WorldWideScience

Sample records for atomic vapor laser

  1. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  2. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  3. Multiwavelength Strontium Vapor Lasers

    Science.gov (United States)

    Soldatov, A. N.; Yudin, N. A.

    2016-08-01

    Based on an analysis of experimental and theoretical works, modern notion on conditions of forming of population density inversion on self-terminating IR transitions of alkali-earth metals is given. It is demonstrated that there is a significant difference in the inversion formation in lasers on self-terminating transitions in the visible and near-IR ranges and lasers on self-terminating transitions of alkali-earth metals lasing IR lines in the mid-IR range. It is shown that in the discharge circuit of lasers on self-terminating metal atom transitions (LSMT) there are processes strengthening the influence of the known mechanism limiting the frequency and energy characteristics (FEC) of radiation caused by the presence of prepulse electron concentration. The mechanism of influence of these processes on FEC of the LSMT and technical methods of their neutralization are considered. The possibility of obtaining average lasing power of ~200 W from one liter volume of the active medium of the strontium vapor laser is demonstrated under conditions of neutralization of these processes.

  4. Atom Interferometry in a Warm Vapor

    CERN Document Server

    Biedermann, G W; Rakholia, A V; Jau, Y -Y; Wheeler, D R; Sterk, J D; Burns, G R

    2016-01-01

    We demonstrate matterwave interference in a warm vapor of rubidium atoms. Established approaches to light pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical light pulse. In our experiment, we show that clear interference signals may be obtained without laser cooling. This effect relies on the Doppler selectivity of the atom interferometer resonance. This interferometer may be configured to measure accelerations, and we demonstrate that multiple interferometers may be operated simultaneously by addressing multiple velocity classes.

  5. Detection of slow atoms confined in a Cesium vapor cell by spatially separated pump and probe laser beams

    CERN Document Server

    Todorov, Petko; Maurin, Isabelle; Saltiel, Solomon; Bloch, Daniel

    2013-01-01

    The velocity distribution of atoms in a thermal gas is usually described through a Maxwell-Boltzman distribution of energy, and assumes isotropy. As a consequence, the probability for an atom to leave the surface under an azimuth angle {\\theta} should evolve as cos {\\theta}, in spite of the fact that there is no microscopic basis to justify such a law. The contribution of atoms moving at a grazing incidence towards or from the surface, i.e. atoms with a small normal velocity, here called "slow" atoms, reveals essential in the development of spectroscopic methods probing a dilute atomic vapor in the vicinity of a surface, enabling a sub-Doppler resolution under a normal incidence irradiation. The probability for such "slow" atoms may be reduced by surface roughness and atom-surface interaction. Here, we describe a method to observe and to count these slow atoms relying on a mechanical discrimination, through spatially separated pump and probe beams. We also report on our experimental progresses toward such a g...

  6. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  7. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  8. A heated vapor cell unit for DAVLL in atomic rubidium

    OpenAIRE

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm-long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field...

  9. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  10. Atomic vapor spectroscopy in integrated photonic structures

    CERN Document Server

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2015-01-01

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  11. Real-Time Monitoring of Atom Vapor Concentration With Laser Absorption Spectroscopy%激光吸收光谱法实时监测原子蒸气密度

    Institute of Scientific and Technical Information of China (English)

    范凤英; 高鹏; 江涛

    2012-01-01

    采用固体激光器泵浦环形染料激光器作为光源,通过激光吸收光谱法对钆原子蒸气密度进行实时监测.应用光纤远距离传输提高光路稳定性,采用多步吸收光程技术,并引入参考光消除激光功率不稳定因素影响.实验结果表明:采用该方法建立的原子蒸气密度实时监测系统标准误差约为4%,可为激光同位素分离过程提供可靠数据,从而提高分离效率.%The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved.

  12. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  13. A copper vapor laser by using a copper-vapor-complex reaction at a low temperature

    OpenAIRE

    Kano, Toshiyuki; Taniguchi, Hiroshi; Saito, Hiroshi

    1987-01-01

    A copper vapor laser performance by using ametal-vapor-complex reaction (Cu+AlBr3) is reported. The laser operation is obtained at a low temperature without externalheating because of the AlBr3 vapors evaporating at a room temperature. The copper vapor laser using this metal-vapor-complex reaction has an advantage of deposition-free of a metallic copper to the laser tube wall, which is different from the copper halide and the organometallic copper lasers.

  14. Atomic laser-beam finder.

    Science.gov (United States)

    Viering, Kirsten; Medellin, David; Mo, Jianyong; Raizen, Mark G

    2012-11-05

    We report on an experimental method to align a laser beam to a cloud of atoms trapped in a magneto-optical trap (MOT). We show how balanced lock-in detection leads to a very sensitive method to align the laser beam to the atoms in the plane perpendicular to the propagation direction. This provides a very reliable and fast way of aligning laser beams to atoms trapped in a MOT.

  15. The Theory of Atom Lasers

    OpenAIRE

    Ballagh, R.; Savage, C. M.

    2000-01-01

    We review the current theory of atom lasers. A tutorial treatment of second quantisation and the Gross-Pitaevskii equation is presented, and basic concepts of coherence are outlined. The generic types of atom laser models are surveyed and illustrated by specific examples. We conclude with detailed treatments of the mechanisms of gain and output coupling.

  16. Ion formation in laser-irradiated cesium vapor

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, M.A. [National Institute of Laser Enhanced Science, Cairo University, Cairo (Egypt)]. E-mail: Hameid56@hotmail.com; Gamal, Y.E.E. [Physics Department, Faculty of Science, South Valley University, Sohag (Egypt); Abd El-Rahman, H.A. [National Institute of Laser Enhanced Science, Cairo University, Cairo (Egypt)

    2006-11-15

    We study theoretically the formation of Cs{sup +} and Cs{sub 2}{sup +} during cw laser radiation resonant with 6s-7p transition of Cs atomic vapor. This is done by numerically solving rate equations for the evolution of atomic state and electron populations. The results of calculations for the atomic and molecular ions density at different values of laser power clarified that the associative ionization and Penning ionization process play an important role for producing the Cs{sub 2}{sup +} and Cs{sup +}, respectively, during the plasma formation. Also, the results showed that laser power of the order of 150mW and 40-50ns irradiation time are optimal in producing a fully ionized plasma.

  17. Optical phase conjugation in atomic beams and vapors

    Science.gov (United States)

    Donoghue, John James

    1997-07-01

    Optical phase conjugation in atomic beams and vapors using alkali metal atoms as the nonlinear medium is examined. The significance of the sodium system is that the nonlinear gain is high due to the hyperfine system, which behaves as a Raman system. The gains observed were larger than 100 in cases involving two separate pump lasers. The gain is also seen to be more complicated than a Raman system. The frequency of the beams is examined for three separate configurations. We examine a self pumped configuration, an externally pumped configuration consisting of two pump lasers and a probe, and a ring configuration. The observed gain in a self pumped configuration is a result of a mixture of a three level Mollow type gain and a Raman gain. The initial cavity laser is a result of the Mollow gain, and the conjugate produced is seen to arise from the interaction of the cavity beams with the initial pump beam to produce the conjugate. In the externally pumped scheme, the gain is due to Coherent Population Trapping (CPT) in a double-Λ Raman system. There is an equilibrium that is obtained that is responsible for the high gains observed in this particular setup. The bandwidth of the ground state two photon induced coherence is less than the natural lifetime, indicating CPT as the gain mechanism. In the ring configuration, we observed two separate gains. There is a forward and a backward gain. These two oscillations occur together for a 430 MHZ bandwidth which coincides with the observed width of the phase conjugate oscillation. The design of our vapor cells is discussed in depth. The heat pipe configuration, necessary to successfully conduct these experiments is shown in detail. The design of our atomic beams is also discussed.

  18. Nonlinear optical properties of atomic vapor and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Doseok [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    This thesis contains the study of highly forbidden resonant second harmonic generation (SHG) in atomic potassium vapor using tunable picosecond pulses. Various output characteristics of vapor SHG have been investigated including the input intensity dependence, potassium vapor density dependence, buffer gas pressure dependence, and spatial profile. Recently, the discovery of new nonlinear optical crystals such as barium borate (β-BaB2O4, BBO) and lithium borate (LiB3O5, LBO) has greatly improved the performance of a tunable coherent optical devices based on optical parametric generation and amplification. In the second part of this thesis, a homebuilt picosecond optical parametric generator/amplifier (OPG/OPA) system is described in detail, including its construction details and output characteristics. This laser device has found many useful applications in spectroscopic studies including surface nonlinear optical spectroscopy via sum-frequency generation (SFG). The last part of this thesis reports studies on multiphoton-excited photoluminescence from porous silicon and GaN. Multiphoton excitation and photoluminescence can give numerous complementary information about semiconductors not obtainable with one-photon, above-bandgap excitation.

  19. Kinetics of metal salt vapor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, M.A.; Trofimov, A.N.

    1979-02-01

    A kinetic model is constructed for lasers operating on metal salt vapors. Different operating regimes of these lasers are considered, and it is shown that during transition from double-pulse regime to pulse-train regime or regular-pulse regime it is necessary to take into account accumulation effects. Numerical calculations for copper halogenides are carried out. It is shown how different operating regimes have widely different lasing conditions. This is due to the accumulation effects mentioned above.

  20. Heat-Pipe Bismuth Laser; Examination of Laser Action at 4722A in Bismuth Vapor

    Science.gov (United States)

    1976-11-01

    transitions in other atomic vapors. 13. MODELING OF THE INITIAL BREAKDOWN PROCESS During the initial nanosecond after the fast thyratron switch closes suddenly...lasers computer modeling , laser kin etics bismuth vapor pressure and composition excitation cross sections bismuth dim ers e8ifn.eividienibbek 2Q...P3 / 2 " p $3/4 transi- 3/4 3/2 tion probability is at least a factor of 20 too low. Continuation of the computer modeling begun in this study could

  1. Single molecule DNA detection with an atomic vapor notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Uhland, Denis; Rendler, Torsten; Widmann, Matthias; Lee, Sang-Yun [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Wrachtrup, Joerg; Gerhardt, Ilja [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2015-12-01

    The detection of single molecules has facilitated many advances in life- and material-science. Commonly the fluorescence of dye molecules is detected, which are attached to a non-fluorescent structure under study. For fluorescence microscopy one desires to maximize the detection efficiency together with an efficient suppression of undesired laser leakage. Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules. A statistical analysis proves an enhancement in detection efficiency of more than 15% in a confocal and in a wide-field configuration. (orig.)

  2. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  3. Laser Velocimetry of Chemical Vapor Deposition Flows

    Science.gov (United States)

    1993-01-01

    Laser velocimetry (LV) is being used to measure the gas flows in chemical vapor deposition (CVD) reactors. These gas flow measurements can be used to improve industrial processes in semiconductor and optical layer deposition and to validate numerical models. Visible in the center of the picture is the graphite susceptor glowing orange-hot at 600 degrees C. It is inductively heated via the copper cool surrounding the glass reactor.

  4. Copper vapor laser prospects in glaucoma treatment

    Science.gov (United States)

    Nesterov, Arcady P.; Novoderezhkin, Vladimir I.; Egorov, Alexey E.; Shaban, Naim; Ponomarev, Igor V.

    1996-05-01

    New advances of copper vapor laser (CVL-laser) have been studied. Two wavelength radiation of the laser (511 nm and 578 nm) gives deeper permeability into organic tissues. Besides, the short pulse prevents the warm relaxation of small vessels. The technical data of CVL-laser: operating regime -- pulse, pulse duration -- 20 ns, pulse frequency 15000 pulse/sec. The shutter works in intervals from 0.05 to 2.0 sec. The power varies in accordance with wavelength: 511 nm (green) -- 1.5 W, 578 nm (yellow) -- 1, 2 W. The diameter of coagulate may be different: 100, 150, 400, 1000 mkm. We chose CVL-laser 'Femta,' created by P. N. Lebedev Physical Institute of RAS, for ophthalmological use. Thirty eight eyes of 37 patients with different types and stages of glaucoma were studied and treated with CVL-laser. The operations of photomydriasis, gonioplasty and trabeculoplasty have been performed. CVL- laser demonstrated efficient application in treatment of interior eye segment of glaucoma patients. The advantages and disadvantages of the CVL-laser application in glaucoma surgery were discussed.

  5. Laser spectroscopy of atomic radium

    Energy Technology Data Exchange (ETDEWEB)

    Groot, Alexander; Jungmann, Klaus; Santra, Bodhaditya; Willmann, Lorenz; Wilschut, Hans W. [KVI, University of Groningen (Netherlands)

    2009-07-01

    The heavy alkaline earth elements radium (Ra) offers a unique sensitivity to a parity and time reversal violating permanent electric dipole moments (EDM). In particular, Ra exhibits the largest known atomic enhancements factors for EDMs. The intrinsic sensitivity arises from the specific atomic and nuclear structure of Ra. All Ra isotopes with nuclear spin I are radioactive. The lifetimes are shorter than 15 d. Several Ra isotopes are available at the TRI{mu}P facility at KVI. For the exploitation of the sensitivity Ra atoms have to be collected in a neutral atom trap. The main laser cooling is done on the strong {sup 1}S{sub 0}-{sup 1}P{sub 1} transition at 482.7 nm, similar to the laser cooling and trapping of the chemical homologue barium. Laser spectroscopy of the strong {sup 1}S{sub 0}-{sup 1}P{sub 1} transitions is presented. The light at this wavelength is provided by frequency doubling of a Ti:sapphire laser in a KNbO{sub 3} crystal. Of particular interest is the decay branching of the excited state to the metastable D-states. Such measurements are indispensable input for current atomic structure calculations, which are necessary for the analysis of a EDM measurement using Ra.

  6. Dual-Beam Atom Laser Driven by Spinor Dynamics

    Science.gov (United States)

    Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Aveline, David

    2007-01-01

    An atom laser now undergoing development simultaneously generates two pulsed beams of correlated Rb-87 atoms. (An atom laser is a source of atoms in beams characterized by coherent matter waves, analogous to a conventional laser, which is a source of coherent light waves.) The pumping mechanism of this atom laser is based on spinor dynamics in a Bose-Einstein condensate. By virtue of the angular-momentum conserving collisions that generate the two beams, the number of atoms in one beam is correlated with the number of atoms in the other beam. Such correlations are intimately linked to entanglement and squeezing in atomic ensembles, and atom lasers like this one could be used in exploring related aspects of Bose-Einstein condensates, and as components of future sensors relying on atom interferometry. In this atom-laser apparatus, a Bose-Einstein condensate of about 2 x 10(exp 6) Rb-87 atoms at a temperature of about 120 micro-K is first formed through all-optical means in a relatively weak singlebeam running-wave dipole trap that has been formed by focusing of a CO2-laser beam. By a technique that is established in the art, the trap is loaded from an ultrahigh-vacuum magnetooptical trap that is, itself, loaded via a cold atomic beam from an upstream two-dimensional magneto-optical trap that resides in a rubidium-vapor cell that is differentially pumped from an adjoining vacuum chamber, wherein are performed scientific observations of the beams ultimately generated by the atom laser.

  7. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Science.gov (United States)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  8. Improvement of copper vapor laser characteristics by zinc additive

    Science.gov (United States)

    Shpenik, Yurij; Kelman, Volodymyr; Zhmenyak, Yurij

    2008-10-01

    The influence of Zn atom additive on ``pure'' copper vapor laser output characteristics was studied. Two-section discharge tube (DT) with an external heated Zn reservoir placed at the center between ceramic sections with Cu pieces was elaborated. The pulsed periodical longitudinal discharge was excited in the DT with Cu-Zn-Ne admixture by a traditional circuit using thyratron generator with resonant overcharge of a storage capacitor. Experimental investigations established that the width, energy and power of laser pulses increased when Zn atoms at appropriate temperature ˜ 500 ^oC of zinc containing reservoir diffuse into discharge. The registered increasing of pulse energy was up to 50% comparatively with the energy without additive with peak energy at ˜ 600 ^oC. Additional absorption experiments and modeling the absorption of Zn atom resonant line in the DT (taking into account Doppler and dispersion line broadening) consistent with the conclusion that not only optical resonant pumping by 213.9 nm Zn atom line, but other processes also might be taken into account to explain the influence effects (second kind collisions between resonance state zinc and metastable copper state atoms).

  9. Radio-frequency Electrometry Using Rydberg Atoms in Vapor Cells: Towards the Shot Noise Limit

    Science.gov (United States)

    Kumar, Santosh; Fan, Haoquan; Jahangiri, Akbar; Kuebler, Harald; Shaffer, James P.; 5. Physikalisches Institut, Universitat Stuttgart, Germany Collaboration

    2016-05-01

    Rydberg atoms are a promising candidate for radio frequency (RF) electric field sensing. Our method uses electromagnetically induced transparency with Rydberg atoms in vapor cells to read out the effect that the RF electric field has on the Rydberg atoms. The method has the potential for high sensitivity (pV cm-1 Hz- 1 / 2) and can be self-calibrated. Some of the main factors limiting the sensitivity of RF electric field sensing from reaching the shot noise limit are the residual Doppler effect and the sensitivity of the optical read-out using the probe laser. We present progress on overcoming the residual Doppler effect by using a new multi-photon scheme and reaching the shot noise detection limit using frequency modulated spectroscopy. Our experiments also show promise for studying quantum optical effects such as superradiance in vapor cells using Rydberg atoms. This work is supported by DARPA, ARO, and NRO.

  10. Optical detection of potassium chloride vapor using collinear photofragmentation and atomic absorption spectroscopy.

    Science.gov (United States)

    Sorvajärvi, Tapio; Saarela, Jaakko; Toivonen, Juha

    2012-10-01

    A sensitive and selective optical technique to detect potassium chloride (KCl) vapor is introduced. The technique is based on the photofragmentation of KCl molecules, using a pulsed UV laser, and optical probing of the temporarily increased amount of potassium atoms with a near-infrared laser. The two laser beams are aligned to go through the sample volume along the same optical path. The performance of the technique is demonstrated by detecting KCl concentrations from 25 ppb to 30 ppm in a temperature-controlled cell.

  11. Containerless laser-induced flourescence study of vaporization and optical properties for sapphire and alumina

    Science.gov (United States)

    Nordine, Paul C.; Schiffman, Robert A.

    1988-01-01

    Evaporation of aluminum oxide was studied from 1800 to 2327 K by laser-induced flourescence (LIF) detection of Al atom vapor over sapphire and alumina spheres that were levitated in an argon gas jet and heated with a continuous wave CO2 laser. Optical properties were determined from apparent specimen temperatures measured with an optical pyrometer and true temperatures deduced from the LIF intensity versus temperature measurements using the known temperature dependence of the Al atom vapor concentration in equilibrium with Al2O3. The effects of impurities and dissolved oxygen on the high-temperature optical properties of aluminum oxide were discussed.

  12. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  13. A slow gravity compensated atom laser

    DEFF Research Database (Denmark)

    Kleine Büning, G.; Will, J.; Ertmer, W.

    2010-01-01

    We report on a slow guided atom laser beam outcoupled from a Bose–Einstein condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser beam can be controlled by compensating the gravitational acceleration and we reach residual accelerations as low as 0.0027 g. The outcoupling me...

  14. Diffusion of Rb atoms in paraffin - coated resonant vapor cells

    CERN Document Server

    Atutov, S N; Plekhanov, A I; Sorokin, V A; Yakovlev, A V

    2016-01-01

    We present the results of a study of the diffusion of Rb atoms in paraffin - coated resonant vapor cells. We have modeled the Rb diffusion both in the cell and in the coating, assuming that the main loss of Rb atoms is due to the physical absorption of the atoms by the glass substrate. It is demonstrated that the equilibrium atomic density in the cell is a monotonic function of the thickness of the paraffin coating: the density increases with an increase in the thickness of the coating. The diffusion coefficient for rubidium in paraffin thin films has been determined to be equal to 4,7*10^-7 cm^2/s. The results of the experiment might be useful for a better understanding of the details involved in the processes of the interaction of alkali atoms with a paraffin coating.

  15. Fabrication method for microscopic vapor cells for alkali atoms.

    Science.gov (United States)

    Baluktsian, T; Urban, C; Bublat, T; Giessen, H; Löw, R; Pfau, T

    2010-06-15

    A quantum network that consists of several components should ideally work on a single physical platform. Neutral alkali atoms have the potential to be very well suited for this purpose due to their electronic structure, which involves long-lived nuclear spins and very sensitive highly excited Rydberg states. In this Letter, we describe a fabrication method based on quartz glass to structure arbitrary shapes of microscopic vapor cells. We show that the usual spectroscopic properties known from macroscopic vapor cells are almost unaffected by the strong confinement.

  16. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit

    2014-09-18

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  17. PRR performance of Cu- and CuBr-vapor lasers

    Science.gov (United States)

    Fedorov, V. F.; Evtushenko, Gennadiy S.; Klimkin, Vladimir M.; Polunin, Yu. P.; Soldatov, Anatoly N.; Sukhanov, Viktor B.

    1998-06-01

    Results obtained from comparative analysis of the pulse repetition rate performance of Cu- and CuBr-vapor lasers operated at high pump pulse repetitions (approximately 100 kHz) are reported. For a CuBr laser with a 8 mm diameter discharge tube the laser pulse repetition rate as high as 270 kHz was realized.

  18. A multibeam atom laser: coherent atom beam splitting from a single far detuned laser

    OpenAIRE

    Dugué, J.; Dennis, G.; Jeppesen, M.; Johnsson, M. T.; Figl, C.; Robins, N. P.; Close, J. D.

    2007-01-01

    We report the experimental realisation of a multibeam atom laser. A single continuous atom laser is outcoupled from a Bose-Einstein condensate (BEC) via an optical Raman transition. The atom laser is subsequently split into up to five atomic beams with slightly different momenta, resulting in multiple, nearly co-propagating, coherent beams which could be of use in interferometric experiments. The splitting process itself is a novel realization of Bragg diffraction, driven by each of the optic...

  19. Coupling a thermal atomic vapor to an integrated ring resonator

    CERN Document Server

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2016-01-01

    Strongly interacting atom-cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candidates because they can be scalably fabricated and interconnected with waveguides and optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach provides a key step towards miniaturization and scalability of atom-cavity systems.

  20. Contact laser vaporization of the prostate for benign prostatic hypertrophy

    Science.gov (United States)

    Gomella, Leonard G.; Lotfi, M. A.; Milam, Douglas F.; Albala, David; Reagan, Gary

    1994-05-01

    The contact laser applications for the removal of the enlarged prostate are distinctly different than the majority of non-contact Nd:YAG lasers that rely on coagulation necrosis and delayed sloughing. Contact Nd:YAG laser allows cutting, coagulation and vaporization of tissue with minimal penetration beyond the contact surface. Using the contact laser prostatectomy technique, the contact laser probe directly touches and immediately vaporizes the prostatic tissue under the probe. The net result is the immediate removal of the obstructing tissue, in a manner similar to the standard electrosurgical TURP. This immediate removal of tissue offers the patient treated with the contact laser the potential for decreased catheter time and a more rapid resolution of symptoms. Our initial experience suggests that the contact technique may be better suited for the smaller prostate gland (i.e. less than 30 gm). The contact laser may also be used for a procedure termed the `laser assisted TURP': a standard electrosurgical TURP is performed and the contact laser is used for hemostasis. Several investigators have reported non-randomized results of the contact technique with good outcomes. A prospective randomized trial of the contact laser prostatectomy vrs the electrosurgical TURP is underway. The contact laser vaporization of the prostate holds great promise for the treatment of symptomatic benign prostatic hypertrophy: it is virtually bloodless and allows immediate visualization of the TUR defect.

  1. Buffer gas-assisted four-wave mixing resonances in alkali vapor excited by a single cw laser

    Science.gov (United States)

    Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Khanbekyan, Alen; Mariotti, Emilio; Papoyan, Aram V.

    2016-12-01

    We report the observation of a fluorescence peak appearing in dilute alkali (Rb, Cs) vapor in the presence of a buffer gas when the cw laser radiation frequency is tuned between the Doppler-broadened hyperfine transition groups of an atomic D2 line. Based on steep laser radiation intensity dependence above the threshold and spectral composition of the observed features corresponding to atomic resonance transitions, we have attributed these features to the buffer gas-assisted four-wave mixing process.

  2. Microcomponents manufacturing for precise devices by copper vapor laser

    Science.gov (United States)

    Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.

    2001-06-01

    This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.

  3. Single Molecule DNA Detection with an Atomic Vapor Notch Filter

    CERN Document Server

    Uhland, Denis; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Gerhardt, Ilja

    2015-01-01

    The detection of single molecules has facilitated many advances in life- and material-sciences. Commonly, it founds on the fluorescence detection of single molecules, which are for example attached to the structures under study. For fluorescence microscopy and sensing the crucial parameters are the collection and detection efficiency, such that photons can be discriminated with low background from a labeled sample. Here we show a scheme for filtering the excitation light in the optical detection of single stranded labeled DNA molecules. We use the narrow-band filtering properties of a hot atomic vapor to filter the excitation light from the emitted fluorescence of a single emitter. The choice of atomic sodium allows for the use of fluorescent dyes, which are common in life-science. This scheme enables efficient photon detection, and a statistical analysis proves an enhancement of the optical signal of more than 15% in a confocal and in a wide-field configuration.

  4. Containerless laser-induced fluorescence study of vaporization and optical properties for sapphire and alumina

    Energy Technology Data Exchange (ETDEWEB)

    Nordine, P.C.; Schiffman, R.A. (Midwest Research Institute, Kansas City, MO (USA) Yale Univ., New Haven, CT (USA))

    1988-09-01

    Evaporation of aluminum oxide was studied from 1,800 to 2,327 K by laser-induced fluorescence (LIF) detection of Al atom vapor over sapphire and alumina spheres that were levitated in an argon gas jet and heated with a continuous wave CO{sub 2} laser. Optical properties were determined from apparent specimen temperatures measured with an optical pyrometer and true temperatures deduced from the LIF intensity versus temperature measurements using the known temperature dependence of the Al atom vapor concentration in equilibrium with Al{sub 2}O{sub 3}. The effects of impurities and dissolved oxygen on the high-temperature optical properties of aluminum oxide were discussed.

  5. Study of laser vaporization of mercury: application to the energy enhancement of a VUV coherent source

    Science.gov (United States)

    Philippet, L.; Chénais, S.; Forget, S.; Castex, M.-C.

    We developed a reliable and convenient source of coherent pulsed radiation at 125 nm obtained by resonant four-wave-mixing in a mercury vapour. Recently, we improved the yield of the source by using a pulsed laser to create an ablation plume of mercury atoms, in which the nonlinear mixing takes place with increased efficiency. We discuss here the characteristics of the plume created by mercury vaporization, in relation to the energy source enhancement.

  6. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  7. Laser stabilization to an atomic transition using an optically generated dispersive lineshape

    CERN Document Server

    Queiroga, Fabiano; Mestre, Valdeci; Vidal, Itamar; de Silans, Thierry Passerat; Oriá, Marcos; Chevrollier, Martine

    2012-01-01

    We report on a simple and robust technique to generate a dispersive signal which serves as an error signal to electronically stabilize a monomode cw laser emitting around an atomic resonance. We explore nonlinear effects in the laser beam propagation through a resonant vapor by way of spatial filtering. The performance of this technique is validated by locking semiconductor lasers to the cesium and rubidiumD2 line and observing long-term reduction of the emission frequency drifts, making the laser well adapted for many atomic physics applications.

  8. Demonstration of a Tunable-Bandwidth White Light Interferometer using Anomalous Dispersion in Atomic Vapor

    CERN Document Server

    Pati, G S; Salit, M; Shahriar, M S

    2006-01-01

    The concept of the 'white-light cavity' has recently generated considerable research interest in the context of gravitational wave detection. Cavity designs are proposed using negative (or anomalous) dispersion in an intracavity medium to make the cavity resonate over a large range of frequencies and still maintain a high cavity build-up. This paper presents the first experimental attempt and demonstration of white-light effect in a meter long ring cavity using an intracavity atomic medium. The medium's negative dispersion is caused by bi-frequency Raman gain in an atomic vapor cell. Although the white light condition was not perfectly achieved and improvements in experimental control are still desirable, significantly broad cavity response over bandwidth greater than 20 MHz has been observed. These devices will have potential applications in new generation laser interferometer gravitational wave detectors.

  9. Narrow-line diode laser system for laser cooling of strontium atoms on the intercombination transition

    Science.gov (United States)

    Li, Y.; Ido, T.; Eichler, T.; Katori, H.

    We report a diode laser system developed for narrow-line cooling and trapping on the 1S0-3P1 intercombination transition of neutral strontium atoms. Doppler cooling on this spin-forbidden transition with a line width of Γ/2π=7.1 kHz enables us to achieve sub-μK temperatures in a two-step cooling process. The required reduction of the laser line width to the kHz level was achieved by locking the laser to a tunable Fabry-Pérot cavity. The long-term drift (>0.1 s) of the reference cavity was compensated by employing the saturated absorption signal obtained from Sr vapor in a heat pipe of novel design. We demonstrate the potential of the system by performing spectroscopy of Sr atoms confined to the Lamb-Dicke regime in a one-dimensional optical lattice.

  10. Hydrogen atom in a Laser-Plasma

    CERN Document Server

    Falaye, Babatunde James; Liman, Muhammed S; Oyewumi, K J; Dong, Shi-Hai

    2016-01-01

    We scrutinize the behaviour of hydrogen atom's eigenvalues in a quantum plasma as it interacts with electric field directed along $\\theta=\\pi$ and exposed to linearly polarized intense laser field radiation. Using the Kramers-Henneberger (KH) unitary transformation, which is semiclassical counterpart of the Block-Nordsieck transformation in the quantized field formalism, the squared vector potential that appears in the equation of motion is eliminated and the resultant equation is expressed in KH frame. Within this frame, the resulting potential and the corresponding wavefunction have been expanded in Fourier series and using Ehlotzky's approximation, we obtain a laser-dressed potential to simulate intense laser field. By fitting the exponential-cosine-screened Coulomb potential into the laser-dressed potential, and then expanding it in Taylor series up to $\\mathcal{O}(r^4,\\alpha_0^9)$, we obtain the eigensolution (eigenvalues and wavefunction) of hydrogen atom in laser-plasma encircled by electric field, wit...

  11. Water vapor-nitrogen absorption at CO2 laser frequencies

    Science.gov (United States)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  12. Energy balance in laser-irradiated vaporizing droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zardecki, A.; Armstrong, R.L.

    1987-09-08

    We analyze the interactions of atmospheric aerosols with a high-energy laser beam. The energy balance equation allows us to compute the conversion of the pulse energy into temperature increase, vaporization, conduction, and convection. We also include the shrinkage term whose significance has recently been discussed by Davies and Brock.

  13. Laser trapping of {sup 21}Na atoms

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zheng-Tian

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  14. Laser cooling and trapping of ytterbium atoms

    Institute of Scientific and Technical Information of China (English)

    Xin-ye XU; Wen-li WANG; Qing-hong ZHOU; Guo-hui LI; Hai-ling JIANG; Lin-fang CHEN; Jie YE; Zhi-hong ZHOU; Yin CAI; Hai-yao TANG; Min ZHOU

    2009-01-01

    The experiments on the laser cooling and trapping of ytterbium atoms are reported, including the two-dimensional transversal cooling, longitudinal velocity Zeeman deceleration, and a magneto-optical trap with a broadband transition at a wavelength of 399 nm. The magnetic field distributions along the axis of a Zeeman slower were measured and in a good agreement with the calculated results. Cold ytterbium atoms were produced with a number of about 107 and a temperature of a few milli-Kelvin.In addition, using a 556-nm laser, the excitations of cold tterbium atoms at 1S0-3p1 transition were observed. The ytterbium atoms will be further cooled in a 556-nm magneto-optical trap and loaded into a three-dimensional optical lattice to make an ytterbium optical clock.

  15. Towards a random laser with cold atoms

    CERN Document Server

    Guerin, William; Michaud, Franck; Brivio, Davide; Froufe-Pérez, Luis S; Carminati, Rémi; Eremeev, Vitalie; Goetschy, Arthur; Skipetrov, Sergey S; Kaiser, Robin

    2009-01-01

    Atoms can scatter light and they can also amplify it by stimulated emission. From this simple starting point, we examine the possibility of realizing a random laser in a cloud of laser-cooled atoms. The answer is not obvious as both processes (elastic scattering and stimulated emission) seem to exclude one another: pumping atoms to make them behave as amplifier reduces drastically their scattering cross-section. However, we show that even the simplest atom model allows the efficient combination of gain and scattering. Moreover, supplementary degrees of freedom that atoms offer allow the use of several gain mechanisms, depending on the pumping scheme. We thus first study these different gain mechanisms and show experimentally that they can induce (standard) lasing. We then present how the constraint of combining scattering and gain can be quantified, which leads to an evaluation of the random laser threshold. The results are promising and we draw some prospects for a practical realization of a random laser wit...

  16. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  17. Quantum correlations by four-wave-mixing in atomic vapor. Theory and Experiments

    CERN Document Server

    Glorieux, Quentin

    2011-01-01

    We study both theoretically and experimentally the generation of quantum correlations in the continuous variable regime by way of four-wave mixing in a hot atomic vapor. Two theoretical approaches have been developed. On one side, we study the four-wave mixing under the "classical" non-linear optics point of view. In such a way we obtain the evolution equation for an ideal linear amplifier in a {\\chi}^(3) medium. On the other side, we present a microscopic model with 4 levels in the double-{\\Lambda} configuration to calculate the {\\chi}^(3) coefficient in a atomic vapor dressed with a laser. This calculation allows us to derive the spectra of intensity noise for interesting parameters. The experimental part of this work describes the demonstration of this effect on the D1 line of rubidium 85. We present a measurement of relative intensity squeezing as high as -9.2dB below the standard quantum limit, and an original regime where quantum correlations have been measured without amplification.These results have b...

  18. Laser controlled atom source for optical clocks

    Science.gov (United States)

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-11-01

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.

  19. Bose–Einstein condensation in a vapor of sodium atoms in an electric field

    Energy Technology Data Exchange (ETDEWEB)

    You, Pei-Lin, E-mail: youpeli@163.com

    2016-06-15

    Bose–Einstein condensation (BEC) at normal temperature (T=343K) has been observed because an electric field was first applied. There are two ways to achieve phase transition: lower the temperature of Bose gas or increase its density. This article provides more appropriate method: increase the voltage. In theory, 3s and 3p states of sodium are not degenerate, but Na may be polar atom doesnot conflict with quantum mechanics because it is hydrogen-like atom. Our innovation lies in we applied an electric field used for the orientation polarization. Na vapor was filled in a cylindrical capacitor. In order to determine the polarity of sodium, we measured the capacitance at different temperatures. If Na is non-polar atom, its capacitance should be independent of temperature because the nucleus of atom is located at the center of the electron cloud. But our experiment shows that its capacitance is related to temperature, so Na is polar atom. In order to achieve Na vapor phase transition, we measured the capacitance at different voltages. From the entropy of Na vapor S=0, the critical voltage V{sub c}=68volts. When Vatoms are in random orientation S>0; when V>V{sub c}, the atoms become aligned with the field S<0, phase transition occurred. When V=390 volts »V{sub c}, the capacitance decreased from C=1.9C{sub 0} to C≈C{sub 0} (C{sub 0} is the vacuum capacitance), this result implies that almost all the Na atoms (more than 98%) are aligned with the field, Na vapor entered quasi-vacuum state. We create a BEC with 2.506×10{sup 17} atoms, condensate fraction reached 98.9%. This is BEC in momentum space. Our experiment shows that if a Bose gas enters quasi-vacuum state, this also means that it underwent phase transition and generates BEC. Therefore, quasi-vacuum state of alkali gas is essentially large-scale BEC. This is an unexpected discovery. BEC and vacuum theory are two unrelated research areas, but now they are closely linked together. The maximum

  20. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  1. Investigation on orientation, epitaxial growth and microstructure of a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ films prepared on (001), (110) and (111) SrTiO3 single crystal substrates by spray atomizing and coprecipitating laser chemical vapor deposition

    Science.gov (United States)

    Zhao, Pei; Wang, Ying; Huang, Zhi liang; Mao, Yangwu; Xu, Yuan Lai

    2015-04-01

    a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ (YBCO) films were pareared by spray atomizing and coprecipitating laser chemical vapor deposition. The surface of the a-axis-oriented YBCO film consisted of rectangular needle-like grains whose in-plane epitaxial growth relationship was YBCO [100] // STO [001] (YBCO [001] // STO [100]), and that of the c-axis-oriented YBCO film consisted of dense flat surface with epitaxial growth relationship of YBCO [001] // STO [001] (YBCO [100] //STO [100]). For the (103)/(110)-oriented and (113)-oriented YBCO film, they showed wedge-shaped and triangle-shaped grains, with corresponding in-plane epitaxial growth relationship of YBCO [110] // STO [110] (YBCO [010] // STO [010]) and YBCO [100] // STO [100] (YBCO [113] // STO [111], respectively.

  2. Physico-technical background of metal vapor laser systems and their application in oncology

    Science.gov (United States)

    Armichev, A. V.; Ivanov, Andrei V.; Kazaryan, Mishik A.

    1996-01-01

    Some results of the copper and gold vapor lasers and of helium-cadmium lasers used in medical practice are presented. The most in medical use copper vapor laser is commonly applied for low-intensity laser therapy and endoscopic surgery. A universal capability of dye lasers oscillating in 600 - 670 red region for excitation of the preparates used in photodynamic therapy is demonstrated. The copper vapor lasers are shown also to effectively coagulate pre- tumor neoplasms. A new method of laser beams shaping fitted to tumor configuration basing on quantum optical systems including image brightness amplifiers is described. Variability of the irradiating beam contrast is displayed, including the contrast inversion. Possibilities of the copper vapor lasers use for tumors drugless phototherapy and the two-step and two-stage methods of the photodynamic therapy are discussed. Some Russian medical systems based on the copper vapor lasers and dye lasers pumped by them are specified in parameters.

  3. Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors

    CERN Document Server

    Dąbrowski, Michał; Wasilewski, Wojciech

    2015-01-01

    Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here we report a combination of magnetically tuned absorption and Faraday filters, both light-direction-insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal to noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman-scattered photons.

  4. Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors

    Science.gov (United States)

    Dąbrowski, M.; Chrapkiewicz, R.; Wasilewski, W.

    2016-11-01

    Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light-direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons.

  5. Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors.

    Science.gov (United States)

    Dąbrowski, M; Chrapkiewicz, R; Wasilewski, W

    2016-11-12

    Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light-direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons.

  6. Enthalpy model for heating, melting, and vaporization in laser ablation

    Directory of Open Access Journals (Sweden)

    Vasilios Alexiades

    2010-09-01

    Full Text Available Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu target in a helium (He background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a self-consistent way.

  7. Copper-vapor laser in medical practice: gynecology

    Science.gov (United States)

    Chvykov, Vladimir V.; Zazulya, O. I.; Zemskov, Konstantin I.

    1993-10-01

    About 100 patients were treated for cervical erosion, cervical leukoplakia, and vulval warts in the Gynecology Department of the adult polyclinic of the Zelenograd Center of Medicine. Copper vapor laser (CVL) was used with output average power up to 4 W in two lines (510 nm, 578 nm). Pulse repetition rate was about 10 kHz, pulselength approximately 20 - 40 ns. Four to twelve procedures were sufficient to recover.

  8. High Field Seeking State Atom Laser and Properties of Flux

    Institute of Scientific and Technical Information of China (English)

    XIA Lin; XIONG Wei; YANG Fan; YI Lin; ZHOU Xiao-Ji; CHEN Xu-Zong

    2008-01-01

    We present an experimental study on the continuous atom laser. The experiments show that a high field seeking state atom laser with stable flux can be formed by increasing the strength of outcoupling before large density fluctuations appear. It is easy to obtain a long length or high speed output with this kind of atom laser.

  9. Semiclassical treatment of laser excitation of the hydrogen atom

    DEFF Research Database (Denmark)

    Billing, Gert D.; Henriksen, Niels Engholm; Leforestier, C.

    1992-01-01

    We present an alternative method for studying excitation of atoms in intense laser fields. In the present paper we focus upon the optical harmonic generation by hydrogen atoms.......We present an alternative method for studying excitation of atoms in intense laser fields. In the present paper we focus upon the optical harmonic generation by hydrogen atoms....

  10. Atom laser dynamics in a tight waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Campo, A del; Lizuain, I; Muga, J G [Departamento de Quimica-Fisica, UPV-EHU, Apartado. 644, Bilbao (Spain); Pons, M [Departamento de Fisica Aplicada I, E.U.I.T. de Minas y Obras Publicas, UPV-EHU, 48901 Barakaldo (Spain); Moshinsky, M [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, 01000 Mexico D.F. (Mexico)], E-mail: adolfo.delcampo@ehu.es

    2008-02-15

    We study the transient dynamics that arise during the formation of an atom laser beam in a tight waveguide. The time dependent density profile develops a series of wiggles which are related to the diffraction in time phenomenon. The apodization of matter waves, which relies on the use of smooth aperture functions, allows to suppress such oscillations in a time interval, after which there is a revival of the diffraction in time. The revival time scale is directly related to the inverse of the harmonic trap frequency for the atom reservoir.

  11. Ionization of Atoms by Intense Laser Pulses

    CERN Document Server

    Froehlich, Juerg; Schlein, Benjamin

    2010-01-01

    The process of ionization of a hydrogen atom by a short infrared laser pulse is studied in the regime of very large pulse intensity, in the dipole approximation. Let $A$ denote the integral of the electric field of the pulse over time at the location of the atomic nucleus. It is shown that, in the limit where $|A| \\to \\infty$, the ionization probability approaches unity and the electron is ejected into a cone opening in the direction of $-A$ and of arbitrarily small opening angle. Asymptotics of various physical quantities in $|A|^{-1}$ is studied carefully. Our results are in qualitative agreement with experimental data reported in \\cite{1,2}.

  12. Wavelength diversity in optically pumped alkali vapor lasers

    Science.gov (United States)

    Perram, Glen P.

    2017-01-01

    Alternative wavelengths for optically pumped alkali vapor lasers have been developed using single photon excitation of higher lying P-states, stimulated Raman processes, two-photon excitation of S and D states, and electric quadruple excitation on S-D transitions. Two photon excitation of Cs 72D leads to competing and cascade lasing producing red and infrared lasers operating on the D-P transitions, followed by ultraviolet, blue, the standard near infrared DPAL transitions operating on P-S transitions. The S-D pump transitions are fully bleached at pump intensities exceeding 1 MW/cm2, allowing for lasing transitions that terminate on the ground state. The kinetics of these systems are complex due to competition for population inversion among the many optical transitions. An optically pumped mid-infrared rubidium pulsed, mirrorless laser has also been demonstrated in a heat pipe along both the 62P3/2 - 62S1/2 transition at 2.73 μm and the 62P1/2 - 62S1/2 transition at 2.79 μm with a maximum energy of 100 nJ. Performance improves dramatically as the rubidium vapor density is increased, in direct contradiction with the prior work. No scaling limitations associated with energy pooling or ionization kinetics have been observed. Practical application for infrared counter measures depends on the further development of blue diode pump sources. Finally, stimulated electronic Raman scattering and hyper-Raman processes in potassium vapor near the D1 and D2 lines have been observed using a stable resonator and pulsed laser excitation. First and second order Stokes and anti-Stokes lines were observed simultaneously and independently for a pump laser tuning range exceeding 70 cm-1. When the pump is tuned between the K D1 and D2 lines, an efficient hyper-Raman process dominates with a slope efficiency that exceeds 10%. Raman shifted laser may be useful as a target illuminator or atmospheric compensation beacon for a high power diode pumped alkali laser.

  13. Design for a compact CW atom laser

    Science.gov (United States)

    Power, Erik; Raithel, Georg

    2011-05-01

    We present a design for a compact continuous-wave atom laser on a chip. A 2D spiral-shaped quadrupole guide is formed by two 0.5 mm × 0.5 mm wires carrying 5 A each embedded in a Si wafer; a 1.5 mm × 0.5 mm wire on the bottom layer carries -10 A, producing a horizontal B-field that pushes the guiding channel center above the chip surface. The center-to-center separation between the top wires is varied from 1.6 mm at the start of the guide to 1 mm at the end, decreasing the guide height from ~ 500 μm to ~ 25 μm above the surface as the atoms travel the 70 cm-long guide. The magnetic gradient of the guiding channel gradually increases from ~ 100 G /cm to ~ 930 G /cm . These features result in continuous surface adsorption evaporative cooling and progressive magnetic compression. Spin flip losses are mitigated by a solenoid sewn around the guide to produce a longitudinal B-field. 87Rb atoms are gravitationally loaded into the guide. A far off-resonant light shift barrier at the end of the guide traps the atoms and allows formation of a BEC. Tuning the barrier height to create a non-zero tunneling rate equal to the loading rate completes the implementation of a CW atom laser. Two options for atom interferometry are implemented on the first-generation chip (matter-wave Fabry-Perot interferometer and guide-based Mach-Zehnder interferometer). Current construction status and challenges will be discussed, along with preliminary results.

  14. Comparative characteristics of copper, copper chloride, and copper bromide vapor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, M.A.; Petrash, G.G.; Trofimov, A.N.

    1980-03-01

    The paper reports the results of a comparative study of copper and copper halide vapor lasers emitting in a repetitively-pulsed regime. Copper chloride and copper bromide vapor lasers are found to have identical lasing characteristics under any excitation conditions. These characteristics are different from those of a copper vapor laser. An average lasing power of 13 W has been obtained for all lasers studied for an efficiency of 1%. It is shown that the choice of a laser will largely depend on the laser design suitability for a specific application.

  15. Gravitational Wave Detection with Single-Laser Atom Interferometers

    Science.gov (United States)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  16. Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Flanigan, Paul; Levis, Robert

    2014-06-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  17. Simple and Compact Nozzle Design for Laser Vaporization Sources

    CERN Document Server

    Kokish, M G; Odom, B C

    2015-01-01

    We have developed and implemented a compact transparent nozzle for use in laser vaporization sources. This nozzle eliminates the need for an ablation aperture, allowing for a more intense molecular beam. We use this nozzle to prepare a molecular beam of aluminum monohydride (AlH) suitable for ion trap loading of AlH$^+$ via photoionization in ultra-high vacuum. We demonstrate stable AlH production over hour time scales using a liquid ablation target. The long-term stability, low heat load and fast ion production rate of this source are well-suited to molecular ion experiments employing destructive state readout schemes requiring frequent trap reloading.

  18. Investigation of the lasing characteristics of a barium vapor laser with pulse repetition frequencies up to 320 kHz for navigation

    Science.gov (United States)

    Soldatov, A. N.; Polunin, Yu. P.

    2015-11-01

    Results of experimental investigations into the characteristics of a laser on self-terminating transitions of the barium atom with λ = 1499 nm are presented for high pulse repetition frequencies (PRF). The frequency-energy characteristics are investigated in the self-heating mode of laser operation. Record values of PRF for the barium vapor laser, equal to ~320 kHz, have been attained.

  19. Laser Spectroscopy of Muonic Atoms and Ions

    CERN Document Server

    Pohl, Randolf; Fernandes, Luis M P; Ahmed, Marwan Abdou; Amaro, Fernando D; Amaro, Pedro; Biraben, François; Cardoso, João M R; Covita, Daniel S; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Franke, Beatrice; Galtier, Sandrine; Giesen, Adolf; Gouvea, Andrea L; Götzfried, Johannes; Graf, Thomas; Hänsch, Theodor W; Hildebrandt, Malte; Indelicato, Paul; Julien, Lucile; Kirch, Klaus; Knecht, Andreas; Knowles, Paul; Kottmann, Franz; Krauth, Julian J; Bigot, Eric-Olivier Le; Liu, Yi-Wei; Lopes, José A M; Ludhova, Livia; Machado, Jorge; Monteiro, Cristina M B; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; Santos, Joaquim M F dos; Santos, José Paulo; Schaller, Lukas A; Schuhmann, Karsten; Schwob, Catherine; Szabo, Csilla I; Taqqu, David; Veloso, João F C A; Voss, Andreas; Weichelt, Birgit; Antognini, Aldo

    2016-01-01

    Laser spectroscopy of the Lamb shift (2S-2P energy difference) in light muonic atoms or ions, in which one negative muon $\\mu^-$ is bound to a nucleus, has been performed. The measurements yield significantly improved values of the root-mean-square charge radii of the nuclei, owing to the large muon mass, which results in a vastly increased muon wave function overlap with the nucleus. The values of the proton and deuteron radii are 10 and 3 times more accurate than the respective CODATA values, but 7 standard deviations smaller. Data on muonic helium-3 and -4 ions is being analyzed and will give new insights. In future, the (magnetic) Zemach radii of the proton and the helium-3 nuclei will be determined from laser spectroscopy of the 1S hyperfine splittings, and the Lamb shifts of muonic Li, Be and B can be used to improve the respective charge radii.

  20. Linear Atom Guides: Guiding Rydberg Atoms and Progress Toward an Atom Laser

    Science.gov (United States)

    Traxler, Mallory A.

    In this thesis, I explore a variety of experiments within linear, two-wire, magnetic atom guides. Experiments include guiding of Rydberg atoms; transferring between states while keeping the atoms contained within the guide; and designing, constructing, and testing a new experimental apparatus. The ultimate goal of the atom guiding experiments is to develop a continuous atom laser. The guiding of 87Rb 59D5/2 Rydberg atoms is demonstrated. The evolution of the atoms is driven by the combined effects of dipole forces acting on the center-of-mass degree of freedom as well as internal-state transitions. Time delayed microwave and state-selective field ionization, along with ion detection, are used to investigate the evolution of the internal-state distribution as well as the Rydberg atom motion while traversing the guide. The observed decay time of the guided-atom signal is about five times that of the initial state. A population transfer between Rydberg states contributes to this lengthened lifetime, and also broadens the observed field ionization spectrum. The population transfer is attributed to thermal transitions and, to a lesser extent, initial state-mixing due to Rydberg-Rydberg collisions. Characteristic signatures in ion time-of-flight signals and spatially resolved images of ion distributions, which result from the coupled internal-state and center-of-mass dynamics, are discussed. Some groups have used a scheme to make BECs where atoms are optically pumped from one reservoir trap to a final state trap, irreversibly transferring those atoms from one trap to the other. In this context, transfer from one guided ground state to another is studied. In our setup, before the atoms enter the guide, they are pumped into the | F = 1, mF = --1> state. Using two repumpers, one tuned to the F = 1 → F' = 0 transition (R10) and the other tuned to the F = 1 → F' = 2 transition (R12), the atoms are pumped between these guided states. Magnetic reflections within the guide

  1. Diffusion of Rb atoms in paraffin-coated resonant vapor cells

    Science.gov (United States)

    Atutov, Sergey N.; Benimetskiy, Fedor A.; Plekhanov, Alexander I.; Sorokin, Vladimir A.; Yakovlev, Alexander V.

    2017-01-01

    We present the results of a study of the diffusion of Rb atoms in paraffin-coated resonant vapor cells. We have modeled the Rb diffusion both in the cell and in the coating, assuming that the main loss of Rb atoms is due to the physical absorption of the atoms by the glass substrate. It is demonstrated that the equilibrium of atomic density in the cell is a monotonic function of the thickness of the paraffin coating: the density increases with an increase in the thickness of the coating. The diffusion coefficient for rubidium in paraffin thin films has been determined to be equal to 5 × 10-7 cm2/s. The results of the experiment might provide for a better understanding of the processes involved in the interaction of alkali atoms with a paraffin coating and atomic diffusion in resonant vapor cells.

  2. Low-temperature operation of copper-vapor lasers by using vapor-complex reaction of metallic copper and metal halide

    OpenAIRE

    Saito, Hiroshi; Taniguchi, Hiroshi

    1985-01-01

    The first successful use of vapor-complex reactions for a laser is reported. Vapor-complex reactions between metallic copper and metal halides are found effective in reducing the operating temperature in copper-vapor lasers. By using a vapor-complex reaction of Cu+AlBr3, a laser oscillation starts at a reservoir temperature of about 25°C. The results obtained by the mass spectroscopic analysis support the presumption that the copper vapor is generated through a vapor-complex reaction process.

  3. An 80-W Laser Diode Array with 0.1 nm Linewidth for Rubidium Vapor Laser Pumping

    Institute of Scientific and Technical Information of China (English)

    YANG Zi-Ning; WANG Hong-Yan; LU Qi-Sheng; HUA Wei-Hong; XU Xiao-Jun

    2011-01-01

    The spectral linewidth of a 64-emitter laser-diode array is effectively suppressed by using a volume Bragg grating (VBG) based external cavity.At a maximal driven current of 90 A,the device produces a cw output of 80 W with 1.2 W/A slope efficiency and 0.1 nm spectral linewidth (FWHM) centered at 780 nm.The power extraction efficiency reaches 90% as compared with the free running case.The central wavelength of the narrowed spectrum is tuned over a 0.3nm range by adjusting the VBG's temperature.The absorption of 45% laser radiation by a 5-mm-long rubidium vapor cell with 150Torr ethane and 450 Torr helium at 383K is demonstrated.Diode pumped alkali vapor lasers (DPALs) have attracted much attention and have developed quickly in recent years due to their great potential in the high power laser field.[1-4] The efficient operation of DPALs requires pump sources with a linewidth that matches the pressure-broadened absorption band of alkali atoms.In moderate (~5 atm buffer gas) and low (~1 atm buffer gas) pressure operating regimes,the required pump linewidths should be 0.4 nm and less than 0.1 nm,respectively,[5] while the typical linewidth of commercial laser diode arrays (LDAs) is 2-4 nm.%The spectral linewidth of a 64-emitter laser-diode array is effectively suppressed by using a volume Bragg grating (VBG) based external cavity. At a maximal driven current of 90 A, the device produces a cw output of80W with 1.2 W/A slope efficiency and 0.1 nm spectral linewidth (FWHM) centered at 780 nm. The power extraction efficiency reaches 90% as compared with the free running case. The central wavelength of the narrowed spectrum is tuned over a 0.3nm range by adjusting the VBG's temperature. The absorption of 45% laser radiation by a 5-mm-long rubidium vapor cell with 150 Torr ethane and 450 Torr helium at 383 K is demonstrated.

  4. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    Science.gov (United States)

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  5. Soliton Atom Laser with Quantum State Transfer Property

    Institute of Scientific and Technical Information of China (English)

    LIU Xiong-Jun; JING Hui; GE Mo-Lin

    2006-01-01

    @@ We study the nonlinear effects in the quantum states transfer technique from photons to matter waves in the three-level case, which may provide the formation of a soliton atom laser with nonclassical atoms. The validity of quantum transfer mechanism is confirmed in the presence of the intrinsic nonlinear atomic interactions. The accompanied frequency chirp effect is shown to have no influence on the grey solitons formed by the output atom laser and the possible quantum depletion effect is also briefly discussed.

  6. Development of a new laser heating system for thin film growth by chemical vapor deposition.

    Science.gov (United States)

    Fujimoto, Eiji; Sumiya, Masatomo; Ohnishi, Tsuyoshi; Lippmaa, Mikk; Takeguchi, Masaki; Koinuma, Hideomi; Matsumoto, Yuji

    2012-09-01

    We have developed a new laser heating system for thin film growth by chemical vapor deposition (CVD). A collimated beam from a high-power continuous-wave 808 nm semiconductor laser was directly introduced into a CVD growth chamber without an optical fiber. The light path of the heating laser inside the chamber was isolated mechanically from the growth area by bellows to protect the optics from film coating. Three types of heat absorbers, (10 × 10 × 2 mm(3)) consisting of SiC, Ni/NiO(x), or pyrolytic graphite covered with pyrolytic BN (PG/PBN), located at the backside of the substrate, were tested for heating performance. It was confirmed that the substrate temperature could reach higher than 1500 °C in vacuum when a PG/PBN absorber was used. A wide-range temperature response between 400 °C and 1000 °C was achieved at high heating and cooling rates. Although the thermal energy loss increased in a H(2) gas ambient due to the higher thermal conductivity, temperatures up to 1000 °C were achieved even in 200 Torr H(2). We have demonstrated the capabilities of this laser heating system by growing ZnO films by metalorganic chemical vapor deposition. The growth mode of ZnO films was changed from columnar to lateral growth by repeated temperature modulation in this laser heating system, and consequently atomically smooth epitaxial ZnO films were successfully grown on an a-plane sapphire substrate.

  7. Atomic mercury vapor inside a hollow-core photonic crystal fiber

    CERN Document Server

    Vogl, Ulrich; Joly, Nicolas Y; Russell, Philip St J; Marquardt, Christoph; Leuchs, Gerd

    2014-01-01

    We demonstrate high atomic mercury vapor pressure in a kagom\\'e-style hollow-core photonic crystal fiber at room temperature. After a few days of exposure to mercury vapor the fiber is homogeneously filled and the optical depth achieved remains constant. With incoherent optical pumping from the ground state we achieve an optical depth of 114 at the $6^3P_2 - 6^3D_3$ transition, corresponding to an atomic mercury number density of $6 \\times 10^{10}$ cm$^{-3}$. The use of mercury vapor in quasi one-dimensional confinement may be advantageous compared to chemically more active alkali vapor, while offering strong optical nonlinearities in the ultraviolet region of the optical spectrum.

  8. Gas and metal vapor lasers and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1991

    Science.gov (United States)

    Kim, Jin J.; Tittel, Frank K.

    Various papers on gas and metal vapor lasers and applications are presented. Individual topics addressed include: high-power copper vapor laser development, modified off-axis unstable resonator for copper vapor laser, industrial applications of metal vapor lasers, newly developed excitation circuit for kHz pulsed lasers, copper vapor laser precision processing, development of solid state pulse power supply for copper vapor laser, multiple spectral structure of the 578.2-nm line for copper vapor laser, adsorption of bromine in CuBr laser, processing of polytetrafluoroethylene with high-power VUV laser radiation, characterization of a subpicosecond XeF(C - A) excimer laser, X-ray preionization for high-repetition-rate discharge excimer lasers. Also discussed are: investigation of microwave-pumped excimer and rare-gas laser transitions, influence of gas composition of XeCl laser performance, output power stabilization of a XeCl excimer laser by HCl gas injection, excimer laser machining of optical fiber taps, diagnostics of a compact UV-preionized XeCl laser with BCl3 halogen donor, blackbody-pumped CO32 lasers using Gaussian and waveguide cavities, chemical problems of high-power sealed-off CO lasers, laser action of Xe and Ne pumped by electron beam, process monitoring during CO2 laser cutting, double-pulsed TEA CO2 laser, superhigh-gain gas laser, high-power ns-pulse iodine laser provided with SBS mirror. (No individual items are abstracted in this volume)

  9. Collinear laser spectroscopy of atomic cadmium

    CERN Document Server

    Frömmgen, Nadja; Bissell, Mark L; Bieroń, Jacek; Blaum, Klaus; Cheal, Bradley; Flanagan, Kieran; Fritzsche, Stephan; Geppert, Christopher; Hammen, Michael; Kowalska, Magdalena; Kreim, Kim; Krieger, Andreas; Neugart, Rainer; Neyens, Gerda; Rajabali, Mustafa M; Nörtershäuser, Wilfried; Papuga, Jasna; Yordanov, Deyan T

    2015-01-01

    Hyperfine structure $A$ and $B$ factors of the atomic $5s\\,5p\\,\\; ^3\\rm{P}_2 \\rightarrow 5s\\,6s\\,\\; ^3\\rm{S}_1$ transition are determined from collinear laser spectroscopy data of $^{107-123}$Cd and $^{111m-123m}$Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with $s_{1/2}$ and $d_{5/2}$ nuclear ground states and isomeric $h_{11/2}$ states is evaluated and a linear relationship is observed for all nuclear states except $s_{1/2}$. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic $5s\\,5p\\,\\; ^3\\mathrm{P}_2$ level is derived from multi-configuration Dirac-Hartree-Fock calculatio...

  10. Narrow linewidth single laser source system for onboard atom interferometry

    CERN Document Server

    Theron, Fabien; Renon, Geoffrey; Bidel, Yannick; Zahzam, Nassim; Cadoret, Malo; Bresson, Alexandre

    2014-01-01

    We present an original compact and robust laser system for atom interferometry based on a frequency-doubled telecom laser. Thanks to an original stabilization architecture on a saturated absorption, we obtain a frequency agile laser system allowing fast tuning of the laser frequency over 1 GHz in few ms using only a single laser source. The different laser frequencies used for atom interferometry are created by changing dynamically the frequency of the laser and by creating sidebands using a phase modulator. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup compact, much less sensitive to vibrations and thermal fluctuations. This source provides spectral linewidth below 2.5 kHz required for precision atom interferometry, and particularly for an high performance atomic inertial sensor.

  11. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W

    1982-01-01

    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  12. Size control of vapor bubbles on a silver film by a tuned CW laser

    Directory of Open Access Journals (Sweden)

    Y. J. Zheng

    2012-06-01

    Full Text Available A vapor bubble is created by a weakly focused continuous-wave (CW laser beam on the surface of a silver film. The temporal dynamics of the bubble is experimentally investigated with a tuned incident laser. The expansion and contraction rates of the vapor bubble are determined by the laser power. The diameter of the vapor bubble can be well controlled through tuning the laser power. A theory model is given to explain the underlying physics in the process. The method reported will have some interesting applications in micro-fluidics and bio-techniques.

  13. Endoscopic photodynamic therapy of tumors using gold vapor laser

    Science.gov (United States)

    Kuvshinov, Yury P.; Poddubny, Boris K.; Mironov, Andrei F.; Ponomarev, Igor V.; Shental, V. V.; Vaganov, Yu. E.; Kondratjeva, T. T.; Trofimova, E. V.

    1996-01-01

    Compact sealed-off gold vapor laser (GVL) with 2 W average power and 628 nm wavelength was used for endoscopic photodynamic therapy in 20 patients with different tumors in respiratory system and upper gastrointestinal tract. Russian-made hematoporphyrin derivative (Hpd) `Photohem' was used as a photosensitizer. It was given intravenously at a dose of 2 - 2.5 mg/kg body weight 48 hours prior to tumor illumination with 628 nm light from GVL. Intermittent irradiation with GVL was done through flexible endoscope always under local anaesthesia at a power of 200 - 400 mW/sm2 and a dose of 150 - 400 J/sm2. 80% patients showed complete or partial response depending on stage of tumor. In cases of early gastric cancer all patients had complete remission with repeated negative biopsies. No major complication occurred.

  14. High quality anti-relaxation coating material for alkali atom vapor cells

    CERN Document Server

    Balabas, M V; Wasilewski, W; Krauter, H; Madsen, L S; Muller, J H; Fernholz, T; Polzik, E S

    2009-01-01

    We present an experimental investigation of alkali atom vapor cells coated with a high quality anti-relaxation coating material based on alkenes. The prepared cells with single compound alkene based coating showed the longest spin relaxation times which have been measured up to now with room temperature vapor cells. Suggestions are made that chemical binding of a cesium atom and an alkene molecule by attack to the C=C bond plays a crucial role in such improvement of anti-relaxation coating quality.

  15. Sodium vapor cell laser guide star experiments for continuous wave model validation

    Science.gov (United States)

    Pedreros Bustos, Felipe; Holzlöhner, Ronald; Budker, Dmitry; Lewis, Steffan; Rochester, Simon

    2016-07-01

    Recent numerical simulations and experiments on sodium Laser Guide Star (LGS) have shown that a continuous wave (CW) laser with circular polarization and re-pumping should maximize the fluorescent photon return flux to the wavefront sensor for adaptive optics applications. The orientation and strength of the geomagnetic field in the sodium layer also play an important role affecting the LGS return ux. Field measurements of the LGS return flux show agreement with the CW LGS model, however, fluctuations in the sodium column abundance and geomagnetic field intensity, as well as atmospheric turbulence, induce experimental uncertainties. We describe a laboratory experiment to measure the photon return flux from a sodium vapor cell illuminated with a 589 nm CW laser beam, designed to approximately emulate a LGS under controlled conditions. Return flux measurements are carried out controlling polarization, power density, re-pumping, laser linewidth, and magnetic field intensity and orientation. Comparison with the numerical CW simulation package Atomic Density Matrix are presented and discussed.

  16. Cold atom dynamics in crossed laser beam waveguides

    CERN Document Server

    Torrontegui, E; Ruschhaupt, A; Guéry-Odelin, D; Muga, J G

    2010-01-01

    We study the dynamics of neutral cold atoms in an $L$-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. Complemented with a vibrational cooling process this setting works as a one-way device or "atom diode".

  17. Study of Rb - vapor coated cell; atomic diffusion and cell curing process

    CERN Document Server

    Atutov, S N; Plekhanov, A I; Sorokin, V A

    2015-01-01

    We present the results of the study of an optical resonant cell filled by a vapor of the Rb atoms and coated with a non-stick polydimethylsiloxane (PDMS) polymer. We show that it is possible to define correctly the diffusion coefficient of the atoms in the coating, using geometric parameters of the cell and the vapor density in the cell volume only. The dependence of the diffusion coefficient on the cell curing time is presented. It is shown that the mysterious cell curing process can be explained in terms of the polymerization of the polymer coating by alkali atoms. Anomalous long dwell time of the Rb atoms on the PDMS coating is discussed as well.

  18. Laser-Focused Atomic Deposition for Nanascale Grating

    Institute of Scientific and Technical Information of China (English)

    MA Yan; LI Tong-Bao; WU Wen; XIAO Yi-Li; ZHANG Ping-Ping; GONG Wei-Gang

    2011-01-01

    Laser-focused atomic deposition is a technique with which nearly resonant light is used to pattern an atom beam.To solve the problem that the result of laser-cooled atoms cannot be monitored during the 30-rmin depositing time,we present a three-hole mechanically precollimated aperture apparatus.A 425 nm laser light standing wave is used to focus a beam of chromium atoms to fabricate the nanoscale grating. The period of the grating is 213(+-)0.1 nm,the height is 4nm and the full width at half miximum is 64(+-)6nm.

  19. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  20. Vapor generation – atomic spectrometric techniques. Expanding frontiers through specific-species preconcentration. A review

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Raúl A.; Pacheco, Pablo H.; Cerutti, Soledad [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Martinez, Luis D., E-mail: ldm@unsl.edu.ar [Área de Química Analítica, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina); Instituto de Química de San Luis, INQUISAL, Centro Científico-Tecnológico de San Luis (CCT-San Luis), Consejo Nacional de Investigaciones Científicas y Universidad Nacional de San Luis, Ciudad de San Luis 5700 (Argentina)

    2015-05-22

    This article reviews 120 articles found in SCOPUS and specific Journal cites corresponding to the terms ‘preconcentration’; ‘speciation’; ‘vapor generation techniques’ and ‘atomic spectrometry techniques’ in the last 5 years. - Highlights: • Recent advances in vapor generation and atomic spectrometry were reviewed. • Species-specific preconcentration strategies after and before VG were discussed. • New preconcentration and speciation analysis were evaluated within this framework. - Abstract: We review recent progress in preconcentration strategies associated to vapor generation techniques coupled to atomic spectrometric (VGT-AS) for specific chemical species detection. This discussion focuses on the central role of different preconcentration approaches, both before and after VG process. The former was based on the classical solid phase and liquid–liquid extraction procedures which, aided by automation and miniaturization strategies, have strengthened the role of VGT-AS in several research fields including environmental, clinical, and others. We then examine some of the new vapor trapping strategies (atom-trapping, hydride trapping, cryotrapping) that entail improvements in selectivity through interference elimination, but also they allow reaching ultra-low detection limits for a large number of chemical species generated in conventional VG systems, including complete separation of several species of the same element. This review covers more than 100 bibliographic references from 2009 up to date, found in SCOPUS database and in individual searches in specific journals. We finally conclude by giving some outlook on future directions of this field.

  1. A geração química de vapor em espectrometria atômica Chemical vapor generation in atomic spectrometry

    Directory of Open Access Journals (Sweden)

    Iracema Takase

    2002-12-01

    Full Text Available The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS, microwave induced plasma optical emission spectrometry (MIP-OES, inductively coupled plasma optical emission spectrometry (ICP-OES , inductively coupled plasma mass spectrometry (ICP-MS and furnace atomic nonthermal excitation spectrometry (FANES are considered. Hydride generation is separately considered in contrast to other methods of generation of volatile derivatives. Hg ¾ CVAAS (cold vapor atomic absorption spectrometry is not considered here. The current state-of-the-art, including extension, advantages and limitations of this approach is discussed.

  2. Ultrathin atomic vapor film transmission spectroscopy: analysis of Dicke narrowing structure

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Li; Yanpeng Zhang; Chenli Gan

    2005-01-01

    Transmission sub-Doppler spectroscopy with confined atomic vapor film between two dielectric walls is theoretically studied. Because of atoms flying from wall to wall, where they get de-excited, the atomfield interaction time is anisotropic so that the contribution of slow atoms is enhanced, a sub-Doppler transmission spectroscopy (Dicke narrowing effect) can be obtained when the thickness of the film is much small or comparable with the wavelength even at small angle oblique incidence. It is feasible to get a sub-Doppler structure in a new region (L <λ/4) in experiments.

  3. Laser-Ranging Long Baseline Differential Atom Interferometers for Space

    CERN Document Server

    Chiow, Sheng-wey; Yu, Nan

    2015-01-01

    High sensitivity differential atom interferometers are promising for precision measurements in science frontiers in space, including gravity field mapping for Earth science studies and gravitational wave detection. We propose a new configuration of twin atom interferometers connected by a laser ranging interferometer (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and a means to phase-lock the two independent interferometer lasers over long distances, thereby further enhancing the feasibility of long baseline differential atom interferometers. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential atom interferometer measurement system. LRI-AI isolates the laser requirements for atom interferometers and for optical phase readout between distant locations, thus enabling optimized allocation of available laser power within a limited physical size and resource budget. A unique aspect of LRI-AI also enables...

  4. Narrow linewidth single laser source system for onboard atom interferometry

    Science.gov (United States)

    Theron, Fabien; Carraz, Olivier; Renon, Geoffrey; Zahzam, Nassim; Bidel, Yannick; Cadoret, Malo; Bresson, Alexandre

    2015-01-01

    A compact and robust laser system for atom interferometry based on a frequency-doubled telecom laser is presented. Thanks to the original stabilization architecture on a saturated absorption setup, we obtain a frequency agile laser system allowing fast tuning of the laser frequency over 1 GHz in few ms using a single laser source. The different laser frequencies used for atom interferometry are generated by changing dynamically the frequency of the laser and by creating sidebands using a phase modulator. A laser system for Rubidium 87 atom interferometry using only one laser source based on a frequency-doubled telecom fiber bench is then built. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components (which are intrinsically less stable) and to make the setup compact and much less sensitive to vibrations and thermal fluctuations. This source provides spectral linewidth below 2.5 kHz, which is required for precision atom interferometry and particularly for a high performance atomic inertial sensor.

  5. Cascade correlation-enhanced Raman scattering in atomic vapors

    Science.gov (United States)

    Ma, Hong-Mei; Chen, Li-Qing; Yuan, Chun-Hua

    2016-12-01

    A new Raman process can be used to realize efficient Raman frequency conversion by coherent feedback at low light intensity [Chen B, Zhang K, Bian C L, Qiu C, Yuan C H, Chen L Q, Ou Z Y, and Zhang W P 2013 Opt. Express 21, 10490]. We present a theoretical model to describe this enhanced Raman process, termed as cascade correlation-enhanced Raman scattering, which is a Raman process injected by a seeded light field. It is correlated with the initially prepared atomic spin excitation and driven by the quasi-standing-wave pump fields, and the processes are repeated until the Stokes intensities are saturated. Such an enhanced Raman scattering may find applications in quantum information, nonlinear optics, and optical metrology due to its simplicity. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474095, 11274118, and 91536114).

  6. Fiber laser system for cesium and rubidium atom interferometry

    CERN Document Server

    Diboune, Clément; Bidel, Yannick; Cadoret, Malo; Bresson, Alexandre

    2016-01-01

    We present an innovative fiber laser system for both cesium and rubidium manipulation. The architecture is based on frequency conversion of two lasers at 1560 nm and 1878 nm. By taking advantage of existing fiber components at these wavelengths, we demonstrate an all fiber laser system delivering 350 mW at 780 nm for rubidium and 210 mW at 852 nm for cesium. This result highlights the promising nature of such laser system especially for Cs manipulation for which no fiber laser system has been reported. It offers new perspectives for the development of atomic instruments dedicated to onboard applications and opens the way to a new generation of atom interferometers involving three atomic species $^{85}$Rb, $^{87}$Rb and $^{133}$Cs for which we propose an original laser architecture.

  7. Cooling of rubidium atoms in pulsed diffuse laser light

    Institute of Scientific and Technical Information of China (English)

    Cheng Hua-Dong; Wang Xu-Cheng; Xiao Ling; Zhang Wen-Zhuo; Liu Liang; Wang Yu-Zhu

    2011-01-01

    This paper reports an experiment on laser cooling of 87Rb atoms in pulsed diffuse light, which is the key step towards a compact cold atom clock. It deduces an empirical formula to simulate the pulse cooling process based on the loading of cold atoms in cooling time and the loss in the dead time, which is in agreement with the experimental data. The formula gives a reference to select the parameters for the cold atom clock.

  8. Redistribution of light frequency by multiple scattering in a resonant atomic vapor

    CERN Document Server

    Carvalho, J C de A; Oriá, M; Chevrollier, M; de Silans, T Passerat

    2015-01-01

    The propagation of light in a resonant atomic vapor can \\textit{a priori} be thought of as a multiple scattering process, in which each scattering event redistributes both the direction and the frequency of the photons. Particularly, the frequency redistribution may result in L\\'evy flights of photons, directly affecting the transport properties of light in a resonant atomic vapor and turning this propagation into a superdifusion process. Here, we report on a Monte-Carlo simulation developed to study the evolution of the spectrum of the light in a resonant thermal vapor. We observe the gradual change of the spectrum and its convergence towards a regime of Complete Frequency Redistribution as the number of scattering events increases. We also analyse the probability density function of the step length of photons between emissions and reabsorptions in the vapor, which governs the statistics of the light diffusion. We observe two different regime in the light transport: superdiffusive when the vapor is excited n...

  9. Light scattering studies of solids and atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, T.C.

    1978-09-01

    The general technique of light scattering and luminescence was used to study the properties of a number of material systems. First, multi-phonon resonant Raman scattering up to four phonons in GaSe and one- and two-phonon resonant Raman scattering in the mixed GaS/sub x/Se/sub 1-x/ crystals with x < or = 0.23 were investigated. Second, the observation of one-phonon resonant Raman scattering in HfS/sub 2/ is reported. The result is used to determine the position of the direct gap of HfS/sub 2/. Third, the first observation of the ..pi..-polarized one-magnon luminescence sideband of the /sup 4/T/sub lg/ (/sup 4/G) ..-->.. /sup 6/A/sub lg/(/sup 6/S) excitonic transition in antiferromagnetic MnF/sub 2/ is presented. An effective temperature of the crystal is deduced from the simultaneously observed anti-Stokes sideband emission. Multi-magnon (< or = 7) excitonic luminescence sidebands were also observed in MnF/sub 2/, KMnF/sub 2/, and RbMnF/sub 3/ using pulsed excitation and detection. A simple model based on two-ion local exchange is proposed to explain the results qualitatively. Fourth, the first observation of two-magnon resonant Raman scattering in MnF/sub 2/ around the magnon sidebands is reported. A simple theoretical description explains the experimental observations. Fifth, a detailed theory of exciton-exciton interaction in MnF/sub 2/ is developed to explain and to predict the experimental results on two-exciton absorption, high level excitation, and exciton--exciton scattering. Sixth, Brillouin scattering was used to obtain the five independent elastic constants of the layered compound GaSe. The results show clear elastic anisotropy of the crystal. Resonant Brillouin scattering near the absorption edge was also studied, but no resonant enhancement was found. Seventh, two-photon parametric scattering in sodium vapor was studied. Phase matching angles and scattering cross sections are calculated for a given set of experimental conditions.

  10. Electron-atom scattering in a circularly polarized laser field

    CERN Document Server

    Cionga, Aurelia; Zloh, Gabriela; 10.1103/PhysRevA.61.063417

    2013-01-01

    We consider electron-atom scattering in a circularly polarized laser field at sufficiently high electron energies, permitting to describe the scattering process by the first order Born approximation. Assuming the radiation field has sufficiently moderate intensities, the laser-dressing of the hydrogen target atom in its ground state will be treated in second order perturbation theory. Within this approximation scheme, it is shown that the nonlinear differential cross sections of free-free transitions do neither depend on the {\\it dynamical phase} $\\phi$ of the radiative process nor on the {\\it helicity} of the circularly polarized laser light. Relations to the corresponding results for linear laser polarization are established.

  11. Development of narrowband lasers for spectroscopy of antiprotonic atoms

    Directory of Open Access Journals (Sweden)

    Hori M.

    2014-03-01

    Full Text Available We review some lasers developed by the ASACUSA collaboration of CERN, to carry out spectroscopy of antiprotonic helium atoms. These lasers were based on the technique of continuous-wave injection seeding of pulsed lasers. The laser output covered the wavelength regions 264–1154 nm, with peak powers of ~ 1 MW and spectral resolutions of 6–40 MHz. The devices were recently used to measure the transition frequencies of antiprotonic helium atoms to a fractional precision of several parts in ~ 109.

  12. Temporal intensity correlation of light scattered by a hot atomic vapor

    CERN Document Server

    Dussaux, A; Guerin, W; Alibart, O; Tanzilli, S; Vakili, F; Kaiser, R

    2016-01-01

    We present temporal intensity correlation measurements of light scattered by a hot atomic vapor. Clear evidence of photon bunching is shown at very short time-scales (ns) imposed by the Doppler broadening of the hot vapor. Moreover, we demonstrate that some relevant information about the scattering process, such as the ratio of single to multiple scattering, can be deduced from the measured intensity correlation function. These measurements confirm the interest of temporal intensity correlation measurements to access non-trivial spectral features, with potential applications in astrophysics.

  13. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  14. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    Science.gov (United States)

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  15. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    Science.gov (United States)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  16. Laser Source for Atomic Gravity Wave Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an Atom Interferometry-based gravity wave detector (vs Optical Interferometry). Characterize a high power laser. Use Goddard Space Flight Center Mission...

  17. Comparison of the treatment of vascular lesions with the copper-vapor laser and flashlamp-pumped dye laser

    Science.gov (United States)

    Flock, Stephen T.; Waner, Milton; McGrew, Ben; Colvin, G. B.; Montague, Donna

    1992-08-01

    Vascular lesions such as port-wine stains and telangiectases are sometimes treated with carbon-dioxide lasers, argon lasers or argon-pumped dye lasers; however these lasers are non- specific in their thermal effect on tissues and as a result often cause significant scarring. Recently, evidence has accumulated that the flashlamp-pumped dye (585 nm) and copper- vapor (578 nm) lasers, which produce pulsed light that is efficiently absorbed by hemoglobin, are more selective in coagulating abnormal vascular tissue and as a result give a superior clinical result. It is not yet clear what the most important physical and biological mechanisms are during the light-tissue interaction mediated by these two lasers. The post-treatment sequence of events is different for tissue irradiated by each laser; most significantly, the flashlamp-pumped dye laser causes significant transient purpura, whereas the copper vapor laser causes blanching and eschar formation. The clinical outcome, that is regression of the lesion, is equally successful with either laser although some evidence has accumulated showing that the flashlamp-pumped dye laser is best suited to the treatment of small vessel disease while the copper-vapor laser is better for the treatment of large vessel disease. In this paper, we will discuss our observations of the treatment of vascular lesions on humans with the copper-vapor and flashlamp-pumped dye lasers using empirically derived efficacious treatment parameters. Mathematical models of light and heat propagation and in vivo experiments involving mice ears and rat skin flaps will be used to elucidate what we feel are the important underlying mechanisms of this vascular lesion laser therapy.

  18. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  19. Energy balance between vaporization and heating in the absorption of CO2 laser radiation by water

    Science.gov (United States)

    Mueller, Robert E.; Yam, Henry; Duley, Walter W.

    1997-03-01

    The use of lasers in industrial and medical procedures continues to increase. A fundamental question in many laser- material interactions is how is the incident laser power transferred to the target material, and how is the power distributed among the phases (solid, liquid, vapor) of the material. This paper describes the results of a fundamental calorimetry experiment to determine the fraction of incident carbon-dioxide laser energy which is used to vaporize water from a target volume, and the fraction of power used to simply heat the remaining liquid. The experiment was performed over a range of incident laser powers from 60 to 300 W. Over most of the range of incident power, the fraction used to vaporize water is 30 to 35 percent. This fraction increases at the lowest powers.

  20. Theoretical tools for atom-laser-beam propagation

    OpenAIRE

    Riou, Jean-Félix; Le Coq, Yann; Impens, François; Guerin, William; Bordé, Christian,; Aspect, Alain; Bouyer, Philippe

    2008-01-01

    We present a theoretical model for the propagation of non self-interacting atom laser beams. We start from a general propagation integral equation, and we use the same approximations as in photon optics to derive tools to calculate the atom laser beam propagation. We discuss the approximations that allow to reduce the general equation whether to a Fresnel-Kirchhoff integral calculated by using the stationary phase method, or to the eikonal. Within the paraxial approximation, we also introduce...

  1. Polarization squeezing of light by single passage through an atomic vapor

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, S.; Valente, P.; Failache, H.; Lezama, A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, J. Herrera y Reissig 565, 11300 Montevideo (Uruguay)

    2011-09-15

    We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant {sup 87}Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous-variable quantum protocols was observed. The extreme simplicity of the setup, which is based on standard polarization components, makes it particularly convenient for quantum information applications.

  2. Electron Scattering by Ar Atoms in a Laser Field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sheng-Hai; QIAN Xing-Zhong; JIANG Yu-Hai; SUN Jin-Feng

    2000-01-01

    The differentialcross sections of electron-Ar atom scattering for free-free transition with one and two photons absorption in the presence of CO2 laser field is obtained by the second Born approximation, the direction of laser polarization being perpendicular to the change of electron momentum. Compared with the more recent available experimental data, the present results are very good.

  3. Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor

    CERN Document Server

    Jones, D E; Pittman, T B

    2015-01-01

    We demonstrate ladder-type electromagnetically induced transparency (EIT) using an optical nanofiber suspended in a warm rubidium vapor. The signal and control fields are both guided along the nanofiber, which enables strong nonlinear interactions with the surrounding atoms at relatively low powers. Transit-time broadening is found to be a significant EIT decoherence mechanism in this tightly-confined waveguiding geometry. Nonetheless, we observe significant EIT and controlled polarization rotation using control-field powers of only a few microWatts in this relatively robust warm-atom nanofiber system.

  4. Relative-intensity squeezing at audio frequencies using four-wave mixing in an atomic vapor

    CERN Document Server

    McCormick, C F; Lett, P D; Marino, A M

    2007-01-01

    We demonstrate the use of four-wave mixing in hot atomic vapor to generate up to -7.1 dB of measured relative-intensity squeezing. Due to its intrinsic simplicity, our system is strongly decoupled from environmental noise, and we observe more than -4 dB of squeezing down to frequencies as low as 5 kHz. This robust source of narrowband squeezed light may be useful for a variety of applications, such as coupling to atomic ensembles and enhancing the sensitivity of photothermal spectroscopy.

  5. Eigenmode description of Raman scattering in atomic vapors in the presence of decoherence

    OpenAIRE

    Kolodynski, Jan; Chwedenczuk, Jan; Wasilewski, Wojciech

    2012-01-01

    A theoretical model describing the Raman scattering process in atomic vapors is constructed. The treatment investigates the low-excitation regime suitable for modern experimental applications. Despite the incorporated decoherence effects (possibly mode dependent) it allows for a direct separation of the time evolution from the spatial degrees of freedom. The impact of noise on the temporal properties of the process is examined. The model is applied in two experimentally relevant situations of...

  6. Laser-induced collisional autoionization in europium and strontium atoms.

    Science.gov (United States)

    Buffa, R

    1995-01-15

    An experiment that involves laser-induced collisional autoionization in europium and strontium atoms is proposed and the spectral line shape of the cross section is calculated on the basis of data available in the literature. The feasibility of the experiment both in oven cells and in a crossed-atomic-beam geometry is discussed.

  7. Laser-Free Cold-Atom Gymnastics

    Science.gov (United States)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  8. A Laser Stabilization System for Rydberg Atom Physics

    Science.gov (United States)

    2015-09-06

    A Laser Stabilization System for Rydberg Atom Physics We purchased 2 dual wavelength ultrastable ultralow expansion glass cavities along with optics...term locking could be achieved for 2 photon Rydberg atom excitation. Both systems were offset locked using a high bandwidth resonant electro-optic...Rydberg Atom Physics Report Title We purchased 2 dual wavelength ultrastable ultralow expansion glass cavities along with optics and electronics to

  9. Laser cooling atoms to indistinguishability: Atomic Hong-Ou-Mandel interference and entanglement through spin exchange

    Science.gov (United States)

    Kaufman, Adam

    2016-05-01

    Motional control of neutral atoms has a rich history and increasingly interest has turned to single-atom control. In my thesis work, we created a platform to individually prepare single bosonic atoms in highly pure quantum states, by developing methods to laser cool single atoms to the vibrational ground state of optical tweezer traps. Applying this toolset, we observe the atomic Hong-Ou-Mandel effect when we arrange for atom tunneling to play the role of a balanced beam splitter between two optical tweezers. In another experiment, we utilize spin exchange to create entanglement, which we then verify after spatially separating the atoms to observe their non-local correlations. Merging these results with our recent demonstration of deterministic loading of atomic arrays, our results establish the concept of quantum gas assembly, which could be applied to a variety of systems ranging from the production of single dipolar molecules to the assembly of low-entropy arrays of atoms.

  10. Method for laser spectroscopy of metastable pionic helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M., E-mail: Masaki.Hori@mpq.mpg.de; Sótér, A.; Aghai-Khozani, H. [Max-Planck-Institut für Quantenoptik (Germany); Barna, D. [CERN (Switzerland); Dax, A. [Paul Scherrer Institut (Switzerland); Hayano, R. S.; Murakami, Y.; Yamada, H. [University of Tokyo, Department of Physics (Japan)

    2015-08-15

    The PiHe collaboration is currently attempting to carry out laser spectroscopy of metastable pionic helium atoms using the high-intensity π{sup −} beam of the ring cyclotron facility of the Paul Scherrer Institute. These atoms are heretofore hypothetical three-body Coulomb systems each composed of a helium nucleus, a π{sup −} occupying a Rydberg state, and an electron occupying the 1s ground state. We briefly review the proposed method by which we intend to detect the laser spectroscopic signal. This complements our experiments on metastable antiprotonic helium atoms at CERN.

  11. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  12. Enhanced light-vapor interactions and all optical switching in a chip scale micro-ring resonator coupled with atomic vapor

    CERN Document Server

    Stern, Liron; Mazurski, Noa; Levy, Uriel

    2016-01-01

    The coupling of atomic and photonic resonances serves as an important tool for enhancing light-matter interactions and enables the observation of multitude of fascinating and fundamental phenomena. Here, by exploiting the platform of atomic-cladding wave guides, we experimentally demonstrate the resonant coupling of rubidium vapor and an atomic cladding micro ring resonator. Specifically, we observed cavity-atom coupling in the form of Fano resonances having a distinct dependency on the relative frequency detuning between the photonic and the atomic resonances. Moreover, we were able to significantly enhance the efficiency of all optical switching in the V-type pump-probe scheme. The coupled system of micro-ring resonator and atomic vapor is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, high degree of integration and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, disp...

  13. Atom lasers: Production, properties and prospects for precision inertial measurement

    Energy Technology Data Exchange (ETDEWEB)

    Robins, N.P., E-mail: nick.robins@anu.edu.au; Altin, P.A.; Debs, J.E.; Close, J.D.

    2013-08-20

    We review experimental progress on atom lasers out-coupled from Bose–Einstein condensates, and consider the properties of such beams in the context of precision inertial sensing. The atom laser is the matter-wave analogue of the optical laser. Both devices rely on Bose-enhanced scattering to produce a macroscopically populated trapped mode that is output-coupled to produce an intense beam. In both cases, the beams often display highly desirable properties such as low divergence, high spectral flux and a simple spatial mode that make them useful in practical applications, as well as the potential to perform measurements at or below the quantum projection noise limit. Both devices display similar second-order correlations that differ from thermal sources. Because of these properties, atom lasers are a promising source for application to precision inertial measurements.

  14. Laser Assisted Free-Free Transition in Electron - Atom Collision

    Science.gov (United States)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  15. Nucleation and ultrafast vaporization dynamics of laser-activated polymeric microcapsules

    Science.gov (United States)

    Lajoinie, Guilaume; Gelderblom, Erik; Chlon, Ceciel; Boehmer, Marcel; Steenbergen, Wiendelt; de Jong, Nico; Manohar, Srirang; Versluis, Michel

    2014-11-01

    Precision control of vaporization, both in space and time, has many potential applications; however, the physical mechanisms underlying controlled boiling are not well understood. The reason is the combined microscopic length scales and ultra-short timescales associated with the initiation and subsequent dynamical behavior of the vapor bubbles formed. Here we study the nanoseconds vapor bubble dynamics of laser-heated single oil-filled microcapsules using coupled optical and acoustic detection. Pulsed laser excitation leads to vapor formation and collapse, and a simple physical model captures the observed radial dynamics and resulting acoustic pressures. Continuous wave laser excitation leads to a sequence of vaporization and condensation cycles, the result of absorbing microcapsule fragments moving in and out of the laser beam. A model incorporating thermal diffusion from the capsule shell into the oil core and surrounding water reveals the mechanisms behind the onset of vaporization. Excellent agreement is observed between the modeled dynamics and experiment. This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners.

  16. Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors

    Science.gov (United States)

    Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong

    2016-10-01

    We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.

  17. Eigenmode description of Raman scattering in atomic vapors in the presence of decoherence

    CERN Document Server

    Chwedenczuk, Jan; Wasilewski, Wojciech

    2012-01-01

    A theoretical model describing the Raman scattering process in atomic vapors is constructed. Despite the incorporated decoherence effects, it allows for a direct separation of system's time evolution from its spatial degrees of freedom. The impact of noise on the temporal properties of the system is investigated. In particular, it is shown that even in the presence of decoherence, the estimation of the number of spin waves created in the process can reach sensitivity below the projection noise limit. The model is then applied in two experimentally relevant situations of ultra-cold and room-temperature atoms. In both cases, the spatial eigenmodes of the Stokes photon and atomic excitation fields and their coupling parameters are computed.

  18. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joulaei, A. [Max-Planck Institute for Physics, Munich (Germany); University of Mazandaran (Iran, Islamic Republic of); Moody, J. [Max-Planck Institute for Physics, Munich (Germany); Berti, N.; Kasparian, J. [University of Geneva (Switzerland); Mirzanejhad, S. [University of Mazandaran (Iran, Islamic Republic of); Muggli, P. [Max-Planck Institute for Physics, Munich (Germany)

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment. - Highlights: • Discussion the AWAKE plasma source based on photoionization of rubidium vapor with a TW/cm^2 Intensity laser with a spectrum across valence ground state transition resonances. • Examines the propagation of the AWAKE ionization laser through rubidium vapor at design density on a small scale and reduced intensity with a linear numerical model compared to experimental results. • Discusses physics of pulse propagation through the vapor at high intensity regime where strong ionization occurs within the laser pulse.

  19. Simulation of Chromium Atom Deposition Pattern in a Gaussain Laser Standing Wave with Different Laser Power

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; ZHU Bao-Hua

    2009-01-01

    One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing-laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral chromium atoms in a laser standing wave with different laser power is discussed and the simulation result shows that the full width at half maximum (FWHM) of a nanometer stripe is 115nm and the contrast is 2.5:1 with laser power 3.93mW; the FWHM is 0.Snm and the contrast is 27:1 with laser power 16mW, the optimal laser power; but with laser power increasing to 50mW, the nanometer structure forms multi-crests and the quality worsens quickly with increasing laser power.

  20. Quantum Dynamical Theory for Squeezed Atom Laser

    Institute of Scientific and Technical Information of China (English)

    JING Hui; HAN Yi-Ang; CHEN Jing-Ling; MIAO Yuan-Xiu

    2000-01-01

    A model for the squeezed output coupler of the trapped Bose-Einstein condensed atoms is established with a simple many-boson system of two states with linear coupling, by preparing an initially squeezed light field. In the Bogoliubov approximation, its solutions show that the quadrature squeezing effect mutually oscillates between the coupling light field and the output atomic field. This manifests that the initially squeezed light will transform into a coherent state after some period of coupling interaction while the output atomic field is in a squeezed state.

  1. Studies of Laser Selective Excitation of Atoms,

    Science.gov (United States)

    1979-12-01

    G. A., Ganeev, A. A., 1975. Opt. Spectros. 39, 444. Sterlinski , S ., 1967. Nucl. Instr. & Meth. 47, 329. Tam, A. C., Happer, W., 1977. Opt. Commun. 21...the apparatus. Special thanks are due to Mr. H. S . Kwong for the many stimulating discussions and for his help in the early experiments. The...4 _ _ S . . V Abstract Sample preparation through laser ablation of a solid target under vacuum has been combined with short-pulsed laser selective

  2. Laser-induced atomic adsorption: a mechanism for nanofilm formation

    CERN Document Server

    Martins, Weliton S; Oriá, Marcos; Chevrollier, Martine

    2013-01-01

    We demonstrate and interpret a technique of laser-induced formation of thin metallic films using alkali atoms on the window of a dense-vapour cell. We show that this intriguing photo-stimulated process originates from the adsorption of Cs atoms via the neutralisation of Cs$^+$ ions by substrate electrons. The Cs$^+$ ions are produced via two-photon absorption by excited Cs atoms very close to the surface, which enables the transfer of the laser spatial intensity profile to the film thickness. An initial decrease of the surface work function is required to guarantee Cs$^+$ neutralisation and results in a threshold in the vapour density. This understanding of the film growth mechanism may facilitate the development of new techniques of laser-controlled lithography, starting from thermal vapours.

  3. CW fountain of laser-cooled Yb atoms

    CERN Document Server

    Rathod, K D; Natarajan, Vasant

    2013-01-01

    We demonstrate launching of laser-cooled Yb atoms in a continuous atomic fountain. The continuous fountain has significant advantages over the more common pulsed fountain, which was also demonstrated by us recently. The fountain is formed in the following steps---(i) Atoms from a thermal beam are first Zeeman slowed to a small final velocity, (ii) the slowed atoms are captured in a two-dimensional magneto-optic trap (2D-MOT), and (iii) atoms are launched {\\em continuously} in the vertical direction using two sets of moving-molasses beams, inclined at $\\pm 15^\\circ$ to the vertical. The cooling transition used is the strongly-allowed ${^1S}_0 \\rightarrow {^1P}_1$ transition at 399 nm. We capture about $7 \\times 10^6$ atoms in the 2D-MOT, and then launch them with a vertical velocity of 13 m/s at a longitudinal temperature of 125(6) mK.

  4. Development of Field-deployable Diode-laser-based Water Vapor Dial

    Directory of Open Access Journals (Sweden)

    Le Hoai Phong Pham

    2016-01-01

    Full Text Available In this paper, a field-deployable diode-laser-based differential absorption lidar (DIAL has been developed for lower-tropospheric water vapor observation in Tokyo, Japan. A photoacoustic cell is used for spectroscopy experiment around absorption peaks of 829.022 nm and 829.054 nm. The water vapor density extracted from the observational data agrees with the referenced radiosonde data. Furthermore, we applied modulated pulse technique for DIAL transmitter. It enables DIAL to measure water vapor profile for both low and high altitude regions.

  5. Dual-wavelength laser source for onboard atom interferometry

    CERN Document Server

    Ménoret, Vincent; Stern, Guillaume; Zahzam, Nassim; Battelier, Baptiste; Bresson, Alexandre; Landragin, Arnaud; Bouyer, Philippe

    2011-01-01

    We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto optical trap in microgravity during parabolic flights.

  6. Dual-wavelength laser source for onboard atom interferometry.

    Science.gov (United States)

    Ménoret, V; Geiger, R; Stern, G; Zahzam, N; Battelier, B; Bresson, A; Landragin, A; Bouyer, P

    2011-11-01

    We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components, which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto-optical trap in microgravity during parabolic flights.

  7. Laser sources for precision spectroscopy on atomic strontium.

    Science.gov (United States)

    Poli, N; Ferrari, G; Prevedelli, M; Sorrentino, F; Drullinger, R E; Tino, G M

    2006-04-01

    We present a new laser setup designed for high-precision spectroscopy on laser cooled atomic strontium. The system, which is entirely based on semiconductor laser sources, delivers 200 mW at 461 nm for cooling and trapping atomic strontium from a thermal source, 4 mW at 497 nm for optical pumping from the metastable P23 state, 12 mW at 689 nm on linewidth less than 1 kHz for second-stage cooling of the atomic sample down to the recoil limit, 1.2 W at 922 nm for optical trapping close to the "magic wavelength" for the 0-1 intercombination line at 689 nm. The 689 nm laser was already employed to perform a frequency measurement of the 0-1 intercombination line with a relative accuracy of 2.3 x 10(-11), and the ensemble of laser sources allowed the loading in a conservative dipole trap of multi-isotopes strontium mixtures. The simple and compact setup developed represents one of the first steps towards the realization of a transportable optical standards referenced to atomic strontium.

  8. Ion microscopy based on laser-cooled cesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Viteau, M.; Reveillard, M.; Kime, L.; Rasser, B.; Sudraud, P. [Orsay Physics, TESCAN Orsay, 95 Avenue des Monts Auréliens – ZA Saint-Charles – 13710 Fuveau (France); Bruneau, Y.; Khalili, G.; Pillet, P.; Comparat, D. [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Bât. 505, 91405 Orsay (France); Guerri, I. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Fioretti, A., E-mail: andrea.fioretti@ino.it [Istituto Nazionale di Ottica, INO-CNR, U.O.S. ”Adriano Gozzini”, via Moruzzi 1, 56124 Pisa (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, CNISM, Sezione di Pisa, 56127 Pisa (Italy); Ciampini, D.; Allegrini, M.; Fuso, F. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Istituto Nazionale di Ottica, INO-CNR, U.O.S. ”Adriano Gozzini”, via Moruzzi 1, 56124 Pisa (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, CNISM, Sezione di Pisa, 56127 Pisa (Italy)

    2016-05-15

    We demonstrate a prototype of a Focused Ion Beam machine based on the ionization of a laser-cooled cesium beam and adapted for imaging and modifying different surfaces in the few-tens nanometer range. Efficient atomic ionization is obtained by laser promoting ground-state atoms into a target excited Rydberg state, then field-ionizing them in an electric field gradient. The method allows obtaining ion currents up to 130 pA. Comparison with the standard direct photo-ionization of the atomic beam shows, in our conditions, a 40-times larger ion yield. Preliminary imaging results at ion energies in the 1–5 keV range are obtained with a resolution around 40 nm, in the present version of the prototype. Our ion beam is expected to be extremely monochromatic, with an energy spread of the order of the eV, offering great prospects for lithography, imaging and surface analysis. - Highlights: • We realize a Focused Ion Beam with an ionic source based on laser cooled cesium atoms. • Ionization involves excitation of the laser cooled atoms to Rydberg states. • We use the cesium FIB system to image different materials. • We use the cesium FIB to produce permanent modifications on surfaces. • In the present configuration, the focused probe size of the cesium FIB prototype is about 300 nm for beam energies in the 2–5 keV range.

  9. Amplified light storage with high fidelity based on electromagnetically induced transparency in rubidium atomic vapor

    Science.gov (United States)

    Zhou, Wei; Wang, Gang; Tang, Guoyu; Xue, Yan

    2016-06-01

    By using slow and stored light based on electromagnetically induced transparency (EIT), we theoretically realize the storage of optical pulses with enhanced efficiency and high fidelity in ensembles of warm atoms in 85Rb vapor cells. The enhancement of storage efficiency is achieved by introducing a pump field beyond three-level configuration to form a N-type scheme, which simultaneously inhibits the undesirable four-wave mixing effect while preserves its fidelity. It is shown that the typical storage efficiency can be improved from 29% to 53% with the application of pump field. Furthermore, we demonstrate that this efficiency decreases with storage time and increases over unity with optical depth.

  10. Synthesis of magnetic tunnel junctions with full in situ atomic layer and chemical vapor deposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Vangelista, S.; Kutrzeba-Kotowska, B.; Cocco, S.; Lamperti, A.; Tallarida, G. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mameli, D. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienze Chimiche, Universita di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli studi Milano-Bicocca, Via R Cozzi 53, 20125 Milano (Italy)

    2012-05-01

    Magnetic tunnel junctions, i.e. the combination of two ferromagnetic electrodes separated by an ultrathin tunnel oxide barrier, are core elements in a large variety of spin-based devices. We report on the use of combined chemical vapor and atomic layer deposition processes for the synthesis of magnetic tunnel junctions with no vacuum break. Structural, chemical and morphological characterizations of selected ferromagnetic and oxide layers are reported, together with the evidence of tunnel magnetoresistance effect in patterned Fe/MgO/Co junctions.

  11. Iodine Determination by Microwave Plasma Torch Atomic Emission Spectrometer Coupled with Online Preconcentration Vapor Generation Technique

    Institute of Scientific and Technical Information of China (English)

    FEI Yan-qun; LUO Gui-min; FENG Guo-dong; CHEN Huan-wen; FEI Qiang; HUAN Yan-fu; JIN Qin-han

    2008-01-01

    This article focuses on iodine determination by microwave plasma torch atomic emission spectrometry (MPT-AES) coupled with online preconcentration vapor generation method.A new desolvation device,multistrand Nation dryer,was used as the substitute for condenser desolvation system.Some experimental conditions,such as preconcentration time,acidity of sample solution,rinsing solution acidity and dynamic linear range were investigated and optimized.The new desolvation system eliminates the problem of decreasing emission intensity of I(I) 206.238 nm line with the increase of working time on a conventional condenser desolvation system,thus greatly improving the reproducibility.

  12. Modulation of the photonic band structure topology of a honeycomb lattice in an atomic vapor

    CERN Document Server

    Zhang, Yiqi; Belić, Milivoj R; Wu, Zhenkun; Zhang, Yanpeng

    2015-01-01

    In an atomic vapor, a honeycomb lattice can be constructed by utilizing the three-beam interference method. In the method, the interference of the three beams splits the dressed energy level periodically, forming a periodic refractive index modulation with the honeycomb profile. The energy band topology of the honeycomb lattice can be modulated by frequency detunings, thereby affecting the appearance (and disappearance) of Dirac points and cones in the momentum space. This effect can be usefully exploited for the generation and manipulation of topological insulators.

  13. Extracting Atoms on Demand with Lasers

    CERN Document Server

    Mohring, B; Haug, F; Morigi, G; Schleich, W P; Raizen, M G; Mohring, Bernd; Bienert, Marc; Haug, Florian; Morigi, Giovanna; Schleich, Wolfgang P.; Raizen, Mark G.

    2004-01-01

    We propose a scheme that allows to coherently extract cold atoms from a reservoir in a deterministic way. The transfer is achieved by means of radiation pulses coupling two atomic states which are object to different trapping conditions. A particular realization is proposed, where one state has zero magnetic moment and is confined by a dipole trap, whereas the other state with non-vanishing magnetic moment is confined by a steep microtrap potential. We show that in this setup a predetermined number of atoms can be transferred from a reservoir, a Bose-Einstein condensate, into the collective quantum state of the steep trap with high efficiency in the parameter regime of present experiments.

  14. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    Science.gov (United States)

    Joulaei, A.; Moody, J.; Berti, N.; Kasparian, J.; Mirzanejhad, S.; Muggli, P.

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment.

  15. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    CERN Document Server

    Joulaei, Atefeh; Berti, Nicolas; Kasparian, Jerome; Mirzanejhad, Saeed; Muggli, Patric

    2016-01-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment.

  16. Programmable Control of the Pulse Repetition Rate in the Multiwave Strontium Vapor Laser System

    Directory of Open Access Journals (Sweden)

    Soldatov Anatoly

    2016-01-01

    Full Text Available The aim of the present work was the development of laser systems for ablation of biological tissues with a programmable control over the lasing pulse repetition rate in a wide range. A two-stage laser system consisting of a master oscillator and a power amplifier based on strontium vapor laser has been developed. The operation of the laser system in a single-pulse mode operation, multipulse mode operation, and with a pulse repetition rate up to 20 kHz has been technically implemented. The possibility of a bone tissue ablation with no visible thermal damage is shown.

  17. LASER-INDUCED DECOMPOSITION OF METAL CARBONYLS FOR CHEMICAL VAPOR DEPOSITION OF MICROSTRUCTURES

    OpenAIRE

    1989-01-01

    Tungsten and nickel carbonyls were used to produce metal microstructures by laser-induced chemical vapor deposition (CVD) on various substrates. The deposition rate of microstructures produced by thermodecomposition of W(CO)6 on Si substrates heated with a cw Ar+ laser beam was relatively low (10 to 30 nm/s) even at high temperatures (above 900°C). Ni microstructures were deposited on quartz substrates irradiated with a CO2 laser beam. Relatively high laser powers were needed to heat the Ni s...

  18. Preparation of nanowire specimens for laser-assisted atom probe tomography.

    Science.gov (United States)

    Blumtritt, H; Isheim, D; Senz, S; Seidman, D N; Moutanabbir, O

    2014-10-31

    The availability of reliable and well-engineered commercial instruments and data analysis software has led to development in recent years of robust and ergonomic atom-probe tomographs. Indeed, atom-probe tomography (APT) is now being applied to a broader range of materials classes that involve highly important scientific and technological problems in materials science and engineering. Dual-beam focused-ion beam microscopy and its application to the fabrication of APT microtip specimens have dramatically improved the ability to probe a variety of systems. However, the sample preparation is still challenging especially for emerging nanomaterials such as epitaxial nanowires which typically grow vertically on a substrate through metal-catalyzed vapor phase epitaxy. The size, morphology, density, and sensitivity to radiation damage are the most influential parameters in the preparation of nanowire specimens for APT. In this paper, we describe a step-by-step process methodology to allow a precisely controlled, damage-free transfer of individual, short silicon nanowires onto atom probe microposts. Starting with a dense array of tiny nanowires and using focused ion beam, we employed a sequence of protective layers and markers to identify the nanowire to be transferred and probed while protecting it against Ga ions during lift-off processing and tip sharpening. Based on this approach, high-quality three-dimensional atom-by-atom maps of single aluminum-catalyzed silicon nanowires are obtained using a highly focused ultraviolet laser-assisted local electrode atom probe tomograph.

  19. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DEFF Research Database (Denmark)

    Hsu, M.T.L.; Hetet, G.; Peng, A.

    2006-01-01

    show results of the characterization of PSR in isotopically enhanced rubidium-87 cells, performed in two independent laboratories. We observed that, contrary to earlier work, the presence of atomic noise in the thermal vapor overwhelms the observation of squeezing. We present a theory that contains......The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We...... atomic noise terms and show that a null result in squeezing is consistent with this theory....

  20. Frequency-Tunable Microwave Field Detection in an Atomic Vapor Cell

    CERN Document Server

    Horsley, Andrew

    2016-01-01

    We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the sigma+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high resolution microwave imaging system, this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.

  1. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2016-11-01

    Full Text Available Hexagonal boron nitrite (h-BN is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  2. Sub-natural $N$-type Resonance in Cesium Atomic Vapor: splitting in magnetic fields

    CERN Document Server

    Slavov, D; Sarkisyan, D; Mirzoyan, R; Krasteva, A; Wilson-Gordon, A D; Cartaleva, S

    2013-01-01

    The sub-natural-width $N$-type resonance in {\\Lambda}-system, on the $D_2$ line of Cs atoms is studied for the first time in the presence of a buffer gas (neon) and the radiations of two continuous narrow band diode lasers. $L$ = 1 cm long cell is used to investigate $N$-type process. The $N$-type resonance in a magnetic field for $^{133}$Cs atoms is shown to split into seven or eight components, depending on the magnetic field and laser radiation directions. The results obtained indicate that levels $F_g$ = 3, 4 are initial and final in the N resonance formation. The experimental results with magnetic field agree well with the theoretical curves.

  3. Atoms and molecules interacting with light atomic physics for the laser era

    CERN Document Server

    Straten, Peter van der

    2016-01-01

    This in-depth textbook with a focus on atom-light interactions prepares students for research in a fast-growing and dynamic field. Intended to accompany the laser-induced revolution in atomic physics, it is a comprehensive text for the emerging era in atomic, molecular and optical science. Utilising an intuitive and physical approach, the text describes two-level atom transitions, including appendices on Ramsey spectroscopy, adiabatic rapid passage and entanglement. With a unique focus on optical interactions, the authors present multi-level atomic transitions with dipole selection rules, and M1/E2 and multiphoton transitions. Conventional structure topics are discussed in some detail, beginning with the hydrogen atom and these are interspersed with material rarely found in textbooks such as intuitive descriptions of quantum defects. The final chapters examine modern applications and include many references to current research literature. The numerous exercises and multiple appendices throughout enable advanc...

  4. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Cleveland, Danielle; Stchur, Peter; Hou, Xiandeng; Yang, Karl X; Zhou, Jack; Michel, Robert G

    2005-12-01

    It has been shown that an increase in sensitivity and selectivity of detection of an analyte can be achieved by tuning the ablation laser wavelength to match that of a resonant gas-phase transition of that analyte. This has been termed resonant laser ablation (RLA). For a pulsed tunable nanosecond laser, the data presented here illustrate the resonant enhancement effect in pure copper and aluminum samples, chromium oxide thin films, and for trace molybdenum in stainless steel samples, and indicate two main characteristics of the RLA phenomenon. The first is that there is an increase in the number of atoms ablated from the surface. The second is that the bandwidth of the wavelength dependence of the ablation is on the order of 1 nm. The effect was found to be virtually identical whether the atoms were detected by use of a microwave-induced plasma with atomic emission detection, by an inductively coupled plasma with mass spectrometric detection, or by observation of the number of laser pulses required to penetrate through thin films. The data indicate that a distinct ablation laser wavelength dependence exists, probably initiated via resonant radiation trapping, and accompanied by collisional broadening. Desorption contributions through radiation trapping are substantiated by changes in crater morphology as a function of wavelength and by the relatively broad linewidth of the ablation laser wavelength scans, compared to gas-phase excitation spectra. Also, other experiments with thin films demonstrate the existence of a distinct laser-material interaction and suggest that a combination of desorption induced by electronic transition (DIET) with resonant radiation trapping could assist in the enhancement of desorption yields. These results were obtained by a detailed inspection of the effect of the wavelength of the ablation laser over a narrow range of energy densities that lie between the threshold of laser-induced desorption of species and the usual analytical

  5. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    Science.gov (United States)

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  6. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  7. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  8. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  9. Strong-Field Ionization of Laser Cooled Li Atoms

    Science.gov (United States)

    Sharma, Sachin; Romans, Kevin; Fischer, Daniel

    2016-05-01

    Recently, our understanding of few-body effects has been substantially boosted by the development of intense femto- and attosecond laser sources. Observing the momenta of the fragments of atoms and molecules ionized in these strong fields provided new and before inconceivable insights in molecular and electronic dynamics. Here, we report on a new experiment, where the target atoms (6 Li) are laser cooled and trapped using a magneto optical trap (MOT). Momentum vectors of the target fragments will be measured using a reaction microscope (ReMi). The exclusivity of this setup is a combination of MOT and ReMi, thus dubbed as MOTReMi. Here, the advantages over standard COLTRIMS systems are multifold: Firstly, an unprecedented recoil ion momentum resolution can be achieved, as the target can be prepared at significantly lower temperatures. Second, the atoms can be optically prepared in the ground or in polarized excited states. In a first experimental campaign, studies on single ionization of laser excited and polarized Lithium atoms will be performed with circularly polarized light. This experiment can provide insight into the helicity-dependence of the ionization dynamics as the differences among co- and counter rotating electron and laser field, if any, can be investigated.

  10. Formation and Transport of Atomic Hydrogen in Hot-Filament Chemical Vapor Deposition Reactors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant ishydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers forheat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phaseheat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature andH concentration distributions between the filament and the substrate. Examination of the relative importance ofhomogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecularhydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociationrates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the liter-ature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociationrates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lowereffective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heattransfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.

  11. A laser extinction based sensor for simultaneous droplet size and vapor measurement

    Institute of Scientific and Technical Information of China (English)

    Xueqiang Sun; David J. Ewing; Lin Ma

    2012-01-01

    Multiphase flows involving liquid droplets in association with gas flow occur in many industrial and scientific applications.Recent work has demonstrated the feasibility of using optical techniques based on laser extinction to simultaneously measure vapor concentration and temperature and droplet size and loading.This work introduces the theoretical background for the optimal design of such laser extinction techniques,termed WMLE (wavelength-multiplexed laser extinction).This paper focuses on the development of WMLE and presents a systematic methodology to guide the selection of suitable wavelengths and optimize the performance of WMLE for specific applications.WMLE utilizing wavelengths from 0.5to 10 μm is illustrated for droplet size and vapor concentration measurements in an example of water spray,and is found to enable unique and sensitive Sauter mean diameter measurement in the range of ~1-15μm along with accurate vapor detection.A vapor detection strategy based on differential absorption is developed to extend accurate measurement to a significantly wider range of droplet loading and vapor concentration as compared to strategies based on direct fixed-wavelength absorption.Expected performance of the sensor is modeled for an evaporating spray.This work is expected to lay the groundwork for implementing optical sensors based on WMLE in a variety of research and industrial applications involving multi-phase flows.

  12. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size,fourth-order Runge-Kutta type algorithm.The influence of laser power on deposition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW,the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW,but with laser power increase,equal to 50 mW,the nonmeter structure forms the multi-crests and exacerbates.

  13. Influence of laser power on deposition of the chromium atomic beam in laser standing wave

    Institute of Scientific and Technical Information of China (English)

    ZHANG WenTao; ZHU BaoHua; ZHANG BaoWu; LI TongBao

    2009-01-01

    One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size, fourth-order Runge-Kutta type algorithm. The influence of laser power on depo-sition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW, the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW, but with laser power increase, equal to 50 mW, the nonmeter structure forms the multi-crests and exacerbates.

  14. Laser and Optical Subsystem for NASA's Cold Atom Laboratory

    Science.gov (United States)

    Kohel, James; Kellogg, James; Elliott, Ethan; Krutzik, Markus; Aveline, David; Thompson, Robert

    2016-05-01

    We describe the design and validation of the laser and optics subsystem for NASA's Cold Atom Laboratory (CAL), a multi-user facility being developed at NASA's Jet Propulsion Laboratory for studies of ultra-cold quantum gases in the microgravity environment of the International Space Station. Ultra-cold atoms will be generated in CAL by employing a combination of laser cooling techniques and evaporative cooling in a microchip-based magnetic trap. Laser cooling and absorption imaging detection of bosonic mixtures of 87 Rb and 39 K or 41 K will be accomplished using a high-power (up to 500 mW ex-fiber), frequency-agile dual wavelength (767 nm and 780 nm) laser and optical subsystem. The CAL laser and optical subsystem also includes the capability to generate high-power multi-frequency optical pulses at 784.87 nm to realize a dual-species Bragg atom interferometer. Currently at Humboldt-Universität zu Berlin.

  15. X-ray refractive index of laser-dressed atoms

    CERN Document Server

    Buth, Christian

    2008-01-01

    We investigated the complex index of refraction in the x-ray regime of atoms in laser light. The laser (intensity up to 10^13 W/cm^2, 800nm) modifies the atomic states but, by assumption, does not excite or ionize the atoms in their electronic ground state. Using quantum electrodynamics, we devise an ab initio theory to calculate the dynamic dipole polarizability and the photoabsorption cross section, which are subsequently used to determine the real and imaginary part, respectively, of the refractive index. The interaction with the laser is treated nonperturbatively; the x-ray interaction is described in terms of a one-photon process. We numerically solve the resolvents involved using a single-vector Lanczos algorithm. Finally, we formulate rate equations to copropagate a laser and an x-ray pulse through a gas cell. Our theory is applied to argon. We study the x-ray polarizability and absorption near the argon K edge over a large range of dressing-laser intensities. We find electromagnetically induced transp...

  16. Atomic excitation and acceleration in strong laser fields

    Science.gov (United States)

    Zimmermann, H.; Eichmann, U.

    2016-10-01

    Atomic excitation in the tunneling regime of a strong-field laser-matter interaction has been recently observed. It is conveniently explained by the concept of frustrated tunneling ionization (FTI), which naturally evolves from the well-established tunneling picture followed by classical dynamics of the electron in the combined laser field and Coulomb field of the ionic core. Important predictions of the FTI model such as the n distribution of Rydberg states after strong-field excitation and the dependence on the laser polarization have been confirmed in experiments. The model also establishes a sound basis to understand strong-field acceleration of neutral atoms in strong laser fields. The experimental observation has become possible recently and initiated a variety of experiments such as atomic acceleration in an intense standing wave and the survival of Rydberg states in strong laser fields. Furthermore, the experimental investigations on strong-field dissociation of molecules, where neutral excited fragments after the Coulomb explosion of simple molecules have been observed, can be explained. In this review, we introduce the subject and give an overview over relevant experiments supplemented by new results.

  17. Direct atomic absorption determination of cadmium and lead in strongly interfering matrices by double vaporization with a two-step electrothermal atomizer

    Science.gov (United States)

    Grinshtein, Ilia L.; Vilpan, Yuri A.; Saraev, Alexei V.; Vasilieva, Lubov A.

    2001-03-01

    Thermal pretreatment of a sample using double vaporization in a two-step atomizer with a purged vaporizer makes possible the direct analysis of samples with strongly interfering matrices including solids. A porous-graphite capsule or a filter inserted into the vaporizer is used for solid sample analysis. The technique was used for the direct determination of Cd and Pb in human urine, potatoes, wheat, bovine liver, milk powder, grass-cereal mixtures, caprolactam, bituminous-shale and polyvinyl chloride plastic without chemical modification or any other sample pretreatment.

  18. Ion microscopy based on laser-cooled cesium atoms.

    Science.gov (United States)

    Viteau, M; Reveillard, M; Kime, L; Rasser, B; Sudraud, P; Bruneau, Y; Khalili, G; Pillet, P; Comparat, D; Guerri, I; Fioretti, A; Ciampini, D; Allegrini, M; Fuso, F

    2016-05-01

    We demonstrate a prototype of a Focused Ion Beam machine based on the ionization of a laser-cooled cesium beam and adapted for imaging and modifying different surfaces in the few-tens nanometer range. Efficient atomic ionization is obtained by laser promoting ground-state atoms into a target excited Rydberg state, then field-ionizing them in an electric field gradient. The method allows obtaining ion currents up to 130pA. Comparison with the standard direct photo-ionization of the atomic beam shows, in our conditions, a 40-times larger ion yield. Preliminary imaging results at ion energies in the 1-5keV range are obtained with a resolution around 40nm, in the present version of the prototype. Our ion beam is expected to be extremely monochromatic, with an energy spread of the order of the eV, offering great prospects for lithography, imaging and surface analysis.

  19. Ablation of biological tissues by radiation of strontium vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Soldatov, A. N., E-mail: general@tic.tsu.ru; Vasilieva, A. V., E-mail: anita-tomsk@mail.ru [National Research Tomsk State University, Lenin ave., 36, 634050, Tomsk (Russian Federation)

    2015-11-17

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  20. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  1. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    Science.gov (United States)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  2. Multi-V-type and Λ-type electromagnetically induced transparency experiments in rubidium atoms with low-power low-cost free running single mode diode lasers

    Science.gov (United States)

    Lavín Varela, S.; León Suazo, J. A.; Gutierrez González, J.; Vargas Roco, J.; Buberl, T.; Aguirre Gómez, J. G.

    2016-05-01

    In this work we present the experimental realization of electromagnetically induced transparency (EIT) in A-type and multi-V-type configurations in a sample of rubidium atoms inside a vapor cell at room temperature. Typical EIT windows are clearly visible in the Doppler- broadened absorption signal of the weak probe beam. The coherent optical pump and probe fields are produced by two tunable low-cost, low-power, continuous-wave (cw), free-running and single mode operated diode laser systems, temperature stabilized and current controlled, tuned to the D2 line of rubidium atoms at 780.2 nm wavelength. The continuum wave and single mode operation of our laser systems are confirmed by direct and saturated absorption spectroscopy techniques. Among other applications, these simple experiments can be used as a low-cost undergraduate laboratory in atomic physics, laser physics, coherent light-atom interaction, and high resolution atomic spectroscopy.

  3. Atomic fountain of laser-cooled Yb atoms for precision measurements

    CERN Document Server

    Pandey, Kanhaiya; Singh, Alok K; Natarajan, Vasant

    2010-01-01

    We demonstrate launching of laser-cooled Yb atoms in a cold atomic fountain. Atoms in a collimated thermal beam are first cooled and captured in a magneto-optic trap (MOT) operating on the strongly-allowed ${^1S}_0 \\rightarrow {^1P}_1$ transition at 399~nm (blue line). They are then transferred to a MOT on the weakly-allowed ${^1S}_0 \\rightarrow {^3P}_1$ transition at 556~nm (green line). Cold atoms from the green MOT are launched against gravity at a velocity of around 2.5~m/s using a pair of green beams. We trap more than $10^7$ atoms in the blue MOT and transfer up to 70\\% into the green MOT. The temperature for the odd isotope, $^{171}$Yb, is $\\sim$1~mK in the blue MOT, and reduces by a factor of 40 in the green MOT.

  4. Space Debris-de-Orbiting by Vaporization Impulse using Short Pulse Laser

    Energy Technology Data Exchange (ETDEWEB)

    Early, J; Bibeau, C; Claude, P

    2003-09-16

    Space debris constitutes a significant hazard to low earth orbit satellites and particularly to manned spacecraft. A quite small velocity decrease from vaporization impulses is enough to lower the perigee of the debris sufficiently for atmospheric drag to de-orbit the debris. A short pulse (picosecond) laser version of the Orion concept can accomplish this task in several years of operation. The ''Mercury'' short pulse Yb:S-FAP laser being developed at LLNL for laser fusion is appropriate for this task.

  5. Tunable laser and photocurrents from linear atomic C chains

    Science.gov (United States)

    Lin, Zheng-Zhe

    2015-07-01

    By a tight-binding model, the interaction between linear atomic C chains (LACCs) and short laser pulses was investigated. LACCs were proposed to be used as a medium of laser whose wavelength can be continuously tuned in a range of 321-785nm. This data should be more accurate than the previous result [Europhys. Lett. 97 (2012) 27006] because pure density functional theory calculation always underestimates the band gap. According to the tight-binding model, the lifetime of conduction band (CB) bottom is about 1.9-2.3ns. The electrons pumped into the CB will quickly fall to the band bottom in a time of ps due to electron-phonon interactions. The above results indicate that LACCs are suitable for laser medium. By ω + 2ω dichromatic laser pulses, photocurrents can be generated in LACCs, which can be applied as light-controlled signals.

  6. STIRAP in sodium vapor with picosecond laser pulses

    CERN Document Server

    Hicks, Jim L; Allen, Susan D; Tilley, Matt; Hoke, Steven; Johnson, J Bruce

    2015-01-01

    Experimental measurements and calculations of STIRAP transfer efficiencies were made on a sodium gas starting from the $3^2{\\rm S}_{1/2}$ electronic ground state, passing through the $3^2{\\rm P}_{1/2}$ and/or the $3^2{\\rm P}_{3/2}$ to the $5^2{\\rm S}_{1/2}$ state. The lasers used in the experiments had a pulse width of several picoseconds and were close to the Fourier transform limit. Although the linewidth of the laser was much smaller than the spin orbit splitting between the $3^2{\\rm P}_{1/2}$ and $3^2{\\rm P}_{3/2}$ states, Experiments and calculations reveal that both 3p states play a role in the transfer efficiency when the lasers are tuned to resonance through the $3^2{\\rm P}_{1/2}$ state, revealing evidence for quantum interference between the competing pathways.

  7. Coherent inelastic backscattering of laser light from three isotropic atoms

    CERN Document Server

    Ketterer, Andreas; Shatokhin, Vyacheslav N

    2014-01-01

    We study the impact of double and triple scattering contributions on coherent backscattering of laser light from saturated isotropic atoms, in the helicity preserving polarization channel. Using the recently proposed diagrammatic pump-probe approach, we analytically derive single-atom spectral responses to a classical polychromatic driving field, combine them self-consistently to double and triple scattering processes, and numerically deduce the corresponding elastic and inelastic spectra, as well as the total backscattered intensities. We find that account of the triple scattering contribution leads to a faster decay of phase-coherence with increasing saturation of the atomic transition as compared to double scattering alone, and to a better agreement with the experiment on strontium atoms.

  8. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2013-01-01

    Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...

  9. A portable laser system for high precision atom interferometry experiments

    CERN Document Server

    Schmidt, Malte; Giorgini, Antonio; Tino, Guglielmo M; Peters, Achim

    2010-01-01

    We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for the portable gravimeter GAIN, an atom interferometer that will be capable of performing high precision gravity measurements directly at sites of geophysical interest. This laser system is designed to be compact, mobile and robust, yet it still offers improvements over many conventional laboratory-based laser systems. Our system is contained in a standard 19" rack and emits light at five different wavelengths simultaneously on up to 12 fibre ports at a total output power of 800 mW. These wavelengths can be changed and switched between ports in less than a microsecond. The setup includes two phase-locked Raman lasers with a phase noise spectral density of less than 1 \\mu rad/sqrt(Hz) in the frequency range in which our gravimeter is most sensitive to noise. We characterize this laser system and evaluate the performance limits it imposes on an interferometer.

  10. Determination of mercury in phosphate fertilizers by cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    de Jesus, Robson M; Silva, Laiana O B; Castro, Jacira T; de Azevedo Neto, Andre D; de Jesus, Raildo M; Ferreira, Sergio L C

    2013-03-15

    In this paper, a method for the determination of mercury in phosphate fertilizers using slurry sampling and cold vapor atomic absorption spectrometry (CV QT AAS) is proposed. Because mercury (II) ions form strong complexes with phosphor compounds, the formation of metallic mercury vapor requires the presence of lanthanum chloride as a release agent. Thiourea increases the amount of mercury that is extracted from the solid sample to the liquid phase of the slurry. The method is established using two steps. First, the slurry is prepared using the sample, lanthanum chloride, hydrochloric acid solution and thiourea solution and is sonicated for 20 min. Afterward, mercury vapor is generated using an aliquot of the slurry in the presence of the hydrochloric acid solution and isoamylic alcohol with sodium tetrahydroborate solution as the reducing agent. The experimental conditions for slurry preparation were optimized using two-level full factorial design involving the factors: thiourea and lanthanum chloride concentrations and the duration of sonication. The method allows the determination of mercury by external calibration using aqueous standards with limits of detection and quantification of 2.4 and 8.2 μg kg(-1), respectively, and precision, expressed as relative standard deviation, of 6.36 and 5.81% for two phosphate fertilizer samples with mercury concentrations of 0.24 and 0.57 mg kg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of phosphate fertilizer that was provided by the National Institute of Standards & Technology (NIST). The method was applied to determine mercury in six commercial samples of phosphate fertilizers. The mercury content varied from 33.97 to 209.28 μg kg(-1). These samples were also analyzed employing inductively coupled plasma mass spectrometry (ICP-MS). The ICP-MS results were consistent with the results from our proposed method.

  11. Wet Etching of Heat Treated Atomic Layer Chemical Vapor Deposited Zirconium Oxide in HF Based Solutions

    Science.gov (United States)

    Balasubramanian, Sriram; Raghavan, Srini

    2008-06-01

    Alternative materials are being considered to replace silicon dioxide as gate dielectric material. Of these, the oxides of hafnium and zirconium show the most promise. However, integrating these new high-k materials into the existing complementary metal-oxide-semiconductor (CMOS) process remains a challenge. One particular area of concern is the wet etching of heat treated high-k dielectrics. In this paper, work done on the wet etching of heat treated atomic layer chemical vapor deposited (ALCVD) zirconium oxide in HF based solutions is presented. It was found that heat treated material, while refractory to wet etching at room temperature, is more amenable to etching at higher temperatures when methane sulfonic acid is added to dilute HF solutions. Selectivity over SiO2 is still a concern.

  12. Determination of mercury in rice by cold vapor atomic fluorescence spectrometry after microwave-assisted digestion

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria Jose da [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain); Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Cidade Universitaria, 50740-550 Recife, PE (Brazil); Paim, Ana Paula S. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Cidade Universitaria, 50740-550 Recife, PE (Brazil); Pimentel, Maria Fernanda [Departamento de Engenharia Quimica, Universidade Federal de Pernambuco, Recife, PE (Brazil); Cervera, M. Luisa, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain); Guardia, Miguel de la [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain)

    2010-05-14

    A cold vapor atomic fluorescence spectrometry method (CV-AFS) has been developed for the determination of Hg in rice samples at a few ng g{sup -1} concentration level. The method is based on the previous digestion of samples in a microwave oven with HNO{sub 3} and H{sub 2}O{sub 2} followed by dilution with water containing KBr/KBrO{sub 3} and hydroxylamine and reduction with SnCl{sub 2} in HCl using external calibration. The matrix interferences and the effect of nitrogen oxide vapors have been evaluated and the method validated using a certified reference material. The limit of detection of the method was 0.9 ng g{sup -1} with a recovery percentage of 95 {+-} 4% at an added concentration of 5 ng g{sup -1}. The concentration level of Hg found in 24 natural rice samples from different origin ranged between 1.3 and 7.8 ng g{sup -1}.

  13. Influence of the virtual photon field on the squeezing properties of an atom laser

    Institute of Scientific and Technical Information of China (English)

    Zhao Jian-Gang; Sun Chang-Yong; Wen Ling-Hua; Liang Bao-Long

    2009-01-01

    This paper investigates the squeezing properties of an atom laser without rotating-wave approximation in the system of a binomial states field interacting with a two-level atomic Bose-Einstein condensate. It discusses the influences of atomic eigenfrequency, the interaction intensity between the optical field and atoms, parameter of the binomial states field and virtual photon field on the squeezing properties. The results show that two quadrature components of an atom laser can be squeezed periodically. The duration and the degree of squeezing an atom laser have something to do with the atomic eigenfrequency and the parameter of the binomial states field, respectively. The collapse and revival frequency of atom laser fluctuation depends on the interaction intensity between the optical field and atoms. The effect of the virtual photon field deepens the depth of squeezing an atom laser.

  14. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic co...... compounds. We model the physics as a change in the top mirror loss caused by swelling of the polymer upon absorbing the target volatile organic compound. Further we show how acetone vapors at 82 000 ppm concentration can change the polymer coated VCSEL output power by 20 mu W....

  15. Heterogeneous atoms in laser-induced synthesis of carbon black

    Science.gov (United States)

    Popovici, E.; Gavrila Florescu, L.; Soare, I.; Scarisoreanu, M.; Sandu, I.; Prodan, G.; Fleaca, C. T.; Morjan, I.; Voicu, I.

    2009-03-01

    Based on a high temperature hydrocarbon/heterogeneous atoms system of well-established composition, the formation of carbon nanostructures by laser-induced pyrolysis is related to the presence of heteroatoms in the reactants. In this paper, the goal is to underline the influence of some heteroatoms on the morphology and functionalizing nanostructured carbon materials by changing both gas composition and experimental parameters, with the focus to drive these materials into a regime where they can naturally interface with the surrounding matter. To investigate, in the versatile laser pyrolysis method, how to in situ modulate - through the presence of heterogeneous atoms - the characteristics of carbon nanopowders claimed by specific application is a challenge. Some preliminary results confirm experimentally their particular behavior during interaction with polymer matrices of some nanocomposites.

  16. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  17. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Chikoidze, E.; Dumont, Y. [GEMaC, Université de Versailles St. Quentin en Yvelines-CNRS, Versailles (France); Fanciulli, M. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano (Italy)

    2014-05-07

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850 °C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  18. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    Science.gov (United States)

    Mantovan, R.; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G.; Chikoidze, E.; Dumont, Y.; Fanciulli, M.

    2014-05-01

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er2O3 and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO3 and ErFe2O4 phases develop following subsequent thermal annealing processes at 850 °C in air and N2. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  19. Kinetics of laser pulse vaporization of uranium dioxide by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.

    1981-11-01

    Safety analyses of nuclear reactors require knowledge of the evaporation behavior of UO/sub 2/ at temperatures well above the melting point of 3140 K. In this study, rapid transient heating of a small spot on a UO/sub 2/ specimen was accomplished by a laser pulse, which generates a surface temperature excursion. This in turn vaporizes the target surface and the gas expands into vacuum. The surface temperature transient was monitored by a fast-response automatic optical pyrometer. The maximum surface temperatures investigated range from approx. 3700 K to approx. 4300 K. A computer program was developed to simulate the laser heating process and calculate the surface temperature evolution. The effect of the uncertainties of the high temperature material properties on the calculation was included in a sensitivity study for UO/sub 2/ vaporization. The measured surface temperatures were in satisfactory agreements.

  20. Extracting Information from the Atom-Laser Wave Function UsingInterferometric Measurement with a Laser Standing-Wave Grating

    Institute of Scientific and Technical Information of China (English)

    刘正东; 武强; 曾亮; 林宇; 朱诗尧

    2001-01-01

    The reconstruction of the atom-laser wave function is performed using an interferometric measurement with a standing-wave grating, and the results of this scheme are studied. The relations between the measurement data and the atomic wave function are also presented. This scheme is quite applicable and effectively avoids the initial random phase problem of the method that employs the laser running wave. The information which is encoded in the atom-laser wave is extracted.

  1. Study on the kinetic mechanisms of copper vapor lasers with hydrogen-neon admixtures

    Science.gov (United States)

    Cheng, Cheng; Sun, Wei

    1997-02-01

    The kinetic mechanisms of copper vapor lasers with hydrogen-neon admixtures are studied in detail with a computational model. (i) The copper particle density increases as the wall temperature rises after adding hydrogen into neon buffer gas, and de-population of the laser lower levels is enhanced during the interpulse period owing to a larger thermal diffusion loss from the tube center to the wall. (ii) The power dissipated by the thyratron or current through it decreases with increasing frequency of the momentum-transfer collision of electrons, i.e. the input power into the laser tube increases. On the other hand, the plasma electron temperature and electron density decrease as the electron energy is depleted through the impact excitation of the vibration levels of hydrogen, which makes the population of the laser upper levels restrained.

  2. Numerical and experimental analysis of middle-bore copper-vapor laser discharge

    Science.gov (United States)

    Yu, Deli; Tao, Yongxiang; Yin, Xianhua; Chen, Lin; Yang, Yan; Li, Hailan; Wang, Runwen

    1998-08-01

    A single simulation model describing the discharge circuitry is introduced. First the differential equations are presented. In order to calculate the laser head discharge current, the thyratron resistance with a switching time coefficient (tau) s is investigated. The plasma conductivity used in these models is estimated using the available data on plasma parameters. Here 0.6 eV of the average electron temperature and 80 nH of thyratron inductance are assumed according to our previous model. The laser head discharge current of the differential equations is calculated with the method of Runge- Kutta. The discharge current profiles of the simulation are found to be in close agreement with the experimental data which come from 4.8-cm-diameter and 6.5-cm-diameter middle- bore Copper-Vapor Laser. In this way, the factors which effect the short rise time to increase lasing ability in the CVL (Copper-Vapor Laser) are studied on the bases of studying the storage capacitor's and the peaking capacitor's effect. As a calculation result, the inductance of the laser head takes an inferior effect to the thyratron circuit inductance on the discharge current rise time. Very good agreement exists between the calculated and measured results. This is a successful single discharge model.

  3. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe.

    Science.gov (United States)

    Takahashi, J; Kawakami, K; Raabe, D

    2017-01-31

    The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions.

  4. Secondary laser cooling and capturing of thulium atoms in traps

    Energy Technology Data Exchange (ETDEWEB)

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Fedorov, S A; Vishnyakova, G A; Akimov, A V; Kolachevsky, N N; Sorokin, V N [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-06-30

    Secondary laser cooling has been realised on the weak dipole transition 4f{sup 13}({sup 2}F{sup o})6s{sup 2}, J = 7/2, F=4 → 4f{sup 12}({sup 3}H{sub 6}) 5d{sub 5/2}6s{sup 2}, J' = 9/2, F' = 5 with the wavelength of 530.7 nm and natural width of 350 kHz. The temperature of the atomic cloud in a magnetooptical trap (MOT) was 30 μK at the lifetime of 2 s and the number of atoms 10{sup 5}. Approximately 1% of atoms from the MOT have been reloaded to an optical dipole trap and to one-dimensional optical lattice at the wavelength of 532 nm. The atom lifetime in the optical lattice was 320 ms. We propose to employ thulium atoms captured in an optical lattice as an optical frequency reference. (extreme light fields and their applications)

  5. Vaporization and recondensation dynamics of indocyanine green-loaded perfluoropentane droplets irradiated by a short pulse laser

    Science.gov (United States)

    Yu, Jaesok; Chen, Xucai; Villanueva, Flordeliza S.; Kim, Kang

    2016-12-01

    Phase-transition droplets have been proposed as promising contrast agents for ultrasound and photoacoustic imaging. Short pulse laser activated perfluorocarbon-based droplets, especially when in a medium with a temperature below their boiling point, undergo phase changes of vaporization and recondensation in response to pulsed laser irradiation. Here, we report and discuss the vaporization and recondensation dynamics of perfluoropentane droplets containing indocyanine green in response to a short pulsed laser with optical and acoustic measurements. To investigate the effect of temperature on the vaporization process, an imaging chamber was mounted on a temperature-controlled water reservoir and then the vaporization event was recorded at 5 million frames per second via a high-speed camera. The high-speed movies show that most of the droplets within the laser beam area expanded rapidly as soon as they were exposed to the laser pulse and immediately recondensed within 1-2 μs. The vaporization/recondensation process was consistently reproduced in six consecutive laser pulses to the same area. As the temperature of the media was increased above the boiling point of the perfluoropentane, the droplets were less likely to recondense and remained in a gas phase after the first vaporization. These observations will help to clarify the underlying processes and eventually guide the design of repeatable phase-transition droplets as a photoacoustic imaging contrast agent.

  6. Efficiency of Pumping of the Active Medium of Metal Vapor Lasers: Gas-Discharge Tubes with Electrodes in the Hot Zone of the Discharge Channel

    Science.gov (United States)

    Yudin, N. A.; Yudin, N. N.

    2016-10-01

    The electrophysical approach is used to estimate conditions for effective pumping of the active medium of lasers on self-terminating metal atom transitions in gas-discharge tubes (GDT) with electrodes located in the hot zone of the discharge channel. It is demonstrated that in the laser discharge contour there are processes limiting the frequency and energy characteristics (FEC) of radiation. The mechanism of influence of these processes on the FEC of radiation, and technical methods of their neutralization are considered. It is demonstrated that the practical efficiency of a copper vapor laser can reach 10% under conditions of neutralization of these processes. Conditions for forming the distributed GDT impedance when the active medium is pumped on the front of the fast ionization wave are determined.

  7. Laser initiation and decay processes in an organic vapor plasma

    Science.gov (United States)

    Ding, Guowen

    A large volume organic molecular plasma (hundreds of cm3) is created by a 193 nm laser ionizing an organic molecule, Tetrakis-(dimethylamino)-ethylene (TMAE). The plasma is found to be characterized by high electron density (10 13-1011cm-3), low electron temperature (~0.1 eV), fast creation (~10 ns) and rapid decaying (electron-ion recombination coefficient ~10-6 cm3/s). Fast Langmuir probe (LP) techniques are developed for diagnosing this plasma, including a novel probe design and fabrication, a fast detection system, sampling, indirect probe heating, electro-magnetic shielding and dummy probe techniques. Plasma physical processes regarding fast LP diagnostics for different time scales (t> and <100 ns) are studied. A theory for the correction due to a rapidly decaying plasma to LP measurements is developed. The mechanisms responsible for the plasma decay are studied, and a delayed ionization process is found to be important in interpreting the decay processes. It is also found that nitrogen can enhance the delayed emission of a TMAE Rydberg state from the TMAE plasma. This result strongly suggests that a long-lifetime highly-excited state is important in the TMAE plasma decay process. This result supports the delayed ionization mechanism. A model combining electron-ion recombination and delayed ionization processes is developed to calculate the delayed ionization lifetime.

  8. Two-Pulse Atomic Coherent Control (2PACC) Spectroscopy of Eley-Rideal Reactions. An Application of an Atom Laser

    CERN Document Server

    Jorgensen, S F; Jorgensen, Solvejg; Kosloff, Ronnie

    2003-01-01

    A spectroscopic application of the atom laser is suggested. The spectroscopy termed 2PACC employs the coherent properties of matter-waves from a two pulse atom laser. These waves are employed to control a gas-surface chemical recombination reaction. The method is demonstrated for an Eley-Rideal reaction of a hydrogen or alkali atom-laser pulse where the surface target is an adsorbed hydrogen atom. The reaction yields either a hydrogen or alkali hydride molecule. The desorbed gas phase molecular yield and its internal state is shown to be controlled by the time and phase delay between two atom-laser pulses. The calculation is based on solving the time-dependent Schrodinger equation in a diabatic framework. The probability of desorption which is the predicted 2PACC signal has been calculated as a function of the pulse parameters.

  9. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Science.gov (United States)

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  10. Coherence of a squeezed sodium atom laser generated from Raman output coupling

    Institute of Scientific and Technical Information of China (English)

    Huiyong He; Chunjia Huang

    2009-01-01

    The coherence of a squeezed sodium atom laser generated from a Raman output coupler,in which the sodium atoms in Bose-Einstein condensate (BEC) intcract with two light beams consisting of a weaker squeezed coherent probe light and a stronger classical coupling light,is investigated.The results show that in the case of a large mean number of BEC atoms and a weaker probe light field,the atom laser is antibunching,and this atom laser is second-order coherent if the number of BEC atoms in traps is large enough.

  11. On-line laser spectroscopy with thermal atomic beams

    CERN Document Server

    Thibault, C; De Saint-Simon, M; Duong, H T; Guimbal, P; Huber, G; Jacquinot, P; Juncar, P; Klapisch, Robert; Liberman, S; Pesnelle, A; Pillet, P; Pinard, J; Serre, J M; Touchard, F; Vialle, J L

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a CW tunable dye laser interacts at right angles with a thermal atomic beam. /sup 76-98/Rb, /sup 118-145 /Cs and /sup 208-213/Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while /sup 30-31/Na and /sup 38-47/K have been studied by setting the apparatus directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. The hyperfine structure, spins and isotope shifts of the alkali isotopes and isomers are measured. (8 refs).

  12. Ultrarelativistic quasiclassical wave functions in strong laser and atomic fields

    CERN Document Server

    Di Piazza, A

    2014-01-01

    The problem of an ultrarelativistic charge in the presence of an atomic and a plane-wave field is investigated in the quasiclassical regime by including exactly the effects of both background fields. Starting from the quasiclassical Green's function obtained in [Phys. Lett. B \\textbf{717}, 224 (2012)], the corresponding in- and out-wave functions are derived in the experimentally relevant case of the particle initially counterpropagating with respect to the plane wave. The knowledge of these electron wave functions opens the possibility of investigating a variety of problems in strong-field QED, where both the atomic field and the laser field are strong enough to be taken into account exactly from the beginning in the calculations.

  13. Improved preparation of small biological samples for mercury analysis using cold vapor atomic absorption spectroscopy.

    Science.gov (United States)

    Adair, B M; Cobb, G P

    1999-05-01

    Concentrations of mercury in biological samples collected for environmental studies are often less than 0.1 microgram/g. Low mercury concentrations and small organ sizes in many wildlife species (approximately 0.1 g) increase the difficulty of mercury determination at environmentally relevant concentrations. We have developed a digestion technique to extract mercury from small (0.1 g), biological samples at these relevant concentrations. Mean recoveries (+/- standard error) from validation trials of mercury fortified tissue samples using cold vapor atomic absorption spectroscopy for analysis ranged from 102 +/- 4.3% (2.5 micrograms/L, n = 15) to 108 +/- 1.4% (25 micrograms/L, n = 15). Recoveries of inorganic mercury were 99 +/- 5 (n = 19) for quality assurance samples analyzed during environmental evaluations conducted during a 24 month period. This technique can be used to determine total mercury concentrations of 60 ng Hg/g sample. Samples can be analyzed in standard laboratories in a short time, at minimal cost. The technique is versatile and can be used to determine mercury concentrations in several different matrices, limiting the time and expense of method development and validation.

  14. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    Science.gov (United States)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  15. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    Science.gov (United States)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  16. QUANTUM STATISTICS OF AN ATOM LASER IN THEPRESENCE OF A STRONG INPUT LIGHT

    Institute of Scientific and Technical Information of China (English)

    JING HUI; MIAO YUAN-XIU; HAN YI-ANG

    2001-01-01

    Within the framework of quantum dynamical theory, we present a new method to control the quantum statistics of an atom laser by applying a powerful input light. Differing from the case in the rotating wave approximation, the non-classical properties can appear in the output atom laser beam with the evolution of time. By choosing a suitable phase of the input light, it is capable of realizing a steady and brighter output of coherent atom laser.

  17. Controlling quantum coherence of atom laser by light with strong strength

    Institute of Scientific and Technical Information of China (English)

    JING; Hui(景辉); GE; Molin(葛墨林); GE; Molin(葛墨林)

    2002-01-01

    A new method for controlling the quantum coherence of atom laser by applying input light with strong strength is presented within the framework of quantum dynamical theory. Unlike the case of rotating wave approximation(RWA), we show that the non-classical properties, such as sub-Poisson distribution and quadrature squeezed effect, can appear in the output atom laser beam with time. By choosing suitable initial RF phase, a steady and brighter output of squeezed coherent atom laser is also available.

  18. Thermal dynamics-based mechanism for intense laser-induced material surface vaporization

    Indian Academy of Sciences (India)

    N Kumar; S Dash; A K Tyagi; Baldev Raj

    2008-09-01

    Laser material processing involving welding, ablation and cutting involves interaction of intense laser pulses of nanosecond duration with a condensed phase. Such interaction involving high brightness radiative flux causes multitude of non-linear events involving thermal phase transition at soild–liquid–gas interfaces. A theoretical perspective involving thermal dynamics of the vaporization process and consequent non-linear multiple thermal phase transitions under the action of laser plasma is the subject matter of the present work. The computational calculations were carried out where titanium (Ti) was treated as a condensed medium. The solution to the partial differential equations governing the thermal dynamics and the underlying phase transition event in the multiphase system is based on non-stationary Eulerian variables. The Mach number depicts significant fluctuations due to thermal instabilities associated with the laser beam flux and intensity. A conclusive amalgamation has been established which relates material surface temperature profile to laser intensity, laser flux and the pressure in the plasma cloud.

  19. Adsorption kinetics of surfactants at liquid-solid and liquid-vapor interfaces from atomic-scale simulations

    Science.gov (United States)

    Iskrenova, Eugeniya K.; Patnaik, Soumya S.

    2012-02-01

    Nucleate pool boiling of pure liquid is a complex process involving different size- and time-scale phenomena. The appearance of the first nanobubble in the liquid at the bottom of a hot pan, the detachment of the bubble from the solid surface, its subsequent coalescence with other bubbles, all represent complex multiscale phenomena. Surfactants added to water increase the complexity of the process by contributing to the dynamic surface tension at the liquid-vapor and liquid-solid interfaces and thus affecting the heat and mass transfer at those interfaces. We apply molecular dynamics simulations to study the adsorption kinetics of anionic, cationic, and non-ionic surfactants at liquid/solid and liquid/vapor interfaces. The all-atom vs. united-atom approaches for the solid and surfactants are surveyed in view of their applicability at near boiling temperatures and a range of model water potentials is assessed for reproducing the thermal properties of water at boiling conditions.

  20. Sympathetic cooling of molecules with laser-cooled atoms

    Science.gov (United States)

    Hudson, Eric

    2014-05-01

    Cooling molecules through collisions with laser-cooled atoms is an attractive route to ultracold, ground state molecules. The technique is simple, applicable to a wide class of molecules, and does not require molecule specific laser systems. Particularly suited to this technique are charged molecules, which can be trapped indefinitely, even at room temperature, and undergo strong, short-ranged collisions with ultracold atoms. In this talk, I will focus on recent efforts to use the combination of a magneto-optical trap (MOT) and an ion trap, dubbed the MOTion trap, to produce cold, ground state diatomic charged molecules. The low-energy internal structure of these diatomic molecules, e.g. the electric dipole moment and vibrational, rotational, and Ω-doublet levels, presents a host of opportunities for advances in quantum simulation, precision measurement, cold chemistry, and quantum information. Excitingly, recent proof-of-principle experiments have demonstrated that the MOTion trap is extremely efficient at cooling the vibrational motion of molecular ions. Supported by the ARO and NSF.

  1. Muonic atoms in super-intense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahbaz, Atif

    2009-01-28

    Nuclear effects in hydrogenlike muonic atoms exposed to intense high-frequency laser fields have been studied. Systems of low nuclear charge number are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass, size and shape in the high-harmonic spectra. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent {gamma}-ray pulses. Also, the nucleus can be excited while the laser-driven muon moves periodically across it. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived within a fully quantum mechanical approach and applied to various isotopes. The excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment. (orig.)

  2. Ultrafast solid-liquid-vapor phase change of a gold film induced by pico- to femtosecond lasers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing; Zhang, Yuwen; Chen, J.K. [University of Missouri, Department of Mechanical and Aerospace Engineering, Columbia, MO (United States)

    2009-06-15

    Melting, vaporization and resolidification processes of thin gold film irradiated by a femtosecond pulse laser are studied numerically. The nonequilibrium heat transfer in electrons and lattice is described using a two-temperature model. The solid-liquid interfacial velocity, as well as elevated melting temperature and depressed solidification temperature, is obtained by considering the interfacial energy balance and nucleation dynamics. An iterative procedure based on energy balance and gas kinetics law to track the location of liquid-vapor interface is utilized to obtain the material removal by vaporization. The effect of surface heat loss by thermal radiation was discussed. The influences of laser fluence and duration on the evaporation process are studied. Results show that higher laser fluence and shorter laser pulse width lead to higher interfacial temperature, deeper melting and ablation depths. (orig.)

  3. Laser spectroscopy of atoms in superfluid helium for the measurement of nuclear spins and electromagnetic moments of radioactive atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T., E-mail: tomomi.fujita@riken.jp [Osaka University, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Imamura, K.; Yang, X. F. [RIKEN Nishina Center (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Kobayashi, T. [RIKEN Center for Advanced Photonics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Shimoda, T. [Osaka University, Department of Physics (Japan); Matsuo, Y. [Hosei University, Department of Advanced Sciences (Japan); Collaboration: OROCHI Collaboration

    2015-11-15

    A new laser spectroscopic method named “OROCHI (Optical RI-atom Observation in Condensed Helium as Ion catcher)” has been developed for deriving the nuclear spins and electromagnetic moments of low-yield exotic nuclei. In this method, we observe atomic Zeeman and hyperfine structures using laser-radio-frequency/microwave double-resonance spectroscopy. In our previous works, double-resonance spectroscopy was performed successfully with laser-sputtered stable atoms including non-alkali Au atoms as well as alkali Rb and Cs atoms. Following these works, measurements with {sup 84−87}Rb energetic ion beams were carried out in the RIKEN projectile fragment separator (RIPS). In this paper, we report the present status of OROCHI and discuss its feasibility, especially for low-yield nuclei such as unstable Au isotopes.

  4. Isolating Protein Charge State Reduction in Electrospray Droplets Using Femtosecond Laser Vaporization

    Science.gov (United States)

    Karki, Santosh; Sistani, Habiballah; Archer, Jieutonne J.; Shi, Fengjian; Levis, Robert J.

    2017-01-01

    Charge state distributions are measured using mass spectrometry for both native and denatured cytochrome c and myoglobin after laser vaporization from the solution state into an electrospray (ES) plume consisting of a series of solution additives differing in gas-phase basicity. The charge distribution depends on both the pH of the protein solution prior to laser vaporization and the gas-phase basicity of the solution additive employed in the ES solvent. Cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 resulted in the average charge state distribution (Zavg) of 7.0 ± 0.1 (8.2 ± 0.1), 9.7 ± 0.2 (14.5 ± 0.3), and 11.6 ± 0.3 (16.4 ± 0.1), respectively, in ammonium formate ES solvent. The charge distribution shifted from higher charge states to lower charge states when the ES solvent contained amines additives with higher gas-phase basicity. In the case of triethyl ammonium formate, Zavg of cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 decreased to 4.9 (5.7), 7.4 ± 0.2 (9.6 ± 0.3), and 7.9 ± 0.3 (9.8 ± 0.2), respectively. The detection of a charge state distribution corresponding to folded protein after laser vaporized, acid-denatured protein interacts with the ES solvent containing ammonium formate, ammonium acetate, triethyl ammonium formate, and triethyl ammonium acetate suggests that at least a part of protein population folds within the electrospray droplet on a millisecond timescale.

  5. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry.

    Science.gov (United States)

    Yoshimoto, Keisuke; Anh, Hoang Thi Van; Yamamoto, Atsushi; Koriyama, Chihaya; Ishibashi, Yasuhiro; Tabata, Masaaki; Nakano, Atsuhiro; Yamamoto, Megumi

    2016-01-01

    This study aimed to develop a simpler method for determining total mercury (T-Hg) and methylmercury (MeHg) in biological samples by using methyl isobutyl ketone (MIBK) in the degreasing step. The fat in the samples was extracted by MIBK to the upper phase. T-Hg transferred into the water phase. This was followed by the extraction of MeHg from the water phase using HBr, CuCl2 and toluene. The MeHg fraction was reverse-extracted into L-cysteine-sodium acetate solution from toluene. The concentrations of T-Hg and MeHg were determined by heating vaporization atomic absorption spectrometry. Certified reference materials for T-Hg and MeHg in hair and fish were accurately measured using this method. This method was then applied to determine T-Hg and MeHg concentrations in the muscle, liver and gonads of seafood for the risk assessment of MeHg exposure. The mean T-Hg and MeHg concentrations in squid eggs were 0.023 and 0.022 µg/g, and in squid nidamental glands 0.052 and 0.049 µg/g, respectively. The MeHg/T-Hg ratios in the eggs and nidamental glands of squid were 94.4% and 96.5%, respectively. The mean T-Hg and MeHg concentrations in the gonads of sea urchins were 0.043 and 0.001 µg/g, respectively, with a MeHg/T-Hg ratio of 3.5%. We developed an efficient analytical method for T-Hg and MeHg using MIBK in the degreasing step. The new information on MeHg concentration and MeHg/T-Hg ratios in the egg or nidamental glands of squid and gonads of sea urchin will also be useful for risk assessment of mercury in seafood.

  6. Low temperature corneal laser welding investigated by atomic force microscopy

    Science.gov (United States)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-02-01

    The structural modifications in the stromal matrix induced by low-temperature corneal laser welding were investigated by atomic force microscopy (AFM). This procedure consists of staining the wound with Indocyanine Green (ICG), followed by irradiation with a near-infrared laser operated at low-power densities. This induces a local heating in the 55-65 °C range. In welded tissue, extracellular components undergo heat-induced structural modifications, resulting in a joining effect between the cut edges. However, the exact mechanism generating the welding, to date, is not completely understood. Full-thickness cuts, 3.5 mm in length, were made in fresh porcine cornea samples, and these were then subjected to laser welding operated at 16.7 W/cm2 power density. AFM imaging was performed on resin-embedded semi-thin slices once they had been cleared by chemical etching, in order to expose the stromal bulk of the tissue within the section. We then carried out a morphological analysis of characteristic fibrillar features in the laser-treated and control samples. AFM images of control stromal regions highlighted well-organized collagen fibrils (36.2 +/- 8.7 nm in size) running parallel to each other as in a typical lamellar domain. The fibrils exhibited a beaded pattern with a 22-39 nm axial periodicity. Laser-treated corneal regions were characterized by a significant disorganization of the intralamellar architecture. At the weld site, groups of interwoven fibrils joined the cut edges, showing structural properties that were fully comparable with those of control regions. This suggested that fibrillar collagen is not denatured by low-temperature laser welding, confirming previous transmission electron microscopy (TEM) observations, and thus it is probably not involved in the closure mechanism of corneal cuts. The loss of fibrillar organization may be related to some structural modifications in some interfibrillar substance as proteoglycans or collagen VI. Furthermore, AFM

  7. Fabrication of CdTe solar cells by laser-driven physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.; Bhat, A.; Tabory, C.; Liu, S.; Nguyen, M.; Aydinli, A.; Tsien, L.H.; Bohn, R.G. (Toledo Univ., OH (USA). Dept. of Physics and Astronomy)

    1991-05-01

    Polycrystalline cadmium sulfide-cadmium telluride heterojunction solar cells were fabricated for the first time using a laser-driven physical vapor deposition method. An XeCl excimer laser was used to deposit both of the II-VI semiconductor layers in a single vacuum chamber from pressed powder targets. Results are presented from optical absorption. Raman scattering, X-ray diffraction, and electrical characterization of the films. Solar cells were fabricated by deposition onto SnO{sub 2}-coated glass with top contacts produced by gold evaporation. Device performance was evaluated from the spectral quantum efficiency and current-voltage measurements in the dark and with air mass 1.5 solar illumination. (orig.).

  8. Modeling of Laser Vaporization and Plume Chemistry in a Boron Nitride Nanotube Production Rig

    Science.gov (United States)

    Gnoffo, Peter A.; Fay, Catharine C.

    2012-01-01

    Flow in a pressurized, vapor condensation (PVC) boron nitride nanotube (BNNT) production rig is modeled. A laser provides a thermal energy source to the tip of a boron ber bundle in a high pressure nitrogen chamber causing a plume of boron-rich gas to rise. The buoyancy driven flow is modeled as a mixture of thermally perfect gases (B, B2, N, N2, BN) in either thermochemical equilibrium or chemical nonequilibrium assuming steady-state melt and vaporization from a 1 mm radius spot at the axis of an axisymmetric chamber. The simulation is intended to define the macroscopic thermochemical environment from which boron-rich species, including nanotubes, condense out of the plume. Simulations indicate a high temperature environment (T > 4400K) for elevated pressures within 1 mm of the surface sufficient to dissociate molecular nitrogen and form BN at the base of the plume. Modifications to Program LAURA, a finite-volume based solver for hypersonic flows including coupled radiation and ablation, are described to enable this simulation. Simulations indicate that high pressure synthesis conditions enable formation of BN vapor in the plume that may serve to enhance formation of exceptionally long nanotubes in the PVC process.

  9. Creation of an Ultracold Plasma by Photoionizing Laser-Cooled Cesium Atom

    Institute of Scientific and Technical Information of China (English)

    JING Qun; FENG Zhi-Gang; ZHANG Lin-Jie; LI Chang-Yong; ZHAO Jian-Ming; JIA Suo-Tang

    2008-01-01

    @@ The signals of ultracold plasma are observed by two-photon ionization of laser-cooled atom in a caesium magneto-optical trap.A simple model has been introduced to explain the creation of plasma, and the mechanism is further investigated by changing the energy of a pulsed dye laser and the number of initial cooled atoms.

  10. Behavior of vapor/plasma within the keyhole and above the workpiece during CO2 laser penetration welding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, a high-speed camera and an optical emission monitor were used to study the behavior of vapor/plasma during CO2 laser welding of SUS304 stainless steel. Results of optical emission from vapor/plasma show that two characteristic frequency bands exist, 100-500 Hz and 1 500-3 500 Hz. At the same time, the changing images of vapor/plasma and bottom pool also confirm that there are two different fluctuation frequency bands. One of the frequency bands represents the characteristic of vapor/plasma within the keyhole, and it is within 167-500 Hz. Another frequency band is within 1 500-3 500 Hz, and it obviously derives from the shielding gas. Some factors may cause these frequency differences between the keyhole plasma and the shielding gas plasma. One of them is that the vapor/plasma pressure within the keyhole will increase slowly.

  11. Transient absorption spectra of the laser-dressed hydrogen atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  12. Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry

    Science.gov (United States)

    Dey, S. K.; Wang, C.-G.; Tang, D.; Kim, M. J.; Carpenter, R. W.; Werkhoven, C.; Shero, E.

    2003-04-01

    A 4 nm layer of ZrOx (targeted x˜2) was deposited on an interfacial layer (IL) of native oxide (SiO, t˜1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 300 °C. Some as-deposited layers were subjected to a postdeposition, rapid thermal annealing at 700 °C for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous ZrO2-rich Zr silicate containing about 15% by volume of embedded ZrO2 nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-ZrO2 (t-ZrO2) and monoclinic-ZrO2 (m-ZrO2) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper SiO2-rich Zr silicate and the lower SiOx. The latter was substoichiometric and the average oxidation state increased from Si0.86+ in SiO0.43 (as-deposited) to Si1.32+ in SiO0.66 (annealed). This high oxygen deficiency in SiOx was indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor (MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of ZrO2 and SiO2, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multilayer nanostructure and nanochemistry that

  13. Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble.

    Science.gov (United States)

    Zheng, Yajian; Liu, Hui; Wang, Yi; Zhu, Cong; Wang, Shuming; Cao, Jingxiao; Zhu, Shining

    2011-11-21

    Through the enhanced photothermal effect, which was achieved using a silver film, a low power weakly focused continuous-wave laser (532 nm) was applied to create a vapor bubble. A convective flow was formed around the bubble. Microparticles dispersed in water were carried by the convective flow to the vapor bubble and accumulated on the silver film. By moving the laser spot, we easily manipulated the location of the bubble, allowing us to direct-write micropatterns on the silver film with accumulated particles. The reported simple controllable accumulation method can be applied to bimolecular detection, medical diagnosis, and other related biochip techniques.

  14. Reactions of pulsed laser produced boron and nitrogen atoms in a condensing argon stream

    Science.gov (United States)

    Andrews, Lester; Hassanzadeh, Parviz; Burkholder, Thomas R.; Martin, J. M. L.

    1993-01-01

    Reactions of pulsed laser produced B and N atoms at high dilution in argon favored diboron species. At low laser power with minimum radiation, the dominant reaction with N2 gave BBNN (3Π). At higher laser power, reactions of N atoms contributed the B2N (2B2), BNB (2Σu+), NNBN (1Σ+), and BNBN (3Π) species. These new transient molecules were identified from mixed isotopic patterns, isotopic shifts, and ab initio calculations of isotopic spectra.

  15. Flow injection-chemical vapor generation atomic fluorescence spectrometry hyphenated system for organic mercury determination: A step forward

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, Valeria [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Biagi, Simona [National Research Council of Italy, C.N.R., Istituto per i Processi Chimico-Fisici - IPCF-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ghimenti, Silvia [University of Pisa, Department of Chemistry and Industrial Chemistry, Via Risorgimento 35, 56126 Pisa (Italy); Onor, Massimo; D' Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2011-11-15

    Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H{sub 2} miniaturized flame after sodium borohydride reduction to Hg{sup 0}, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H{sub 2} microflame was investigated. The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10{sup -5} mol L{sup -1}), thus allowing the organic/inorganic mercury speciation. The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L{sup -1} (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 {mu}mol L{sup -1} were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were

  16. Flow injection-chemical vapor generation atomic fluorescence spectrometry hyphenated system for organic mercury determination: A step forward

    Science.gov (United States)

    Angeli, Valeria; Biagi, Simona; Ghimenti, Silvia; Onor, Massimo; D'Ulivo, Alessandro; Bramanti, Emilia

    2011-11-01

    Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H 2 miniaturized flame after sodium borohydride reduction to Hg 0, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H 2 microflame was investigated. The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10 - 5 mol L - 1 ), thus allowing the organic/inorganic mercury speciation. The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L - 1 (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 μmol L - 1 were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were never less than 91%. Flow injection

  17. Laser Programs Highlights 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, H.; Cassady, C.

    1999-12-01

    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  18. Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser

    Science.gov (United States)

    Uspenskiy, S. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Mironov, V. D.; Prokopova, N. M.; Tret'yakov, E. V.

    2015-03-01

    This work is devoted to the research of welding plume during high power ytterbium fiber laser welding of a titanium alloy in the Ar shielding gas environment. High speed video observation of a vapor-plasma plume for visualization of processes occurring at laser welding was carried out. The coefficient of the inverse Bremsstrahlung absorption of laser radiation is calculated for a plasma welding plume by results of spectrometer researches. The conclusion deals with the impact of plasma on a high-power fiber laser radiation.

  19. Interference of Atomic Bose-Einstein Condensate Interacting with Laser Field

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIAO Zhi-Yong; SUN Jin-Zuo

    2004-01-01

    Interference of an atomic Bose-Einstein condensate interacting with a laser field in a double-well potential with dissipation is investigated. If properly selecting the laser field and the initial states of the atoms in the two wells,we find that the intensity exhibits revivals and collapses. The fidelity of interference is affected by the total number of atoms in the two wells and dissipation.

  20. Measurement of Velocity Distribution in Atomic Beam by Diode Laser with Narrow Line width

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG YiQiu

    2001-01-01

    In this paper, by using the detecting laser beam interacts with the atomic beam at a sharp angle and the Doppler frequency shift effect, the velocity distribution in cesium atomic beam is measured with a diode laser of narrow linewidth of 1 MHz. The effects of the atomic natural line width and cycling transition detecting factor on the measured results have been analyzed. Finally, the measured results have been compared with the theoretical calculation.

  1. Non-integer Quantum Transition, a True Non-perturbation Effect in Laser-Atom Interaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-Ren

    2007-01-01

    We show that in the quantum transition of an atom interacting with an intense laser of circular frequencyω, the energy difference between the initial and the final states of the atom is not necessarily an integer multiple of the quantum energy (h)ω. This kind of non-integer transition is a true non-perturbation effect in laser-atom interaction.

  2. Internal energy deposition for low energy, femtosecond laser vaporization and nanospray post-ionization mass spectrometry using thermometer ions.

    Science.gov (United States)

    Flanigan, Paul M; Shi, Fengjian; Archer, Jieutonne J; Levis, Robert J

    2015-05-01

    The internal energy of p-substituted benzylpyridinium ions after laser vaporization using low energy, femtosecond duration laser pulses of wavelengths 800 and 1042 nm was determined using the survival yield method. Laser vaporization of dried benzylpyridinium ions from metal slides into a buffered nanospray with 75 μJ, 800 nm laser pulses resulted in a higher extent of fragmentation than conventional nanospray due to the presence of a two-photon resonance fragmentation pathway. Using higher energy 800 nm laser pulses (280 and 505 μJ) led to decreased survival yields for the four different dried benzylpyridinium ions. Analyzing dried thermometer ions with 46.5 μJ, 1042 nm pulse-bursts resulted in little fragmentation and mean internal energy distributions equivalent to nanospray, which is attributable to the absence of a two-photon resonance that occurs with higher energy, 800 nm laser pulses. Vaporization of thermometer ions from solution with either 800 nm or 1042 nm laser pulses resulted in comparable internal energy distributions to nanospray ionization.

  3. Comparison of Adsorbed Mercury Screening Method With Cold-Vapor Atomic Absorption Spectrophotometry for Determination of Mercury in Soil

    Science.gov (United States)

    Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.

    2000-01-01

    A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.

  4. Analysis of Nanometer Structure for Chromium Atoms in Gauss Standing Laser Wave

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Tao; ZHU Bao-Hua; XIONG Xian-Ming

    2010-01-01

    @@ The equation of motion of two-level chromium atoms in Gauss standing laser wave is discussed and the distribution of chromium atoms is given under different transverse velocity conditions.The results show that the focusing position of atoms will be affected by the transverse velocity of atoms.Based on the four-order Runge-Kutta method,the locus of chromium atoms in Gauss standing laser wave is simulated.The three-dimensional characteristics of nanometer structures are stimulated under perfect and emanative conditions.

  5. Quantum Statistical Behaviors of Interaction of an Atomic Bose-Einstein Condensate with Laser

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIAO Zhi-Yong

    2001-01-01

    We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.``

  6. Spectral diagnostics of a vapor-plasma plume produced during welding with a high-power ytterbium fiber laser

    Science.gov (United States)

    Uspenskiy, S. A.; Shcheglov, P. Yu.; Petrovskiy, V. N.; Gumenyuk, A. V.; Rethmeier, M.

    2013-07-01

    We have conducted spectroscopic studies of the welding plasma formed in the process of welding with an ytterbium fiber laser delivering output power of up to 20 kW. The influence of shielding gases (Ar, He) on different parts of the welding plume is investigated. The absorption coefficient of the laser radiation by the welding-plume plasma is estimated. Scattering of 532-nm probe radiation from particles of the condensed metal vapor within the caustic of a high-power fiber laser beam is measured. Based on the obtained results, conclusions are made on the influence of the plasma formation and metal vapor condensation on the radiation of the high-power fiber laser and the stability of the welding process.

  7. Study of Pulse Laser Assisted Metalorganic Vapor Phase Epitaxy of InGaN with Large Indium Mole Fraction

    Science.gov (United States)

    Kangawa, Yoshihiro; Kawaguchi, Norihito; Hida, Ken-nosuke; Kumagai, Yoshinao; Koukitu, Akinori

    2004-08-01

    The indium composition of the InGaN film increases with decreasing growth temperature; however, the crystalline quality of the film is poor when it is grown at low temperatures. To form a high-quality InGaN film with a large indium mole fraction, Nd: YAG pulse laser assisted metalorganic vapor phase epitaxy (MOVPE) was carried out at low temperatures. The results suggest that film quality can be improved by pulse laser irradiation on the surface of the film.

  8. Quantum cascade laser-based measurement of metal alkylamide density during atomic layer deposition.

    Science.gov (United States)

    Maslar, James E; Kimes, William A; Sperling, Brent A

    2012-03-01

    An in situ gas-phase diagnostic for the metal alkylamide compound tetrakis(ethylmethylamido) hafnium (TEMAH), Hf[N(C(2)H(5))(CH(3))](4), was demonstrated. This diagnostic is based on direct absorption measurement of TEMAH vapor using an external cavity quantum cascade laser emitting at 979 cm(-1), coinciding with the most intense TEMAH absorption in the mid-infrared spectral region, and employing 50 kHz amplitude modulation with synchronous detection. Measurements were performed in a single-pass configuration in a research-grade atomic layer deposition (ALD) chamber. To examine the detection limit of this technique for use as a TEMAH delivery monitor, this technique was demonstrated in the absence of any other deposition reactants or products, and to examine the selectivity of this technique in the presence of deposition products that potentially interfere with detection of TEMAH vapor, it was demonstrated during ALD of hafnium oxide using TEMAH and water. This technique successfully detected TEMAH at molecular densities present during simulated industrial ALD conditions. During hafnium oxide ALD using TEMAH and water, absorbance from gas-phase reaction products did not interfere with TEMAH measurements while absorption by reaction products deposited on the optical windows did interfere, although interfering absorption by deposited reaction products corresponded to only ≈4% of the total derived TEMAH density. With short measurement times and appropriate signal averaging, estimated TEMAH minimum detectable densities as low as ≈2 × 10(12) molecules/cm(3) could be obtained. While this technique was demonstrated specifically for TEMAH delivery and hafnium oxide ALD using TEMAH and water, it should be readily applicable to other metal alkylamide compounds and associated metal oxide and nitride deposition chemistries, assuming similar metal alkylamide molar absorptivity and molecular density in the measurement chamber.

  9. THE M-M TRANSITION LASERS IN STRONTIUM VAPOR%锶蒸气M-M跃迁激光

    Institute of Scientific and Technical Information of China (English)

    姚志欣; 潘佰良; 陈钢; 方本民; 陈星; 陈坤

    2001-01-01

    通过在锶蒸气和氦混合气体中的高重复率脉冲放电,同时获得了锶原子4条谱线的激光振荡,它们对应于复三能级4d*3D3,2,1与5p*3P02,1,0之间的多谱线跃迁,其波长分别为2.92μm,3.01μm,2.69μm和2.60μm.除了3.01μm激光外,均为首次报道.激光平均功率合计约10mW,相互之间的强度比为5∶4∶4∶1.在分析了相关能级特征和实验现象的基础上,对其作用机理进行了初步的探讨,建议将其分类命名为M-M跃迁激光.%A set of laser oscillations of four strontium atom spectral lines simultaneity have been obtained, through high|repetition|frequency pulsed discharge in mixed gases of strontium vapor and helium buffer gas. The corresponding wavelengths with the transitions from compound three|energy levels 4d*3D3,2,1 to 5p*3P02,1,0 are 2.92μm, 3.01μm, 2.69μm and 2.60μm respectively,their ratios of intensities are 5∶4∶4∶1 and the total average laser power is 10mW.As far as we know,the laser spectral lines have never been reported except 3.01μm.On the basis of analyzing characteristics of corresponding energy levels and experimental phenomena,the action mechanism is discussed primarily.We suggest the classification of the spectral lines to be named as M|M transition laser.

  10. Continuous-wave, single-frequency 229 nm laser source for laser cooling of cadmium atoms

    CERN Document Server

    Kaneda, Yushi; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi

    2016-01-01

    Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the 4th harmonic using two successive second harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes $^{111}$Cd and $^{113}$Cd, which are applicable to optical lattice clocks.

  11. Faraday effect in alkali-metal vapors in a strong bichromatic field of laser light

    Science.gov (United States)

    Karagodova, T. Ya.; Kuptsova, A. V.

    2002-04-01

    Results of a numerical study of the Faraday effect arising upon propagation of the light beams with the frequencies ω L1 (resonant to the nS 1/2- nP 1/2, 3/2 transitions) and ω L2 (resonant to the nP 1/2, 3/2-( n+2) S 1/2 transitions) through alkali-metal vapors are presented. Characteristics of the magneto-optical rotation spectra at each of the frequencies are strongly affected by the second intense radiation field resonant to the adjacent transition. When the atoms interact with two strong light waves, resonant to adjacent transitions, and with a magnetic field, the shape of the Faraday rotation spectra depends on the energy shifts of the atomic states that arise due to the dynamic Stark effect and the Zeeman effect (the Paschen-Back or an intermediate-type effect), as well as due to the difference of populations of these states caused by the interaction of the atoms with the fields. The results obtained show that in the frequency selection method, based on the resonance Faraday effect, the frequency of the generated narrow-band beam can be tuned by the intensity of the strong wave, resonant to the transition between the excited states.

  12. Atom-interferometric gravitational-wave detection using heterodyne laser links

    Science.gov (United States)

    Hogan, Jason M.; Kasevich, Mark A.

    2016-09-01

    We propose a gravitational-wave detection method based on heterodyne laser links and light-pulse atom interferometry that enables high sensitivity gravitational-wave detection in the 0.1-mHz to 1-Hz frequency band using a single, long (>108 m), detector baseline. The detection baseline in previous atom-based proposals was constrained by the need for a reference laser to remain collimated over the optical propagation path between two satellites. Here we circumvent this requirement by employing a strong local oscillator laser near each atom ensemble that is phase referenced or phase locked to the reference laser beam. Longer baselines offer a number of potential advantages, including enhanced sensitivity, simplified atom optics, and reduced atomic source flux requirements.

  13. Optically Pumped Atomic Rubidium Lasers: Two-Photon and Exciplex Excitation Mechanisms

    Science.gov (United States)

    Gallagher, Jeffrey E.

    The Doppler-broadened two-photon absorption (TPA) cross-section for the 52S1/2 → 52 D5/2 transition in Rb is measured using direct absorption methods. The selection rule |DeltaF| ≤ 2 applied to both isotopes yields 17 transitions in 3 Doppler limited lines. A detailed model of the intensity profile was also developed to account for a focused Gaussian beam (with an M2 value of 1.09) propagating through a two-photon absorption medium. A peak absorbance of 24% was observed for an intensity of 6.28 kWcm2 at the focus, a Rb density of 4.6x1015 cm-3 , and a path length of 15 cm. Alkali concentrations from 1.61 - 8.52x1015 cm -3 were monitored in the far wing of the D 2 line. Extracting the hyperfine-broadened TPA cross-section from 87 test configurations, while varying the pump power, alkali concentration and focal length, yielded an error-weighted average of 6.75x10^-21 cm4W with a standard deviation of 3.61x10-21 cm4W. This cross-section is sufficient for a pulsed dye laser to bleach the pump transition in the Two-Photon Pumped Alkali Laser (TPAL) that lases at 420 nm and 5.2 microm. Optically pumped atomic rubidium lasers pumped in the blue satellite of the D2 line from the ground Rb-Ar or Rb-Kr collision pair to the dissociative B2S+1/2 state produce laser emission at 780.2 nm. Lasing is achieved for pump wavelengths of 752.3 to greater than 760 nm for the Rb-Ar system and 757.1 -- 760.4 nm for the Rb-Kr system. Slope efficiencies increase with both Rb and Ar concentrations and exceed 0.25% using a heat pipe configuration. The gain is very high with photon build-up times of 1--3.7 ns. Laser induced heating and subsequent condensation of alkali vapor in the heat pipe configuration currently limits operation to less than 2500 Torr.

  14. Development of long life pulse power supply for copper vapor laser. Do joki laser yo chojumyo reiki dengen no kaihatsu. ; Saidai shutsuryoku unten oyobi laser hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T.; Goto, N.; Nemoto, K. (Central Research Inst. of Electric Power Industry, Tokyo (Japan))

    1990-04-01

    Long life pulse power supply for Cu vapor laser was developed. This is composed of the pulse generation circuit and the pulse compression circuit. Current pulse of 10 mu second pulse width is generated in the pulse generating circuit by switching electric charge on the condensor charged through GTO (gate turn off) thyristors. The pulse compression circuit makes the current pulse fast to 300ms utilizing the difference of inductance at the saturation and the unsaturation on the circuit which uses a reactor having saturable property using a ferromagnetic substance for the core as the magnetic switch. The operation was carried out at the GTO generasting full power. Co base amorphous alloy of low loss was used for the core of saturable inductor and the circuit efficiency of 77% could be obtained by suppressing the heat generation in core even at 4,000Hz operation. The full output power of 8.2kW was possible which corresponds to 100W class laser oscillation. Repeated Cu vapor laser oscillation of 30W succeeded at the condition of 4,000Hz and power supply output of 5.9kW. 7 refs., 21 figs., 8 tabs.

  15. A compact and robust diode laser system for atom interferometry on a sounding rocket

    CERN Document Server

    Schkolnik, V; Wenzlawski, A; Grosse, J; Kohfeldt, A; Döringshoff, K; Wicht, A; Windpassinger, P; Sengstock, K; Braxmaier, C; Krutzik, M; Peters, A

    2016-01-01

    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone towards space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 liters and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technol...

  16. Knee structure in double ionization of noble atoms in circularly polarized laser fields

    Science.gov (United States)

    Chen, Xiang; Wu, Yan; Zhang, Jingtao

    2017-01-01

    Nonsequential double ionization is characterized by a knee structure in the plot of double-ionization probability versus laser intensity. In circularly polarized (CP) laser fields, this structure has only been observed for Mg atoms. By choosing laser fields according to a scaling law, we exhibit the knee structure in CP laser fields for Ar and He atoms. The collision of the ionized electron with the core enhances the ionization of the second electron and forms the knee structure. The electron recollision is universal in CP laser fields, but the ionization probability in the knee region decreases as the wavelength of the driven field increases. For experimental observations, it is beneficial to use target atoms with small ionization potentials and laser fields with short wavelengths.

  17. Development of Laser Light Sources for Trapping Radioactive Francium Atoms Toward Tests of Fundamental Symmetries

    Science.gov (United States)

    Harada, Ken-ichi; Ezure, Saki; Hayamizu, Tomohiro; Kato, Ko; Kawamura, Hirokazu; Inoue, Takeshi; Arikawa, Hiroshi; Ishikawa, Taisuke; Aoki, Takahiro; Uchiyama, Aiko; Itoh, Masatoshi; Ando, Shun; Aoki, Takatoshi; Hatakeyama, Atsushi; Hatanaka, Kichiji; Imai, Kenichi; Murakami, Tetsuya; Shimizu, Yasuhiro; Sato, Tomoya; Wakasa, Tomotsugu; Yoshida, Hidetomo P.; Sakemi, Yasuhiro

    We have developed laser light sources and a magneto-optical trap system for cooling and trapping radioactive francium (Fr) atoms. Because Fr is the heaviest alkali element, a Fr atom exhibits high sensitivity to symmetry violation effects such as atomic parity nonconservation (APNC) and the electron electric dipole moment (eEDM). A laser cooling and trapping technique reduces the systematic errors due to the Doppler effect and the motion-induced magnetic field effect caused by the velocity of atoms. Thus, optically cooled and trapped Fr atoms are among a few promising candidates considered for APNC and eEDM measurements. Frequency stabilization of laser light is required for any stable measurement involving trapped radioactive atoms, including Fr. Since the hyperfine splitting in iodine molecules (127I2) is close to the resonance frequency of the Fr D2 line, we performed frequency modulation spectroscopy of hyperfine structures of I2.

  18. Characterization and reactivity of Pd Pt bimetallic supported catalysts obtained by laser vaporization of bulk alloy

    Science.gov (United States)

    Rousset, J. L.; Cadete Santos Aires, F. J.; Bornette, F.; Cattenot, M.; Pellarin, M.; Stievano, L.; Renouprez, A. J.

    2000-09-01

    Bimetallic Pd-Pt clusters produced by laser vaporization of bulk alloy have been deposited on high surface alumina. Energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM) show that they have a perfectly well-defined stoichiometry and a narrow range of size. Therefore, they constitute ideal systems to investigate alloying effects towards reactivity. Pd-Pt alloys are already known for their applications in the hydrogenation of unsaturated hydrocarbons, especially aromatics, because this system is highly resistant to sulfur and nitrogen poisoning. In this context, the catalytic properties of this system have been investigated in the hydrogenation of tetralin in the presence of hydrogen sulfide. Preliminary results show that this model catalyst is more sulfur-resistant than each of the pure supported metals prepared by chemical methods.

  19. Real-time diode laser measurements of vapor-phase benzene.

    Science.gov (United States)

    Jeffers, J D; Roller, C B; Namjou, K; Evans, M A; McSpadden, L; Grego, J; McCann, P J

    2004-01-15

    An absorption spectrometer equipped with a IV-VI semiconductor tunable mid-IR diode laser was used to make sensitive measurements of benzene (C(6)H(6)) gas in the 5.1-microm spectral range. Wavelength modulation coupled with second-harmonic detection achieved accurate real-time quantification of benzene concentrations down to a minimum detection limit of 1 ppmv with an integration time of 4 s. A variety of calibrated benzene-sensing measurements were made, including the determination of the benzene concentrations in vehicle exhaust and headspace vapors from unleaded gasoline and other liquids. Kinetic phenomena, including the monitoring of benzene evaporation and absorption/desorption by granulated activated carbon were observed with the instrument. Measurements were performed that allowed experimental determination of the activation energy for desorption of benzene from activated carbon, which was found to be 198 meV/molecule (19.0 kJ/mol).

  20. Computer Control of the Spectral Composition of the Powerful Laser System Irradiation with a Wide Range of Laser Transitions on Metal Vapors

    Directory of Open Access Journals (Sweden)

    Soldatov Anatoly

    2016-01-01

    Full Text Available The results of the experimental study cycle of the multiwave metal vapor laser system on the basis of the original configuration of the multimedia laser emitter. The spectral parameters of the setup have been controlled using a personal computer (PC. This allows carrying out their independent optimization according to excitation conditions, and, therefore, promptly allocating the output set of oscillating wavelengths and their relative distribution in power, which makes the system attractive for scientific and technological application.

  1. Frequency doubled telecom fiber laser for a cold atom interferometer using optical lattices

    CERN Document Server

    Theron, Fabien; Dieu, Emily; Zahzam, Nassim; Cadoret, Malo; Zahzam, Nassim; Bresson, Alexandre

    2016-01-01

    A compact and robust laser system, based on a frequency-doubled telecom laser, providing all the lasers needed for a rubidium cold atom interferometer using optical lattices is presented. Thanks to an optical switch at 1.5 \\mu m and a dual-wavelength second harmonic generation system, only one laser amplifier is needed for all the laser system. Our system delivers at 780 nm a power of 900 mW with a detuning of 110 GHz for the optical lattice and a power of 650 mW with an adjustable detuning between 0 and -1 GHz for the laser cooling, the detection and the Raman transitions.

  2. Vaporization and coagulation potentials of the new electrosurgical rollerbar devices for transurethral prostatectomy as compared to contact laser fibers

    Science.gov (United States)

    van Swol, Christiaan F. P.; Hillenius, Robert-Jan; van Vliet, Remco J.; Verdaasdonck, Rudolf M.; Boon, Tom A.

    1996-05-01

    Laser prostatectomy is at present an established alternative for transurethral electroresection of the prostate (TUR-P). To compete with the different laser techniques, new electrosurgical modalities were developed as replacement for the standard electrosurgery tools for TUR-P. These modalities consist of a grooved cylinder fitted at the end of a TUR-P-element and are designed to combine both vaporization and coagulation in one device. The aim of this study was to investigate the potentials of the new 'rollerbar' devices and compare them with contact laser devices. Four different 'rollerbars' (Ciron, Storz and Prosurg), standard rollerball (Storz), and contact fibers (SLT) were applied to bovine myocard tissue submerged in glycine (electro) or saline (laser). The Valley Laboratory Force 40 and Force 300 were used as electrosurgical units; an MBB 4060 as Nd:YAG laser. Power settings ranged from 100 to 300 Watt (pure cut mode) for the electrosurgery device. The laser settings ranged from 10 to 60 Watt. The devices were moved over the tissue with a constant speed, while constant force was applied. The direct thermal effect of the devices was studied with a special thermal imaging technique on phantom tissue. Results show the vaporizing and coagulating power of the different devices. The rollerball (adjusted to high electrical power, i.e., 200 Watt) and the contact fibers provide similar vaporizing potential as the special-developed 'rollerbar' devices. Coagulation, necessary for hemostasis, is in all cases limited to a depth of about 2 mm. Increasing the electrical power from 200 to 300 watt only slightly increased the affected volume. The presented 'rollerbars' have a clear vaporizing and coagulating effect on tissue. The standard rollerball and contact laser fibers show similar capacities as the special-designed rollerbars.

  3. Chemical Vapor Deposition of Atomically-Thin Molybdenum Disulfide (MoS2)

    Science.gov (United States)

    2015-03-01

    photoluminescence. 15. SUBJECT TERMS Chemical vapor deposition (CVD) Nanotechnology Molybdenum disulfide (MoS2) Raman spectroscopy 16...by ANSI Std. Z39.18 UNCLASSIFIED Approved for public release; distribution is unlimited. i CONTENTS Page Introduction 1...UNCLASSIFIED Approved for public release; distribution is unlimited. 1 INTRODUCTION Recently, an explosion of interest in low-dimensional

  4. Coherent population transfer in Rydberg potassium atom by a single frequency-chirped laser pulse

    Institute of Scientific and Technical Information of China (English)

    Zhang Xian-Zhou; Ma Qiao-Zhi; Li Xiao-Hong

    2006-01-01

    By using the time-dependent multilevel approach, we have calculated the coherent population transfer among the quantum states of potassium atom by a single frequency-chirped laser pulse. The results show that the population can be efficiently transferred to a target state and be trapped there by using an ‘intuitive’ or a ‘counter-intuitive’ frequency sweep laser pulse in the case of ‘narrowband’ frequency-chirped laser pulse. It is also found that a pair of sequential ‘broadband’ frequency-chirped laser pulses can efficiently transfer population from one ground state of the A atom to the other one.

  5. Laser agitates probability flow in atoms to form alternating current and its peak-dip phenomenon

    CERN Document Server

    Cui, Huai-Yang

    2016-01-01

    By using trajectory-based approaches to quantum transition, it is found that laser can agitate the probability flow in atoms to form alternating current with the frequency of the laser. The detailed physical process of quantum transition is investigated, during which the alternating current in atomic probability flow becomes a key role connecting the external electromagnetic wave with the evolution of the quantum states in atoms. Computer was employed to simulate the physical process. The atomic alternating current may have the peak-dip phenomenon.

  6. DPAL: a new class of CW near-infrared high-power diode-pumped alkali (vapor) lasers

    Science.gov (United States)

    Krupke, William F.; Beach, Raymond J.; Kanz, Vernon K.; Payne, Stephen A.

    2004-05-01

    DPAL, a new class of diode pumped alkali vapor lasers, offers the prospect for high efficiency cw laser radiation at near-infrared wavelengths: cesium 895 nm, rubidium 795 nm, and potassium 770 nm. The physics of DPAL lasers are outlined, and the results of laboratory demonstrations using a titanium sapphire surrogate pump are summarized, along with benchmarked device models. DPAL electrical efficiencies of 25-30% are projected and near-diffraction-limited DPAL device power scaling into the multi-kilowatt regime from a single aperture is also projected.

  7. Construction and characterization of external cavity diode lasers for atomic physics.

    Science.gov (United States)

    Hardman, Kyle S; Bennetts, Shayne; Debs, John E; Kuhn, Carlos C N; McDonald, Gordon D; Robins, Nick

    2014-04-24

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included.

  8. Inversion symmetry breaking of atomic bound states in strong and short laser fields

    CERN Document Server

    Stooß, Veit; Ott, Christian; Blättermann, Alexander; Ding, Thomas; Pfeifer, Thomas

    2015-01-01

    In any atomic species, the spherically symmetric potential originating from the charged nucleus results in fundamental symmetry properties governing the structure of atomic states and transition rules between them. If atoms are exposed to external electric fields, these properties are modified giving rise to energy shifts such as the AC Stark-effect in varying fields and, contrary to this in a constant (DC) electric field for high enough field strengths, the breaking of the atomic symmetry which causes fundamental changes in the atom's properties. This has already been observed for atomic Rydberg states with high principal quantum numbers. Here, we report on the observation of symmetry breaking effects in Helium atoms for states with principal quantum number n=2 utilizing strong visible laser fields. These findings were enabled by temporally resolving the dynamics better than the sub-optical cycle of the applied laser field, utilizing the method of attosecond transient absorption spectroscopy (ATAS). We ident...

  9. High-order harmonic generation from Rydberg atoms driven by plasmonic-enhanced laser fields

    CERN Document Server

    Tikman, Y; Ciappina, M F; Chacon, A; Altun, Z; Lewenstein, M

    2015-01-01

    We theoretically investigate high-order harmonic generation (HHG) in Rydberg atoms driven by spatially inhomogeneous laser fields, induced, for instance, by plasmonic enhancement. It is well known that the laser intensity should to exceed certain threshold in order to generate HHG, when noble gas atoms in their ground state are used as an active medium. One way to enhance the coherent light coming from a conventional laser oscillator is to take advantage of the amplification obtained by the so-called surface plasmon polaritons, created when a low intensity laser field is focused onto a metallic nanostructure. The main limitation of this scheme is the low damage threshold of the materials employed in the nanostructures engineering. In this work we propose to use Rydberg atoms, driven by spatially inhomogeneous, plasmonic-enhanced laser fields, for HHG. We exhaustively discuss the behaviour and efficiency of these systems in the generation of coherent harmonic emission. To this aim we numerically solve the time...

  10. Quasistatic limit of the strong-field approximation describing atoms in intense laser fields: Circular polarization

    CERN Document Server

    Bauer, J H

    2010-01-01

    In the recent work of Vanne and Saenz [Phys. Rev. A 75, 063403 (2007)] the quasistatic limit of the velocity gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linearly polarized laser fields was derived. It was shown that in the low-frequency limit the ionization rate is proportional to the laser frequency (for a constant intensity of the laser field). In the present work I show that for circularly polarized laser fields the ionization rate is proportional to higher powers of the laser frequency for hydrogenic atoms. The new analytical expressions for asymptotic ionization rates (which become accurate in the quasistatic limit) contain no summations over multiphoton contributions. For very low laser frequencies (optical or infrared), these expressions usually remain with an order-of-magnitude agreement with the velocity gauge strong-field approximation.

  11. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qingyang, E-mail: liuqingyang0807@yahoo.com.c [Beijing Center for Physical and Chemical Analysis, Beijing 100089 (China)

    2010-07-15

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg{sup 0}, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL{sup -1} for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury (n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  12. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    Science.gov (United States)

    Liu, Qingyang

    2010-07-01

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg 0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL -1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury ( n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  13. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.

    Science.gov (United States)

    François, B; Calosso, C E; Danet, J M; Boudot, R

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad(2)/Hz and -129 dB rad(2)/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10(-14) at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  14. Productions of hollow atoms from solids irradiated by high intensity laser

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, K.; Sasaki, A.; Zhidkov, A. [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst. (Japan)

    2001-07-01

    The production of hollow atoms through the collisions of fast electrons with a solid is studied. These electrons are produced by high-intensity short-pulse laser irradiation on a solid. The inner-shell ionization and excitation processes by the fast electron impact are investigated. It is found that ionization processes give more significant contribution to the production of hollow atoms. (orig.)

  15. A dense gas of laser-cooled atoms for hybrid atom-ion trapping

    Science.gov (United States)

    Höltkemeier, Bastian; Glässel, Julian; López-Carrera, Henry; Weidemüller, Matthias

    2017-01-01

    We describe the realization of a dark spontaneous-force trap of rubidium atoms. The atoms are loaded from a beam provided by a two-dimensional magneto-optical trap yielding a capture efficiency of 75%. The dense and cold atomic sample is characterized by saturated absorption imaging. Up to 10^9 atoms are captured with a loading rate of 3× 10^9 atoms/s into a cloud at a temperature of 250 μK with the density exceeding 10^{11} atoms/cm^3. Under steady-state conditions, more than 90% of the atoms can be prepared into the absolute atomic ground state, which provides favorable conditions for the investigation of sympathetic cooling of ions in a hybrid atom-ion trap.

  16. Laser-Induced Particle Adsorption on Atomically Thin MoS2.

    Science.gov (United States)

    Tran Khac, Bien Cuong; Jeon, Ki-Joon; Choi, Seung Tae; Kim, Yong Soo; DelRio, Frank W; Chung, Koo-Hyun

    2016-02-10

    Atomically thin molybdenum disulfide (MoS2) shows great potential for use in nanodevices because of its remarkable electronic, optoelectronic, and mechanical properties. These material properties are often dependent on the thickness or the number of layers, and hence Raman spectroscopy is widely used to characterize the thickness of atomically thin MoS2 due to the sensitivity of the vibrational spectrum to thickness. However, the lasers used in Raman spectroscopy can increase the local surface temperature and eventually damage the upper layers of the MoS2, thereby changing the aforementioned material properties. In this work, the effects of lasers on the topography and material properties of atomically thin MoS2 were systematically investigated using Raman spectroscopy and atomic force microscopy. In detail, friction force microscopy was used to study the friction characteristics of atomically thin MoS2 as a function of laser powers from 0.5 to 20 mW and number of layers from 1 to 3. It was found that particles formed on the top surface of the atomically thin MoS2 due to laser-induced thermal effects. The degree of particle formation increased as the laser power increased, prior to the thinning of the atomically thin MoS2. In addition, the degree of particle formation increased as the number of MoS2 layers increased, which suggests that the thermal behavior of the supported MoS2 may differ depending on the number of layers. The particles likely originated from the atmosphere due to laser-induced heating, but could be eliminated via appropriate laser powers and exposure times, which were determined experimentally. The outcomes of this work indicate that thermal management is crucial in the design of reliable nanoscale devices based on atomically thin MoS2.

  17. The manipulation of atoms and bio-molecules by laser light

    CERN Document Server

    Chu, S

    1998-01-01

    A brief history of the laser cooling and trapping of atoms developed over the past 15 years will be presented. The cooling and trapping technology is already being applied in numerous areas of science and engineering. Applications to be discussed include atomic clocks, atom interferometers, as well as studies in polymer dynamics and protein motion. The talk also includes a video tape of DNA molecules being moved with optical tweezers.

  18. Velocity distribution measurements in atomic beams generated using laser induced back-ablation

    CERN Document Server

    Denning, A; Lee, S; Ammonson, M; Bergeson, S D

    2008-01-01

    We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.

  19. Nonlinear Effects in Quantum Dynamics of Atom Laser: Mean-Field Approach

    Institute of Scientific and Technical Information of China (English)

    JING Hui

    2002-01-01

    Quantum dynamics and statistics of an atom laser with nonlinear binary interactions are investigated inthe framework of mean-field approximation. The linearized effective Hamiltonian of the system is accurately solvable.It is shown that, although the input radio frequency field is in an ordinary Glauber coherent state, the output matterwave will periodically exhibit quadrature squeezing effects purely originated from the nonlinear atom-atom collisions.

  20. Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrieva, O., E-mail: o.dmitrieva@mpie.de [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Choi, P., E-mail: p.choi@mpie.de [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Gerstl, S.S.A. [Imago Scientific Instruments, Madison, WI 53711 (United States); Ponge, D.; Raabe, D. [Max-Planck-Institute for Iron Research, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)

    2011-05-15

    A precipitation hardened maraging TRIP steel was analyzed using a pulsed laser atom probe. The laser pulse energy was varied from 0.3 to 1.9 nJ to study its effect on the measured chemical compositions and spatial resolution. Compositional analyses using proximity histograms did not show any significant variations in the average matrix and precipitate compositions. The only remarkable change in the atom probe data was a decrease in the ++/+ charge state ratios of the elements. The values of the evaporation field used for the reconstructions exhibit a linear dependence on the laser pulse energy. The adjustment of the evaporation fields used in the reconstructions for different laser pulse energies was based on the correlation of the obtained cluster shapes to the TEM observations. No influence of laser pulse energy on chemical composition of the precipitates and on the chemical sharpness of their interfaces was detected. -- Research highlights: {yields} Changing the laser pulse energy in pulsed-laser atom probe could induce some changes in the analysis results of complex steels. {yields} Decreases in the evaporation fields and the ++/+ charge state ratios were detected with raising laser energy. {yields} Chemical composition of the intermetallic precipitates and the interface sharpness were not influenced by changing the laser energy.

  1. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Duarte, Fábio Andrei; Bizzi, Cezar Augusto; Antes, Fabiane Goldschmidt; Dressler, Valderi Luiz; Flores, Érico Marlon de Moraes

    2009-06-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  2. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Flores, Erico Marlon de Moraes [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)], E-mail: flores@quimica.ufsm.br

    2009-06-15

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L{sup - 1} KBr in 6 mol L{sup - 1} HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L{sup - 1} HCl and 2.5% m/v NaBH{sub 4} solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g{sup - 1} for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  3. Bias-assisted atomic force microscope nanolithography on NbS2 thin films grown by chemical vapor deposition

    Science.gov (United States)

    Bark, Hunyoung; Kwon, Sanghyuk; Lee, Changgu

    2016-12-01

    Niobium disulfide, one of the metallic transition metal dichalcogenides, has a high potential as an electrode material for electronic devices made of 2D materials. Here, we investigated the bias-assisted atomic force microscope nanolithography of NbS2 thin films synthesized by chemical vapor deposition. We analyzed the lithographed pattern using Raman spectroscopy, transmission electron microscopy and friction force microscopy. These analyses showed that lines having various widths and thicknesses could be generated using the lithography technique by simply varying the scan speed and applied voltage. These analyses also revealed that the NbS2 film transformed from a layered crystalline structure into an amorphous structure upon being lithographed. By generating four line segments forming a square and measuring I/V curves inside and outside of the square, the electrical properties of the lithographed material were characterized. These analyses indicate that NbS2 became hydrogenated and an insulator upon being lithographed.

  4. Progress towards atomic vapor photonic microcells: Coherence and polarization relaxation measurements in coated and uncoated HC-PCF

    Science.gov (United States)

    Bradley, T. D.; McFerran, J. J.; Jouin, J.; Ilinova, E.; Thomas, P.; Benabid, F.

    2013-03-01

    We report a comparative study on dephasing mechanisms between inner core coated and uncoated sections of the same Kagome hypocycloid-shaped core hollow core photonic crystal fibers (HC-PCF) filled with rubidium vapor. The comparison is performed by measuring the atomic polarization relaxation and electromagnetically induced transparency (EIT) linewidth in Rb loaded polydimethylsiloxane (PDMS) inner wall coated and bare silica core Kagome HC-PCF. The measurements show a polarization relaxation time of 32μs in a PDMS coated Kagome HC-PCF and 24μs in uncoated Kagome HC-PCF. A minimum EIT linewidth of 6.2±0.8MHz is achieved in PDMS coated Kagome HC-PCF, and 8.3±0.9 MHz for the uncoated Kagome HC-PCF.

  5. Dynamics of Two-Photon Lasers with Λ Atomic Level Configuration

    Institute of Scientific and Technical Information of China (English)

    YANG Peng; QIAN Feng; HUANG Hong-Bin; XIE Xia; ZHANG Ya-Jun

    2006-01-01

    We derive the dimensionless dynamic equations of two-photon lasers with A atomic level configuration by using the quantum Langevin equation method with the considerations of atomic coherence and injected classical fields.Then we analyze the stability and the chaotic dynamics of the two-photon laser by calculating the bifurcation diagram and the maximum Lyapunov exponent (MLE). Our results show that the Lorenz strange attractors and one-focus strange attractors can exist in this system, and the chaos can be induced or inhibited by the injected classical fields via Hopfbifurcations or crises, while the atomic coherence induces chaos via crises, and inhibit chaos via Hopf bifurcation or crises.

  6. Kinetic theory of (2+4)-level atom in σ+ -σ- laser fields

    Institute of Scientific and Technical Information of China (English)

    Yu Chuang; Yu De-Shui; Chen Jing-Biao

    2009-01-01

    The kinetic theory of (2+4)-level atoms in σ+ -σ- laser fields is presented.We systemically discuss friction coefficient,momentum diffusion tensor and atomic temperature based on the Fokker-Planck equation.This cooling system is much like that of a (1+3)-level atom,and the temperature is still limited to the Doppler temperature.Since this cooling system has not been investigated before,this work may be regarded as a necessary complement to the laser cooling theory.

  7. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  8. Interference Dynamics of Hydrogen Atoms in High-Frequency Dichromatic Laser Fields

    Science.gov (United States)

    Cheng, Tai-Wang; Li, Xiao-Feng; Fu, Pan-Ming; Chen, Shi-Gang

    2002-08-01

    We investigate the ionization and high-order harmonic generation of a hydrogen atom in high-frequency (several atomic units) super strong (up to several tens of atomic units) dichromatic laser fields. An effective iterative method in the framework of high-frequency Floquet theory is used in the calculations. We have considered two kinds of dichromatic laser field, i.e. 1ω-2ω and 1ω-3ω. We find that, in both the cases, the ionization and high-order harmonic generation show evident dependence on the relative phase and strength of the additional harmonic field. The dynamical origin of these interference effects is also discussed.

  9. Interference Dynamics of Hydrogen Atoms in High-Frequency Dichromatic Laser Fields

    Institute of Scientific and Technical Information of China (English)

    程太旺; 李晓峰; 傅盘铭; 陈式刚

    2002-01-01

    We investigate the ionization and high-order harmonic generation of a hydrogen atom in high-frequency (several atomic units) super strong (up to several tens of atomic units) dichromatic laser fields. An effective iterative method in the framework of high-frequency Floquet theory is used in the calculations. We have considered two kinds of dichromatic laser field, i.e. 1ω - 2ω and lω - 3ω. We find that, in both the cases, the ionization and high-order harmonic generation show evident dependence on the relative phase and strength of the additional harmonic field. The dynamical origin of these interference effects is also discussed.

  10. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Frentiu, Tiberiu, E-mail: ftibi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Mihaltan, Alin I., E-mail: alinblaj2005@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Ponta, Michaela, E-mail: mponta@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Darvasi, Eugen, E-mail: edarvasi@chem.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca (Romania); Frentiu, Maria, E-mail: frentiu.maria@yahoo.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania); Cordos, Emil, E-mail: emilcordos@gmail.com [National Institute for Research and Development of Optoelectronics Bucharest - Research Institute for Analytical Instrumentation, Donath 67, 400293 Cluj-Napoca (Romania)

    2011-10-15

    Highlights: {yields} Use of a miniaturized analytical system with microtorch plasma for Hg determination. {yields} Determination of Hg in non- and biodegradable materials using cold vapor generation. {yields} Figures of merit and advantages of the miniaturized system for Hg determination. - Abstract: A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min{sup -1} Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl{sub 2} reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO{sub 3}-H{sub 2}SO{sub 4} mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml{sup -1} or 0.08 {mu}g g{sup -1} in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg{sup -1}, while recovery in two polyethylene certified reference materials in the range 98.7 {+-} 4.5% (95% confidence level).

  11. Evaluation of vapor generation for the determination of nickel by inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Julieta [Comision Nacional de Energia Atomica, Unidad de Actividad Quimica, Centro Atomico Constituyentes, Av. Gral. Paz 1499, 1650-San Martin, Pcia. de Buenos Aires (Argentina); Smichowski, Patricia [Comision Nacional de Energia Atomica, Unidad Proyectos Especiales de Suministros Nucleares, Av. Libertador 8250, 1429-Buenos Aires (Argentina)

    2002-09-01

    Volatile species of Ni were generated by merging acidified aqueous samples and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the inlet tube of the plasma torch. Inductively coupled plasma atomic emission spectrometry (ICP-AES) was used for detection. The operating conditions (chemical and physical parameters) and the concentrations of different acids were evaluated for the efficient generation of Ni vapor. The detection limit (3 {sigma}{sub blank}) was 1.8 ng mL{sup -1}. The precision (RSD) of the determination was 4.2% at a level of 500 ng mL{sup -1} and 7.3% for 20 ng mL{sup -1} (n=10). The efficiency of the generation process was estimated to be 51%. The possible interfering effect of transition metals (Cd, Co, Cu, Cr, Fe, Mn, Zn), hydride forming elements (As, Ge, Pb, Sb, Se, Sn, Te), and Hg on Ni signal was examined. This study has demonstrated that Ni vapor generation is markedly free of interferences. (orig.)

  12. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  13. Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction

    Energy Technology Data Exchange (ETDEWEB)

    Wen Xiaodong [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Wu Peng [Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Chen Li [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Hou Xiandeng, E-mail: houxd@scu.edu.cn [College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China); Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064 (China)

    2009-09-14

    In this work, the microsampling nature of tungsten coil electrothermal vaporization Ar/H{sub 2} flame atomic fluorescence spectrometry (W-coil ETV-AFS) as well as tungsten coil electrothermal atomic absorption spectrometry (W-coil ET-AAS) was used with cloud point extraction (CPE) for the ultrasensitive determination of cadmium in rice and water samples. When the temperature of the extraction system is higher than the cloud point temperature of the selected surfactant Triton X-114, the complex of cadmium with dithizone can be quantitatively extracted into the surfactant-rich phase and subsequently separated from the bulk aqueous phase by centrifugation. The main factors affecting the CPE, such as concentration of Triton X-114 and dithizone, pH, equilibration temperature and incubation time, were optimized for the best extract efficiency. Under the optimal conditions, the limits of detection for cadmium by W-coil ETV-AFS and W-coil ET-AAS were 0.01 and 0.03 {mu}g L{sup -1}, with sensitivity enhancement factors of 152 and 93, respectively. The proposed methods were applied to the determination of cadmium in certified reference rice and water samples with analytical results in good agreement with certified values.

  14. Making optical atomic clocks more stable with $10^{-16}$ level laser stabilization

    CERN Document Server

    Jiang, Y Y; Lemke, N D; Fox, R W; Sherman, J A; Ma, L -S; Oates, C W

    2011-01-01

    The superb precision of an atomic clock is derived from its stability. Atomic clocks based on optical (rather than microwave) frequencies are attractive because of their potential for high stability, which scales with operational frequency. Nevertheless, optical clocks have not yet realized this vast potential, due in large part to limitations of the laser used to excite the atomic resonance. To address this problem, we demonstrate a cavity-stabilized laser system with a reduced thermal noise floor, exhibiting a fractional frequency instability of $2 \\times 10^{-16}$. We use this laser as a stable optical source in a Yb optical lattice clock to resolve an ultranarrow 1 Hz transition linewidth. With the stable laser source and the signal to noise ratio (S/N) afforded by the Yb optical clock, we dramatically reduce key stability limitations of the clock, and make measurements consistent with a clock instability of $5 \\times 10^{-16} / \\sqrt{\\tau}$.

  15. Stable and efficient operation of a large-bore copper vapor laser with funnel-shaped, grooved copper electrodes

    Science.gov (United States)

    Sadighi-Bonabi, R.; Pasandideh, K.; Zand, M.; Nazari Mahroo, H.

    2017-03-01

    Using an appropriate design of electrodes and adjustment of the thyratron decoupling circuit as a high-repetition-rate and high-voltage switch, very stable operation of a copper vapor laser at high pressures was obtained. This was achieved by canceling the intense filamentation in the laser plasma at the higher pressures. The transverse grooves on the inner surface of the funnel-shaped copper electrodes permit operation of the laser up to 100 torr. This design reduces the cathode-fall voltage, and as a result reduces the thermal loading in the cathode-fall region. The optimum pressure was 80 torr. At this condition the output power was more than that observed with expensive molybdenum electrodes in a similar laser system.

  16. Testing the distance-dependence of the van der Waals interaction between an atom and a surface through spectroscopy in a vapor nanocell

    CERN Document Server

    Laliotis, A; Todorov, P; Hamdi, I; Dutier, G; Yarovitski, A; Saltiel, S; Gorza, M P; Fichet, M; Ducloy, M; Bloch, D; Laliotis, Athanasdios; Maurin, Isabelle; Todorov, Petko; Hamdi, Ismah\\`{e}ne; Dutier, Gabriel; Yarovitski, Alexander; Saltiel, Solomon; Gorza, Marie-Pascale; Fichet, Mich\\`{e}le; Ducloy, Martial; Bloch, Daniel

    2007-01-01

    This paper presents our current measurements in a vapor nanocell aiming at a test of the distance-dependence of the atom-surface interaction, when simple asymptotic descriptions may turn to be not valid. A state-of-the-art of atom-surface interaction measurements is provided as an introduction, along with the comparison with the theory of the van der Waals (or Casimir-Polder) interaction; it is followed by a presentation of the most salient features of nanocell spectroscopy

  17. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Wang, A.H., E-mail: ahwang@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Zheng, R.R. [State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Tang, H.Q.; Qi, X.Y.; Ye, B. [Wuhan Huagong Laser Engineering CO., Ltd, Wuhan, 430223 (China)

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  18. CO2 laser vaporization in the treatment of cervical human papillomavirus infection in women with abnormal Papanicolaou smears

    DEFF Research Database (Denmark)

    Ruge, S; Felding, C; Skouby, S O

    1992-01-01

    In a randomized study, we have evaluated the treatment of cervical human papillomavirus (HPV) lesions by CO2 laser vaporization. Fifty patients with abnormal Papanicolaou smears and histological evidence of cervical HPV infection associated or not with cervical intraepithelial neoplasia (CIN) grade...... I were randomized to either a treatment or a control group. The cervical swabs were obtained every 3 months in both groups and examined for HPV type 16 DNA by the polymerase chain reaction. After a follow-up period of 12 months no significant differences were found between the laser treatment...

  19. Numerical simulation of transient, incongruent vaporization induced by high power laser

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.H.

    1981-01-01

    A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems is studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.

  20. Quasiclassical approach to high-energy QED processes in strong laser and atomic fields

    CERN Document Server

    Di Piazza, A

    2012-01-01

    An approach, based on the use of the quasiclassical Green's function, is developed for investigating high-energy quantum electrodynamical processes in combined strong laser and atomic fields. Employing an operator technique, we derive the Green's function of the Dirac equation in an arbitrary plane wave and a localized potential. Then, we calculate the total cross section of high-energy electron-positron photoproduction in an atomic field of arbitrary charge number (Bethe-Heitler process) in the presence of a strong laser field. It is shown that the laser field substantially modifies the cross section at already available incoming photon energies and laser parameters. This makes it feasible to observe the analogous effect in a laser field of the Landau-Pomeranchuk-Migdal effect for the Bethe-Heitler process.

  1. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    Science.gov (United States)

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2017-03-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.

  2. Pulsed-laser atom probe studies of a precipitation hardened maraging TRIP steel.

    Science.gov (United States)

    Dmitrieva, O; Choi, P; Gerstl, S S A; Ponge, D; Raabe, D

    2011-05-01

    A precipitation hardened maraging TRIP steel was analyzed using a pulsed laser atom probe. The laser pulse energy was varied from 0.3 to 1.9 nJ to study its effect on the measured chemical compositions and spatial resolution. Compositional analyses using proximity histograms did not show any significant variations in the average matrix and precipitate compositions. The only remarkable change in the atom probe data was a decrease in the ++/+ charge state ratios of the elements. The values of the evaporation field used for the reconstructions exhibit a linear dependence on the laser pulse energy. The adjustment of the evaporation fields used in the reconstructions for different laser pulse energies was based on the correlation of the obtained cluster shapes to the TEM observations. No influence of laser pulse energy on chemical composition of the precipitates and on the chemical sharpness of their interfaces was detected.

  3. NATO Advanced Study Institute on Laser Interactions with Atoms, Solids,and Plasmas

    CERN Document Server

    1994-01-01

    The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include ...

  4. Design and Fabrication of a Chip-based Continuous-wave Atom Laser

    CERN Document Server

    Power, E P; Vanderelzen, B; Herrera-Fierro, P; Murphy, R; Yalisove, S M; Raithel, G

    2012-01-01

    We present a design for a continuous-wave (CW) atom laser on a chip and describe the process used to fabricate the device. Our design aims to integrate quadrupole magnetic guiding of ground state Rb atoms with continuous surface adsorption evaporative cooling to create a continuous Bose-Einstein condensate; out-coupled atoms from the condensate should realize a CW atom laser. We choose a geometry with three wires embedded in a spiral pattern in a silicon subtrate. The guide features an integrated solenoid to mitigate spin-flip losses and provide a tailored longitudinal magnetic field. Our design also includes multiple options for atom interferometry: accomodations are in place for laser-generated atom Fabry-Perot and Mach-Zehnder interferometers, and a pair of atomic beam X-splitters is incorporated for an all-magnetic atom Mach-Zehnder setup. We demonstrate the techniques necessary to fabricate our device using existing micro- and nano-scale fabrication equipment, and discuss future options for modified desi...

  5. Vapor cell based sodium laser guide star mechanism study lab-bench

    Science.gov (United States)

    Wang, Hongyan; Li, Lihang; Luo, Ruiyao; Li, Lei; Ning, Yu; Xi, Fengjie; Xu, Xiaojun

    2016-07-01

    Sodium laser guide star (LGS) is the key for the success of modern adaptive optics (AO) supported large ground based telescopes, however, for many field applications, Sodium LGS's brightness is still a limited factor. Large amounts of theoretical efforts have been paid to optimize Sodium LGS exciting parameters, that is, to fully discover potential of harsh environment surrounding mesospheric extreme thin sodium atoms under resonant excitation, whether quantum or Monte Carlo based. But till to now, only limited proposals are demonstrated with on-sky test due to the high cost and engineering complexities. To bridge the gap between theoretical modeling and on-sky test, we built a magnetic field controllable sodium cell based lab-bench, which includes a small scale sum-frequency single mode 589nm laser, with added amplitude, polarization, and phase modulators. We could perform quantitative resonant fluorescence study under single, multi-frequency, side-band optical re-pumping exciting with different polarization, also we could perform optical field modulation to study Larmor precession which is considered as one of devils of Sodium LGS, and we have the ability to generate beams contain orbital angular moment. Our preliminary sodium cell based optical re-pumping experiments have shown excellent consistence with Bloch equation predicted results, other experimental results will also be presented in the report, and these results will give a direct support that sodium cell based lab-bench study could help a Sodium LGS scientists a lot before their on-sky test.

  6. Multiphoton resonant ionization of hydrogen atom exposed to two-colour laser pulses

    Institute of Scientific and Technical Information of China (English)

    Wang Pei-Jie; Fang Yan

    2008-01-01

    This paper studies the multiphoton resonant ionization by two-colour laser pulses in the hydrogen atom by solving the time-dependent Schr(o)dinger equation.By fixing the parameters of fundamental laser field and scanning the frequency of second laser field,it finds that the ionization probability shows several resonance peaks and is also much larger than the linear superposition of probabilities by applying two lasers separately.The enhancement of the ionization happens when the system is resonantly pumped to the excited states by absorbing two or more colour photons non-sequentially.

  7. Study of helium and beryllium atoms with strong and short laser field; Etude des atomes d'helium et de beryllium en champ laser intense et bref

    Energy Technology Data Exchange (ETDEWEB)

    Laulan, St

    2004-09-01

    We present a theoretical study of the interaction between a two-active electron atom and an intense (10{sup 14} to 10{sup 15} W/cm{sup 2}) and ultrashort (from a few 10{sup -15} to a few 10{sup -18} s) laser field. In the first part, we describe the current experimental techniques able to produce a coherent radiation of high power in the UV-XUV regime and with femtosecond time duration. A theoretical model of a laser pulse is defined with such characteristics. Then, we develop a numerical approach based on B-spline functions to describe the atomic structure of the two-active electron system. A spectral non perturbative method is proposed to solve the time dependent Schroedinger equation. We focalize our attention on the description of the atomic double continuum states. Finally, we expose results on the double ionization of helium and beryllium atoms with intense and short laser field. In particular, we present total cross section calculations and ejected electron energy distributions in the double continuum after one- and two-photon absorption. (author)

  8. Laser-Assisted Field Evaporation and Three-Dimensional Atom-by-Atom Mapping of Diamond Isotopic Homojunctions.

    Science.gov (United States)

    Mukherjee, Samik; Watanabe, Hideyuki; Isheim, Dieter; Seidman, David N; Moutanabbir, Oussama

    2016-02-10

    It addition to its high evaporation field, diamond is also known for its limited photoabsorption, strong covalent bonding, and wide bandgap. These characteristics have been thought for long to also complicate the field evaporation of diamond and make its control hardly achievable on the atomistic-level. Herein, we demonstrate that the unique behavior of nanoscale diamond and its interaction with pulsed laser lead to a controlled field evaporation thus enabling three-dimensional atom-by-atom mapping of diamond (12)C/(13)C homojunctions. We also show that one key element in this process is to operate the pulsed laser at high energy without letting the dc bias increase out of bounds for diamond nanotip to withstand. Herein, the role of the dc bias in evaporation of diamond is essentially to generate free charge carriers within the nanotip via impact ionization. The mobile free charges screen the internal electric field, eventually creating a hole rich surface where the pulsed laser is effectively absorbed leading to an increase in the nanotip surface temperature. The effect of this temperature on the uncertainty in the time-of-flight of an ion, the diffusion of atoms on the surface of the nanotip, is also discussed. In addition to paving the way toward a precise manipulation of isotopes in diamond-based nanoscale and quantum structures, this result also elucidates some of the basic properties of dielectric nanostructures under high electric field.

  9. Photonic properties of one-dimensionally-ordered cold atomic vapors under conditions of electromagnetically induced transparency

    CERN Document Server

    Schilke, Alexander; Guerin, William

    2012-01-01

    We experimentally study the photonic properties of a cold-atom sample trapped in a one-dimensional optical lattice under the conditions of electromagnetically induced transparency. We show that such a medium has two photonic band gaps. One of them is in the transparency window and gives rise to a Bragg mirror, which is spectrally very narrow and dynamically tunable. We discuss the advantages and the limitations of this system. As an illustration of a possible application we demonstrate a two-port all-optical switch.

  10. Methylmercury determination using a hyphenated high performance liquid chromatography ultraviolet cold vapor multipath atomic absorption spectrometry system

    Science.gov (United States)

    Campos, Reinaldo C.; Gonçalves, Rodrigo A.; Brandão, Geisamanda P.; Azevedo, Marlo S.; Oliveira, Fabiana; Wasserman, Julio

    2009-06-01

    The present work investigates the use of a multipath cell atomic absorption mercury detector for mercury speciation analysis in a hyphenated high performance liquid chromatography assembly. The multipath absorption cell multiplies the optical path while energy losses are compensated by a very intense primary source. Zeeman-effect background correction compensates for non-specific absorption. For the separation step, the mobile phase consisted in a 0.010% m/v mercaptoethanol solution in 5% methanol (pH = 5), a C 18 column was used as stationary phase, and post column treatment was performed by UV irradiation (60 °C, 13 W). The eluate was then merged with 3 mol L - 1 HCl, reduction was performed by a NaBH 4 solution, and the Hg vapor formed was separated at the gas-liquid separator and carried through a desiccant membrane to the detector. The detector was easily attached to the system, since an external gas flow to the gas-liquid separator was provided. A multivariate approach was used to optimize the procedure and peak area was used for measurement. Instrumental limits of detection of 0.05 µg L - 1 were obtained for ionic (Hg 2+) and HgCH 3+, for an injection volume of 200 µL. The multipath atomic absorption spectrometer proved to be a competitive mercury detector in hyphenated systems in relation to the most commonly used atomic fluorescence and inductively coupled plasma mass spectrometric detectors. Preliminary application studies were performed for the determination of methyl mercury in sediments.

  11. Methylmercury determination using a hyphenated high performance liquid chromatography ultraviolet cold vapor multipath atomic absorption spectrometry system

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Reinaldo C. [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S Vicente 225, 22453-900 Rio de Janeiro (Brazil)], E-mail: rccampos@puc-rio.br; Goncalves, Rodrigo A.; Brandao, Geisamanda P.; Azevedo, Marlo S. [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S Vicente 225, 22453-900 Rio de Janeiro (Brazil); Oliveira, Fabiana; Wasserman, Julio [Institut of Geosciences, Fluminense Federal University, Av. Gal. Milton Tavares de Souza, s/n, 24.210-340, Niteroi, Rio de Janeiro (Brazil)

    2009-06-15

    The present work investigates the use of a multipath cell atomic absorption mercury detector for mercury speciation analysis in a hyphenated high performance liquid chromatography assembly. The multipath absorption cell multiplies the optical path while energy losses are compensated by a very intense primary source. Zeeman-effect background correction compensates for non-specific absorption. For the separation step, the mobile phase consisted in a 0.010% m/v mercaptoethanol solution in 5% methanol (pH = 5), a C{sub 18} column was used as stationary phase, and post column treatment was performed by UV irradiation (60 deg. C, 13 W). The eluate was then merged with 3 mol L{sup -1} HCl, reduction was performed by a NaBH{sub 4} solution, and the Hg vapor formed was separated at the gas-liquid separator and carried through a desiccant membrane to the detector. The detector was easily attached to the system, since an external gas flow to the gas-liquid separator was provided. A multivariate approach was used to optimize the procedure and peak area was used for measurement. Instrumental limits of detection of 0.05 {mu}g L{sup -1} were obtained for ionic (Hg{sup 2+}) and HgCH{sub 3}{sup +}, for an injection volume of 200 {mu}L. The multipath atomic absorption spectrometer proved to be a competitive mercury detector in hyphenated systems in relation to the most commonly used atomic fluorescence and inductively coupled plasma mass spectrometric detectors. Preliminary application studies were performed for the determination of methyl mercury in sedi0011men.

  12. Magneto-Optical Trapping of Ytterbium Atoms with a 398.9 nm Laser

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng-Yi; XIONG Zhuan-Xian; LIANG Jie; HE Ling-Xiang; LU Bao-Long

    2008-01-01

    We report the realization of ytterbium magneto-optical trap (MOT) operating on the dipole-allowed 1S0 - 1P1 transition at 398.9nm. The MOT is loaded by a slowed atomic beam produced by a Zeeman slower. All seven stable isotopes of Yb atoms could be trapped separately at different laser detuning values. Over 107 174Yb atoms are collected in the MOT, whereas the atom number of fermionic isotope 171Yb is roughly 2.3 × 106 due to a lower abundance. Without the Zeeman slower, the trapped atom numbers are one order of magnitude lower.Both the even and odd isotopes are recognized as excellent candidates of optical clock transition, so the cooling and trapping of ytterbium atoms by the blue MOT is an important step for building an optical clock.

  13. Aluminum-coated hollow glass fibers for ArF-excimer laser light fabricated by metallorganic chemical-vapor deposition.

    Science.gov (United States)

    Matsuura, Y; Miyagi, M

    1999-04-20

    A hollow fiber composed of a glass capillary tube and a metal thin film upon the inside of the tube is proposed for the delivery of ArF-excimer laser light. From theoretical analysis, aluminum is chosen as the metal layer. A thin aluminum film is deposited by metallorganic chemical-vapor deposition, with dimethylethylamine alane employed as the source material. Measured loss spectra in vacuum-ultraviolet and ultraviolet regions and losses for ArF-excimer laser light show the low-loss property of the aluminum-coated fiber at the 193-nm wavelength of ArF-excimer laser light. The straight loss of the 1-m long, 1-mm-bore fiber is 1.0 dB.

  14. Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization

    Science.gov (United States)

    Yowell, Leonard; Nikolaev, Pavel; Gorelik, Olga; Allada, Rama Kumar; Sosa, Edward; Arepalli, Sivaram

    2013-01-01

    The "soft-bake" method is a simple and reliable initial purification step first proposed by researchers at Rice University for single-walled carbon nanotubes (SWCNT) produced by high-pressure carbon mon oxide disproportionation (HiPco). Soft-baking consists of annealing as-produced (raw) SWCNT, at low temperatures in humid air, in order to degrade the heavy graphitic shells that surround metal particle impurities. Once these shells are cracked open by the expansion and slow oxidation of the metal particles, the metal impurities can be digested through treatment with hydrochloric acid. The soft-baking of SWCNT produced by pulsed-laser vaporization (PLV) is not straightforward, because the larger average SWCNT diameters (.1.4 nm) and heavier graphitic shells surrounding metal particles call for increased temperatures during soft-bake. A part of the technology development focused on optimizing the temperature so that effective cracking of the graphitic shells is balanced with maintaining a reasonable yield, which was a critical aspect of this study. Once the ideal temperature was determined, a number of samples of raw SWCNT were purified using the soft-bake method. An important benefit to this process is the reduced time and effort required for soft-bake versus the standard purification route for SWCNT. The total time spent purifying samples by soft-bake is one week per batch, which equates to a factor of three reduction in the time required for purification as compared to the standard acid purification method. Reduction of the number of steps also appears to be an important factor in improving reproducibility of yield and purity of SWCNT, as small deviations are likely to get amplified over the course of a complicated multi-step purification process.

  15. Study of Doped ZnO Films Synthesized by Combining Vapor Gases and Pulsed Laser Deposition

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, Sandor L.; George, M. A.

    2000-01-01

    The properties and structure of the ZnO material are similar to those of the GaN. Since an excitonic binding energy of ZnO is about 60 meV, it has strong potential for excitonic lasing at the room temperature. This makes synthesizing ZnO films for applications attractive. However, there are several hurdles in fabricating electro-optical devices from ZnO. One of those is in growing doped p-type ZnO films. Although techniques have been developed for the doping of both p-type and n-type ZnO, this remains an area that can be improved. In this presentation, we will report the experimental results of using both thermal vapor and pulsed laser deposition to grow doped ZnO films. The films are deposited on (0001) sapphire, (001) Si and quartz substrates by ablating a ZnO target. The group III and V elements are introduced into the growth chamber using inner gases. Films are characterized by x-ray diffraction, scanning probe microscopy, energy dispersive spectroscopy, Auger electron spectroscopy, and electrical measurements. The full width at half maximum of theta rocking curves for epitaxial films is less than 0.5 deg. In textured films, it rises to several degrees. Film surface morphology reveals an island growth pattern, but the size and density of these islands vary with the composition of the reactive gases. The electrical resistivity also changes with the doped elements. The relationship between the doping elements, gas composition, and film properties will be discussed.

  16. Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling

    CERN Document Server

    Liu, Jie

    2014-01-01

    The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...

  17. Laser spectroscopy of the antiprotonic helium atom – its energy levels and state lifetimes

    CERN Document Server

    Hidetoshi, Yamaguchi

    2003-01-01

    The antiprotonic atom is a three-body exotic system consisting of an antiproton, an electron and a helium nucleus. Its surprising longevity was found and has been studied for more than 10 years. In this work, transition energies and lifetimes of this exotic atom were systematically studied by using the antiproton beam of AD(Antiproton Decelerator) facility at CERN, with an RFQ antiproton decelerator, a narrow-bandwidth laser, Cerenkov counters with fast-response photomultiplier tubes, and cryogenic helium target systems. Thirteen transition energies were determined with precisions of better than 200 ppb by a laser spectroscopy method, together with the elimination of the shift effect caused by collisions with surrounding atoms. Fifteen lifetimes (decay rates) of short-lived states were determined from the time distributions of the antiproton-annihilation signals and the resonance widths of the atomic spectral lines. The relation between the magnitude of the decay rates and the transition multipolarity was inv...

  18. Polarization dependence in inelastic scattering of electrons by hydrogen atoms in a circularly polarized laser field

    Science.gov (United States)

    Buică, Gabriela

    2017-01-01

    We theoretically study the influence of laser polarization in inelastic scattering of electrons by hydrogen atoms in the presence of a circularly polarized laser field in the domain of field strengths below 107 V/cm and high projectile energies. A semi-perturbative approach is used in which the interaction of the projectile electrons with the laser field is described by Gordon-Volkov wave functions, while the interaction of the hydrogen atom with the laser field is described by first-order time-dependent perturbation theory. A closed analytical solution is derived in laser-assisted inelastic electron-hydrogen scattering for the 1 s → nl excitation cross section which is valid for both circular and linear polarizations. For the excitation of the n=2 levels simple analytical expressions of differential cross section are derived for laser-assisted inelastic scattering in the perturbative domain, and the differential cross sections by the circularly and linearly polarized laser fields and their ratios for one- and two-photon absorption are calculated as a function of the scattering angle. Detailed numerical results for the angular dependence and the resonance structure of the differential cross sections are discussed for the 1 s → 4 l excitations of hydrogen in a circularly polarized laser field.

  19. A tunable low-drift laser stabilized to an atomic reference

    CERN Document Server

    Leopold, Tobias; Feuchtenbeiner, Stefanie; Grebing, Christian; Micke, Peter; Scharnhorst, Nils; Leroux, Ian D; López-Urrutia, José R Crespo; Schmidt, Piet O

    2016-01-01

    We present a laser system with a linewidth and long-term frequency stability at the 50 kHz level. It is based on a Ti:Sapphire laser emitting radiation at 882 nm which is referenced to an atomic transition. For this, the length of an evacuated transfer cavity is stabilized to a reference laser at 780 nm locked to the $^{85}$Rb D$_2$-line via modulation transfer spectroscopy. Full tunability of the spectroscopy laser is realized using the sideband locking technique to the transfer cavity. In this configuration, the linewidth of the spectroscopy laser is derived from the transfer cavity, while the long-term stability is derived from the atomic resonance. The frequency stability and linewidth of both lasers are characterized by comparison against an active hydrogen maser frequency standard and an ultra-narrow linewidth laser, respectively. The spectral gaps are bridged with an optical frequency comb. The laser system presented here will be used for spectroscopy of the $1s^{2}2s^{2}2p\\ ^{2}P_{1/2} -\\ ^{2}P_{3/2}$...

  20. Quantitative analysis of carbon in cementite using pulsed laser atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Kitaguchi, H.S., E-mail: hiroto.kitaguchi@twi.co.uk; Lozano-Perez, S.; Moody, M.P.

    2014-12-15

    Carbon quantification and the standardisation in a pure cementite were conducted using pulsed-laser atom probe tomography (APT). The results were analysed to investigate a dependence on three distinct experimental parameters; the laser pulse energy, the cryogenic specimen temperature and the laser pulse frequency. All the measurements returned an apparent carbon content of 25.0±1.0 at%. Carbon content measurements showed no clear dependence on the cryogenic temperature or the laser pulse frequency. However, the results did demonstrate a strong correlation with the laser pulse energy. For lower laser pulse energies, the analysis returned carbon contents higher than the stoichiometric ratio. It was suggested that this effect is due to pile up of {sup 56}Fe{sup ++} at the detector and as a consequence there is a systematic preferential loss of these ions throughout the course of the experiment. Conversely, in experiments utilising higher laser pulse energies, it was found that the carbon contents were smaller than the stoichiometric ratio. In these experiments an increasing fraction of the larger carbon molecular ions (e.g., C{sub 5} ions) were detected as part of a multiple detection events, which could affect the quantification measurements. - Highlights: • This paper describes carbon quantifications in cementite. • Laser pulsed atom probe tomography successfully quantified the carbon content. • A unique background subtraction method was applied. • Deviations from the stoichiometry were discussed.

  1. Quantum–classical correspondence in chaotic dynamics of laser-driven atoms

    Science.gov (United States)

    Prants, S. V.

    2017-04-01

    This paper is a review article on some aspects of quantum–classical correspondence in chaotic dynamics of cold atoms interacting with a standing-wave laser field forming an optical lattice. The problem is treated from both (semi)classical and quantum points of view. In both approaches, the interaction of an atomic electic dipole with the laser field is treated quantum mechanically. Translational motion is described, at first, classically (atoms are considered to be point-like objects) and then quantum mechanically as a propagation of matter waves. Semiclassical equations of motion are shown to be chaotic in the sense of classical dynamical chaos. Point-like atoms in an absolutely deterministic and rigid optical lattice can move in a random-like manner demonstrating a chaotic walking with typical features of classical chaos. This behavior is explained by random-like ‘jumps’ of one of the atomic internal variable when atoms cross nodes of the standing wave and occurs in a specific range of the atom-field detuning. When treating atoms as matter waves, we show that they can make nonadiabatic transitions when crossing the standing-wave nodes. The point is that atomic wave packets split at each node in the same range of the atom-field detuning where the classical chaos occurs. The key point is that the squared amplitude of those semiclassical ‘jumps’ equal to the quantum Landau–Zener parameter which defines the probability of nonadiabatic transitions at the nodes. Nonadiabatic atomic wave packets are much more complicated compared to adiabatic ones and may be called chaotic in this sense. A few possible experiments to observe some manifestations of classical and quantum chaos with cold atoms in horizontal and vertical optical lattices are proposed and discussed.

  2. Relativistic semi-classical theory of atom ionization in ultra-intense laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A relativistic semi-classical theory (RSCT) of H-atom ionizationin ultra-intense laser (UIL) is proposed. A relativistic analytical expression for ionization probability of H-atom in its ground state is given. This expression, compared with non-relativistic expression, clearly shows the effects of the magnet vector in the laser, the non-dipole approximation and the relativistic mass-energy relation on the ionization processes. At the same time, we show that under some conditions the relativistic expression reduces to the non-relativistic expression of non-dipole approximation. At last, some possible applications of the relativistic theory are briefly stated.

  3. Combined laser and atomic force microscope lithography on aluminum: Mask fabrication for nanoelectromechanical systems

    DEFF Research Database (Denmark)

    Berini, Abadal Gabriel; Boisen, Anja; Davis, Zachary James;

    1999-01-01

    A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production of nanoelectromecha......A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production...

  4. Discrete Energies of a Weakly Outcoupled Atom Laser Beam Outside the Bose–Einstein Condensate Region

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno

    2014-12-01

    Full Text Available We consider the possibility of a discrete set of energies of a weakly outcoupled atom laser beam to the homogeneous Schrödinger equation with anisotropic harmonic trap in Cartesian coordinates outside the Bose–Einstein condensate region. This treatment is used because working in the cylindrical coordinates is not really possible, even though we implement the cigar-shaped trap case. The Schrödinger equation appears to replace a set of two-coupled Gross– Pitaevskii equations by enabling the weak-coupling assumption. This atom laser can be produced in a simple way that only involves extracting the atoms in a condensate from by using the radio frequency field. We initially present the relation between condensates as sources and atom laser as an output by exploring the previous work of Riou et al. in the case of theoretical work for the propagation of atom laser beams. We also show that even though the discrete energies are obtained by means of an approaching harmonic oscillator, degeneracy is only available in two states because of the anisotropic external potential

  5. Temporal Characteristic of M-M Transition Lasers in Strontium Atom Vapour

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; CHENG Cheng

    2008-01-01

    The kinetic process of Sr atom metastable-metastable transition lasers in He-Sr longitudinal pulsed discharge is analysed and a concise self-consistent physical model is developed. The temporal evolutions of discharge parameters, main particle densities, the electron temperature, and the lasing pulses are numerically calculated.The results provided by the model agree well with the experiment, and the temporal behaviour of each laser pulse is explained successfully by the simulation results.

  6. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T., E-mail: inoue-t@cyric.tohoku.ac.jp [Tohoku University, Frontier Research Institute of Interdisciplinary Sciences (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S. [Indian Institute of Technology Roorkee (India); and others

    2015-04-15

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  7. 6th International Workshop on Application of Lasers in Atomic Nuclei Research

    CERN Document Server

    Błaszczak, Z; Marinova, K; LASER 2004

    2006-01-01

    6th International Workshop on Application of Lasers in Atomic Nuclei Research, LASER 2004, held in Poznan, Poland, 24-27 May, 2004 Researchers and graduate students interested in the Mössbauer Effect and its applications will find this volume indispensable. The volume presents the most recent developments in the methodology of Mössbauer spectroscopy. Reprinted from Hyperfine Interactions (HYPE) Volume 162, 1-4

  8. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  9. Effects of cooperative atomic behavior on lasers. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Senitzky, I.R.

    1980-09-01

    The effect of cooperative behavior, both with respect to pumping and relaxation, on a number of three-level atomic systems - which are assumed to have a dipole moment at all three transition frequencies - is analyzed. The atoms are coupled to two cavity modes resonant at the two intermediate frequencies and pumped coherently at the highest frequency. For sufficiently strong pumping, three steady states are shown to exist, the stability of which depends on the pumping strength and the cavity losses. Transition from one steady state to another produces modulated field pulses in both modes, with the phase of the modulation envelopes as well as the phase of the fields being synchronized. Conditions for the generation of various types of pulses are investigated. A generalization that takes into account pump losses due to atomic reaction is introduced and the effect of these losses is studied.

  10. A compact atomic beam based system for Doppler-free laser spectroscopy of Strontium atoms

    OpenAIRE

    Verma, Gunjan; Vishwakarma, Chetan; Dharmadhikari, C. V.; Rapol, Umakant D.

    2016-01-01

    We report the construction of a simple, light weight and compact atomic beam spectroscopy cell for Strontium atoms. The cell is built using glass blowing technique and includes a simple Titanium Sublimation Pump for active pumping of the residual and background gases to maintain ultra-high vacuum. Commercially available and electrically heated dispenser source is used to generate the beam of Sr atoms. We perform spectroscopy on the $5s^2\\ ^1S_0\\longrightarrow 5s\\ 5p\\ ^1P_1$ transition to obta...

  11. Site Specificity in Femtosecond Laser Desorption of Neutral H Atoms from Graphite(0001)

    DEFF Research Database (Denmark)

    Frigge, R.; Hoger, T.; Siemer, B.;

    2010-01-01

    Femtosecond laser excitation and density functional theory reveal site and vibrational state specificity in neutral atomic hydrogen desorption from graphite induced by multiple electronic transitions. Multimodal velocity distributions witness the participation of ortho and para pair states...... of chemisorbed hydrogen in the desorption process. Very slow velocities of 700 and 400  ms-1 for H and D atoms are associated with the desorption out of the highest vibrational state of a barrierless potential....

  12. Anomalous Effects of Driving Field Linewidth on a One-Atom Dressed-State Laser

    Institute of Scientific and Technical Information of China (English)

    YANG Jin-Jin; Hu Xiang-Ming

    2007-01-01

    We examine the effects of driving Geld linewidth on a one-atom dressed state laser. Unexpectedly, the linewidth leads to anomalous effects on the cavity Geld. The mean photon number of the cavity Geld is raised or the normalized variance is reduced to a certain degree as the linewidth increases for an appropriate range of parameters. The responsible mechanism is attributed to the fluctuation-induced modification of the electromagnetic reservoir where the atom stays.

  13. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  14. Vapor-Phase Atomic Layer Deposition of Co9S8 and Its Application for Supercapacitors.

    Science.gov (United States)

    Li, Hao; Gao, Yuanhong; Shao, Youdong; Su, Yantao; Wang, Xinwei

    2015-10-14

    Atomic layer deposition (ALD) of cobalt sulfide (Co9S8) is reported. The deposition process uses bis(N,N'-diisopropylacetamidinato)cobalt(II) and H2S as the reactants and is able to produce high-quality Co9S8 films with an ideal layer-by-layer ALD growth behavior. The Co9S8 films can also be conformally deposited into deep narrow trenches with aspect ratio of 10:1, which demonstrates the high promise of this ALD process for conformally coating Co9S8 on high-aspect-ratio 3D nanostructures. As Co9S8 is a highly promising electrochemical active material for energy devices, we further explore its electrochemical performance by depositing Co9S8 on porous nickel foams for supercapacitor electrodes. Benefited from the merits of ALD for making high-quality uniform thin films, the ALD-prepared electrodes exhibit remarkable electrochemical performance, with high specific capacitance, great rate performance, and long-term cyclibility, which highlights the broad and promising applications of this ALD process for energy-related electrochemical devices, as well as for fabricating complex 3D nanodevices in general.

  15. A compact and robust diode laser system for atom interferometry on a sounding rocket

    Science.gov (United States)

    Schkolnik, V.; Hellmig, O.; Wenzlawski, A.; Grosse, J.; Kohfeldt, A.; Döringshoff, K.; Wicht, A.; Windpassinger, P.; Sengstock, K.; Braxmaier, C.; Krutzik, M.; Peters, A.

    2016-08-01

    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone toward space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology, is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 l and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technological maturity by remaining frequency stabilized throughout the mission including the rocket's boost phase.

  16. Investigation on 447.3 nm blue-violet laser by extra-cavity frequency doubling of a diode-pumped cesium vapor laser

    Science.gov (United States)

    Xu, Dongdong; Chen, Fei; Guo, Jin; Shao, Mingzhen; Xie, Jijiang

    2016-09-01

    447.3 nm blue-violet lasers are investigated by extra-cavity single-pass second harmonic generation (SHG) of diode-pumped cesium vapor lasers (Cs-DPALs) using a LBO crystal. Two types of 894.6 nm Cs-DPAL are constructed, and the beam quality factors are Mx2=1.02, My2=1.13 and Mx2=2.13, Mx2=2.66, respectively. The maximum output powers for the two types of Cs-DPAL operating in pulsed mode are 0.692 W and 2.6 W, and the corresponding maximum second harmonics (SH) powers are 9.5 μW and 11.2 μW at optimal focusing parameter of 1.68, respectively. The relative insensitivity of SH power to the LBO crystal temperature and the influence of Cs laser beam quality on the SHG efficiency are analyzed qualitatively.

  17. UV-photochemical vapor generation of selenium for atomic absorption spectrometry: Optimization and 75Se radiotracer efficiency study

    Science.gov (United States)

    Rybínová, Marcela; Musil, Stanislav; Červený, Václav; Vobecký, Miloslav; Rychlovský, Petr

    2016-09-01

    Volatile selenium compounds were generated UV-photochemically in the continuous flow mode using four UV-photoreactors differing in the material of the reaction coil; Teflon tubing and quartz tubes with various inner diameters and wall thicknesses were tested. Atomic absorption spectrometry with an externally heated quartz furnace atomizer was employed as the detector. The relevant experimental generation parameters were optimized and the basic analytical characteristics were determined. Using formic acid as the photochemical agent, limits of detection achieved for selenium were in the range 46-102 ng L- 1 in dependence on the type of UV-photoreactor employed. When nitric acid was also added to the photochemical agent, the limits of detection were reduced to 27-44 ng L- 1. The repeatability did not exceed 2.4% (5 μg L- 1 Se(IV), n = 10). Experiments with 75Se radiotracer have been performed for the first time to quantify the efficiency of UV-photochemical vapor generation (UV-PVG) of selenium. The highest efficiency of 67 ± 1% was obtained for a UV-photoreactor containing a quartz reaction coil (2.0 mm i.d., 4.0 mm o.d.). The generation efficiency of 61 ± 1% was obtained for a Teflon reaction coil (1.0 mm i.d., 1.4 mm o.d.). Mapping of the radiotracer distribution in the individual parts of the apparatus did not reveal substantial transport losses of the analyte in the UV-PVG system.

  18. Atomic jet with ionization detection for laser spectroscopy of Rydberg atoms under collisions and fields

    Science.gov (United States)

    Philip, G.

    2008-03-01

    An efficient atomic jet setup offering many unprecedented advantages over a conventional heat pipe setup used in multi-photon spectroscopy, mainly of alkaline-earth metals, has been constructed by a scheme in which the sample material is encapsulated in a disposable cartridge oven located inside a thermally stabilised heat-pipe and is made to effuse in to a row of atomic beams merging to form a jet target. This novel scheme combines the advantages of both high density atomic beam with convenient geometry for orthogonal excitation and high sensitive ionisation detection capabilities of thermionic diodes, besides eliminating several problems inherent in the usual heat-pipe operation. Out of various designs, typical results are presented for a linear heat-pipe with vertical atomic jet used in two-photon spectroscopy of highly excited states of Sr I. Controlled excitations of both Rydberg and non-Rydberg states, which cannot otherwise be accessed from the ground state due to parity and spectroscopic selection rules, have been achieved by employing a weak electric field complimented by collisions. The atomic jet setup is also found very useful for the study of collisional broadening and shift of excited states and time evolution of Rydberg atoms.

  19. Laser programs highlights, July--August 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Laser research at LLNL is divided into five major programmatic areas: inertial confinement fusion (ICF), uranium atomic vapor laser isotope separation (U-AVLIS), special (plutonium) isotope separation (SIS), laser technology, and advanced applications. We have made important progress this past year in each of these areas. This report covers the current state of these 5 areas.

  20. Enhanced generation of vacuum-ultraviolet radiation by four-wave mixing in mercury using pulsed laser vaporization

    Science.gov (United States)

    Chénais, S.; Forget, S.; Philippet, L.; Castex, M.-C.

    2007-11-01

    The efficiency of a coherent vacuum ultraviolet (VUV) source at 125 nm, based on two-photon resonant four-wave mixing in mercury vapor, has been enhanced by up to two orders of magnitude. This enhancement was obtained by locally heating a liquid mercury surface with a pulsed excimer laser, resulting in a high-density vapor plume in which the nonlinear interaction occurred. Energies up to 5 μJ (1 kW peak power) have been achieved while keeping the overall mercury cell at room temperature, avoiding the use of a complex heat pipe. We have observed a strong saturation of the VUV yield when peak power densities of the fundamental beams exceeded the GW/cm2 range, as well as a large intensity-dependent broadening (up to ˜ 30 cm-1) of the two-photon resonance. The source has potential applications for high-resolution interference lithography and photochemistry.

  1. Adiabatic Floquet Picture for Hydrogen Atom in an Intense Laser Field

    CERN Document Server

    Wang, Yujun; Esry, B D

    2010-01-01

    We develop an adiabatic Floquet picture in the length gauge to describe the dynamics of a hydrogen atom in an intense laser field. In this picture, we discuss the roles played by frequency and intensity in terms of adiabatic potentials and the couplings between them, which gives a physical and intuitive picture for quantum systems exposed to a laser field. For simplicity, analyze hydrogen and give the adiabatic potential curves as well as some physical quantities that can be readily calculated for the ground state. Both linearly and circularly polarized laser fields are discussed.

  2. Laser frequency offset locking scheme for high-field imaging of cold atoms

    CERN Document Server

    Puentes, Graciana

    2011-01-01

    We present a simple and flexible frequency offset locking scheme developed for high-field imaging of ultra-cold atoms which relies on commercially available RF electronics only. The main new ingredient is the use of the sharp amplitude response of a home-made RF filter to provide an error signal for locking the lasers. We were able to offset lock two independent diode lasers within a capture range of 200 MHz, and with a tuning range of up to 1.4GHz. The beat-note residual fluctuations for offset locked lasers are bellow 2MHz for integration times of several hundreds of seconds.

  3. Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples.

    Science.gov (United States)

    Bagheri, Habib; Naderi, Mehrnoush

    2009-06-15

    A new method based on single-drop microextraction (SDME) combined with electrothermal vaporization atomic absorption spectroscopy (ETV-AAS) was developed for the trace determination of mercury in water samples. A microdrop of m-xylene was applied as the extraction solvent. After extraction, the microdrop was introduced, directly, into a graphite furnace of AAS. Some important extraction parameters such as type of solvent, volume of solvent, sample stirring, ionic strength, sample pH, chelating agent concentration, sample temperature, and extraction time were investigated and optimized. The highest possible microdrop volume of 10 microL, a sampling temperature of 27 degrees C, and use of m-xylene containing dithizone, as complexing agent, are major parameters led to achieve a high enrichment factor of 970. Under the optimized conditions, the detection limit of the method was 0.01 microg L(-1) and the relative standard deviation was 6.1% (n=7). The proposed method has been successfully applied to the determination of Hg in two river water samples. The effects of interfering species such as Pt, Pd, Cu, Au, and Bi, having the tendency to form complexes with dithizone, at two concentration levels of 100 and 1000 microg L(-1) were also studied.

  4. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    Science.gov (United States)

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level).

  5. Atomic-layer chemical-vapor-deposition of TiN thin films on Si(100) and Si(111)

    CERN Document Server

    Kim, Y S; Kim, Y D; Kim, W M

    2000-01-01

    An atomic-layer chemical vapor deposition (AL-CVD) system was used to deposit TiN thin films on Si(100) and Si(111) substrates by cyclic exposures of TiCl sub 4 and NH sub 3. The growth rate was measured by using the number of deposition cycles, and the physical properties were compared with those of TiN films grown by using conventional deposition methods. To investigate the growth mechanism, we suggest a growth model for TiN n order to calculate the growth rate per cycle with a Cerius program. The results of the calculation with the model were compared with the experimental values for the TiN film deposited using the AL-CVD method. The stoichiometry of the TiN film was examined by using Auger electron spectroscopy, and the chlorine and the oxygen impurities were examined. The x-ray diffraction and the transmission electron microscopy results for the TiN film exhibited a strong (200) peak and a randomly oriented columnar microstructure. The electrical resistivity was found to decrease with increasing deposit...

  6. A demonstration of one-atom detection. [Proportional counter with laser photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G.S.; Nayfeh, M.H.; Young, J.P.

    1977-03-01

    Resonance ionization spectroscopy, a photoionization method in which all of a given quantum selected species are converted to ion pairs, has been used to develop a detector for a single atom. We have demonstrated the detection of one atom by using a pulsed dye laser to photoionize Cs to saturation and a proportional counter for the detection of single electrons. Some current applications, e.g., the slow transport and chemical reactions of atoms, are briefly discussed. Future applications may include the detection of rare events such as quarks, solar neutrinos, and superheavy elements. (AIP)

  7. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    Science.gov (United States)

    Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A.

    2016-10-01

    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion inside the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites.

  8. Control of atomic transition rates via laser light shaping

    CERN Document Server

    Jauregui, R

    2015-01-01

    A modular systematic analysis of the feasibility of modifying atomic transition rates by tailoring the electromagnetic field of an external coherent light source is presented. The formalism considers both the center of mass and internal degrees of freedom of the atom, and all properties of the field: frequency, angular spectrum, and polarization. General features of recoil effects for internal forbidden transitions are discussed. A comparative analysis of different structured light sources is explicitly worked out. It includes spherical waves, Gaussian beams, Laguerre-Gaussian beams, and propagation invariant beams with closed analytical expressions. It is shown that increments in the order of magnitude of the transition rates for Gaussian and Laguerre-Gaussian beams, with respect to those obtained in the paraxial limit, requires waists of the order of the wavelength, while propagation invariant modes may considerably enhance transition rates under more favorable conditions. For transitions that can be natura...

  9. Resonant three-photon ionization of hydrogenic atoms by a non-monochromatic laser field

    NARCIS (Netherlands)

    Yakhontov, V.; Santra, R.; Jungmann, K.

    1999-01-01

    We present ionization probability and lineshape calculations for the two-step three- photon ionization process, 1S (2(h)over-bar-omega)under-right-arrow, 2S ((h)over-bar-omega)under-right-arrow epsilon P, of the ground state of hydrogenic atoms in a non-monochromatic laser field with a time-dependen

  10. Resonant three-photon ionization of hydrogenic atoms by a non-monochromatic laser field

    NARCIS (Netherlands)

    Yakhontov, V.; Santra, R.; Jungmann, K.

    1999-01-01

    We present ionization probability and lineshape calculations for a specifed two-step three-photon ionization process of the ground state of hydrogenic atoms in a non-monochromatic laser field with a time-dependent amplitude. Within the framework of a three-level model, the AC Stark shifts and non-ze

  11. Non-Markovian dynamics in pulsed and continuous wave atom lasers

    CERN Document Server

    Breuer, H P; Kappler, B; Petruccione, F

    1999-01-01

    The dynamics of atom lasers with a continuous output coupler based on two-photon Raman transitions is investigated. With the help of the time-convolutionless projection operator technique the quantum master equations for pulsed and continuous wave (cw) atom lasers are derived. In the case of the pulsed atom laser the power of the time-convolutionless projection operator technique is demonstrated through comparison with the exact solution. It is shown that in an intermediate coupling regime where the Born-Markov approximation fails the results of this algorithm agree with the exact solution. To study the dynamics of a continuous wave atom laser a pump mechanism is included in the model. Whereas the pump mechanism is treated within the Born-Markov approximation, the output coupling leads to non-Markovian effects. The solution of the master equation resulting from the time-convolutionless projection operator technique exhibits strong oscillations in the occupation number of the Bose-Einstein condensate. These os...

  12. Quantum-mechanical theory including angular momenta analysis of atom-atom collisions in a laser field

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1978-01-01

    The problem of two atoms colliding in the presence of an intense radiation field, such as that of a laser, is investigated. The radiation field, which couples states of different electronic symmetry, is described by the number state representation while the electronic degrees of freedom (plus spin-orbit interaction) are discussed in terms of a diabatic representation. The total angular momentum of the field-free system and the angular momentum transferred by absorption (or emission) of a photon are explicitly considered in the derivation of the coupled scattering equations. A model calculation is discussed for the Xe + F collision system.

  13. In Vitro Study on the Vaporization Ratio of 2-μm Laser in Human Prostatic Tissue

    Institute of Scientific and Technical Information of China (English)

    杨勇; 孙东翀; 魏志涛; 徐锋; 洪宝发; 张旭

    2010-01-01

    In this study,the vaporization ratio of the 2-μm laser in the prostatic tissue with benign prostatic hyperplasia was examined in vitro,to explore a technique to estimate the clearance rate of prostatic tissue during the transurethral vaporesection of the prostate.A total of 9 fresh prostatic tissue specimens were obtained by open surgery and the wet weight of the prostatic tissue were measured immediately after the sample collection.Under the simulated conditions of transurethral vaporesection of the prosta...

  14. Flux correction for closed-path laser spectrometers without internal water vapor measurements

    Directory of Open Access Journals (Sweden)

    R. V. Hiller

    2012-01-01

    Full Text Available Recently, instruments became available on the market that provide the possibility to perform eddy covariance flux measurements of CH4 and many other trace gases, including the traditional CO2 and H2O. Most of these instruments employ laser spectroscopy, where a cross-sensitivity to H2O is frequently observed leading to an increased dilution effect. Additionally, sorption processes at the intake tube walls modify and delay the observed H2O signal in closed-path systems more strongly than the signal of the sampled trace gas. Thereby, a phase shift between the trace gas and H2O fluctuations is introduced that dampens the H2O flux observed in the sampling cell. For instruments that do not provide direct H2O measurement in the sampling cell, transfer functions from externally measured H2O fluxes are needed to estimate the effect of H2O on trace gas flux measurements. The effects of cross-sensitivity and the damping are shown for an eddy covariance setup with the Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Research Inc. that measures CO2, CH4, and H2O fluxes. This instrument is technically identical with the Fast Methane Analyzer (FMA, Los Gatos Research Inc. that does not measure H2O concentrations. Hence, we used measurements from a FGGA to derive a modified correction for the FMA accounting for dilution as well as phase shift effects in our instrumental setup. With our specific setup for eddy covariance flux measurements, the cross-sensitivity counteracts the damping effects, which compensate each other. Hence, the new correction only deviates very slightly from the traditional Webb, Pearman, and Leuning density correction, which is calculated from separate measurements of the atmospheric water vapor flux.

  15. Mw Spectroscopy Coupled with Ultrafast UV Laser Vaporization: {RIBOSE} Found in the Gas Phase

    Science.gov (United States)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe

    2012-06-01

    Sugars are aldoses or ketoses with multiple hydroxy groups which have been elusive to spectroscopic studies. Here we report a rotational study of the aldopentose ribose. According to any standard textbook aldopentoses can exhibit either linear forms, cyclic five-membered (furanose) structures or six-membered (pyranose) rings, occurring either as α- or β- anomers depending on the orientation of the hydroxy group at C-1 (anomeric carbon). β-Furanose is predominant in ribonucleosides, RNA, ATP and other biochemically relevant derivatives, but is β-furanose the native form also of free ribose? Recent condensed-phase X-ray and older NMR studies delivered conflicting results. In order to solve this question we conducted a microwave study on D-ribose that, owing to ultrafast UV laser vaporization, has become the first C-5 sugar observed with rotational resolution. The spectrum revealed six conformations of free ribose, preferentially adopting β-pyranose chairs as well as higher-energy α-pyranose forms. The method also allowed for unambiguous distinction between different orientations of the hydroxy groups, which stabilize the structures by cooperative hydrogen-bond networks. No evidence was observed of the α-/β-furanoses or linear forms found in the biochemical derivatives. i) D. Šišak, L. B. McCusker, G. Zandomeneghi, B. H. Meier, D. Bläser, R. Boese, W. B. Schweizer, R. Gylmour and J. D. Dunitz Angew. Chem. Int. Ed. 49, 4503, 2010. ii) W. Saenger Angew. Chem. Int. Ed. 49, 6487, 2010. i) M. Rudrum, and D. F. Shaw, J. Chem. Soc. 52, 1965. ii) R. U. Lemieux and J. D. Stevens Can. J. Chem. 44, 249, 1966. iii) E. Breitmaier and U. Hollstein Org. Magn. Reson. 8, 573, 1976. E. J. Cocinero, A. Lesarri, P. Écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. in press: DOI: 10.1002/anie.201107973, 2012.

  16. Multiphoton and tunneling ionization of atoms in an intense laser field

    Institute of Scientific and Technical Information of China (English)

    Fu Yan-Zhuo; Zhao Song-Feng; Zhou Xiao-Xin

    2012-01-01

    We study the ionization probabilities of atoms by a short laser pulse with three different theoretical methods,i.e.,the numerical solution of the time-dependent Schr(o)dinger equation (TDSE),the Perelomov Popov-Terent'ev (PPT)theory,and the Ammosov-Delone-Krainov (ADK) theory.Our results show that laser intensity dependent ionization probabilities of several atoms (i.e.,H,He,and Ne) obtained from the PPT theory accord quite well with the TDSE results both in the multiphoton and tunneling ionization regimes,while the ADK results fit well to the TDSE data only in the tunneling ionization regime.Our calculations also show that laser intensity dependent ionization probabilities of a H atom at three different laser wavelengths of 600 nm,800 nm,and 1200 nm obtained from the PPT theory are also in good agreement with those from the TDSE,while the ADK theory fails to give the wavelength dependence of ionization probability.Only when the laser wavelength is long enough,will the results of ADK be close to those of TDSE.

  17. Interaction of atomic hydrogen with pico- and femtosecond laser pulses. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Parker, J.S.

    1989-12-01

    This thesis presents a theoretical study of the interaction of atomic hydrogen with coherent laser pulses in the 5 femtosecond to 10 picosecond range, in the weak-field limit, and in intense fields. We approach the problem in the weak-field limit by studying the relationship between the Fourier relation of the laser pulse (Delta omega Delta t) and the (Delta E Delta t) relation of the atomic Rydberg wave packet generated by the laser pulse. A derivation of the wave packet based on the WKB approximation is given, permitting the quantity Delta t to be derived for the quantum state, with the conclusion that under certain circumstances a transform-limited laser pulse (satisfying Delta omega Delta t = 1/2) can generate a transform-limited electron (satisfying Delta E Delta t/h = 1/2). A population-trapping effect is found numerically and modeled theoretically. Despite the high field intensities, population representing the excited electron is recaptured from the ionization continuum by bound states during the excitation. Population returns to the atom with just the right phase to strongly inhibit ionization. A theory is presented that models this effect for a variety of laser pulse shapes, with and without the rotating-wave approximation. The numerical integration reveals that a certain amount of above-threshold ionization (ATI) occurs.

  18. Tunable frequency-stabilization of UV laser using a Hallow-Cathode Lamp of atomic thallium

    CERN Document Server

    Chen, Tzu-Ling; Shy, Jow-Tsong; Liu, Yi-Wei

    2013-01-01

    A frequency-stabilized ultraviolet laser system, locked to the thallium resonant transition of 377.5 nm, was demonstrated using a novel bichromatic spectroscopy technique for tuning the zero-crossing laser-lock point. The atomic thallium system is a promising candidate in atomic parity violation and permanent electric dipole moment experiments, and its 377.5 nm 6P1/2->7S1/2 transition is important for thallium laser cooling and trapping experiment. The pressure shift, owing to the high pressure bu?er gas of the hollow-cathode lamp, was observed using an atomic beam resonance as reference. Such a shift was corrected by adjusting the peak ratio of the two Doppler-free saturation pro?les resulted from two pumping beams with a 130 MHz frequency di?erence. The resulted frequency stability of the ultraviolet laser is ?0.5 MHz at 0.1 sec integration time. This scheme is compact and versatile for stabilizing UV laser systems, which acquire a sub-MHz stability and frequency tunability.

  19. X-ray emission simulation from hollow atoms produced by high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Zhidkov, A. [Japan Atomic Energy Research Inst., Kansai Research Establishment, Neyagawa, Osaka (Japan); Suto, Keiko [Nara Women' s Univ., Graduate School of Human Culture, Nara (Japan); Kagawa, Takashi [Nara Women' s Univ., Department of Physics, Nara (Japan)

    2001-10-01

    We theoretically study the x-ray emission from hollow atoms produced by collisions of multiply charged ions accelerated by a short pulse laser with a solid or foil. By using the multistep-capture-and-loss (MSCL) model a high conversion efficiency to x-rays in an ultrafast atomic process is obtained. It is also proposed to apply this x-ray emission process to the x-ray source. For a few keV x-rays this x-ray source has a clear advantage. The number of x-ray photons increases as the laser energy becomes larger. For a laser energy of 10 J, the number of x-ray photons of 3x10{sup 11} is estimated. (author)

  20. Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds.

    Science.gov (United States)

    Ma, Qianli; Dagdigian, Paul J

    2011-07-01

    A kinetic model previously developed to predict the relative intensities of atomic emission lines in laser-induced breakdown spectroscopy has been extended to include processes related to CN and C(2) molecular emissions. Simulations with this model were performed to predict the relative excited-state populations. The results from the simulations are compared with experimentally determined excited-state populations from 1,064 nm laser irradiation of organic residues on aluminum foil. The model reasonably predicts the relative intensity of the molecular emissions. Significantly, the model reproduces the vastly different temporal profiles of the atomic and molecular emissions. The latter are found to extend to much longer times after the laser pulse, and this appears to be due to the increasing concentration of the molecules versus time. From the simulations, the important processes affecting the CN and C(2) concentrations are identified.

  1. Developing Density of Laser-Cooled Neutral Atoms and Molecules in a Linear Magnetic Trap

    Science.gov (United States)

    Velasquez, Joe, III; Walstrom, Peter; di Rosa, Michael

    2013-05-01

    In this poster we show that neutral particle injection and accumulation using laser-induced spin flips may be used to form dense ensembles of ultracold magnetic particles, i.e., laser-cooled paramagnetic atoms and molecules. Particles are injected in a field-seeking state, are switched by optical pumping to a field-repelled state, and are stored in the minimum-B trap. The analogous process in high-energy charged-particle accumulator rings is charge-exchange injection using stripper foils. The trap is a linear array of sextupoles capped by solenoids. Particle-tracking calculations and design of our linear accumulator along with related experiments involving 7Li will be presented. We test these concepts first with atoms in preparation for later work with selected molecules. Finally, we present our preliminary results with CaH, our candidate molecule for laser cooling. This project is funded by the LDRD program of Los Alamos National Laboratory.

  2. Non-dipole effects in multiphoton ionization of hydrogen atom in short superintense laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Jobunga, Eric O. [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Department of Mathematics and Physics, Technical University of Mombasa, P. O. Box 90420-80100, Mombasa (Kenya); Saenz, Alejandro [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)

    2014-07-01

    The development of novel light sources has enabled the realization of high-precision experiments investigating various non-linear processes in the dynamics of atomic, molecular, and ionic systems interacting with high intense laser pulses. At high intensities or short wavelengths, the analysis of these experiments would definitely require a reliable non-perturbative solution of the time-dependent Schroedinger or Dirac equation. These solutions should consider both the temporal and the spatial intensity variations of the laser pulse.We have solved the non-relativistic time dependent Schroedinger equation for a ground state hydrogen atom interacting with short intense spatially and temporally resolved laser fields corresponding to the multiphoton ATI regime for a monochromatic source with λ= 800 nm. We shall analyse the effects of the A{sup 2} term and the corresponding orders of the multipolar expansion of the transition matrix.

  3. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    Science.gov (United States)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  4. Generalized Two-State Theory for an Atom Laser with Nonlinear Couplings

    Institute of Scientific and Technical Information of China (English)

    JING Hui; TIAN Li-Jun

    2002-01-01

    We present a generalized two-state theory to investigate the quantum dynamics and statistics of an atom laser with nonlinear couplings. The rotating wave approximate Hamiltonian of the system is proved to be analytically solvable. The fraction of output atoms is then showed to exhibit an interesting collapse and revival phenomenon with respect to the evolution time, a sign of nonlinear couplings. Several nonclassical effects, such as sub-Poissonian distribution, quadrature squeezing effects, second-order cross-correlation and accompanied violation of Cauchy-Schwartz inequality are also revealed for the output matter wave. The initial global phase of the trapped condensate, in weak nonlinear coupling limits, is found to exert an interesting impact on the quantum statistical properties of the propagating atom laser beam.

  5. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    OpenAIRE

    Abdollahi Atousa; Amirkavehei Mooud; Gheisari Mohammad Mehdi; Tadayon Fariba

    2014-01-01

    A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap). The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS). The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically ...

  6. Impact of Electron Collision Mixing on the delay times of an electron beam excited Atomic Xenon laser

    NARCIS (Netherlands)

    Peters, Peter J.; Lan, Yun Fu; Ohwa, Mieko; Kushner, Mark J.

    1990-01-01

    The atomic xenon (5d¿6p) infrared laser has been experimentally and theoretically investigated using a short-pulse (30-ns), high-power (1-10-MW/cm3) coaxial electron beam excitation source. In most cases, laser oscillation is not observed during the e-beam current pulse. Laser pulses of hundreds of

  7. An electron of helium atom under a high-intensity laser field

    Science.gov (United States)

    Falaye, Babatunde James; Sun, Guo-Hua; Adepoju, Adenike Grace; Liman, Muhammed S.; Oyewumi, K. J.; Dong, Shi-Hai

    2017-02-01

    We scrutinize the behavior of eigenvalues of an electron in a helium (He) atom as it interacts with electric field directed along the z-axis and is exposed to linearly polarized intense laser field radiation. To achieve this, we freeze one electron of the He atom at its ionic ground state and the motion of the second electron in the ion core is treated via a more general case of screened Coulomb potential model. Using the Kramers-Henneberger (KH) unitary transformation, which is the semiclassical counterpart of the Block-Nordsieck transformation in the quantized field formalism, the squared vector potential that appears in the equation of motion is eliminated and the resultant equation is expressed in the KH frame. Within this frame, the resulting potential and the corresponding wave function are expanded in Fourier series and using Ehlotzky’s approximation, we obtain a laser-dressed potential to simulate intense laser field. By fitting the more general case of screened Coulomb potential model into the laser-dressed potential, and then expanding it in Taylor series up to O≤ft({{r}4},α 09\\right) , we obtain the solution (eigenvalues and wave function) of an electron in a He atom under the influence of external electric field and high-intensity laser field, within the framework of perturbation theory formalism. We found that the variation in frequency of laser radiation has no effect on the eigenvalues of a He electron for a particular electric field intensity directed along z-axis. Also, for a very strong external electric field and an infinitesimal screening parameter, the system is strongly bound. This work has potential application in the areas of atomic and molecular processes in external fields including interactions with strong fields and short pulses.

  8. Heat and Mass Transfer during Chemical Vapor Deposition on the Particle Surface Subjected to Nanosecond Laser Heating

    CERN Document Server

    Peng, Quan; He, Yaling; Mao, Yijin

    2016-01-01

    A thermal model of chemical vapor deposition of titanium nitride (TiN) on the spherical particle surface under irradiation by a nanosecond laser pulse is presented in this paper. Heat and mass transfer on a single spherical metal powder particle surface subjected to temporal Gaussian heat flux is investigated analytically. The chemical reaction on the particle surface and the mass transfer in the gas phase are also considered. The surface temperature, thermal penetration depth, and deposited film thickness under different laser fluence, pulse width, initial particle temperature, and particle radius are investigated. The effect of total pressure in the reaction chamber on deposition rate is studied as well. The particle-level model presented in this paper is an important step toward development of multiscale model of LCVI.

  9. Direct writing of carbon nanotube patterns by laser-induced chemical vapor deposition on a transparent substrate

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.B. [Department of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeong, M.S. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Jeong, S.H., E-mail: shjeong@gist.ac.kr [Department of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2009-02-01

    Dot array and line patterns of multi-walled carbon nanotubes (MWCNTs) were successfully grown by laser-induced chemical vapor deposition (LCVD) on a transparent substrate at room temperature. In the proposed technique, a Nd:YVO{sub 4} laser with a wavelength of 532 nm irradiates the backside of multiple catalyst layers (Ni/Al/Cr) through a transparent substrate to induce a local temperature rise, thereby allowing the direct writing of dense dot and line patterns of MWCNTs below 10 {mu}m in size to be produced with uniform density on the controlled positions. In this LCVD method, a multiple-catalyst-layer with a Cr thermal layer is the central component for enabling the growth of dense MWCNTs with good spatial resolution.

  10. Self-Trapping State and Atomic Tunnelling Current of an Atomic Bose-Einstein Condensate Interacting with a Laser Field in a Double-Well Potential

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIAO Zhi-Yong

    2002-01-01

    We present a theoretical treatment of dynamics of an atomic Bose-Einstein condensation interacting witha single-mode quantized travelling-wave laser field in a double-well potential. When the atom-field system is initiallyin a coherent state, expressions for the energy exchange between atoms and photons are derived. It is revealed thatatoms in the two wells can be in a self-trapping state when the tunnelling frequency satisfies two specific conditions,in which the resonant and far off-resonant cases are included. It is found that there is an alternating current with twodifferent sinusoidal oscillations between the two wells, but no dc characteristic of the atomic tunnelling current occurs.It should be emphasized that when without the laser field, both the population difference and the atomic tunnellingcurrent are only a single oscillation. But they will respectively become a superposition of two oscillations with differentoscillatory frequencies in the presence of the laser field. For the two oscillations of the population difference, one alwayshas an increment in the oscillatory frequency, the other can have an increment or a decrease under different cases. Theseconclusions are also suitable to those of the atomic tunnelling current. As a possible application, by measurement of theatomic tunnelling current between the two wells, the number of Bose-condensed atoms can be evaluated. lBy properlyselecting the laser field, the expected atomic tunnelling current can be obtained too.

  11. Chlorine Analysis by Diode Laser Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Joachim Koch; Aleksandr Zybin; Kay Niemax

    2000-01-01

    The general characteristics of Diode Laser Absorption Spectrometry (DLAAS) in low pressure plasmas particulary with respect to the detection of non-metals are comprehensively recapitulated and discussed. Furthermore, a detector, which is based on DLAAS in a microwave-induced low pressure plasma as an alternative technique for halogene-specific analysis of volatile compounds and polymeric matrices is described. The analytical capability of the technique is demonstrated on the chlorine-specific analysis of ablated polymer fragments as well as gas chromatographically separated hydrocarbons. Since the measurements were carried out by means of a balanced-heterodyne detection scheme, different technical noise contributions, such as laser excess and RAM noise could efficiently be suppressed and the registered absorption was limited only by the principal shot noise. Thus, in the case of the polymer analysis a chlorine-specific absolute detection limit of 10 pg could be achieved. Furthermore, fundamental investigations concerning the influence of hydrocarbons on the dissociation capability of the microwave induced plasma were performed. For this purpose, the carbon-, chlorine-and hydrogen-specific stoichiometry of the compounds were empirically determined. Deviations from the exspected proportions were found to be insignificant, implying the possibility of internal standardization relative to the response of a reference sample.

  12. Studies of the composition and reactivity of carbon species generated through laser vaporization of graphite, tantalum carbide and tungsten carbide

    Energy Technology Data Exchange (ETDEWEB)

    Ortman, B.J.

    1987-01-01

    Vapor compositions above graphite, tantalum carbide, and tungsten carbide together with the chemical reactions of C/sub 1/, C/sub 2/ and C/sub 3/ were studied by the techniques of CW laser vaporization, matrix isolation, and FTIR spectroscopy. The carbon species were scavenged by cocondensing reactive gases (N/sub 2/, H/sub 2/, O/sub 2/, CO and H/sub 2/O) with the vapors of graphitic samples in argon or nitrogen matrices. Products were identified from their infrared spectra. Photolysis and annealing studies were also conducted to detect reaction intermediates, formation of carbon clusters, and metastable C/sub 1/, C/sub 2/, and C/sub 3/ adducts with the added reactants. From these experiments, CO was shown to be potentially the most useful scavenger molecule, since it reacted with both C/sub 1/ and C/sub 2/ to form C/sub 2/O and C/sub 3/O, respectively. CO also reacted with C/sub 3/ to form an adduct, which rearranges upon photolysis to form C/sub 4/O, a previously unknown molecule. Its identity was confirmed by isotopic studies and comparison of its vibrations to those of related molecules, C/sub 3/O, C/sub 2/O, and CO.

  13. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    Science.gov (United States)

    Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.

    2008-06-01

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.

  14. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, J.L.; Black, M.R.; Chavez, C.A.; Maskaly, K.R.; Espinoza, M. [Los Alamos National Laboratory, NEMISIS Team, IAT-2, Los Alamos, NM (United States); Boman, M.; Landstrom, L. [Uppsala University, Inorganic Chemistry, Angstrom Laboratory, Uppsala (Sweden)

    2008-06-15

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited. (orig.)

  15. In-situ measurements of low-level mercury vapor exposure from dental amalgam with zeeman atomic absorption spectroscopy.

    Science.gov (United States)

    Halbach, Stefan; Welzl, Gerhard

    2004-01-01

    Alongside food, emissions from amalgam fillings are an essential contribution to man's mercury burden. Previous methods for the determination of intraoral mercury vapor (Hg degrees ) release used principally some form of preconcentration of Hg on gold (film or wool), allowing relatively few measurements with unknown precision and sensitivity at selected times. Recently available computer-controlled Hg detectors operating on Zeeman atomic absorption spectroscopy (ZAAS) facilitate the direct real-time measurement of Hg degrees concentrations. It was the aim to adapt this method for a comparative investigation of emission processes from fillings in situ and from amalgam specimens in vitro. In addition to the ZAAS instrument, the apparatus consisted of a pump, magnetic valves, an electronic flow controller and a handle with a disposable mouth piece for aspiration of oral air. A programmable timer integrated the computer-controlled instrument operation and the data collection into a standard sampling protocol. A fast exponential decay of the emission was found after stimulation of amalgam specimens and of fillings in situ (halftimes 8.6 and 10.7 min). Precision was evaluated by a series of measurements on a single patient which indicated a consistently low coefficient of variation between 18% and 25%. After insertion of a few new fillings, sensitivity was high enough to detect a significant increase in emission against the background emission from the majority of old fillings. Zeeman-AAS in connection with a semi-automated sampling protocol and data storage provides precise in-situ measurements of Hg degrees emission from dental amalgam with real-time resolution. This facilitates the detailed exploration of the Hg degrees release kinetics and the applicability to large-scale studies.

  16. Refractive Index Enhancement in Atomic Media

    Science.gov (United States)

    Proite, Nicholas; Sikes, Daniel; Yavuz, Deniz

    2010-03-01

    We experimentally demonstrate a scheme where a laser beam experiences refractive index enhancement with vanishing absorption. The essential idea is to excite two Raman resonances with appropriately chosen strong laser beams in a far-off resonant atomic system. We have performed our experiments both in vapor cells and in ultracold atomic clouds. Additionally, we discuss a new scheme that achieves giant Kerr nonlinearities using refractive index enhancement. This scheme does not require an intense coupling laser and has the potential to produce all-optical switches and distributed Bragg reflectors at a total energy requirement of tens of photons per atomic cross section.

  17. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    Science.gov (United States)

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  18. Electron ionization and spin polarization control of Fe atom adsorbed graphene irradiated by a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dong [Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Jiang, Lan, E-mail: jianglan@bit.edu.cn [Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wang, Feng; Li, Xin [Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Qu, Liangti [Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Lu, Yongfeng [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511 (United States)

    2015-10-23

    We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons.

  19. Team resource management participant's handbook for the atomic vapor laser isotope separation program

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1998-05-01

    The goal of any operation is to complete tasks efficiently and effectively. Working safely is completely consistent with efficient, reliable operations. Working in an unsafe manner is not effective or ultimately efficient. If someone is hurt, work stops. Following the steps advocated by Team Resource Management (TRM) leads to more safe, efficient, effective work habits. TRM is a method used by teams (i.e., leaders and workers) to conduct technical business. It is used by the aviation industry to improve reliability and safety through formalizing the way it does business. High reliability organizations do exist. They conduct thousands of high-consequence operations a year, essentially error-free. Naval air carriers, air traffic control, and commercial aviation are some of these kinds of organizations. How did they get that way? What kinds of people staff them? Can we become a high reliability organization? This workshop will look at these questions. When we are done, it will be up to you to determine if we have the right stuff. The goals of this workshop are to: Describe Team Resource Management and its purpose; Describe Performance Shaping Factors (PSFs) and their role in predicting and managing team performance and errors; Describe the principles for managing human error; Describe TRM's 12 rules-of-thumb (the "Dirty Dozen") and use of safety nets; Conduct Operational Risk Management (ORM); Demonstrate ways to keep TRM working.

  20. Team resource management trainer's manual for the atomic vapor laser isotope separation program

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1998-03-13

    High reliability organizations do exist. They have been defined as those organizations that conduct thousands of high-consequence operations a year, essentially error-free. Naval air carriers, air traffic control, and commercial aviation are some of these kinds of organizations. How did they get that way? What kinds of people staff them? Can we become a high reliability organization? This workshop will look at these questions. When we are done, it will be up to you to determine whether we have the right stuff. There are six goals for this workshop: Describe Team Resource Management and its purpose; Describe Performance Shaping Factors (PSFs) and their role in predicting and managing team performance and errors; Describe the principles for managing human error; Describe TRM's 12 rules-of-thumb (the "Dirty Dozen") and use of safety nets; Conduct Operational Risk Management (ORM); Demonstrate ways to keep TRM working.

  1. Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.

    Science.gov (United States)

    Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2015-09-15

    We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.

  2. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    Science.gov (United States)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  3. Ellipticity dependence of neutral Rydberg excitation of atoms in strong laser fields

    Science.gov (United States)

    Zhao, Lei; Dong, Jingwei; Lv, Hang; Yang, Tianxiang; Lian, Yi; Jin, Mingxing; Xu, Haifeng; Ding, Dajun; Hu, Shilin; Chen, Jing

    2016-11-01

    Rydberg state excitation (RSE) of different atoms in elliptically polarized strong 800 nm laser fields is investigated experimentally, and the results are compared with calculations of the strong-field approximation (SFA) model and the semiclassical model. It is observed that the RSE probability declines with increasing laser ellipticity for all of the He, Ar, and Kr atoms. While the measured ellipticity dependence of He RSE is very consistent with the predictions of both the SFA and semiclassical calculations, the width of the ellipticity dependence for Ar and Kr atoms is wider than that of the SFA model but closer to the semiclassical calculations. Analysis indicates that unlike a tunneling-plus-rescattering process, the decline of the RSE yield with increasing ellipticity can be attributed to a decrease of electrons with low kinetic energy that could be captured in the Rydberg states by the Coulomb potential. It indicates that the atomic RSE process could be related to the very low or near-zero energy structure in the photoelectron spectrum in strong laser fields, which would stimulate further experimental and theoretical studies to reveal their underlying mechanisms.

  4. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    Science.gov (United States)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  5. Modelling laser-atom interactions in the strong field regime

    CERN Document Server

    Galstyan, A; Mota-Furtado, F; O'Mahony, P F; Janssens, N; Jenkins, S D; Chuluunbaatar, O; Piraux, B

    2016-01-01

    We consider the ionisation of atomic hydrogen by a strong infrared field. We extend and study in more depth an existing semi-analytical model. Starting from the time-dependent Schroedinger equation in momentum space and in the velocity gauge we substitute the kernel of the non-local Coulomb potential by a sum of N separable potentials, each of them supporting one hydrogen bound state. This leads to a set of N coupled one-dimensional linear Volterra integral equations to solve. We analyze the gauge problem for the model, the different ways of generating the separable potentials and establish a clear link with the strong field approximation which turns out to be a limiting case of the present model. We calculate electron energy spectra as well as the time evolution of electron wave packets in momentum space. We compare and discuss the results obtained with the model and with the strong field approximation and examine in this context, the role of excited states.

  6. Prospects for diode-pumped alkali-atom-based hollow-core photonic-crystal fiber lasers.

    Science.gov (United States)

    Sintov, Yoav; Malka, Dror; Zalevsky, Zeev

    2014-08-15

    By employing large hollow-core Kagome fiber in a double-clad configuration, the performance of a potentially rubidium vapor-based fiber laser is explored. The absorbed power and laser efficiency versus pump power are calculated utilizing a simple laser model. Our results show that a Kagome-based high-power fiber laser is feasible provided that the value of the collisional fine-structure mixing rate will be elevated by increasing the ambient temperature or by increasing the helium pressure.

  7. Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas.

    Science.gov (United States)

    Asano, Hirohito; Muraki, Susumu; Endo, Hiroki; Bandow, Shunji; Iijima, Sumio

    2010-08-25

    Nanometer-scale carbon particles driven by the pulsed-laser vaporization of pelletized pure carbon powder at 1000 °C in a hydrogen-containing environment show anomalous magnetism like a superparamagnet, while the sample prepared in 100% of Ar does not show such magnetism. The observed magnetism was unchanged over months in the ambient. The structure of this nanomaterial resembles the foam of a laundry detergent and transmission electron microscopy indicates a clear corrugated line contrast. On the other hand, a sample without strong magnetism does not give such an image contrast. The x-ray diffraction pattern coincides with that of graphite and no other peak is detected. Thermogravimetry indicates that all samples completely burn out up to approx. 820 °C and no material remains after combustion, indicating that the sample does not contain impurity metals. Magnetization is easily saturated by ∼10,000 G at 280 K with no hysteresis, but the hysteresis appears at 4.2 K. This phenomenon is explained by introducing a crystalline anisotropy which restricts the motion of the magnetic moment and stabilizes the remnant magnetization at zero magnetic field. Magnitudes of the saturation magnetization are in the range of 1-5 emu G g(-1) at 4.2 K, which correspond to 0.002-0.01 Bohr magneton per carbon atom. This concentration may be increased by ten times or more, because only about 4-10% of particles have a magnetic domain in the present samples.

  8. Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofibre

    Science.gov (United States)

    Kumar, Ravi; Gokhroo, Vandna; Deasy, Kieran; Maimaiti, Aili; Frawley, Mary C.; Phelan, Ciarán; Chormaic, Síle Nic

    2015-01-01

    Optical nanofibres are used to confine light to sub-wavelength regions and are very promising tools for the development of optical fibre-based quantum networks using cold, neutral atoms. To date, experimental studies on atoms near nanofibres have focussed on fundamental fibre mode interactions. In this work, we demonstrate the integration of a few-mode optical nanofibre into a magneto-optical trap for 87Rb atoms. The nanofibre, with a waist diameter of ∼700 nm, supports both the fundamental and first group of higher order modes (HOMs) and is used for atomic fluorescence and absorption studies. In general, light propagating in higher order fibre modes has a greater evanescent field extension around the waist in comparison with the fundamental mode. By exploiting this behaviour, we demonstrate that the detected signal of fluorescent photons emitted from a cloud of cold atoms centred at the nanofibre waist is larger if HOMs are also included. In particular, the signal from HOMs appears to be about six times larger than that obtained for the fundamental mode. Absorption of on-resonance, HOM probe light by the laser-cooled atoms is also observed. These advances should facilitate the realization of atom trapping schemes based on HOM interference.

  9. Population transfer by femtosecond laser pulses in a ladder-type atomic system

    Institute of Scientific and Technical Information of China (English)

    Fan Xi-Jun; Li Ai-Yun; Tong Dian-Min; Liu Cheng-Pu

    2008-01-01

    The population transfer in a ladder-type atomic system driven by linearly polarized sech-shape femtosecond laser pulses is investigated by numerically solving Schrodinger equation without including the rotating wave approximation (RWA). It is shown that population transfer is mainly determined by the Rabi frequency (strength) of the driving laser field and the chirp rate, and that the ratio of the dipole moments and the pulse width also have a prominent effect on the population transfer. By choosing appropriate values of the above parameters, complete population transfer can be realized.

  10. Extraction of selectively ionised atomic isotopes from a laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Arisawa, T.; Suzuki, Y.; Maruyama, Y.; Shiba, K. (Japan Atomic Energy Research Inst., Tokai, Ibaraki. Tokai Research Establishment)

    1982-10-14

    A laser-induced plasma of alkali atoms was studied with a view to efficient recovery of isotope ions, with small charge exchange losses. The electron temperature was measured by the double-probe method for several kinds of excitation schemes, which gave the relationship between temperature and the energy given to ions by laser photons. A charge exchange process between lithium isotopes was also studied in an electromagnetic field. It was shown that optimum electrostatic and magnetic field strength exist which maximise the 'separative power'.

  11. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.J. [University of California, Department of Applied Mechanics and Engineering Science, Urey Hall, Mali Code 0339, San Diego, La Jolla, CA (United States)

    2000-03-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  12. Phase Dependence of Few-Cycle Pulsed Laser Propagation in a Two-Level Atom Medium

    Institute of Scientific and Technical Information of China (English)

    肖健; 王中阳; 徐至展

    2002-01-01

    The phase-dependent feature of few-cycle pulsed laser propagation in a resonant two-level atom medium is demonstrated by solving the full Maxwell-Bloch equations. Even in the perturbative region, the propagating carrier field and the corresponding spectra of the few-cycle pulsed laser are sensitive to the initial phase due to self-phase modulation. For the larger pulse area, the fact that the carrier-wave reshaping comes from the carrier wave Rabi flopping is also responsible for this sensitivity, and the phase-dependent feature is more evident.

  13. Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers

    CERN Document Server

    Stern, Stephan; Filsinger, Frank; Rouzée, Arnaud; Rudenko, Artem; Johnsson, Per; Martin, Andrew V; Barty, Anton; Bostedt, Christoph; Bozek, John D; Coffee, Ryan N; Epp, Sascha; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Kimmel, Nils; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Rudek, Benedikt; Starodub, Dmitri G; Thøgersen, Jan; Weidenspointner, Georg; White, Thomas A; Stapelfeldt, Henrik; Rolles, Daniel; Chapman, Henry N; Küpper, Jochen

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers.

  14. Stabilization of circular Rydberg atoms by circularly polarized infrared laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Askeland, S.; Soerngaard, S. A.; Nepstad, R.; Foerre, M. [Department of Physics and Technology, University of Bergen, N-5007 Bergen (Norway); Pilskog, I. [Department of Physics and Technology, University of Bergen, N-5007 Bergen (Norway); Laboratoire de Chimie Physique - Matiere et Rayonnement, Universite Pierre et Marie Curie - CNRS (UMR 7614), F-75231 Paris Cedex 05 (France)

    2011-09-15

    The ionization dynamics of circular Rydberg states in strong circularly polarized infrared (800 nm) laser fields is studied by means of numerical simulations with the time-dependent Schroedinger equation. We find that at certain intensities, related to the radius of the Rydberg states, atomic stabilization sets in, and the ionization probability decreases as the intensity is further increased. Moreover, there is a strong dependence of the ionization probability on the rotational direction of the applied laser field, which can be understood from a simple classical analogy.

  15. The effect of laser beam size in a zig-zag collimator on transverse cooling of a krypton atomic beam

    Indian Academy of Sciences (India)

    Vivek Singh; V B Tiwari; S Singh; S R Mishra; H S Rawat

    2014-07-01

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser beam, significantly reduces the value of transverse velocity capture range of the collimator. The experimental observations show the trend similar to that obtained from simulations. Our study can be particularly useful where a small zig-zag collimator is required.

  16. Influence of the atomic mass of the background gas on laser ablation plume propagation

    DEFF Research Database (Denmark)

    Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.

    2008-01-01

    A combination of time-of-flight ion probe measurements and gas dynamical modeling has been used to investigate the propagation of a laser ablation plume in gases of different atomic/molecular weight. The pressure variation of the ion time-of-flight was found to be well described by the gas...... dynamical model of Predtechensky and Mayorov (Appl. Supercond. 1:2011, 1993). In particular, the model describes how the pressure required to stop the plume in a given distance depends on the atomic/molecular weight of the gas, which is a feature that cannot be explained by standard point...

  17. Self—Trapping State and Atomic Tunnelling Current of an Atomic Bose—Einstein Condensate Interacting with a Laser Field in a Double—Well Potential

    Institute of Scientific and Technical Information of China (English)

    YUZhao-Xian; JIAOZhi-Yong

    2002-01-01

    We present a theoretical treatment of dynamics of an atomic Bose-Einstein condensation interacting with a single-mode quantized travelling-wave laser field in a double-well potential.When the atom-field system is initially in a coherent state,expressions for the energy exchange between atoms and photons are derived.It is revealed that atoms in the two wells can be in a self-trapping state when the tunnelling frequency satisfies two specific conditions,in which the resonant and far off-resonant cases are included.It is found that there is an alternating current with two different sinusoidal oscillations between the two wells,but no dc characteristic of the atomic tunnelling current occurs.It should be emphasized that when without the laser field,both the population difference and the atomic tunnelling current are only a single oscillation.But they will respectively become a superposition of two oscillations with different oscillatory frequencies in the presence of the laser field.For the two oscillations of the population difference,one always has an increment in the oscillatory frequency,the other can have an increment or a decrease under different cases.These conclusions are also suitable to those of the atomic tunnelling current.As a possible application,by measurement of the atomic tunnelling current between the two wells,the number of Bose-condensed atoms can be evaluated.By poperly selecting the laser field,the expected atomic tunnelling current can be obtained too.

  18. The optical pumping of alkali atoms using coherent radiation from semi-conductor injection lasers and incoherent radiation from resonance lamps

    Science.gov (United States)

    Singh, G.

    1973-01-01

    An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.

  19. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  20. The influence of laser pulse on the photoabsorption spectra of Li atom in strong external field

    Institute of Scientific and Technical Information of China (English)

    WANG; Dehua; LIN; Shenglu

    2006-01-01

    Using the time-dependent perturbation theory and the calculation formula of the single- and double-pulse absorption spectra of the atom in strong external fields, we calculate the single- and double-pulse absorption spectra of Li atom in strong magnetic field for different pulse widths. The results show that a pulse of some width can reduce the contribution of the short period closed orbits and eliminate the contribution of the long period orbits. Compared with the single-pulse absorption spectra, we found that for some phase differences, the double-pulse laser absorption spectra are strengthened; while for others, they are reduced. Therefore, we can use the pulse laser to control the oscillation of the absorption spectra and obtain the optimization object.

  1. Microwave lensing frequency shift of the PHARAO laser-cooled microgravity atomic clock

    Science.gov (United States)

    Peterman, Phillip; Gibble, Kurt; Laurent, Phillipe; Salomon, Christophe

    2016-04-01

    We evaluate the microwave lensing frequency shift of the microgravity laser-cooled caesium clock PHARAO. We find microwave lensing frequency shifts of δν/ν  =  11  ×  10-17 to 13  ×  10-17, larger than the shift of typical fountain clocks. The shift has a weak dependence on PHARAO parameters, including the atomic temperature, size of the atomic cloud, detection laser intensities, and the launch velocity. We also find the lensing frequency shift to be insensitive to selection and detection spatial inhomogeneities and the expected low-frequency vibrations. We conservatively assign a nominal microwave lensing frequency uncertainty of  ±4  ×  10-17.

  2. High-performance laser power feedback control system for cold atom physics

    Institute of Scientific and Technical Information of China (English)

    Bo Lu; Thibault Vogt; Xinxing Liu; Xiaoji Zhou; Xuzong Chen

    2011-01-01

    @@ A laser power feedback control system that features fast response,large-scale performance,low noise,and excellent stability is presented.Some essential points used for optimization are described.Primary optical lattice experiments are given as examples to show the performance of this system.With these performance characteristics,the power control system is useful for applications in cold atom physics and precision measurements.%A laser power feedback control system that features fast response, large-scale performance, low noise, and excellent stability is presented. Some essential points used for optimization are described. Primary optical lattice experiments are given as examples to show the performance of this system. With these performance characteristics, the power control system is useful for applications in cold atom physics and precision measurements.

  3. Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders.

    Science.gov (United States)

    Peng, T; Chang, G; Wang, L; Jiang, Z; Hu, B

    2001-03-01

    A new analytical procedure for the direct determination of metal impurities (Cr, Cu, Fe and V) in aluminium oxide ceramic powders by slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry (ETV-ICP-AES) is reported. A polytetrafluoroethylene (PTFE) emulsion was used as a fluorinating reagent to promote the vaporization of impurity elements in aluminium oxide ceramic powders from the graphite tube. A vaporization stage with a long ramp time and a short hold time provided the possibility of temporal analyte-matrix separation. The experimental results indicated that a 10 microL 1% m/v slurry of aluminium oxide could be destroyed and vaporized completely with 600 micrograms PTFE under the selected conditions. Two aluminium oxide ceramic powder samples were used without any additional pretreatment. Analytical results obtained by using standard addition method with aqueous standard solution were checked by comparison of the results with pneumatic nebulization (PN)-ICP-AES based on the wet-chemical decomposition and analyte-matrix separation. The limits of detection (LODs) between 0.30 microgram g-1 (Fe) and 0.08 microgram g-1 (Cu) were achieved, and, the repeatability of measurements was mainly better than 10%.

  4. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  5. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity

    Science.gov (United States)

    Pang, Shengyong; Chen, Xin; Shao, Xinyu; Gong, Shuili; Xiao, Jianzhong

    2016-07-01

    In order to better understand the local evaporation phenomena of keyhole wall, vapor plume swing above the keyhole and ambient gas entrapment into the porosity defects, the 3D time-dependent dynamics of the metallic vapor plume in a transient keyhole during fiber laser welding is numerically investigated. The vapor dynamical parameters, including the velocity and pressure, are successfully predicted and obtain good agreements with the experimental and literature data. It is found that the vapor plume flow inside the keyhole has complex multiple directions, and this various directions characteristic of the vapor plume is resulted from the dynamic evaporation phenomena with variable locations and orientations on the keyhole wall. The results also demonstrate that because of this dynamic local evaporation, the ejected vapor plume from the keyhole opening is usually in high frequency swinging. The results further indicate that the oscillation frequency of the plume swing angle is around 2.0-8.0 kHz, which is of the same order of magnitude with that of the keyhole depth (2.0-5.0 kHz). This consistency clearly shows that the swing of the ejected vapor plume is closely associated with the keyhole instability during laser welding. Furthermore, it is learned that there is usually a negative pressure region (several hundred Pa lower than the atmospheric pressure) of the vapor flow around the keyhole opening. This pressure could lead to a strong vortex flow near the rear keyhole wall, especially when the velocity of the ejected metallic vapor from the keyhole opening is high. Under the effect of this flow, the ambient gas is involved into the keyhole, and could finally be entrapped into the bubbles within a very short time (<0.2 ms) due to the complex flow inside the keyhole.

  6. Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency

    Institute of Scientific and Technical Information of China (English)

    XU Qing; HU Xiang-Ming

    2011-01-01

    In an electromagnetically induced transparency system,the atoms have long-lived coherence compared to the cavity lifetime and interact nonadiabatically with the laser fields.We show that the high frequency fluctuations of both the intensities and the intensity difference can be squeezed below the shot noise limit due to the nonadiabatic effects.This noise squeezing can be used to enhance the precision in the short time measurements based on the intensities or the intensity difference.

  7. Dynamics of atomic spin-orbit-state wave packets produced by short-pulse laser photodetachment

    CERN Document Server

    Law, S M K

    2016-01-01

    We analyse the experiment by Hultgren et al. [Phys. Rev. A {\\bf 87}, 031404 (2013)] on orbital alignment and quantum beats in coherently excited atomic fine-structure manifolds produced by short-pulse laser photodetachment of C$^-$, Si$^-$ and Ge$^-$ negative ions, and derive a formula that describes the beats. Analysis of the experimental data enables us to extract the non-coherent background contribution for each species, and indicates the need for a full density matrix treatment of the problem.

  8. Development of a helium cryostat for laser spectroscopy of atoms with unstable nuclei in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Kei, E-mail: kimamura@riken.jp [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Furukawa, Takeshi [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakui, Takashi [Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai, Miyagi 980-8578 (Japan); Yang, Xiaofei [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); School of Physics, Peking University, Chengfu Road, Haidian District, Beijing 100871 (China); Yamaguchi, Yasuhiro [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Tetsuka, Hiroki [Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Mitsuya, Yosuke [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Tsutsui, Yoshiki [Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Fujita, Tomomi [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Ebara, Yuta; Hayasaka, Miki [Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Arai, Shino; Muramoto, Sosuke [Department of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama, Kawasaki, Kanagawa 214-8571 (Japan); Ichikawa, Yuichi [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tokyo Instutute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Ishibashi, Yoko [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); and others

    2013-12-15

    We are developing a new nuclear laser spectroscopic technique for the study of nuclear structure that can be applied to short-lived low-yield atoms with unstable nuclei. The method utilizes superfluid helium (He II) as a trapping medium for high-energy ion beams. A liquid helium cryostat with optical windows is a key apparatus for this type of experiment. We describe the design and the performance of the cryostat which is developed for the present project.

  9. Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma

    Science.gov (United States)

    Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; de Nalda, R.; Castillejo, M.

    2017-01-01

    Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear medium.

  10. Above-threshold ionization and photoelectron spectra in atomic systems driven by strong laser fields

    CERN Document Server

    Suárez, Noslen; Ciappina, Marcelo; Biegert, Jens; Lewenstein, Maciej

    2015-01-01

    Above-threshold ionization (ATI) results from strong field laser-matter interaction and it is one of the fundamental processes that may be used to extract electron structural and dynamical information about the atomic or molecular target. Moreover, it can also be used to characterize the laser field itself. Here, we develop an analytical description of ATI, which extends the theoretical Strong Field Approximation (SFA), for both the direct and re-scattering transition amplitudes in atoms. From a non-local, but separable potential, the bound-free dipole and the re-scattering transition matrix elements are analytically computed. In comparison with the standard approaches to the ATI process, our analytical derivation of the re-scattering matrix elements allows us to study directly how the re-scattering process depends on the atomic target and laser pulse features -we can turn on and off contributions having different physical origins or corresponding to different physical mechanisms. We compare SFA results with ...

  11. Theory of x-ray absorption by laser-dressed atoms

    CERN Document Server

    Buth, C; Buth, Christian; Santra, Robin

    2006-01-01

    An ab initio theory is devised for the x-ray photoabsorption cross section of atoms in the field of a moderately intense optical laser (10^13 W/cm^2). The laser dresses the core-excited atomic states, which introduces a dependence of the cross section on the angle between the polarization vectors of the two linearly polarized radiation sources. We use the Hartree-Fock-Slater approximation to describe the atomic many-body problem in conjunction with a non-relativistic quantum-electrodynamic approach to treat the photon-electron interaction. The continuum wave functions of ejected electrons are treated with a complex absorbing potential that is derived from smooth exterior complex scaling. The solution to the two-color (x-ray plus laser) problem is discussed in terms of a direct diagonalization of the complex symmetric matrix representation of the Hamiltonian. Alternative treatments with time-independent and time-dependent non-Hermitian perturbation theories are presented that exploit the weak interaction stren...

  12. Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography.

    Science.gov (United States)

    Kolli, R Prakash

    2017-01-01

    Residual hydrogen (H2) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation. Increased insight into the behavior of residual H2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography. The results indicate that the total residual hydrogen concentration, HTOT, in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important. The pulse energy has the greatest influence on the quantity HTOT, which is consistently less than 0.1 at.% at a value of 80 pJ.

  13. A phase-locked laser system based on modulation technique for atom interferometry

    CERN Document Server

    Li, Wei; Song, Ningfang; Xu, Xiaobin; Lu, Xiangxiang

    2016-01-01

    We demonstrate a Raman laser system based on phase modulation technology and phase feedback control. The two laser beams with frequency difference of 6.835 GHz are modulated using electro-optic and acousto-optic modulators, respectively. Parasitic frequency components produced by the electro-optic modulator are filtered using a Fabry-Perot Etalon. A straightforward phase feedback system restrains the phase noise induced by environmental perturbations. The phase noise of the laser system stays below -125 rad2/Hz at frequency offset higher than 500 kHz. Overall phase noise of the laser system is evaluated by calculating the contribution of the phase noise to the sensitivity limit of a gravimeter. The results reveal that the sensitivity limited by the phase noise of our laser system is lower than that of a state-of-art optical phase-lock loop scheme when a gravimeter operates at short pulse duration, which makes the laser system a promising option for our future application of atom interferometer.

  14. A phase-locked laser system based on double direct modulation technique for atom interferometry

    Science.gov (United States)

    Li, Wei; Pan, Xiong; Song, Ningfang; Xu, Xiaobin; Lu, Xiangxiang

    2017-02-01

    We demonstrate a laser system based on phase modulation technology and phase feedback control. The two laser beams with frequency difference of 6.835 GHz are modulated using electro-optic and acousto-optic modulators, respectively. Parasitic frequency components produced by the electro-optic modulator are filtered using a Fabry-Perot Etalon. A straightforward phase feedback system restrains the phase noise induced by environmental perturbations. The phase noise of the laser system stays below -125 rad2/Hz at frequency offset higher than 500 kHz. Overall phase noise of the laser system is evaluated by calculating the contribution of the phase noise to the sensitivity limit of a gravimeter. The results reveal that the sensitivity limited by the phase noise of our laser system is lower than that of a state-of-the-art optical phase-lock loop scheme when a gravimeter operates at short pulse duration, which makes the laser system a promising option for our future application of atom interferometer.

  15. Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms.

    Science.gov (United States)

    Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi

    2016-02-15

    Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

  16. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al{sub 2}O{sub 3} double-coating

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Vaehae-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Salomaeki, Mikko [University of Turku, Department of Chemistry, Laboratory of Materials Chemistry and Chemical Analysis, Vatselankatu 2, FI-20014 (Finland); Areva, Sami [Tampere University of Technology, Department of Biomedical Engineering, Biokatu 6, P.O. Box 692, FI-33101 Tampere (Finland); Korhonen, Juuso T. [Aalto University School of Science, Department of Applied Physics, P.O. Box 15100 FI-00076 AALTO, Espoo (Finland); Karppinen, Maarit [Aalto University School of Chemical Technology, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 AALTO, Espoo (Finland)

    2011-09-01

    Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al{sub 2}O{sub 3} layer. The double-coating of PEM + Al{sub 2}O{sub 3} is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al{sub 2}O{sub 3} layer. The enhanced water vapor barrier characteristics of the PEM + Al{sub 2}O{sub 3} double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.

  17. Methods of Soft Tissue Emulsification Using a Mechanism of Ultrasonic Atomization Inside Gas or Vapor Cavities and Associated Systems and Devices

    Science.gov (United States)

    Sapozhnikov, Oleg A. (Inventor); Bailey, Michael R. (Inventor); Crum, Lawrence A. (Inventor); Khokhlova, Tatiana D. (Inventor); Khokhlova, Vera A. (Inventor); Simon, Julianna C. (Inventor); Wang, Yak-Nam (Inventor)

    2016-01-01

    The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.

  18. New approaches in deep laser cooling of magnesium atoms for quantum metrology

    Science.gov (United States)

    Prudnikov, O. N.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.; Bonert, A. E.; Tropnikov, M. A.; Goncharov, A. N.

    2016-09-01

    Two approaches for solving the long-standing problem of deep laser cooling of neutral magnesium atoms are proposed. The first one uses optical molasses with orthogonal linear polarizations of light waves. The second approach involves a ‘nonstandard’ magneto-optical trap (NMOT) composed of light waves with elliptical polarizations (in general). Both the widely used semiclassical approach based on the Fokker-Planck equation and quantum treatment fully taking into account the recoil effect are employed for theoretical analysis. The results show the possibility of obtaining temperatures lower than 100 µK simultaneously with a large number of cold atoms ~106 ÷ 107. A new velocity-selective cooling technique allowing one to reach the microkelvin temperature range is also proposed. This technique may have some advantages over, for instance, the shallow-dipole-trap technique utilized by other authors. In the case of magnesium atoms this new technique may be used for obtaining a large number of ultracold atoms (T ~ 1 µK, N  >  105). Such a large number of ultracold atoms is crucial issue for metrological and many other applications of cold atoms.

  19. Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.

    Science.gov (United States)

    La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M

    2017-01-30

    The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.

  20. An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    CERN Document Server

    Eismann, Ulrich; Canalias, Carlota; Zukauskas, Andrius; Trénec, Gérard; Vigué, Jacques; Chevy, Frédéric; Salomon, Christophe

    2011-01-01

    We present an all solid-state narrow line-width laser source emitting $670\\,\\mathrm{mW}$ output power at $671\\,\\mathrm{nm}$ delivered in a diffraction-limited beam. The source is based on a frequency-doubled diode-end-pumped ring laser operating on the ${^4F}_{3/2} \\rightarrow {^4I}_{13/2}$ transition in Nd:YVO$_4$. By using periodically-poled potassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over $100\\,\\rm GHz$ is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented.

  1. Dipole-forbidden atomic transitions induced by superintense x-ray laser fields

    Science.gov (United States)

    Simonsen, Aleksander Skjerlie; Førre, Morten

    2016-06-01

    A hydrogen atom, initially prepared in the 2 s and/or 2 p (m =±1 ) states, is assumed irradiated by 0.8 keV (1.5 nm) photons in pulses of 1 -250 fs duration and intensities in the range 1020 to 1023W /cm2 . Solving the corresponding time-dependent Schrödinger equation from first principles, we show that the ionization and excitation dynamics of the laser-atom system is strongly influenced by interactions beyond the electric dipole approximation. A beyond-dipole two-photon Raman-like transition between the 2 s and 2 p (m =±1 ) states is found to completely dominate the underlying laser-matter interaction. It turns out that the large difference in the ionization rates of the 2 s and 2 p (m =±1 ) states is important in this context, effectively leading to a symmetry breaking in the corresponding (beyond-dipole) bound-bound dynamics with the result that a net population transfer between the states occurs throughout the laser-matter interaction period. Varying the x-ray exposure time as well as the laser intensity, we probe the phenomenon as the bound wave packet oscillates between having 2 s and 2 p (m =±1 ) character, eventually giving rise to a Rabi-like oscillation pattern in the populations.

  2. Quantum signature for laser-driven correlated excitation of Rydberg atoms

    Science.gov (United States)

    Wu, Huaizhi; Li, Yong; Yang, Zhen-Biao; Zheng, Shi-Biao

    2017-01-01

    The excitation dynamics of a laser-driven Rydberg-atom system exhibits a cooperative effect due to the interatomic Rydberg-Rydberg interaction, but the large many-body system with inhomogeneous Rydberg coupling is hard to exactly solve or numerically study by density-matrix equations. In this paper, we find that the laser-driven Rydberg-atom system with most of the atoms being in the ground state can be described by a simplified interaction model resembling the optical Kerr effect if the distance-dependent Rydberg-Rydberg interaction is replaced by an infinite-range coupling. We can then quantitatively study the effect of the quantum fluctuations on the Rydberg excitation with the interatomic correlation involved and analytically calculate the statistical characteristics of the excitation dynamics in the steady state, revealing the quantum signature of the driven-dissipative Rydberg-atom system. The results obtained here will be of great interest for other spin-1/2 systems with spin-spin coupling.

  3. Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms

    Science.gov (United States)

    Armstrong, G. S. J.; Colgan, J.; Pindzola, M. S.; Amami, S.; Madison, D. H.; Pursehouse, J.; Nixon, K. L.; Murray, A. J.

    2015-09-01

    Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this work we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. We demonstrate that this is a general feature of ionization from p -state targets by additional studies of ionization from excited Ca and Na atoms.

  4. Far-field resonance fluorescence from a dipole-interacting laser-driven cold atomic gas

    Science.gov (United States)

    Jones, Ryan; Saint, Reece; Olmos, Beatriz

    2017-01-01

    We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is comparable to the wavelength of the photons scattered by the atoms, the system exhibits strong dipolar interactions and collective dissipation. We solve the exact dynamics of small systems with different geometries and show how these collective features are manifest in the scattered light properties such as the photon emission rate, the power spectrum and the second-order correlation function. By calculating these quantities beyond the weak (linear) driving limit, we make progress in understanding the signatures of collective behavior in these many-body systems. Furthermore, we shed light on the role of disorder and averaging on the resonance fluorescence, of direct relevance for recent experimental efforts that aim at the exploration of many-body effects in dipole-dipole interacting gases of atoms.

  5. Laser Induced Chemical Vapor Phase Epitaxial Growth of III-V semiconductor Films

    Science.gov (United States)

    1991-05-14

    temperatures for the preparation and crystal growth of semiconductors . During the first phase of this program at Southern Methodist University, the epitaxial...approach to the preparation of device-quality 4 semiconductor films of controlled electrical and stru -.tural propierties . The excitation of reaction...temperatures for the preparation and crystal growth of semiconductors . The vapors of essentially all metalorganic compounds and group V hydrides are colorless

  6. Spectroscopic detection of atom-surface interactions in an atomic vapour layer with nanoscale thickness

    CERN Document Server

    Whittaker, K A; Hughes, I G; Sargsyan, A; Sarkisyan, D; Adams, C S

    2015-01-01

    We measure the resonance line shape of atomic vapor layers with nanoscale thickness confined between two sapphire windows. The measurement is performed by scanning a probe laser through resonance and collecting the scattered light. The line shape is dominated by the effects of Dicke narrowing, self-broadening, and atom-surface interactions. By fitting the measured line shape to a simple model we discuss the possibility to extract information about the atom-surface interaction.

  7. Three-dimensional simulation on explosions of hydrogen atomic clusters irradiated by an intense femtosecond laser pulse

    Institute of Scientific and Technical Information of China (English)

    Xia Yong; Liu Jian-Sheng; Ni Guo-Quan; Xu Zhi-Zhan

    2004-01-01

    Using classic particle dynamics simulations, the interaction process between an intense femtosecond laser pulse and icosahedral hydrogen atomic clusters H13, H55 and H147 has been studied. It is revealed that with increasing number of atoms in the cluster, the kinetic energy of ions generated in the Coulomb explosion of the ionized hydrogen clusters increases. The expansion process of the clusters after laser irradiation has also been examined, showing that the expansion scale decreases with increasing cluster size.

  8. Vaporization front in the interaction of a high-energy laser with aerosols - A solitary wave

    Science.gov (United States)

    Lee, C. T.; Miller, T. G.

    1982-06-01

    If a high-energy laser beam were to propagate through highly absorbent aerosols, the aerosols might be subject to extinction by evaporation. This could occur, for instance, if a high-energy CO2 laser beam were to propagate through a medium containing a mist of water droplets. The incident energy would evaporate the droplets, thus increasing the transmission with time. In this paper, solitary waves are obtained as the asymptotic solution to the coupled nonlinear equations describing such an interaction.

  9. Two-Photon Raman Gain in a Laser Driven Potassium Vapor

    Science.gov (United States)

    1996-02-01

    Stokes wave. With powerful laser beams, Raman scattering involving multiple pump and probe photons can appear, producing light at the subharmonics of the...laser fre- quency drifts. High-speed cavity length variations are corrected using a piezo - electrically driven mirror, while a rotating Brewsters...emergence of resonances at subharmonics of the ground-state splitting. I attribute these intensity dependent spectral features 8Recall that working with small

  10. Stimulated Emission at 722.9 nm by Laser Photodissociation of PbI2 Vapor

    Institute of Scientific and Technical Information of China (English)

    MAN Bao-Yuan; ZHANG Jie; NI Pei-Gen; ZHANG Dao-Zhong

    2000-01-01

    The stimulated emission at 722.9nm is observed by a direct photodissociation of the PbI2 molecules with a 266nm pulse laser. The possible dissociation channels are discussed. Two-photon resonant photodissociation mechanism is used to explain the generation of the 722.9 nm emission. The emission is measured at different incident laser energy and heat-pipe temperature. The obtained experimental result is well supported by the photodissociation mechanism given by us.

  11. Adhesion of fibroblasts on micro- and nanostructured surfaces prepared by chemical vapor deposition and pulsed laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Veith, M; Aktas, O C; Ullah Wazir, H; Grobelsek, I [INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbruecken (Germany); Metzger, W; Sossong, D; Pohlemann, T; Oberringer, M [Department of Trauma-, Hand- and Reconstructive Surgery, Saarland University, Kirrberger Strasse, Building 57, 66421 Homburg (Germany); Puetz, N; Wennemuth, G, E-mail: Michael.Veith@inm-gmbh.d [Department of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse, Building 61, 66421 Homburg (Germany)

    2010-09-15

    The development of micro- and nanostructured surfaces which improve the cell-substrate interaction is of great interest in today's implant applications. In this regard, Al/Al{sub 2}O{sub 3} bi-phasic nanowires were synthesized by chemical vapor deposition of the molecular precursor ({sup t}BuOAlH{sub 2}){sub 2}. Heat treatment of such bi-phasic nanowires with short laser pulses leads to micro- and nanostructured Al{sub 2}O{sub 3} surfaces. Such surfaces were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy and x-ray photoelectron spectroscopy. Following the detailed material characterization, the prepared surfaces were tested for their cell compatibility using normal human dermal fibroblasts. While the cells cultivated on Al/Al{sub 2}O{sub 3} bi-phasic nanowires showed an unusual morphology, cells cultivated on nanowires treated with one and two laser pulses exhibited morphologies similar to those observed on the control substrate. The highest cell density was observed on surfaces treated with one laser pulse. The interaction of the cells with the nano- and microstructures was investigated by SEM analysis in detail. Laser treatment of Al/Al{sub 2}O{sub 3} bi-phasic nanowires is a fast and easy method to fabricate nano- and microstructured Al{sub 2}O{sub 3}-surfaces for studying cell-surface interactions. It is our goal to develop a biocompatible Al{sub 2}O{sub 3}-surface which could be used as a coating material for medical implants exhibiting a cell selective response because of its specific physical landscape and especially because it promotes the adhesion of osteoblasts while minimizing the adhesion of fibroblasts.

  12. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  13. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A.

    2016-10-28

    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion inside the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites. Published by AIP Publishing.

  14. Influence of external magnetic and laser radiation fields on Feshbach resonances in collision of atoms

    CERN Document Server

    Gazazyan, E A; Chaltykyan, V O

    2012-01-01

    We study collision of two atoms with formation of Feshbach resonance at combined interaction with the external magnetic field and laser radiation. In cases of one- and two-photon resonances of laser radiation with two discrete vibrational molecular levels, we show that Feshbach resonances appear at interaction of external magnetic field with dressed states formed via Autler-Townes effect. In addition, in case of one-photon resonance the lower vibrational molecular state is coupled by laser radiation with the continuum of the elastic channel and forms laser-induced Feshbach resonance via both Autler-Townes effect and LICS mechanism. We study the combined process of formation of Feshbach resonances; this enables the control of Feshbach resonance by varying the magnetic field and intensity and frequency of laser radiation. We obtain the cross-sections of elastic and inelastic scattering and show that quenching of resonance occurs at the energy equal to that of the systems ground state. Dependence of the cross-se...

  15. Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL for Profiling Water Vapor in the Lower Troposphere

    Directory of Open Access Journals (Sweden)

    Kevin S. Repasky

    2013-11-01

    Full Text Available A laser transmitter has been developed and incorporated into a micro-pulse differential absorption lidar (DIAL for water vapor profiling in the lower troposphere as an important step towards long-term autonomous field operation. The laser transmitter utilizes two distributed Bragg reflector (DBR diode lasers to injection seed a pulsed tapered semiconductor optical amplifier (TSOA, and is capable of producing up to 10 mJ of pulse energy with a 1 ms pulse duration and a 10 kHz pulse repetition frequency. The on-line wavelength of the laser transmitter can operate anywhere along the water vapor absorption feature centered at 828.187 nm (in vacuum depending on the prevailing atmospheric conditions, while the off-line wavelength operates at 828.287 nm. This laser transmitter has been incorporated into a DIAL instrument utilizing a 35.6 cm Schmidt-Cassegrain telescope and fiber coupled avalanche photodiode (APD operating in the photon counting mode. The performance of the DIAL instrument was demonstrated over a ten-day observation period. During this observation period, data from radiosondes were used to retrieve water vapor number density profiles for comparisons with the number density profiles retrieved from the DIAL data.

  16. Quantum treatment of two-stage sub-Doppler laser cooling of magnesium atoms

    CERN Document Server

    Brazhnikov, D V; Taichenachev, A V; Yudin, V I; Bonert, A E; Il'enkov, R Ya; Goncharov, A N

    2015-01-01

    The problem of deep laser cooling of $^{24}$Mg atoms is theoretically studied. We propose two-stage sub-Doppler cooling strategy using electro-dipole transition $3^3P_2$$\\to$$3^3D_3$ ($\\lambda$=383.9 nm). The first stage implies exploiting magneto-optical trap with $\\sigma^+$ and $\\sigma^-$ light beams, while the second one uses a lin$\\perp$lin molasses. We focus on achieving large number of ultracold atoms (T$_{eff}$ < 10 $\\mu$K) in a cold atomic cloud. The calculations have been done out of many widely used approximations and based on quantum treatment with taking full account of recoil effect. Steady-state average kinetic energies and linear momentum distributions of cold atoms are analysed for various light-field intensities and frequency detunings. The results of conducted quantum analysis have revealed noticeable differences from results of semiclassical approach based on the Fokker-Planck equation. At certain conditions the second cooling stage can provide sufficiently lower kinetic energies of atom...

  17. 7th International Workshop on Application of Lasers in Atomic Nuclei Research “Nuclear Ground and Isometric State Properties”

    CERN Document Server

    Błaszczak, Z; Marinova, K; LASER 2006

    2007-01-01

    7th International Workshop on Application of Lasers in Atomic Nuclei Research, LASER 2004, held in Poznan, Poland, May 29-June 01, 2006 Researchers and PhD students interested in recent results in the nuclear structure investigation by laser spectroscopy, the progress of the experimental technique and the future developments in the field will find this volume indispensable. Reprinted from Hyperfine Interactions (HYPE) Volume ???

  18. Observation of Atomic Emission Enhancement by fs-ns Dual-Pulse Laser-Induced Breakdown Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    YAN Li-Xin; ZHANG Yong-Sheng; ZHANG Li-Rong; LIU Jing-Ru; CHENG Jian-Ping; L(U) Min

    2006-01-01

    An experiment of a 500-fs KrF laser pulse incident upon a high density supersonic O2 gas jet synchronously with an ns frequency-doubled Nd:YAG laser pulse is performed in orthogonal configuration.Significant atomic emission enhancement of over forty-fold is observed with an optical multi-channel analyser.The enhancement effect is probably attributed to the different ionization mechanisms between fs and ns laser pulses.

  19. Optical Guiding of Trapped Atoms by a Blue-Detuned Hollow Laser Beam in the Horizontal Direction

    Institute of Scientific and Technical Information of China (English)

    JIANG Kai-Jun; LI Ke; WANG Jin; ZHAN Ming-Sheng

    2005-01-01

    @@ Optical guiding of 85 Rb atoms in a magneto-optical trap (MOT) by a blue-detuned horizontal hollow laser beam is demonstrated experimentally. The guiding efficiency and the velocity distribution of the guided atoms are found to have strong dependence on the detuning of the guiding laser. In particular, the optimum guiding occurs when the blue detuning of the hollow laser beam is approximately equal to the hyperfine structure splitting of the 85Rb ground states, in good agreement with the theoretical analysis based on a three-level model.

  20. Time-resolved measurement of atomic emission enhancement by fs-ns dual-pulsed laser-induced breakdown spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Yan Li-Xin; Zhang Yong-Sheng; Zheng Guo-Xin; Liu Jing-Ru; Cheng Jian-Ping; Lü Min

    2006-01-01

    Time-resolved measurement of atomic emission enhancement is performed by using a 500-fs KrF laser pulse incident upon a high density supersonic O2 gas jet, synchronized with an orthogonal ns frequency-doubled Nd:YAG laser pulse. The ultra-short pulse serves as an igniter of the gas jet, and the subsequent ns-laser pulse significantly enhances the atomic emission. Analysis shows that the contributions to the enhancement effect are made mainly by the bremsstrahlung radiation and cascade ionization.

  1. Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of Non-degenerate Cascade Two-Photon Lasers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the cascade two-photon laser dynamic equation derived with the technique of quantum Langevin operators with the considerations of coherently prepared three-level atoms and the classical field injected into the cavity, we numerically study the effects of atomic coherence and classical field on the chaotic dynamics of a two-photon laser. Lyapunov exponent and bifurcation diagram calculations show that the Lorenz chaos and hyperchaos can be induced or inhibited by the atomic coherence and the classical field via crisis or Hopf bifurcations.

  2. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery.

  3. Theoretical Study of Laser-Stimulated Chemical Vapor Deposition Processes of Importance in Microelectronics.

    Science.gov (United States)

    1983-12-01

    fundamental microscopic theory for the laser-induced periodic surface structure ( LIPSS ), which includes electronic and vibrational degrees of freedom of the...deposition rate. The dynamics of subsequent multilayer LIPSS formation is treated using a metal-metal interaction potential obtained by combining MO theory

  4. Diffusion of Rubidium Vapor through Hollow-Core Fibers for Gas-Phased Fiber-Lasers

    Science.gov (United States)

    2011-03-01

    pumped gas laser in a hollow-core photonic crystal fiber using acetylene (C2H2). A pulsed source providing 5 − 6 ns pulses of approximately 5 mJ of...procedure. Continuously flowing the rubidi- um/helium combination through the system furnished fruitful results. An absorption spectrum representing the D1

  5. Laser frequency stabilization and large detuning by Doppler-free dichroic lock technique: Application to atom cooling

    Indian Academy of Sciences (India)

    V B Tiwari; S R Mishra; H S Rawat; S Singh; S P Ram; S C Mehendale

    2005-09-01

    We present results of a study of frequency stabilization of a diode laser ( = 780 nm) using the Doppler-free dichroic lock (DFDL) technique and its use for laser cooling of atoms. Quantitative measurements of frequency stability were performed and the Allan variance was found to be 6.9 × 10−11 for an averaging time of 10 s. The frequency-stabilized diode laser was used to obtain the trapping beams for a magneto-optic trap (MOT) for Rb atoms. Using the DFDL technique, the laser frequency could be locked over a wide range and this enabled measurement of detuning dependence of the number and temperature of cold atoms using a relatively simple experimental set-up.

  6. High-average-power high-beam-quality vis-UV sources based on kinetically enhanced copper vapor lasers

    Science.gov (United States)

    Brown, Daniel J. W.; Withford, Michael J.; Carman, Robert J.; Mildren, Richard P.; Piper, James A.

    2000-04-01

    Investigations of the factors that limit average power scaling of elemental copper vapor lasers (CVLs) have demonstrated that decay of the electron density in the interpulse period is critical in restricting pulse repetition rate and laser aperture scaling. We have recently developed the 'kinetic enhancement' (or KE) technique to overcome these limitations, whereby optimal plasma conditions are engineered using low concentrations of HCl/H2 additive gases in the Ne buffer. Dissociative electron attachment of HCl and subsequent mutual neutralization of Cl- and Cu+ promote rapid plasma relaxation and fast recovery of Cu densities, permitting operation at elevated Cu densities and pulse rates for given apertures. Using this approach, we have demonstrated increases in output power and efficiency of a factor of 2 or higher over conventional CVLs of the same size. For a 38 mm- bore KE-CVL, output powers up to 150 W have been achieved at 22 kHz, corresponding to record specific powers (80 mW/cm3) for such a 'small/medium-scale' device. In addition, kinetic enhancement significantly extends the gain duration and restores gain on-axis, even for high pulse rates, thereby promoting substantial increases (5 - 10x) in high- beam-quality power levels when operating with unstable resonators. This has enabled us to achieve much higher powers in second-harmonic generation from the visible copper laser output to the ultraviolet (e.g. 5 W at 255 nm from a small- scale KE-CVL). Our approach to developing KE-CVLs including computer modeling and experimental studies will be reviewed, and most recent results in pulse rate scaling and scaling of high-beam-quality power using oscillator-amplifier configurations, will be presented.

  7. Supersonic Fe beam source for chromatic aberration-free laser focusing of atoms

    CERN Document Server

    Bosch, R C M; Van der Straten, P; Leeuwen, K A H

    2002-01-01

    A monochromatic Fe beam is generated by heated supersonic expansion of argon seeded with Fe vapor. At a nozzle temperature of 1930 K and 800 torr argon inlet pressure the Fe beam has an axial velocity spread of 8% and intensity of 3 x 10 sup 1 sup 5 s sup - sup 1 sr sup - sup 1 , corresponding to a deposition rate of 10 nm/h at 150 mm from the nozzle. The two-chamber alumina crucibles are chemically stable for liquid Fe. With 400 mm sup 3 Fe we have operated for more than 200 hours without reloading. The power consumption at 1930 K is 750 W. Temperature stability at constant power (without feedback) is better than 30 K. The source is intended for deposition of nano-structures by laser focusing of the Fe beam. The small axial velocity spread virtually eliminates the increase in focal spot size due to chromatic aberration. (authors)

  8. Al-free active region laser diodes at 894 nm for compact Cesium atomic clocks

    Science.gov (United States)

    Von Bandel, N.; Bébé Manga Lobé, J.; Garcia, M.; Larrue, A.; Robert, Y.; Vinet, E.; Lecomte, M.; Drisse, O.; Parillaud, O.; Krakowski, M.

    2015-03-01

    Time-frequency applications are in need of high accuracy and high stability clocks. Compact industrial Cesium atomic clocks optically pumped is a promising area that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of laser diodes that are used for atomic pumping. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for earth applications. This work will provide key experience for further space technology qualification. We are in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894nm (D1 line of Cesium) and 852nm (D2 line). The use of D1 line for pumping will provide simplified clock architecture compared to D2 line pumping thanks to simpler atomic transitions and larger spectral separation between lines in the 894nm case. Also, D1 line pumping overcomes the issue of unpumped "dark states" that occur with D2 line. The modules should provide narrow linewidth (<1MHz), very good reliability in time and, crucially, be insensitive to optical feedback. The development of the 894nm wavelength is grounded on our previous results for 852nm DFB. Thus, we show our first results from Al-free active region with InGaAsP quantum well broad-area lasers (100μm width, with lengths ranging from 2mm to 4mm), for further DFB operation at 894nm. We obtained low internal losses below 2cm-1, the external differential efficiency is 0.49W/A with uncoated facets and a low threshold current density of 190A/cm², for 2mm lasers at 20°C.

  9. Optical field ionization of atoms and ions using ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fittinghoff, D.N.

    1993-12-01

    This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-run laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He{sup +2}, Ne{sup +2} and Ar{sup +2}. The ion yields for He{sup +l}, Ne{sup +l} and Ar{sup +l} agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser-matter interactions and production of high-density plasmas. This work involved: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-ran ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields for three noble gases using linear, circular and elliptical polarizations of laser pulses at 614-nm and 800-nm. The measurements are some of the first measurements for pulse widths as low as 120-fs.

  10. Intra- and intercycle interference of electron emission in laser assisted XUV atomic ionization

    CERN Document Server

    Gramajo, Ana Alicia; Garibotti, Carlos Roberto; Arbó, Diego

    2016-01-01

    We study the ionization of atomic hydrogen in the direction of polarization due to a linearly polarized XUV pulse in the presence a strong field IR. We describe the photoelectron spectra as an interference problem in the time domain. Electron trajectories steming from different optical laser cycles give rise to intercycle interference energy peaks known as sidebands. These sidebands are modulated by a grosser structure coming from the intracycle interference of the two electron trajectories born during the same optical cycle. We make use of a simple semiclassical model which offers the possibility to establish a connection between emission times and the photoelectron kinetic energy. We compare the semiclassical predictions with the continuum-distorted wave strong field approximation and the ab initio solution of the time dependent Schr\\"odinger equation. We analyze such interference pattern as a function of the time delay between the IR and XUV pulse and also as a function of the laser intensity.

  11. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    Science.gov (United States)

    O'Connor, A. P.; Grussie, F.; Bruhns, H.; de Ruette, N.; Koenning, T. P.; Miller, K. A.; Savin, D. W.; Stützel, J.; Urbain, X.; Kreckel, H.

    2015-11-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of ˜7.4% for H- at a beam energy of 10 keV and ˜3.7% for C- at 28 keV. The diode laser systems used here operate at 975 nm and 808 nm, respectively, and provide high continuous power levels of up to 2 kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  12. Effects of free-electron-laser field fluctuations on the frequency response of driven atomic resonances

    CERN Document Server

    Nikolopoulos, G M

    2012-01-01

    We study the effects of field fluctuations on the total yields of Auger electrons, obtained in the excitation of neutral atoms to a core-excited state by means of short-wavelength free-electron-laser pulses. Beginning with a self-contained analysis of the statistical properties of fluctuating free-electron-laser pulses, we analyse separately and in detail the cases of single and double Auger resonances, focusing on fundamental phenomena such as power broadening and ac Stark (Autler-Townes) splitting. In certain cases, field fluctuations are shown to influence dramatically the frequency response of the resonances, whereas in other cases the signal obtained may convey information about the bandwidth of the radiation as well as the dipole moment between Auger states.

  13. Evaporation mechanisms of MgO in laser assisted atom probe tomography

    KAUST Repository

    Mazumder, Baishakhi

    2011-05-01

    In this paper the field evaporation properties of bulk MgO and sandwiched MgO layers in Fe are compared using laser assisted Atom Probe Tomography. The comparison of flight time spectra gives an estimate of the evaporation times as a function of the wavelength and the laser energy. It is shown that the evaporation takes place in two steps on two different time scales in MgO. It is also shown that as long as the MgO layer is buried in Fe, the evaporation is dominated by the photon absorption in Fe layer at the tip apex. Eventually the evaporation process of MgO is discussed based on the difference between the bulk materials and the multilayer samples. © 2010 Elsevier B.V.

  14. Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    CERN Document Server

    Attaourti, Y

    2004-01-01

    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the $(e,2e)$ reaction and in the presence of a circularly polarized laser field, we introduce as a first step the DVRPWBA1 (Dirac-Volkov Plane Wave Born Approximation1) where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the DVRPWBA2 (Dirac-Volkov Plane Wave Born Approximation2) where we take totally into account the relativistic dressing of the incident, scattered and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the non relativistic and the relativistic regime.

  15. Positron-impact ionisation of atomic hydrogen in the presence of a bichromatic laser field

    Institute of Scientific and Technical Information of China (English)

    Lou Jun; Li Shu-Min

    2010-01-01

    The positron impact-ionisation of atomic hydrogen in the presence of a linearly polarised bichromatic field is investigated in the first Born approximation.The field is composed of a fundamental frequency and its second harmonic.The state of positron in the field is described by the Volkov wavefunction,and the continuum state of the ejected electron is described by the Coulomb-Volkov wavefunction.The dressed ground state of target is a first order time-dependent perturbative wavefunction.The triple differential cross sections and their dependencies on laser field parameters are discussed and compared with the results modified by a monochromatic field.Numerical results show that the coherent phase control is significant and the laser-assisted ionisation cross sections caused by positron and electron are different.

  16. Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhang; Chong Kang; Wang Qingtao; Lei Cheng; Zheng Caiping, E-mail: zhangyang@hrbeu.edu.cn [College of Science, Harbin Engineering University, Harbin 150001 (China)

    2011-02-01

    At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.

  17. Generation of neutral atomic beams utilizing photodetachment by high power diode laser stacks

    CERN Document Server

    O'Connor, A P; Grussie, F; Koenning, T P; Miller, K A; de Ruette, N; Stützel, J; Savin, D W; Urbain, X; Kreckel, H

    2015-01-01

    We demonstrate the use of high power diode laser stacks to photodetach fast hydrogen and carbon anions and produce ground term neutral atomic beams. We achieve photodetachment efficiencies of $\\sim$7.4\\% for H$^-$ at a beam energy of 10\\,keV and $\\sim$3.7\\% for C$^-$ at 28\\,keV. The diode laser systems used here operate at 975\\,nm and 808\\,nm, respectively, and provide high continuous power levels of up to 2\\,kW, without the need of additional enhancements like optical cavities. The alignment of the beams is straightforward and operation at constant power levels is very stable, while maintenance is minimal. We present a dedicated photodetachment setup that is suitable to efficiently neutralize the majority of stable negative ions in the periodic table.

  18. Magneto-Optical Trapping of 88Sr atoms with 689 nm Laser

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; LIN Bai-Ke; ZHAO Yang; LI Ye; WANG Shao-Kai; WANG Min-Ming; ZANG Er-Jun; LI Tian-Chu; FANG Zhan-Jun

    2011-01-01

    We report the experimental realization of strontium magneto-optical trap(MOT) operating on the intercombination transition lSo-3 P1 at 689nm, namely red MOT. A 689nm laser used for cooling and trapping is injection locked to a master laser, whose linewidth is narrowed to 150 Hz by locking to a high finesse optical reference cavity.88 Sr atoms pre-cooled and trapped by the broad 1SO-1 Pl transition at 461 nm are transferred to the red MOT with the help of a time sequence controller. The transfer ratio is about 20% and the red MOT's temperature is estimated to be less than 20 μK by the time-of-flight(TOF) image analysis.

  19. Femtosecond laser irradiation of indium phosphide in air: Raman spectroscopic and atomic force microscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J.; Wrobel, J.M.; Brzezinka, K.-W.; Esser, N.; Kautek, W

    2002-12-30

    Surface modification and ablation of crystalline indium phosphide was performed with single and double 130 fs pulses from a Ti:sapphire laser. The morphological features resulting from laser processing, have been investigated by means of micro Raman spectroscopy as well as by optical, atomic force and scanning electron microscopy. The studies indicate amorphous, ablated and recrystallized zones on the processed surface. In the single-pulse irradiation experimentsveral different threshold fluences could be assigned to the processes of melting, ablation and polycrystalline resolidification. Residual stress has been detected within the irradiated areas. Double-pulse exposure experiments have been analyzed in order to clarify the effect of cumulative damage in the ablation process of indium phosphide.

  20. Vapor deposition of polystyrene thin films by intense laser vibrational excitation

    DEFF Research Database (Denmark)

    Bubb, D.M.; Papantonakis, M.R.; Horwitz, J.S.

    2002-01-01

    Polystyrene films were deposited using resonant infrared pulsed laser depositions (RIR-PLD). Thin films were grown on Si(1 1 1) wafers and NaCl substrates and analyzed by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The depositions were carried out...... in vacuum (10(-4)-10(-5) Torr) at wavelengths 3.28, 3.30, 3.42 and 3.48 mum which are resonant with CH2 stretching modes in the polymer. We also attempted to deposit a films using non-resonant infrared (RIR) excitation (2.90 mum). At this wavelength no films were deposited, and evidence for laser......-induced damage to the target can be seen. RIR-PLD is a fundamentally new approach to polymer thin film growth as the absorption of radiation resonant with vibrational modes allow the energy to be deposited into the polymer and transfers between macromolecules in such a way as to promote efficient, non...

  1. Laser sampling system for an inductively-coupled atomic emission spectrometer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-15

    A laser sampling system was attached to a Perkin Elmer Optima 3000 inductively-coupled plasma, atomic emission spectrometer that was already installed and operating in the Chemistry and Geochemistry Department at the Colorado School of Mines. The use of the spectrometer has been highly successful. Graduate students and faculty from at least four different departments across the CSM campus have used the instrument. The final report to NSF is appended to this final report. Appendices are included which summarize several projects utilizing this instrument: acquisition of an inductively-coupled plasma atomic emission spectrometer for the geochemistry program; hydrogen damage susceptibility assessment for high strength steel weldments through advanced hydrogen content analysis, 1996 and 1997 annual reports; and methods for determination of hydrogen distribution in high strength steel welds.

  2. Fabrication of atomically smooth SrRuO3 thin films by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High-quality SrRuO3 (SRO) thin films and SrTiO3/SRO bilayer were grown epitaxially on SrTiO3 (STO)(001) substrates by laser molecular beam epitaxy. The results of in situ observation of reflection high-energy electron diffraction and ex situ X-ray diffraction θ -2θ scan indicate that the SRO thin films have good crystallinity. The measurements of atomic force microscopy and scan tunneling microscopy reveal that the surface of the SRO thin film is atomically smooth. The resistivity of the SRO thin film is 300 μΩ·cm at room temperature. Furthermore, the transmission electron microscopy study shows that the interfaces of STO/SRO and SRO/STO are very clear and no interfacial reaction layer was observed. The experimental results show that the SRO thin film is an excellent electrode material for devices based on perovskite oxide materials.

  3. Temperature limits in laser cooling of free atoms with three-level cascade transitions

    CERN Document Server

    Cruz, Flavio C; Magno, Wictor C

    2013-01-01

    We employ semiclassical theoretical analysis to study laser cooling of free atoms using three-level cascade transitions, where the upper transition is much weaker than the lower one. This represents an alternate cooling scheme, particularly useful for group II atoms. We find that temperatures below the Doppler limits associated with each of these transitions are expected. The lowest temperatures arise from a remarkable increase in damping and reduced diffusion compared to two-level cooling. They are reached at the two-photon resonance, where there is a crossing between the narrow and the partially-dark dressed states, and can be estimated simply by the usual Doppler limit considering the decay rate of the optical coherence between these states.

  4. Zeeman Effect of Sm Atoms by High-Resolution Diode-Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wei-Guo Jin

    2013-01-01

    Full Text Available High-resolution atomic-beam diode-laser spectroscopy in Sm I has been performed. Zeeman spectra have been measured for the three optical transitions at different external magnetic fields and well resolved at the magnetic fields of stronger than 6.0 mT. Using the known precise Landé -factors of the ground multiplet, the Landé -factors of the upper 4f66s6p   and levels have been determined, and their precision has been improved compared with the reference values.

  5. Propagation of Few-Cycle Pulse Laser in Two-Level Atom Medium

    Institute of Scientific and Technical Information of China (English)

    肖健; 王中阳; 徐至展

    2001-01-01

    By comparing the numerical solutions of Maxwell-Bloch equations beyond and within the slowly-varying envelope approximation and the rotating-wave approximation for the propagation of a few-cycle pulse laser in a resonant two-level atom medium, we found that both the Rabi flopping and the refractive index, and subsequently the carrier and the propagation velocity of the few-cycle pulse, are closely connected with the time-derivative behaviour of the electric field. This is because the Rabi flopping is such that the soliton pulse splits during propagation and that a shorter pulse propagates faster than a broader one.

  6. Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic

    Indian Academy of Sciences (India)

    S P Ram; S K Tiwari; S R Mishra; H S Rawat

    2014-02-01

    We present here our experimental results on transfer of laser-cooled atom cloud to a quadrupole magnetic trap. We show that by choosing appropriately the ratio of potential energy in magnetic trap to kinetic energy of cloud in molasses, we can obtain the maximum phase-space density in the magnetic trap. These results guide us to choose the value of current to be switched in the quadrupole coils used for magnetic trapping for a given temperature of the cloud after molasses. This study is also useful to set the initial phase-space density of the cloud before evaporative cooling.

  7. The RMT method for describing many-electron atoms in intense short laser pulses

    Science.gov (United States)

    Lysaght, M. A.; Moore, L. R.; Nikolopoulos, L. A. A.; Parker, J. S.; van der Hart, H. W.; Taylor, K. T.

    2012-11-01

    We describe how we have developed an ab initio R-Matrix incorporating Time (RMT) method to provide an accurate description of the single ionization of a general many-electron atom exposed to short intense laser pulses. The new method implements the "division-of-space" concept central to R-matrix theory and takes over the sophisticated time-propagation algorithms of the HELIUM code. We have tested the accuracy of the new method by calculating multiphoton ionization rates of He and Ne and have found excellent agreement with other highly accurate and well-established methods.

  8. A superradiant laser based on two-photon Raman transition of caesium atoms

    CERN Document Server

    Liu, Pengfei

    2013-01-01

    We propose a superradiant laser based on two-photon Raman transition of caesium-133 atoms which collectively emit photons on an ultra narrow transition into the mode of a low Q resonator known as optical bad-cavity regime. The spin-spin correlation which characterizes the collective effect is demonstrated. We theoretically predict that the optical radiation has an extremely narrow linewidth in the 98 (1) *10-2 mHz range, smaller than the transition itself due to collective effects, and a power level of 7 (1)*10-10 W is possible, which can provide a possible new way to realize an optical clock with a millihertz linewidth.

  9. Interaction of laser-cooled $^{87}$Rb atoms with higher order modes of an optical nanofiber

    CERN Document Server

    Kumar, Ravi; Maimaiti, Aili; Deasy, Kieran; Frawley, Mary C; Chormaic, Síle Nic

    2013-01-01

    Optical nanofibers can be used to confine light to submicron regions and are very promising for the realization of optical fiber-based quantum networks using cold, neutral atoms. Light propagating in the higher order modes of a nanofiber has a greater evanescent field extension around the waist in comparison with the fundamental mode, leading to a stronger interaction with the surrounding environment. In this work, we report on the integration of a few-mode, optical nanofiber, with a waist diameter of ~700 nm, into a magneto-optical trap for $^{87}$Rb atoms. The nanofiber is fabricated from 80 $\\mu$m diameter fiber using a brushed hydrogen-oxygen flame pulling rig. We show that absorption by laser-cooled atoms around the waist of the nanofiber is stronger when probe light is guided in the higher order modes than in the fundamental mode. As predicted by Masalov and Minogin*, fluorescent light from the atoms coupling in to the nanofiber through the waist has a higher pumping rate (5.8 times) for the higher-orde...

  10. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber

    CERN Document Server

    Vetsch, E; Sagué, G; Schmidt, R; Dawkins, S T; Rauschenbeutel, A

    2009-01-01

    Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices.

  11. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H., E-mail: nakano@nifs.ac.jp; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 5095292 (Japan); Nishiyama, S.; Sasaki, K. [Graduate school of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 0608628 (Japan)

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  12. Fully differential cross sections for ion-atom impact ionization in the presence of a laser field

    Energy Technology Data Exchange (ETDEWEB)

    Ciappina, M F [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str 38, D-01187, Dresden (Germany)

    2007-11-14

    We study fully differential cross sections (FDCS) for single ionization of helium by ion impact in the presence of a laser field. The field is assumed to have linear polarization, to be weak compared to the typical atomic field, and we use a frequency corresponding to a CO{sub 2} laser. We employ the continuum distorted wave-eikonal initial state (CDW-EIS) to describe our FDCS in the laser background. Analysing our numerical results we explore the dependence of the FDCS on the laser field properties as well as on the ionized electron parameters.

  13. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  14. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.

    Science.gov (United States)

    François, B; Calosso, C E; Abdel Hafiz, M; Micalizio, S; Boudot, R

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad(2)/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad(2)/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10(-14) for the Cs cell clock and 2 × 10(-14) for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10(-15) level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  15. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Rich; Janssen, Yuri; Kalifah, Peter; Meng, Ying S.

    2015-01-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative accuracy of atom probe tomography (APT) examinations of LiFePO4 (LFP) are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted APT of LFP has revealed distinctly different behaviors. With the use of UV laser the major issue was identified as the preferential loss of oxygen (up to 10 at. %) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ increased the observed oxygen concentration to near its correct stoichiometry and was well correlated with systematically higher concentrations of 16O2+ ions. This observation supports the premise that lower laser energies lead to a higher probability of oxygen molecule ionization. Conversely, at higher laser energies the resultant lower effective electric field reduces the probability of oxygen molecule ionization. Green laser assisted field evaporation led to the selective loss of Li (~50% deficiency) and correct ratios of the remaining elements, including the oxygen concentration. The loss of Li is explained by selective dc evaporation of lithium between laser pulses and relatively negligible oxygen loss as neutrals during green-laser pulsing. Lastly, plotting of multihit events on a Saxey plot for the straight-flight path data (green laser only) revealed a surprising dynamic recombination process for some molecular ions mid-flight.

  16. Laser-induced reversion of $\\delta^{'}$ precipitates in an Al-Li alloy: Study on temperature rise in pulsed laser atom probe

    CERN Document Server

    Khushaim, Muna; Al-Kassab, Talaat

    2015-01-01

    The influence of tuning the laser energy during the analyses on the resulting microstructure in a specimen utilizing an ultra-fast laser assisted atom probe was demonstrated by a case study of a binary Al-Li alloy. The decomposition parameters, such as the size, number density, volume fraction and composition of $\\delta^{'}$ precipitates, were carefully monitored after each analysis. A simple model was employed to estimate the corresponding specimen temperature for each value of the laser energy. The results indicated that the corresponding temperatures for the laser energy in the range of 10 to 80 pJ are located inside the miscibility gap of the binary Al-Li phase diagram and fall into the metastable equilibrium field. In addition, the corresponding temperature for a laser energy of 100 pJ was in fairly good agreement with reported range of $\\delta^{'}$ solvus temperature, suggesting a result of reversion upon heating due to laser pulsing.

  17. Power scaling of a wavelength-narrowed diode laser system for pumping alkali vapors

    Science.gov (United States)

    Hersman, F. W.; Distelbrink, J. H.; Ketel, J.; Wilson, J.; Watt, D. W.

    2016-03-01

    We report a method for locking the output wavelength and reducing the spectral linewidth of diode lasers by feeding back light to the emitters from a wavelength selective external optical cavity. Ten years ago our team developed a stepped-mirror that allowed a single external cavity to lock the wavelength of a stack of diode array bars by equalizing path lengths between each emitter and the grating. Here we report combining one such step-mirror external cavity with an array of power dividers, each sending a portion of this feedback power to a separate diode array bar stack.

  18. Venous gas embolism caused by fibrin sealant application to the prostate during greenlight laser photoselective vaporization.

    Science.gov (United States)

    Lee, Alexander; Vazquez, Rafael

    2015-04-15

    Venous gas embolism is a complication of fibrin sealant application and is a well-described event during various modes of prostate resection. We describe the case of a nitrogen venous gas embolism during Greenlight laser photovaporization of the prostate during the application of fibrin sealant to the operative site for hemostasis. Fibrin sealant application by a compressed gas applicator is a cause of venous air embolism, and this case highlights the need to keep venous gas embolism in mind when compressed gas applicators are used.

  19. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    Science.gov (United States)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  20. Dichroism in the photoionisation of atoms at XUV free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Mazza, T., E-mail: tommaso.mazza@xfel.eu [European XFEL GmbH, Albert-Einstein-Ring 19, D-22761 Hamburg (Germany); Gryzlova, E.V.; Grum-Grzhimailo, A.N. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Kazansky, A.K. [Departamento de Fisica de Materiales, UPV/EHU, E-20018 San Sebastian/Donostia (Spain); IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao (Spain); Donostia International Physics Center (DIPC), E-20018 San Sebastian/Donostia (Spain); Kabachnik, N.M. [European XFEL GmbH, Albert-Einstein-Ring 19, D-22761 Hamburg (Germany); Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Donostia International Physics Center (DIPC), E-20018 San Sebastian/Donostia (Spain); Meyer, M., E-mail: michael.meyer@xfel.eu [European XFEL GmbH, Albert-Einstein-Ring 19, D-22761 Hamburg (Germany)

    2015-10-15

    Highlights: • We studied 2-color photoionization of He by angle-resolved electron spectroscopy. • Beta-parameters contain information about the symmetry of outgoing electron waves. • Experiments are compared to strong field approximation and perturbation theory. • 2-Photon measurements can be used to characterize FEL radiation properties. • Non-dipole contributions are predicted to produce new features in the dichroism. - Abstract: Two-color photoionization of atomic He has been investigated by angle-integrated and angle-resolved electron spectroscopy. The combined action of intense radiation pulses from the XUV free-electron laser (FEL), FERMI or FLASH, and a synchronized optical laser on the target atom gives rise to a rich sideband structure in the photoemission spectrum. Measurements of the angular distribution parameters and the determination of the circular and linear dichroism for the two-color photoionization enable a detailed analysis of the symmetry of the outgoing electron waves and of the dynamics underlying the multi-photon processes. The experimental results are in excellent agreement with theoretical results obtained using perturbation theory (low intensity regime) and the strong field approximation. For the particular case of two-photon ionization the measurements represent an ideal tool for characterizing certain FEL parameters, here for example the degree and the sign of circular polarization. Finally, new features of the dichroism are theoretically predicted originating from the non-dipole contribution into the photoionization amplitudes.

  1. Laser-Assisted Semi Relativistic Excitation of Atomic Hydrogen by Electronic Impact

    CERN Document Server

    Taj, S; Idrissi, M El; Oufni, L

    2012-01-01

    The excitation of H ($1s-2s$) by electron impact in the presence and in the absence of the laser field is studied in the framework of the first Born approximation. The angular variation of the laser-assisted differential cross section (DCS) for atomic hydrogen by electronic impact is presented at various kinetic energies for the incident electron. The use of Darwin wave function as a semirelativistic state to represent the atomic hydrogen gives interesting results when the condition $z/c\\ll1$ is fulfilled. A comparison with the non relativistic theory and experimental data gives good agreement. It was observed that beyond (2700 $eV$) which represents the limit between the two approaches, the non relativistic theory does not yield close agreement with our theory and that, over certain ranges of energy, it can be in error by several orders of magnitude. The sum rule given by Bunkin and Fedorov and by Kroll and Watson \\cite{22} has been verified in both nonrelativistic and relativistic regimes.

  2. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    Science.gov (United States)

    Marinov, Daniil; Drag, Cyril; Blondel, Christophe; Guaitella, Olivier; Golda, Judith; Klarenaar, Bart; Engeln, Richard; Schulz-von der Gathen, Volker; Booth, Jean-Paul

    2016-12-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was investigated using a high-resolution TALIF technique in normal and Doppler-free configurations. The pressure broadening coefficients determined were {γ{{\\text{O}2}}}   =  0.40  ±  0.08  cm-1/bar for oxygen molecules and {γ\\text{He}}   =  0.46  ±  0.03 cm-1/bar for helium atoms. These correspond to pressure broadening rate constants k\\text{PB}{{\\text{O}2}}   =  9 · 10-9 cm3 s-1 and k\\text{PB}\\text{He}   =  4 · 10-9 cm3 s-1, respectively. The well-known quenching rate constants of O(3p 3 P J ) by O2 and He are at least one order of magnitude smaller, which signifies that non-quenching collisions constitute the main line-broadening mechanism. In addition to providing new insights into collisional processes of oxygen atoms in electronically excited 3p 3 P J state, reported pressure broadening parameters are important for quantification of oxygen TALIF line profiles when both collisional and Doppler broadening mechanisms are important. Thus, the Doppler component (and hence the temperature of oxygen atoms) can be accurately determined from high resolution TALIF measurements in a broad range of conditions.

  3. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    Science.gov (United States)

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air.

  4. Nobel Prize in Physics 1997 "for development of methods to cool and trap atoms with laser light" : Steven Chu, Claude Cohen-Tannoudji and William D. Phillips

    CERN Multimedia

    1998-01-01

    Prof.S. Chu presents "the manipulation of atoms and bio-molecules by laser light" : a brief history of the laser cooling and trapping of atoms developed over the past 15 years will be presented. The cooling and trapping technology is already being applied in numerous areas of science and engineering. Applications to be discussed include atomic clocks, atom interferometers, as well as studies in polymer dynamics and protein motion.

  5. CO oxidation activity of Cu-CeO2 nano-composite catalysts prepared by laser vaporization and controlled condensation

    Science.gov (United States)

    Sundar, Rangaraj S.; Deevi, Sarojini

    2006-08-01

    Ceria supported copper catalysts were synthesized by laser vaporization and controlled condensation method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and temperature programmed reduction (TPR). The catalytic activity of the nanopowders for CO oxidation reaction was tested in a fixed bed flow tube reactor in Ar-20%O2-4%CO mixture. Irrespective of the copper content, the catalytic activity of the nanopowders is similar in the initial CO test, and the catalytic activity improves (i.e. the light-off temperature decreases) during a subsequent run. The lowest light-off temperature during the second run is recorded in the material with 20% copper. TEM studies on 20%Cu-CeO2 sample in the as-prepared condition and after CO test exhibit two types of ceria particles namely, polygonal particles 3-5 nm in size and spherical particles of 15-20 nm in size. Rapid cooling of the nanoparticles formed during the laser ablation results in incorporation of a large amount of copper within the ceria as solid solution. Presence of solid solution of copper is confirmed by EDAX and electron diffraction analyses. In addition, copper-rich surface layer of Cu2O is found over the spherical particles. The cerium oxide components are essentially identical before and after CO test, except that the polygonal CeO2 particles contain newly formed fine crystals of CuO. TPR results reveal two reduction peaks, which further supports, the presence of two different copper species in the material. The shift in light-off temperature during the second run is attributed to the synergistic interaction between newly formed CuO crystals with the CeO2 matrix.

  6. Dystrophic calcification and stone formation on the entire bladder neck after potassium-titanyl phosphate laser vaporization for the prostate: a case report.

    Science.gov (United States)

    Jeon, Sang-Wohn; Park, Yong-Koo; Chang, Sung-Goo

    2009-08-01

    Dystrophic calcification can be defined as a calcification that occurs in degenerated or necrotic tissue. It is associated with multiple clinical conditions, such as collagen vascular diseases. It involves the deposition of calcium in soft tissues despite no generalized disturbance in the calcium or phosphorus metabolism, and this is often seen at sites of previous inflammation or damage. Potassium-titanyl phosphate (KTP) laser vaporization of the prostate is safe and relatively bloodless procedure that results in a shorter catheterization, immediate symptomatic improvement, and less severe postoperative irritative symptoms. However, longer follow-up studies or reports about complications are lacking. Here in we report a case of dystrophic calcification and stone formation on the entire bladder neck after performing KTP laser vaporization of benign prostate hyperplasia. That was treated by lithotripsy and transurethral resection.

  7. Laser generation in vapors of complex molecules at 330 to 350 nm

    Energy Technology Data Exchange (ETDEWEB)

    Borisevich, N.A.; Gorelenko, A.Ya.; Kazak, N.S.; Kalosha, I.I.; Morgun, Yu.F.; Agashkov, A.V.; Tolkachev, V.A.; Tugbaev, V.A.

    1980-02-01

    In pumping by a the fourth harmonic neodymium laser, the lasing has been produced in the vapours of 1,4-di(1-(4-ethyl)phenyl)-benzene (I), 1,4-di(n-phenylethynly)-benzene (II), 2-(n-butoxyphenyl)-benzoxazole (III) and 2-(n-hexadecyloxyphenyl)benzoxazole (IV). In order to reduce the lasing threshold, foreign gases (propane and pentane) were used. The wave lengths of the band centers, pressures of the foreign gas and temperatures amounted respectively to: I-335.5 nm, 15 atm, 160/sup 0/C; II-349.5 nm, 55 atm, 127/sup 0/C; III-337.5 nm, 55 atm, 127/sup 0/C; IV-339 nm, 65 atm, 132/sup 0/C. Lasing has been produced in shorter wave region and at lower temperatures than in the gas phase of the active compounds reported earlier.

  8. Forced convection and transport effects during hyperbaric laser chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, James L [Los Alamos National Laboratory; Chavez, Craig A [Los Alamos National Laboratory; Espinoza, Miguel [Los Alamos National Laboratory; Black, Marcie [Los Alamos National Laboratory; Maskaly, Karlene [Los Alamos National Laboratory; Boman, Mats [UPPSALA UNIV

    2009-01-01

    This work explores mass transport processes during HP-LCYD, including the transverse forced-flow of precursor gases through a nozzle to enhance fiber growth rates. The use of laser trapping and suspension of nano-scale particles in the precursor flow is also described, providing insights into the nature of the gas flow, including jetting from the fiber tip and thermodiffusion processes near the reaction zone. The effects of differing molecular-weight buffer gases is also explored in conjunction with the Soret effect, and it is found that nucleation at the deposit surface (and homogeneous nucleation in the gas phase) can be enhanced/ retarded, depending on the buffer gas molecular weight. To demonstrate that extensive microstructures can be grown simultaneously, three-dimensional fiber arrays are also grown in-parallel using diffractive optics--without delatory effects from neighboring reaction sites.

  9. Quantum Cascade Laser-Based Photoacoustic Spectroscopy for Trace Vapor Detection and Molecular Discrimination

    Directory of Open Access Journals (Sweden)

    Almon Fisher

    2010-03-01

    Full Text Available We report on the development of a microelectromechanical systems (MEMS-scale photoacoustic sensor for the detection of trace gases. A mid-infrared quantum cascade laser (QCL was used to determine detection limits for acetic acid, acetone, 1,4-dioxane, and vinyl acetate. The source was continuously tunable from 1015 cm-1 to 1240 cm-1, allowing for the collection of photoacoustic vibrational spectra for these gases. Exceptional agreement between the measured photoacoustic spectra and the infrared spectra for acetic acid, acetone, 1,4-dioxane, and vinyl acetate was observed. Partial least-squares (PLS regression was used to develop an algorithm for classification of these compounds based solely on photoacoustic spectra.

  10. High Temperature Nanocomposites For Nuclear Thermal Propulsion and In-Space Fabrication by Hyperbaric Pressure Laser Chemical Vapor Deposition

    Science.gov (United States)

    Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.

    Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration ­ the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).

  11. Improvement of the antifungal activity of Litsea cubeba vapor by using a helium-neon (He-Ne) laser against Aspergillus flavus on brown rice snack bars.

    Science.gov (United States)

    Suhem, Kitiya; Matan, Narumol; Matan, Nirundorn; Danworaphong, Sorasak; Aewsiri, Tanong

    2015-12-23

    The aim of this study was to improve the antifungal activity of the volatile Litsea cubeba essential oil and its main components (citral and limonene) on brown rice snack bars by applying He-Ne laser treatment. Different volumes (50-200 μL) of L. cubeba, citral or limonene were absorbed into a filter paper and placed inside an oven (18 L). Ten brown rice snack bars (2 cm wide × 4 cm long × 0.5 cm deep) were put in an oven and heated at 180 °C for 20 min. The shelf-life of the treated snack bars at 30 °C was assessed and sensory testing was carried out to investigate their consumer acceptability. A count of total phenolic content (TPC) and Fourier transform infrared spectroscopy (FTIR) on the properties of essential oil, citral, and limonene before and after the laser treatment was studied for possible modes of action. It was found that the laser treatment improved the antifungal activity of the examined volatile L. cubeba and citral with Aspergillus flavus inhibition by 80% in comparison with those of the control not treated with the laser. L. cubeba vapor at 100 μL with the laser treatment was found to completely inhibit the growth of natural molds on the snack bars for at least 25 days; however, without essential oil vapor and laser treatment, naturally contaminating mold was observed in 3 days. Results from the sensory tests showed that the panelists were unable to detect flavor and aroma differences between essential oil treatment and the control. Laser treatment caused an increase in TPC of citral oil whereas the TPC in limonene showed a decrease after the laser treatment. These situations could result from the changing peak of the aliphatic hydrocarbons that was revealed by the FTIR spectra.

  12. Light-induced changes in an alkali metal atomic vapor cell coating studied by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hibberd, A. M.; Bernasek, S. L. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Seltzer, S. J. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Balabas, M. V. [Department of Physics, Saint-Petersburg State University, St. Petersburg 198504 (Russian Federation); Morse, M. [Department of Materials Science Engineering, Boise State University, Boise, Idaho 83725 (United States); Budker, D. [Department of Physics, University of California, Berkeley, California 94720-7300 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2013-09-07

    The light-induced desorption of Rb atoms from a paraffin coating is studied with depth-profiling X-ray photoelectron spectroscopy (XPS) using tunable synchrotron radiation. Following Rb exposure, shifts of the C1s signal to higher binding energies, as well as the appearance of lower binding energy components in the O1s region, were observed. These effects were diminished after irradiation with desorbing light. Additionally, following desorbing-light irradiation, changes in the depth-dependent concentration of carbon were observed. These observations offer an insight into the microscopic changes that occur during light-induced atomic desorption and demonstrate the utility of XPS in understanding atom-coating interactions.

  13. Comparison of recoil-induced resonances and the collective atomic recoil laser

    CERN Document Server

    Berman, P R

    1999-01-01

    The theories of recoil-induced resonances (RIR) [J. Guo, P. R. Berman, B. Dubetsky and G. Grynberg, Phys. Rev. A {\\bf 46}, 1426 (1992)] and the collective atomic recoil laser (CARL) [ R. Bonafacio and L. De Salvo, Nucl. Instrum. Methods A {\\bf 341}, 360 (1994)] are compared. Both theories can be used to derive expressions for the gain experienced by a probe field interacting with an ensemble of two-level atoms that are simultaneously driven by a pump field. It is shown that the RIR and CARL formalisms are equivalent. Differences between the RIR and CARL arise because the theories are typically applied for different ranges of the parameters appearing in the theory. The RIR limit considered in this paper is $qP_{0}/M\\omega_{q}\\gg 1$, while the CARL limit is $qP_{0}/M\\omega_{q}\\lesssim 1$, where $% q $ is the magnitude of the difference of the wave vectors of the pump and probe fields, $P_{0}$ is the width of the atomic momentum distribution and $% \\omega_{q}$ is a recoil frequency. The probe gain for a probe-pu...

  14. Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization

    CERN Document Server

    Christensen, Bjarke T R; Schäffer, Stefan A; Westergaard, Philip G; Ye, Jun; Holland, Murray; Thomsen, Jan W

    2015-01-01

    We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line $\\lvert 5s^{2} \\, ^1 \\textrm{S}_0 \\rangle \\,-\\, \\lvert 5s5p \\, ^3 \\textrm{P}_1 \\rangle$ at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures - the cavity transmitted phase and absorption - by employing FM spectroscopy (NICE-OHMS). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free space situation where no cavity is present. Furthermore, the non-linear dynami...

  15. Laser-induced atomic fragment fluorescence spectroscopy: a facile technique for molecular spectroscopy of spin-forbidden states.

    Science.gov (United States)

    Zhang, Qun; Chen, Yang; Keil, Mark

    2009-03-01

    Spectra of spin-forbidden and spin-allowed transitions in the mixed b (3)Pi(u) approximately A (1)Sigma(u)(+) state of Na(2) are measured separately by two-photon excitation using a single tunable dye laser. The two-photon excitation produces Na(*)(3p) by photodissociation, which is easily and sensitively detected by atomic fluorescence. At low laser power, only the A (1)Sigma(u)(+) state is excited, completely free of triplet excitation. At high laser power, photodissociation via the intermediate b (3)Pi(u) triplet state becomes much more likely, effectively "switching" the observations from singlet spectroscopy to triplet spectroscopy with only minor apparatus changes. This technique of perturbation-assisted laser-induced atomic fragment fluorescence may therefore be especially useful as a general vehicle for investigating perturbation-related physics pertinent to the spin-forbidden states, as well as for studying allowed and forbidden states of other molecules.

  16. Direct determination of arsenic in soil samples by fast pyrolysis–chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Xuchuan; Zhang, Jingya; Bu, Fanlong

    2015-09-01

    This new study shows for the first time that sodium formate can react with trace arsenic to form volatile species via fast pyrolysis – chemical vapor generation. We found that the presence of thiourea greatly enhanced the generation efficiency and eliminated the interference of copper. We studied the reaction temperature, the volume of sodium formate, the reaction acidity, and the carried argon rate using nondispersive atomic fluorescence spectrometry. Under optimal conditions of T = 500 °C, the volumes of 30% sodium formate and 10% thiourea were 0.2 ml and 0.05 ml, respectively. The carrier argon rate was 300 ml min{sup −1} and the detection limit and precision of arsenic were 0.39 ng and 3.25%, respectively. The amount of arsenic in soil can be directly determined by adding trace amount of hydrochloric acid as a decomposition reagent without any sample pretreatment. The method was successfully applied to determine trace amount of arsenic in two soil-certified reference materials (GBW07453 and GBW07450), and the results were found to be in agreement with certified reference values. - Highlights: • Sodium formate can react with trace arsenic to form volatile species via pyrolysis–chemical vapor generation. • Thiourea can enhance the generation efficiency and eliminate the interference of copper. • Arsenic in soil Sample can be directly determined without sample pretreatment.

  17. Determination of Hg(II) in waters by on-line preconcentration using Cyanex 923 as a sorbent — Cold vapor atomic absorption spectrometry

    Science.gov (United States)

    Duan, Taicheng; Song, Xuejie; Xu, Jingwei; Guo, Pengran; Chen, Hangting; Li, Hongfei

    2006-09-01

    Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO 3 and subsequently reduced by NaBH 4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min - 1 sample loading rate. The detection limit was 0.2 ng L - 1 and much lower than that of conventional method (around 15.8 ng L - 1 ). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L - 1 of Hg and the linear working curve is from 20 to 2000 ng L - 1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.

  18. Determination of Hg(II) in waters by on-line preconcentration using Cyanex 923 as a sorbent - Cold vapor atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duan Taicheng [State Key Laboratory of Electroanalytical Chemistry, National Research Center of Electroanalytical and Spectroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Song Xuejie [State Key Laboratory of Electroanalytical Chemistry, National Research Center of Electroanalytical and Spectroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Xu Jingwei [State Key Laboratory of Electroanalytical Chemistry, National Research Center of Electroanalytical and Spectroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Guo Pengran [State Key Laboratory of Electroanalytical Chemistry, National Research Center of Electroanalytical and Spectroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Chen Hangting [State Key Laboratory of Electroanalytical Chemistry, National Research Center of Electroanalytical and Spectroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)]. E-mail: htchen@ciac.jl.cn; Li Hongfei [Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2006-09-15

    Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO{sub 3} and subsequently reduced by NaBH{sub 4} to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min{sup -1} sample loading rate. The detection limit was 0.2 ng L{sup -1} and much lower than that of conventional method (around 15.8 ng L{sup -1}). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L{sup -1} of Hg and the linear working curve is from 20 to 2000 ng L{sup -1} (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.

  19. On-line continuous generation of zinc chelates in the vapor phase by reaction with sodium dithiocarbamates and determination by atomic fluorescence spectrometry

    Science.gov (United States)

    Duan, Xuchuan; Sun, Rui; Fang, Jinliang

    2017-02-01

    The present study shows for the first time that a volatile zinc chelate species can be generated by the on-line continuous merging of an acidified sample solution with an aqueous sodium diethyldithiocarbamate solution followed by rapid separation using a frit-based bubble gas-liquid separator at room temperature. The operating conditions for the generation of the vaporous zinc chelate were preliminarily investigated by non-dispersive atomic fluorescence spectrometry. The possible mechanism of zinc vapor generation is discussed. The study shows that the volatile species is an intermediate species with very similar properties to diethyldithiocarbamic acid and a very short half-life in the acidic solution. Moreover, this species can only be generated by on-line mixing and rapid separation. The efficiency of generation was 33-85% depending on acidity. Under optimal conditions, the flow rates of the sample and Na-DDTC solution were 1.3 ml min- 1, the carrier argon flow rate was 225 ml min- 1, the acid concentration of the sample solution and the concentration of Na-DDTC were 0.05 M and 0.4% (m/v), respectively, the detection limit of zinc was 0.33 (3σ) ng ml- 1, and the relative standard deviation (RSD) was 1.3%. The accuracy of the method was verified by the determination of zinc in the plant reference materials GBW10015 (spinach) and GBW10045 (rice). The results were in good agreement with the certified reference values.

  20. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.