particle and cooling of an ensemble of particles in a bistable optical cavity. Optical bistability is achieved by non-linear feedback control of the field incident on the cavity. The technique realizes cavity-induced Sisyphustype cooling mechanism. This approach is rather generic because of its off-resonance nature. The bistable cavity introduces a "dry friction" stopping force, and requires a relatively "bad cavity" for its implementation. We provide an analytical estimate for the

  15. Examination of Organic Vapor Adsorption onto Alkali Metal and Halide Atomic Ions by using Ion Mobility Mass Spectrometry.

    Science.gov (United States)

    Maiβer, Anne; Hogan, Christopher J

    2017-11-03

    We utilize ion mobility mass spectrometry with an atmospheric pressure differential mobility analyzer coupled to a time-of-flight mass spectrometer (DMA-MS) to examine the formation of ion-vapor molecule complexes with seed ions of K+ , Rb+ , Cs+ , Br- , and I- exposed to n-butanol and n-nonane vapor under subsaturated conditions. Ion-vapor molecule complex formation is indicated by a shift in the apparent mobility of each ion. Measurement results are compared to predicted mobility shifts based upon the Kelvin-Thomson equation, which is commonly used in predicting rates of ion-induced nucleation. We find that n-butanol at saturation ratios as low as 0.03 readily binds to all seed ions, leading to mobility shifts in excess of 35 %. Conversely, the binding of n-nonane is not detectable for any ion for saturation ratios in the 0-0.27 range. An inverse correlation between the ionic radius of the initial seed and the extent of n-butanol uptake is observed, such that at elevated n-butanol concentrations, the smallest ion (K+ ) has the smallest apparent mobility and the largest (I- ) has the largest apparent mobility. Though the differences in behavior of the two vapor molecules types examined and the observed effect of ionic seed radius are not accounted for by the Kelvin-Thomson equation, its predictions are in good agreement with measured mobility shifts for Rb+ , Cs+ , and Br- in the presence of n-butanol (typically within 10 % of measurements). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Diode laser vaporization of prostate as treatment for benign prostatic enlargement: initial results of 73 patients with 1 year follow-up.

    Science.gov (United States)

    Aćimović, Miodrag; Rafailović, Dragutin; Bumbaširević, Uroš; Babić, Uroš; Šantrić, Veljko; Stanić, Miodrag; Džamić, Zoran; Hadži-Djokić, Jovan

    2014-01-01

    Our objective is to evaluate the efficacy, safety and 12 month outcome of a 980 nm diode laser with Twister fiber in the treatment of benign prostatic enlargement. Between February 2011 and January 2013, 73 patients with benign pros- tatic enlargement had undergone diode laser vaporization of prostate at our institution. The fol- lowing parameters were assessed at baseline, and after a follow-up period of 3 and 12 months: International Prostate Symptom Score, peak urinary flow rate, post-void residual urine volume, and quality of life score. The procedure was completed successfully in all patients with no intraoperative complications. At 12 months postoperatively the percentage improvements in IPSS was -69.09%, Qmax +197%, PVR -88.54%, and QoL -68.29%. Diode laser vaporization of prostate is safe and effective method for treatment of benign prostatic enlargement.

  17. Laser transurethral resection of the prostate: Safety study of a novel system of photoselective vaporization with high power diode laser in prostates larger than 80mL.

    Science.gov (United States)

    Andrés, G; Arance, I; Gimbernat, H; Redondo, C; García-Tello, A; Angulo, J C

    2015-01-01

    To present the feasibility of photoselective vaporization of the prostate (PVP) with of a new diode laser-resection system. Surgical treatment of benign prostatic hyperplasia (BPH) is constantly evolving. Laser techniques are increasingly used in prostates of large size. A prospective study was performed to evaluate operative data and patient outcomes with PVP using high-power diode laser (HPD) and a novel quartz-head fiber with shovel shape in patients with prostate>80mL. Demographic data, operative time, hemoglobin loss, operative results (IPSS, quality of life (QoL), Qmax, post void residue (PVR), IIEF-5 and micturition diary) and complications following Clavien-Dindo classification are described. Thirty-one patients were included in the study. Sixteen (51.6%) were on active antiplatelet treatment and 12 (38.7%) had received anticoagulants before surgery. All cases were followed at least 6mo. No intraoperative or postoperative major complications occurred. Three patients (9.7%) had minor complications according to Clavien-Dindo classification. Twenty-seven (87.1%) were discharged on postoperative day one without catheter. There were significant improvements in IPSS, QoL, Qmax and PVR, both at 3 and 6mo (P<.0001), but sexual function according to IIEF-5 showed no differences. Urgency (any grade) increased at 3mo (48.4%; P=.002) and considerably decreased at 6mo (9.7%; P<.0001). This pilot experience with shovel shape fiber and HPD is encouraging. It shows that laser-resection is a safe procedure, achieving excellent results in terms of IPSS, QoL and Qmax in large prostates even in high-risk patients. Longer follow-up, comparative and randomized controlled studies are needed to widespread these results. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Laser induced fluorescence measurements on W- and Ba atoms eroded from fluorescent lamp electrodes

    Science.gov (United States)

    Ehlbeck, J.; Rackow, K.; Sigeneger, F.; Uhrlandt, D.; Weltmann, K.-D.; Hadrath, S.; Lieder, G.

    2010-05-01

    The method of laser induced fluorescence (LIF) is applied to fluorescent lamps (FL) in order to investigate processes of electrode erosion in the vicinity of the electrodes. The life time of FLs which are ignited by instant start is mainly limited by sputtering of the coil electrodes and in final breaking. This sputtering of tungsten mainly occurs during the ignition in the glow discharge phase. Therefore, the density of W atoms is measured in the electrode region during ignition. Temporal and spatial resolved profiles were measured by LIF which has been combined with fast imaging. The life time of FLs which are started with preheated coils is also caused mainly by electrode failures. But the reason differs from the instant start case because here the loss is caused mainly by evaporation. End-of-lamp life is reached if the emitter material which is deposited at the coil to reduce the work function of the coil is lost completely. LIF is used to measure the density of the eroded emitter material, namely Barium atoms. First result of phase resolved absolute Ba atoms densities are presented.

  19. Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization

    CERN Document Server

    Christensen, Bjarke T R; Schäffer, Stefan A; Westergaard, Philip G; Ye, Jun; Holland, Murray; Thomsen, Jan W

    2015-01-01

    We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line $\\lvert 5s^{2} \\, ^1 \\textrm{S}_0 \\rangle \\,-\\, \\lvert 5s5p \\, ^3 \\textrm{P}_1 \\rangle$ at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures - the cavity transmitted phase and absorption - by employing FM spectroscopy (NICE-OHMS). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free space situation where no cavity is present. Furthermore, the non-linear dynami...

  20. Towards an Atomic Parity Violation Measurement with Laser Trapped Francium at ISAC

    Science.gov (United States)

    Collister, R.; Tandecki, M.; Gwinner, G.; Zhang, J.; Orozco, L.; Behr, J. A.; Pearson, M. R.; Gomez-Garcia, E.; Aubin, S.

    2012-10-01

    The neutral atom trap for parity violation measurements at TRIUMF has recently accepted its first radioactive beam. The longest lived francium isotopes have half-lives of minutes, requiring us to produce them with the online mass separator of the ISAC facility. The ion beam is embedded into a catcher made of yttrium foil where it is neutralized. Subsequently, the foil is rotated and heated to release a pulse of atomic francium into the laser trap cell. Francium isotopes 207, 209 and 221 have successfully been cooled and confined in a magneto-optical trap, a crucial first step for later experiments. The next online measurements are planned for November 2012 where two physics goals will be pursued. Firstly, the hyperfine anomaly will be probed via high precision spectroscopy on the atomic D1 transition in order to investigate the nuclear magnetization distribution. This will be followed by ionization cross-section measurements from the 7p3/2 state to evaluate this as a potential problematic trap loss mechanism for future parity violation measurements.

  1. Vaporization of perfluorocarbon droplets using optical irradiation

    National Research Council Canada - National Science Library

    Strohm, Eric; Rui, Min; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael

    2011-01-01

    .... Droplet vaporization has been previously demonstrated using acoustic methods. We propose using laser irradiation as a means to induce PFC droplet vaporization using a method we term optical droplet vaporization (ODV...

  2. Study of laser uncaging induced morphological alteration of rat cortical neurites using atomic force microscopy.

    Science.gov (United States)

    Tian, Jian; Tu, Chunlong; Liang, Yitao; Zhou, Jian; Ye, Xuesong

    2015-09-30

    Activity-dependent structural remodeling is an important aspect of neuronal plasticity. In the previous researches, neuronal structure variations resulting from external interventions were detected by the imaging instruments such as the fluorescence microscopy, the scanning/transmission electron microscopy (SEM/TEM) and the laser confocal microscopy. In this article, a new platform which combined the photochemical stimulation with atomic force microscopy (AFM) was set up to detect the activity-dependent structural remodeling. In the experiments, the cortical neurites on the glass coverslips were stimulated by locally uncaged glutamate under the ultraviolet (UV) laser pulses, and a calcium-related structural collapse of neurites (about 250 nm height decrease) was observed by an AFM. This was the first attempt to combine the laser uncaging with AFM in living cell researches. With the advantages of highly localized stimulation (<5 μm), super resolution imaging (<3.8 nm), and convenient platform building, this system was suitable for the quantitative observation of the neuron mechanical property variations and morphological alterations modified by neural activities under different photochemical stimulations, which would be helpful for studying physiological and pathological mechanisms of structural and functional changes induced by the biomolecule acting. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. High data rate atom interferometric device

    Science.gov (United States)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash

    2015-07-21

    A light-pulse atomic interferometry (LPAI) apparatus is provided. The LPAI apparatus comprises a vessel, two sets of magnetic coils configured to magnetically confine an atomic vapor in two respective magneto-optical traps (MOTs) within the vessel when activated, and an optical system configured to irradiate the atomic vapor within the vessel with laser radiation that, when suitably tuned, can launch atoms previously confined in each of the MOTs toward the other MOT. In embodiments, the magnetic coils are configured to produce a magnetic field that is non-zero at the midpoint between the traps. In embodiments, the time-of-flight of the launched atoms from one MOT to the other is 12 ms or less. In embodiments, the MOTs are situated approximately 36 mm apart. In embodiments, the apparatus is configured to activate the magnetic coils according to a particular temporal magnetic field gradient profile.

  4. Progress Toward an Autonomous Field Deployable Diode Laser Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere

    Science.gov (United States)

    Repasky, K. S.; Spuler, S.; Nehrir, A. R.; Moen, D.

    2013-12-01

    Water vapor is the most dominant greenhouse gas in the atmosphere and plays an important role in many key atmospheric processes associated with both weather and climate. Water vapor is highly variable in space and time due to large scale transport and biosphere-atmosphere interactions. Having long-term, high-resolution, vertical profiles of water vapor will help to better understand the water vapor structure and variability and its associated impact on weather and climate. A diode laser based differential absorption lidar (DIAL) for full-time water vapor and aerosol profiling in the lower troposphere has been demonstrated at Montana State University. This prototype instrument has the potential to form the basis of a ground based network of eye-safe autonomous instruments that can provide important information on the spatial and temporal variability of water vapor in the lower troposphere. To achieve this potential, major improvements to the prototype instrument need to be implemented and demonstrated including developing a laser transmitter capable of long term operation and modifying the optical receiver to make measurement below 0.5 km. During the past year, work on incorporating a new laser transmitter based on two distributed Bragg reflector (DBR) diode lasers, one operating at the on-line/side-line wavelength and the second operating at the off-line wavelength to injection seed a tapered semiconductor optical amplifier (TSOA) in a master oscillator power amplifier (MOPA) configuration has been completed. Recent work on the optical receiver is driven by the fact that the majority of the atmospheric water vapor resides below 2 km. The current single channel DIAL receiver has a narrow field of view and does not come in to full overlap until approximately 2 km. A two channel DIAL receiver has been designed that will allow the DIAL to achieve full overlap at ranges of less the 0.5 km providing significant improvement to the instrument performance. A discussion of

  5. Generalized space-translated Dirac and Pauli equations for superintense laser-atom interactions

    Science.gov (United States)

    Boca, Madalina; Florescu, Viorica; Gavrila, Mihai

    2012-02-01

    We obtain a generalization of the nonrelativistic space-translation transformation to the Dirac equation in the case of a unidirectional laser pulse. This is achieved in a quantum-mechanical representation connected to the standard Dirac representation by a unitary operator T transforming the Foldy-Wouthuysen free-particle basis into the Volkov spinor basis. We show that a solution of the transformed Dirac equation containing initially low momenta p (p/mc≪1) will maintain this property at all times, no matter how intense the field or how rapidly it varies (within present experimental capabilities). As a consequence, the transformed four-component equation propagates independently electron and positron wave packets, and in fact the latter are propagated via two two-component Pauli equations, one for the electron, the other for the positron. These we shall denote as the Pauli low-momentum regime (LMR) equations, equivalent to the Dirac equation for the laser field. Successive levels of dynamical accuracy appear depending on how accurately the operator T is approximated. At the level of accuracy considered in this paper, the Pauli LMR equations contain no spin matrices and are in fact two-component Schrödinger equations containing generalized time-dependent potentials. The effects of spin are nevertheless included in the theory because, in the calculation of observables which are formulated in the laboratory frame, use is made of the spin-dependent transformation operator T. In addition, the nonrelativistic limit of our results reproduces known results for the laboratory frame with spin included. We show that in intense laser pulses the generalized potentials can undergo extreme distortion from their unperturbed form. The Pauli LMR equation for the electron is applicable to one-electron atoms of small nuclear charge(αZ≪1) interacting with lasers of all intensities and frequencies ω≪mc2.

  6. Vapor deposition of polystyrene thin films by intense laser vibrational excitation

    DEFF Research Database (Denmark)

    Bubb, D.M.; Papantonakis, M.R.; Horwitz, J.S.

    2002-01-01

    -induced damage to the target can be seen. RIR-PLD is a fundamentally new approach to polymer thin film growth as the absorption of radiation resonant with vibrational modes allow the energy to be deposited into the polymer and transfers between macromolecules in such a way as to promote efficient, non......Polystyrene films were deposited using resonant infrared pulsed laser depositions (RIR-PLD). Thin films were grown on Si(1 1 1) wafers and NaCl substrates and analyzed by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The depositions were carried out...... in vacuum (10(-4)-10(-5) Torr) at wavelengths 3.28, 3.30, 3.42 and 3.48 mum which are resonant with CH2 stretching modes in the polymer. We also attempted to deposit a films using non-resonant infrared (RIR) excitation (2.90 mum). At this wavelength no films were deposited, and evidence for laser...

  7. [The 80 W potassium-titanium-phosphate (KTP) laser vaporization of the prostate. Technique and 6 month follow-up after 70 procedures].

    Science.gov (United States)

    Bachmann, A; Reich, O; Wyler, St; Ruszat, R; Casella, R; Gasser, T; Hofstetter, A; Sulser, T

    2004-10-01

    Despite good efficacy, even in our days, TURP remains a potentially difficult procedure to perform and is associated with significant risks for the patient. Several alternatives have been tried to reduce the known perioperative morbidity. We report our first experiences with 80 W potassium titanyl phosphate (KTP) laser vaporization of the prostate in patients with symptomatic BPH. In 70 patients 80 W KTP laser vaporization was performed successfully. Mean age was 70.5 years (46-93 years) and mean transrectal prostate volume was 48.1 ml (10-250 ml). Mean operating time was 41 min ( n=22), 64 min ( n=33), and 80 min ( n=15) for a 26 ml, 46 ml, and a 91 ml prostate, respectively. At time of discharge, after 1 month, and 6 months the urinary peak flow increased by 75.4%, 166.8%, and 168.6%, respectively. The 80 W KTP laser vaporization of the prostate combines the tissue-debulking properties of transurethral resection of the prostate with the known good hemostatic properties of other laser procedures. It is a safe procedure for the patient and provides a virtually bloodless operation and immediate improvement of voiding.

  8. Ultraviolet vapor generation atomic fluorescence spectrometric determination of mercury in natural water with enrichment by on-line solid phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Deyuan [Beijing Titan Instruments Co., Ltd., Beijing 100015 (China); Gao, Feng; Zhang, Zhaohui [Beijing Entry–Exit Inspection and Quarantine Bureau, Beijing 100026 (China); Zhao, Liqian [Beijing Titan Instruments Co., Ltd., Beijing 100015 (China); Liu, Jixin, E-mail: ljx2117@gmail.com [Beijing Titan Instruments Co., Ltd., Beijing 100015 (China); Ye, Jianping; Li, Junwei; Zheng, Fengxi [Beijing Titan Instruments Co., Ltd., Beijing 100015 (China)

    2013-10-01

    A novel method, which coupled an on-line solid phase extraction (SPE) enrichment with ultraviolet vapor generation (UVG) atomic fluorescence spectrometry (AFS), was developed to improve the sensitivity of mercury determination and to remove the interference of some anion and organics to UVG of mercury. A high mercury retention efficiency and maximum exclusion of inorganic and organic matrix in water samples were achieved by using C{sub 18} SPE mini cartridge modified with sodium diethyldithiocarbamate (DDTC). Fast and efficient elution from the cartridge was found by using L-cysteine mixing solution. Furthermore, through the investigation of different UV reactor designs, the most important factor was the structure of the reactor (which corresponded roughly to the photon flux) wherein the tubing was sintered into the UV lamp to give the highest UV generation efficiency. The second factor was the materials of the tubing (which roughly corresponded to the working wavelength). Synthetic quartz, characterized by the highest transparency at 185 nm, attained the highest UVG efficiency, suggesting that the most favorable wavelength for UVG was 185 nm. Under optimum conditions, the achievable detection limit (3σ) with sample loadings of 10.0 mL was 0.03 ng L{sup −1} and 0.08 ng L{sup −1} with different manifolds, respectively. The method was successfully applied to the determination of Hg in tap water, river water and lake water samples. - Graphical abstract: An interference free ultraviolet vapor generation based method was applied to determine ultratrace mercury in water sample. - Highlights: • Hg was enriched by on-line solid phase extraction. • Hg was detected by ultraviolet vapor generation AFS. • The interference of some anion and some organics was removed. • The effects of details of UV set were systemically discussed.

  9. Optimization of a novel setup for an on-line study of elemental mercury adsorption by cold-vapor atomic absorption spectrometry.

    Science.gov (United States)

    Assari, Mohammad Javad; Rezaee, Abbas; Jonidi Jafari, Ahmad; Bahrami, Abdolrahman

    2013-05-29

    The objective of this work was developing a simple and stable time-based on-line setup for assessing the potential of mercury (Hg) vapor adsorption of the commercial sorbents used in air sampling and control operation followed by cold vapor atomic absorption spectrometry (CVAAS). A special designed separation chamber was used where reduction of the injected Hg (II) solution took place. Purge gas passes through this chamber resulting to a prompt release of mercury vapor, purging into the adsorbent that regulated at the desired adsorption temperature. After sorbent saturation, in order to study the adsorption parameters of sorbents (activated carbon and bone char) such as breakthrough time (BTT), and adsorptive capacity, mercury gas stream was passed through the sorbents, directly transport to the CVAAS. Preliminary experiments concerning the reductant solution showed that SnCl2 offers higher stability than NaBH4. Around the loading range 0.125-2.5 ml min⁻¹ of 100 µg l⁻¹ Hg(II) solution, a linear calibration curve with the equation peak area=0.134; loading flow=-0.017 and a correlation coefficient r=0.996 was obtained, and the detection limit was improved up to c(L)=1 µg l⁻¹. The relative standard deviation of five measurements of lowest flow loading of Hg (II) was RSD=2.8%. The significant differences were observed in the breakthrough time and mercury adsorptive capacity between activated carbon and bone char (P=0.010). This novel setup is suitable for an on-line study of elemental mercury adsorption, determination of breakthrough time and adsorption capacity, and because of its stable performance during all experiments; it can be applied to the time based studies.

  10. Speciation analysis of mercury in water samples by cold vapor atomic absorption spectrometry after preconcentration with dithizone immobilized on microcrystalline naphthalene.

    Science.gov (United States)

    Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Nasirizadeh, Navid

    2004-03-01

    Trace amounts of inorganic mercury (Hg(2+)) and methylmercury cations (MeHg(2+)) were adsorbed quantitatively from acidic aqueous solution onto a column packed with immobilized dithizone on microcrystalline naphthalene. The trapped mercury was eluted with 10 ml of 7 mol L(-1) hydrochloric acid solution. The Hg(2+) was then directly reduced with tin (II) chloride, and volatilized mercury was determined by cold vapor atomic absorption spectrometry (CVAAS). Total mercury (Hgt) was determined after decomposition of MeHg(+) into Hg(2+). Hg(2+) and MeHg(+) cations were completely recovered from the water with a preconcentration factor of 200. The relative standard deviation obtained for eight replicate determinations at a concentration of 0.3 microg L(-1 )was 1.8%. The procedure was applied to analysis of water samples, and the accuracy was assessed via recovery experiment.

  11. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  12. On-line continuous generation of zinc chelates in the vapor phase by reaction with sodium dithiocarbamates and determination by atomic fluorescence spectrometry

    Science.gov (United States)

    Duan, Xuchuan; Sun, Rui; Fang, Jinliang

    2017-02-01

    The present study shows for the first time that a volatile zinc chelate species can be generated by the on-line continuous merging of an acidified sample solution with an aqueous sodium diethyldithiocarbamate solution followed by rapid separation using a frit-based bubble gas-liquid separator at room temperature. The operating conditions for the generation of the vaporous zinc chelate were preliminarily investigated by non-dispersive atomic fluorescence spectrometry. The possible mechanism of zinc vapor generation is discussed. The study shows that the volatile species is an intermediate species with very similar properties to diethyldithiocarbamic acid and a very short half-life in the acidic solution. Moreover, this species can only be generated by on-line mixing and rapid separation. The efficiency of generation was 33-85% depending on acidity. Under optimal conditions, the flow rates of the sample and Na-DDTC solution were 1.3 ml min- 1, the carrier argon flow rate was 225 ml min- 1, the acid concentration of the sample solution and the concentration of Na-DDTC were 0.05 M and 0.4% (m/v), respectively, the detection limit of zinc was 0.33 (3σ) ng ml- 1, and the relative standard deviation (RSD) was 1.3%. The accuracy of the method was verified by the determination of zinc in the plant reference materials GBW10015 (spinach) and GBW10045 (rice). The results were in good agreement with the certified reference values.

  13. Analysis of atomic distribution in as-fabricated Zircaloy-2 claddings by atom probe tomography under high-energy pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Sawabe, T., E-mail: sawabe@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Sonoda, T.; Kitajima, S. [Central Research Institute of Electric Power Industry (CRIEPI), Iwado Kita 2-11-1, Komae, Tokyo 201-8511 (Japan); Kameyama, T. [Tokai University, Department of Nuclear Engineering, Kitakaname 4-1-1, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-11-15

    The properties of second-phase particles (SPPs) in Zircaloy-2 claddings are key factors influencing the corrosion resistance of the alloy. The chemical compositions of Zr (Fe, Cr){sub 2} and Zr{sub 2}(Fe, Ni) SPPs were investigated by means of pulsed laser atom probe tomography. In order to prevent specimen fracture and to analyse wide regions of the specimen, the pulsed laser energy was increased to 2.0 nJ. This gave a high yield of average of 3 × 10{sup 7} ions per specimen. The Zr (Fe, Cr){sub 2} SPPs contained small amounts of Ni and Si atoms, while in Zr{sub 2}(Fe, Ni) SPPs almost all the Si was concentrated and the ratio of Zr: (Fe + Ni + Si) was 2:1. Atomic concentrations of the Zr-matrix and the SPPs were identified by two approaches: the first by using all the visible peaks of the mass spectrum and the second using the representative peaks with the natural abundance of the corresponding atoms. It was found that the change in the concentration between the Zr-matrix and the SPPs can be estimated more accurately by the second method, although Sn concentration in the Zr{sub 2}(Fe, Ni) SPPs is slightly overestimated.

  14. Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas

    Science.gov (United States)

    Coons, R. W.; Harilal, S. S.; Campos, D.; Hassanein, A.

    2010-09-01

    Tin and lithium plasmas emit efficiently in the in-band region (13.5 nm with 2% bandwidth) necessary for extreme ultraviolet (EUV) lithography. We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and Li plasmas under identical experimental conditions. Planar slabs of pure Sn and Li were irradiated with 1064 nm, 9 ns neodymium-doped yttrium aluminum garnet laser pulses for producing plasmas. A suite of diagnostics were used to analyze the emission and debris features, including optical emission spectroscopy (OES), a Faraday cup, an EUV pinhole camera, the absolute measurement of EUV conversion efficiency (CE), etc. Our results show that Sn plasmas provide a CE nearly twice that of Li. However, the kinetic energies of Sn ions are considerably higher, though with a lower flux. OES studies have showed that the kinetic energies of neutral species are substantially lower compared to that of the charged particle species.

  15. Modified vaporization-resection for photoselective vaporization of the prostate using a GreenLight high-performance system 120-W Laser: the Seoul technique.

    Science.gov (United States)

    Son, Hwancheol; Ro, Yun Kwan; Min, Sun Ho; Choo, Min Soo; Kim, Jung Kwon; Lee, Chang Ju

    2011-02-01

    The most popular technique of photoselective vaporization of the prostate (PVP) for benign prostatic hyperplasia (BPH) involves vaporization only. We developed a modified vaporization-resection technique that consists of vaporizing a prostate along outlined margins and retrieving the wedge-shaped prostate tissue. We report the operative procedure and clinical outcomes of our technique with the GreenLight high performance system (HPS). A total of 104 patients with a prostate volume greater than 40 mL who underwent PVP were included in this retrospective study. Forty patients were treated with the vaporization-only technique (Group non-S) and 64 patients with the Seoul technique (group S). The clinical outcomes were assessed at 1, 3, 6, and 12 months postoperatively using the International Prostate Symptom Score (IPSS), quality of life (QoL) score, maximum flow rate (Q(max.)), and postvoid residual urine volume (PVR). The Q(max.), PVR, IPSS, and QoL scores improved significantly from 1 to 12 months after the PVP compared with the baseline in both groups (P technique for PVP showed good short-term efficacy and safety for the treatment of BPH. With this technique, we can conserve on the operative time, lasing time, and energy, and obtain prostatic tissue for pathologic evaluation. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Study on Temporal and Spatial Distributions of Ba Atoms in Fluorescent Lamp Discharge Using Laser-Induced Florescence

    Science.gov (United States)

    AlyHendy, Ahmed Samir; Yamashita, Go; Yamagata, Yukihiko; Uchino, Kiichiro; Ueda, Takashi; Manabe, Yoshio

    2006-10-01

    A laser-induced fluorescence (LIF) technique was applied to the measurements of the temporal and spatial distributions of Ba atoms in the vicinity of the electrode of a fluorescent lamp operated at 60 Hz. Ground-state (61S0) Ba atoms were excited to a 51P1 level (350.1 nm) by a frequency-doubled dye laser beam, and the subsequent fluorescence (51P1-51D2, 582.6 nm) was detected. Over a whole periodic time (16.67 ms), the density of the Ba atoms was found to have two peaks, and the number of Ba atoms emitted in the anode half-cycle was about twofold larger than that emitted in the cathode half-cycle. This difference between the Ba atoms emitted during the anode half-cycle and those emitted during the cathode half-cycle was studied for lamps with different gas pressures. Ba atoms were found to be emitted mainly from the hot spot of the filament electrode. It is suggested that the main factor for Ba atom emission from the electrode is not sputtering by ion bombardment but thermal evaporation.

  17. Transurethral bipolar plasmakinetic resection combined with 2 μm continuous wave laser vaporization: a new method for the treatment of large volume benign prostatic hyperplasia.

    Science.gov (United States)

    Liao, Naikai; Yu, JianJun

    2012-06-01

    The aim of this study was to evaluate the safety and efficiency of transurethral bipolar plasmakinetic resection of the prostate (PKRP) combined with 2 μm laser vaporization in the management of large prostates (>80 mL). The safety and efficiency of transurethral vaporesection of the prostate with benign prostatic hyperplasia (BPH), using a 2 μm laser system, have been verified. However, this method does still not manage large volume prostates efficiently. From October 2009 to June 2010, 120 BPH patients with a median prostatic volume of 106.7 (±16.7) mL (range, 82.5-156.8 mL) were randomized for surgical treatment with PKRP combined with 2 μm laser vaporization (n=58) or PKRP only (n=62). All patients were preoperatively assessed with subjective symptoms score. Preoperative and perioperative parameters at 3-, 6-, and 9-month follow-up were also evaluated. All complications were recorded. PKRP combined with 2 μm laser vaporization was significantly superior to PKRP alone in terms of operative time, irrigation time, catheterization time, hospital stay, and hemoglobin decrease. The blood transfusion and urinary tract infection observed in the PKRP combined with 2 μm laser vaporization group was significantly less than that of the groups that received PKRP only. Both groups were similar with respect to resected tissue weight, transient incontinence, urethral stricture and retrograde ejaculation in the postoperative period. Both groups showed a significant improvement from baseline in terms of International Prostate Symptom Score (IPSS), quality of life (QOL), maximum urinary flow rate (Qmax), and pulmonary vascular resistance unit (PVRU) values. However, no significant difference was found between them. PKRP combined with 2 μm laser vaporization, which combines the advantages of both PKRP and 2 μm laser, is superior for its shorter operation time, less bleeding, and better efficiency. It may be a safer and more effective method for the

  18. Venous gas embolism caused by fibrin sealant application to the prostate during greenlight laser photoselective vaporization.

    Science.gov (United States)

    Lee, Alexander; Vazquez, Rafael

    2015-04-15

    Venous gas embolism is a complication of fibrin sealant application and is a well-described event during various modes of prostate resection. We describe the case of a nitrogen venous gas embolism during Greenlight laser photovaporization of the prostate during the application of fibrin sealant to the operative site for hemostasis. Fibrin sealant application by a compressed gas applicator is a cause of venous air embolism, and this case highlights the need to keep venous gas embolism in mind when compressed gas applicators are used.

  19. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells.

    Science.gov (United States)

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P

    2017-04-17

    Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.

  20. Antiproton–to–electron mass ratio determined by two-photon laser spectroscopy of antiprotonic helium atoms

    Directory of Open Access Journals (Sweden)

    Sótér A.

    2014-03-01

    Full Text Available The ASACUSA collaboration of CERN has recently carried out two-photon laser spectroscopy of antiprotonic helium atoms. Three transition frequencies were determined with fractional precisions of 2.3–5 parts in 109. By comparing the results with three-body QED calculations, the antiproton-to-electron mass ratio was determined as 1836.1526736(23.

  1. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  2. Plastic-to-Elastic Transition in Aggregated Emulsion Networks, Studied with Atomic Force Microscopy-Confocal Scanning Laser Microscopy Microrheology

    NARCIS (Netherlands)

    Filip, D.; Duits, Michael H.G.; Uricanu, V.I.; Mellema, J.

    2006-01-01

    In this paper, we demonstrate how the simultaneous application of atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM) can be used to characterize the (local) rheological properties of soft condensed matter at micrometer length scales. Measurement of AFM force curves as a

  3. DFB-ridge laser diodes at 894 nm for Cesium atomic clocks

    Science.gov (United States)

    von Bandel, N.; Garcia, M.; Lecomte, M.; Larrue, A.; Robert, Y.; Vinet, E.; Driss, O.; Parrilaud, O.; Krakowski, M.; Gruet, F.; Matthey, R.; Mileti, G.

    2016-02-01

    Time and frequency applications are in need of high accuracy and high stability clocks. Optically pumped compact industrial Cesium atomic clocks are a promising approach that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of the laser diodes that are used. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for ground applications. This work will provide key experience for further space technology qualification. III-V Lab is in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894 nm (D1 line of Cesium) and 852 nm (D2 line). LTF-Unine is in charge of their spectral characterisation. The use of D1 line for pumping will provide simplified clock architecture compared to the D2 line pumping thanks to simpler atomic transitions and a larger spectral separation between lines in the 894 nm case. Also, D1 line pumping overcomes the issue of unpumped "idle states" that occur with D2 line. The modules should provide narrow linewidth (= 10 Hz and 109 Hz2/Hz @ f >= 10 Hz.

  4. Self-sustained hysteretic motional oscillations of a single atom pumped by a laser standing wave

    CERN Document Server

    Kaplan, A E

    1999-01-01

    Summary form only given. Self-sustained oscillations/oscillators (SSO), man-made or naturally occurring, are some of the most universal phenomena. The common feature of all SSO is the so called positive feedback, which overcomes the damping by properly controlling the energy supply (pumping) from the outside source during the cycle of oscillations. Usually, the zero steady-state point of the system is unstable, and the oscillations grow up till they reach a stable limit cycle. The common quality of the resulting SSO is their well defined amplitude (the so called classical squeezing) at the expense of undetermined phase of oscillations. All the "mechanical motion" SSO known so far, were based on macro- systems, while it would be of great importance to develop a microscopic SS-oscillator based on a single particle (atom or ion), which would enable us to control the SSO mode from classical to quantum limits. The effect proposed is based on the interaction of a standing laser wave with an atom moving in along the...

  5. Time-resolved mapping of correlated electron emission from helium atom in an intense laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Becker, A [Max-Planck-Institut fuer Physik of Komplexer Systeme, Noethnitzer Str. 38, D-01187 Dresden (Germany)], E-mail: abecker@pks.mpg.de

    2008-02-15

    We apply and analyze the concept of mapping ionization time on to the final momentum distribution to the correlated electron dynamics in the nonsequential double ionization of helium in a strong laser pulse ({lambda}=800 nm) and show how the mapping provides insight into the double ionization dynamics. To this end, we study, by means of numerical integration of the time-dependent Schroedinger equation of a fully correlated model atom, the temporal evolution of the center-of-mass momentum in a short laser pulse. Our results show that in the high intensity regime (I{sub 0}=1.15x10{sup 15} W cm{sup -2}), the mapping is in good agreement with a classical model including binary and recoil rescattering mechanisms. In the medium intensity regime (I{sub 0}=5x10{sup 14} W cm{sup -2}), we identify additional contributions from the recollision-induced excitation of the ion followed by subsequent field ionization (RESI)

  6. Time-resolved mapping of correlated electron emission from helium atom in an intense laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Mendez, Camilo [Max-Planck-Institut fuer Physik Komplexer Systeme, Dresden (Germany)

    2008-07-01

    We apply and analyze the concept of mapping ionization time onto the final momentum distribution to the correlated electron dynamics in the non-sequential double ionization of Helium in a strong laser pulse ({lambda}=800 nm) and show how the mapping provides insight into the double ionization dynamics. To this end, we study by means of numerical integration of the time dependent Schroedinger equation of a fully correlated model atom the temporal evolution of the center-of-mass momentum in a short laser pulse. Our results show that in the high intensity regime (I{sub 0}=1.15 x 10{sup 15} W/cm{sup 2}) the mapping is in good agreement with a classical model including binary and recoil rescattering mechanisms. In the medium intensity regime (I{sub 0}=5 x 10{sup 14} W/cm{sup 2}) we identify additional contributions from the recollision-induced excitation of the ion followed by subsequent field ionization (RESI).

  7. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  8. Spectral analysis of irregular roughness artifacts measured by atomic force microscopy and laser scanning microscopy.

    Science.gov (United States)

    Chen, Yuhang; Luo, Tingting; Ma, Chengfu; Huang, Wenhao; Gao, Sitian

    2014-12-01

    Atomic force microscopy (AFM) and laser scanning microscopy (LSM) measurements on a series of specially designed roughness artifacts were performed and the results characterized by spectral analysis. As demonstrated by comparisons, both AFM and LSM can image the complex structures with high resolution and fidelity. When the surface autocorrelation length increases from 200 to 500 nm, the cumulative power spectral density spectra of the design, AFM and LSM data reach a better agreement with each other. The critical wavelength of AFM characterization is smaller than that of LSM, and the gap between the measured and designed critical wavelengths is reduced with an increase in the surface autocorrelation length. Topography measurements of surfaces with a near zero or negatively skewed height distribution were determined to be accurate. However, obvious discrepancies were found for surfaces with a positive skewness owing to more severe dilations of either the solid tip of the AFM or the laser tip of the LSM. Further surface parameter evaluation and template matching analysis verified that the main distortions in AFM measurements are tip dilations while those in LSM are generally larger and more complex.

  9. Quantum dynamics of STM and laser induced desorption of atoms and molecules from surfaces

    CERN Document Server

    Boendgen, G

    2001-01-01

    The manipulation of atoms and molecules at solid surfaces by electronic excitations with electrons (or holes) emitted from the tip of a scanning tunneling microscope (STM) or with laser radiation is both of applied and fundamental interest, e.g. for micro- and nanostructuring of materials, the clarification of elementary (catalytic) reaction mechanisms and for the question of how to treat the quantum dynamics of a laser or STM driven 'system' (the adsorbate) in contact with a dissipative (energy-withdrawing) 'bath' (the substrate). Desorption induced by electronic transitions (DIET) and its variant DIMET (M = multiple) are among the simplest possible 'reactions' of adsorbate-surface systems; usually involving extremely short-lived electronically excited intermediates. In this thesis, the ultra-short dynamics of directly (localised to the adsorbate-substrate complex) and indirectly (i.e., through the substrate) stimulated DIET and DIMET processes was studied for Si(100)-(2x1):H(D) and Pt(111):NO. Isotope effec...

  10. Bright focused ion beam sources based on laser-cooled atoms

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J. J.; Wilson, T. M. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Steele, A. V.; Knuffman, B.; Schwarzkopf, A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); zeroK NanoTech, Gaithersburg, Maryland 20878 (United States); Twedt, K. A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States)

    2016-03-15

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  11. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    Science.gov (United States)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  12. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    Science.gov (United States)

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Comparison of Photoselective Vaporization versus Holmium Laser Enucleation for Treatment of Benign Prostate Hyperplasia in a Small Prostate Volume.

    Science.gov (United States)

    Kim, Kang Sup; Choi, Jin Bong; Bae, Woong Jin; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung-Hoo; Lee, Ji Youl; Kim, Sang Hoon; Kim, Hyun Woo; Cho, Su Yeon; Kim, Sae Woong

    2016-01-01

    Photoselective vaporization of the prostate (PVP) using GreenLight and Holmium laser enucleation of the prostate (HoLEP) is an important surgical technique for management of benign prostate hyperplasia (BPH). We aimed to compare the effectiveness and safety of PVP using a 120 W GreenLight laser with HoLEP in a small prostate volume. Patients who underwent PVP or HoLEP surgery for BPH at our institutions were reviewed from May 2009 to December 2014 in this retrospective study. Among them, patients with prostate volumes < 40 mL based on preoperative trans-rectal ultrasonography were included in this study. Peri-operative and post-operative parameters-such as International Prostate Symptom Score (IPSS), quality of life (QoL), maximum urinary flow rate (Qmax), post-void residual urine volume (PVR), and complications-were compared between the groups. PVP was performed in 176 patients and HoLEP in162 patients. Preoperative demographic data were similar in both groups, with the exception of PVR. Operative time and catheter duration did not show significant difference. Significant improvements compared to preoperative values were verified at the postoperative evaluation in both groups in terms of IPSS, QoL, Qmax, and PVR. Comparison of the postoperative parameters between the PVP and HoLEP groups demonstrated no significant difference, with the exception of IPSS voiding subscore at 1 month postoperatively (5.9 vs. 3.8, P< 0.001). There was no significant difference in postoperative complications between the two groups. Our data suggest that PVP and HoLEP are efficient and safe surgical treatment options for patients with small prostate volume.

  14. Comparison of Photoselective Vaporization versus Holmium Laser Enucleation for Treatment of Benign Prostate Hyperplasia in a Small Prostate Volume.

    Directory of Open Access Journals (Sweden)

    Kang Sup Kim

    Full Text Available Photoselective vaporization of the prostate (PVP using GreenLight and Holmium laser enucleation of the prostate (HoLEP is an important surgical technique for management of benign prostate hyperplasia (BPH. We aimed to compare the effectiveness and safety of PVP using a 120 W GreenLight laser with HoLEP in a small prostate volume.Patients who underwent PVP or HoLEP surgery for BPH at our institutions were reviewed from May 2009 to December 2014 in this retrospective study. Among them, patients with prostate volumes < 40 mL based on preoperative trans-rectal ultrasonography were included in this study. Peri-operative and post-operative parameters-such as International Prostate Symptom Score (IPSS, quality of life (QoL, maximum urinary flow rate (Qmax, post-void residual urine volume (PVR, and complications-were compared between the groups.PVP was performed in 176 patients and HoLEP in162 patients. Preoperative demographic data were similar in both groups, with the exception of PVR. Operative time and catheter duration did not show significant difference. Significant improvements compared to preoperative values were verified at the postoperative evaluation in both groups in terms of IPSS, QoL, Qmax, and PVR. Comparison of the postoperative parameters between the PVP and HoLEP groups demonstrated no significant difference, with the exception of IPSS voiding subscore at 1 month postoperatively (5.9 vs. 3.8, P< 0.001. There was no significant difference in postoperative complications between the two groups.Our data suggest that PVP and HoLEP are efficient and safe surgical treatment options for patients with small prostate volume.

  15. Evaluation of the memory effect on gold-coated silica adsorption tubes used for the analysis of gaseous mercury by cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Rahman, Mohammad Mahmudur; Brown, Richard J C; Kim, Ki-Hyun; Yoon, Hye-On; Phan, Nhu-Thuc

    2013-01-01

    In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hg(o)), the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS). Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS). The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species.

  16. Assessment of homogeneity and minimum sample mass for cadmium analysis in powdered certified reference materials and real rice samples by solid sampling electrothermal vaporization atomic fluorescence spectrometry.

    Science.gov (United States)

    Mao, Xuefei; Liu, Jixin; Huang, Yatao; Feng, Li; Zhang, Lihua; Tang, Xiaoyan; Zhou, Jian; Qian, Yongzhong; Wang, Min

    2013-01-30

    To optimize analytical quality controls of solid sampling electrothermal vaporization atomic fluorescence spectrometry (SS-ETV-AFS), the homogeneity (H(E)) of rice samples and their minimum sample mass (M) for cadmium analysis were evaluated using three certified reference materials (CRMs) and real rice samples. The effects of different grinding degrees (particle sizes 1 mm) on H(E) and M of real rice samples were also investigated. The calculated M values of three CRMs by the Pauwels equation were 2.19, 19.76, and 3.79 mg. The well-ground real rice samples (particle size method were compared with the results by microwave digestion graphite furnace atomic absorption spectrometry with a 0.5 g sample mass. There was no significant difference between these two methods, which meant that SS-ETV-AFS could be used to accurately detect Cd in rice with several milligrams of samples instead of the certified value (200 mg) or the recommended mass (200-500 mg) of the methods of the Association of Official Analytical Chemists.

  17. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  18. Two-step high-resolution laser spectroscopy of the Stark substates of the n = 33 level in atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Delsart, C.; Cabaret, L.; Blondel, C.; Champeau, R.J.

    1987-09-28

    Two synchronised pulsed single-mode tunable laser systems are used to excite atomic hydrogen in an atomic beam. A vacuum ultraviolet laser populates first the 2p /sup 2/Psub(3/2) sublevel from the ground 1s/sup 2/Ssub(1/2) state. A second-step UV laser selects substates of the n = 33 manifold in the presence of a weak electric field. Stark patterns of this manifold are recorded for different polarisation configurations of the exciting light beams. The measured relative intensities of the Stark components agree with the theoretical excitation probabilities in the two-step process, calculated to the first order of perturbation theory. Varying the field value of the ionisation field pulse also makes it possible to plot the ionisation threshold against the parabolic quantum number in the n = 33 manifold. The results agree with an asymptotic formula of ionisation probabilities for hydrogen perturbed by an electric field.

  19. Spatial-temporal characteristics of a SPER laser using transitions of the Cd,Zn,In atoms. [Segmented-Plasma-Excitation-Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Apollonov, V.V.; Derzhavin, S.I.; Prokhorov, A.M.; Sirotkin, A.A. (Institut Obshchei Fiziki, Moscow (USSR))

    1989-05-01

    An experimental study of a SPER (segmented-plasma-excitation-recombination) laser using transitions of Cd,Zn,In atoms shows that the stretching of the pump pulse trailing edge results in a increased energy output. The recombination pump mechanism in the atomic-transition SPER laser is confirmed. The feasibility of the repetitively pulsed operation of the SPER laser is examined, and it is found that the maximum pulse repetition rate can amount to 10 kHz. 9 refs.

  20. Improvement of the antifungal activity of Litsea cubeba vapor by using a helium-neon (He-Ne) laser against Aspergillus flavus on brown rice snack bars.

    Science.gov (United States)

    Suhem, Kitiya; Matan, Narumol; Matan, Nirundorn; Danworaphong, Sorasak; Aewsiri, Tanong

    2015-12-23

    The aim of this study was to improve the antifungal activity of the volatile Litsea cubeba essential oil and its main components (citral and limonene) on brown rice snack bars by applying He-Ne laser treatment. Different volumes (50-200 μL) of L. cubeba, citral or limonene were absorbed into a filter paper and placed inside an oven (18 L). Ten brown rice snack bars (2 cm wide × 4 cm long × 0.5 cm deep) were put in an oven and heated at 180 °C for 20 min. The shelf-life of the treated snack bars at 30 °C was assessed and sensory testing was carried out to investigate their consumer acceptability. A count of total phenolic content (TPC) and Fourier transform infrared spectroscopy (FTIR) on the properties of essential oil, citral, and limonene before and after the laser treatment was studied for possible modes of action. It was found that the laser treatment improved the antifungal activity of the examined volatile L. cubeba and citral with Aspergillus flavus inhibition by 80% in comparison with those of the control not treated with the laser. L. cubeba vapor at 100 μL with the laser treatment was found to completely inhibit the growth of natural molds on the snack bars for at least 25 days; however, without essential oil vapor and laser treatment, naturally contaminating mold was observed in 3 days. Results from the sensory tests showed that the panelists were unable to detect flavor and aroma differences between essential oil treatment and the control. Laser treatment caused an increase in TPC of citral oil whereas the TPC in limonene showed a decrease after the laser treatment. These situations could result from the changing peak of the aliphatic hydrocarbons that was revealed by the FTIR spectra. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    Science.gov (United States)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  2. High Temperature Nanocomposites For Nuclear Thermal Propulsion and In-Space Fabrication by Hyperbaric Pressure Laser Chemical Vapor Deposition

    Science.gov (United States)

    Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.

    Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration ­ the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).

  3. Laser generation in vapors of complex molecules at 330 to 350 nm

    Energy Technology Data Exchange (ETDEWEB)

    Borisevich, N.A.; Gorelenko, A.Ya.; Kazak, N.S.; Kalosha, I.I.; Morgun, Yu.F.; Agashkov, A.V.; Tolkachev, V.A.; Tugbaev, V.A.

    1980-02-01

    In pumping by a the fourth harmonic neodymium laser, the lasing has been produced in the vapours of 1,4-di(1-(4-ethyl)phenyl)-benzene (I), 1,4-di(n-phenylethynly)-benzene (II), 2-(n-butoxyphenyl)-benzoxazole (III) and 2-(n-hexadecyloxyphenyl)benzoxazole (IV). In order to reduce the lasing threshold, foreign gases (propane and pentane) were used. The wave lengths of the band centers, pressures of the foreign gas and temperatures amounted respectively to: I-335.5 nm, 15 atm, 160/sup 0/C; II-349.5 nm, 55 atm, 127/sup 0/C; III-337.5 nm, 55 atm, 127/sup 0/C; IV-339 nm, 65 atm, 132/sup 0/C. Lasing has been produced in shorter wave region and at lower temperatures than in the gas phase of the active compounds reported earlier.

  4. Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Gene Siegel

    2015-05-01

    Full Text Available We are reporting the growth of single layer and few-layer MoS2 films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns was used to ablate a polycrystalline MoS2 target. The material thus ablated was deposited on a single crystal sapphire (0001 substrate kept at 700 °C in an ambient vacuum of 10−6 Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM, Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL measurements. The ablation of the MoS2 target by 50 laser pulses (energy density: 1.5 J/cm2 was found to result in the formation of a monolayer of MoS2 as shown by AFM results. In the Raman spectrum, A1g and E12g peaks were observed at 404.6 cm−1 and 384.5 cm−1 with a spacing of 20.1 cm−1, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV and 615 nm (2.02 eV, with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS2 exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS2 films were prepared. It was found that as the number of monolayers (n in the MoS2 films increases, the spacing between the A1g and E12g Raman peaks (Δf increases following an empirical relation, Δ f = 26 . 45 − 15 . 42 1 + 1 . 44 n 0 . 9 cm − 1 .

  5. Vaporization and shock wave dynamics for impulse generation in laser propulsion

    Science.gov (United States)

    Sinko, John

    A high-power carbon dioxide laser was used to ablate bulk liquid, polymer, and thin film targets. Time-resolved force sensing measurements, ballistic pendulum impulse measurements, and quantitative shadowgraph and Schlieren imaging techniques were used to study ablation. Propulsion parameters (including imparted impulse, momentum coupling coefficient, ablated mass, specific impulse, and internal efficiency) were measured for the materials when possible. In addition, a detailed examination was conducted as to the dependence of these parameters on the absorption depth of the materials, and on the thence at the target. An initial study was made on the scaling of the propulsion parameters with the ablated spot area. The effects of varying the thin film thickness on the impulse were also noted. A calibration technique for piezoelectric force sensors was developed using impacts of spheres on the sensors. Finally, a basic physical analysis of the propulsive quantities was made that raises questions about the standard interpretation of the dependence of the coupling coefficient on the fluence.

  6. Laser excited analytical atomic and ionic fluorescence in flames, furnaces and inductively coupled plasmas—I. General considerations

    Science.gov (United States)

    Omenetto, N.; Human, H. G. C.

    Several important parameters for the analytical use of laser excited fluorescence spectrometry in flames, graphite furnaces and inductively coupled plasmas are discussed in some detail. These parameters include the laser characteristics such as peak power, pulse duration, spectral bandwidth and repetition rate, the choice of the excitation line, the optical arrangement and the detection system, this last one centred on the widespread use of the boxcar averager. It is shown that, if the ultimate sensitivity is the goal to be achieved, then the choice must be the electrothermal atomization. However, even for flames and inductively coupled plasmas, excellent results are possible provided that: (i) the laser system allows complete spectral coverage in the ultraviolet: (ii) saturation of the fluorescence signal can be approached over a large sample volume; and (iii) the gated detection parameters and the laser repetition frequency are optimized with respect to each other so as to reach the maximum signal-to-noise ratio.

  7. Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields

    CERN Document Server

    Chen, Wenbo; Meng, Chao; Liu, Jinlei; Zhou, Zhaoyan; Zhang, Dongwen; Yuan, Jianmin; Zhao, Zengxiu

    2015-01-01

    We study the generation of terahertz radiation from atoms and molecules driven by an ultrashort fundamental laser and its second harmonic field by solving time-dependent Schr\\"odinger equation (TDSE). The comparisons between one-, two-, and three- dimensional TDSE numerical simulations show that initial ionized wave-packet and its subsequent acceleration in the laser field and rescattering with long-range Coulomb potential play key roles. We also present the dependence of the optimum phase delay and yield of terahertz radiation on the laser intensity, wavelength, duration, and the ratio of two-color laser components. Terahertz wave generation from model hydrogen molecules are further investigated by comparing with high harmonic emission. It is found that the terahertz yield is following the alignment dependence of ionization rate, while the optimal two-color phase delays varies by a small amount when the alignment angle changes from 0 to 90 degrees, which reflects alignment dependence of attosecond electron d...

  8. Diode laser (980 nm) vaporization in comparison with transurethral resection of the prostate for benign prostatic hyperplasia: randomized clinical trial with 2-year follow-up.

    Science.gov (United States)

    Razzaghi, Mohammad Reza; Mazloomfard, Mohammad Mohsen; Mokhtarpour, Hooman; Moeini, Aida

    2014-09-01

    To compare outcomes of diode laser vaporization of prostate with transurethral resection of the prostate (TURP) as a gold-standard treatment. A total number of 115 patients with benign prostatic hyperplasia underwent TURP and 980-nm diode vaporization of prostate in a balanced randomization (1:1) from 2010 to 2012 and were followed up for 24 months. Baseline characteristics of the patients, perioperative data, and postoperative outcomes were compared. The primary end point of the study was assessing the values of International Prostate Symptom Score (IPSS), and maximum flow rate (Qmax) to predict the functional improvement of each group. The trial is registered at http://www.irct.ir (number IRCT201202138146N3). The mean age (± standard deviation) of the patients was 68.2 ± 7.8 years in TURP and 68.5 ± 8.8 in diode groups. In TURP and diode groups, the operation time was 54.9 ± 15.3 vs 60.6 ± 22.6 minutes (P = .14), Foley catheterization time was 88.9 ± 22.5 vs 20.1 ± 4.6 hours (P = .0001) and postoperative hospital stay was 59.9 ± 14.4 vs 25.8 ± 9.2 hours (P = .0001) respectively. Outcome with regard to increase in Qmax, decrease in IPSS, and decrease in postvoid residual urine volume showed a dramatic improvement in both groups during the first 6 months. In the TURP group, the values of IPSS and Qmax were respectively lower and higher than diode patients at 12 and 24 months of follow-up. According to our study, diode laser vaporization (980 nm) offers a safe and feasible procedure in the management of patients with symptomatic benign prostatic hypertrophy; however, at longer follow-up the functional outcome of diode laser vaporization has been less efficient than TURP. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Development of an electric field application system with transparent electrodes towards the electron EDM measurement with laser-cooled Fr atoms

    Science.gov (United States)

    Ishikawa, Taisuke; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Inoue, Takeshi; Itoh, Masatoshi; Kawamura, Hirokazu; Kato, Ko; Sakamoto, Kosuke; Uchiyama, Aiko; Sakemi, Yasuhiro

    2014-09-01

    The permanent electric dipole moment (EDM) of elementary particles is a good probe for new physics beyond the standard model. Since the francium (Fr) atom has a large enhancement factor of the electron EDM and laser-cooled atoms can have long coherence times, we plan to utilize laser-cooled Fr atoms for the electron EDM search experiment. Besides, a strong electric field is one of key issues for the EDM experiment. Recently, we have embarked on a development of the electric field application system with transparent electrodes coated by tin-doped indium oxide (ITO). The ITO electrodes break the difficulty in the coexistence of electrodes with several cooling laser lights. The actual electric field applied to the atom is evaluated by measuring the dc Stark shift for the laser-cooled rubidium atoms. In this presentation, the present status of the electric field application system will be reported. The permanent electric dipole moment (EDM) of elementary particles is a good probe for new physics beyond the standard model. Since the francium (Fr) atom has a large enhancement factor of the electron EDM and laser-cooled atoms can have long coherence times, we plan to utilize laser-cooled Fr atoms for the electron EDM search experiment. Besides, a strong electric field is one of key issues for the EDM experiment. Recently, we have embarked on a development of the electric field application system with transparent electrodes coated by tin-doped indium oxide (ITO). The ITO electrodes break the difficulty in the coexistence of electrodes with several cooling laser lights. The actual electric field applied to the atom is evaluated by measuring the dc Stark shift for the laser-cooled rubidium atoms. In this presentation, the present status of the electric field application system will be reported. This work is supported by Grants-in-Aid for Scientific Research (No. 26220705) and Tohoku University's Focused Research Project.

  10. Tailoring the pulse shape to efficiently populate atomic electron metastable states in a relativistically intense high-frequency laser field

    Science.gov (United States)

    Emelin, M. Yu.; Smirnov, L. A.; Ryabikin, M. Yu.

    2017-10-01

    The results of both quantum-mechanical numerical calculations beyond the electric dipole approximation and relativistic classical Monte Carlo simulations are presented for a ground-state hydrogen atom exposed to a high-frequency circularly polarized laser field in a wide intensity range. The persistence of the light-induced metastable bound states well into the relativistic regime of laser-atom interaction is demonstrated. The feasibility of high-efficiency electron trapping into these metastable states is examined in the frame of a simple two-stage scenario for a laser field turning on. The optimal parameters of the laser pulse front are found, which provide an optimal balance between the needs to achieve as quickly as possible the higher intensities, for which the decay rate of the metastable states is lower, and to ensure sufficient adiabaticity of the field turning on to avoid the unwanted "shake-off" processes. As a result, more than 60% probability of electron trapping into the metastable states in a relativistically intense high-frequency laser field is demonstrated.

  11. Porphyrins as Templates for Site-Selective Atomic Layer Deposition: Vapor Metalation and in Situ Monitoring of Island Growth

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Jason R.; Emery, Jonathan D.; Pellin, Michael J.; Martinson, Alex B. F.; Farha, Omar K.; Hupp, Joseph T.

    2016-08-10

    Examinations of enzymatic catalysts suggest one key to efficient catalytic activity is discrete size metallo clusters. Mimicking enzymatic cluster systems is synthetically challenging because conventional solution methods are prone to aggregation or require capping of the cluster, thereby limiting its catalytic activity. We introduce site-selective atomic layer deposition (ALD) on porphyrins as an alternative approach to grow isolated metal oxide islands that are spatially separated. Surface-bound tetra-acid free base porphyrins (H2TCPP) may be metalated with Mn using conventional ALD precursor exposure to induce homogeneous hydroxide synthetic handles which acts as a nucleation point for subsequent ALD MnO island growth. Analytical fitting of in situ QCM mass uptake reveals island growth to be hemispherical with a convergence radius of 1.74 nm. This growth mode is confirmed with synchrotron grazing-incidence small-angle X-ray scattering (GISAXS) measurements. Finally, we extend this approach to other ALD chemistries to demonstrate the generality of this route to discrete metallo island materials.

  12. Photoselective GreenLight™ laser vaporization versus transurethral resection of the prostate in Greece: a comparative cost analysis.

    Science.gov (United States)

    Liatsikos, Evangelos; Kyriazis, Iason; Kallidonis, Panagiotis; Sakellaropoulos, George; Maniadakis, Nikos

    2012-02-01

    To compare photoselective vaporization of the prostate (PVP) using the 120W GreenLight™ laser with transurethral resection of the prostate (TURP) in terms of their cost to the Greek National Health Service (NHS) or to the Public Insurance Sickness Funds (PISF). A prospective cost evaluation with 1-year follow-up of 60 patients with infravesical obstruction of benign prostatic hyperplasia origin who underwent o either TURP (n=30) or PVP (n=30). The cost of equipment, consumables, anesthesia, drugs, inpatient hospitalization, and complication management within 1 year postoperatively were used to calculate the cost for the NHS. PISF reimbursements to hospitals and PISF opportunity cost from the lost days of work were used to calculate PISF perspective. From the NHS perspective, the average cost was €1722 ($2371) for PVP and €2132 ($2935) for TURP. From the PISF perspective, the average cost for hospital reimbursement was €1348 ($1856) in the case of PVP and €938 ($1291) in the case of TURP. Nevertheless, in the case of patients still working, total PISF reimbursement cost was €2038 ($2806) for PVP and €2666 ($3671) for TURP. PVP for 40 to 70 cc prostates is preferable from the perspective of the NHS. From the perspective of PISF, PVP is less costly only in the case of patients who are still working, because patients who undergo PVP stay much less out of work. Further investigation in larger populations as well as in different protocols of PVP hospitalization and return to work times is deemed necessary to reinforce the conclusions of this study.

  13. High resolution pore water delta2H and delta18O measurements by H2O(liquid)-H2O(vapor) equilibration laser spectroscopy.

    Science.gov (United States)

    Wassenaar, L I; Hendry, M J; Chostner, V L; Lis, G P

    2008-12-15

    A new H2O(liquid)-H2O(vapor) pore water equilibration and laser spectroscopy method provides a fast way to obtain accurate high resolution deltaD and delta18O profiles from single core samples from saturated and unsaturated geologic media. The precision and accuracy of the H2O(liquid)-H2O(vapor) equilibration method was comparable to or better than conventional IRMS-based methods, and it can be conducted on geologic cores that contain volumetric water contents as low as 5%. Significant advantages of the H2O(liquid)-H2O(vapor) pore water equilibration method and laser isotopic analysis method include dual hydrogen- and oxygen-isotope assays on single small core samples, low consumable and instrumentation costs, and the potential for field-based hydrogeologic profiling. A single core is sufficient to obtain detailed vertical isotopic depth profiles in geologic, soil, and lacustrine pore water, dramatically reducing the cost of obtaining pore water by conventional wells or physical water extraction methods. In addition, other inherent problems like contamination of wells by leakage and drilling fluids can be eliminated.

  14. CrossRef Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange

    CERN Document Server

    McConnell, R; Kolthammer, WS; Richerme, P; Müllers, A; Walz, J; Grzonka, D; Zielinski, M; Fitzakerley, D; George, MC; Hessels, EA; Storry, CH; Weel, M

    2016-01-01

    Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is expected to be increased by a similar factor.

  15. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    Directory of Open Access Journals (Sweden)

    Mirna Daye

    2013-01-01

    Full Text Available 8-Hydroxyquinoline (8-HQ was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II, which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II. The developed method showed quantitative recoveries of Hg(II with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS with a preconcentration factor greater than 250.

  16. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Abdollahi Atousa

    2014-07-01

    Full Text Available A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap. The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS. The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically investigated. The factors influencing, the complex formation and extraction of DLLME-SFO method such as type and volume of extraction and disperser solvents, pH, concentration of salt, centrifuging time and concentration of the chelating agent were optimized. The method was successfully applied to the determination of mercury in drinking and natural water and satisfactory relative recoveries (95–105% were achieved. The proposed procedure was based on very low consumption of organic solvents. The other benefits of the system were sensitive, simple, friendly to the environment, rejection of matrix constituent, low cost, the time consuming and high enrichment factor.

  17. A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate as a solvent for extraction and preconcentration of mercury with determination by cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Li, Zaijun; Wei, Qin; Yuan, Rui; Zhou, Xia; Liu, Huizhen; Shan, Haixia; Song, Qijun

    2007-01-15

    A new room temperature ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate abbreviated as [C(4)tmsim][PF(6)] was synthesized and developed as a novel medium for liquid/liquid extraction of inorganic mercury in this work. Under optimal condition, o-carboxyphenyldiazoamino-p-azobenzene abbreviated as CDAA reacted with inorganic mercury to form a neutral Hg-CDAA complex, the complex was rapidly extracted into ionic liquid phase. After back-extracting into aqueous phase with sulfide sodium solution, the mercury concentration was detected by cold vapor atomic absorption spectrometry. The extraction and back-extraction efficiencies were 99.9 and 100.1% for 5.0microg L(-1) standard mercury in 1000mL of water solution, respectively. The detection limit, calculated using three times the standard error of estimate of the calibration graph, is 0.01ng of mercury per milliliter water sample. The proposed method has been used to the determination of trace inorganic mercury in natural water with satisfactory results. Moreover, Zeta potential and surface tension of [C(4)tmsim][PF(6)] solution were measured and applied to explain the extraction mechanism of [C(4)tmsim][PF(6)] system.

  18. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Martinis, Estefania M.; Berton, Paula [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Olsina, Roberto A. [INQUISAL-CONICET, Departamento de Quimica Analitica, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Altamirano, Jorgelina C. [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina); Wuilloud, Rodolfo G., E-mail: rwuilloud@lab.cricyt.edu.ar [Laboratory of Environmental Research and Services of Mendoza (LISAMEN), (CCT - CONICET - Mendoza), Av. Ruiz Leal S/N Parque General San Martin, CC. 131, M 5502 IRA Mendoza (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (Argentina)

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 {mu}l of 9.0 mol L{sup -1} hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L{sup -1} and the relative standard deviation (RSD) for 10 replicates at 1 {mu}g L{sup -1} Hg{sup 2+} was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  19. Quantifying uncertainty in measurement of mercury in suspended particulate matter by cold vapor technique using atomic absorption spectrometry with hydride generator.

    Science.gov (United States)

    Singh, Nahar; Ahuja, Tarushee; Ojha, Vijay Narain; Soni, Daya; Tripathy, S Swarupa; Leito, Ivo

    2013-01-01

    As a result of rapid industrialization several chemical forms of organic and inorganic mercury are constantly introduced to the environment and affect humans and animals directly. All forms of mercury have toxic effects; therefore accurate measurement of mercury is of prime importance especially in suspended particulate matter (SPM) collected through high volume sampler (HVS). In the quantification of mercury in SPM samples several steps are involved from sampling to final result. The quality, reliability and confidence level of the analyzed data depends upon the measurement uncertainty of the whole process. Evaluation of measurement uncertainty of results is one of the requirements of the standard ISO/IEC 17025:2005 (European Standard EN IS/ISO/IEC 17025:2005, issue1:1-28, 2006). In the presented study the uncertainty estimation in mercury determination in suspended particulate matter (SPM) has been carried out using cold vapor Atomic Absorption Spectrometer-Hydride Generator (AAS-HG) technique followed by wet chemical digestion process. For the calculation of uncertainty, we have considered many general potential sources of uncertainty. After the analysis of data of seven diverse sites of Delhi, it has been concluded that the mercury concentration varies from 1.59 ± 0.37 to 14.5 ± 2.9 ng/m(3) with 95% confidence level (k = 2).

  20. Automatic flow-batch system for cold vapor atomic absorption spectroscopy determination of mercury in honey from Argentina using online sample treatment.

    Science.gov (United States)

    Domínguez, Marina A; Grünhut, Marcos; Pistonesi, Marcelo F; Di Nezio, María S; Centurión, María E

    2012-05-16

    An automatic flow-batch system that includes two borosilicate glass chambers to perform sample digestion and cold vapor atomic absorption spectroscopy determination of mercury in honey samples was designed. The sample digestion was performed by using a low-cost halogen lamp to obtain the optimum temperature. Optimization of the digestion procedure was done using a Box-Behnken experimental design. A linear response was observed from 2.30 to 11.20 μg Hg L(-1). The relative standard deviation was 3.20% (n = 11, 6.81 μg Hg L(-1)), the sample throughput was 4 sample h(-1), and the detection limit was 0.68 μg Hg L(-1). The obtained results with the flow-batch method are in good agreement with those obtained with the reference method. The flow-batch system is simple, allows the use of both chambers simultaneously, is seen as a promising methodology for achieving green chemistry goals, and is a good proposal to improving the quality control of honey.