Ab initio calculation atomics ground state wave function for interactions Ion- Atom
International Nuclear Information System (INIS)
Shojaee, F.; Bolori zadeh, M. A.
2007-01-01
Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.
Hydrogen-like atom in laser field: Invariant atomic parameters in the ground state
International Nuclear Information System (INIS)
Bondarev, I.V.; Kuten, S.A.
1994-07-01
The invariant atomic parameters (dynamical vector and tensor polarizabilities) of hydrogen-like atom in the ground 1S 1/2 state are calculated analytically by means of the Laplace transform of the radial Schroedinger equation. The obtained analytical expressions have been written in the compact form as a sum of linear and squared combinations of Gauss hypergeometric functions 2 F 1 . The frequency dependence of the invariant atomic parameters is analyzed. (author). 24 refs, 1 fig
Collision-produced atomic states
International Nuclear Information System (INIS)
Andersen, N.; Copenhagen Univ.
1988-01-01
The last 10-15 years have witnessed the development of a new, powerful class of experimental techniques for atomic collision studies, allowing partial or complete determination of the state of the atoms after a collision event, i.e. the full set of quantum-mechanical scattering amplitudes or - more generally - the density matrix describing the system. Evidently, such studies, involving determination of alignment and orientation parameters, provide much more severe tests of state-of-the-art scattering theories than do total or differential cross section measurements which depend on diagonal elements of the density matrix. The off-diagonal elements give us detailed information about the shape and dynamics of the atomic states. Therefore, close studies of collision-produced atomic states are currently leading to deeper insights into the fundamental physical mechanisms governing the dynamics of atomic collision events. The first part of the lectures deals with the language used to describe atomic states, while the second part presents a selection of recent results for model systems which display fundamental aspects of the collision physics in particularly instructive ways. I shall here restrict myself to atom-atom collisions. The discussion will be focused on states decaying by photon emission though most of the ideas can be easily modified to include electron emission as well. (orig./AH)
International Nuclear Information System (INIS)
Attallah, F.; Chemin, J.F.; Scheurer, J.N.; Karpeshin, F.; Harston, M.
1997-01-01
We have established a general relation for the expression of the internal conversion of an M 1 transition a 1s electronic state to an empty ns electronic bound state. Under the hypothesis that the density of the electron level ρ n satisfies the condition ρ n Γ >> 1 (where Γ is the total width of the excited atomic state) a calculation in the first order gives a relation for the internal conversion coefficient.This relation shows that the internal conversion coefficient takes a resonant character when the nuclear energy transition is smaller than the binding energy of the 1s electron. An application of this relation to an M 1 transition in the case of the ion 125 T e with a charge state Q = 45 and an 1s electron binding energy E B 45 = 35.581 KeV gives the value for the internal conversion coefficient R = 5.7
Methods to extract information on the atomic and molecular states from scientific abstracts
International Nuclear Information System (INIS)
Sasaki, Akira; Ueshima, Yutaka; Yamagiwa, Mitsuru; Murata, Masaki; Kanamaru, Toshiyuki; Shirado, Tamotsu; Isahara, Hitoshi
2005-01-01
We propose a new application of information technology to recognize and extract expressions of atomic and molecular states from electrical forms of scientific abstracts. Present results will help scientists to understand atomic states as well as the physics discussed in the articles. Combining with the internet search engines, it will make one possible to collect not only atomic and molecular data but broader scientific information over a wide range of research fields. (author)
Decay of long-lived autoionization atomic states in atom collisions
International Nuclear Information System (INIS)
Krakov, B.G.
1994-01-01
Radiationless decay of long-lived autoionization states of helium atoms in atom collisions is investigated. It is shown that the states may decay in atom collisions due to softening of the selection rules
The general expression for the transition amplitude of two-photon ionization of atomic hydrogen
Energy Technology Data Exchange (ETDEWEB)
Karule, E [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina Boulevard 19, Riga, LV-1586 (Latvia); Moine, B [Universite Paris Sud, 91405 Orsay Cedex (France)
2003-05-28
Two-photon ionization of atomic hydrogen with an excess photon is revisited. The non-relativistic dipole approximation and Coulomb Green function (CGF) formalism are applied. Using the CGF Sturmian expansion straightforwardly, one gets the radial transition amplitude in the form of an infinite sum over Gauss hypergeometric functions which are polynomials. It is convergent if all intermediate states are in the discrete spectrum. In the case of two-photon ionization with an excess photon, when photoionization is also possible, intermediate states are in the continuum. We performed the explicit summation over intermediate states and got a simple general expression for the radial transition amplitude in the form of a finite sum over Appell hypergeometric functions, which are not polynomials. An Appell function may be expressed as an infinite sum over Gauss functions. In the case of ionization by an excess photon, Gauss functions are transformed to give a convergent radial transition amplitude for the whole region. The generalized cross sections for two-photon above-threshold ionization of atomic hydrogen in the ground state and excited states calculated by us agree very well with results of previous calculations. Generalized cross sections for two-photon ionization of positronium in the ground state are obtained by scaling those for atomic hydrogen.
State-selective imaging of cold atoms
Sheludko, D.V.; Bell, S.C.; Anderson, R.; Hofmann, C.S.; Vredenbregt, E.J.D.; Scholten, R.E.
2008-01-01
Atomic coherence phenomena are usually investigated using single beam techniques without spatial resolution. Here we demonstrate state-selective imaging of cold 85Rb atoms in a three-level ladder system, where the atomic refractive index is sensitive to the quantum coherence state of the atoms. We
Theory of collisional excitation transition between Rydberg states of atoms. Non-inertial mechanism
International Nuclear Information System (INIS)
Kaulakys, B.P.
1982-01-01
The transitions between highly states of an atom due to the collision of its core with another atom are considered. The cross sections of the change of highly excited electron angular momentum, in the case of the transitions when the main quantum number is constant, are expressed in terms of transport cross sections of the perturbing atom scattering on the ion of Rydberg atom. It is shown that the cross sections of the momentum mixing at thermal rapidities are lower than the cross sections of the atom-ion elastic scattering
Influence of the atomic structure on the quantum state of sputtered Ir atoms
International Nuclear Information System (INIS)
Bastiaansen, J.; Philipsen, V.; Lievens, P.; Silverans, R.E.; Vandeweert, E.
2004-01-01
The probability of the ejection of a neutral atom in a specific quantum state after keV-ion beam sputtering is often interpreted in terms of the interaction between the atomic states of the escaping atom and the electronic states of the solid. In this work, we examined this interplay in the sputtering of iridium as this element has--unlike the elements employed in previous investigations--a complex atomic structure due to strong configuration interactions. Double-resonant two-photon laser ionization is used to probe the sputtered Ir atoms yielding information about the probability for an ejected atom to populate a specific atomic state and its escape velocity. The qualitative features of the corresponding population partition and state-selective velocity distributions show the influence of the excitation energy and the electronic structure of the different atomic states. A comparison is made between the experimental data and predictions from the resonant electron transfer description
Remote state preparation through hyperentangled atomic states
Nawaz, Mehwish; ul-Islam, Rameez-; Ikram, Manzoor
2018-04-01
Hyperentangled states have enhanced channel capacity in quantum processing and have yielded` evident increased communication speed in quantum informatics as a consequence of excessively high information content coded over each quantum entity. In the present article, we intend to demonstrate this fact by utilizing atomic states simultaneously entangled both in internal as well as external degrees of freedom, i.e. the de Broglie motion for remote state preparation (RSP). The results clearly demonstrate that we can efficiently communicate two bit information while manipulating only a single quantum subsystem. The states are prepared and manipulated using atomic Bragg diffraction as well as Ramsey interferometry, both of which are now considered as standard, state of the art tools based on cavity quantum electrodynamics. Since atomic Bragg diffraction is a large interaction time regime and produces spatially well separated, decoherence resistant outputs, the schematics presented here for the RSP offer important perspectives on efficient detection as well as unambiguous information coding and readout. The article summarizes the experimental feasibility of the proposal, culminating with a brief discussion.
Engineering quantum hyperentangled states in atomic systems
Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor
2017-11-01
Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.
Trapping cold ground state argon atoms.
Edmunds, P D; Barker, P F
2014-10-31
We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39) C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10) cm(3) s(-1).
International Nuclear Information System (INIS)
Kuang Leman; Zhou Lan
2003-01-01
In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states
Excited-state imaging of cold atoms
Sheludko, D.V.; Bell, S.C.; Vredenbregt, E.J.D.; Scholten, R.E.; Deshmukh, P.C.; Chakraborty, P.; Williams, J.F.
2007-01-01
We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes
Schroedinger cat states and multilevel atoms
International Nuclear Information System (INIS)
Shore, B.W.; Knight, P.L.
1993-01-01
We demonstrate that the generalization of the two-level Jaynes-Cummings model (JCM) to an N-level atom leads to the creation of up to N macroscopically distinct field states. These field states are Schmidt-orthogonalized superpositions of Fock states. They correspond to macroscopic states of the field, attainable with large mean photon numbers. Unlike the situation with a two-level atom and a coherent-state field, which evolves into a macroscopic coherent superposition state (a Schrodinger cat), we find that when the additional levels participate strongly in the excitation (e.g all transitions are resonant with equal dipole moments) then the system does not evolve into a pure state. We will present some examples of special cases, giving insight into the behavior of three-level atoms and the two-level two-photon JCM
Amplitudes and state parameters from ion- and atom-atom excitation processes
International Nuclear Information System (INIS)
Andersen, T.; Horsdal-Pedersen, E.
1984-01-01
This chapter examines single collisions between two atomic species, one of which is initially in a 1 S state (there is only one initial spin channel). The collisions are characterized by a definite scattering plane and a definite orientation. Topics considered include an angular correlation between scattered particles and autoionization electrons or polarized photons emitted from states excited in atomic collisions (photon emission, electron emission, selectivity excited target atoms), experimental methods for obtaining information on the alignment and orientation parameters of atoms or ions excited in specific collisions, results of experiments and numerical calculations (quasi-oneelectron systems, He + -He collisions, other collision systems), and future aspects and possible applications of the polarizedphoton, scattered-particle coincidence techniques to atomic spectroscopy
International Nuclear Information System (INIS)
Radozycki, T.
1990-01-01
The properties of the virtual cloud around the hydrogen atom in the ground state are studied with the use of quantum field theory methods. The relativistic expression for the electromagnetic energy density around the atom, with the electron spin taken into account, is obtained. The distribution of the angular momentum contained in the cloud and the self-interaction kernel for the electrons bound in atom are also investigated. (author)
Single-Atom Gating of Quantum State Superpositions
Energy Technology Data Exchange (ETDEWEB)
Moon, Christopher
2010-04-28
The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.
Formulating analytic expressions for atomic collision cross sections
International Nuclear Information System (INIS)
Tabata, Tatsuo; Kubo, Hirotaka; Sataka, Masao
2003-08-01
Methods to formulate analytic expression for atomic collision cross sections as a function of projectile energy are described on the basis of the experiences of the data compilation work for more than 20 years. Topics considered are the choice of appropriate functional forms for the expressions and optimization of adjustable parameters. To make extrapolation possible, functions to be used should have the form with reasonable asymptotic behavior. In this respect, modified Green-McNeal formulas have been found useful for various atomic collision cross sections. For ionization processes, a modified Lotz formula has often given a good fit. The ALESQ code for least-squares fits has been convenient to optimize adjustable parameters in analytic expressions. (author)
On the expression 'external calibration' in atomic spectrometry
International Nuclear Information System (INIS)
Kantor, Tibor
2008-01-01
The expressions 'calibration' and 'external calibration' appear together in the present literature of atomic spectrometry resulting in a dilemma of understanding and correct use. It is examined how the IUPAC can provide a guidance to the solution of this problem by recalling the definitions of related terms of optical, mass and X-ray atomic spectrometry techniques. The introduction and definition of these expressions in widely used text books are investigated and statistically evaluated for the articles published during the last 30 years in the periodical Spectrochimica Acta Part B. For the elimination of the literary difficulties with the use of the term 'calibration', attributes are proposed to express the degree of matrix matching of standards and samples
Coulomb states in atoms and solids
International Nuclear Information System (INIS)
Ortalano, D.M.
1988-05-01
In this dissertation, an empirical quantum defect approach to describe the valence excitons of the rare gas solids is developed. These Coulomb states are of s-symmetry and form a hydrogen-like series which converges to the bottom of the lowest conduction band. A non-zero quantum defect is found for all of the excitons of neon, argon and xenon. For these systems, then, there exists, in addition to the screened Coulombic component, a non-Coulombic component to the total exciton binding energy. The Wannier formalism is, therefore, inappropriate for the excitons of Ne, Ar and Xe. From the sign of the quantum defect, the non-Coulombic potential is repulsive for Ne and Ar, attractive for Xe, and nearly zero for Kr. This is opposite to that for the Rydberg states of the corresponding rare gas atoms, where the non-Coulombic potential between the electron and the cation is attractive for all of the atoms. The excitons then, are not simply perturbed Rydberg states of the corresponding rare gas atoms (i.e., the excitons do not possess atomic parentage). Interatomic term value/band gap energy correlations and reduced term value/reduced band gap correlations were performed. These correlations were exploited to provide further evidence against both the Wannier formalism and the atomic parentage view point. From these correlations, it was also discovered that the non-Coulombic potential varies smoothly across the valence isoelectronic series of solids, and that it becomes more attractive (or less repulsive) in going from neon to xenon. In order to address the atomic parentage controversy, it was necessary to compare the excitons to the low-n Rydberg states of the rare gas atoms. A review of the quantum defect description of the atomic Rydberg states is, therefore, presented. Also, Rydberg term value/ionization energy correlations are discussed and compared with the analogous exciton correlations. 7 refs., 10 figs., 5 tabs
International Nuclear Information System (INIS)
Ye Liu; Guo Guangcan
2003-01-01
A scheme is proposed for the preparation of Greenberger-Horne-Zeilinger states for three atoms and for teleportation of an entangled atom pair by use of the triplet in cavity QED. The cavity is only virtually excited, and thus the scheme is insensitive to the cavity field states and the cavity decay. The preparation and teleportation can be achieved in a simple way
Reflection and diffraction of atomic de Broglie waves by evanescent laser waves. Bare-state method
International Nuclear Information System (INIS)
Feng, Xiaoping; Witte, N.S.; Hollenberg, C.L.; Opat, G.
1994-01-01
Two methods are presented for the investigation of the reflection and diffraction of atoms by gratings formed either by standing or travelling evanescent laser waves. Both methods use the bare-state rather than dressed-state picture. One method is based on the Born series, whereas the other is based on the Laplace transformation of the coupled differential equations. The two methods yield the same theoretical expressions for the reflected and diffracted atomic waves in the whole space including the interaction and the asymptotic regions. 1 ref., 1 fig
Feasible Teleportation Schemes with Five-Atom Entangled State
Institute of Scientific and Technical Information of China (English)
XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang
2006-01-01
Teleportation schemes with a five-atom entangled state are investigated. In the teleportation scheme Bell state measurements (BSMs) are difficult for physical realization, so we investigate another strategy using separate measurements instead of BSM based on cavity quantum electrodynamics techniques. The scheme of two-atom entangled state teleportation is a controlled and probabilistic one. For the teleportation of the three-atom entangled state, the scheme is a probabilistic one. The fidelity and the probability of the successful teleportation are also obtained.
Institute of Scientific and Technical Information of China (English)
CHEN Chang-Yong; LI Shao-Hua
2007-01-01
A scheme for approximately and conditionally teleporting an unknown atomic-entangled state in cavity QED is proposed.It is the novel extension of the scheme of [Phys.Rev.A 69 (2004) 064302],where the state to be teleported is an unknown atomic state and where only a time point of system evolution and the corresponding fidelity implementing the teleportation are given.In fact,there exists multi-time points and the corresponding fidclities,which are shown in this paper and then are used to realize the approximate and conditional teleportation of the unknown atomic-entangled state.Naturally,our scheme does not involve the Bell-state measurement or an additional atom,which is required in the Bell-state measurement,only requiring one single-mode cavity.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap and the teleportation of the multi-atomic entangled states included in generalized GHZ states.
Radiofrequency-dressed-state potentials for neutral atoms
DEFF Research Database (Denmark)
Hofferberth, S.; Lesanovsky, Igor; Fischer, B.
2006-01-01
Potentials for atoms can be created by external fields acting on properties such as magnetic moment, charge, polarizability, or by oscillating fields that couple internal states. The most prominent realization of the latter is the optical dipole potential formed by coupling ground and electronica......Potentials for atoms can be created by external fields acting on properties such as magnetic moment, charge, polarizability, or by oscillating fields that couple internal states. The most prominent realization of the latter is the optical dipole potential formed by coupling ground...... and electronically excited states of an atom with light. Here, we present an extensive experimental analysis of potentials derived from radiofrequency (RF) coupling of electronic ground states. The coupling is magnetic and the vector character allows the design of versatile microscopic state-dependent potential...... landscapes. Compared with standard magnetic trapping, we find no additional heating or (collisional) loss up to densities of 1015 atoms cm-3. We demonstrate robust evaporative cooling in RF potentials, which allows easy production of Bose-Einstein condensates in complex potentials. Altogether, this makes RF...
Van-der-Waals interaction of atoms in dipolar Rydberg states
Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.
2018-02-01
An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power
Teleporting N-qubit unknown atomic state by utilizing the V-type three-level atom
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Realizing the teleportation of quantum state, especially the teleportation of N-qubit quantum state, is of great importance in quantum information. In this paper, Raman-interaction of the V-type degenerate three-level atom and single-mode cavity field is studied by utilizing complete quantum theory. Then a new scheme for teleporting N-qubit unknown atomic state via Raman-interaction of the V-type degenerate three-level atom with a single-mode cavity field is proposed, which is based upon the complete quantum theory mentioned above.
Glauber amplitudes for transitions from low lying states in hydrogen atom by charged particle impact
Energy Technology Data Exchange (ETDEWEB)
Kumar, S; Srivastava, M K [Roorkee Univ. (India). Dept. of Physics
1977-07-01
The Glauber amplitudes for the general transition nlm ..-->.. n'1'm' in charged particle - hydrogen atom collisions have been obtained in the form of a one-dimensional integral. The final expression involves only a few hypergeometric functions if n is not too large and is particularly suited to study excitation to highly excited states from a low lying state.
Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms
Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor
2017-12-01
Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.
D-state Rydberg electrons interacting with ultracold atoms
Energy Technology Data Exchange (ETDEWEB)
Krupp, Alexander Thorsten
2014-10-02
This thesis was established in the field of ultracold atoms where the interaction of highly excited D-state electrons with rubidium atoms was examined. This work is divided into two main parts: In the first part we study D-state Rydberg molecules resulting from the binding of a D-state Rydberg electron to a ground state rubidium atom. We show that we can address specific rovibrational molecular states by changing our laser detuning and thus create perfectly aligned axial or antialigned toroidal molecules, in good agreement with our theoretical calculations. Furthermore the influence of the electric field on the Rydberg molecules was investigated, creating novel states which show a different angular dependence and alignment. In the second part of this thesis we excite single D-state Rydberg electrons in a Bose-Einstein condensate. We study the lifetime of these Rydberg electrons, the change of the shape of our condensate and the atom losses in the condensate due to this process. Moreover, we observe quadrupolar shape oscillations of the whole condensate created by the consecutive excitation of Rydberg atoms and compare all results to previous S-state measurements. In the outlook we propose a wide range of further experiments including the proposal of imaging a single electron wavefunction by the imprint of its orbit into the Bose-Einstein condensate.
Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model
Links, Jon; Shen, Yibing
2018-05-01
We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.
Teleportation of Unknown Superpositions of Collective Atomic Coherent States
Institute of Scientific and Technical Information of China (English)
ZHENG ShiBiao
2001-01-01
We propose a scheme to teleport an unknown superposition of two atomic coherent states with different phases. Our scheme is based on resonant and dispersive atom-field interaction. Our scheme provides a possibility of teleporting macroscopic superposition states of many atoms first time.``
Joint Remote State Preparation of a Single-Atom Qubit State via a GHZ Entangled State
Xiao, Xiao-Qi; Yao, Fengwei; Lin, Xiaochen; Gong, Lihua
2018-04-01
We proposed a physical protocol for the joint remote preparation of a single-atom qubit state via a three-atom entangled GHZ-type state previously shared by the two senders and one receiver. Only rotation operations of single-atom, which can be achieved though the resonant interaction between the two-level atom and the classical field, are required in the scheme. It shows that the splitting way of the classical information of the secret qubit not only determines the success of reconstruction of the secret qubit, but also influences the operations of the senders.
Atom-field dressed states in slow-light waveguide QED
Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter
2016-03-01
We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.
Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid
Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer
2016-01-01
Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087
Process to produce excited states of atomic nuclei
International Nuclear Information System (INIS)
Morita, M.; Morita, R.
The claims of a patented process which relates to the production of excited states of atomic nuclei are outlined. Among these are (1) production of nuclear excited states by bombarding the atoms with x rays or electrons under given conditions, (2) production of radioactive substances by nuclear excitation with x rays or electrons, (3) separation of specific isotopes from a mixture of isotopes of the same element by means of nuclear excitation followed by chemical treatment. The invention allows production of excited states of atomic nuclei in a relatively simple manner without the need of large apparatus and equipment
Entanglement of two ground state neutral atoms using Rydberg blockade
DEFF Research Database (Denmark)
Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles
2011-01-01
We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality...... of the entanglement is measured using global rotations of the internal states of both atoms....
Institute of Scientific and Technical Information of China (English)
LIU Zong-Liang; LI Shao-Hua; CHEN Chang-Yong
2008-01-01
We propose a scheme for approximately and conditionally teleporting an unknown atomic-entangled state in dissipative cavity QED.It is the further development of the scheme of [Phys.Rev.A 69 (2004) 064302],where the cavity mode decay has not been considered and the state teleportated is an unknown atomic state.In this paper,we investigate the influence of the decay on the approximate and conditional teleportation of the unknown atomic-entangled state,which is different from that teleportated in [Phys.Rev.A 69 (2004) 064302] and then give the fidelity of the teleportation,which depends on the cavity mode decay.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap.
Atomic dynamics with photon-dressed core states
International Nuclear Information System (INIS)
Robicheaux, F.
1993-01-01
This paper describes the atomic dynamics when a Rydberg atom is in a laser field which is resonant with a dipole-allowed core transition. The main approximation is to completely ignore the (short-range, direct) interaction of the outer electron with the resonant laser which is the same approximation used with great success in calculating the spectrum due to isolated core excitations (ICE). The atom autoionizes when the core absorbs a photon, because the electron can then inelastically scatter from the excited core state, gaining enough energy to escape the atom. Despite neglecting the direct interaction between the outermost electron and the laser, the laser profoundly affects the autoionization dynamics. This effect is incorporated through a frame transformation between the dressed and undressed core states which only utilizes the field free atomic scattering parameters. A two-color experiment is proposed which might be able to measure nonperturbative effects arising from the dressed core states. The usual ICE transition rate is obtained through a perturbative expansion. Generic effects are examined through a model problem. A calculation of the Mg spectrum when the driving laser is tuned to the 3s 1/2- 3p 1/2 or the 3s 1/2- 3p 3/2 transition is presented
Creating and probing coherent atomic states
Energy Technology Data Exchange (ETDEWEB)
Reinhold, C.O.; Burgdoerfer, J. [Oak Ridge National Lab., TN (United States). Physics Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy; Frey, M.T.; Dunning, F.B. [Rice Univ., Houston, TX (United States)
1997-06-01
The authors present a brief review of recent experimental and theoretical time resolved studies of the evolution of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. The properties of the wavepackets are probed using a second HCP that is applied following a variable time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions.
Steady state quantum discord for circularly accelerated atoms
Energy Technology Data Exchange (ETDEWEB)
Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)
2015-12-15
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.
Characterization of electron states in dense plasmas and its use in atomic kinetics modeling
International Nuclear Information System (INIS)
Fisher, D.V.; Maron, Y.
2003-01-01
We describe a self-consistent statistical approach to account for plasma density effects in collisional-radiative kinetics. The approach is based on the characterization of three distinct types of electron states, namely, bound, collectivized, and free, and on the formalism of the effective statistical weights (ESW) of the bound states. The present approach accounts for individual and collective effects of the surrounding electrons and ions on atomic (ionic) electron states. High-accuracy expressions for the ESWs of bound states have been derived. The notions of ionization stage population, free electron density, and rate coefficient are redefined in accordance with the present characterization scheme. The modified expressions for the probabilities of electron-impact induced transitions as well as spontaneous and induced radiative transitions are then obtained. The influence of collectivized states on a dense plasma ionization composition is demonstrated to be strong. Examples of calculated ESWs and populations of ionic quantum states for steady state and transient plasmas are given
Probabilistic teleportation of an arbitrary pure state of two atoms
Institute of Scientific and Technical Information of China (English)
Yang Zhen-Biao; Wu Huai-Zhi; Su Wan-Jun
2007-01-01
In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement,it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.
Autoionizing states of atoms calculated using generalized sturmians
DEFF Research Database (Denmark)
Avery, James Emil; Avery, John Scales
2005-01-01
The generalized Sturmian method is applied to autoionizing states of atoms and ions. If the Goscinskian basis sets allow for a sufficient amount of angular correletion, the calculated energies of doubly-excited (autoionizing) states are found to agree well with the few available experimental...... energies. A large-Z approximation is discussed, and simple formulas are derived which are valid not only for autoionizing states, but for all states of an isoelectronic atomic series. Diagonalization of a small block of the interelectron repulsion matrix yields roots that can be used for a wide range of Z...
Atomic prospects in four African states
International Nuclear Information System (INIS)
1961-01-01
A preliminary assistance mission of the International Atomic Energy Agency visited Ghana in March-April this year; members of the mission also visited three other African States: Dahomey, Liberia and Nigeria. As in the case of the six earlier Agency missions of this kind, the visits were made at the request of the Governments of these countries. The purpose was to study at first hand the prospects of atomic development in these countries, to advise the Governments on the broad formulation of atomic energy programs, and to determine how the Agency could assist in the carrying out of these programs
Cooperative single-photon subradiant states in a three-dimensional atomic array
Energy Technology Data Exchange (ETDEWEB)
Jen, H.H., E-mail: sappyjen@gmail.com
2016-11-15
We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.
High-fidelity Rydberg quantum gate via a two-atom dark state
DEFF Research Database (Denmark)
Petrosyan, David; Motzoi, Felix; Saffman, Mark
2017-01-01
We propose a two-qubit gate for neutral atoms in which one of the logical state components adiabatically follows a two-atom dark state formed by the laser coupling to a Rydberg state and a strong, resonant dipole-dipole exchange interaction between two Rydberg excited atoms. Our gate exhibits...
Generation of Exotic Quantum States of a Cold Atomic Ensemble
DEFF Research Database (Denmark)
Christensen, Stefan Lund
Over the last decades quantum effects have become more and more controllable, leading to the implementations of various quantum information protocols. These protocols are all based on utilizing quantum correlation. In this thesis we consider how states of an atomic ensemble with such correlations...... can be created and characterized. First we consider a spin-squeezed state. This state is generated by performing quantum non-demolition measurements of the atomic population difference. We show a spectroscopically relevant noise reduction of -1.7dB, the ensemble is in a many-body entangled state...... — a nanofiber based light-atom interface. Using a dual-frequency probing method we measure and prepare an ensemble with a sub-Poissonian atom number distribution. This is a first step towards the implementation of more exotic quantum states....
X-ray core states, atomic size and Moseley's law
International Nuclear Information System (INIS)
Smith, D.Y.; Karstens, William
2000-01-01
Vinti's dipolar sum-rule for the spatial extent of quantum states was tested on atomic K-shell and ns valence states. Agreement between radii derived from absorption spectra and from atomic-structure calculations is excellent, provided Pauli-principle-prohibited transitions are accounted for. These many-electron corrections to the single-electron sum-rule contributed less than 20% to the radii, which supports application of single-electron rules to electron-excess defects as a first approximation. We found the oscillator strength for K-shell excitations decreases rapidly with atomic number because of strength transfer to higher-lying p states. Hence, K-shell contributions to radiation damage decrease with increasing atomic number. A new interpretation of Moseley's law for the X-ray K edge in terms of K-shell radii is described
Generation and storage of quantum states using cold atoms
DEFF Research Database (Denmark)
Dantan, Aurelien Romain; Josse, Vincent; Cviklinski, Jean
2006-01-01
Cold cesium or rubidium atomic samples have a good potential both for generation and storage of nonclassical states of light. Generation of nonclassical states of light is possible through the high non-linearity of cold atomic samples excited close to a resonance line. Quadrature squeezing, polar...
Teleportation of two-atom entangled state in resonant cavity quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
Yang Zhen-Biao
2007-01-01
An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.
Probabilistic Teleportation of an Arbitrary Two-Atom State in Cavity QED
Institute of Scientific and Technical Information of China (English)
LIU Jin-Ming
2007-01-01
We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED.It is shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not,our teleportation scheme can always be probabilistically realized.The success probability of teleportation is determined by the smaller coefficients of the two initially entangled atom pairs.
Atomic squeezed states on an atom-chip
International Nuclear Information System (INIS)
Maussang, Kenneth
2010-01-01
In this thesis, we describe the construction of an experiment, allowing to produce 87 Rb Bose-Einstein condensates on an atom chip, and then split them in a double well potential. An accurate imaging system has been developed, in order to be able to measure the absolute value of the populations of the double well within a very low noise level, almost limited by the optical shot noise. We measure atom number statistics after splitting, and directly observe number squeezed states, down to -4.9 dB at low temperatures, compared to a classical gas, of independent particles. The dependence in temperature of fluctuations has been also studied. For a thermal gas, Poissonian fluctuations are given by the probability distribution of the macroscopic configurations with a given atom number difference. In the degenerate regime, the entropy effect which favors small number differences vanishes, leading to super-Poissonian fluctuations, to more than +3.8 dB close to transition temperature. At low temperatures, the interaction energy cost associated with number fluctuations exceeds the available thermal energy, leading to sub-Poissonian fluctuations. Those two behaviours have been theoretically explained, both with a simple analytical model and a numerical one. We also measured the evolution of the relative phase between the two clouds, and its collapse due to interactions, allowing us to claim that this splitter is a coherent one. (author)
Method of producing excited states of atomic nuclei
International Nuclear Information System (INIS)
Morita, M.; Morita, R.
1976-01-01
A method is claimed of producing excited states of atomic nuclei which comprises bombarding atoms with x rays or electrons, characterized in that (1) in the atoms selected to be produced in the excited state of their nuclei, (a) the difference between the nuclear excitation energy and the difference between the binding energies of adequately selected two electron orbits is small enough to introduce the nuclear excitation by electron transition, and (b) the system of the nucleus and the electrons in the case of ionizing an orbital electron in said atoms should satisfy the spin and parity conservation laws; and (2) the energy of the bombarding x rays or electrons should be larger than the binding energy of one of the said two electron orbits which is located at shorter distance from the atomic nucleus. According to the present invention, atomic nuclei can be excited in a relatively simple manner without requiring the use of large scale apparatus, equipment and production facilities, e.g., factories. It is also possible to produce radioactive substances or separate a particular isotope with an extremely high purity from a mixture of isotopes by utilizing nuclear excitation
Teleportation of an Unknown Atomic State via Adiabatic Passage
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed.We also show that the fidelity can reach 1 under certain condition.
International Nuclear Information System (INIS)
Jin Shiqi; Gong Shangqing; Li Ruxin; Xu Zhizhan
2004-01-01
Coherent population transfer and superposition of atomic states via a technique of stimulated Raman adiabatic passage in an excited-doublet four-level atomic system have been analyzed. It is shown that the behavior of adiabatic passage in this system depends crucially on the detunings between the laser frequencies and the corresponding atomic transition frequencies. Particularly, if both the fields are tuned to the center of the two upper levels, the four-level system has two degenerate dark states, although one of them contains the contribution from the excited atomic states. The nonadiabatic coupling of the two degenerate dark states is intrinsic, it originates from the energy difference of the two upper levels. An arbitrary superposition of atomic states can be prepared due to such nonadiabatic coupling effect
International Nuclear Information System (INIS)
Li, Shang-Bin
2007-01-01
A scheme for generating the maximally entangled mixed state of two atoms on-resonance asymmetrically coupled to a single mode optical cavity field is presented. The part frontier of both maximally entangled mixed states and maximal Bell violating mixed states can be approximately reached by the evolving reduced density matrix of two atoms if the ratio of coupling strengths of two atoms is appropriately controlled. It is also shown that exchange symmetry of global maximal concurrence is broken if and only if coupling strength ratio lies between (√(3)/3) and √(3) for the case of one-particle excitation and asymmetric coupling, while this partial symmetry breaking cannot be verified by detecting maximal Bell violation
Trapping cold ground state argon atoms for sympathetic cooling of molecules
Edmunds, P. D.; Barker, P. F.
2014-01-01
We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we als...
The relation between the (N) and (N-1) electrons atomic ground state
International Nuclear Information System (INIS)
Briet, P.
1984-05-01
The relation between the ground state of an N and (N-1) electrons atomic system are studied. We show that in some directions of the configuration space, the ratio of the N electrons atomic ground state to the one particle density is asymptotically equivalent to the (N-1) electrons atomic ground state
Wang, Jian-ming; Xu, Xue-xiang
2018-04-01
Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.
Fractional quantum Hall states of atoms in optical lattices
International Nuclear Information System (INIS)
Soerensen, Anders S.; Demler, Eugene; Lukin, Mikhail D.
2005-01-01
We describe a method to create fractional quantum Hall states of atoms confined in optical lattices. We show that the dynamics of the atoms in the lattice is analogous to the motion of a charged particle in a magnetic field if an oscillating quadrupole potential is applied together with a periodic modulation of the tunneling between lattice sites. In a suitable parameter regime the ground state in the lattice is of the fractional quantum Hall type, and we show how these states can be reached by melting a Mott-insulator state in a superlattice potential. Finally, we discuss techniques to observe these strongly correlated states
Studies of photoionization processes from ground-state and excited-state atoms and molecules
International Nuclear Information System (INIS)
Ederer, D.L.; Parr, A.C.; West, J.B.
1982-01-01
Recent triply-differential photoelectron spectroscopy experiments designed for the study of correlation effects in atoms and molecules are described. Final-state symmetry of the n=2 state of helium has been determined. The non-Franck-Condon behavior of vibrational branching ratios and large variations of the angular asymmetry parameter has been observed for shape resonances and autoionizing resonances in CO and other molecules. Recent observations of the photoionization of excited sodium atoms are also described
Alternative Scheme for Teleportation of Two-Atom Entangled State in Cavity QED
Institute of Scientific and Technical Information of China (English)
YANG Zhen-Biao
2006-01-01
We have proposed an alternative scheme for teleportation of two-atom entangled state in cavity QED. It is based on the degenerate Raman interaction of a single-mode cavity field with a ∧-type three-level atom. The prominent feature of the scheme is that only one cavity is required, which is prior to the previous one. Moreover, the atoms need to be detected are reduced compared with the previous scheme. The experimental feasibility of the scheme is discussed.The scheme can easily be generalized for teleportation of N-atom GHZ entangled states. The number of the atoms needed to be detected does not increase as the number of the atoms in GHZ state increases.
DEFF Research Database (Denmark)
Petrosyan, David; Molmer, Klaus
2013-01-01
We study two-photon excitation of Rydberg states of atoms under stimulated adiabatic passage with delayed laser pulses. We find that the combination of strong interaction between the atoms in Rydberg state and the spontaneous decay of the intermediate exited atomic state leads to the Rydberg exci...... for deterministic creation and, possibly, extraction of Rydberg atoms or ions one at a time. The sympathetic monitoring via decay of ancilla particles may find wider applications for state preparation and probing of interactions in dissipative many-body systems.......We study two-photon excitation of Rydberg states of atoms under stimulated adiabatic passage with delayed laser pulses. We find that the combination of strong interaction between the atoms in Rydberg state and the spontaneous decay of the intermediate exited atomic state leads to the Rydberg...
Teleporting the one-qubit state via two-level atoms with spontaneous emission
Energy Technology Data Exchange (ETDEWEB)
Hu Mingliang, E-mail: mingliang0301@xupt.edu.cn, E-mail: mingliang0301@163.com [School of Science, Xi' an University of Posts and Telecommunications, Xi' an 710061 (China)
2011-05-14
We study quantum teleportation via two two-level atoms coupled collectively to a multimode vacuum field and prepared initially in different atomic states. We concentrated on the influence of the spontaneous emission, collective damping and dipole-dipole interaction of the atoms on fidelity dynamics of quantum teleportation and obtained the region of spatial distance between the two atoms over which the state can be teleported nonclassically. Moreover, we showed through concrete examples that entanglement of the channel state is the prerequisite but not the only essential quantity for predicting the teleportation fidelity.
Excitation and decay of correlated atomic states
International Nuclear Information System (INIS)
Rau, A.R.P.
1992-01-01
Doubly excited states of atoms and ions in which two electrons are excited from the ground configuration display strong radial and angular electron correlations. They are prototypical examples of quantum-mechanical systems with strong coupling. Two distinguishing characteristics of these states are: (1) their organization into successive families, with only weak coupling between families, and (2) a hierarchical nature of this coupling, with states from one family decaying primarily to those in the next lower family. A view of the pair of electrons as a single entity, with the electron-electron repulsion between them divided into a adiabatic and nonadiabatic piece, accounts for many of the dominant features. The stronger, adiabatic part determines the family structure and the weaker, nonadiabatic part the excitation and decay between successive families. Similar considerations extend to three-electron atomic states, which group into five different classes. They are suggestive of composite models for quarks in elementary particle physics, which exhibit analogous groupings into families with a hierarchical arrangement of masses and electroweak decays. 49 refs., 6 figs., 2 tabs
Dark Entangled Steady States of Interacting Rydberg Atoms
DEFF Research Database (Denmark)
Dasari, Durga; Mølmer, Klaus
2013-01-01
their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...
Scheme for Deterministic BSM-Free Controlled Teleportation of Unknown Atomic States
International Nuclear Information System (INIS)
Wang Yahong; Song Heshan; Li Chong
2007-01-01
We propose a controlled scheme for teleportation of an arbitrary one or two atomic state via a driven QED cavity. The scheme does not involve the joint Bell-state-measurement BSM and the probability of successful teleportation is 1. We show that the original atomic state cannot be perfectly restored by the receiver without all the agents collaborate and classical communication.
Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices.
Robens, Carsten; Zopes, Jonathan; Alt, Wolfgang; Brakhane, Stefan; Meschede, Dieter; Alberti, Andrea
2017-02-10
We create low-entropy states of neutral atoms by utilizing a conceptually new optical-lattice technique that relies on a high-precision, high-bandwidth synthesis of light polarization. Polarization-synthesized optical lattices provide two fully controllable optical lattice potentials, each of them confining only atoms in either one of the two long-lived hyperfine states. By employing one lattice as the storage register and the other one as the shift register, we provide a proof of concept using four atoms that selected regions of the periodic potential can be filled with one particle per site. We expect that our results can be scaled up to thousands of atoms by employing an atom-sorting algorithm with logarithmic complexity, which is enabled by polarization-synthesized optical lattices. Vibrational entropy is subsequently removed by sideband cooling methods. Our results pave the way for a bottom-up approach to creating ultralow-entropy states of a many-body system.
Generation of Bell, NOON and W states via atom interferometry
Energy Technology Data Exchange (ETDEWEB)
Islam, Rameez-ul; Saif, Farhan [Department of Electronics, Quaid-i-Azam University, Islamabad (Pakistan); Khosa, Ashfaq H [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)
2008-02-14
We propose atom interferometric techniques for the generation of Bell, NOON and W states of an electromagnetic field in high-Q cavities. The fundamental constituent of these techniques is off-resonant Bragg diffraction of atomic de Broglie waves. We show good success probabilities for these schemes under the currently available experimental environment of atom interferometry.
Preparation of genuine Yeo-Chua entangled state and teleportation of two-atom state via cavity QED
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We first propose a scheme for preparing the genuine Yeo-Chua 4-qubit entangled state via cavity QED. Using the genuine Yeo-Chua atomic state, we further propose a cavity QED scheme for teleporting an arbitrary two-atom state. In two schemes the large-detuning is chosen and the necessary time is designed to be much shorter than Rydberg-atom’s lifespan. Both schemes share the distinct advantage that cavity decay and atom decay can be neglected. As for the interaction manipulation, our preparation scheme is more feasible than a recent similar one. Compared with the Yeo and Chua’s scheme, our teleportation scheme has significantly reduced the measuring difficulty.
Qubit-loss-free fusion of atomic W states via photonic detection
Ding, Cheng-Yun; Kong, Fan-Zhen; Yang, Qing; Yang, Ming; Cao, Zhuo-Liang
2018-06-01
In this paper, we propose two new qubit-loss-free (QLF) fusion schemes for W states in cavity QED system. Resonant interactions between atoms and single cavity mode constitute the main fusion mechanism, with which atomic |W_{n+m}> and |W_{n+m+q}> states can be generated, respectively, from a |Wn> and a |Wm>; and from a |Wn>, a |Wm> and a |Wq>, by detecting the cavity mode. The QLF property of the schemes makes them more efficient and simpler than the currently existing ones, and fewer intermediate steps and memory resources are required for generating a target large-scale W state. Furthermore, the fusion of atomic states can be realized via the detection on cavity mode rather than the much complicated atomic detection, which makes our schemes feasible. In addition, the analyses of the optimal resource cost and the experimental feasibility indicate that the present schemes are simple and efficient, and maybe implementable within the current experimental techniques.
Harwell's atomic, molecular and solid state computer programs
International Nuclear Information System (INIS)
Harker, A.H.
1976-02-01
This document is intended to introduce the computational facilities available in the fields of atomic, molecular the solid state theory on the IBM370/165 at Harwell. The programs have all been implemented and thoroughly tested by the Theory of Solid State Materials Group. (author)
Nonspherical atomic ground-state densities and chemical deformation densities from x-ray scattering
International Nuclear Information System (INIS)
Ruedenberg, K.; Schwarz, W.H.E.
1990-01-01
Presuming that chemical insight can be gained from the difference between the molecular electron density and the superposition of the ground-state densities of the atoms in a molecule, it is pointed out that, for atoms with degenerate ground states, an unpromoted ''atom in a molecule'' is represented by a specific ensemble of the degenerate atomic ground-state wave functions and that this ensemble is determined by the anisotropic local surroundings. The resulting atomic density contributions are termed oriented ground state densities, and the corresponding density difference is called the chemical deformation density. The constraints implied by this conceptual approach for the atomic density contributions are formulated and a method is developed for determining them from x-ray scattering data. The electron density of the appropriate promolecule and its x-ray scattering are derived, the determination of the parameters of the promolecule is outlined, and the chemical deformation density is formulated
Quantum atom-heteronuclear molecule dark state: Role of population imbalance
International Nuclear Information System (INIS)
Jing Hui; Cui Shuai
2010-01-01
Recently, the finite-number effect of initial atoms in coherent atom-molecule conversion was investigated by Zhao et al. [Phys. Rev. Lett. 101, 010401 (2008)]. Here, by extending to the atom-heteronuclear molecule dark state, we find that the initial populations imbalance of the atoms plays a significant role in quantum conversion rate and adiabatic fidelity. In particular, even for the finite total number of imbalanced two-species atoms, the mean-field conversion rate, contrary to the general belief, still can be remarkably close to the exact quantum results.
Calculation of the atomic states energies in the Thomas - Fermi approximation
Directory of Open Access Journals (Sweden)
S. N. Fedotkin
2017-12-01
Full Text Available A method for calculating the energies of levels for many-electron neutral atoms is proposed. In this case, in addition to the Coulomb field of the nucleus, an important contribution to the energy is connected with the interaction between the electrons. This interaction is taken into account approximately by perturbation theory in the framework of the Thomas - Fermi statistical model. Using the Taytz approximation for the mean potential the analytical expressions for the energies of s-states are obtained with principal quantum numbers n = 1, 2, 3, 4. The energies are calculated for the nuclear charges in the interval 1 < Z ≤ 100. A good agreement with the experimental values of the energies was obtained.
Teleportation of an Arbitrary Two-Atom Entangled State via Thermal Cavity
Institute of Scientific and Technical Information of China (English)
WANG Dong; LIU Yi-Min; GAO Gan; SHI Shou-Hua; ZHANG Zhan-Jun
2007-01-01
We present an experimentally feasible scheme for teleportation of an arbitrary unknown two-atom entangled state by using two-atom Bell states in driven thermal cavities.In this scheme,the effects of thermal field and cavity decay can be all eliminated.Moreover,the present scheme is feasible according to current technologies.
State-dependent fluorescence of neutral atoms in optical potentials
Martinez-Dorantes, M.; Alt, W.; Gallego, J.; Ghosh, S.; Ratschbacher, L.; Meschede, D.
2018-02-01
Recently we have demonstrated scalable, nondestructive, and high-fidelity detection of the internal state of 87Rb neutral atoms in optical dipole traps using state-dependent fluorescence imaging [M. Martinez-Dorantes, W. Alt, J. Gallego, S. Ghosh, L. Ratschbacher, Y. Völzke, and D. Meschede, Phys. Rev. Lett. 119, 180503 (2017), 10.1103/PhysRevLett.119.180503]. In this paper we provide experimental procedures and interpretations to overcome the detrimental effects of heating-induced trap losses and state leakage. We present models for the dynamics of optically trapped atoms during state-dependent fluorescence imaging and verify our results by comparing Monte Carlo simulations with experimental data. Our systematic study of dipole force fluctuations heating in optical traps during near-resonant illumination shows that off-resonant light is preferable for state detection in tightly confining optical potentials.
Collisions involving energy transfer between atoms with large angular moments
International Nuclear Information System (INIS)
Vdovin, Yu.A.; Galitskij, V.M.
1975-01-01
Study is made of the collisions of excited and nonexcited atoms with a small resonance defect, assuming that the excited and ground states of each atom are bound via an allowed dipole transition and that intrinsic moments of states are great. In such an approximation the atomic interaction is defined by a dipole-dipole interaction operator. Equations for amplitudes are derived for two cases: (1) the first atom is in an excited state while the second is in the ground state and (2) the first atom is in the ground state while the second is in an excited state. The problem is solved in the approximation that the moments of the excited and ground states of each atom are equal. An expression for the excitation transfer cross section is written down. Analysis of this expression shows that the excitation transfer cross section at first increases with removal from the exact resonance and reaches resonance at lambda approximately 0.1 (lambda is a dimensionless parameter which is equal to the ratio of the resonance defect Δ to the interaction at spacings of the order of the Weisskopf radius). Only at lambda >0.16 does the cross section become smaller than the resonance one. This effect is due to the interaction Hamiltonian approximation adopted in the present study
International Nuclear Information System (INIS)
Wang, Guo-Yuan; Wang, Dong-Yang; Cui, Wen-Xue; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou
2016-01-01
State conversion between the Greenberger–Horne–Zeilinger (GHZ) state and the W state is a challenging open problem because these states cannot be converted to each other by just local operations and classical communication. Here we propose a cavity quantum electrodynamics method based on interference of polarized photons emitted by the atoms trapped in spatially separated optical cavities that can convert a three-atom W state to a GHZ state. We calculate the success probability and fidelity of the converted GHZ state when the cavity decay, spontaneous atomic decay and photon leakage of the cavities are taken into account for a practical system, which shows that the proposed scheme is feasible and within the reach of current experimental technology. (paper)
Formation of Rydberg states in fast ion-atom collisions
International Nuclear Information System (INIS)
Schneider, D.; Kanter, E.P.; Vager, Z.; Gemmell, D.; Koch, P.; Mariani, D.; Van de Water, W.
1983-01-01
Previous results from beam-foil spectroscopy and from experiments using field ionization techniques have shown that a significant fraction of fast ionic projectiles traversing solid targets can be excited to high Rydberg states. We report an experimental investigation of Rydberg states formed in atomic and molecular ion beams (MeV) emerging from thin-carbon foils. Different field arrangements, including μ-wave fields, have been applied to study the effects of field ionization. The yields of electrons produced via field ionization are compared for different projectile atoms and molecules
Radiation-chemical aspects of solid state hot atom chemistry
International Nuclear Information System (INIS)
Matsuura, T.; Collins, K.E.; Collins, C.H.
1984-01-01
The study of nuclear hot atom chemical (NHAC) processes occurring in solids is seriously limited by the lack of adequate methods for directly studying the chemical species containing hot atoms. In the present review the effects of ionizing radiation on parent and non-parent yields from solid state targets is surveyed and qualitative interpretations are given. After a few general remarks of the relationship of radiation chemistry to solid state NHAC, a detailed description of the radiation effects is given (radiation annealing, neutron activation, changes in separable yield). (Auth.)
Teleportation of Atomic States in a Vacuum-Induced Environment
International Nuclear Information System (INIS)
Liu Jin; Shao Bin; Xiang Shaohua; Zou Jian
2009-01-01
We present a scheme for teleporting atomic state through a dissipative quantum channel induced by spontaneous emission and investigate the destructive effect of the atomic decay on the success probability and the fidelity of teleportation associated to different channels. It is found that there exists an optimal channel to realize faithful teleportation.
Effect of atomic-state coherence and spontaneous emission on three-level dynamics
International Nuclear Information System (INIS)
Cardimona, D.A.
1990-01-01
For a three-level atom in the ssV configuration (i.e., having two excited states each dipole-coupled to a common ground state), we have found a particular linear combination of bare-atom states in which Rabi oscillations and their associated collapses and revivals do not occur. Moving to a dressed-state picture, we discover that this particular linear combination state is just that dressed state which is decoupled from all the field modes. It is a dressed state for which the transition dipole moments with the other dressed states are zero. The existence of this decoupled dressed state depends on the tuning of the dressing laser field, which in turn depends on the bare-atom excited-state dipole moments and energy-level separation. When we include spontaneous emission, the population decays from the other dressed states into this decoupled state and remains coherently trapped there, producing a system that experiences no dynamical behavior. This is exact for δ-function photon statistics (i.e., if there is no intensity uncertainty). The trapping becomes less perfect as the photon statistics are allowed to have a greater bandwidth. Also, if the applied field is tuned incorrectly, the spontaneous realignment of the atomic state amplitudes does not result in a totally decoupled dressed state, and the dynamics proceed normally
Quantum teleportation of an arbitrary superposition of atomic states
Institute of Scientific and Technical Information of China (English)
Chen Qiong; Fang Xi-Ming
2008-01-01
This paper proposes a scheme to teleport an arbitrary multi-particle two-level atomic state between two parties or an arbitrary zero- and one-photon entangled state of multi-mode between two high-Q cavities in cavity QED.This scheme is based on the resonant interaction between atom and cavity and does not involve Bell-state measurement.It investigates the fidelity of this scheme and find out the case of this unity fidelity of this teleportation.Considering the practical case of the cavity decay,this paper finds that the condition of the unity fidelity is also valid and obtains the effect of the decay of the cavity on the successful probability of the teleportation.
Breakup of relativistic π+π- atoms in matter
International Nuclear Information System (INIS)
Afanasyev, L.G.; Tarasov, A.V.
1996-01-01
The relativistic motion of atoms formed by π+ and π- mesons in matter is considered. Exact analytic expressions for the form factors of hydrogenlike atoms for discrete-discrete transitions are obtained in a form convenient for numerical calculations. The total and transition cross sections for the interaction of π+π- atoms with matter are calculated in the Born approximation. The evolution of atomic-state populations is treated in terms of kinetic equations. The method of calculation makes it possible to obtain the populations of discrete atomic states, as well as the probability of transitions to the continuous spectrum (ionization). The proposed method yields the first experimental estimate of the lifetime of the π+π- atom
Quantum state preparation using multi-level-atom optics
International Nuclear Information System (INIS)
Busch, Th; Deasy, K; Chormaic, S Nic
2007-01-01
One of the most important characteristics for controlling processes on the quantum scale is the fidelity or robustness of the techniques being used. In the case of single atoms localized in micro-traps, it was recently shown that the use of time-dependent tunnelling interactions in a multi-trap setup can be viewed as analogous to the area of multi-level optics. The atom's centre-of-mass can then be controlled with a high fidelity, using a STIRAP-type process. Here, we review previous work that led to the development of multi-level atom optics and present two examples of our most recent work on quantum state preparation
Institute of Scientific and Technical Information of China (English)
CHEN Chang-Yong
2006-01-01
A scheme for approximately and conditionally teleporting an unknown atomic state via two-photon interaction in cavity QED is proposed. It is the extension of the scheme of Ref. [11] [Phys. Rev. A 69 (2004) 064302], which is based on Jaynes-Cummings model in QED and where only a time point of system evolution and the corresponding fidelity implementing the teleportation are given. In our scheme, the two-photon interaction Jaynes-Cummings model is used to realize the approximate and conditional teleportation. Our scheme does not involve the Bell-state measurement and an additional atom, only requiring two atoms and one single-mode cavity. The fidelity of the scheme is higher than that of Ref. [11]. The scheme may be generalized to not only the teleportation of the state of a cavity mode to another mode by means of a single atom but also the teleportation of the state of a trapped ion.
From rotating atomic rings to quantum Hall states.
Roncaglia, M; Rizzi, M; Dalibard, J
2011-01-01
Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial angular frequencies, the giant-vortex state is adiabatically connected to the bosonic ν = 1/2 Laughlin state.
International Nuclear Information System (INIS)
Wang Yahong; Song Heshan; Yu Changshui
2008-01-01
A scheme is proposed for the controlled teleportation of an arbitrary two-atom state via special W-type entangled states and QED cavity. The scheme does not involve the direct joint Bell-state-measurement (BSM). We show that the quantum information is split into two parts, thus the original atomic state cannot be perfectly restored by the receiver without the other agent's collaboration and classical communication. In addition, the physical realization of this scheme is not difficult
Wigner functions for nonclassical states of a collection of two-level atoms
Agarwal, G. S.; Dowling, Jonathan P.; Schleich, Wolfgang P.
1993-01-01
The general theory of atomic angular momentum states is used to derive the Wigner distribution function for atomic angular momentum number states, coherent states, and squeezed states. These Wigner functions W(theta,phi) are represented as a pseudo-probability distribution in spherical coordinates theta and phi on the surface of a sphere of radius the square root of j(j +1) where j is the total angular momentum.
The mental health state of atomic bomb survivors
International Nuclear Information System (INIS)
Nakane, Yoshibumi; Imamura, Yoshihiro; Yoshitake, Kazuyasu; Honda, Sumihisa; Mine, Mariko; Hatada, Keiko; Tomonaga, Masao; Tagawa, Masuko
1997-01-01
Our department of Neuropsychiatry has clarified the clinical features of several mental disorders and surveyed the causes of those disorders from the psychosocial aspect using the methodology of epidemiological psychiatric approach. Using this previous research experience, we began a long-planned study to examine the mental health state of atomic bomb survivors. Fifty-one years have passed since the atomic bombing, and the survivors must have suffered various psychosocial stresses, other than any direct effect on the central nervous system from exposure to radiation, and it is assumed that victims' mental state has been affected in various ways as a result. The subjects of the survey were 7,670 people who had regular health examinations for atomic bomb survivors during the study period of three years and who consented to participate in the study. Of the total, 226 subjects were selected for a second phase according to the results of the General Health Questionnaire 12-item Version which was used in the first phase of the survey. The results were as follows: 1. The distance from the hypocenter was related to the degree of ill health, and the percentage of people with a high score was greater among those exposed to the atomic bomb in proximity to the hypocenter. 2. 14.6% of the subjects were diagnosed as having some kind of mental disorders according to clinical interviews by trained psychiatrists. These results had not expected prior to the study. On the based of the study, we will try to establish a mental health support system for atomic bomb survivors. (author)
The mental health state of atomic bomb survivors
Energy Technology Data Exchange (ETDEWEB)
Nakane, Yoshibumi; Imamura, Yoshihiro; Yoshitake, Kazuyasu; Honda, Sumihisa; Mine, Mariko; Hatada, Keiko; Tomonaga, Masao [Nagasaki Univ. (Japan). School of Medicine; Tagawa, Masuko
1997-03-01
Our department of Neuropsychiatry has clarified the clinical features of several mental disorders and surveyed the causes of those disorders from the psychosocial aspect using the methodology of epidemiological psychiatric approach. Using this previous research experience, we began a long-planned study to examine the mental health state of atomic bomb survivors. Fifty-one years have passed since the atomic bombing, and the survivors must have suffered various psychosocial stresses, other than any direct effect on the central nervous system from exposure to radiation, and it is assumed that victims` mental state has been affected in various ways as a result. The subjects of the survey were 7,670 people who had regular health examinations for atomic bomb survivors during the study period of three years and who consented to participate in the study. Of the total, 226 subjects were selected for a second phase according to the results of the General Health Questionnaire 12-item Version which was used in the first phase of the survey. The results were as follows: 1. The distance from the hypocenter was related to the degree of ill health, and the percentage of people with a high score was greater among those exposed to the atomic bomb in proximity to the hypocenter. 2. 14.6% of the subjects were diagnosed as having some kind of mental disorders according to clinical interviews by trained psychiatrists. These results had not expected prior to the study. On the based of the study, we will try to establish a mental health support system for atomic bomb survivors. (author)
Localization of Cold Atoms in State-Dependent Optical Lattices via a Rabi Pulse
International Nuclear Information System (INIS)
Horstmann, Birger; Duerr, Stephan; Roscilde, Tommaso
2010-01-01
We propose a novel realization of Anderson localization in nonequilibrium states of ultracold atoms in an optical lattice. A Rabi pulse transfers part of the population to a different internal state with infinite effective mass. These frozen atoms create a quantum superposition of different disorder potentials, localizing the mobile atoms. For weakly interacting mobile atoms, Anderson localization is obtained. The localization length increases with increasing disorder and decreasing interaction strength, contrary to the expectation for equilibrium localization.
Atomic and solid state physics with the 14UD
International Nuclear Information System (INIS)
Newton, C.S.
1975-02-01
The use of energetic heavy ions in atomic and solid state physics is discussed. Topics that are discussed include: 1) Properties of excited ions, 2) radiation damage studies by channeling, 3) energy loss of ions and range measurements, 4) oscillating effects in channeling, 5) x-ray production in solids, 6) coherence effects in channeling and 7) formation of united atoms. (author)
Asymptotics of Rydberg states for the hydrogen atom
International Nuclear Information System (INIS)
Thomas, L.E.
1997-01-01
The asymptotics of Rydberg states, i.e., highly excited bound states of the hydrogen atom Hamiltonian, and various expectations involving these states are investigated. We show that suitable linear combinations of these states, appropriately rescaled and regarded as functions either in momentum space or configuration space, are highly concentrated on classical momentum space or configuration space Kepler orbits respectively, for large quantum numbers. Expectations of momentum space or configuration space functions with respect to these states are related to time-averages of these functions over Kepler orbits. (orig.)
Rabi Oscillations between Ground and Rydberg States with Dipole-Dipole Atomic Interactions
International Nuclear Information System (INIS)
Johnson, T. A.; Urban, E.; Henage, T.; Isenhower, L.; Yavuz, D. D.; Walker, T. G.; Saffman, M.
2008-01-01
We demonstrate Rabi oscillations of small numbers of 87 Rb atoms between ground and Rydberg states with n≤43. Coherent population oscillations are observed for single atoms, while the presence of two or more atoms decoheres the oscillations. We show that these observations are consistent with van der Waals interactions of Rydberg atoms
Behavior of 23S metastable state He atoms in low-temperature recombining plasmas
Kajita, Shin; Tsujihara, Tadashi; Aramaki, Mitsutoshi; van der Meiden, Hennie; Oshima, Hiroshi; Ohno, Noriyasu; Tanaka, Hirohiko; Yasuhara, Ryo; Akiyama, Tsuyoshi; Fujii, Keisuke; Shikama, Taiichi
2017-07-01
We measured the electron density and temperature using laser Thomson scattering and metastable state (23S) of He atoms by laser absorption spectroscopy in the detached recombining plasmas in the divertor simulator NAGDIS-II. Using the measured electron density and temperature combined with the particle trajectory trace simulation, we discussed the behavior of the metastable state He atoms based on comparisons with the experimental results. It is shown that the metastable state atoms are mainly produced in the peripheral region of the plasma column, where the temperature is lower than the central part, and diffused in the vacuum vessel. It was shown that the 0D model is not valid and the transport of the metastable states is to be taken into account for the population distribution of He atoms in the detached plasmas.
International Nuclear Information System (INIS)
Hilton, P.R.; Nordholm, S.; Hush, N.S.
1980-01-01
The ground-state inversion method, which we have previously developed for the calculation of atomic cross-sections, is applied to the calculation of molecular photoionization cross-sections. These are obtained as a weighted sum of atomic subshell cross-sections plus multi-centre interference terms. The atomic cross-sections are calculated directly for the atomic functions which when summed over centre and symmetry yield the molecular orbital wave function. The use of the ground-state inversion method for this allows the effect of the molecular environment on the atomic cross-sections to be calculated. Multi-centre terms are estimated on the basis of an effective plane-wave expression for this contribution to the total cross-section. Finally the method is applied to the range of photon energies from 0 to 44 eV where atomic extrapolation procedures have not previously been tested. Results obtained for H 2 , N 2 and CO show good agreement with experiment, particularly when interference effects and effects of the molecular environment on the atomic cross-sections are included. The accuracy is very much better than that of previous plane-wave and orthogonalized plane-wave methods, and can stand comparison with that of recent more sophisticated approaches. It is a feature of the method that calculation of cross-sections either of atoms or of large molecules requires very little computer time, provided that good quality wave functions are available, and it is then of considerable potential practical interest for photoelectorn spectroscopy. (orig.)
Hosseini, Mahdi
Our ability to engineer quantum states of light and matter has significantly advanced over the past two decades, resulting in the production of both Gaussian and non-Gaussian optical states. The resulting tailored quantum states enable quantum technologies such as quantum optical communication, quantum sensing as well as quantum photonic computation. The strong nonlinear light-atom interaction is the key to deterministic quantum state preparation and quantum photonic processing. One route to enhancing the usually weak nonlinear light-atom interactions is to approach the regime of cavity quantum electrodynamics (cQED) interaction by means of high finesse optical resonators. I present results from the MIT experiment of large conditional cross-phase modulation between a signal photon, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. I also present a scheme to probabilistically change the amplitude and phase of a signal photon qubit to, in principle, arbitrary values by postselection on a control photon that has interacted with that state. Notably, small changes of the control photon polarization measurement basis by few degrees can substantially change the amplitude and phase of the signal state. Finally, I present our ongoing effort at Purdue to realize similar peculiar quantum phenomena at the single photon level on chip scale photonic systems.
International Nuclear Information System (INIS)
Gao Xiang; Cheng Cheng; Li Jiaming
2011-01-01
Scientific research fields for future energies such as inertial confinement fusion researches and astrophysics studies especially with satellite observatories advance into stages of precision physics. The relevant atomic data are not only enormous but also of accuracy according to requirements, especially for both energy levels and the collision data. The fine structure of high excited states of atoms and ions can be measured by precision spectroscopy. Such precision measurements can provide not only knowledge about detailed dynamics of electron-ion interactions but also a bench mark examination of the accuracy of electron-ion collision data, especially incorporating theoretical computations. We illustrate that by using theoretical calculation methods which can treat the bound states and the adjacent continua on equal footing. The precision spectroscopic measurements of excited fine structures can be served as stringent tests of electron-ion collision data. (authors)
Strongly correlated states of a small cold-atom cloud from geometric gauge fields
International Nuclear Information System (INIS)
Julia-Diaz, B.; Dagnino, D.; Barberan, N.; Guenter, K. J.; Dalibard, J.; Grass, T.; Lewenstein, M.
2011-01-01
Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.
Strongly correlated states of a small cold-atom cloud from geometric gauge fields
Energy Technology Data Exchange (ETDEWEB)
Julia-Diaz, B. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Dagnino, D.; Barberan, N. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); Guenter, K. J.; Dalibard, J. [Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Superieure, 24 rue Lhomond, F-75005 Paris (France); Grass, T. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona (Spain)
2011-11-15
Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.
Probabilistic Cloning of two Single-Atom States via Thermal Cavity
Rui, Pin-Shu; Liu, Dao-Jun
2016-12-01
We propose a cavity QED scheme for implementing the 1 → 2 probabilistic quantum cloning (PQC) of two single-atom states. In our scheme, after the to-be-cloned atom and the assistant atom passing through the first cavity, a measurement is carried out on the assistant atom. Based on the measurement outcome we can judge whether the PQC should be continued. If the cloning fails, the other operations are omitted. This makes our scheme economical. If the PQC is continued (with the optimal probability) according to the measurement outcome, two more cavities and some unitary operations are used for achieving the PQC in a deterministic way. Our scheme is insensitive to the decays of the cavities and the atoms.
Zero-contingent entropy of quantum states of a Hydrogen atom
International Nuclear Information System (INIS)
Charvot, R.; Majernik, V.
1996-01-01
We calculated the zero-contingent entropy for the position of electron in H-atom as a function of its quantum numbers and compared it with the corresponding value of the Shannon entropy. The values of zero-contingent entropy of quantum states of H-atom correlate well with the corresponding values of Shannon's entropy. This points out that, besides the Shannon entropy, the zero-contingent entropy represents an appropriate, and mathematically rather simple, measure of the spreading out of the wave functions in H-atom. (authors)
Scheme for teleporting an unknown atomic state to any node in a quantum communication network
Institute of Scientific and Technical Information of China (English)
宋克慧; 张为俊; 郭光灿
2002-01-01
We propose a scheme for teleporting an unknown atomic state. In order to realize the teleportation to any node ina quantum communication network, an n-atom Greenberger-Horne-Zeilinger (GHZ) state is needed, which is utilizedas the quantum channel. From this n-atom GHZ state, two-node entanglement of processing and receiving teleportedstates can be obtained through the quantum logic gate manipulation. Finally, for the unequally weighted GHZ state,probabilistic teleportation is shown.
Two-photon decay of K-shell vacancy states in heavy atoms
International Nuclear Information System (INIS)
Ilakovac, K.; Uroic, M.; Majer, M.; Pasic, S.; Vukovic, B.
2006-01-01
Two-photon decay has been extensively studied in atomic, nuclear and particle physics since the 1930s when the problem of stability of the 2s state of the hydrogen atom emerged. Since then, many theoretical and experimental investigations have been made on hydrogen and one-electron (H-like) ions and on helium and two-electron (He-like) ions. The work on two-photon decay in many-electron systems involving inner shells started about 30 years ago and, in the meantime, two-photon decay of the K-shell vacancy state has been the subject of many theoretical and experimental studies. Experimental results have been obtained for 2s->1s and higher-state electron ->1s two-photon transitions in molybdenum, and for 2s -> 1s, 3s -> 1s, 3d -> 1s and 4sd -> 1s two-photon transitions in silver, xenon, hafnium and mercury. Nonrelativistic and relativistic calculations of the processes have been made. The relativistic calculations for transitions in molybdenum, silver and xenon atoms are in a reasonable agreement with the experimental results, but some problems remain to be solved. A review of investigations of two-photon transitions in atomic systems is presented
International Nuclear Information System (INIS)
Ruschhaupt, A.; Muga, J. G.
2006-01-01
We present a generalized two-level scheme for an 'atom diode', namely, a laser device that lets a two-level ground-state atom pass in one direction, say from left to right, but not in the opposite direction. The laser field is composed of two lateral state-selective mirror regions and a central pumping region. We demonstrate the robustness of the scheme and propose a physical realization. It is shown that the inclusion of a counterintuitive laser field blocking the excited atoms on the left side of the device is essential for a perfect diode effect. The reason for this, the diodic behavior, and the robustness may be understood with an adiabatic approximation. The conditions to break down the approximation, which imply also the diode failure, are analyzed
Long-range interactions of excited He atoms with ground-state noble-gas atoms
Zhang, J.-Y.; Qian, Ying; Schwingenschlö gl, Udo; Yan, Z.-C.
2013-01-01
The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition
Teleportation of atomic states with a weak coherent cavity field
Institute of Scientific and Technical Information of China (English)
Zheng Shi-Biao
2005-01-01
A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another adwntage of the scheme is that only one cavity is required.
D. C. electric field behavior of high lying states in atomic uranium
International Nuclear Information System (INIS)
Paisner, J.A.; Carlson, L.R.; Worden, E.F.; Johnson, S.A.; May, C.A.; Solarz, R.W.
1976-01-01
The effects of D. C. electric fields on high lying Rydberg and valence states in atomic uranium have been studied. Results of measurements of Stark shifts, lifetime lengthening via l-mixing, critical fields for ionization, barrier tunneling, and the appearance of zero-field parity forbidden transitions are presented for atomic uranium along with the observation of field induced autoionization of valence states. 3 figs
Rydberg-Stark states of Positronium for atom optics
International Nuclear Information System (INIS)
Alonso, A M; Cooper, B S; Deller, A; Hogan, S D; Wall, T E; Cassidy, D B
2015-01-01
Positronium atoms were produced in Rydberg states by means of a two-step optical excitation process (1s→2p→nd/ns). The n = 11 Rydberg-Stark manifold has been studied using different laser polarizations providing greater control over the electric dipole moment. (paper)
Laser-assisted atom-atom collisions
International Nuclear Information System (INIS)
Roussel, F.
1984-01-01
The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)
Development of cooperation of the CIS member states in the peaceful use of atomic energy
International Nuclear Information System (INIS)
Sobolev, A.Ye.
2012-01-01
Full text: Cooperation platform: Attraction of potential investors; Promotion of national goods and services; Pursuit of national and commercial interests. The Commission of the CIS Member States for the Peaceful Use of Atomic Energy is a nuclear cooperation body and the CIS intergovernmental coordinating and advisory authority. The Commission of the CIS Member States for the Peaceful Use of Atomic Energy coordinates and expands the spheres of cooperation. Members of the Commission- state-appointed heads of the authorized CIS member state bodies in the peaceful use of atomic energy; Secretariat is the working body of the Commission. Expert work groups formed within the CIS members States Commission: On the status of the draft Agreement on Coordination of Interstate Relations in the Peaceful Use of Atomic Energy in the CIS Territory; On the establishment of the CIS regional center for advanced training of medical physicists; Formation of an integrated system for the maintenance of safety of the nuclear research facilities. Issues of establishing the Coalition of the CIS Nuclear Research reactors; Formation of mechanisms for the convergence of the CIS member states legal and technical regulations in the peaceful use of atomic energy; Adaptation and introduction in the CIS members states of international standards in the field of using industrial radiation technologies and ensuring radiation safety; Basic forms of the CIS cooperation in ensuring economic security of projects for the peaceful use of atomic energy; Establishment of a system for the management of intellectual assets of the CIS members states; On the use of tele medical technologies of Ros atom State Cooperation- FMBA-MEPHI in diagnosis of oncologic diseases; Development of the major components of the Concept of Ensuring Nuclear, radiation and Radio ecological; Policy of the CIS Member States in the Peaceful Use of Atomic Energy; Joint implementation of the project to establish and implement a program of
Generation of Atomic Greenberger-Horne-Zeilinger States Based on Faraday Rotation
International Nuclear Information System (INIS)
Liang Honghui; Li Xinghua
2010-01-01
Based on the input-output relation of the cavity and the Faraday Rotation mechanism, we propose a scheme for generating the n-atom Greenberger-Horne-Zeilinger state. In the scheme, the n-atom trapped respectively in n spatially separate cavities would be entangled with the photons going through the atom-cavity system. The successful probabilities of our protocol approach unity in the ideal case. What is more, no requirement for separately addressing further lowers experimental difficulties. (general)
Energy Technology Data Exchange (ETDEWEB)
Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2015-11-15
The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)
Long-range interactions among three alkali-metal atoms
International Nuclear Information System (INIS)
Marinescu, M.; Starace, A.F.
1996-01-01
The long-range asymptotic form of the interaction potential surface for three neutral alkali-metal atoms in their ground states may be expressed as an expansion in inverse powers of inter-nuclear distances. The first leading powers are proportional to the dispersion coefficients for pairwise atomic interactions. They are followed by a term responsible for a three body dipole interaction. The authors results consist in evaluation of the three body dipole interaction coefficient between three alkali-metal atoms. The generalization to long-range n atom interaction terms will be discussed qualitatively
International Nuclear Information System (INIS)
Pahlke, Kai; Zou Xubo; Mathis, Wolfgang
2004-01-01
We show a way to use an optical device set-up to generate the four-particle Greenberger-Horne-Zeilinger (GHZ) state of atoms, which are trapped separately in leaky cavities. Based on cavity decay, photons are transferred from the atom-cavity systems to a symmetric series of beam splitters and photon detectors. The events of photon detection on the output modes of the beam splitters project the state of the atom-cavity systems onto the GHZ state. It is briefly pointed out how this scheme can be extended to generate GHZ states of 4m atoms
International Nuclear Information System (INIS)
Zou, XuBo; Pahlke, K.; Mathis, W.
2003-01-01
We propose a scheme to generate a four-particle Greenberger-Horne-Zeilinger (GHZ) state of distant atoms that are trapped separately in leaky cavities. This scheme uses cavity decay to inject photons into a setup of optical devices that consist of a symmetric series of beam splitters and photon detectors. Photon detection on the output modes of the beam splitters projects the atom-cavity-system state onto the GHZ state. It is briefly pointed out that this scheme can be extended to generate GHZ states of 4m atoms
Photoemission from solids: the transition from solid-state to atomic physics
International Nuclear Information System (INIS)
Shirley, D.A.
1980-08-01
As the photon energy is increased, photoemission from solids undergoes a slow transition from solid-state to atomic behavior. However, throughout the energy range hν = 10 to 1000 eV or higher both types of phenomena are present. Thus angle-resolved photoemission can only be understood quantitatively if each experimenter recognizes the presence of band-structure, photoelectron diffraction, and photoelectron asymmetry effects. The quest for this understanding will build some interesting bridges between solid-state and atomic physics and should also yield important new insights about the phenomena associated with photoemission
Microtraps for neutral atoms using superconducting structures in the critical state
International Nuclear Information System (INIS)
Emmert, A.; Brune, M.; Raimond, J.-M.; Nogues, G.; Lupascu, A.; Haroche, S.
2009-01-01
Recently demonstrated superconducting atom chips provide a platform for trapping atoms and coupling them to solid-state quantum systems. Controlling these devices requires a full understanding of the supercurrent distribution in the trapping structures. For type-II superconductors, this distribution is hysteretic in the critical state due to the partial penetration of the magnetic field in the thin superconducting film through pinned vortices. We report here an experimental observation of this memory effect. Our results are in good agreement with the predictions of the Bean model of the critical state without adjustable parameters. The memory effect allows to write and store permanent currents in micron-sized superconducting structures and paves the way toward engineered trapping potentials.
Atom-molecule dark states in a Bose-Einstein condensate
International Nuclear Information System (INIS)
Winkler, K.; Thalhammer, G.; Theis, M.; Ritsch, H.; Grimm, R.
2005-01-01
Full text: We have created a dark quantum superposition state of a Rb Bose-Einstein condensate (BEC) and a degenerate gas of Rb 2 ground state molecules in a specific ro-vibrational state using two-color photoassociation. We infer the presence of this coherent atom-molecule gas from a strong resonant suppression of photoassociation loss. In our experiment the maximal molecule population in the dark state is limited to about 100 Rb 2 molecules due to laser induced decay. The experimental findings can be well described by a simple three mode model. (author)
Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities
Zheng, Bin; Shen, Li-Tuo; Chen, Ming-Feng
2016-05-01
We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities that are not directly coupled to each other. The process is realized through engineering an effective asymmetric X-Y interaction for the two atoms involved in the gate operation and an auxiliary atom trapped in an intermediate cavity, induced by virtually manipulating the atomic excited states and photons. We study the validity of the scheme as well as the influences of the dissipation by numerical simulation and demonstrate that it is robust against decoherence.
Experimental apparatus for overlapping a ground-state cooled ion with ultracold atoms
Meir, Ziv; Sikorsky, Tomas; Ben-shlomi, Ruti; Akerman, Nitzan; Pinkas, Meirav; Dallal, Yehonatan; Ozeri, Roee
2018-03-01
Experimental realizations of charged ions and neutral atoms in overlapping traps are gaining increasing interest due to their wide research application ranging from chemistry at the quantum level to quantum simulations of solid state systems. In this paper, we describe our experimental system in which we overlap a single ground-state cooled ion trapped in a linear Paul trap with a cloud of ultracold atoms such that both constituents are in the ?K regime. Excess micromotion (EMM) currently limits atom-ion interaction energy to the mK energy scale and above. We demonstrate spectroscopy methods and compensation techniques which characterize and reduce the ion's parasitic EMM energy to the ?K regime even for ion crystals of several ions. We further give a substantial review on the non-equilibrium dynamics which governs atom-ion systems. The non-equilibrium dynamics is manifested by a power law distribution of the ion's energy. We also give an overview on the coherent and non-coherent thermometry tools which can be used to characterize the ion's energy distribution after single to many atom-ion collisions.
Teleportation of a two-atom entangled state using a single EPR pair in cavity QED
Institute of Scientific and Technical Information of China (English)
Ji Xin; Li Ke; Zhang Shou
2006-01-01
We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics(QED).In the scheme,we choose a single Einstein-Podolsky-Rosen (EPR) pair as the quantum channel which is shared by the sender and the receiver.By using the atom-cavity-field interaction and introducing an additional atom,we can teleport the two-atom entangled state successfully with a probability of 1.0.Moreover,we show that the scheme is insensitive to cavity decay and thermal field.
International Nuclear Information System (INIS)
Ito, Rinsuke; Tabata, Tatsuo; Shirai, Toshizo; Phaneuf, R.A.
1993-06-01
Analytic expressions fitted to Barnett's recommended data are given for the cross sections of the following reactions: (1) electron capture by H, H + , H 2 + , He + , and He 2+ colliding with atoms, molecules, and ions and (2) electron capture into excited states by H + , He + , and He 2+ colliding with atoms and molecules. The latter category includes cross sections for photon emission due to electron capture. The expressions use the semiempirical functional forms proposed by Green and McNeal and some modified forms to make it possible not only to interpolate but also to extrapolate the recommended data. (author)
Improved spin squeezing of an atomic ensemble through internal state control
Hemmer, Daniel; Montano, Enrique; Deutsch, Ivan; Jessen, Poul
2016-05-01
Squeezing of collective atomic spins is typically generated by quantum backaction from a QND measurement of the relevant spin component. In this scenario the degree of squeezing is determined by the measurement resolution relative to the quantum projection noise (QPN) of a spin coherent state (SCS). Greater squeezing can be achieved through optimization of the 3D geometry of probe and atom cloud, or by placing the atoms in an optical cavity. We explore here a complementary strategy that relies on quantum control of the large internal spin available in alkali atoms such as Cs. Using a combination of rf and uw magnetic fields, we coherently map the internal spins in our ensemble from the SCS (| f = 4, m = 4>) to a ``cat'' state which is an equal superposition of | f = 4, m = 4>and | f = 4, m = -4>. This increases QPN by a factor of 2 f = 8 relative to the SCS, and therefore the amount of backaction and spin-spin entanglement produced by our QND measurement. In a final step, squeezing generated in the cat state basis can be mapped back to the SCS basis, where it corresponds to increased squeezing of the physical spin. Our experiments suggest that up to 8dB of metrologically useful squeezing can be generated in this way, compared to ~ 3 dB in an otherwise identical experiment starting from a SCS.
Preparation of Greenberger-Horne-Zeilinger Entangled States in the Atom-Cavity Systems
Xu, Nan
2018-02-01
We present a new simple scheme for the preparation of Greenberger-Horne-Zeilinger maximally entangled states of two two-level atoms. The distinct feature of the effective Hamiltonian is that there is no energy exchange between the atoms and the cavity.. Thus the scheme is insensitive to the effect of cavity field and the atom radiation.This protocol may be realizable in the realm of current physical experiment.
Evolution of the authoritarian 'atom state'
International Nuclear Information System (INIS)
Anon.
1979-01-01
Robert Jungk's book 'The Atom State' forms the basis for this article, which begins with a general discussion and criticism of such government sponsored reports as the Rasmussen report. The utilisation by the nuclear industry of modern PR methods is also criticised. Specifically, Bruno Kreisky and the Austrian Minister of the Economy, Herta Firnberg, are accused of attempting, through a secret project, to mislead the public and exercise unethical influence. It is maintained that the existence of a nuclear industry will necessitate control measures which lead to a totalitarian regime. (JIW)
Atom-surface potentials and atom interferometry
International Nuclear Information System (INIS)
Babb, J.F.
1998-01-01
Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)
Finite nuclear size and Lamb shift of p-wave atomic states
International Nuclear Information System (INIS)
Milstein, A.I.; Sushkov, O.P.; Terekhov, I.S.
2003-01-01
We consider corrections to the Lamb shift of the p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotope shift related to the FNS. It is shown that the structure of the corrections is qualitatively different to that for the s-wave states. The perturbation theory expansion for the relative correction for a p 1/2 state starts with a α ln(1/Zα) term, while for the s 1/2 states it starts with a Zα 2 term. Here, α is the fine-structure constant and Z is the nuclear charge. In the present work, we calculate the α terms for that 2p states, the result for the 2p 1/2 state reads (8α/9π){ln[1/(Zα) 2 ]+0.710}. Even more interesting are the p 3/2 states. In this case the 'correction' is several orders of magnitude larger than the 'leading' FNS shift. However, absolute values of energy shifts related to these corrections are very small
International Nuclear Information System (INIS)
Ho, Yew Kam; Lin, Chien-Hao
2015-01-01
In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)
International Nuclear Information System (INIS)
Chezhina, N.V.; Kuznetsova, I.V.
1995-01-01
Solid solutions of LaCa 0.5 Sr 0.5 Ni x Al 1-x O 4 (0≤x≤0.10) have been synthesized and their magnetic susceptibility in the temperature range of 77-400 K has been studied. The change in the basic state of nickel atoms in case of partial substitution of calcium for strontium atoms has been studied. The change in the basic state of nickel atoms in case of partial substitution of calcium for strontium atoms has been studied, as well as the way it affects exchange interaction in a complex oxide. It is shown that the substitution results in increase of the degree of paramagnetic atoms aggregation in solid solution. 9 refs., 2 figs., 1 tab
Generation of four-atom Greenberger—Horn—Zeilinger state via adiabatic passage
International Nuclear Information System (INIS)
Zhang Chun-Ling; Chen Mei-Feng
2013-01-01
We propose a scheme to generate a Greenberger—Horn—Zeilinger (GHZ) state of four atoms trapped in a two-mode optical cavity via an adiabatic passage. The scheme is robust against moderate fluctuations of the experimental parameters. Numerical calculations show that the excited probabilities of both the cavity modes and the atoms are tiny and depend on the pulse peaks of the classical laser fields. For certain decoherence due to the atomic spontaneous emission and the cavity decay, there exits a range of pulse peaks to get a high fidelity. (general)
Scheme for teleportation of entangled states without Bell-state measurement by using one atom
Energy Technology Data Exchange (ETDEWEB)
Qiang Wenchao; Zhang Lei; Zhang Aiping [Faculty of Science, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Dong Shihai, E-mail: qwcqj@163.com [Departamento de Fisica, Esc. Sup de Fisica y Matematicas, Instituto Politecnico Nacional, Edificio 9, Unidad Profesional Adolfo Lopez Mateos, Mexico, DF 07738 (Mexico)
2011-07-01
We propose a scheme for approximately and conditionally teleporting an entanglement of zero- and one-photon states from a cavity with left- and right-polarized modes to another similar one, with a fidelity exceeding 99%. Instead of using the Bell-state measurement, only one atom is used in our scheme. The time spent, the success probability and the feasibility of the proposed scheme are also discussed.
Manipulating collective quantum states of ultracold atoms by probing
DEFF Research Database (Denmark)
Wade, Andrew Christopher James
2015-01-01
The field of cold gases has grown dramatically over the past few decades. The exquisite experimental control of their environment and properties has lead to landmark achievements, and has motivated the pursuit of quantum technologies with ultracold atoms. At the same time, the theory of measureme......The field of cold gases has grown dramatically over the past few decades. The exquisite experimental control of their environment and properties has lead to landmark achievements, and has motivated the pursuit of quantum technologies with ultracold atoms. At the same time, the theory...... of measurements on quantum systems has grown into a well established field. Experimental demonstrations of nondestructive continuous measurements on individual quantum systems now occur in many laboratories. Such experiments with ultracold atoms have shown great progress, but the exploitation of the quantum...... nature of the measurement interaction and backaction is yet to be realised. This dissertation is concerned with ultracold atoms and their control via fully quantum mechanical probes. Nonclassical, squeezed and entangled states of matter and single photon sources are important for fundamental studies...
Microelectronics: Atoms diffusion in solid state. Part 1
International Nuclear Information System (INIS)
Lopez Higuera, J.M.
1988-01-01
The fundamentals on which the technology for the diffusion of impurities in solid state is based, is presented. This technology is widely used to produce controlled and localized concentrations of atoms of the mentioned impurities in base solids in order to obtain those characteristics which may lead to the implementation of electronic, optoelectronic and electrooptic devices. (Author)
Teleportation of a Superposition of Three Orthogonal States of an Atom via Photon Interference
Institute of Scientific and Technical Information of China (English)
ZHENG Shi-Biao
2006-01-01
We propose a scheme to teleport a superposition of three states of an atom trapped in a cavity to a second atom trapped in a remote cavity. The scheme is based on the detection of photons leaking from the cavities after the atom-cavity interaction.
A scheme for teleporting Schrdinger-cat states via the dispersive atom-cavity-field interaction
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A proposal is presented for teleporting Schrding-cat states. The process of the teleportation is achieved through the dispersive atom-cavity-field interaction. In this proposal, only measurement on the cavity field and on the singlet atomic states are used.
Generalized Bethe-Negele inequalities for excited states in muonic atoms
International Nuclear Information System (INIS)
Klarsfeld, S.
1976-11-01
Rigorous upper and lower bounds are derived for the Bethe logarithms in excited states of muonic atoms. Comparison with previous empirical estimates shows that the latter are inadequate in certain cases
Energy Technology Data Exchange (ETDEWEB)
Wang, Dong-Yang [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wen, Jing-Ji [College of Foundation Science, Harbin University of Commerce, Harbin, Heilongjiang 150028 (China); Bai, Cheng-Hua; Hu, Shi; Cui, Wen-Xue [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wang, Hong-Fu, E-mail: hfwang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhu, Ai-Dong [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhang, Shou, E-mail: szhang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China)
2015-09-15
An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.
Geometric manipulation of the quantum states of two-level atoms
International Nuclear Information System (INIS)
Tian, Mingzhen; Barber, Zeb W.; Fischer, Joe A.; Babbitt, Wm. Randall
2004-01-01
Manipulation of the quantum states of two-level atoms has been investigated using laser-controlled geometric phase change, which has the potential to build robust quantum logic gates for quantum computing. For a qubit based on two electronic transition levels of an atom, two basic quantum operations that can make any universal single qubit gate have been designed employing resonant laser pulses. An operation equivalent to a phase gate has been demonstrated using Tm 3+ doped in a yttrium aluminum garnet crystal
Generation of multipartite entangled states for chains of atoms in the framework of cavity-QED
Energy Technology Data Exchange (ETDEWEB)
Gonta, Denis
2010-07-07
Cavity quantum electrodynamics is a research field that studies electromagnetic fields in confined spaces and the radiative properties of atoms in such fields. Experimentally, the simplest example of such system is a single atom interacting with modes of a high-finesse resonator. Theoretically, such system bears an excellent framework for quantum information processing in which atoms and light are interpreted as bits of quantum information and their mutual interaction provides a controllable entanglement mechanism. In this thesis, we present several practical schemes for generation of multipartite entangled states for chains of atoms which pass through one or more high-finesse resonators. In the first step, we propose two schemes for generation of one- and two-dimensional cluster states of arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more microwave cavities. In the second step, we propose a scheme for generation of multipartite W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms with an optical cavity and a laser beam. We describe in details all the individual steps which are required to realize the proposed schemes and, moreover, we discuss several techniques to reveal the non-classical correlations associated with generated small-sized entangled states. (orig.)
Generation of multipartite entangled states for chains of atoms in the framework of cavity-QED
International Nuclear Information System (INIS)
Gonta, Denis
2010-01-01
Cavity quantum electrodynamics is a research field that studies electromagnetic fields in confined spaces and the radiative properties of atoms in such fields. Experimentally, the simplest example of such system is a single atom interacting with modes of a high-finesse resonator. Theoretically, such system bears an excellent framework for quantum information processing in which atoms and light are interpreted as bits of quantum information and their mutual interaction provides a controllable entanglement mechanism. In this thesis, we present several practical schemes for generation of multipartite entangled states for chains of atoms which pass through one or more high-finesse resonators. In the first step, we propose two schemes for generation of one- and two-dimensional cluster states of arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more microwave cavities. In the second step, we propose a scheme for generation of multipartite W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms with an optical cavity and a laser beam. We describe in details all the individual steps which are required to realize the proposed schemes and, moreover, we discuss several techniques to reveal the non-classical correlations associated with generated small-sized entangled states. (orig.)
Application of the random phase approximation to some atoms with ns2 ground state configurations
International Nuclear Information System (INIS)
Wright, L.A.
1975-01-01
Atomic bound state properties such as excitation energies and oscillator strengths were calculated by the Random Phase Approximation (RPA), also known as the Time Dependent Hartree-Fock Approximation (TDHFA). The RPA is equivalent to describing excited states as the creation of particle-hole pairs and the application to atoms is important for two reasons: the wide range of densities in an atom will cause the physical interpretation and mathematical approximations to be much different than with a uniform density system, such as an electron gas; this method could detect the existence of collective states in atoms similar to those responsible for the giant dipole resonances in nuclei. The method is shown to be superior to the H-F method in three basic ways: (1) The RPA contains explicit correlations between the excited and ground states. These are not included in the H-F theory. One can apply this method to large atoms since only these correlations are explicitly included. (2) The RPA calculates excitation energies directly without recourse to highly correlated ground state wavefunctions. This is in contrast to the method of configuration mixing which is known to have slow convergence properties. (3) Oscillator strengths and photoionization cross sections can be calculated by finding the eigenvectors corresponding excitation energy eigenvalues. The strength of the RPA is that the excitation energies and oscillator strengths, which are relative quantities, are calculated directly. The results for the oscillator strengths show an improvement of up to 45 percent over the H-F values and an improvement over the RPA done with Hartree wavefunctions by as much as 65 percent. The work was limited to atoms with an ns 2 ground state configuration. These atoms were He, Be, Mg and Ca
Selective excitation of atoms or molecules to high-lying states
International Nuclear Information System (INIS)
Ducas, T.W.
1978-01-01
This specification relates to the selective excitation of atoms or molecules to high lying states and a method of separating different isotopes of the same element by selective excitation of the isotopes. (U.K.)
The hydrogen atom and Bateman functions
International Nuclear Information System (INIS)
Yaacob, K.B.
1988-01-01
The radial equations for the multi-dimensional hydrogen atom are reexamined using a integral representation of the equations that is found to be connected to the Schrodinger equation for the one-dimensional hydrogen atom. Application of the integral representation solution to the one-dimensional hydrogen atom leads to the conclusive proof that, contrary to current acceptance, the states of the one-dimensional hydrogen atom are non-degenerate. The integral representation was originally developed by Bateman (1931) and was later generalized by several workers. Based on these later works it is possible to apply the method to find the second solutions to the radial equations for the three and two-dimensional hydrogen atoms. The solutions are expressible in terms of the associated Laguerre polynomials and except for the phase factor, are similar to the first solutions. (author)
η Condensate of Fermionic Atom Pairs via Adiabatic State Preparation
International Nuclear Information System (INIS)
Kantian, A.; Daley, A. J.; Zoller, P.
2010-01-01
We discuss how an η condensate, corresponding to an exact excited eigenstate of the Fermi-Hubbard model, can be produced with cold atoms in an optical lattice. Using time-dependent density matrix renormalization group methods, we analyze a state preparation scheme beginning from a band insulator state in an optical superlattice. This state can act as an important test case, both for adiabatic preparation methods and the implementation of the many-body Hamiltonian, and measurements on the final state can be used to help detect associated errors.
Density of states of adsorbed sulphur atoms on pristine and defective graphene layers
International Nuclear Information System (INIS)
Arellano, J S
2017-01-01
The density of states for adsorbed sulphur atom on a graphene layer system is discussed for pristine graphene layer and for mono and divacancies on the graphene layer. To our knowledge this is the first time that an entire adsorption of the sulphur atom is reported at the plane of the carbon atoms, when there is a pair of closer vacancies at the graphene layer. (paper)
Thorwart, Michael
2018-01-01
Realizing Majorana bound states (MBS) in condensed matter systems is a key challenge on the way toward topological quantum computing. As a promising platform, one-dimensional magnetic chains on conventional superconductors were theoretically predicted to host MBS at the chain ends. We demonstrate a novel approach to design of model-type atomic-scale systems for studying MBS using single-atom manipulation techniques. Our artificially constructed atomic Fe chains on a Re surface exhibit spin spiral states and a remarkable enhancement of the local density of states at zero energy being strongly localized at the chain ends. Moreover, the zero-energy modes at the chain ends are shown to emerge and become stabilized with increasing chain length. Tight-binding model calculations based on parameters obtained from ab initio calculations corroborate that the system resides in the topological phase. Our work opens new pathways to design MBS in atomic-scale hybrid structures as a basis for fault-tolerant topological quantum computing. PMID:29756034
GHz Rabi Flopping to Rydberg States in Hot Atomic Vapor Cells
International Nuclear Information System (INIS)
Huber, B.; Baluktsian, T.; Schlagmueller, M.; Koelle, A.; Kuebler, H.; Loew, R.; Pfau, T.
2011-01-01
We report on the observation of Rabi oscillations to a Rydberg state on a time scale below 1 ns in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of ∼4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor, thus suggesting small vapor cells as a platform for room-temperature quantum devices. Furthermore, the result implies that previous coherent dynamics in single-atom Rydberg gates can be accelerated by 3 orders of magnitude.
Coherence effects in atomic impact processes
International Nuclear Information System (INIS)
Blum, K.
1980-01-01
The author considers excitation of target atoms by projectile particles and the coincident detection of the scattered projectiles and the photons emitted in the subsequent decay by the target atoms. The observation is restricted to radiation emitted by those atoms only which 'scattered' the projectiles with a given energy in a given direction defined by the particle detector. Thus, a certain subensemble of atoms is selected in the experiment. The author reviews the theoretical scheme used for the description of the excited subensemble with the emphasis on the coherence properties. The author reviews developments of the Fano-Macek theory concerning the description of coherently excited states with different angular momenta and parities. A comprehensive expression for the angular distribution of the emitted radiation, including all possible interference terms is given. (Auth.)
International Nuclear Information System (INIS)
Jungk, R.
1991-01-01
Illustrous, eloquent, and yet easy to read for the interested layman, the book begins with alleged deplorable conditions at the reprocessing centra La Hague, portrays, amongst other things, the spying on and supervision of persons in the nuclear field and in research, the misuse of fissile material, and threats and blackmail as a consequence thereof, human error as a cause of accidents, and it concludes with a nonviolent new International against the state and atomic energy, against technological tyranny. Titles of chapters: The hard road; radiation feed; the gamblers; homo atomicus; the intimidated; the ''proliferators''; nuclear terrorists; those supervised; the smooth road. It remains an open question whether the book contributes to defusing the nuclear controversy - in the book almost an ideology - and to bringing the two sides closer together. (HP) [de
Interference between radiative emission and autoionization in the decay of excited states of atoms
International Nuclear Information System (INIS)
Armstrong, L. Jr.; Theodosiou, C.E.; Wall, M.J.
1978-01-01
An excited state of an atom which can autoionize can also undergo radiative decay. We consider the interaction between the final states resulting from these two modes of decay, and its effects on such quantities as the fluorescence yield of the excited state, excitation profile of the excited state, and the spectra of the emitted photons and electrons. It is shown that the fraction of decays of the excited state resulting in a photon (fluorescence yield) is particularly sensitive to the details of the final-state interaction. In lowest order in the final-state interaction, the fluorescence yield is increased by a factor (1 + 1/q 2 ) from the traditional value, where q is the Fano q parameter relating to the excited state and the final atomic state
Atomic-partial vibrational density of states of i-AlCuFe quasicrystals
International Nuclear Information System (INIS)
Parshin, P.P.; Zemlyanov, M.; Brand, R.A.; Dianoux, A.J.; Calvayrac, Y.
2002-01-01
We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al 62 Cu 25.5 Fe 12.5 . The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)
Atom lasers, coherent states, and coherence II. Maximally robust ensembles of pure states
International Nuclear Information System (INIS)
Wiseman, H.M.; Vaccaro, John A.
2002-01-01
As discussed in the preceding paper [Wiseman and Vaccaro, preceding paper, Phys. Rev. A 65, 043605 (2002)], the stationary state of an optical or atom laser far above threshold is a mixture of coherent field states with random phase, or, equivalently, a Poissonian mixture of number states. We are interested in which, if either, of these descriptions of ρ ss as a stationary ensemble of pure states, is more natural. In the preceding paper we concentrated upon the question of whether descriptions such as these are physically realizable (PR). In this paper we investigate another relevant aspect of these ensembles, their robustness. A robust ensemble is one for which the pure states that comprise it survive relatively unchanged for a long time under the system evolution. We determine numerically the most robust ensembles as a function of the parameters in the laser model: the self-energy χ of the bosons in the laser mode, and the excess phase noise ν. We find that these most robust ensembles are PR ensembles, or similar to PR ensembles, for all values of these parameters. In the ideal laser limit (ν=χ=0), the most robust states are coherent states. As the phase noise or phase dispersion is increased through ν or the self-interaction of the bosons χ, respectively, the most robust states become more and more amplitude squeezed. We find scaling laws for these states, and give analytical derivations for them. As the phase diffusion or dispersion becomes so large that the laser output is no longer quantum coherent, the most robust states become so squeezed that they cease to have a well-defined coherent amplitude. That is, the quantum coherence of the laser output is manifest in the most robust PR ensemble being an ensemble of states with a well-defined coherent amplitude. This lends support to our approach of regarding robust PR ensembles as the most natural description of the state of the laser mode. It also has interesting implications for atom lasers in particular
Maximally entangled mixed states of two atoms trapped inside an optical cavity
International Nuclear Information System (INIS)
Li Shangbin; Xu Jingbo
2009-01-01
In some off-resonant cases, the reduced density matrix of two atoms symmetrically coupled with an optical cavity can very approximately approach maximally entangled mixed states or maximal Bell violation mixed states in their evolution. The influence of a phase decoherence on the generation of a maximally entangled mixed state is also discussed
Force-balance and differential equation for the ground-state electron density in atoms and molecules
International Nuclear Information System (INIS)
Amovilli, C.; March, N.H.; Gal, T.; Nagy, A.
2000-01-01
Holas and March (1995) established a force-balance equation from the many-electron Schroedinger equation. Here, the authors propose this as a basis for the construction of a (usually approximate) differential equation for the ground-state electron density. By way of example they present the simple case of two-electron systems with different external potentials but with weak electron-electron Coulomb repulsion λe 2 /r 12 . In this case first-order Rayleigh-Schroedinger (RS) perturbation theory of the ground-state wave function is known to lead to a compact expression for the first-order density matrix γ(r,rprime) in terms of its diagonal density ρ(r) and the density corresponding to λ = 0. This result allows the force-balance equation to be written as a third-order linear, differential homogeneous equation for the ground-state electron density ρ(r). The example of the two-electron Hookean atom is treated: For this case one can also transcend the first-order RS perturbation theory and get exact results for discrete choices of force constants (external potential)
Energy Technology Data Exchange (ETDEWEB)
Jin, G R; Wang, X W; Li, D; Lu, Y W, E-mail: grjin@bjtu.edu.c [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)
2010-02-28
We investigate spin dynamics of a two-component Bose-Einstein condensate with weak Josephson coupling. Analytical expressions of atom-number squeezing and bipartite entanglement are presented for atom-atom repulsive interactions. For attractive interactions, there is no number squeezing; however, the squeezing parameter is still useful to recognize the appearance of Schroedinger's cat state.
Generation of an N-qubit Greenberger-Horne-Zeilinger state with distant atoms in bimodal cavities
Energy Technology Data Exchange (ETDEWEB)
Zheng Anshou [School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu Jibing, E-mail: zaszas1_1@126.com [Hubei Key Laboratory of Pollutant Analysis and Reuse Technology and Department of Physics, Hubei Normal University, Huangshi, 435002 (China)
2011-08-28
A selective photon scheme is proposed to realize an N-qubit Greenberger-Horne-Zeilinger (GHZ) state with distant atoms trapped in spatially separated bimodal cavities coupled by optical fibres. The influence of deviations of some experimental parameters on our scheme is studied exactly and we prove that a highly reliable GHZ state is achievable. Moreover, we analyse the independence of fidelity on decoherence processes, such as atomic spontaneous emission, cavity decay and fibre losses. The results show that atomic spontaneous emission and fibre losses can be ignored in some special cases. With regards to the cavity decay, it indicates that a GHZ state with high fidelity may be realized in the current experiment.
Generation of an N-qubit Greenberger-Horne-Zeilinger state with distant atoms in bimodal cavities
International Nuclear Information System (INIS)
Zheng Anshou; Liu Jibing
2011-01-01
A selective photon scheme is proposed to realize an N-qubit Greenberger-Horne-Zeilinger (GHZ) state with distant atoms trapped in spatially separated bimodal cavities coupled by optical fibres. The influence of deviations of some experimental parameters on our scheme is studied exactly and we prove that a highly reliable GHZ state is achievable. Moreover, we analyse the independence of fidelity on decoherence processes, such as atomic spontaneous emission, cavity decay and fibre losses. The results show that atomic spontaneous emission and fibre losses can be ignored in some special cases. With regards to the cavity decay, it indicates that a GHZ state with high fidelity may be realized in the current experiment.
The atomic hypothesis: physical consequences
International Nuclear Information System (INIS)
Rivas, Martin
2008-01-01
The hypothesis that matter is made of some ultimate and indivisible objects, together with the restricted relativity principle, establishes a constraint on the kind of variables we are allowed to use for the variational description of elementary particles. We consider that the atomic hypothesis not only states the indivisibility of elementary particles, but also that these ultimate objects, if not annihilated, cannot be modified by any interaction so that all allowed states of an elementary particle are only kinematical modifications of any one of them. Therefore, an elementary particle cannot have excited states. In this way, the kinematical group of spacetime symmetries not only defines the symmetries of the system, but also the variables in terms of which the mathematical description of the elementary particles can be expressed in either the classical or the quantum mechanical description. When considering the interaction of two Dirac particles, the atomic hypothesis restricts the interaction Lagrangian to a kind of minimal coupling interaction
Van der Waals dispersion energy between atoms and nanoparticles
International Nuclear Information System (INIS)
Boustimi, M; Loulou, M; Natto, S; Belafhal, A; Baudon, J
2017-01-01
In this work, we focus on the atom-surface interaction where the geometry of the surface is highly symmetric (i.e. sphere, cylinder and plane) and the atom is in ground state. We first present the main features of our model, based on the susceptibility tensors of the two partners in interaction, to determine a general expression of the dispersive energy of van der Waals interaction. Some results are given as applications of this model which addresses recent nanophysical problems, for example, when atoms are in the vicinity of metallic nanoshells, nanospheres or nanowires. (paper)
High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State
Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.
2017-04-01
Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.
Atomic-partial vibrational density of states of i-AlCuFe quasicrystals
Parshin, P P; Brand, R A; Dianoux, A J; Calvayrac, Y
2002-01-01
We present new results on the separation of the atomic-partial vibrational density of states for the ternary quasicrystal i-Al sub 6 sub 2 Cu sub 2 sub 5 sub . sub 5 Fe sub 1 sub 2 sub . sub 5. The decomposition into three atomic-partial functions, Al-, Cu- and Fe-g(E), has been performed self-consistently with the calculation of the multi-phonon contributions. The results show the surprising result that both Cu- and Fe-g(E) are strongly peaked. The low-energy regions of Al- and Cu-g(E) show strong deviations from Debye behaviour due to the presence of non-propagating low-energy vibrational states. (orig.)
Laser-induced charge exchange in ion-atom collisions
International Nuclear Information System (INIS)
Riera, A.
1986-01-01
The theory of laser-induced charge transfer (LICT) in ion-atom collisions is presented for the range of impact energies in which a quasimolecular description is appropriate. For each relative orientation of the AC field, LICT cross sections can be obtained with trivial modifications of standard programs. Simpler, perturbative expressions for the orientation-averaged cross sections are accurate for I v -1 6 W s cm -3 , and the analytical Landau-Zener perturbative expression often provides good estimates for these cross sections. The practical advantages of the dressed state formalism as an alternative approach are critically examined, and the general characteristics of LICT cross sections in multicharged ion-atom collisions are shown with the help of an example. (Auth.)
DEFF Research Database (Denmark)
Johnsen, Kristinn; Yngvason, Jakob
1996-01-01
We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...
Shao, X. Q.; Wu, J. H.; Yi, X. X.; Long, Gui-Lu
2017-12-01
Inspired by a recent work [F. Reiter, D. Reeb, and A. S. Sørensen, Phys. Rev. Lett. 117, 040501 (2016), 10.1103/PhysRevLett.117.040501], we present a simplified proposal for dissipatively preparing a Greenberger-Horne-Zeilinger (GHZ) state of three Rydberg atoms in a cavity. The Z pumping is implemented under the action of the spontaneous emission of Λ -type atoms and the quantum Zeno dynamics induced by strong continuous coupling. In the meantime, a dissipative Rydberg pumping breaks up the stability of the state | GHZ+〉 in the process of Z pumping, making | GHZ-〉 the unique steady state of the system. Compared with the former scheme, the number of driving fields acting on atoms is greatly reduced and only a single-mode cavity is required. The numerical simulation of the full master equation reveals that a high fidelity ˜98 % can be obtained with the currently achievable parameters in the Rydberg-atom-cavity system.
Energy Technology Data Exchange (ETDEWEB)
Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Yeon, Kyu-Hwang, E-mail: hfwang@ybu.edu.c, E-mail: szhang@ybu.edu.c [Department of Physics and BK21 Program for Device Physics, College of Natural Science, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of)
2010-12-14
Based on the interference effect of polarized photons, we propose a practical scheme for entanglement concentration of unknown atomic entangled states. In the scheme, two {lambda}{lambda}-type atoms belonging to different entangled pairs are individually trapped in two spatially separated cavities. By the subsequent detection of the polarized photons leaking out of the separate optical cavities, Alice and Bob as two distant parties can probabilistically extract one maximally entangled four-atom Greenberger-Horne-Zeilinger (GHZ) state from two identical partially entangled Einstein-Podolsky-Rosen (EPR) pairs. We also discuss the influence of cavity decay on the success probability of the scheme. The scheme is feasible and within the reach of current experimental technology.
Radiative and nonradiative lifetimes in excited states of Ar, Kr and Xe atoms in Ne matrix
International Nuclear Information System (INIS)
Hahn, U.; Schwentner, N.
1979-10-01
Synchrotron radiation with its intense continuum and its excellent time structure has been exploited for time resolved luminescence spectroscopy in the solid state. By selective excitation of n = 1, n' = 1 and n = 2 exciton states of Xe, Kr and Ar atoms in Ne matrix we were able to identify the emitting states involved. Lifetimes within the cascade of radiative and radiationless relaxation between excited states as well as the radiative lifetimes for transitions to the ground state have been derived from the decay curves. Energy positions and radiative lifetimes of the emitting states correspond quite well with those of the free atoms. Radiative and radiationless relaxation processes take place within the manifold of excited states of the guest atoms. The rate constants for radiationless decay confirm an energy gap law. The order of the radiationless processes reaches in some cases extremely high values. Selection rules for spin and angular momentum are essential to understand the observed radiationless transition rates. (orig.)
Atomic Fisher information versus atomic number
International Nuclear Information System (INIS)
Nagy, A.; Sen, K.D.
2006-01-01
It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number
Three-photon laser spectroscopy of even-parity bound states of samarium atom
International Nuclear Information System (INIS)
Gomonaj, O.Yi.; Kudelich, O.Yi.
2002-01-01
The energy spectrum of highly-excited even-parity bound states of a Sm atom, lying in the energy range 34421.1 - 36031.8 cm -1 , is investigated using three-photon resonance-ionization spectroscopy. The energies and total momenta of 48 levels are determined. Eight new levels not observed before are discovered. Thirteen intense two-photon transitions, which can be used in the schemes of Sm atom effective photoionization, are observed
Electron-impact excitation and ionization cross sections for ground state and excited helium atoms
International Nuclear Information System (INIS)
Ralchenko, Yu.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de
2008-01-01
Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n≤4 are treated individually, while the states with n≥5 are considered degenerate. For the processes involving transitions to and from n≥5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form
Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms
Directory of Open Access Journals (Sweden)
Clément Sayrin
2015-12-01
Full Text Available The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.
Problem of the influence of an atomic explosion on the state of the atmosphere
Energy Technology Data Exchange (ETDEWEB)
Smirnov, N S
1956-01-01
The author reviews briefly various American, Western European, and Japanese studies dealing with the effect of atomic explosions upon the state of atmosphere. He then considers the possible changes in the radiation radioactive properties of the atmosphere that can be caused by the explosion of one atomic bomb, how the increase in radioactivity can influence the radiation balance of the earth, the effect of atomic explosions upon the dust, ion and aerosol content of the atmosphere and the meteorological effects of atomic explosions such as the occurrence of fogs, etc.
The population transfer of high excited states of Rydberg lithium atoms in a microwave field
International Nuclear Information System (INIS)
Jiang Lijuan; Zhang Xianzhou; Ma Huanqiang; Jia Guangrui; Zhang Yonghui; Xia Lihua
2012-01-01
Using the time-dependent multilevel approach (TDMA), the properties of high excited Rydberg lithium atom have been obtained in the microwave field. The population transfer of lithium atom are studied on numerical calculation, quantum states are controlled and manipulated by microwave field. It shows that the population can be completely transferred to the target state by changing the chirped rate and field amplitude. (authors)
Coherent excitation of a single atom to a Rydberg state
DEFF Research Database (Denmark)
Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles
2010-01-01
We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...
International Nuclear Information System (INIS)
Molayem, M.; Tayebi-Rad, Gh.; Esmaeli, L.; Namiranian, A.; Fouladvand, M. E.; Neek-Amal, M.
2006-01-01
Using the diffusion quantum monte Carlo method, the ground state energy of an Hydrogen atom confined in a carbon nano tube and a C60 molecule is calculated. For Hydrogen atom confined in small diameter tubes, the ground state energy shows significant deviation from a free Hydrogen atom, while with increasing the diameter this deviation tends to zero.
Shannon entropy: A study of confined hydrogenic-like atoms
Nascimento, Wallas S.; Prudente, Frederico V.
2018-01-01
The Shannon entropy in the atomic, molecular and chemical physics context is presented by using as test cases the hydrogenic-like atoms Hc, Hec+ and Lic2 + confined by an impenetrable spherical box. Novel expressions for entropic uncertainty relation and Shannon entropies Sr and Sp are proposed to ensure their physical dimensionless characteristic. The electronic ground state energy and the quantities Sr,Sp and St are calculated for the hydrogenic-like atoms to different confinement radii by using a variational method. The global behavior of these quantities and different conjectures are analyzed. The results are compared, when available, with those previously published.
Safety Culture in Rosatom State Atomic Energy Corporation
International Nuclear Information System (INIS)
Adamchik, S. A.
2016-01-01
The paper presents Rosatom State Atomic Energy Corporation (hereinafter “Rosatom”) current activity in safety culture enhancement. After the Chernobyl accident individual commitment to safety, organizational factors influencing on safety were put under more significant attention. Safety culture (hereinafter “SC”) should be considered like a resource to provide safety in nuclear facilities. The resource potential is in minimisation of breaches by development and existing that patterns of human performance and organizational behavior which form attitude to safety as an overriding.
International Nuclear Information System (INIS)
Song Pei-Jun; Si Liu-Gang; Yang Xiao-Xue; Lü Xin-You
2011-01-01
We propose two schemes for generating Greenberger-Horne-Zeilinger and W states of three distant atoms. In the present schemes, the atoms are individually trapped in three spatially separated optical cavities coupled by two optical fibres. Performing an adiabatic passage along dark states, the population of cavities and fibres excited is negligible under certain conditions. In addition, the spontaneous decay of atoms is also efficiently suppressed based on our proposals. Furthermore, the discussion about the entanglement fidelity is given and we point out that our schemes work robustly with small fluctuations of experimental parameters. (general)
State of the art in atomic resolution off-axis electron holography
International Nuclear Information System (INIS)
Linck, Martin; Freitag, Bert; Kujawa, Stephan; Lehmann, Michael; Niermann, Tore
2012-01-01
As proposed by Hannes Lichte, to resolve structure–property relations not only the question “Which atom is where?” but also the question “Which fields are around?” has to be answered. High-resolution off-axis electron holography opens up an access to these key questions in that it allows accessing the complete exit-wave of the object provided within the information limit of the microscope, i.e. amplitude and phase including atomic details such as position and species, and moreover, information about large area electric potentials and magnetic fields, which a conventional transmission electron microscope is blind for—also when using a Cs-corrector. For an excellent object exit-wave reconstruction, special care has to be taken on the hologram quality, i.e. interference fringe contrast and electron dose. Severe restrictions are given to signal resolution by the limited brightness of the electron source. Utilizing a new high-brightness Schottky field electron emitter in a state-of-the-art transmission electron microscope operated at 300 kV, the phase signal resolution at atomic resolution can significantly be enhanced. An improvement by at least a factor of 2.88 compared to the most recently reported single hologram at atomic resolution is found. To proof the applicability of this setup to real materials science problems, a grain boundary of gold has been investigated holographically. -- Highlights: ► Impact of the brightness on the reconstructed signal in electron holography. ► Factor 2.8 gain in signal quality by setup with a high brightness electron gun. ► Investigation of a grain boundary in gold with a state-of-the-art holography setup. ► A-posteriori aberration fine-tuning for true one Angstrom resolution in the object wave. ► Mistilt analysis on the atomic scale by numerical wave optics.
Excited-state positronium formation from positron--atomic-hydrogen collisions
International Nuclear Information System (INIS)
Mandal, C.R.; Mandal, M.; Mukherjee, S.C.
1991-01-01
Positronium formation into ground and n=2 levels has been studied in collisions of positrons with atomic hydrogen in the framework of an approximation called the boundary-corrected continuum-intermediate-state (BCCIS) approximation in the energy range of 0.08--2 keV. The conventional continuum-intermediate-state approximation does not satisfy the correct boundary condition. It has been shown that, with a suitable choice of the distorting potential, the boundary condition may be satisfied with a proper account of the intermediate continuum states. It has also been shown that the BCCIS approximation leads to the same transition amplitude as may be derived using the Vainshtein-Presnyakov-Sobelman approximation. The results obtained here are found to be in good agreement when compared with other theoretical results
Probing Andreev bound states in one-atom superconducting contacts
Energy Technology Data Exchange (ETDEWEB)
Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)
2015-07-01
Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.
Electron scattering by an atom in the field of resonant laser radiation
International Nuclear Information System (INIS)
Agre, M.; Rapoport, L.
1982-01-01
The collision of an electron with an atom in the field of intense electromagnetic radiation that is at resonance with two atomic multiplets is investigated theoretically. Expressions are obtained for the amplitudes of the elastic and inelastic scattering with emission (absorption) of photons. The case of a ground state at resonance with a doublet is considered in detail. It is shown that photon absorption takes place predominantly in the case of resonance in inelastic transitions from a state of the lower multiplet, and photon emission takes place in transitions from a state of the upper multiplet
Some fundamental properties of the ground state of atoms and molecules
International Nuclear Information System (INIS)
Lieb, E.H.
1986-01-01
This paper studies the ground states of atoms and molecules in quantum mechanics and reports on some mathematically rigourous results pertaining to the matter. The non-relativistic Hamiltonian for a molecule in the static nucleus approximation is presented along with notations
The effect of decaying atomic states on integral and time differential Moessbauer spectra
International Nuclear Information System (INIS)
Kankeleit, E.
1975-01-01
Moessbauer spectra for time dependent monopole interaction have been calculated for the case that the nuclear transition feeding the Moessbauer state excites an electric state of the atom. This is assumed to decay in a time comparable with the lifetime of the Moessbauer state. Spectra have been calculated for both time differential and integral experiments. (orig.) [de
State-selective charge transfer cross sections for light ion impact of atomic hydrogen
Energy Technology Data Exchange (ETDEWEB)
Schultz, D. R. [University of North Texas; Stancil, Phillip C. [University of Georgia, Athens; Havener, C. C. [Oak Ridge National Laboratory (ORNL)
2015-01-01
Owing to the utility of diagnosing plasma properties such as impurity concentration and spatial distribution, and plasma temperature and rotation, by detection of photon emission following capture of electrons from atomic hydrogen to excited states of multiply charged ions, new calculations of state-selective charge transfer involving light ions have been carried out using the atomic orbital close-coupling and the classical trajectory Monte Carlo methods. By comparing these with results of other approaches applicable in a lower impact energy regime, and by benchmarking them using key experimental data, knowledge of the cross sections can be made available across the range parameters needed by fusion plasma diagnostics.
Low energy collisions of spin-polarized metastable argon atoms with ground state argon atoms
Taillandier-Loize, T.; Perales, F.; Baudon, J.; Hamamda, M.; Bocvarski, V.; Ducloy, M.; Correia, F.; Fabre, N.; Dutier, G.
2018-04-01
The collision between a spin-polarized metastable argon atom in Ar* (3p54s, 3P2, M = +2) state slightly decelerated by the Zeeman slower-laser technique and a co-propagating thermal ground state argon atom Ar (3p6, 1S0), both merged from the same supersonic beam, but coming through adjacent slots of a rotating disk, is investigated at the center of mass energies ranging from 1 to 10 meV. The duration of the laser pulse synchronised with the disk allows the tuning of the relative velocity and thus the collision energy. At these sub-thermal energies, the ‘resonant metastability transfer’ signal is too small to be evidenced. The explored energy range requires using indiscernibility amplitudes for identical isotopes to have a correct interpretation of the experimental results. Nevertheless, excitation transfers are expected to increase significantly at much lower energies as suggested by previous theoretical predictions of potentials 2g(3P2) and 2u(3P2). Limits at ultra-low collisional energies of the order of 1 mK (0.086 μeV) or less, where gigantic elastic cross sections are expected, will also be discussed. The experimental method is versatile and could be applied using different isotopes of Argon like 36Ar combined with 40Ar, as well as other rare gases among which Krypton should be of great interest thanks to the available numerous isotopes present in a natural gas mixture.
Quantum nonlocality without inequalities for three-atom Greenberger-Horne-Zeilinger and W states
International Nuclear Information System (INIS)
Liang Linmei; Li Chengzu; Ou Baoquan; Chen Jumei
2005-01-01
We present a feasible scheme to realize Bell's theorem without inequalities for both inequivalent classes of three-atom entangled states under local operations and classical communication, namely, Greenberger-Horne-Zeilinger (GHZ) and W states. This scheme is within the technology of the Innsbruck ion group
First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction
International Nuclear Information System (INIS)
Zhao Xiu-Qin; Liu Ni; Liang Jiu-Qing
2017-01-01
In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. (paper)
Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin
2010-06-21
By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.
Laser cooling of quasi-free atoms in a nondissipative optical lattice
International Nuclear Information System (INIS)
Matveeva, N. A.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.
2007-01-01
A quasi-classical theory of laser cooling is applied to the analysis of cooling of unbound atoms with the angular momenta 1/2 in the ground and excited states in a one-dimensional nondissipative optical lattice. In the low-saturation limit with respect to the pumping field, the mechanisms of cooling can be interpreted within the framework of an effective two-level system of ground-state sublevels. In the limit of weak Raman transitions, the mechanism of cooling of unbound atoms is similar to the Doppler mechanism known in the theory of a two-level atom; in the limit of strong transitions, the mechanism of cooling is analogous to the well-known Sisyphys mechanism. In the slow-atom approximation, analytical expressions are obtained for the friction (drag) coefficient and the induced and spontaneous diffusion, and the kinetic temperature is estimated
Greenberger-Horne-Zeilinger state generation of three atoms trapped in two remote cavities
International Nuclear Information System (INIS)
Li Yanling; Fang Maofa; Xiao Xing; Zeng Ke; Wu Chao
2010-01-01
We consider a system composed of a single-atom-trapped cavity (A) and a remote two-atom-trapped cavity (B) which are connected by an optical fibre. It is shown that a shared Greenberger-Horne-Zeilinger (GHZ) state of the three atoms can be deterministically generated by controlling the time of interaction or via the adiabatic passage based on this system. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity is also investigated. It is found that our schemes can be realized with high fidelity even when these decoherence processes are considered.
Greenberger-Horne-Zeilinger state generation of three atoms trapped in two remote cavities
Energy Technology Data Exchange (ETDEWEB)
Li Yanling; Fang Maofa; Xiao Xing; Zeng Ke; Wu Chao, E-mail: mffang@hunnu.edu.c [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control, Ministry of Education, and College of Physics and Information Science, Hunan Normal University, Changsha 410081 (China)
2010-04-28
We consider a system composed of a single-atom-trapped cavity (A) and a remote two-atom-trapped cavity (B) which are connected by an optical fibre. It is shown that a shared Greenberger-Horne-Zeilinger (GHZ) state of the three atoms can be deterministically generated by controlling the time of interaction or via the adiabatic passage based on this system. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity is also investigated. It is found that our schemes can be realized with high fidelity even when these decoherence processes are considered.
Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor.
Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A J; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian
2017-05-01
The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom-based spin sensor that changes the sensor's spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface.
Vacancy decay in endohedral atoms
International Nuclear Information System (INIS)
Amusia, M. Ya.; Baltenkov, A. S.
2006-01-01
It is demonstrated that the fullerene shell dramatically affects the radiative and Auger vacancy decay of an endohedral atom A-C 60 . The collectivized electrons of the C 60 shell add new possibilities for radiative and nonradiative decays similar to that in ordinary atoms where the vacancies in the initial and final state almost always belong to different subshells. It is shown that the smallness of the atomic shell radii as compared to that of the fullerene shell provides an opportunity to derive the simple formulas for the probabilities of the electron transitions. It is shown that the radiative and Auger (or Koster-Kronig) widths of the vacancy decay due to electron transition in the atom A in A-C 60 acquire an additional factor that can be expressed via the polarizability of the C 60 at transition energy. It is demonstrated that due to an opening of the nonradiative decay channel for vacancies in subvalent subshells the decay probability increases by five to six orders of magnitude
An exciton approach to the excited states of two electron atoms. I Formalism and interpretation
International Nuclear Information System (INIS)
Schipper, P.E.
1985-01-01
The exciton model is formally applied to a description of the excited states of two electron atoms with the explicit inclusion of exchange. The model leads to a conceptually simple framework for the discussion of the electronic properties of the archetypical atomic electron pair
Atomic substitutions in synthetic apatite; Insights from solid-state NMR spectroscopy
Vaughn, John S.
Apatite, Ca5(PO4)3X (where X = F, Cl, or OH), is a unique mineral group capable of atomic substitutions for cations and anions of varied size and charge. Accommodation of differing substituents requires some kind of structural adaptation, e.g. new atomic positions, vacancies, or coupled substitutions. These structural adaptations often give rise to important physicochemical properties relevant to a range of scientific disciplines. Examples include volatile trapping during apatite crystallization, substitution for large radionuclides for long-term storage of nuclear fission waste, substitution for fluoride to improve acid resistivity in dental enamel composed dominantly of hydroxylapatite, and the development of novel biomaterials with enhanced biocompatibility. Despite the importance and ubiquity of atomic substitutions in apatite materials, many of the mechanisms by which these reactions occur are poorly understood. Presence of substituents at dilute concentration and occupancy of disordered atomic positions hinder detection by bulk characterization methods such as X-ray diffraction (XRD) and infrared (IR) spectroscopy. Solid-state nuclear magnetic resonance (NMR) spectroscopy is an isotope-specific structural characterization technique that does not require ordered atomic arrangements, and is therefore well suited to investigate atomic substitutions and structural adaptations in apatite. In the present work, solid-state NMR is utilized to investigate structural adaptations in three different types of apatite materials; a series of near-binary F, Cl apatite, carbonate-hydroxylapatite compositions prepared under various synthesis conditions, and a heat-treated hydroxylapatite enriched in 17O. The results indicate that hydroxyl groups in low-H, near binary F,Cl apatite facilitate solid-solution between F and Cl via column reversals, which result in average hexagonal symmetry despite very dilute OH concentration ( 2 mol percent). In addition, 19F NMR spectra indicate
Long-range interactions of excited He atoms with ground-state noble-gas atoms
Zhang, J.-Y.
2013-10-09
The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition operators. The large-n expansions for the sums over the He oscillator strength divided by the corresponding transition energy are presented for these series. Using the expansions, the C6 coefficients for the systems involving He(131,3S) and He(131,3P) are calculated and found to be in good agreement with directly calculated values.
A moving three-level Λ-type atom in a dissipative cavity
Obada, Abdel-Shafy F.; Ahmed, Mohamed M. A.; Farouk, Ahmed M.; Salah, Ahmed
2017-12-01
In this paper, we consider a three-level Λ-type atom interacting with a two-mode of electromagnetic cavity field surrounded by a nonlinear Kerr-like medium, the atom and the field are suffering decay rates (i.e. the cavity is not ideal) when the multi-photon processes is considered. Also, the atom and the field are assumed to be coupled with a modulated time-dependent coupling parameter under the rotating wave approximation. The wave function and the probability amplitudes are obtained, when the atom initially prepared in the superposition states and the field initially in the coherent states, by solving the time-dependent Schrödinger equation by taking a proper approximation to the system of differential equations. An analytical expression of the atomic reduced density operator is given. We studied the degree of entanglement, between the field and atom, measure (DEM) via the concurrence, Shannon information entropy, momentum increment and diffusion, and finally we investigated the effects of decay rates and the time-dependent parameters on Husimi Q-function.
Particle beam technology for control of atomic-bonding state in materials
Energy Technology Data Exchange (ETDEWEB)
Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering
1997-03-01
The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)
On the atomic state densities of plasmas produced by the "torch a injection axiale"
Jonkers, J.; Vos, H.P.C.; Mullen, van der J.J.A.M.; Timmermans, E.A.H.
1996-01-01
The atomic state densities of helium and argon plasmas produced by the microwave driven plasma torch called the "torche à injection axiale" are presented. They are obtained by absolute line intensity measurements of the excited states and by applying the ideal gas law to the ground state. It will be
International Nuclear Information System (INIS)
Kimura, M.; Rice Univ., Houston, TX
1990-01-01
The two-electron capture or excitation process resulting from collisions of H + and O 6+ ions with He atoms in the energy range from 0.5 keV/amu to 5 keV/amu is studied within a molecular representation. The collision dynamics for formation of doubly excited O 4+ ions and He** atoms and their (n ell, n'ell ') populations are analyzed in conjunction with electron correlations. Autoionizing states thus formed decay through the Auger process. An experimental study of an ejected electron energy spectrum shows ample structures in addition to two characteristic peaks that are identified by atomic and molecular autoionizations. These structures are attributable to various interferences among electronic states and trajectories. We examine the dominant sources of the interferences. 12 refs., 5 figs
Association of atoms into universal dimers using an oscillating magnetic field.
Langmack, Christian; Smith, D Hudson; Braaten, Eric
2015-03-13
In a system of ultracold atoms near a Feshbach resonance, pairs of atoms can be associated into universal dimers by an oscillating magnetic field with a frequency near that determined by the dimer binding energy. We present a simple expression for the transition rate that takes into account many-body effects through a transition matrix element of the contact. In a thermal gas, the width of the peak in the transition rate as a function of the frequency is determined by the temperature. In a dilute Bose-Einstein condensate of atoms, the width is determined by the inelastic scattering rates of a dimer with zero-energy atoms. Near an atom-dimer resonance, there is a dramatic increase in the width from inelastic atom-dimer scattering and from atom-atom-dimer recombination. The recombination contribution provides a signature for universal tetramers that are Efimov states consisting of two atoms and a dimer.
International Nuclear Information System (INIS)
Toki, Hiroshi; Yamazaki, Toshimitsu
1989-01-01
The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)
Application of the Ursell-Mayer method in the theory of spin-polarized atomic hydrogen
International Nuclear Information System (INIS)
Kilic, S.; Radelja, T.
1981-01-01
Employing the Ursell-Mayer method and Ljolje semi-free gas model analytic relations describing ground state properties (energy, pressure, compressibility, sound velocity, radial distribution function and one-particle density matrix) of spin-polarized atomic hydrogen were derived. The expressions are valid up to density 2 10 26 atoms/m 3 . It was found out that at density of 2 10 26 atoms/m 3 the condensation of particle in momentum space is 88% (at absolute zero). (orig.)
Theory of neutron scattering by atomic electrons: jj-coupling scheme
International Nuclear Information System (INIS)
Balcar, E.; Lovesey, S.W.; Uppsala Univ.
1991-02-01
Expressions are reported for the matrix element of the neutron-electron interaction for atomic electrons in a j n configuration, appropriate for palladium and platinum group compounds and rare earth and actinide materials. For the latter, f-electron systems, an isolated ion is a realistic approximation. Compact expressions are provided, together with tables of reduced matrix elements, for elastic and inelastic structure factors, and compared with the corresponding Russell-Saunders expressions. Inelastic scattering by two f-electrons, including non-equivalent states, is presented in detail. (author)
The Unique Hoyle State of the Carbon Atom
Directory of Open Access Journals (Sweden)
Thorvaldsen, Steinar
2015-05-01
Full Text Available The famous astronomer Fred Hoyle (1915-2001 started his research career as an atheist. Hoyle’s most important contribution to astrophysics is the theory of nucleosynthesis, i.e. the idea that chemical elements such as carbon can form in stars on the basis of hydrogen and helium. Essentially here was his prediction that the carbon core has a state with a specific energy which is precisely adapted to the basic fusion process. This result was one of the most important breakthroughs in modern astrophysics, and the so called Hoyle state has become a cornerstone for state-ofthe- art nuclear theory. The calculations he made, eventually revealed a fine-tuning of the universe. Hoyle’s work in this area supported the anthropic principle that the universe was fine-tuned so that intelligent life would be possible. It is said that what really made him conclude that creation demanded intelligence, were his calculations of the special properties of the carbon atom. This shook his atheism fundamentally [1, p. 57]. In this paper we describe this discovery.
A simple parameter-free wavefunction for the ground state of two-electron atoms
International Nuclear Information System (INIS)
Ancarani, L U; Rodriguez, K V; Gasaneo, G
2007-01-01
We propose a simple and pedagogical wavefunction for the ground state of two-electron atoms which (i) is parameter free (ii) satisfies all two-particle cusp conditions (iii) yields reasonable ground-state energies, including the prediction of a bound state for H - . The mean energy, and other mean physical quantities, is evaluated analytically. The simplicity of the result can be useful as an easy-to-use wavefunction when testing collision models
Dicke superradiance as nondestructive probe for the state of atoms in optical lattices
ten Brinke, Nicolai; Schützhold, Ralf
2016-04-01
We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.
International Nuclear Information System (INIS)
Eichler, J.; Fritsch, W.
1976-01-01
The angular correlation of autoionization electrons or of photons ejected from collisionally aligned excited atoms is calculated assuming unpolarized beam and target, and polarization-insensitive detectors. Starting from the two-step hypothesis for the formation and decay of the intermediate excited atoms, the angular correlation is expressed in terms of the density matrix describing the excited system. Using the symmetries of the density matrix, a minimal set of independent matrix elements is given and the conditions for which a complete determination of this set is experimentally possible are discussed. For the case of electron emission, simple examples are pointed out in which the angular correlation is independent of the reduced Coulomb matrix elements describing the decay. (author)
Two photon emission by hydrogen-like atoms in high temperature plasmas
International Nuclear Information System (INIS)
Costescu, A.; Manzatu, I.; Dinu, C.; Mihailescu, I.N.
1981-08-01
New exact solutions and a rather simple polynomial expression of the power emitted in the two photon transition from a metastable 2s state to the ground state of a hydrogen-like atom were infered with the aid of the Coulomb Green's function method. It was shown that the two photon decay represents under certain circumstances a significant power loss mechanism. (authors)
Momentum diffusion for coupled atom-cavity oscillators
International Nuclear Information System (INIS)
Murr, K.; Maunz, P.; Pinkse, P. W. H.; Puppe, T.; Schuster, I.; Rempe, G.; Vitali, D.
2006-01-01
It is shown that the momentum diffusion of free-space laser cooling has a natural correspondence in optical cavities when the internal state of the atom is treated as a harmonic oscillator. We derive a general expression for the momentum diffusion, which is valid for most configurations of interest: The atom or the cavity or both can be probed by lasers, with or without the presence of traps inducing local atomic frequency shifts. It is shown that, albeit the (possibly strong) coupling between atom and cavity, it is sufficient for deriving the momentum diffusion to consider that the atom couples to a mean cavity field, which gives a first contribution, and that the cavity mode couples to a mean atomic dipole, giving a second contribution. Both contributions have an intuitive form and present a clear symmetry. The total diffusion is the sum of these two contributions plus the diffusion originating from the fluctuations of the forces due to the coupling to the vacuum modes other than the cavity mode (the so-called spontaneous emission term). Examples are given that help to evaluate the heating rates induced by an optical cavity for experiments operating at low atomic saturation. We also point out intriguing situations where the atom is heated although it cannot scatter light
Beam experiments with state selected Ne (3P0, 3P2) metastable atoms
International Nuclear Information System (INIS)
Verheijen, M.J.
1984-01-01
Metastable rare gas atoms play an important role in all types of plasmas and gas discharges, e.g. in fluorescent lamps and in laser discharges (helium-neon laser or excimer lasers). In this thesis, the metastable states of NeI are studied. First, the theory of excited neon atoms and diatomic molecules is introduced, as well as Penning ionisation. Next, some experimental facilities are described (e.g. the dye laser system). With these instruments, natural lifetime measurements of the 2p fine structure states of NeI are carried out. Results are reported. Finally, total Penning ionisation cross sections are calculated using the optical potential model. (Auth.)
State-related alterations of gene expression in bipolar disorder
DEFF Research Database (Denmark)
Munkholm, Klaus; Vinberg, Maj; Berk, Michael
2012-01-01
Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012: 14: 684-696. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective: Alterations in gene expression in bipolar disorder...... have been found in numerous studies. It is unclear whether such alterations are related to specific mood states. As a biphasic disorder, mood state-related alterations in gene expression have the potential to point to markers of disease activity, and trait-related alterations might indicate...... vulnerability pathways. This review therefore evaluated the evidence for whether gene expression in bipolar disorder is state or trait related. Methods: A systematic review, using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline for reporting systematic reviews, based...
Calculation of Ion Charge State Distributions After Inner-Shell Ionization in Xe Atom
International Nuclear Information System (INIS)
Mohammedein, A.M.; Ghoneim, A.A.; Kandil, M.K.; Kadad, I.M.
2009-01-01
The vacancy cascades following initial inner-shell vacancies in single and multi-ionized atoms often lead to highly charged residual ions. The inner-shell vacancy produced by ionization processes may decay by either a radiative or non-radiative transition. In addition to the vacancy filling processes, there is an electron shake off process due to the change of core potential of the atom. In the calculation of vacancy cascades, the radiative (x-ray) and non-radiative (Auger and Coster-Kronig) branching ratios give valuable information on the de-excitation dynamics of an atom with inner-shell vacancy. The production of multi-charged ions yield by the Auger cascades following inner shell ionization of an atom has been studied both experimentally and theoretically. Multi-charged Xe ions following de-excitation of K, L 1 , L 2,3 , M 1 , M 2,3 and M 4,5 subshell vacancies are calculated using Monte-Carlo algorithm to simulate the vacancy cascade development. Fluorescence yield (radiative) and Auger, Coster- Kronig yield (non- radiative) are evaluated. The decay of K hole state through radiative transitions is found to be more probable than non-radiative transitions in the first step of de-excitation. On the other hand, the decay of L, M vacancies through non-radiative transitions are more probable. The K shell ionization in Xe atom mainly yields Xe 7+ , Xe 8+ , Xe 9+ and Xe 1 0 + ions, and the charged X 8+ ions are the highest. The main product from the L 1 shell ionization is found to be Xe 8+ , Xe 9+ ions, while the charged Xe 8+ ions predominate at L 2,3 hole states. The charged Xe 6+ , Xe 7+ and Xe 8+ ions mainly yield from 3s 1/2 and 3p 1/2 , 3/2 ionization, while Xe in 3d 3/2 , 5/2 hole states mainly turns into Xe 4+ and Xe 5+ ions. The present results are found to agree well with the experimental data. (author)
Atom beams split by gentle persuasion
International Nuclear Information System (INIS)
Pool, R.
1994-01-01
Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state
Angular momentum coupling in atom-atom collisions
International Nuclear Information System (INIS)
Grosser, J.
1986-01-01
The coupling between the electronic angular momentum and the rotating atom-atom axis in the initial or the final phase of an atom-atom collision is discussed, making use of the concepts of radial and rotational (Coriolis) coupling between different molecular states. The description is based on a limited number of well-understood approximations, and it allows an illustrative geometric representation of the transition from the body fixed to the space fixed motion of the electrons. (orig.)
International Nuclear Information System (INIS)
Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.
2002-01-01
We develop practical formulas for the calculation of the matrix elements of the interaction of the electromagnetic field with an atomic state, beyond the long-wavelength approximation. The atom-plus-field Hamiltonian is chosen to have the multipolar form, containing the electric, paramagnetic, and diamagnetic operators. The final workable expressions include the interactions to all orders and are derived by first expanding the fields in partial waves. The electric-field operator reaches a constant value as the radial variable becomes large, contrary to the result of the electric-dipole approximation (EDA) where the value of the corresponding operator increases indefinitely. Applications are given for Rydberg states of hydrogen up to n=50 and for free-free transitions in a Coulomb potential. Such matrix elements are relevant to a number of real and virtual processes occurring during laser-atom interactions. The computation is done numerically, using a combination of analytic with numerical techniques. By comparing the results of the EDA with those of the exact treatment, it is shown that the former is inadequate in such cases. This finding has repercussions on the theory and understanding of the physics of quantum systems in high-lying Rydberg levels and wave packets or in scattering states
International Nuclear Information System (INIS)
Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David
2005-01-01
We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses
Majorana edge States in atomic wires coupled by pair hopping.
Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P
2013-10-25
We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.
Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms
International Nuclear Information System (INIS)
Kharchenko, V.F.
2015-01-01
The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determine the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities
Small-angle scattering of ions or atoms by atomic hydrogen
International Nuclear Information System (INIS)
Franco, V.
1982-01-01
A theory for small-angle scattering of arbitrary medium- or high-energy atoms or ions by atomic hydrogen is described. Results are obtained in terms of the known closed-form and easily calculable Glauber-approximation scattering amplitudes for electron-hydrogen collisions and for collisions between the nucleus (treated as one charged particle) of the ion or atom and the hydrogen atom, and in terms of the transition form factor of the arbitrary ion or atom. Applications are made to the angular differential cross sections for the excitation of atomic hydrogen to its n = 2 states by singly charged ground-state helium ions having velocities of roughly between 1/2 and 1 a.u. The differential cross sections are obtained in terms of electron-hydrogen amplitudes and the known He + ground-state form factor. Comparisons are made with other calculations and with recent measurements. The results are in good agreement with the data. It is seen that the effect of the He + electron is to produce significant constructive interference at most energies
Facial Expression Recognition of Various Internal States via Manifold Learning
Institute of Scientific and Technical Information of China (English)
Young-Suk Shin
2009-01-01
Emotions are becoming increasingly important in human-centered interaction architectures. Recognition of facial expressions, which are central to human-computer interactions, seems natural and desirable. However, facial expressions include mixed emotions, continuous rather than discrete, which vary from moment to moment. This paper represents a novel method of recognizing facial expressions of various internal states via manifold learning, to achieve the aim of humancentered interaction studies. A critical review of widely used emotion models is described, then, facial expression features of various internal states via the locally linear embedding (LLE) are extracted. The recognition of facial expressions is created with the pleasure-displeasure and arousal-sleep dimensions in a two-dimensional model of emotion. The recognition result of various internal state expressions that mapped to the embedding space via the LLE algorithm can effectively represent the structural nature of the two-dimensional model of emotion. Therefore our research has established that the relationship between facial expressions of various internal states can be elaborated in the two-dimensional model of emotion, via the locally linear embedding algorithm.
Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses
Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing
2018-04-01
We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.
Spectrum of absorption of a weak signal by an atom in a strong field
International Nuclear Information System (INIS)
Bakaev, D.S.; Vdovin, Y.A.; Ermachenko, V.M.; Yakovlenko, S.I.
1985-01-01
An analysis is made of the spectrum of absorption of a weak probe electromagnetic field by two-level atoms in a strong resonant laser field, undergoing collision with buffer gas atoms. The analysis is made using an approach that allows for the direct influence of a strong electromagnetic field on the dynamics of an elastic collision between an active atom and a buffer gas atom. Rate equations are analyzed for a combined ''atom--strong electromagnetic field'' system (an atom ''dressed'' by the field) allowing for spontaneous and optical collisional transitions, and also for the interaction with the probe field. In the steady-state case, an expression is derived for the electric susceptibility of the medium at the small-signal frequency. This expression contains the rates of the optical collisional transitions that depend nontrivially on the parameters of the strong electromagnetic field. The phenomenological characteristics of optical collisional transitions generally used are only valid at low intensities and for small frequency detunings of the strong electromagnetic field, i.e., in the impact limit
Basharov, A. M.
2018-03-01
The Markov model of spontaneous emission of an atom localized in a spatial region with a broadband electromagnetic field with zero photon density is considered in the conditions of coupling of the electromagnetic field with the broadband field of a neighboring space. The evolution operator of the system and the kinetic equation for the atom are obtained. It is shown that the field coupling constant affects the rate of spontaneous emission of the atom, but is not manifested in the atomic frequency shift. The analytic expression for the radiative decay constant for the atom is found to be analogous in a certain sense to the expression for the decay constant for a singly excited localized ensemble of identical atoms in the conditions when the effect of stabilization of its excited state by the Stark interaction with the vacuum broadband electromagnetic field is manifested. The model is formulated based on quantum stochastic differential equations of the non- Wiener type and the generalized algebra of the Ito differential of quantum random processes.
Magnetic scattering of neutrons by atoms
International Nuclear Information System (INIS)
Stassis, C.; Deckman, H.W.
1976-01-01
The magnetic scattering of neutrons by an atom or ion possessing both a spin and orbital magnetic moment is examined. For an atom in the 1sup(n) electronic configuration the magnetic scattering amplitude is determined by matrix elements of even-order electric and odd-order magnetic multipoles, whose order of multipolarity k is less than or equal to 21 + 1. The calculation of the matrix elements of these multipoles is separated into evaluating radial matrix elements and matrix elements of the Racah tensors Wsup(0,k) and Wsup(1,k') where k is an even integar less than or equal to 21. The calculation of the matrix elements of these tensors is considerably simplified by selection rules based on the groups Sp(41 + 2), R(21 + 1), R(3) and in the case of f-electrons, the special group G 2 . It is shown that, in the case of elastic scattering by an atom or an ion whose state is a single Russell-Saunders state, the magnetic scattering amplitude can be written in the conventional form p(q)qsub(m).sigma. General expressions for the amplitude p(q) as well as the elastic magnetic form factor are obtained. The evaluation of the coherent magnetic scattering amplitude by an atom in a magnetic field is discussed, and the small-q approximation to the elastic magnetic scattering is considered. The formation is illustrated for the important case of d- and f-electrons. The generalization of the formalism to the case of mixed atomic configurations is examined in some detail. (author)
Field-induced narrowing of auto-ionization atomic states as a way of creating inverse population
International Nuclear Information System (INIS)
Kotochigova, S.A.
1990-10-01
We discuss the possibility of narrowing the atomic auto-ionization states via their resonance mixing in a field. The results of Ref.1 show that, in contrast to the mixing of isolated states, with mixing of multiplets one may expect substantial narrowing of auto-ionization states owing to their intersection with bound electron states. (author). 5 refs, 5 figs, 1 tab
Wave packet fractional revivals in a one-dimensional Rydberg atom
International Nuclear Information System (INIS)
Veilande, Rita; Bersons, Imants
2007-01-01
We investigate many characteristic features of revival and fractional revival phenomena via derived analytic expressions for an autocorrelation function of a one-dimensional Rydberg atom with weighting probabilities modelled by a Gaussian or a Lorentzian distribution. The fractional revival phenomenon in the ionization probabilities of a one-dimensional Rydberg atom irradiated by two short half-cycle pulses is also studied. When many states are involved in the formation of the wave packet, the revival is lower and broader than the initial wave packet and the fractional revivals overlap and disappear with time
Neumann, Piotr; Tittmann, Kai
2014-12-01
Although general principles of enzyme catalysis are fairly well understood nowadays, many important details of how exactly the substrate is bound and processed in an enzyme remain often invisible and as such elusive. In fortunate cases, structural analysis of enzymes can be accomplished at true atomic resolution thus making possible to shed light on otherwise concealed fine-structural traits of bound substrates, intermediates, cofactors and protein groups. We highlight recent structural studies of enzymes using ultrahigh-resolution X-ray protein crystallography showcasing its enormous potential as a tool in the elucidation of enzymatic mechanisms and in unveiling fundamental principles of enzyme catalysis. We discuss the observation of seemingly hyper-reactive, physically distorted cofactors and intermediates with elongated scissile substrate bonds, the detection of 'hidden' conformational and chemical equilibria and the analysis of protonation states with surprising findings. In delicate cases, atomic resolution is required to unambiguously disclose the identity of atoms as demonstrated for the metal cluster in nitrogenase. In addition to the pivotal structural findings and the implications for our understanding of enzyme catalysis, we further provide a practical framework for resolution enhancement through optimized data acquisition and processing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Krim, Lahouari; Nourry, Sendres
2015-06-01
In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step
Present state of research and development of atomic energy in five Asian countries
Energy Technology Data Exchange (ETDEWEB)
1981-01-01
The survey group for Asian atomic energy cooperation was dispatched by the Japanese government, and toured Philippines, Indonesia, Malaysia, Thailand and Bangladesh from September 7 to 19, 1980. The present state of atomic energy development and the energy situation in respective countries were surveyed through the exchange of opinion and the inspection of related facilities. The Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology was concluded in June, 1972, and 12 countries have participated in it. It was impressive that respective countries have the peculiar energy policies corresponding to their objective conditions. They regard atomic energy as the important substitute energy for petroleum, but the fear about the safety of atomic energy and the movement against nuclear power generation have been growing considerably. The research and development on atomic energy are carried out very actively in respective countries, and the construction of large-scale research centers was commenced in Indonesia, Malaysia and Bangladesh. Research reactors have been operated in Philippines, Indonesia and Thailand since about 20 years ago, and the utilization of radioisotopes and radiation has been studied. The cooperation of Japan with these countries is far behind that of other advanced countries.
International Nuclear Information System (INIS)
Zheng Gong-Ping; Qin Shuai-Feng; Wang Shou-Yang; Jian Wen-Tian
2013-01-01
The ground states of the ultracold spin-1 atoms trapped in a deep one-dimensional double-well optical superlattice in a weak magnetic field are obtained. It is shown that the ground-state diagrams of the reduced double-well model are remarkably different for the antiferromagnetic and ferromagnetic condensates. The transition between the singlet state and nematic state is observed for the antiferromagnetic interaction atoms, which can be realized by modulating the tunneling parameter or the quadratic Zeeman energy. An experiment to distinguish the different spin states is suggested. (general)
Atomic collisions related to atomic laser isotope separation
International Nuclear Information System (INIS)
Shibata, Takemasa
1995-01-01
Atomic collisions are important in various places in atomic vapor laser isotope separation (AVLIS). At a vaporization zone, many atomic collisions due to high density have influence on the atomic beam characteristics such as velocity distribution and metastable states' populations at a separation zone. In the separation zone, a symmetric charge transfer between the produced ions and the neutral atoms may degrade selectivity. We have measured atomic excitation temperatures of atomic beams and symmetric charge transfer cross sections for gadolinium and neodymium. Gadolinium and neodymium are both lanthanides. Nevertheless, results for gadolinium and neodymium are very different. The gadolinium atom has one 5d electron and neodymium atom has no 5d electron. It is considered that the differences are due to existence of 5d electron. (author)
Woutersen, S.; de Milan, J.B.; de Lange, C.A.; Buma, W.J.
1997-01-01
Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the
Interference spectra induced by a bichromatic field in the excited state of a three-level atom
International Nuclear Information System (INIS)
Mavroyannis, C.
1998-01-01
The interference spectra for the excited state of a three-level atom have been considered, where the strong and the weak atomic transitions leading to an electric dipole allowed excited state and to a metastable excited state are driven by resonant and nonresonant laser fields, respectively. In the low intensity limit of the strong laser field, there are two short lifetime excitations, the spontaneous one described by the weak signal field and the one induced by the strong laser field, both of which appear at the same frequency, and a long lifetime excitation induced by the weak laser field. The maximum intensities (heights) of the two peaks describing the short lifetime excitations take equal positive and negative values and, therefore, cancel each other out completely, while the long lifetime excitation dominates. This indicates the disappearance of the short lifetime excitations describing the strong atomic transition for a period equal to the lifetime of the long lifetime excitation, which is roughly equal to half of the lifetime of the metastable state. The computed spectra have been graphically presented and discussed at resonance and for finite detunings. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Learning Approach on the Ground State Energy Calculation of Helium Atom
International Nuclear Information System (INIS)
Shah, Syed Naseem Hussain
2010-01-01
This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.
Facial Expression Generation from Speaker's Emotional States in Daily Conversation
Mori, Hiroki; Ohshima, Koh
A framework for generating facial expressions from emotional states in daily conversation is described. It provides a mapping between emotional states and facial expressions, where the former is represented by vectors with psychologically-defined abstract dimensions, and the latter is coded by the Facial Action Coding System. In order to obtain the mapping, parallel data with rated emotional states and facial expressions were collected for utterances of a female speaker, and a neural network was trained with the data. The effectiveness of proposed method is verified by a subjective evaluation test. As the result, the Mean Opinion Score with respect to the suitability of generated facial expression was 3.86 for the speaker, which was close to that of hand-made facial expressions.
TDHF study of the He+ collision on atomic He targets at the 8Be ground state energy
International Nuclear Information System (INIS)
Cai, J.; Shoppa, T.D.; Langanke, K.
1997-01-01
Experimentally the 8 Be ground state resonance has been studied in He + collisions on atomic He atoms. The nuclear resonance manifests itself by satellite resonance lines corresponding to different electron configurations of the Be ion. Experimentally a large probability for the emission of one electron has been deduced. We study the atomic He + +He collision within a model in which the evolution of the electron wavefunction is treated dynamically in the TDHF scheme, and the motion of the nuclei is treated classically. In agreement with experiment we find a large probability for one electron to be emitted into the continuum during the lifetime of the 8 Be ground state resonance. (orig.). With 2 figs., 1 tab
Dressed-state analysis of efficient two-dimensional atom localization in a four-level atomic system
International Nuclear Information System (INIS)
Wang, Zhiping; Yu, Benli
2014-01-01
We investigate two-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detection probability and precision of two-dimensional atom localization can be significantly improved due to the interference effect between the spontaneous decay channels and the dynamically induced quantum interference generated by the probe and composite fields. More importantly, a 100% probability of finding an atom within the sub-half-wavelength domain of the standing waves can be reached when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or atom nano-lithography via atom localization. (paper)
Classical approach in atomic physics
International Nuclear Information System (INIS)
Solov'ev, E.A.
2011-01-01
The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincare section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormalization group symmetry, criterion of accuracy and so on are reviewed as well. (author)
International Nuclear Information System (INIS)
Zandvliet, Harold J W; Van Houselt, Arie; Poelsema, Bene
2009-01-01
The structural and electronic properties of self-lacing atomic chains on Pt modified Ge(001) surfaces have been studied using low-temperature scanning tunnelling microscopy and spectroscopy. The self-lacing chains have a cross section of only one atom, are perfectly straight, thousands of atoms long and virtually defect free. The atomic chains are composed of dimers that have their bonds aligned in a direction parallel to the chain direction. At low temperatures the atomic chains undergo a Peierls transition: the periodicity of the chains doubles from a 2 x to a 4 x periodicity and an energy gap opens up. Furthermore, at low temperatures (T<80 K) novel quasi-one-dimensional electronic states are found. These quasi-one-dimensional electronic states originate from an electronic state of the underlying terrace that is confined between the atomic chains.
Opto-galvanic effect on degenerate magnetic states of sputtered atoms in a glow discharge
International Nuclear Information System (INIS)
Zhechev, D; Steflekova, V
2014-01-01
The opto-galvanic response of some degenerate states of sputtered atoms to linearly- and circularly polarize light is studied. On the same optical transition both time-resolved- and amplitude opto-galvanic signals are found depending on the polarizations of light absorbed. The latter induces galvanic responses differing in opto-galvanic efficiency, time-evolution and sensitivity to discharge current and laser power. The differences are ascribed to the rate constants of the decay processes, characterizing aligned and oriented atoms
Soe, We-Hyo; Manzano, Carlos; Renaud, Nicolas; de Mendoza, Paula; De Sarkar, Abir; Ample, Francisco; Hliwa, Mohamed; Echavarren, Antonio M; Chandrasekhar, Natarajan; Joachim, Christian
2011-02-22
Quantum states of a trinaphthylene molecule were manipulated by putting its naphthyl branches in contact with single Au atoms. One Au atom carries 1-bit of classical information input that is converted into quantum information throughout the molecule. The Au-trinaphthylene electronic interactions give rise to measurable energy shifts of the molecular electronic states demonstrating a NOR logic gate functionality. The NOR truth table of the single molecule logic gate was characterized by means of scanning tunnelling spectroscopy.
Harbola, Varun
2011-01-01
In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…
Energy Technology Data Exchange (ETDEWEB)
Buchleitner, A
1993-12-15
We develop a theoretical formalism which provides a powerful tool for the detailed numerical analysis of the interaction of three-dimensional hydrogen atoms with an intense radiation field. The application of this approach to the microwave ionization of Rydberg states of hydrogen provides the most realistic numerical experiments ever made in this area. A thorough analysis of ionization signals and thresholds, of level dynamics and of the phase space projections of associated wave functions is provided for a one-dimensional model of the atom. The comparison to the ionization of three-dimensional atoms confirms the validity of the one-dimensional model for extended initial states and, hence, dynamical localization theory, as far as the ionization threshold is concerned. Three classes of three-dimensional initial states with distinct symmetries are identified and they appear to be more or less adapted to the symmetries of the eigenstates of the microwave problem. 'Scarred' wavefunctions of the three-dimensional hydrogen atom exposed to microwave field are shown. Finally, the dynamics of a circular state in a microwave and in an intense laser field are compared. (author)
Rydberg atoms in strong fields
International Nuclear Information System (INIS)
Kleppner, D.; Tsimmerman, M.
1985-01-01
Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented
Processing emotional body expressions: state-of-the-art.
Enea, Violeta; Iancu, Sorina
2016-10-01
Processing emotional body expressions has become recently an important topic in affective and social neuroscience along with the investigation of facial expressions. The objective of the study is to review the literature on emotional body expressions in order to discuss the current state of knowledge on this topic and identify directions for future research. The following electronic databases were searched: PsychINFO, Ebsco, ERIC, ProQuest, Sagepub, and SCOPUS using terms such as "body," "bodily expression," "body perception," "emotions," "posture," "body recognition" and combinations of them. The synthesis revealed several research questions that were addressed in neuroimaging, electrophysiological and behavioral studies. Among them, one important question targeted the neural mechanisms of emotional processing of body expressions to specific subsections regarding the time course for the integration of emotional signals from face and body, as well as the role of context in the perception of emotional signals. Processing bodily expression of emotion is similar to processing facial expressions, and the holistic processing is extended to the whole person. The current state-of-the-art in processing emotional body expressions may lead to a better understanding of the underlying neural mechanisms of social behavior. At the end of the review, suggestions for future research directions are presented.
Virtual states, halos and resonances in three-body atomic and nuclear systems
International Nuclear Information System (INIS)
Frederico, T.; Yamashita, M.T.; Tomio, L.
2009-01-01
By considering nuclear and ultracold trapped atomic systems, we review the trajectory of Efimov excited states in the complex plane by changing the two-body scattering lengths and one three-body scale. This article is based on the presentation by T. Frederico at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
Borges, L. H. C.; Barone, F. A.
2016-02-01
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
Energy Technology Data Exchange (ETDEWEB)
Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)
2016-02-15
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)
Traces of Lorentz symmetry breaking in a hydrogen atom at ground state
International Nuclear Information System (INIS)
Borges, L.H.C.; Barone, F.A.
2016-01-01
Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)
Electron-hydrogen atom collisions in the presence of a laser field
International Nuclear Information System (INIS)
Brandi, H.S.; Koiller, B.; Barros, H.G.P.L. de
1978-01-01
The collision of an electron and a hydrogen atom in the presence of a laser field is studied within a previously proposed approximation (based on the space translation approximation) for the bound states of the hydrogen atom. Fhe Green's function formalism is applied to derive an expression for the scattering amplitude associated to multiphoton processes. The Born-Oppenheimer approximation is obtained and numerical calculations are performed for the ls→2s inelastic excitation. It is shown as expected that exchange effects are important only for scattering processes involving low energy electrons [pt
Design and Construction of an Atomic Clock on an Atom Chip
International Nuclear Information System (INIS)
Reinhard, Friedemann
2009-01-01
We describe the design and construction of an atomic clock on an atom chip, intended as a secondary standard, with a stability in the range of few 10 -13 at 1 s. This clock is based on a two-photon transition between the hyperfine states |F = 1; m F = -1> and |2; 1> of the electronic ground state of the 87 Rb atom. This transition is interrogated using a Ramsey scheme, operating on either a cloud of thermal atoms or a Bose-Einstein condensate. In contrast to atomic fountain clocks, this clock is magnetically trapped on an atom chip. We describe a theoretical model of the clock stability and the design and construction of a dedicated apparatus. It is able to control the magnetic field at the relative 10 -5 level and features a hybrid atom chip, containing DC conductors as well as a microwave transmission line for the clock interrogation. (author)
Collisional approach to dynamics of resonance atomic states in an external field
International Nuclear Information System (INIS)
Urnov, A.M.; Uskov, D.B.
1993-01-01
The following aspects of the dynamics of an atomic state in an external stationary field are assessed: (i) the rearrangement problem; (ii) the description of the appropriate final-channel wavefunctions; (iii) the analytical properties of the transition amplitude into the continuum. The rearrangement problem was solved by the introduction of the effective Hamiltonian, the eigenstates of which include both the initial state and final states ('modified states of continuum spectrum' MSCS) which describe the potential part of the exact wavefunction of the scattering problem. It is shown that the amplitude of decay and transition into MSCS as functions of time have an exact representation as a sum of resonance terms defined by a set of resonance states and the matrix elements of the shift R-matrix operator. (author)
International Nuclear Information System (INIS)
Nimura, M.; Imagawa, T.; Hasuo, M.; Fujimoto, T.
2005-01-01
In a positive column of a glow discharge in the magnetic field of 36.4G, a linearly polarized laser pulse or a circularly polarized laser pulse has produced polarized neon atoms (alignment or orientation) in the 2p 2 (Paschen notation) level from the 1s 3 level. The subsequent fluorescence to the 1s 2 level was observed with its polarized components resolved. Depopulation, disorientation and disalignment rates of the 2p 2 atom were measured and their discharge current dependences were examined for a discharge current from 0.4 to 2.0mA. The degrees of radiation re-absorption, or the optical thickness, of the transition lines from the 2p 2 level to the 1s 2 -1s 5 levels were measured as functions of the discharge current. A Monte Carlo simulation was performed by which the depopulation, disorientation and disalignment rates by the radiation re-absorption for these transitions were determined. The calculated rates were compared with the observed ones and found to reproduce the their discharge current dependences. D'Yankonov and Perel's analytical expression for these rates was quantified from comparison with the Monte Carlo results
Widths of atomic 4s and 4p vacancy states, Z between 46 and 50
Chen, M. H.; Crasemann, B.; Yin, L. I.; Tsang, T.; Adler, I.
1976-01-01
X-ray photoelectron and Auger spectra involving N sub 1, N sub 2, and N sub 3 vacancy states of Pd, Ag, Cd, In, and Sn were measured and compared with results of free-atom calculations. As previously observed in Cu and Zn Auger spectra that involve 3d-band electrons, free-atom characteristics are found, with regard to widths and structure, in the Ag and Cd M sub 4-N sub 4,5 N sub 4,5 and M sub 5-N sub 4,5 N sub 4,5 Auger spectra that arise from transitions of 4d-band electrons. Theoretical N sub 1 widths computed with calculated free-atom Auger energies agree well with measurements. Theory, however, predicts wider N sub 2 than N sub 3 vacancy states (as observed for Xe), while the measured N sub 2 and N sub 3 widths are nearly equal to each other and to the average of the calculated N sub 2 and N sub 3 widths. The calculations are made difficult by the exceedingly short lifetime of some 4 p vacancies and by the extreme sensitivity of super-Coster-Kronig rates, which dominate the deexcitation to the transition energy and to the fine details of the atomic potential.
Quantum state population transfer of lithium atoms induced by frequency-chirped laser pulses
International Nuclear Information System (INIS)
Ma Huanqiang; Zhang Xianzhou; Jia Guangrui; Zhang Yonghui; Jiang Lijuan
2011-01-01
Using the time-dependent multilevel approach (TDMA) and B-splines function, we have calculated the five quantum state population transfer of rydberg lithium atoms. We also analyse the influence of the four major parameters of the frequency-chirped laser pulses field on transition. The result shows that the population can be completely transferred to the target state by changing the parameters of the laser pulse and achieve manual controls to a certain degree. (authors)
Transfer behavior of quantum states between atoms in photonic crystal coupled cavities
International Nuclear Information System (INIS)
Zhang Ke; Li Zhiyuan
2010-01-01
In this article, we discuss the one-excitation dynamics of a quantum system consisting of two two-level atoms each interacting with one of two coupled single-mode cavities via spontaneous emission. When the atoms and cavities are tuned into resonance, a wide variety of time-evolution behaviors can be realized by modulating the atom-cavity coupling strength g and the cavity-cavity hopping strength λ. The dynamics is solved rigorously via the eigenproblem of an ordinary coupled linear system and simple analytical solutions are derived at several extreme situations of g and λ. In the large hopping limit where g >λ, the time-evolution behavior of the system is characterized by the usual slowly varying carrier envelope superimposed upon a fast and violent oscillation. At a certain instant, the energy is fully transferred from the one quantum subsystem to the other. When the two interaction strengths are comparable in magnitude, the dynamics acts as a continuous pulse having irregular frequency and line shape of peaks and valleys, and the complicated time-evolution behaviors are ascribed to the violent competition between all the one-excitation quantum states. The coupled quantum system of atoms and cavities makes a good model to study cavity quantum electrodynamics with great freedoms of many-body interaction.
Energy Technology Data Exchange (ETDEWEB)
Lilienthal, David E.; Bacher, Robert F.; Pike, Sumner T.; Strauss, Lewis L.; Waymack, William W.
1948-02-02
The document includes the letter of submittal and the third semiannual report. These reports are called for pursuant to Section 17 of the Atomic Energy Act of 1946. The letter of submittal was titled ''Letter from the Chairman and Members of the United States Atomic Energy Commission transmitting pursuant to law the third semiannual report of the Atomic Energy Commission''. It was authored by David E. Lilienthal, Chairman, and Robert F. Bacher, Sumner T. Pike, Lewis L. Strauss, and William W. Waymack of the AEC.
International Nuclear Information System (INIS)
Pen'kov, F.M.
1998-01-01
The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example
Metastable states in antiprotonic helium atoms an island stability in a sea of continuum
Korobov, V I
2002-01-01
In this contribution we consider a phenomenon of metastable states in antiprotonic helium atoms, precise spectroscopy of these states and a present-day study of the electromagnetic properties of antiprotons. Calculation of nonrelativistic energies, relativistic and QED corrections as well as the fine and hyperfine structure and the magnetic moment of an antiproton are the main parts of this study. Refs. 22 (nevyjel)
Measurement-Based Entanglement of Noninteracting Bosonic Atoms.
Lester, Brian J; Lin, Yiheng; Brown, Mark O; Kaufman, Adam M; Ball, Randall J; Knill, Emanuel; Rey, Ana M; Regal, Cindy A
2018-05-11
We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62±0.03). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.
Observation of dynamic atom-atom correlation in liquid helium in real space.
Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T
2017-05-04
Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.
The l-mixing cross section of Rydberg states of atomic Rb and the scaling LAW
International Nuclear Information System (INIS)
Liu Hong; Chen Aiqiu; Li Baiwen
1991-01-01
On the basis of impulse approximate method, a kind of analytical wavefunctions based on a potential model was used to calculate the l mixing cross section of thermal collision of Rydberg states of atomic Rb with rare gas (He, Ne). The results were compared with the experimental results and other theoretical values. These results show that there exists a kind of scaling law for the l mixing cross section of Rydberg alkali atoms
Energy Technology Data Exchange (ETDEWEB)
Buchleitner, A
1993-12-15
We develop a theoretical formalism which provides a powerful tool for the detailed numerical analysis of the interaction of three-dimensional hydrogen atoms with an intense radiation field. The application of this approach to the microwave ionization of Rydberg states of hydrogen provides the most realistic numerical experiments ever made in this area. A thorough analysis of ionization signals and thresholds, of level dynamics and of the phase space projections of associated wave functions is provided for a one-dimensional model of the atom. The comparison to the ionization of three-dimensional atoms confirms the validity of the one-dimensional model for extended initial states and, hence, dynamical localization theory, as far as the ionization threshold is concerned. Three classes of three-dimensional initial states with distinct symmetries are identified and they appear to be more or less adapted to the symmetries of the eigenstates of the microwave problem. 'Scarred' wavefunctions of the three-dimensional hydrogen atom exposed to microwave field are shown. Finally, the dynamics of a circular state in a microwave and in an intense laser field are compared. (author)
Phonon-mediated decay of an atom in a surface-induced potential
International Nuclear Information System (INIS)
Kien, Fam Le; Hakuta, K.; Dutta Gupta, S.
2007-01-01
We study phonon-mediated transitions between translational levels of an atom in a surface-induced potential. We present a general master equation governing the dynamics of the translational states of the atom. In the framework of the Debye model, we derive compact expressions for the rates for both upward and downward transitions. Numerical calculations for the transition rates are performed for a deep silica-induced potential allowing for a large number of bound levels as well as free states of a cesium atom. The total absorption rate is shown to be determined mainly by the bound-to-bound transitions for deep bound levels and by bound-to-free transitions for shallow bound levels. Moreover, the phonon emission and absorption processes can be orders of magnitude larger for deep bound levels as compared to the shallow bound ones. We also study various types of transitions from free states. We show that, for thermal atomic cesium with a temperature in the range from 100 μK to 400 μK in the vicinity of a silica surface with a temperature of 300 K, the adsorption (free-to-bound decay) rate is about two times larger than the heating (free-to-free upward decay) rate, while the cooling (free-to-free downward decay) rate is negligible
International Nuclear Information System (INIS)
L'Huillier, A.
2002-01-01
When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)
Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor
Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian
2017-01-01
The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346
Quenching reactions of electronically excited atoms
International Nuclear Information System (INIS)
Setser, D.W.
2001-01-01
The two-body, thermal quenching reactions of electronically excited atoms are reviewed using excited states of Ar, Kr, and Xe atoms as examples. State-specific interstate relaxation and excitation-transfer reactions with atomic colliders are discussed first. These results then are used to discuss quenching reactions of excited-state atoms with diatomic and polyatomic molecules, the latter have large cross sections, and the reactions can proceed by excitation transfer and by reactive quenching. Excited states of molecules are not considered; however, a table of quenching rate constants is given for six excited-state molecules in an appendix
Stabilization of atoms with nonzero magnetic quantum numbers
International Nuclear Information System (INIS)
Sundaram, B.; Jensen, R.V.
1993-01-01
A classical analysis of the interaction of an atomic electron with an oscillating electric field with arbitrary initial quantum number, n, magnetic quantum number, m > 0, field strength, and frequency shows that the classical, dynamics for the perturbed electron can be stabilized for large fields and high frequencies. Using a four-dimensional map approximation to the classical dynamics, explicit expressions are obtained for the full parameter dependence of the boundaries of stability surrounding the open-quotes death valleyclose quotes of rapid classical ionization. A preliminary analysis of the quantum dynamics in terms of the quasienergy states associated with the corresponding quantum map is also included with particular emphasis on the role of unstable classical structures in stabilizing atoms. Together, these results provide motivation and direction for further theoretical and experimental studies of stabilization of atoms (and molecules) in super-intense microwave and laser fields
Anisotropy in the simultaneous excitation of two colliding atoms to various substate combinations
International Nuclear Information System (INIS)
Moorman, L.
1987-01-01
In this thesis double-atom excitation (DAE) processes in atomic collision experiments are studied by measuring the angular correlation of two coincident photons emitted by both excited collision particles. The analytical expression for the angular correlation function is derived which contains as adjustable parameters the various (complex) excitation amplitudes integrated over all scattering angles. The He+He system is investigated, for projectile energies between 0.5 and 3.5 keV, in which both particles are excited simultaneously to the 2 1 P state. The relation between photon correlations and atomic state correlations is investigated and the density matrix elements are calculated for a statistical distribution of the excited atomic substates into which a certain symmetry is incorporated. Collisions between metastable and groundstate He atoms are considered. Single-photon spectra are presented and compared with spectra from the He+He collision system. Coincidence measurements were performed on these collision systems to study possible double-atom excitations. Coincidences between two ultraviolet as well as an ultraviolet and a visible photon were measu0515 Also a measurement is reported of the relative population of the magnetic substates of the 3 1 D state of helium. Coincidence measurements on two ultraviolet photons emitted upon Ne-Ne and He-Ne collisions are described and the double-atom excitations for these systems are studied. For Ne+Ne no coincidence peaks were found. For He+Ne double-atom excitation was observed and from the measured angular correlations the corresponding density matrix elements for some kinetic energies of the projectile. (Auth.)
Charge-state distribution of MeV He ions scattered from the surface atoms
International Nuclear Information System (INIS)
Kimura, Kenji; Ohtsuka, Hisashi; Mannami, Michihiko
1993-01-01
The charge-state distribution of 500-keV He ions scattered from a SnTe (001) surface has been investigated using a new technique of high-resolution high-energy ion scattering spectroscopy. The observed charge-state distribution of ions scattered from the topmost atomic layer coincides with that of ions scattered from the subsurface region and does not depend on the incident charge state but depends on the exit angle. The observed exit-angle dependence is explained by a model which includes the charge-exchange process with the valence electrons in the tail of the electron distribution at the surface. (author)
Inelastic processes in interaction of an atom with ultrashort pulse of an electromagnetic field
International Nuclear Information System (INIS)
Matveev, V.I.; Gusarevich, E.S.; Pashev, I.N.
2005-01-01
Electron transitions occurring when a heavy relativistic atom interacts with a spatially inhomogeneous ultrashort electromagnetic pulse are considered. Transition probabilities are expressed in terms of the known inelastic atomic form factors. By way of example, the inelastic processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered. The probabilities of ionization and production of a bound-free electron-positron pair on a bare nucleus, which are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum, are calculated. The developed technique makes it possible to take into exact account magnetic interaction besides spatial inhomogeneity of an ultrashort electromagnetic pulse [ru
Spectroscopy of highly ionized atoms
International Nuclear Information System (INIS)
Livingston, A.E.
1987-01-01
The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions
International Nuclear Information System (INIS)
Deng, Li; Niu, Yueping; Jin, Luling; Gong, Shangqing
2010-01-01
The coherent superposition state of the lower two levels in non-degenerate three-level Λ atoms is investigated using the accumulative effects of non-resonant pulse trains when the repetition period is smaller than the decay time of the upper level. First, using a rectangular pulse train, the accumulative effects are re-examined in the non-resonant two-level atoms and the modified constructive accumulation equation is analytically given. The equation shows that the relative phase and the repetition period are important in the accumulative effect. Next, under the modified equation in the non-degenerate three-level Λ atoms, we show that besides the constructive accumulation effect, the use of the partial constructive accumulation effect can also achieve the steady state of the maximum coherent superposition state of the lower two levels and the latter condition is relatively easier to manipulate. The analysis is verified by numerical calculations. The influence of the external levels in such a case is also considered and we find that it can be avoided effectively. The above analysis is also applicable to pulse trains with arbitrary envelopes.
Stanke, Monika; Bralin, Amir; Bubin, Sergiy; Adamowicz, Ludwik
2018-01-01
In this work we report progress in the development and implementation of quantum-mechanical methods for calculating bound ground and excited states of small atomic systems. The work concerns singlet states with the L =1 total orbital angular momentum (P states). The method is based on the finite-nuclear-mass (non-Born-Oppenheimer; non-BO) approach and the use of all-particle explicitly correlated Gaussian functions for expanding the nonrelativistic wave function of the system. The development presented here includes derivation and implementation of algorithms for calculating the leading relativistic corrections for singlet states. The corrections are determined in the framework of the perturbation theory as expectation values of the corresponding effective operators using the non-BO wave functions. The method is tested in the calculations of the ten lowest 1P states of the helium atom and the four lowest 1P states of the beryllium atom.
Omenetto, N.; Winefordner, J.D.; Alkemade, C.T.J.
An expression for the effect of self-absorption on the fluorescence and thermal emission intensities is derived by taking into account stimulated emission. A simple, idealized case is considered, consisting of a two level atomic system, in a flame, homogeneous with respect to temperature and
Laughlin-like States in Bosonic and Fermionic Atomic Synthetic Ladders
Directory of Open Access Journals (Sweden)
Marcello Calvanese Strinati
2017-06-01
Full Text Available The combination of interactions and static gauge fields plays a pivotal role in our understanding of strongly correlated quantum matter. Cold atomic gases endowed with a synthetic dimension are emerging as an ideal platform to experimentally address this interplay in quasi-one-dimensional systems. A fundamental question is whether these setups can give access to pristine two-dimensional phenomena, such as the fractional quantum Hall effect, and how. We show that unambiguous signatures of bosonic and fermionic Laughlin-like states can be observed and characterized in synthetic ladders. We theoretically diagnose these Laughlin-like states focusing on the chiral current flowing in the ladder, on the central charge of the low-energy theory, and on the properties of the entanglement entropy. Remarkably, Laughlin-like states are separated from conventional liquids by Lifschitz-type transitions, characterized by sharp discontinuities in the current profiles, which we address using extensive simulations based on matrix-product states. Our work provides a qualitative and quantitative guideline towards the observability and understanding of strongly correlated states of matter in synthetic ladders. In particular, we unveil how state-of-the-art experimental settings constitute an ideal starting point to progressively tackle two-dimensional strongly interacting systems from a ladder viewpoint, opening a new perspective for the observation of non-Abelian states of matter.
Observation of electric quadrupole transitions to Rydberg nd states of ultracold rubidium atoms
Tong, D.; Farooqi, S.M.; Kempen, van E.G.M.; Pavlovic, Z.; Stanojevic, J.; Coté, R.; Eyler, E.E.; Gould, P.L.
2009-01-01
We report the observation of dipole-forbidden, but quadrupole-allowed, one-photon transitions to high-Rydberg states in Rb. Using pulsed uv excitation of ultracold atoms in a magneto-optical trap, we excite 5s¿nd transitions over a range of principal quantum numbers n=27–59. Compared to
The independent nuclear state. The United States, Britain and the military atom
International Nuclear Information System (INIS)
Simpson, J.
1983-01-01
A chronological account and overview are presented of the 40-year history of British military research, development and production work in atomic energy. The United Kingdom's efforts in this field have always had close links with equivalent activities in the United States, and have often been conducted on a mutually co-operative basis. This book contains descriptions of the technical evolution of British nuclear weapon designs and production models, estimates of annual output figures for fissile material and weapon types, and indications of the nature of the weapon-testing programme. Decision-points are charted. The impact of the agreements with the United States, both upon weapon development and production programmes and upon stockpiling, is analysed, as well as their effects upon the nuclear submarine programme. The impact of later events upon Anglo-American relations is identified, together with the recent British attempts to move to a closer political association with Europe. The study concludes by evaluating the essential nature of four decades of United Kingdom military nuclear development, and identifying the practical limits imposed by past policies upon any attempt by a British government to implement a policy of unilateral nuclear disarmament. (author)
Radiative transitions from Rydberg states of lithium atoms in a blackbody radiation environment
Glukhov, I. L.; Ovsiannikov, V. D.
2012-05-01
The radiative widths induced by blackbody radiation (BBR) were investigated for Rydberg states with principal quantum number up to n = 1000 in S-, P- and D-series of the neutral lithium atom at temperatures T = 100-3000 K. The rates of BBR-induced decays and excitations were compared with the rates of spontaneous decays. Simple analytical approximations are proposed for accurate estimations of the ratio of thermally induced decay (excitation) rates to spontaneous decay rates in wide ranges of states and temperatures.
Towards Long-Distance Atom-Photon Entanglement
International Nuclear Information System (INIS)
Rosenfeld, W.; Hocke, F.; Henkel, F.; Krug, M.; Volz, J.; Weber, M.; Weinfurter, H.
2008-01-01
We report the observation of entanglement between a single trapped atom and a single photon at remote locations. The degree of coherence of the entangled atom-photon pair is verified via appropriate local correlation measurements, after communicating the photon via an optical fiber link of 300 m length to a receiver 3.5 m apart. In addition, we measured the temporal evolution of the atomic density matrix after projecting the atom via a state measurement of the photon onto several well-defined spin states. We find that the state of the single atom dephases on a time scale of 150 μs, which represents an important step towards long-distance quantum networking with individual neutral atoms
Search for two-photon emission from 2S states of low-Z muonic atoms
International Nuclear Information System (INIS)
Carter, A.L.; Hincks, E.P.; Cox, C.R.; Dodson, G.W.; Eckhause, M.; Kane, J.R.; Rushton, A.M.; Siegel, R.T.; Welsh, R.E.; Hargrove, C.K.; Mes, H.; Dixit, M.S.; National Research Council of Canada, Ottawa, Ontario)
1983-01-01
A search for two-photon emission from 2S states of low-Z muonic atoms has been made. Intrinsic Ge detectors were positioned around target of Li, Be, B, or their hydrides, or a vessel containing B 2 H 6 , H 2 , or O 2 . Upper limits on the fraction of stopping muons which formed metastable 2S states range from approx.= 10 - 3 to 10 - 5 . (orig.)
International Nuclear Information System (INIS)
Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.
1984-01-01
The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)
Decomposition of gene expression state space trajectories.
Directory of Open Access Journals (Sweden)
Jessica C Mar
2009-12-01
Full Text Available Representing and analyzing complex networks remains a roadblock to creating dynamic network models of biological processes and pathways. The study of cell fate transitions can reveal much about the transcriptional regulatory programs that underlie these phenotypic changes and give rise to the coordinated patterns in expression changes that we observe. The application of gene expression state space trajectories to capture cell fate transitions at the genome-wide level is one approach currently used in the literature. In this paper, we analyze the gene expression dataset of Huang et al. (2005 which follows the differentiation of promyelocytes into neutrophil-like cells in the presence of inducers dimethyl sulfoxide and all-trans retinoic acid. Huang et al. (2005 build on the work of Kauffman (2004 who raised the attractor hypothesis, stating that cells exist in an expression landscape and their expression trajectories converge towards attractive sites in this landscape. We propose an alternative interpretation that explains this convergent behavior by recognizing that there are two types of processes participating in these cell fate transitions-core processes that include the specific differentiation pathways of promyelocytes to neutrophils, and transient processes that capture those pathways and responses specific to the inducer. Using functional enrichment analyses, specific biological examples and an analysis of the trajectories and their core and transient components we provide a validation of our hypothesis using the Huang et al. (2005 dataset.
Energy Technology Data Exchange (ETDEWEB)
Gontier, Y; Trahin, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-07-01
The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors) [French] On etablit l'expression generale de l'amplitude de probabilite d'ionisation par un processus d'absorption multiphotonique. On en prend la limite non-relativiste et l'on utilise l'approximation dipolaire avant de calculer la section efficace d'ionisation d'atomes hydrogenoides. Cette derniere fait intervenir des sommations sur des etats virtuels intermediaires effectuees a l'aide: a) d'une relation de recurrence qui concerne les fonctions angulaires, b) d'une technique particuliere qui, appliquee aux fonctions radiales, conduit a resoudre un systeme d'equations differentielles inhomogenes du premier ordre. (auteur)
Multiphoton ionization of the hydrogen atom by a circularly polarized electromagnetic field
International Nuclear Information System (INIS)
Prepelitsa, O.B.
1999-01-01
This paper examines the multiphoton ionization of the ground state of the hydrogen atom in the field of a circularly polarized intense electromagnetic wave. To describe the states of photoelectrons, quasiclassical wave functions are introduced that partially allow for the effect of an intense electromagnetic wave and that of the Coulomb potential. Expressions are derived for the angular and energy distributions of photoelectrons with energies much lower than the ionization potential of an unperturbed atom. It is found that, due to allowance for the Coulomb potential in the wave function of the final electron states, the transition probability near the ionization threshold tends to a finite value. In addition, the well-known selection rules for multiphoton transitions in a circularly polarized electromagnetic field are derived in a natural way. Finally, the results are compared with those obtained in the Keldysh-Faisal-Reiss approximation
Automatic Emotional State Detection using Facial Expression Dynamic in Videos
Directory of Open Access Journals (Sweden)
Hongying Meng
2014-11-01
Full Text Available In this paper, an automatic emotion detection system is built for a computer or machine to detect the emotional state from facial expressions in human computer communication. Firstly, dynamic motion features are extracted from facial expression videos and then advanced machine learning methods for classification and regression are used to predict the emotional states. The system is evaluated on two publicly available datasets, i.e. GEMEP_FERA and AVEC2013, and satisfied performances are achieved in comparison with the baseline results provided. With this emotional state detection capability, a machine can read the facial expression of its user automatically. This technique can be integrated into applications such as smart robots, interactive games and smart surveillance systems.
Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states
de Léséleuc, Sylvain; Barredo, Daniel; Lienhard, Vincent; Browaeys, Antoine; Lahaye, Thierry
2018-05-01
We study experimentally various physical limitations and technical imperfections that lead to damping and finite contrast of optically driven Rabi oscillations between ground and Rydberg states of a single atom. Finite contrast is due to preparation and detection errors, and we show how to model and measure them accurately. Part of these errors originates from the finite lifetime of Rydberg states, and we observe its n3 scaling with the principal quantum number n . To explain the damping of Rabi oscillations, we use simple numerical models taking into account independently measured experimental imperfections and show that the observed damping actually results from the accumulation of several small effects, each at the level of a few percent. We discuss prospects for improving the coherence of ground-Rydberg Rabi oscillations in view of applications in quantum simulation and quantum information processing with arrays of single Rydberg atoms.
Inelastic Processes in the Interaction of an Atom with an Ultrashort Electromagnetic Pulse
International Nuclear Information System (INIS)
Matveev, V.I.; Gusarevich, E.S.; Pashev, I.N.
2005-01-01
Electron transitions occurring during the interaction of a heavy relativistic atom with a spatially inhomogeneous ultrashort electromagnetic pulse are considered by solving the Dirac equation. The corresponding transition probabilities are expressed in terms of known inelastic atomic form factors, which are widely used in the theory of relativistic collisions between charged particles and atoms. By way of example, the inelastic processes accompanying the interaction of ultrashort pulses with hydrogen-like atoms are considered. The probabilities of ionization and production of a bound-free electron-positron pair on a bare nucleus, which are accompanied by the formation of a hydrogen-like atom in the final state and a positron in the continuum, are calculated. The developed technique makes it possible to take into account exactly not only the spatial inhomogeneity of an ultrashort electromagnetic pulse, but also the magnetic interaction
Indian Academy of Sciences (India)
https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...
International Nuclear Information System (INIS)
Liu Tang-Kun; Zhang Kang-Long; Tao Yu; Shan Chuan-Jia; Liu Ji-Bing
2016-01-01
The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1. (paper)
Atomic mass and characteristic constant of nuclear ground state (CENPL.MCC). Pt. 1
International Nuclear Information System (INIS)
Su Zongdi; Ma Lizhen; Zhou Chunmei; Ge Zhigang
1994-01-01
Atomic mass and characteristic constants for nuclear ground states are basic data for nuclear physics, and necessary ones for basic researches, theoretical calculations, as well as many applied researches. The atomic mass of exotic nuclei quite far from the valley stability are also very important for astrophysics researches. The above-requirement is paid attention to in our setting up this file. The recent and as many as possible data (such as the half-lives of the new nuclides 202 Pt, 208 Hg and 185 Hf and the mass excess of 199 Ir, which were produced and distinguished by Chinese scientists) have been collected, and put into the computer-based data file in brief table format. (1 fig.)
International Nuclear Information System (INIS)
Zouros, T.J.M.; Benis, E.P.; Zamkov, M.; Lin, C.D.; Lee, T.G.; Richard, P.; Gorczyca, T.W.; Morishita, T.
2005-01-01
The production of triply excited states of Li-like systems has recently been extended beyond the lithium atom using two different ion-atom collisional techniques: (a) Triple-electron capture into 2s2p 2 and 2p 3 states of F 6+ formed in fast collisions of bare F 9+ ions with Ar and Kr atoms and (b) 180 deg. resonant scattering of quasi-free electrons of H 2 from the 1s2s 3 S metastable state of He-like B, C, N, O and F ions via the 2s2p 2 2 D resonance. Autoionization energies, decay branching ratios and production cross sections for these states were measured using zero-degree Auger projectile electron spectroscopy and compared to theoretical calculations using hyperspherical close coupling (HSCC) and R-matrix methods
Emergence of quasiparticle Bloch states in artificial crystals crafted atom-by-atom
Directory of Open Access Journals (Sweden)
Jan Girovsky, Jose L. Lado, Floris E. Kalff, Eleonora Fahrenfort, Lucas J. J. M. Peters, Joaquín Fernández-Rossier, Alexander F. Otte
2017-06-01
Full Text Available The interaction of electrons with a periodic potential of atoms in crystalline solids gives rise to band structure. The band structure of existing materials can be measured by photoemission spectroscopy and accurately understood in terms of the tight-binding model, however not many experimental approaches exist that allow to tailor artificial crystal lattices using a bottom-up approach. The ability to engineer and study atomically crafted designer materials by scanning tunnelling microscopy and spectroscopy (STM/STS helps to understand the emergence of material properties. Here, we use atom manipulation of individual vacancies in a chlorine monolayer on Cu(100 to construct one- and two-dimensional structures of various densities and sizes. Local STS measurements reveal the emergence of quasiparticle bands, evidenced by standing Bloch waves, with tuneable dispersion. The experimental data are understood in terms of a tight-binding model combined with an additional broadening term that allows an estimation of the coupling to the underlying substrate.
International Nuclear Information System (INIS)
Chan, George C.-Y.; Hieftje, Gary M.
2004-01-01
State-selective charge-transfer behavior was observed for Fe, Cr, Mn and Cu in inductively coupled plasma (ICP)-atomic emission spectrometry. Charge transfer from Ar + to Fe, Cr and Mn is state-selective because of inefficient collisional mixing of the quasiresonant charge-transfer energy levels with nearby levels. This low efficiency is the consequence of differences in electronic configuration of the core electrons. The reason for state-selective charge-transfer behavior to Cu is not clear, although a tentative explanation based on efficiency of intramultiplet and intermultiplet mixing for this special case is offered
Atomic collisions research with excited atomic species
International Nuclear Information System (INIS)
Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.
1999-01-01
Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms
Fock-state view of weak-value measurements and implementation with photons and atomic ensembles
International Nuclear Information System (INIS)
Simon, Christoph; Polzik, Eugene S.
2011-01-01
Weak measurements in combination with postselection can give rise to a striking amplification effect (related to a large ''weak value''). We show that this effect can be understood by viewing the initial state of the pointer as the ground state of a fictional harmonic oscillator. This perspective clarifies the relationship between the weak-value regime and other measurement techniques and inspires a proposal to implement fully quantum weak-value measurements combining photons and atomic ensembles.
Search for two-photon emission from 2S states of low-Z muonic atoms
Energy Technology Data Exchange (ETDEWEB)
Carter, A.L.; Hincks, E.P. (Carleton Univ., Ottawa, Ontario (Canada). Dept. of Physics); Cox, C.R.; Dodson, G.W.; Eckhause, M.; Kane, J.R.; Rushton, A.M.; Siegel, R.T.; Welsh, R.E. (College of William and Mary, Williamsburg, VA (USA). Dept. of Physics); Hargrove, C.K.
1983-05-12
A search for two-photon emission from 2S states of low-Z muonic atoms has been made. Intrinsic Ge detectors were positioned around target of Li, Be, B, or their hydrides, or a vessel containing B/sub 2/H/sub 6/, H/sub 2/, or O/sub 2/. Upper limits on the fraction of stopping muons which formed metastable 2S states range from approximately = 10/sup -3/ to 10/sup -5/.
Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions
International Nuclear Information System (INIS)
Grond, Julian; Hohenester, Ulrich; Mazets, Igor; Schmiedmayer, Joerg
2010-01-01
Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long measurement times and precise readout. Ultracold atoms can be precisely manipulated at the quantum level and can be held for very long times in traps; they would therefore be an ideal setting for interferometry. In this paper, we discuss how the nonlinearities from atom-atom interactions, on the one hand, allow us to efficiently produce squeezed states for enhanced readout and, on the other hand, result in phase diffusion that limits the phase accumulation time. We find that low-dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control, the achievable minimal detectable interaction energy ΔE min is of the order of 10 -4 μ, where μ is the chemical potential of the Bose-Einstein condensate (BEC) in the trap. From these we have to conclude that for more precise measurements with atom interferometers, more sophisticated strategies, or turning off the interaction-induced dephasing during the phase accumulation stage, will be necessary.
Role of atom--atom inelastic collisions in two-temperature nonequilibrium plasmas
International Nuclear Information System (INIS)
Kunc, J.A.
1987-01-01
The contribution of inelastic atom--atom collisions to the production of electrons and excited atoms in two-temperature (with electron temperature T/sub e/, atomic temperature T/sub a/, and atomic density N/sub a/), steady-state, nonequilibrium atomic hydrogen plasma is investigated. The results are valid for plasmas having large amounts of atomic hydrogen as one of the plasma components, so that e--H and H--H inelastic collisions and interaction of these atoms with radiation dominate the production of electrons and excited hydrogen atoms. Densities of electrons and excited atoms are calculated in low-temperature plasma, with T/sub e/ and T/sub a/≤8000 K and 10 16 cm -3 ≤N/sub a/≤10 18 cm -3 , and with different degrees of the reabsorption of radiation. The results indicate that inelastic atom--atom collisions are important for production of electrons and excited atoms in partially ionized plasmas with medium and high atomic density and temperatures below 8000 K
International Nuclear Information System (INIS)
Anon.
1976-01-01
Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton
A kilobyte rewritable atomic memory
Kalff, Floris; Rebergen, Marnix; Fahrenfort, Nora; Girovsky, Jan; Toskovic, Ranko; Lado, Jose; FernáNdez-Rossier, JoaquíN.; Otte, Sander
The ability to manipulate individual atoms by means of scanning tunneling microscopy (STM) opens op opportunities for storage of digital data on the atomic scale. Recent achievements in this direction include data storage based on bits encoded in the charge state, the magnetic state, or the local presence of single atoms or atomic assemblies. However, a key challenge at this stage is the extension of such technologies into large-scale rewritable bit arrays. We demonstrate a digital atomic-scale memory of up to 1 kilobyte (8000 bits) using an array of individual surface vacancies in a chlorine terminated Cu(100) surface. The chlorine vacancies are found to be stable at temperatures up to 77 K. The memory, crafted using scanning tunneling microscopy at low temperature, can be read and re-written automatically by means of atomic-scale markers, and offers an areal density of 502 Terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude.
Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity
Yadollahi, F.; Safaiee, R.; Golshan, M. M.
2018-02-01
In the present study, the standard Jaynes-Cummings model, in a lossy cavity, is employed to characterize the entanglement between atoms and photons when the former is initially in a thermal state (mixed ensemble) while the latter is described by either coherent or squeezed distributions. The whole system is thus assumed to be in equilibrium with a heat reservoir at a finite temperature T, and the measure of negativity is used to determine the time evolution of atom-photon entanglement. To this end, the master equation for the density matrix, in the secular approximation, is solved and a partial transposition of the result is made. The degree of atom-photon entanglement is then numerically computed, through the negativity, as a function of time and temperature. To justify the behavior of atom-photon entanglement, moreover, we employ the so obtained total density matrix to compute and analyze the time evolution of the initial photonic coherent or squeezed probability distributions and the squeezing parameters. On more practical points, our results demonstrate that as the initial photon mean number increases, the atom-photon entanglement decays at a faster pace for the coherent distribution compared to the squeezed one. Moreover, it is shown that the degree of atom-photon entanglement is much higher and more stable for the squeezed distribution than that for the coherent one. Consequently, we conclude that the time intervals during which the atom-photon entanglement is distillable is longer for the squeezed distribution. It is also illustrated that as the temperature increases the rate of approaching separability is faster for the coherent initial distribution. The novel point of the present report is the calculation of dynamical density matrix (containing all physical information) for the combined system of atom-photon in a lossy cavity, as well as the corresponding negativity, at a finite temperature.
International Nuclear Information System (INIS)
Ahmed Ghoneim, Adel Aly; Ghoneim, Adel A.; Al-Zanki, Jasem M.; El-Essawy, Ashraf H.
2009-01-01
Atomic reorganization starts by filling the initially inner-shell vacancy by a radiative transition (x-ray) or by a non-radiative transition (Auger and Coster-Kronig processes). New vacancies created during this atomic reorganization may in turn be filled by further radiative and non-radiative transitions until all vacancies reach the outermost occupied shells. The production of inner-shell vacancy in an atom and the de-excitation decays through radiative and non-radiative transitions may result in a change of the atomic potential; this change leads to the emission of an additional electron in the continuum (electron shake-off processes). In the present work, the ion charge state distributions (CSD) and mean atomic charge ions produced from inner shell vacancy de-excitation decay are calculated for neutral Ne , Ar and Kr atoms. The calculations are carried out using Monte Carlo (MC) technique to simulate the cascade development after primary vacancy production. The radiative and non-radiative transitions for each vacancy are calculated in the simulation. In addition, the change of transition energies and transition rates due to multi vacancies produced in the atomic configurations through the cascade development are considered in the present work. It is found that considering the electron shake off process and closing of non-allowed non-radiative channels improves the results of both charge state distributions (CSD) and average charge state. To check the validity of the present calculations, the results obtained are compared with available theoretical and experimental data. The present results are found to agree well with the available theoretical and experimental values. (author)
Fast Ground State Manipulation of Neutral Atoms in Microscopic Optical Traps
International Nuclear Information System (INIS)
Yavuz, D.D.; Kulatunga, P.B.; Urban, E.; Johnson, T.A.; Proite, N.; Henage, T.; Walker, T.G.; Saffman, M.
2006-01-01
We demonstrate Rabi flopping at MHz rates between ground hyperfine states of neutral 87 Rb atoms that are trapped in two micron sized optical traps. Using tightly focused laser beams we demonstrate high fidelity, site specific Rabi rotations with cross talk on neighboring sites separated by 8 μm at the level of 10 -3 . Ramsey spectroscopy is used to measure a dephasing time of 870 μs, which is ≅5000 times longer than the time for a π/2 pulse
Decay of atomic metastable states in a plasma
International Nuclear Information System (INIS)
Kleiman, E.B.
1985-01-01
This paper discusses the influence of polarization plasma effects on the lifetime of metastable atomic levels. It is shown that plasma effects can also be important in the case when the distance between the metastable level and the closest emitting level exceeds the Langmuir frequency. The lifetime of the 2S level of a hydrogen atom in a rarefied plasma connected with the action of a longitudinal fluctuation field on the atom is estimated. It is found that this mechanism can determine the lifetime of the 2S level in a rarefied cosmic plasma
Absorption properties of identical atoms
International Nuclear Information System (INIS)
Sancho, Pedro
2013-01-01
Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions
Numerology, hydrogenic levels, and the ordering of excited states in one-electron atoms
Armstrong, Lloyd, Jr.
1982-03-01
We show that the observed ordering of Rydberg states of one-electron atoms can be understood by assuming that these states are basically hydrogenic in nature. Much of the confusion concerning this point is shown to arise from the failure to differentiate between hydrogenic ordering as the nuclear charge approaches infinity, and hydrogenic ordering for an effective charge of one. The origin of κ ordering of Rydberg levels suggested by Sternheimer is considered within this picture, and the predictions of κ ordering are compared with those obtained by assuming hydrogenic ordering.
Initial state dependence of low-energy electron emission in fast ion atom collisions
International Nuclear Information System (INIS)
Moshammer, R.; Schmitt, W.; Kollmus, H.; Ullrich, J.; Fainstein, P.D.; Hagmann, S.
1999-06-01
Single and multiple ionization of Neon and Argon atoms by 3.6 MeV/u Au 53+ impact has been explored in kinematically complete experiments. Doubly differential cross sections for low-energy electron emission have been obtained for defined charge state of the recoiling target ion and the receding projectile. Observed target specific structures in the electron continuum are attributable to the nodal structure of the initial bound state momentum distribution. The experimental data are in excellent accord with CDW-EIS single ionization calculations if multiple ionization is considered appropriately. (orig.)
International Nuclear Information System (INIS)
Whitney, K G; Dasgupta, A; Davis, J; Coverdale, C A
2007-01-01
Two atomic models of the population dynamics of substates within the n 4 and n = 3 multiplets of nickel-like tungsten and beryllium-like iron, respectively, are described in this paper. The flexible atomic code (FAC) is used to calculate the collisional and radiative couplings and energy levels of the excited states within these ionization stages. These atomic models are then placed within larger principal-quantum-number-based ionization dynamic models of both tungsten and iron plasmas. Collisional-radiative equilibrium calculations are then carried out using these models that demonstrate how the multiplet substates depart from local thermodynamic equilibrium (LTE) as a function of ion density. The effect of these deviations from LTE on the radiative and collisional deexcitation rates of lumped 3s, 3p, 3d, 4s, 4p, 4d and 4f states is then calculated and least-squares fits to the density dependence of these lumped-state rate coefficients are obtained. The calculations show that, with the use of lumped-state models (which are in common use), one can accurately model the L- and M-shell ionization dynamics occurring in present-day Z-pinch experiments only through the addition of these extra, non-LTE-induced, rate coefficient density dependences. However, the derivation and use of low-order polynomial fits to these density dependences makes lumped-state modelling both viable and of value for post-processing analyses
Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom
International Nuclear Information System (INIS)
Vela-Arevalo, Luz V.; Fox, Ronald F.
2004-01-01
We study the problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons. An exact, nonperturbative approach is applied to the standard vector potential coupling Hamiltonian for a three-dimensional hydrogenlike atom in a microwave field treated semiclassically. Multiphoton probability exchange is calculated in both the velocity and the length gauges, by applying the Goeppert-Mayer gauge transformation. The expansion of the time-dependent solution in terms of Floquet states delineates the mechanism of multiphoton transitions. A detailed analysis of the Floquet states and quasienergies as functions of the field parameters allows us to describe the relation between avoided quasienergy crossings and multiphoton probability exchange. We formulate analytical expressions for the variation of quasienergies and Floquet states with respect to the field parameters, and demonstrate that avoided quasienergy crossings are accompanied by dramatic changes in the Floquet states. Analysis of the Floquet states, for small values of the field strength, yields selection rules for the avoided quasienergy crossings. In the case of strong fields, the simultaneous choice of frequency and strength of the field producing an avoided crossing results in improved ionization probability
Storage of Quantum Variables in Atomic Media
DEFF Research Database (Denmark)
Cviklinski, J.; Ortalo, J.; Josse, V.
2007-01-01
Storage and read-out of non classical states of light is a critical element for quantum information networks. Simultaneous storage of two non-commuting variables carried by light and subsequent read-out is shown to be possible in atomic ensembles. Interaction of light fields with three-level syst......-level systems allows direct mapping the quantum state of light into long lived coherences in the atomic ground state. We show that excess noise linked to atomic transitions can be made negligible. Experimental developments are discussed for atomic vapours and cold atoms....
Automatic Facial Expression Recognition and Operator Functional State
Blanson, Nina
2012-01-01
The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions
Automatic Facial Expression Recognition and Operator Functional State
Blanson, Nina
2011-01-01
The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions.
Analytical evaluation of atomic form factors: Application to Rayleigh scattering
Energy Technology Data Exchange (ETDEWEB)
Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)
2015-05-15
Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.
Charge-state-distributions of foil-excited heavy Rydberg atoms
International Nuclear Information System (INIS)
Faibis, A.; Kanter, E.P.; Koenig, W.; Zabransky, B.J.
1985-01-01
Studies of foil-excited fast (MeV/amu) heavy ions have demonstrated large yields of high Rydberg atoms formed in such beams. Further experiments have suggested a strong target-thickness dependence of the yields of such atoms. These results have been puzzling in view of the supposed short mean free paths of such atoms in solids. In an effort to better understand these results, the authors have measured the yields of Rydberg atoms (napprox.100-200) in foil-excited 32 S ions at an incident energy of 125 MeV
Noise suppression in an atomic system under the action of a field in a squeezed coherent state
International Nuclear Information System (INIS)
Gelman, A. I.; Mironov, V. A.
2010-01-01
The interaction of a quantized electromagnetic field in a squeezed coherent state with a three-level Λ-atom is studied numerically by the quantum Monte Carlo method and analytically by the Heisenberg-Langevin method in the regime of electromagnetically induced transparency (EIT). The possibility of noise suppression in the atomic system through the quantum properties of squeezed light is considered in detail; the characteristics of the atomic system responsible for the relaxation processes and noise in the EIT band have been found. Further applications of the Monte Carlo method and the developed numerical code to the study of more complex systems are discussed.
International Nuclear Information System (INIS)
Jiang Minhao; Meng Xujun
2005-01-01
The effect of the free electron background in plasmas is introduced in Hartree-Fock-Slater self-consistent field atomic model to correct the single electron energies for each electron configuration, and to provide accurate atomic data for Boltzmann-Saha equation. In the iteration process chemical potential is adjusted to change the free electron background to satisfy simultaneously the conservation of the free electrons in Saha equation as well as in Hartree-Fock-Slater self-consistent field atomic model. As examples the equations of state of the carbon and aluminum plasmas are calculated to show the applicability of this method. (authors)
Progress in atomic spectroscopy
International Nuclear Information System (INIS)
Beyer, H.J.; Kleinpoppen, H.
1984-01-01
This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes
Kirchhoff approximation and closed-form expressions for atom-surface scattering
International Nuclear Information System (INIS)
Marvin, A.M.
1980-01-01
In this paper an approximate solution for atom-surface scattering is presented beyond the physical optics approximation. The potential is well represented by a hard corrugated surface but includes an attractive tail in front. The calculation is carried out analytically by two different methods, and the limit of validity of our formulas is well established in the text. In contrast with other workers, I find those expressions to be exact in both limits of small (Rayleigh region) and large momenta (classical region), with the correct behavior at the threshold. The result is attained through a particular use of the extinction theorem in writing the scattered amplitudes, hitherto not employed, and not for particular boundary values of the field. An explicit evaluation of the field on the surface shows in fact the present formulas to be simply related to the well known Kirchhoff approximation (KA) or more generally to an ''extended'' KA fit to the potential model above. A possible application of the theory to treat strong resonance-overlapping effects is suggested in the last part of the work
Directional emission of single photons from small atomic samples
DEFF Research Database (Denmark)
Miroshnychenko, Yevhen; V. Poulsen, Uffe; Mølmer, Klaus
2013-01-01
We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state i...... is coupled by a classical laser field to an optically excited state which rapidly decays to the ground atomic state. Our model accounts for the different field polarization components via re-absorption and emission of light by the Zeeman manifold of optically excited states.......We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state...
1,3Do and 1,3Pe states of two electron atoms under Debye plasma screening
International Nuclear Information System (INIS)
Saha, Jayanta K.; Bhattacharyya, S.; Mukherjee, T.K.; Mukherjee, P.K.
2010-01-01
Extensive non-relativistic variational calculations for estimating the energy values of 2pnd( 1,3 D o ) states [n=3-6] of two electron atoms (He, Li + ,Be 2+ ) and 2pnp( 1 P e )[n=3-8] and 2pnp( 3 P e ) states [n=2-7] of Be 2+ under weakly coupled plasma screening have been performed using explicitly correlated Hylleraas type basis. The modified energy eigenvalues of 1,3 P e states arising from two p electrons of Be 2+ ion and 1,3 D o states due to 2pnd configuration of Li + and Be 2+ ion in the Debye plasma environment are being reported for the first time. The effect of plasma has been incorporated through the Debye screening model. The system tends towards gradual instability and the number of bound states reduces with increasing plasma coupling strength. The wavelengths for 2pn ' p( 1 P e )[n ' =3-8]→2pnd( 1 D o )[n=3-6] and 2pn ' p( 3 P e )[n ' =2-8]→2pnd( 3 D o )[n=3-6] transitions in plasma embedded two electron atoms have also been reported.
Saturated two-photon absorption by atoms in a perturber gas
International Nuclear Information System (INIS)
Nienhuis, G.
1980-01-01
We derive a general expression for the two-photon absorption spectrum of a three-state atom excited by two mono-chromatic radiation fields. Collisional line-broadening effects are incorporated, and the result allows inclusion of profiles with a validity outside the impact limit. Results of previous work are recovered in the appropriate limits. Saturation affects the different lines in the two-photon absorption spectrum in a different fashion. (orig.)
Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.
2017-06-01
The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26 × 1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.
Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe
Gurevich, A. S.; Kochereshko, V. P.; Bleuse, J.; Mariette, H.; Waag, A.; Akimoto, R.
2011-09-01
The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.
Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe
Energy Technology Data Exchange (ETDEWEB)
Gurevich, A S; Kochereshko, V P [A F Ioffe Physical-Technical Institute, St Petersburg 194021 (Russian Federation); Bleuse, J; Mariette, H [CEA-CNRS Group ' Nanophysique et Semiconducteurs' , CEA, INAC/SP2M, and Institut Neel, 17 rue des Martyrs, F-38054 Grenoble (France); Waag, A [Braunschweig Technical University, Hans-Sommer-Strasse 66, D-38106 Braunschweig (Germany); Akimoto, R, E-mail: vladimir.kochereshko@mail.ioffe.ru [National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 2-1, Tsukuba 305-8568 (Japan)
2011-09-07
The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.
Heralded entanglement of two remote atoms
Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald
2012-06-01
Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.
Study of Atomic Quasi-Stable States, Decoherence And Cooling of Mesoscale Particles
Zhong, Changchun
Quantum mechanics, since its very beginning, has totally changed the way we understand nature. The past hundred years have seen great successes in the application of quantum physics, including atomic spectra, laser technology, condensed matter physics and the remarkable possibility for quantum computing, etc. This thesis is dedicated to a small regime of quantum physics. In the first part of the thesis, I present the studies of atomic quasi-stable states, which refer to those Rydberg states of an atom that are relatively stable in the presence of strong fields. Through spectrally probing the quasi-stable states, series of survival peaks are found. If the quasi-stable electrons were created by ultraviolet (UV) lasers with two different frequencies, the survival peaks could be modulated by continuously changing the phase difference between the UV and the IR laser. The quantum simulation, through directly solving the Schrodinger equation, matches the experimental results performed with microwave fields, and our studies should provide a guidance for future experiments. Despite the huge achievements in the application of quantum theory, there are still some fundamental problems that remain unresolved. One of them is the so-called quantum-to-classical transition, which refers to the expectation that the system behaves in a more classical manner when the system size increases. This basic question was not well answered until decoherence theory was proposed, which states that the coherence of a quantum system tends to be destroyed by environmental interruptions. Thus, if a system is well isolated from its environment, it is in principle possible to observe macroscopic quantum coherence. Quite recently, testing quantum principles in the macroscale has become a hot topic due to rapic technological developments. A very promising platform for testing macroscale quantum physics is a laser levitated nanoparticle, and cooling its mechanical motion to the ground state is the first
International Nuclear Information System (INIS)
Jang, Su; Mi, No Gin
2004-12-01
This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.
Properties of the triplet metastable states of the alkaline-earth-metal atoms
International Nuclear Information System (INIS)
Mitroy, J.; Bromley, M.W.J.
2004-01-01
The static and dynamic properties of the alkaline-earth-metal atoms in their metastable state are computed in a configuration interaction approach with a semiempirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths, and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described
International Nuclear Information System (INIS)
Su Zongdi; Ma Lizhen
1994-01-01
The management code of the sub-library of atomic mass and characteristic constants for nuclear ground state (MCC) is used for displaying the basic information on the MCC sub-library on the screen, and retrieving the required data. The MCC data file contains the data of 4800 nuclides ranging from Z 0, A = 1 to Z = 122, A = 318. The MCC sub-library has been set up at Chinese Nuclear Data Center (CNDC), and has been used to provide the atomic masses and characteristic constants of nuclear ground states for the nuclear model calculation, nuclear data evaluations and other fields
Symmetric Atom–Atom and Ion–Atom Processes in Stellar Atmospheres
Directory of Open Access Journals (Sweden)
Vladimir A. Srećković
2017-12-01
Full Text Available We present the results of the influence of two groups of collisional processes (atom–atom and ion–atom on the optical and kinetic properties of weakly ionized stellar atmospheres layers. The first type includes radiative processes of the photodissociation/association and radiative charge exchange, the second one the chemi-ionisation/recombination processes with participation of only hydrogen and helium atoms and ions. The quantitative estimation of the rate coefficients of the mentioned processes were made. The effect of the radiative processes is estimated by comparing their intensities with those of the known concurrent processes in application to the solar photosphere and to the photospheres of DB white dwarfs. The investigated chemi-ionisation/recombination processes are considered from the viewpoint of their influence on the populations of the excited states of the hydrogen atom (the Sun and an M-type red dwarf and helium atom (DB white dwarfs. The effect of these processes on the populations of the excited states of the hydrogen atom has been studied using the general stellar atmosphere code, which generates the model. The presented results demonstrate the undoubted influence of the considered radiative and chemi- ionisation/recombination processes on the optical properties and on the kinetics of the weakly ionized layers in stellar atmospheres.
Charge exchange in slow collisions of multiply charged ions with atoms
International Nuclear Information System (INIS)
Presnyakov, L.P.; Uskov, D.B.; Janev, R.K.
1982-01-01
Single-electron charge exchange between ions having a charge Z>6 and atoms is considered at relative velocities v< Z/sup 1/2/. An analytic method is developed for the solution of a multilevel problem that is a generalization of the decay model and of the approximation of nonadiabatic coupling between two states. Expressions are obtained for the reaction-product distributions in the principal and angular quantum numbers. The calculated total cross sections agree well with the experimental data on charge exchange of hydrogen atoms and molecules with nuclei. The theory describes the oscillations of the total cross section against the background of a monotonic growth as the charge is increased
Atomic processes in high-density plasmas
International Nuclear Information System (INIS)
More, R.M.
1982-01-01
This review covers dense atomic plasmas such as that produced in inertial confinement fusion. The target implosion physics along with the associated atomic physics, i.e., free electron collision phenomena, electron states I, electron states II, and nonequilibrium plasma states are described
Rosenblum, Serge; Borne, Adrien; Dayan, Barak
2017-03-01
The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.
Otorbaev, D.K.; Buuron, A.J.M.; Sanden, van de M.C.M.; Meulenbroeks, R.F.G.; Schram, D.C.
1995-01-01
The atomic radical density in the first excited state, obtained by the technique of optical absorption spectroscopy, and a simple kinetic model are used to determine the radical ground state density in a recombining expanding plasma. The kinetic model used does not require knowledge of the shape of
International Nuclear Information System (INIS)
Santavicca, D.A.
1975-01-01
The research was aimed at developing a neutral copper atom beam source which could be used to study the collision cross sections for electronic excitation of neutral copper atoms in collision with neutral argon atoms. Of particular interest is the excitation from the ground state to the two upper laser levels at 3.80 and 3.82 electron volts
International Nuclear Information System (INIS)
Horvath, D.; Lambrecht, R.M.
1984-01-01
This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)
Superconducting microtraps for ultracold atoms
International Nuclear Information System (INIS)
Hufnagel, C.
2011-01-01
Atom chips are integrated devices in which atoms and atomic clouds are stored and manipulated in miniaturized magnetic traps. State of the art fabrication technologies allow for a flexible design of the trapping potentials and consequently provide extraordinary control over atomic samples, which leads to a promising role of atom chips in the engineering and investigation of quantum mechanical systems. Naturally, for quantum mechanical applications, the atomic coherence has to be preserved. Using room temperature circuits, the coherence time of atoms close to the surface was found to be drastically limited by thermal current fluctuations in the conductors. Superconductors offer an elegant way to circumvent thermal noise and therefore present a promising option for the coherent manipulation of atomic quantum states. In this thesis trapping and manipulation of ultracold Rubidium atoms in superconducting microtraps is demonstrated. In this connection the unique properties of superconductors are used to build traps based on persistent currents, the Meissner effect and remanent magnetization. In experiment it is shown, that in superconducting atom chips, thermal magnetic field noise is significantly reduced. Furthermore it is demonstrated, that atomic samples can be employed to probe the properties of superconducting materials. (author) [de
Dinamical polarizability of highly excited hydrogen-like states
International Nuclear Information System (INIS)
Delone, N.B.; Krajnov, V.P.
1982-01-01
Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like atomic states. It is shown that in the composite matrix element which determines the dynamic polarizability there is a strong compensation of the terms as a result of which the resulting magnitude of the dynamic polarizability is quasiclasically small compared to the individual terms of the composite matrix. It is concluded that the resonance behaviour of the dynamic polarizability of highly excited states differs significantly from the resonance behaviour of the polarizability for the ground and low-lying atomic states. The static limit and high-frequency limit of on electromagnetic field are considered
Above threshold ionization of atomic hydrogen in ns states with up to four excess photons
Energy Technology Data Exchange (ETDEWEB)
Karule, E [Institute of Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga, LV-1586 (Latvia); Gailitis, A, E-mail: karule@latnet.l [Institute of Physics, University of Latvia, Salaspils-1, LV-2169 (Latvia)
2010-03-28
In a high-intensity laser field an atom can absorb more photons than the minimum necessary for ionization. It is known as above threshold ionization (ATI). Theoretically it is the most difficult case to handle as we have to consider transitions in continuum. To study ATI we use the perturbation theory and Green's function formalism. We have derived the modified two-term Coulomb Green's function (CGF) Sturmian expansion. In each term explicit summation over all intermediate states is carried out. The transition amplitude may be obtained in a closed form. The generalized cross sections are evaluated for the photoionization of atomic hydrogen in ns states with up to four excess photons. Calculations are performed in a wide range of wavelengths for linear and circular polarization. In the cases for which data are available, our results agree very well with the previous ones.
Entanglement dynamics between an isolated atom and a moving atom in the cavity
International Nuclear Information System (INIS)
Xiao-Juan, Deng; Mao-Fa, Fang; Guo-Dong, Kang
2009-01-01
The entanglement dynamics between an isolated atom and a moving atom interacting with a cavity field is investigated. The results show that there appears sudden death of entanglement between the isolated atom and the moving atom and that the time of entanglement sudden death (ESD) is independent of the initial state of the system. It is interesting that the isolated atom can also entangle with a cavity field, though they do not interact with each other originally, which stems from the fact that the entanglement between the isolated atom and the moving atom may turn into the entanglement between the isolated atom and the cavity. (general)
Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides
Energy Technology Data Exchange (ETDEWEB)
Soh, Daniel Beom Soo [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Proliferation Signatures Discovery and Exploitation Department
2017-08-01
We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS_{2}), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.
A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms
Energy Technology Data Exchange (ETDEWEB)
Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)
2015-04-15
We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.
Long-range interactions between alkali and alkaline-earth atoms
International Nuclear Information System (INIS)
Jiang Jun; Cheng Yongjun; Mitroy, J
2013-01-01
Dispersion coefficients between the alkali metal atoms (Li–Rb) and alkaline-earth metal atoms (Be–Sr) are evaluated using matrix elements computed from frozen core configuration interaction calculations. Besides dispersion coefficients with both atoms in their respective ground states, dispersion coefficients are also given for the case where one atom is in its ground state and the other atom is in a low-lying excited state. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kano, Naokazu; O' Brien, Nathan J. [Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Uematsu, Ryohei; Ramozzi, Romain; Morokuma, Keiji [Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyou-ku, Kyoto, 606-8103 (Japan)
2017-05-15
The first trihydroborate bearing a pentacoordinated phosphorus atom was synthesized as a new P-B bonded compound. Hydride abstraction of the trihydroborate gave an intermediary dihydroborane, which showed hydroboration reactivity and was trapped with pyridine whilst maintaining the P-B bond. The dihydroborane underwent a rearrangement, which involved a double ring expansion to compensate for the unbalanced coordination states of the phosphorus and boron atoms, to give a new fused bicyclic phosphine-boronate. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Kano, Naokazu; O'Brien, Nathan J.; Uematsu, Ryohei; Ramozzi, Romain; Morokuma, Keiji
2017-01-01
The first trihydroborate bearing a pentacoordinated phosphorus atom was synthesized as a new P-B bonded compound. Hydride abstraction of the trihydroborate gave an intermediary dihydroborane, which showed hydroboration reactivity and was trapped with pyridine whilst maintaining the P-B bond. The dihydroborane underwent a rearrangement, which involved a double ring expansion to compensate for the unbalanced coordination states of the phosphorus and boron atoms, to give a new fused bicyclic phosphine-boronate. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
High-energy shadowing effect and its application to atomic and solid state physics
International Nuclear Information System (INIS)
Kudo, Hiroshi; Shima, Kunihiro; Ishihara, Toyoyuki; Takeshita, Hidefumi; Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi
1994-01-01
Ion-beam shadowing effects for projectiles in the MeV/u energy range have been studied with high-energy (keV) secondary electrons emitted from the surface of a target crystal. This article reviews and discusses applications of the high-energy shadowing effect to atomic and solid state physics, as well as physical and technical aspects of the electron spectroscopy under channeling incidence conditions. (orig.)
Giant light enhancement in atomic clusters
International Nuclear Information System (INIS)
Gadomsky, O. N.; Gadomskaya, I. V.; Altunin, K. K.
2009-01-01
We show that the polarizing effect of the atoms in an atomic cluster can lead to full compensation of the radiative damping of excited atomic states, a change in the sign of the dispersion of the atomic polarizability, and giant light enhancement by the atomic cluster.
Method and apparatus for quantum information processing using entangled neutral-atom qubits
Jau, Yuan Yu; Biedermann, Grant; Deutsch, Ivan
2018-04-03
A method for preparing an entangled quantum state of an atomic ensemble is provided. The method includes loading each atom of the atomic ensemble into a respective optical trap; placing each atom of the atomic ensemble into a same first atomic quantum state by impingement of pump radiation; approaching the atoms of the atomic ensemble to within a dipole-dipole interaction length of each other; Rydberg-dressing the atomic ensemble; during the Rydberg-dressing operation, exciting the atomic ensemble with a Raman pulse tuned to stimulate a ground-state hyperfine transition from the first atomic quantum state to a second atomic quantum state; and separating the atoms of the atomic ensemble by more than a dipole-dipole interaction length.
Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus
International Nuclear Information System (INIS)
Song, Minsoo; Yoon, Tai Hyun
2013-01-01
We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s 2 1 S 0 ↔ 6s7s 1 S 0 ) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm 3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s 1 S 0 state via the intercombination 6s6p 3 P 1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.
Theory of analytical curves in atomic fluorescence flame spectrometry
Hooymayers, H.P.
An explicit expression for the intensity of atomic resonance fluorescence as a function of atomic concentration in a flame is derived under certain idealized conditions. The expression is generally valid for a pure Doppler absorption line profile as well as for a combined Doppler and collisional
Molecular invariants: atomic group valence
International Nuclear Information System (INIS)
Mundim, K.C.; Giambiagi, M.; Giambiagi, M.S. de.
1988-01-01
Molecular invariants may be deduced in a very compact way through Grassman algebra. In this work, a generalized valence is defined for an atomic group; it reduces to the Known expressions for the case of an atom in a molecule. It is the same of the correlations between the fluctions of the atomic charges qc and qd (C belongs to the group and D does not) around their average values. Numerical results agree with chemical expectation. (author) [pt
International Nuclear Information System (INIS)
Dimitrijević, J; Arsenović, D
2012-01-01
We study a double-Λ atomic scheme that interacts with four laser light beams so that a closed loop of radiation-induced transitions is formed. When specific relations for field phases, frequencies and amplitudes are satisfied, coherent superpositions (the so-called ‘dark states’) can be formed in a double-Λ, which leads to the well-known effect of electromagnetically induced transparency (EIT). If the interaction scheme in a double-Λ system is such that a closed loop is formed, the relative phase of the laser light fields becomes very important. We analyze here the effect of the lasers' relative phase on the EIT in double-Λ configuration of levels. The theoretical study of interactions of lasers with a double-Λ atomic scheme is commonly conducted by solving the optical Bloch equations (OBEs). We use here a perturbative method for solving OBEs, where the interaction of lasers with double-Λ is considered a perturbation. An advantage of the perturbative method is that it generally produces simpler solutions, and analytical expressions can be obtained. We present analytical expressions for the lower-order corrections of the EIT signal. Our results show that the EIT by the perturbative method can be approximated by the sum of products of complex Lorentzians. Through these expressions, we see in what way the relative phase affects the overall EIT profile. (paper)
Remote Preparation of an Atomic Quantum Memory
International Nuclear Information System (INIS)
Rosenfeld, Wenjamin; Berner, Stefan; Volz, Juergen; Weber, Markus; Weinfurter, Harald
2007-01-01
Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87 Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%
Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid
2017-12-07
Simple and accurate expressions are presented for the equation of state (EOS) and absolute Helmholtz free energy of a system composed of simple atomic particles interacting through the repulsive Lennard-Jones potential model in the fluid and solid phases. The introduced EOS has 17 and 22 coefficients for fluid and solid phases, respectively, which are regressed to the Monte Carlo (MC) simulation data over the reduced temperature range of 0.6≤T * ≤6.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. The average absolute relative percent deviation in fitting the EOS parameters to the MC data is 0.06 and 0.14 for the fluid and solid phases, respectively. The thermodynamic integration method is used to calculate the free energy using the MC simulation results. The Helmholtz free energy of the ideal gas is employed as the reference state for the fluid phase. For the solid phase, the values of the free energy at the reduced density equivalent to the close-packed of a hard sphere are used as the reference state. To check the validity of the predicted values of the Helmholtz free energy, the Widom particle insertion method and the Einstein crystal technique of Frenkel and Ladd are employed. The results obtained from the MC simulation approaches are well agreed to the EOS results, which show that the proposed model can reliably be utilized in the framework of thermodynamic theories.
0.75 atoms improve the clock signal of 10,000 atoms
DEFF Research Database (Denmark)
Kruse, I.; Lange, K.; Peise, Jan
2017-01-01
Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case.......75 atoms to improve the clock sensitivity of 10,000 atoms by 2.05 dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based...... on atomic squeezed vacuum....
Investigation of odd-order nonlinear susceptibilities in atomic vapors
Energy Technology Data Exchange (ETDEWEB)
Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2013-06-15
We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.
International Nuclear Information System (INIS)
Vela-Arevalo, Luz V.; Fox, Ronald F.
2005-01-01
A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory
New analytical treatment for a kind of two dimensional integrals in ion-atom collisions
International Nuclear Information System (INIS)
Yang Qifeng; Kuang Yurang
1994-01-01
A kind of two-dimensional integrals, separated from two-center matrix elements in ion-atom collisions, is analytically integrated by introducing the Laplace transform into the integrals and expressed by the modified Bessel functions. The traditional Feynman transform is very complicated for this kind of more general integrals related to the excited state capture
Few-particle quantum magnetism with ultracold atoms
Energy Technology Data Exchange (ETDEWEB)
Murmann, Simon
2015-11-25
This thesis reports on the deterministic preparation of magnetically ordered states in systems of few fermionic atoms. We follow the concept of quantum simulation and use {sup 6}Li atoms in two different hyperfine states to mimic the behavior of electrons in a solidstate system. In a first experiment, we simulate the two-site Hubbard model by using two atoms in an isolated double-well potential. We prepare the two-particle ground state of this model with a fidelity exceeding 90%. By introducing strong repulsive interactions, we are able to realize a pure spin model and describe the energy spectrum with a two-site Heisenberg Hamiltonian. In a second experiment, we realize Heisenberg spin chains of up to four atoms in a single strongly-elongated trapping potential. Here, the atoms self-align along the potential axis due to strong repulsive interactions. We introduce two novel measurement techniques to identify the state of the spin chains and thereby confirm that we can deterministically prepare antiferromagnetic ground-state systems. This constitutes the first observation of quantum magnetism with fermionic atoms that exceeds nearest-neighbor correlations. Both the double-well system and the spin chains can be seen as building blocks of larger ground-state spin systems. Their deterministic preparation therefore opens up a new bottom-up approach to the experimental realization of quantum many-body systems with ultracold atoms.
Stimulated transitions in resonant atom Majorana mixing
Bernabéu, José; Segarra, Alejandro
2018-02-01
Massive neutrinos demand to ask whether they are Dirac or Majorana particles. Majorana neutrinos are an irrefutable proof of physics beyond the Standard Model. Neutrinoless double electron capture is not a process but a virtual Δ L = 2 mixing between a parent A Z atom and a daughter A ( Z - 2) excited atom with two electron holes. As a mixing between two neutral atoms and the observable signal in terms of emitted two-hole X-rays, the strategy, experimental signature and background are different from neutrinoless double beta decay. The mixing is resonantly enhanced for almost degeneracy and, under these conditions, there is no irreducible background from the standard two-neutrino channel. We reconstruct the natural time history of a nominally stable parent atom since its production either by nature or in the laboratory. After the time periods of atom oscillations and the decay of the short-lived daughter atom, at observable times the relevant "stationary" states are the mixed metastable long-lived state and the non-orthogonal short-lived excited state, as well as the ground state of the daughter atom. We find that they have a natural population inversion which is most appropriate for exploiting the bosonic nature of the observed atomic transitions radiation. Among different observables of the atom Majorana mixing, we include the enhanced rate of stimulated X-ray emission from the long-lived metastable state by a high-intensity X-ray beam: a gain factor of 100 can be envisaged at current XFEL facilities. On the other hand, the historical population of the daughter atom ground state can be probed by exciting it with a current pulsed optical laser, showing the characteristic absorption lines: the whole population can be excited in a shorter time than typical pulse duration.
Coherent scattering of three-level atoms in the field of a bichromatic standing light wave
International Nuclear Information System (INIS)
Pazgalev, A.S.; Rozhdestvenskii, Yu.V.
1996-01-01
We discuss the coherent scattering of three-level atoms in the field of two standing light waves for two values of the spatial shift. In the case of a zero spatial shift and equal frequency detunings of the standing waves, the problem of scattering of a three-level atoms is reduced to scattering of an effectively two-level atom. For the case of an exact resonance between the waves and transitions we give expressions for the population probability of the states of the three-level atom obtained in the short-interaction-time approximation. Depending on the initial population distribution over the states, different scattering modes are realized. In particular, we show that there can be initial conditions for which the three-level system does not interact with the field of the standing waves, with the result that there is no coherent scattering of atoms. In the case of standing waves shifted by π/2, there are two types of solution, depending on the values of the frequency detuning. For instance, when the light waves are detuned equally we give the exact solution for arbitrary relationships between the detuning and the standing wave intensities valid for any atom-field interaction times. The case of 'mirror' detunings and shifted standing waves is studied only numerically
Energy dependence of the ionization of highly excited atoms by collisions with excited atoms
International Nuclear Information System (INIS)
Shirai, T.; Nakai, Y.; Nakamura, H.
1979-01-01
Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies
Atoms and cavities: Explorations of quantum entanglement
International Nuclear Information System (INIS)
Raimond, J. M.; Hagley, E.; Maitre, X.; Nogues, G.; Wunderlich, C.; Brune, M.; Haroche, S.
1999-01-01
The interaction of circular Rydberg atoms with a high-quality microwave cavity makes it possible to realize complex quantum state manipulations. The state of an atom can be 'copied' onto the cavity. Reversing this operation at a later time with a second atom, we realize an elementary 'quantum memory' holding an atomic quantum coherence for a while in a cavity mode. We have also generated two-atom entangled states of the Einstein-Podolsky-Rosen type. At variance with previous experiments, this one implies massive particles in a completely controlled process. These entanglement manipulations can be generalized to more complex or to mesoscopic systems and open the way to new tests of fundamental aspects of the quantum world
International Nuclear Information System (INIS)
Crasemann, B.
1985-01-01
This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions
International Nuclear Information System (INIS)
Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sun, Xueliang; Sham, Tsun-Kong
2014-01-01
Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10 −8 S cm −1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10 −8 S cm −1 at 26 °C (299 K). (paper)
Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst
2016-04-01
Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM
Electromagnetic transitions in the atom
International Nuclear Information System (INIS)
Ulehla, I.; Suk, M.; Trka, Z.
1990-01-01
Methods to achieve excitation of atoms are outlined and conditions necessary for the occurrence of electromagnetic transitions in the atomic shell are given. Radiative transitions between the energy states of the atom include stimulated absorption, spontaneous emission, and stimulated emission. Selection rules applying to the majority of observed transitions are given. The parity concept is explained. It is shown how the electromagnetic field and its interaction with the magnetic moment of the atom lead to a disturbance of the energy states of the atom and the occurrence of various electro-optical and magneto-optical phenomena. The Stark effect and electron spin resonance are described. X-rays and X-ray spectra, the Auger effect and the internal photoeffect are also dealt with. The principle of the laser is explained. (M.D.). 22 figs., 1 tab
International Nuclear Information System (INIS)
Zypman, F R
2006-01-01
We begin by deriving a general useful theoretical relationship between the plane-particle interaction forces in solution, and the corresponding plane-plane interaction energies. This is the main result of the paper. It provides a simple tool to obtain closed-form particle-plane forces from knowledge of plane-plane interaction energies. To illustrate the simplicity of use of this general formalism, we apply it to find particle-plane interactions within the Derjaguin-Landau-Verwey-Overbeek (DLVO) framework. Specifically, we obtain analytical expressions for forces and interaction energies in the van der Waals and the electrical double layer cases. The van der Waals expression is calculated here for benchmarking purposes and is compared with well-established expressions from Hamaker theory. The interactions for the electric double layer situation are computed in two cases: the linear superposition approximation and the constant surface potential. In both cases, our closed-form expressions were compared with existent numerical results. We also use the main result of this paper to generate an analytical force-separation expression based on atomic force microscope experiments for a tip and surface immersed in an aqueous solution, and compare it with the corresponding numerical results. Finally, based on our main result, we generalize the Derjaguin approximation by calculating the next order of approximation, thus obtaining a formula valuable for colloidal interaction estimations
International Nuclear Information System (INIS)
Hara, Takaaki; Senami, Masato; Tachibana, Akitomo
2012-01-01
The spin torque and zeta force, which govern spin dynamics, are studied by using monoatoms in their steady states. We find nonzero local spin torque in transition metal atoms, which is in balance with the counter torque, the zeta force. We show that d-orbital electrons have a crucial effect on these torques. Nonzero local chirality density in transition metal atoms is also found, though the electron mass has the effect to wash out nonzero chirality density. Distribution patterns of the chirality density are the same for Sc–Ni atoms, though the electron density distributions are different. -- Highlights: ► Nonzero local spin torque is found in the steady states of transition metal atoms. ► The spin steady state is realized by the existence of a counter torque, zeta force. ► D-orbital electrons have a crucial effect on the spin torque and zeta force. ► Nonzero local chiral density is found in spite of the washout by the electron mass. ► Chiral density distribution have the same pattern for Sc–Ni atoms.
International Nuclear Information System (INIS)
Ost, W.; Pelzer, N.
1979-01-01
The differences in opinion which have emerged between the Federal Government and ministers of the State of North Rhine-Westphalia about further permits to be issued for construction of the SNR 300 fast breeder reactor at Kalkar have raised the question of whether the Federal Government has the right to issue directives to a state authority to grant a permit. Close examination of the legal aspects indicates that hardly any literature and no court decisions are as yet available on this problem, because it has never played a role so far. However, it is undisputed that there is such a right to give instructions. Under the Constitution and the Atomic Energy Act the state authorities are responsible for granting permits, but only as agents acting on behalf of the federal authority. Such instructions must be in accordance with the Atomic Energy Act and the objective sought must be lawful for the instructions to be effective. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
McCone, John A.
1961-01-31
This volume contains a name and subject index for the 1960 report of the United States Atomic Energy Commission to Congress. The full semiannual report covers the major unclassified activities of the Commission from January through December 1960.
Energy Technology Data Exchange (ETDEWEB)
Seaborg, Glenn T.
1963-01-31
This volume contains a name and subject index for the 1962 report of the United States Atomic Energy Commission to Congress. The full semiannual report covers the major unclassified activities of the Commission from January through December 1962.
Energy Technology Data Exchange (ETDEWEB)
McCone, John A.
1960-01-31
This volume contains a name and subject index for the 1959 report of the United States Atomic Energy Commission to Congress. The full semiannual report covers the major unclassified activities of the Commission from January through December 1959.
Low energy atom-atom collisions
International Nuclear Information System (INIS)
Child, M.S.
1980-01-01
The semiclassical theory of atom-atom potential scattering and of low energy inelastic atom-atom scattering is reviewed. Particular attention is given to the origin and interpretation of rainbow structure, diffraction oscillations and exchange oscillations in the potential scattering differential cross-section, and to the glory structure and symmetry oscillations in the integral cross-section. Available methods for direct inversion of the cross-section data to recover the potential are reviewed in some detail. The theory of non-adiabatic transitions is introduced by a short discussion of interaction mechanisms and of diabetic and adiabatic representations. Analytical S matrix elements are presented for two state curve-crossing (Landau-Zener-Stuckelberg), Demkov and Nikitin models. The relation between Stuckelberg oscillations in the S matrix and in the differential cross-section is discussed in terms of interference between trajectories belonging to two different classical deflection functions. The energy dependences of the inelastic integral cross-section for curve-crossing and Demkov type transitions are also discussed. Finally the theory is reviewed in relation to a recent close-coupled study of fine structure transitions in F( 2 P) + Xe( 2 S) scattering
International Nuclear Information System (INIS)
Nemenov, L.
2001-01-01
The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state
Parallel Low-Loss Measurement of Multiple Atomic Qubits.
Kwon, Minho; Ebert, Matthew F; Walker, Thad G; Saffman, M
2017-11-03
We demonstrate low-loss measurement of the hyperfine ground state of rubidium atoms by state dependent fluorescence detection in a dipole trap array of five sites. The presence of atoms and their internal states are minimally altered by utilizing circularly polarized probe light and a strictly controlled quantization axis. We achieve mean state detection fidelity of 97% without correcting for imperfect state preparation or background losses, and 98.7% when corrected. After state detection and correction for background losses, the probability of atom loss due to the state measurement is state is preserved with >98% probability.
Melting point gram-atomic volumes and enthalpies of atomization for liquid elements
International Nuclear Information System (INIS)
Lamoreaux, R.H.
1976-01-01
Values of the gram-atomic volumes and enthalpies of atomization to the monatomic ideal gas state for liquid elements at their melting points are collected to facilitate predictions of the behavior of mixed systems. Estimated values are given for experimentally undetermined quantities
Dynamical processes in atomic and molecular physics
Ogurtsov, Gennadi
2012-01-01
Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Rece
Cederbaum, Lorenz S; Streltsov, Alexej I; Alon, Ofir E
2008-02-01
It is well known that attractive condensates do not posses a stable ground state in three dimensions. The widely used Gross-Pitaevskii theory predicts the existence of metastable states up to some critical number N(cr)(GP) of atoms. It is demonstrated here that fragmented metastable states exist for atom numbers well above N(cr)(GP). The fragments are strongly overlapping in space. The results are obtained and analyzed analytically as well as numerically. The implications are discussed.
Long lived quantum memory with nuclear atomic spins
International Nuclear Information System (INIS)
Sinatra, A.; Reinaudi, G.; Dantan, A.; Giacobino, E.; Pinard, M.
2005-01-01
We propose store non-classical states of light into the macroscopic collective nuclear spin (10 18 atoms) of a 3 He vapor, using metastability exchange collisions. We show that these collisions currently used to transfer orientation from the metastable state 2 3 S 1 to the ground state state of 3 He, may conserve quantum correlations and give a possible experimental scheme to perfectly map a squeezed vacuum field state onto a nuclear spin state, which should allow for extremely long storage times (hours). In addition to the apparent interest for quantum information, the scheme offers the intriguing possibility to create a long-lived non classical state for spins. During a metastability exchange collision an atom in the ground state state and an atom in the metastable triplet state 2 3 S exchange their electronic spin variables. The ground state atom is then brought into the metastable state and vice-versa. A laser transition is accessible from the metastable state so that the metastable atoms are coupled with light. This, together with metastability exchange collisions, provides an effective coupling between ground state atoms and light. In our scheme, a coherent field and a squeezed vacuum field excite a Raman transition between Zeeman sublevels of the metastable state, after the system is prepared in the fully polarized state by preliminary optical pumping. According to the intensity of the coherent field, which acts as a control parameter, the squeezing of the field can be selectively transferred either to metastable or to ground state atoms. Once it is encoded in the purely nuclear spin of the ground state of 3 He, which is 20 eV apart from the nearest excited state and interacts very little with the environment, the quantum state can survive for times as long as several hours. By lighting up only the coherent field in the same configuration as for the 'writing' phase, the nuclear spin memory can be 'read' after a long delay, the squeezing being transferred
A new approach to entangling neutral atoms.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jongmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deutsch, Ivan H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Grant W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-11-01
Our team has developed a new approach to entangling neutral atoms with a Rydberg-dressed interaction. Entangling neutral atoms is an essential key of quantum technologies such as quantum computation, many-body quantum simulation, and high-precision atomic sensors . The demonstrated Rydberg-dressed protocol involves adiabatically imposing a light shift on the ground state by coupling an excited Rydberg state with a tuned laser field. Using this technique, we have demonstrated a strong and tunable dipole - dipole interaction between two individually trapped atoms with energy shifts of order 1 MHz, which has been challenging to achieve in other protocols . During this program, we experimentally demonstrated Bell-state entanglement and the isomorphism to the Jaynes - Cumming model of a Rydberg-dressed two-atom system. Our theoretical calculations of a CPHASE quantum logic gate and arbitrary Dicke state quantum control in this system encourage further work.
International Nuclear Information System (INIS)
Parkin, D.W.; Mentch, F.; Banks, G.A.; Horenstein, B.A.; Schramm, V.L.
1991-01-01
The transition state of the V max mutant of AMP nucleosidase from Azotobacter vinelandii has been characterized by heavy-atom kinetic isotope effects in the presence and absence of MgATP, the allosteric activator. The enzyme catalyzes hydrolysis of the N-glycosidic bond of AMP at approximately 2% of the rate of the normal enzyme with only minor changes in the K m for substrate, the activation constant for MgATP, and the K i for formycin 5'-phosphate, a tight-binding competitive inhibitor. Isotope effects were measured as a function of the allosteric activator concentration that increases the turnover number of the enzyme from 0.006 s -1 . The kinetic isotope effects were measured with the substrates [1'- 3 H]AMP, [2'- 2 H]AMP, [9- 15 N]AMP, and [1',9- 14 C, 15 N]AMP. All substrates gave significant kinetic isotope effects in a pattern that establishes that the reaction expresses intrinsic kinetic isotope effects in the presence or absence of MgATP. Transition-state analysis using bond-energy and bond-order vibrational analysis indicated that the transition state for the mutant enzyme has a similar position in the reaction coordinate compared to that for the normal enzyme. The mutant enzyme is less effective in stabilizing the carbocation-like intermediate and in the ability to protonate N7 of adenine to create a better leaving group. This altered transition-state structure was confirmed by an altered substrate specificity for the mutant protein
Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)
2015-08-15
Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.
International Nuclear Information System (INIS)
Borovik, A; Roman, V; Zatsarinny, O; Bartschat, K
2013-01-01
Electron impact excitation of the (4p 5 5s 2 ) 2 P 3/2,1/2 and (4p 5 4d5s) 4 P 1/2,3/2,5/2 autoionizing states in rubidium atoms was studied experimentally by measuring the ejected-electron excitation functions and theoretically by employing a fully relativistic Dirac B-spline R-matrix (close-coupling) model. The experimental data were collected in an impact energy range from the respective excitation thresholds up to 50 eV with an incident electron energy resolution of 0.2 eV and an observation angle of 54.7°. Absolute values of the excitation cross sections were obtained by normalizing to the theoretical predictions. The observed near-threshold resonance structures were also analysed by comparison with theory. For the 2 P 3/2,1/2 doublet states, a detailed analysis of the R-matrix results reveals that the most intense resonances are related to odd-parity negative-ion states with dominant configurations 4p 5 5s5p 2 and 4p 5 4d5s6s. The measured excitation functions for the 2 P 1/2 and 4 P J states indicate a noticeable cascade population due to the radiative decay from high-lying autoionizing states. A comparative analysis with similar data for other alkali atoms is also presented.
Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus
Energy Technology Data Exchange (ETDEWEB)
Song, Minsoo; Yoon, Tai Hyun [Department of Physics, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)
2013-02-15
We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s{sup 2} {sup 1}S{sub 0}{r_reversible} 6s7s {sup 1}S{sub 0}) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm{sup 3} and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s{sup 1}S{sub 0} state via the intercombination 6s6p{sup 3}P{sub 1} state with a high signal-to-noise ratio even at the temperature of 340 Degree-Sign C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.
Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit
International Nuclear Information System (INIS)
Kasch, B; Hattermann, H; Cano, D; Judd, T E; Zimmermann, C; Kleiner, R; Koelle, D; Fortagh, J; Scheel, S
2010-01-01
We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near-field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom/solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.
Rhodes, Charles K.; Boyer, Keith
2004-02-17
An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.
Karpov, V. Ya.; Shpatakovskaya, G. V.
2017-03-01
An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr-Sommerfeld quantization rule within the Thomas-Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.
Energy Technology Data Exchange (ETDEWEB)
Karpov, V. Ya. [Bruk Institute of Electronic Control Machines (Russian Federation); Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation)
2017-03-15
An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electrons in an arbitrary atom.
Magnetic trapping of Rydberg atoms
Niestadt, D.; Naber, J.; Kokkelmans, S.J.J.M.F.; Spreeuw, R.J.C.
2016-01-01
Magnetic trapping is a well-established technique for ground state atoms. We seek to extend this concept to Rydberg atoms. Rydberg atoms are important for current visions of quantum simulators that will be used in the near future to simulate and analyse quantum problems. Current efforts in Amsterdam
Atomic interferometers in an optical lattice
International Nuclear Information System (INIS)
Pelle, Bruno
2013-01-01
The aim of the ForCa-G project, for Casimir force and short range Gravitation, lies into the measurement of short range forces between atoms and a mirror using atomic interferometry techniques. Particularly, the Casimir-Polder force and the pursuit of short range gravitational tests in the frame of potential deviations of Newton's law are aimed. This experiment is based on the trapping of neutral atoms in a 1D vertical optical lattice, where the energy eigenvalues of the Hamiltonian describing this system is the so-called Wannier-Stark ladder of discrete energy states localized in each lattice well. This work constitutes a demonstration of principle of this project with atoms set far from the mirror. Each energy state is thus separated from the one of the adjacent well by the potential energy increment between those two wells, called the Bloch frequency ν B . Then, atomic interferometers are realized in the lattice using Raman or microwave pulses where the trapped atomic wave functions are placed, and then recombined, in a superposition of states between different energy states localized either in the same well, either in adjacent wells. This work presents the study of different kinds of atomic interferometers in this optical lattice, characterized in terms of sensibility and systematic effects on the Bloch frequency measurement. One of the studied interferometers accessed to a sensitivity on the Bloch frequency of σ δ ν B /ν B =9.0x10 -6 at 1∼s in relative, which integrates until σ δ ν B /ν B =1. 10 -7 in 2800∼s. This corresponds to a state-of-the-art measurement of the gravity acceleration g for a trapped atomic gravimeter. (author)
Hydrogen atom in phase space: the Wigner representation
International Nuclear Information System (INIS)
Praxmeyer, Ludmila; Mostowski, Jan; Wodkiewicz, Krzysztof
2006-01-01
The hydrogen atom is a fundamental exactly soluble system for which the Wigner function, being a quantum analogue of the joint probability distribution of position and momentum, is unknown. In this paper, we present an effective method of calculating the Wigner function, for all bound states of the nonrelativistic hydrogen atom. The formal similarity between the eigenfunctions of the nonrelativistic hydrogen atom in the momentum representation and the Klein-Gordon propagator has allowed the calculation of the Wigner function for an arbitrary bound state of the hydrogen atom, using a simple atomic integral as a generator. These Wigner functions for some low-lying states are depicted and discussed
Beams made of twisted atoms: A theoretical analysis
Energy Technology Data Exchange (ETDEWEB)
Hayrapetyan, Armen [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, 69120 Heidelberg (Germany); Matula, Oliver [Physikalisches Institut, Ruprecht-Karls-Universitaet Heidelberg, 69120 Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Surzhykov, Andrey [Helmholtz-Institut Jena, 07743 Jena (Germany); Fritzsche, Stephan [Helmholtz-Institut Jena, 07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitaet Jena, 07743 Jena (Germany)
2014-07-01
We have analyzed Bessel beams of two-level atoms that are driven by a linearly polarized laser light. Based on the Schroedinger equation for two-level systems, we first determine the states of two-level atoms in a plane-wave field by taking into account propagation directions both of the atom and the field. For such laser-driven two-level atoms, we construct Bessel beams by going beyond the typical paraxial approximation. In particular, we show that the probability density of these atomic beams exhibits a non-trivial, Bessel-squared-type behavior. The profile of such twisted atoms is affected by atom and laser parameters, such as the nuclear charge, atom velocity, laser frequency, and propagation geometry of the atom and laser beams. Moreover, we spatially and temporally characterize the beam of hydrogen and selected (neutral) alkali-metal atoms that carry non-zero orbital angular momentum (OAM). The proposed spatiotemporal Bessel states (i) are able to describe twisted states of any two-level system which is driven by the radiation field and (ii) have potential applications in atomic and nuclear processes as well as in quantum communication.
Linear-chain model to explain density of states and Tsub(c) changes with atomic ordering
International Nuclear Information System (INIS)
Junod, A.
1978-01-01
The effect of long-range atomic order on the electronic density of states has been recalculated for the A15-type structure within the linear-chain model. It is found that a defect concentration c reduces the density of states at the Fermi level by a factor (1 + c/c 0 )(c/c 0 ) -3 [ln(1 + c/c 0 )] 3 . This result is in qualitative agreement with experimental data on the specific heat, magnetic susceptibility and superconducting transition temperature of V 3 Au. (author)
Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach
Energy Technology Data Exchange (ETDEWEB)
Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E., E-mail: stepanov@depni.sinp.msu.ru [Moscow State University, Faculty of Physics (Russian Federation); Tretyakova, T. Yu. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)
2015-12-15
Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even–even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even–even nuclei with a pair of identical nucleons in addition to the filled nuclear core is considered on the basis of delta interaction.
One Photon Can Simultaneously Excite Two or More Atoms.
Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore
2016-07-22
We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.
The influence of atomic alignment on absorption and emission spectroscopy
Zhang, Heshou; Yan, Huirong; Richter, Philipp
2018-06-01
Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in the universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionisation fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of PDRs in ρ Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability.
International Nuclear Information System (INIS)
Colonna, G.; Pietanza, L.D.; D’Ammando, G.
2012-01-01
Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.
Hydrogen atom moving across a magnetic field
International Nuclear Information System (INIS)
Lozovik, Yu.E.; Volkov, S.Yu.
2004-01-01
A hydrogen atom moving across a magnetic field is considered in a wide region of magnitudes of magnetic field and atom momentum. We solve the Schroedinger equation of the system numerically using an imaginary time method and find wave functions of the lowest states of atom. We calculate the energy and the mean electron-nucleus separation as a function of atom momentum and magnetic field. All the results obtained could be summarized as a phase diagram on the 'atom-momentum - magnetic-field' plane. There are transformations of wave-function structure at critical values of atom momentum and magnetic field that result in a specific behavior of dependencies of energy and mean interparticle separation on the atom momentum P. We discuss a transition from the Zeeman regime to the high magnetic field regime. A qualitative analysis of the complicated behavior of wave functions vs P based on the effective potential examination is given. We analyze a sharp transition at the critical momentum from a Coulomb-type state polarized due to atom motion to a strongly decentered (Landau-type) state at low magnetic fields. A crossover occurring at intermediate magnetic fields is also studied
A versatile atomic number correction for electron-probe microanalysis
International Nuclear Information System (INIS)
Love, G.; Cox, M.G.; Scott, V.D.
1978-01-01
A new atomic number correction is proposed for quantitative electron-probe microanalysis. Analytical expressions for the stopping power S and back-scatter R factors are derived which take into account atomic number of the target, incident electron energy and overvoltage; the latter expression is established using Monte Carlo calculations. The correct procedures for evaluating S and R for multi-element specimens are described. The new method, which overcomes some limitations inherent in earlier atomic number corrections, may readily be used where specimens are inclined to the electron beam. (author)
Natarajan, Vasant
2015-01-01
Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...
Atomic physics of strongly correlated systems
International Nuclear Information System (INIS)
Lin, C.D.
1986-01-01
This abstract summarizes the progress made in the last year and the future plans of our research in the study of strongly correlated atomic systems. In atomic structure and atomic spectroscopy we are investigating the classification and supermultiplet structure of doubly excited states. We are also beginning the systematic study of triply excited states. In ion-atom collisions, we are exploring an AO-MO matching method for treating multi-electron collision systems to extract detailed information such as subshell cross sections, alignment and orientation parameters, etc. We are also beginning ab initio calculations on the angular distributions for electron transfer processes in low-energy (about 10-100eV/amu) ion-atom collisions in a full quantum mechanical treatment of the motion of heavy particles
Bose-Einstein condensation of atomic gases
International Nuclear Information System (INIS)
Anglin, J. R.; Ketterle, W.
2003-01-01
The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three longstanding goals. First, cooling of neutral atoms into their motional state, thus subjecting them to ultimate control, limited only by Heisenberg uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum states, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum degenerate gases has grown, and now includes metastable and fermionic atoms. condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions. (author)
Energy Technology Data Exchange (ETDEWEB)
Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey)]. E-mail: yalcin@gazi.edu.tr; Gurler, O. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gultekin, A. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gundogdu, O. [School of Engineering, University of Surrey, Guildford, GU2 7XH (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk
2006-07-31
In this Letter, an expression is presented to calculate elastic scattering cross sections for incident electrons as a function of both energy and atomic number in the energy range between 1 keV and 1 MeV for materials with effective atomic number between 3 and 18. The expression we present has a rather simple analytical form which gives accurate results that are in very good agreement with the results calculated by a relativistic partial-wave expansion method. Hence, this equation can be employed accurately and efficiently in a continuous manner, without the need to go through rather large look-up tables, thus making the whole process quick, efficient and removing possible computational errors that may arise from the efforts of interpolation.
International Nuclear Information System (INIS)
Yalcin, S.; Gurler, O.; Gultekin, A.; Gundogdu, O.
2006-01-01
In this Letter, an expression is presented to calculate elastic scattering cross sections for incident electrons as a function of both energy and atomic number in the energy range between 1 keV and 1 MeV for materials with effective atomic number between 3 and 18. The expression we present has a rather simple analytical form which gives accurate results that are in very good agreement with the results calculated by a relativistic partial-wave expansion method. Hence, this equation can be employed accurately and efficiently in a continuous manner, without the need to go through rather large look-up tables, thus making the whole process quick, efficient and removing possible computational errors that may arise from the efforts of interpolation
Simulation of coherent interactions between Rydberg atoms
International Nuclear Information System (INIS)
Robicheaux, F.; Hernandez, J.V.; Topcu, T.; Noordam, L.D.
2004-01-01
The results of a theoretical investigation of the coherent interaction between many Rydberg atoms are reported. The atoms are assumed to move very little during the time range we investigate. We describe the basic interaction between atoms and show that (contrary to previous theoretical studies) the interaction between the atoms can be coherent. The band structure for a perfect lattice of atoms and the density of states for an amorphous distribution of atoms are presented. We also give results for when the atoms are roughly positioned in a lattice. Finally, we performed detailed calculations to understand when the Rydberg interactions are too strong for an essential states type of approximation. The relevance of our results to previous measurements in a Rydberg gas and to possible future experiments is discussed
Loquet, Antoine; Tolchard, James; Berbon, Melanie; Martinez, Denis; Habenstein, Birgit
2017-09-17
Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13 C/ 15 N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.
Subwavelength atom localization via coherent population trapping
International Nuclear Information System (INIS)
Agarwal, G S; Kapale, K T
2006-01-01
We present an atom localization scheme based on coherent population trapping. We consider atomic transitions in a Lambda configuration where the control field is a standing-wave field. The probe field and the control field produce coherence between the two ground states and prepare the atom in a pure state. We show that the population in one of the ground states has the same fringe pattern as produced by a Fabry-Perot interferometer and thus measurement of this population would localize the atom. Interestingly enough the role of the cavity finesse is played by the ratio of the intensities of the pump and probe. This is in fact the reason for obtaining extreme subwavelength localization
Electron - atom bremsstrahlung
International Nuclear Information System (INIS)
Kim, L.
1986-01-01
Features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas are studied. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point-Coulomb potential and screened potentials are obtained using a classical numerical method. Results agree with exact quantum-mechanical partial-wave results for low incident electron energies in both the point-Coulomb and screened potentials. In the screened potential, the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. The scaling properties of bremsstrahlung spectra and energy losses were also studied. It was found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T 1 /Z 2 . This scaling is exact in the case of the point-Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. Bremsstrahlung from atoms in hot dense plasmas were also studied describing the atomic potentials by the temperature-and-density dependent Thomas-Fermi mode. Gaunt factors were obtained with the relativistic partial-wave method for atoms in plasmas of various densities and temperatures
International Nuclear Information System (INIS)
Ito, Rinsuke; Tabata, Tatsuo; Shirai, Toshizo; Phaneuf, R.A.
1995-07-01
Analytic expressions fitted to Barnett's recommended data are given for the collision cross sections of H, H 2 , He, and Li atoms and ions colliding with atoms and molecules. The collisions treated are ionization collisions, charge-production collisions, electron-loss collisions, and electron detachment collisions. The analytic expressions use the semiempirical functional forms proposed by Green and McNeal and some modified forms to make it possible not only to interpolate but also to extrapolate the recommended data. (author)
Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide
Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman
2016-01-01
Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden–Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure. PMID:27578622
Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide.
Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J; Schlom, Darrell G; Alem, Nasim; Gopalan, Venkatraman
2016-08-31
Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.
Nonlinear spectroscopy of the Rydberg atoms
International Nuclear Information System (INIS)
Delone, N.B.; Krajnov, V.P.; Shepelyanskij, D.L.
1984-01-01
The results of investigation into perturbation of Rydberg states (RS) of atoms in an outer alternating field (OAF) are discussed. Both highly excited states of hydrogen atom at the energy Esub(n)=-1/2n -2 (n>>1 - basic quantum number) and excited states of compound atoms with energy Esub(nl)=-1/2(n*) -2 where n*=n-delta sub(e)-effective basic quantum number, delta sub(e)-quantum defect, are implied by RS. Perturbation of atomic state in the OAF is determined not only by field strength E, but by its frequency ω as well. During OAF inclusion the initial state Esub(lambda) transits to quasienergetic at the energy Esub(lambda)(E)+-kω, where K=0, +-1, +-2, .... Solutions of the problem of quasienergetic level population is obtained only for some simple particular cases. A simple case, when a real multilevel atom is replaced by a model system comprising one bound electron state with the basic quantum number n-model of the insulated level (MIL) is considered. Conditions of MIL applicability are discussed. Estimation of critical OAF strength at which MIL approximation becomes faulty are discussed. It is stated that any consideration of RS perturbation in OAF claiming to exceeding MIL frames should comprise consideration of ionization processes. If one keeps to the frames of OAF; the strength of which is lower than the determined critical values then MIL is true and use of this model permits to correctly describe the main features of RS perturbation in an alternating field
Elementary Atom Interaction with Matter
Mrowczynski, Stanislaw
1998-01-01
The calculations of the elementary atom (the Coulomb bound state of elementary particles) interaction with the atom of matter, which are performed in the Born approximation, are reviewed. We first discuss the nonrelativistic approach and then its relativistic generalization. The cross section of the elementary atom excitation and ionization as well as the total cross section are considered. A specific selection rule, which applies for the atom formed as positronium by particle-antiparticle pa...
International Nuclear Information System (INIS)
Dedina, Jiri
2007-01-01
approach, trapping on quartz surfaces in an excess of oxygen with subsequent atomization in multiatomizer or in conventional quartz tubes, is very promising. It requires only simple and cheap equipment. The potential to reach very low detection limits is even better than for in-situ trapping in GF. However, it is a novel method which will have to be tested more extensively before it can considered to be a tool for routine analysis. Almost all the applications of AFS employ a miniature diffusion flame for the atomization. The alternative, the flame-in-gas-shield atomizer, is more complicated but it offers a substantially better signal to noise ratio. The current state-of-the-art of all individual atomizers, including advantages, drawbacks and perspectives, is recapitulated in detail. Also the most recent knowledge of the mechanism of processes taking place in the atomizers is treated
Directory of Open Access Journals (Sweden)
Elizabeth R Cattaneo
Full Text Available In mammalian cells, de novo glycerolipid synthesis begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferases (GPAT. GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions, and overexpressed in several types of cancers and cancer-derived human cell lines where its expression contributes to the tumor phenotype. Using gene silencing and atomic force microscopy, we studied the correlation between GPAT2 expression and cell surface topography, roughness and membrane permeability in MDA-MB-231 cells. In addition, we analyzed the glycerolipid composition by gas-liquid chromatography. GPAT2 expression altered the arachidonic acid content in glycerolipids, and the lack of GPAT2 seems to be partially compensated by the overexpression of another arachidonic-acid-metabolizing enzyme, AGPAT11. GPAT2 expressing cells exhibited a rougher topography and less membrane damage than GPAT2 silenced cells. Pore-like structures were present only in GPAT2 subexpressing cells, correlating with higher membrane damage evidenced by lactate dehydrogenase release. These GPAT2-induced changes are consistent with its proposed function as a tumor-promoting gene, and might be used as a phenotypic differentiation marker. AFM provides the basis for the identification and quantification of those changes, and demonstrates the utility of this technique in the study of cancer cell biology.
Atomic switches: atomic-movement-controlled nanodevices for new types of computing
International Nuclear Information System (INIS)
Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu
2011-01-01
Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. (topical review)
DEFF Research Database (Denmark)
Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.
2016-01-01
We have developed an efficient computational method to treat long, one-dimensional systems of strongly-interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete...... demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly-perfect state transfer....
Continuum states in ion-atom collisions
Energy Technology Data Exchange (ETDEWEB)
Garibotti, C.R. (Centro Atomico Bariloche and CONICET (Argentina)); Barrachina, R.O. (Centro Atomico Bariloche and CONICET (Argentina))
1994-03-01
We review the experimental and theoretical situation for ionization collisions of nude ions with neutral gas atoms, at intermediate and high impact energies. We consider particularly that part of the electron spectrum where emission is larger, corresponding to the joint action to the two ions. We discuss the evidence of this two-center interaction and how it is described by current theories. (orig.)
Spatial EPR entanglement in atomic vapor quantum memory
Parniak, Michal; Dabrowski, Michal; Wasilewski, Wojciech
Spatially-structured quantum states of light are staring to play a key role in modern quantum science with the rapid development of single-photon sensitive cameras. In particular, spatial degree of freedom holds a promise to enhance continous-variable quantum memories. Here we present the first demonstration of spatial entanglement between an atomic spin-wave and a photon measured with an I-sCMOS camera. The system is realized in a warm atomic vapor quantum memory based on rubidium atoms immersed in inert buffer gas. In the experiment we create and characterize a 12-dimensional entangled state exhibiting quantum correlations between a photon and an atomic ensemble in position and momentum bases. This state allows us to demonstrate the Einstein-Podolsky-Rosen paradox in its original version, with an unprecedented delay time of 6 μs between generation of entanglement and detection of the atomic state.
Manipulation of single neutral atoms in optical lattices
International Nuclear Information System (INIS)
Zhang Chuanwei; Das Sarma, S.; Rolston, S. L.
2006-01-01
We analyze a scheme to manipulate quantum states of neutral atoms at individual sites of optical lattices using focused laser beams. Spatial distributions of focused laser intensities induce position-dependent energy shifts of hyperfine states, which, combined with microwave radiation, allow selective manipulation of quantum states of individual target atoms. We show that various errors in the manipulation process are suppressed below 10 -4 with properly chosen microwave pulse sequences and laser parameters. A similar idea is also applied to measure quantum states of single atoms in optical lattices
Ionisation of hydrogen-like atoms by a multiphoton absorption process
International Nuclear Information System (INIS)
Gontier, Y.; Trahin, M.
1967-01-01
The general expression for the amplitude of the probability of ionisation by a multiphoton absorption process is derived. Its non-relativistic limit is taken and the bipolar approximation is used for calculating the ionisation cross-section of hydrogen-like atoms. This latter involves the summation over intermediate virtual states by means of: a) a recursion relationship concerning angular functions, b) a particular technique which when applied to radial functions makes it possible to solve a system of inhomogeneous first-order differential equations. (authors) [fr
On-line system for investigation of atomic structure
International Nuclear Information System (INIS)
Amus'ya, M.Ya.; Chernysheva, L.V.
1983-01-01
A description of the on-line ATOM system is presented that enables to investigate the structure of atomic electron shells and their interactions with different scattering particles-electrons, positronse photons, mesons - with the use of computerized numerical solutions. The problem is stated along with mathematical description of atomic properties including theoretical and numerical models for each investigated physical process. The ATOM system structure is considered. The Hartree-Fock method is used to determine the wave functions of the ground and excited atomic states. The programs are written in the ALGOL langauge. Different atomic characteristics were possible to be calculated for the first time with an accuracy exceeding an experimental one
Energy Technology Data Exchange (ETDEWEB)
Wang, Liangbing; Li, Hongliang; Zhang, Wenbo; Zhao, Xiao; Qiu, Jianxiang; Li, Aowen; Zheng, Xusheng; Zeng, Jie [Hefei National Lab. for Physical Sciences at the Microscale, Key Lab. of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei, Anhui(China); Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui (China); Hu, Zhenpeng [School of Physics, Nankai University, Tianjin (China); Si, Rui [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China)
2017-04-18
Supported metal nanocrystals have exhibited remarkable catalytic performance in hydrogen generation reactions, which is influenced and even determined by their supports. Accordingly, it is of fundamental importance to determine the direct relationship between catalytic performance and metal-support interactions. Herein, we provide a quantitative profile for exploring metal-support interactions by considering the highest occupied state in single-atom catalysts. The catalyst studied consisted of isolated Rh atoms dispersed on the surface of VO{sub 2} nanorods. It was observed that the activation energy of ammonia-borane hydrolysis changed when the substrate underwent a phase transition. Mechanistic studies indicate that the catalytic performance depended directly on the highest occupied state of the single Rh atoms, which was determined by the band structure of the substrates. Other metal catalysts, even with non-noble metals, that exhibited significant catalytic activity towards NH{sub 3}BH{sub 3} hydrolysis were rationally designed by adjusting their highest occupied states. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases
Directory of Open Access Journals (Sweden)
N. Boichenko
2015-12-01
Full Text Available We have studied conditions of photon Bose-Einstein condensate formation that is in thermodynamic equilibrium with ideal gas of two-level Bose atoms below the degeneracy temperature. Equations describing thermodynamic equilibrium in the system were formulated; critical temperatures and densities of photonic and atomic gas subsystems were obtained analytically. Coexistence conditions of these photonic and atomic Bose-Einstein condensates were found. There was predicted the possibility of an abrupt type of photon condensation in the presence of Bose condensate of ground-state atoms: it was shown that the slightest decrease of the temperature could cause a significant gathering of photons in the condensate. This case could be treated as a simple model of the situation known as "stopped light" in cold atomic gas. We also showed how population inversion of atomic levels can be created by lowering the temperature. The latter situation looks promising for light accumulation in atomic vapor at very low temperatures.
International Nuclear Information System (INIS)
Lane, N.F.
1989-01-01
The theoretical atomic and molecular physics program at Rice University addresses basic questions about the collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on inelastic collision processes that are important in understanding energy and ionization balance in disturbed gases and plasmas. Emphasis is placed on systems and processes where some experimental information is available or where theoretical results may be expected to stimulate new measurements. Examples of current projects include: excitation and charge-transfer processes; orientation and alignment of excited states following collisions; Rydberg atom collisions with atoms and molecules; Penning ionization and ion-pair formation in atom-atom collisions; electron-impact ionization in dense, high-temperature plasmas; electron-molecule collisions; and related topics
Atomic and molecular beams production and collimation
Lucas, Cyril Bernard
2013-01-01
Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers
International Nuclear Information System (INIS)
Li Ke; Ling Weijun
2011-01-01
The information entropy properties of the atoms of coupled Λ-type three-level atoms interacting with coherent field are studied by means of quantum theory, and discussed the time evolutions of the information entropy of the atoms via the average photon number, initial state of the atoms, detuning, coupling constant between the atoms and the coefficient of Kerr medium. Numerical calculation results show that the time evolutions of the information entropy properties of the atoms strongly dependent on the initial state of the system and the average photon number. Detuning, coupling constant between the atoms and the Kerr coefficient still make influence on the information entropy of the atoms. (authors)
Suppression of Rabi oscillations for moving atoms
International Nuclear Information System (INIS)
Navarro, B.; Egusquiza, I. L.; Muga, J. G.; Hegerfeldt, G. C.
2003-01-01
The well-known laser-induced Rabi oscillations of a two-level atom are shown to be suppressed under certain conditions when the atom is entering a laser-illuminated region. For temporal Rabi oscillations the effect has two regimes: a first classical-like one, taking place at intermediate atomic velocities, and a second purely quantum case at low velocities. The classical regime is associated with the formation of incoherent internal states of the atom in the laser region, whereas in the quantum, low velocity regime the laser projects the atom onto a pure internal state that can be controlled by detuning. Spatial Rabi oscillations are only suppressed in this low velocity, quantum regime
Electron scattering by trapped fermionic atoms
International Nuclear Information System (INIS)
Wang Haijun; Jhe, Wonho
2002-01-01
Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems
Synthesis of antihydrogen atoms in a CUSP trap
Energy Technology Data Exchange (ETDEWEB)
Kuroda, Naofumi, E-mail: kuroda@phys.c.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Enomoto, Yoshinori [RIKEN Advanced Science Institute (Japan); Michishio, Koji [Tokyo University of Science, Department of Physics (Japan); Kim, Chanhyoun [University of Tokyo, Graduate School of Arts and Sciences (Japan); Higaki, Hiroyuki [Hiroshima University, Graduate School of Advanced Science of Matter (Japan); Nagata, Yugo; Kanai, Yasuyuki [RIKEN Advanced Science Institute (Japan); Torii, Hiroyuki A. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Corradini, Maurizzio; Leali, Marco; Lodi-Rizzini, Evandro; Mascagna, Valerio; Venturelli, Luca; Zurlo, Nicola [Universita di Brescia and Instituto Nazionale di Fisica Nucleare, Dipartimento di Chimica e Fisica per l' Ingegneria e per i Materiali (Italy); Fujii, Koki; Ohtsuka, Miki; Tanaka, Kazuo [University of Tokyo, Graduate School of Arts and Sciences (Japan); Imao, Hiroshi [RIKEN Nishina Center for Accelerator-Based Science (Japan); Nagashima, Yasuyuki [Tokyo University of Science, Department of Physics (Japan); Matsuda, Yasuyuki [University of Tokyo, Graduate School of Arts and Sciences (Japan); and others
2012-05-15
ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. Recently, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. It is expected that synthesized antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are not focused, resulting in the formation of a spin-polarized antihydrogen beam. We report the recent results of antihydrogen atom synthesis and beam production developed with the CUSP trap.
Synthesis of antihydrogen atoms in a CUSP trap
International Nuclear Information System (INIS)
Kuroda, Naofumi; Enomoto, Yoshinori; Michishio, Koji; Kim, Chanhyoun; Higaki, Hiroyuki; Nagata, Yugo; Kanai, Yasuyuki; Torii, Hiroyuki A.; Corradini, Maurizzio; Leali, Marco; Lodi-Rizzini, Evandro; Mascagna, Valerio; Venturelli, Luca; Zurlo, Nicola; Fujii, Koki; Ohtsuka, Miki; Tanaka, Kazuo; Imao, Hiroshi; Nagashima, Yasuyuki; Matsuda, Yasuyuki
2012-01-01
ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. Recently, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. It is expected that synthesized antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are not focused, resulting in the formation of a spin-polarized antihydrogen beam. We report the recent results of antihydrogen atom synthesis and beam production developed with the CUSP trap.
Optics with an Atom Laser Beam
International Nuclear Information System (INIS)
Bloch, Immanuel; Koehl, Michael; Greiner, Markus; Haensch, Theodor W.; Esslinger, Tilman
2001-01-01
We report on the atom optical manipulation of an atom laser beam. Reflection, focusing, and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin flip in the inhomogeneous magnetic field. More than 98% of the incident atom laser beam is reflected specularly
Asymptotic inference in system identification for the atom maser.
Catana, Catalin; van Horssen, Merlijn; Guta, Madalin
2012-11-28
System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.
Friedrich, Harald
2017-01-01
This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...
Dissipation induced asymmetric steering of distant atomic ensembles
Cheng, Guangling; Tan, Huatang; Chen, Aixi
2018-04-01
The asymmetric steering effects of separated atomic ensembles denoted by the effective bosonic modes have been explored by the means of quantum reservoir engineering in the setting of the cascaded cavities, in each of which an atomic ensemble is involved. It is shown that the steady-state asymmetric steering of the mesoscopic objects is unconditionally achieved via the dissipation of the cavities, by which the nonlocal interaction occurs between two atomic ensembles, and the direction of steering could be easily controlled through variation of certain tunable system parameters. One advantage of the present scheme is that it could be rather robust against parameter fluctuations, and does not require the accurate control of evolution time and the original state of the system. Furthermore, the double-channel Raman transitions between the long-lived atomic ground states are used and the atomic ensembles act as the quantum network nodes, which makes our scheme insensitive to the collective spontaneous emission of atoms.
Inferring metabolic states in uncharacterized environments using gene-expression measurements.
Directory of Open Access Journals (Sweden)
Sergio Rossell
Full Text Available The large size of metabolic networks entails an overwhelming multiplicity in the possible steady-state flux distributions that are compatible with stoichiometric constraints. This space of possibilities is largest in the frequent situation where the nutrients available to the cells are unknown. These two factors: network size and lack of knowledge of nutrient availability, challenge the identification of the actual metabolic state of living cells among the myriad possibilities. Here we address this challenge by developing a method that integrates gene-expression measurements with genome-scale models of metabolism as a means of inferring metabolic states. Our method explores the space of alternative flux distributions that maximize the agreement between gene expression and metabolic fluxes, and thereby identifies reactions that are likely to be active in the culture from which the gene-expression measurements were taken. These active reactions are used to build environment-specific metabolic models and to predict actual metabolic states. We applied our method to model the metabolic states of Saccharomyces cerevisiae growing in rich media supplemented with either glucose or ethanol as the main energy source. The resulting models comprise about 50% of the reactions in the original model, and predict environment-specific essential genes with high sensitivity. By minimizing the sum of fluxes while forcing our predicted active reactions to carry flux, we predicted the metabolic states of these yeast cultures that are in large agreement with what is known about yeast physiology. Most notably, our method predicts the Crabtree effect in yeast cells growing in excess glucose, a long-known phenomenon that could not have been predicted by traditional constraint-based modeling approaches. Our method is of immediate practical relevance for medical and industrial applications, such as the identification of novel drug targets, and the development of
Strong light-matter coupling from atoms to solid-state systems
2014-01-01
The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...
5. International workshop on autoionization phenomena in atoms. Abstracts
International Nuclear Information System (INIS)
Balashov, V.V.
1995-01-01
Summaries of the reports presented at the 5 International Workshop on Autoionization Phenomena in Atoms (Dubna, 12-14 December 1995). The main topics of these 53 reports are the following ones: photoexcitation of autoionizing states in atoms and ions, autoionization in electron-atom collisions, autoionization in heavy particle collisions, coincidence experiments in autoionization studies, investigations of autoionizing states with lasers and wave functions and decay characteristics of autoionizing states
Analysis of radioactive-matter interaction near thermodynamical equilibrium states
International Nuclear Information System (INIS)
Damamme, G.
1993-01-01
We study the absorption/emission process of photon by matter in the framework of a radiativo-collisionnal model of atom, a thermodynamical approach being used. The considered matter description is the atomic sphere one. First we give the expression of the balance equation around an equilibrium state. Then we express the atomic populations in function of the characteristics of the radiation and of the free electrons and of their time history. This permit us to interpret the photon balance as being due to true emission/absorption process of photons as well as fluorescence terms, all these processes being affected by relaxation effects. The total energy balance between matter and radiation can also be analyzed in the same way and conduct to introduce one photon effective interactions terms for each radiative proper mode, terms also affected by retardation effects. Such a taking into account of atom populations has no consequence on the radiative flux equation (i.e. the transfer opacity) but can considerably modify the energy balance between matter and radiation. (author). 11 refs., 3 figs
Experiments with cold hydrogen atoms
International Nuclear Information System (INIS)
Leonas, V.B.
1981-01-01
Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received
International Nuclear Information System (INIS)
Rangelov, J.M.
1986-01-01
An electron model is proposed explaining the physical reasons for its nonrelativistic quantum-mechanical behaviour, the origin of its own mechanical and magnetic momentum and field energy. As an example the main electron state in hydrogen atom is obtained
Site occupation state of deuterium atoms in fcc Fe
International Nuclear Information System (INIS)
Aoki, Katsutoshi; Machida, Akihiko; Saitoh, Hiroyuki; Hattori, Takanori; Sano-Furukawa, Asami
2015-01-01
The deuterization process of fcc Fe to form solid-solution fcc FeD x was investigated by in situ neutron diffraction measurements at high temperature and high pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy the octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition x of 0.64(1). During deuterization, the metal-lattice expands approximately linearly with deuterium composition at a rate of 2.21 Å 3 per deuterium atom. The minor occupation of tetrahedral site is likely driven by the intersite movement of deuterium atoms along the <111> direction in the fcc metal lattice. These results provide implications for the light elements in the Earth's core and the mechanism of hydrogen embrittlement of ferrous metals. (author)
Optical model theory of elastic electron- and positron-atom scattering at intermediate energies
International Nuclear Information System (INIS)
Joachain, C.J.
1977-01-01
It is stated that the basic idea of the optical model theory is to enable analysis of the elastic scattering of a particle from a complex target by replacing the complicated interactions between the beam and the target by an optical potential, or pseudopotential, in which the incident particle moves. Once the optical potential is determined the original many-body elastic scattering problem reduces to a one-body situation. The resulting optical potential is, however, a very complicated operator, and the formal expressions obtained from first principles for the optical potential can only be evaluated approximately in a few simple cases, such as high energy elastic hadron-nucleus scattering, for the the optical potential can be expressed in terms of two-body hadron-nucleon amplitudes, and the non-relativistic elastic scattering of fast charged particles by atoms. The elastic scattering of an electron or positron by a neutral atom at intermediate energies is here considered. Exchange effects between the projectile and the atomic electrons are considered; also absorption and polarisation effects. Applications of the full-wave optical model have so far only been made to the elastic scattering of fast electrons and positrons by atomic H, He, Ne, and Ar. Agreements of the optical model results with absolute measurements of differential cross sections for electron scattering are very good, an agreement that improves as the energy increases, but deteriorates quickly as the incident energy becomes lower than 50 eV for atomic H or 100 eV for He. For more complex atoms the optical model calculations also appear very encouraging. With regard to positron-atom elastic scattering the optical model results for positron-He scattering differ markedly at small angles from the corresponding electron-He values. It would be interesting to have experimental angular distributions of positron-atom elastic scattering in order to check predictions of the optical model theory. (U.K.)
Photoionization of atoms and molecules
International Nuclear Information System (INIS)
Samson, J.A.R.
1976-01-01
A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed
Wigner’s phase-space function and atomic structure: II. Ground states for closed-shell atoms
DEFF Research Database (Denmark)
Springborg, Michael; Dahl, Jens Peder
1987-01-01
We present formulas for reduced Wigner phase-space functions for atoms, with an emphasis on the first-order spinless Wigner function. This function can be written as the sum of separate contributions from single orbitals (the natural orbitals). This allows a detailed study of the function. Here we...... display and analyze the function for the closed-shell atoms helium, beryllium, neon, argon, and zinc in the Hartree-Fock approximation. The quantum-mechanical exact results are compared with those obtained with the approximate Thomas-Fermi description of electron densities in phase space....
Moscow State University physics alumni and the Soviet Atomic Project
International Nuclear Information System (INIS)
Kiselev, Gennadii V
2005-01-01
In this paper, two closely related themes are addressed: (1) the role that M V Lomonosov Moscow State University (MSU) played in training specialists in physics for the Soviet Atomic Project, and (2) what its alumni contributed to the development of thermonuclear weapons. In its earlier stages, the Soviet Atomic Project was in acute need of qualified personnel, without whom building nuclear and thermonuclear weapons would be an impossible task, and MSU became a key higher educational institution grappled with the training problem. The first part of the paper discusses the efforts of the leading Soviet scientists and leaders of FMD (First Main Directorate) to organize the training of specialists in nuclear physics at the MSU Physics Department and, on the other hand, to create a new Physics and Technology Department at the university. As a result, a number of Soviet Government's resolutions were prepared and issued, part of which are presented in the paper and give an idea of the large-scale challenges this sphere of education was facing at the time. Information is presented for the first time on the early MSU Physics Department graduates in the structure of matter, being employed in the FMD organizations and enterprises from 1948 to 1951. The second part discusses the contribution to the development of thermonuclear weapons by the teams of scientists led by Academicians I E Tamm, A N Tikhonov, and I M Frank, and including MSU physics alumni. The paper will be useful to anyone interested in the history of Russian physics. (from the history of physics)
Alastuey, A; Ballenegger, V
2012-12-01
We compute thermodynamical properties of a low-density hydrogen gas within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential. Our calculations are done using the exact scaled low-temperature (SLT) expansion, which provides a rigorous extension of the well-known virial expansion-valid in the fully ionized phase-into the Saha regime where the system is partially or fully recombined into hydrogen atoms. After recalling the SLT expansion of the pressure [A. Alastuey et al., J. Stat. Phys. 130, 1119 (2008)], we obtain the SLT expansions of the chemical potential and of the internal energy, up to order exp(-|E_{H}|/kT) included (E_{H}≃-13.6 eV). Those truncated expansions describe the first five nonideal corrections to the ideal Saha law. They account exactly, up to the considered order, for all effects of interactions and thermal excitations, including the formation of bound states (atom H, ions H^{-} and H_{2}^{+}, molecule H_{2},⋯) and atom-charge and atom-atom interactions. Among the five leading corrections, three are easy to evaluate, while the remaining ones involve well-defined internal partition functions for the molecule H_{2} and ions H^{-} and H_{2}^{+}, for which no closed-form analytical formula exist currently. We provide accurate low-temperature approximations for those partition functions by using known values of rotational and vibrational energies. We compare then the predictions of the SLT expansion, for the pressure and the internal energy, with, on the one hand, the equation-of-state tables obtained within the opacity program at Livermore (OPAL) and, on the other hand, data of path integral quantum Monte Carlo (PIMC) simulations. In general, a good agreement is found. At low densities, the simple analytical SLT formulas reproduce the values of the OPAL tables up to the last digit in a large range of temperatures, while at higher densities (ρ∼10^{-2} g/cm^{3}), some
Relaxation and final-state structure in XPS of atoms, molecules, and metals
International Nuclear Information System (INIS)
Shirley, D.A.; Martin, R.L.; McFeely, F.R.; Kowalczyk, S.P.; Ley, L.
1975-03-01
Photoemission from a many-electron system is a many-electron process, even though the transition operator may affect only one electron directly. Relaxation and ''shake-up'' structure are related by a sum rule. When one is present, the other must be also. Shake-up structure is shown to be accurately predictable in atomic neon and molecular HF if the CI calculations are done carefully. In metals the sum rule also applies but final-state effects usually appear as relaxation energy, which is large even for valence electrons. Finally, in rare-earth metals discrete shake-up structure is observable in the 4p region. (7 figs, 30 refs) (auth)
Superradiance of several atoms near a metal nanosphere
International Nuclear Information System (INIS)
Protsenko, I E; Uskov, A V
2015-01-01
Assuming that the number of emitters (atoms) near a spherical metal nanoparticle is large (more than a few hundred), so that their interaction with each other is strong and sufficient for the emergence of their collective states (Dicke states), it is shown that the nanoparticle accelerates the superradiance of the emitters in a similar way as it accelerates the spontaneous emission of a single emitter. In this case, part of the energy stored by the emitters is absorbed by a nanoparticle, and the rest of the energy is radiated as a superradiance pulse. For the parameters selected in this paper, the energy absorbed by the nanoparticle is approximately equal to the emitted energy. We have found the collective states of the emitters and nanoparticle and have derived expressions for the time dependence of the superradiance pulse power, pulse duration and time delay with respect to the moment of excitation of the emitters. (superradiance)
Distribution of quantum information between an atom and two photons
International Nuclear Information System (INIS)
Weber, Bernhard
2008-01-01
The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)
Distribution of quantum information between an atom and two photons
Energy Technology Data Exchange (ETDEWEB)
Weber, Bernhard
2008-11-03
The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)
Contribution of Bound States to the Harmonic Generation in Hydrogen at Moderate Laser Intensities
National Research Council Canada - National Science Library
Davis, Jack
2002-01-01
.... The disappearance of bound parabolic states with large electric dipole moments in moderately strong fields leads to the simplification of the expression for the total time-dependent dipole moment of the atom...
Fermionic Collective Excitations in a Lattice Gas of Rydberg Atoms
International Nuclear Information System (INIS)
Olmos, B.; Gonzalez-Ferez, R.; Lesanovsky, I.
2009-01-01
We investigate the many-body quantum states of a laser-driven gas of Rydberg atoms confined to a large spacing ring lattice. If the laser driving is much stronger than the van der Waals interaction among the Rydberg atoms, these many-body states are collective fermionic excitations. The first excited state is a spin wave that extends over the entire lattice. We demonstrate that our system permits us to study fermions in the presence of disorder although no external atomic motion takes place. We analyze how this disorder influences the excitation properties of the fermionic states. Our work shows a route towards the creation of complex many-particle states with atoms in lattices.
Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms
International Nuclear Information System (INIS)
Juzeliunas, Gediminas; Ruseckas, Julius; Dalibard, Jean
2010-01-01
We study the possibility for generating a new type of spin-orbit coupling for the center-of-mass motion of cold atoms, using laser beams that resonantly couple N atomic internal ground states to an extra state. After a general analysis of the scheme, we concentrate on the tetrapod setup (N=4) where the atomic state can be described by a three-component spinor, evolving under the action of a Rashba-Dresselhaus-type spin-orbit coupling for a spin 1 particle. We illustrate a consequence of this coupling by studying the negative refraction of atoms at a potential step and show that the amplitude of the refracted beam is significantly increased in comparison to the known case of spin 1/2 Rashba-Dresselhaus coupling. Finally, we explore a possible implementation of this tetrapod setup, using stimulated Raman couplings between Zeeman sublevels of the ground state of alkali-metal atoms.
Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.
Radiative processes of two entangled atoms in cosmic string spacetime
Cai, Huabing; Ren, Zhongzhou
2018-01-01
We investigate the radiative processes of two static two-level atoms in a maximally entangled state coupled to vacuum electromagnetic field in the cosmic string spacetime. We find that the decay rate from the entangled state to the ground state crucially depends on the atomic separation, the polarization directions of the individual atoms, the atom-string distance and the deficit angle induced by the string. As the atom-string distance increases, the decay rate oscillates around the result in Minkowski spacetime and the amplitude gradually decreases. The oscillation is more severe for larger planar angle deficit. We analyze the decay rate in different circumstances such as near zone and specific polarization cases. Some comparisons between symmetric and antisymmetric states are performed. By contrast with the case in Minkowski spacetime, we can reveal the effects of the cosmic string on the radiative properties of the entangled atoms.
Gauss Sum Factorization with Cold Atoms
International Nuclear Information System (INIS)
Gilowski, M.; Wendrich, T.; Mueller, T.; Ertmer, W.; Rasel, E. M.; Jentsch, Ch.; Schleich, W. P.
2008-01-01
We report the first implementation of a Gauss sum factorization algorithm by an internal state Ramsey interferometer using cold atoms. A sequence of appropriately designed light pulses interacts with an ensemble of cold rubidium atoms. The final population in the involved atomic levels determines a Gauss sum. With this technique we factor the number N=263193
International Nuclear Information System (INIS)
Yuan Lin; Zhou Ben-Hu; Zhao Yun-Hui; Xu Jun; Hai Wen-Hua
2012-01-01
A variational-integral perturbation method (VIPM) is established by combining the variational perturbation with the integral perturbation. The first-order corrected wave functions are constructed, and the second-order energy corrections for the ground state and several lower excited states are calculated by applying the VIPM to the hydrogen atom in a strong uniform magnetic field. Our calculations demonstrated that the energy calculated by the VIPM only shows a negative value, which indicates that the VIPM method is more accurate than the other methods. Our study indicated that the VIPM can not only increase the accuracy of the results but also keep the convergence of the wave functions
Minkiewicz, Piotr; Darewicz, Malgorzata; Iwaniak, Anna
2018-01-01
A simple equation to calculate the oxidation states (oxidation numbers) of individual atoms in molecules and ions may be introduced instead of rules associated with words alone. The equation includes two of three categories of bonds, classified as proposed by Goodstein: number of bonds with more electronegative atoms and number of bonds with less…
Existence of a ground state for the confined hydrogen atom in non-relativistic QED
International Nuclear Information System (INIS)
Amour, Laurent; Faupin, Jeremy
2008-01-01
We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review of the literature, we explain how to verify some properly chosen binding conditions which lead to the existence of a ground state for our model, and for all values of the fine-structure constant
Directory of Open Access Journals (Sweden)
Georgios S.E. Antipas
2015-06-01
Full Text Available The quantum state of functional avidity of the synapse formed between a peptide-Major Histocompatibility Complex (pMHC and a T cell receptor (TCR is a subject not previously touched upon. Here we present atomic pair correlation meta-data based on crystalized tertiary structures of the Tax (HTLV-1 peptide along with three artificially altered variants, all of which were presented by the (Class I HLA-A201 protein in complexation with the human (CD8+ A6TCR. The meta-data reveal the existence of a direct relationship between pMHC-TCR functional avidity (agonist/antagonist and peptide pair distribution function (PDF. In this context, antagonist peptides are consistently under-coordinated in respect to Tax. Moreover, Density Functional Theory (DFT datasets in the BLYP/TZ2P level of theory resulting from relaxation of the H species on peptide tertiary structures reveal that the coordination requirement of agonist peptides is also expressed as a physical observable of the protonation state of their N termini: agonistic peptides are always found to retain a stable ammonium (NH3+ terminal group while antagonist peptides are not.
Atomic and molecular data for radiotherapy
International Nuclear Information System (INIS)
1989-05-01
An Advisory Group Meeting devoted solely to review the atomic and molecular data needed for radiotherapy was held in Vienna from 13 to 16 June 1988. The following items as related to the atoms and molecules of human tissues were reviewed: Cross sections differential in energy loss for electrons and other charged particles. Secondary electron spectra, or differential ionization cross sections. Total cross sections for ionization and excitation. Subexcitation electrons. Cross sections for charged-particle collisions in condensed matter. Stopping power for low-energy electrons and ions. Initial yields of atomic and molecular ions and their excited states and electron degradation spectra. Rapid conversion of these initial ions and their excited states through thermal collisions with other atoms and molecules. Track-structure quantities. Other relevant data. Refs, figs and tabs
A hybrid system of a membrane oscillator coupled to ultracold atoms
Kampschulte, Tobias
2015-05-01
The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.
Boyes, Edward D.; Gai, Pratibha L.
2014-02-01
Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"
Wang, Jibiao; Che, Yanming; Zhang, Leifeng; Chen, Qijin
2018-04-01
The exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states have been actively searched for experimentally since the mean-field based FFLO theories were put forward half a century ago. Here, we investigate the stability of FFLO states in the presence of pairing fluctuations. We conclude that FFLO superfluids cannot exist in continuum in three and two dimensions, due to their intrinsic instability, associated with infinite quantum degeneracy of the pairs. These results address the absence of convincing experimental observations of FFLO phases in both condensed matter and in ultracold atomic Fermi gases with a population imbalance. We predict that the true ground state has a pair momentum distribution highly peaked on an entire constant energy surface.
Altmeyer, Michaela; Jeschke, Harald O; Hijano-Cubelos, Oliver; Martins, Cyril; Lechermann, Frank; Koepernik, Klaus; Santander-Syro, Andrés F; Rozenberg, Marcelo J; Valentí, Roser; Gabay, Marc
2016-04-15
Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO_{3}, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∼100 meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.
Controlling interactions between highly magnetic atoms with Feshbach resonances.
Kotochigova, Svetlana
2014-09-01
This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic (7)S3 chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on dysprosium and erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P-states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.
Isotope separation by laser deflection of an atomic beam
International Nuclear Information System (INIS)
Bernhardt, A.F.
1975-02-01
Separation of isotopes of barium was accomplished by laser deflection of a single isotopic component of an atomic beam. With a tunable narrow linewidth dye laser, small differences in absorption frequency of different barium isotopes on the 6s 2 1 S 0 --6s6p 1 P 1 5536A resonance were exploited to deflect atoms of a single isotopic component of an atomic beam through an angle large enough to physically separate them from the atomic beam. It is shown that the principal limitation on separation efficiency, the fraction of the desired isotopic component which can be separated, is determined by the branching ratio from the excited state into metastable states. The isotopic purity of the separated atoms was measured to be in excess of 0.9, limited only by instrumental uncertainty. To improve the efficiency of separation, a second dye laser was employed to excite atoms which had decayed to the 6s5d metastable state into the 6p5d 1 P 1 state from which they could decay to the ground state and continue to be deflected on the 5535A transition. With the addition of the second laser, separation efficiency of greater than 83 percent was achieved, limited by metastable state accumulation in the 5d 2 1 D 2 state which is accessible from the 6p5d 1 P 1 level. It was found that the decay rate from the 6p5d state into the 5d 2 metastable state was fully 2/3 the decay rate to the ground state, corresponding to an oscillator strength of 0.58. (U.S.)
A metastable helium trap for atomic collision physics
International Nuclear Information System (INIS)
Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.
1999-01-01
Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society
The production and investigation of cold antihydrogen atoms
International Nuclear Information System (INIS)
Pittner, H.
2005-04-01
This work reports on experiments in which antihydrogen atoms have been produced in cryogenic Penning traps from antiproton and positron plasmas by two different methods and on experiments that have been carried out subsequently in order to investigate the antihydrogen atoms. By the first method antihydrogen atoms have been formed during the process of positron cooling of antiprotons in so called nested Penning traps and detected via a field ionization method. A measurement of the state distribution has revealed that the antihydrogen atoms are formed in highly excited states. This suggests along with the high production rate that the antihydrogen atoms are formed by three-body recombination processes and subsequent collisional deexcitations. However current theory cannot yet account for the measured state distribution. Typical radii of the detected antihydrogen atoms lie in the range between 0.4 μm and 0.15 μm. The deepest bound antihydrogen atoms have radii below 0.1 μm.The kinetic energy of the weakest bound antihydrogen atoms has been measured to about 200 meV. By the second method antihydrogen atoms have been synthesized in charge-exchange processes. Lasers are used to produce a Rydberg cesium beam within the cryogenic Penning trap that collides with trapped positrons so that Rydberg positronium atoms are formed via charge-exchange reactions. The Rydberg positronium atoms that collide with nearby stored antiprotons form antihydrogen atoms in charge-exchange reactions. So far, 14±4 antihydrogen atoms have been detected background-free via a field-ionization method. The antihydrogen atoms produced via the two-step charge-exchange mechanism are expected to have a temperature of 4.2 K, the temperature of the antiprotons from which they are formed
Above-threshold ionization of atoms by resonant XUV laser pulses
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, V D [Departamento de Fisica and IFIBA-CONICET, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Arbo, D G [Instituto de AstronomIa y Fisica del Espacio, FCEN-UBA CONICET, CC 67 Suc 28 Buenos Aires (Argentina); Macri, P A, E-mail: vladimir@df.uba.ar [Departamento de Fisica, FCEyN, Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata (Argentina)
2011-06-28
Above-threshold ionization of atoms by XUV short laser pulses with frequencies close to the resonant 1s-2p transition is investigated. We present a theory based on a variational expression using trial wavefunctions for the final and the initial states. For the former we use a Coulomb-Volkov wavefunction, and for the latter a close-coupling solution of the time-dependent Schroedinger equation considering a few bound states. The close-coupling Coulomb-Volkov theory, fully accounting for the important 1s-2p transition, explains the photoelectron spectrum as well as the total ionization cross sections for the resonant case. We also compare the partial wave populations and angular distributions given by the theory with the numerical solutions of the time-dependent Schroedinger equation.
Calculating trajectories for atoms in near-resonant lightfields
International Nuclear Information System (INIS)
Scholten, R.E.; O' Kane, T.J.; Mackin, T.R.; Hunt, T.A.; Farrell, P.M.
1999-01-01
We review several methods for calculating the time development of the internal state and the external motion of atoms in near-resonant light fields, with emphasis on studying the focussing of atomic beams into microscopic and potentially nanoscopic patterns. Three different approaches are considered: two-level semiclassical, multi-level semiclassical, and the Monte Carlo wavefunction method. The two-level semiclassical technique of McClelland and Scheinfein (1991) and McClelland (1995) is extended to three dimensions, and used to calculate the trajectories of atoms and the imaging properties of a simple lens formed from a near-resonant travelling TEM 01 mode laser. The model is then extended to multi-level atoms, where we calculate the density matrix for the internal state of a sample of thermal atoms in a standing wave, and show how cooling processes can be simulated. Finally, we use the Monte Carlo wavefunction method to calculate the internal state of the atom, and compare the results and required computation time to those of the multi-level semiclassical technique. (authors)
Reaction studies of hot silicon, germanium and carbon atoms
International Nuclear Information System (INIS)
Gaspar, P.P.
1990-01-01
The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs
Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms
International Nuclear Information System (INIS)
Wang Dawei; Li Zhenghong; Zheng Hang; Zhu Shiyao
2010-01-01
A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.
Fifty years of 'Atoms for Peace'
International Nuclear Information System (INIS)
Heller, W.
2004-01-01
Fifty years ago, on December 8, 1953, the then U.S. President, Dwight D. Eisenhower, in his famous speech before the General Assembly of the United Nations proclaimed his 'Atoms for Peace' program, which was to initiate a policy of international cooperation. The event had been preceded by a policy of the United States intended to guarantee to the United States the monopoly in the production and use of nuclear weapons, which ultimately failed because of the resistance of the Soviet Union. The doctrine of a technological monopoly in the nuclear field was to be changed in favor of cooperative ventures under the rigorous control of the United States. The 1954 Atomic Energy Act clearly formulated the will to cooperate. Following a U.S. initiative, the International Atomic Energy Agency (IAEA) was founded in 1956 to assist in transfers of nuclear technology and assume controlling functions to prevent abuse for non-peaceful purposes. Quite a number of countries used the 'Atoms for Peace' offer to develop nuclear power in very close cooperation with American industry and depending on U.S. nuclear fuel supply. On the whole, 'Atoms for Peace' has paved the way to a worldwide peaceful use of nuclear power. (orig.)
Could Atomic clocks be affected by neutrinos?
Hanafi, Hanaa
2016-01-01
An atomic clock is a clock device that uses an electronic transition frequency of the electromagnetic spectrum of atoms as a frequency standard in order to derive a time standard since time is the reciprocal of frequency. If the electronic transition frequencies are in an "optical region", we are talking in this case about optical atomic clocks. If they are in an "microwave region" these atomic clocks are made of the metallic element cesium so they are called Cesium atomic clocks. Atomic clocks are the most accurate time and frequency standards known despite the different perturbations that can affect them, a lot of researches were made in this domain to show how the transitions can be different for different type of perturbations..Since atomic clocks are very sensitive devices, based on coherent states (A coherent state tends to loose coherence after interacting). One question can arise (from a lot of questions) which is why cosmic neutrinos are not aﬀecting these clocks? The answer to this question requir...
Atomic probe Wigner tomography of a nanomechanical system
International Nuclear Information System (INIS)
Singh, Swati; Meystre, Pierre
2010-01-01
We propose a scheme to measure the quantum state of a nanomechanical oscillator cooled near its ground state of vibrational motion. This is an extension of the nonlinear atomic homodyning technique scheme first developed to measure the intracavity field in a micromaser. It involves the use of a detector atom that is simultaneously coupled to the resonator via a magnetic interaction and to (classical) optical fields via a Raman transition. We show that the probability for the atom to be found in the ground state is a direct measure of the Wigner characteristic function of the nanomechanical oscillator. We also investigate the back-action effect of this destructive measurement on the state of the resonator.
International Nuclear Information System (INIS)
2000-01-01
The document reproduces the text of the communication of 14 March 2000 received from the Permanent Mission of the United States of America to the International Atomic Energy Agency including two statements of the President and the Secretary of State of the United States of America regarding the Nuclear Non-proliferation Treaty
Phase-sensitive atomic dynamics in quantum light
Balybin, S. N.; Zakharov, R. V.; Tikhonova, O. V.
2018-05-01
Interaction between a quantum electromagnetic field and a model Ry atom with possible transitions to the continuum and to the low-lying resonant state is investigated. Strong sensitivity of atomic dynamics to the phase of applied coherent and squeezed vacuum light is found. Methods to extract the quantum field phase performing the measurements on the atomic system are proposed. In the case of the few-photon coherent state high accuracy of the phase determination is demonstrated, which appears to be much higher in comparison to the usually used quantum-optical methods such as homodyne detection.
Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity
DEFF Research Database (Denmark)
Gammelmark, S.; Molmer, K.; Alt, W.
2014-01-01
We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...
Manipulating localized molecular orbitals by single-atom contacts.
Wang, Weihua; Shi, Xingqiang; Lin, Chensheng; Zhang, Rui Qin; Minot, Christian; Van Hove, Michel A; Hong, Yuning; Tang, Ben Zhong; Lin, Nian
2010-09-17
We have fabricated atom-molecule contacts by attachment of single Cu atoms to terpyridine side groups of bis-terpyridine tetra-phenyl ethylene molecules on a Cu(111) surface. By means of scanning tunneling microscopy, spectroscopy, and density functional calculations, we have found that, due to the localization characteristics of molecular orbitals, the Cu-atom contact modifies the state localized at the terpyridine side group which is in contact with the Cu atom but does not affect the states localized at other parts of the molecule. These results illustrate the contact effects at individual orbitals and offer possibilities to manipulate orbital alignments within molecules.
Study of atomic states in the vicinity of a massive surface - Application to the FORCA-G experiment
International Nuclear Information System (INIS)
Pelisson, Sophie
2012-01-01
This thesis presents the theoretical modeling of the experiment FORCA-G (FORce de CAsimir et Gravitation a courte distance) currently in progress at Paris Observatory. The purpose of this experiment is to measure short-range interactions between an atom and a massive surface. This interaction are of two kind: quantum electrodynamical (Casimir-Polder effect) and gravitational. The work presented here was to calculate the atomic states in the context of the experiment such that we can predict results and performances of the experiment. This has allowed to optimize the experimental scheme both for the high-precision measurement of the Casimir-Polder effect and for the search of deviation from the Newton's law of gravity predicted by unification theories. (author)
International Nuclear Information System (INIS)
Rowe, Mary A.
1999-01-01
This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21 Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88in cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21 Na to the experiment. Efficient manipulation of the 21 Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21 Na. She measured the 3S 1/2 (F=1,m=0)-3S 1/2 (F=2,m=0) atomic level splitting of 21 Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms
Electron impact excitation cross sections and rates from the ground state of atomic calcium
Samson, A M
2001-01-01
New R-matrix calculations are presented for electron excitation of atomic calcium. The target state expansion includes 22 states: 4s sup 2 sup 1 S; 4snl sup 1 sup , sup 3 L, where nl is 3d, 4p, 5s, 5p, 4d and 4f; 3d4p sup 1 sup , sup 3 P,D,F; and 4p sup 2 sup 3 P, sup 1 D, sup 1 S terms. The calculation is in LS coupling, and configuration interaction involving 3p subshell correlation is included. Electron impact excitation cross sections from the 4s sup 2 ground state to the next 10 states are tabulated for low energies, and thermally averaged effective collision strengths are tabulated over a range of electron temperatures from 1000 to 10,000 K. Comparisons are made with previous cross sections calculations for the 4s sup 2 -4s4p sup 3 P deg. transition; excellent agreement is found with experimentally derived rates for 4s sup 2 -4s4p sup 1 P deg
Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo
2015-07-08
We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.
Radio frequency selective addressing of localized atoms in a periodic potential
International Nuclear Information System (INIS)
Ott, H.; De Mirandes, E.; Ferlaino, F.; Roati, G.; Tuerck, V.; Modugno, G.; Inguscio, M.
2004-01-01
We study the localization and addressability of ultracold atoms in a combined parabolic and periodic potential. Such a potential supports the existence of localized stationary states and we show that applying a radio frequency field allows us to selectively address atoms in these states. This method is used to measure the energy and momentum distribution of the atoms in the localized states. We also discuss possible extensions of this scheme to address and manipulate atoms in single lattice sites
Effect of mode–mode competition on atom–atom entanglement
International Nuclear Information System (INIS)
Qin, Wu; Mao-Fa, Fang; Jian-Wu, Cai
2010-01-01
A system consisting of two atoms interacting with a two-mode vacuum is considered, where each atom is resonant with the two cavity modes through two different competing transitions. The effect of mode–mode competition on the atom–atom entanglement is investigated. We find that the entanglement between the two atoms can be induced by the mode–mode competition. For the initial atomic state |Ψ(0)}, whether the atoms are initially separated or entangled, a large or even maximal entanglement between them can be obtained periodically by introducing the mode–mode competition. For the initial atomic state |Φ(0)}, the strong mode–mode competition can prevent the two atoms entangled initially from suffering entanglement sudden death; besides, it makes them in a more stable and longer-lived entanglement than in the non-competition case. (classical areas of phenomenology)
Continuous measurement of an atomic current
Laflamme, C.; Yang, D.; Zoller, P.
2017-04-01
We are interested in dynamics of quantum many-body systems under continuous observation, and its physical realizations involving cold atoms in lattices. In the present work we focus on continuous measurement of atomic currents in lattice models, including the Hubbard model. We describe a Cavity QED setup, where measurement of a homodyne current provides a faithful representation of the atomic current as a function of time. We employ the quantum optical description in terms of a diffusive stochastic Schrödinger equation to follow the time evolution of the atomic system conditional to observing a given homodyne current trajectory, thus accounting for the competition between the Hamiltonian evolution and measurement back action. As an illustration, we discuss minimal models of atomic dynamics and continuous current measurement on rings with synthetic gauge fields, involving both real space and synthetic dimension lattices (represented by internal atomic states). Finally, by "not reading" the current measurements the time evolution of the atomic system is governed by a master equation, where—depending on the microscopic details of our CQED setups—we effectively engineer a current coupling of our system to a quantum reservoir. This provides interesting scenarios of dissipative dynamics generating "dark" pure quantum many-body states.
Theory of direct scattering of neutral and charged atoms
Franco, V.
1979-01-01
The theory for direct elastic and inelastic collisions between composite atomic systems formulated within the framework of the Glauber approximation is presented. It is shown that the phase-shift function is the sum of a point Coulomb contribution and of an expression in terms of the known electron-hydrogen-atom and proton-hydrogen-atom phase shift function. The scattering amplitude is reexpressed, the pure Coulomb scattering in the case of elastic collisions between ions is isolated, and the exact optical profile function is approximated by a first-order expansion in Glauber theory which takes into account some multiple collisions. The approximate optical profile function terms corresponding to interactions involving one and two electrons are obtained in forms of Meijer G functions and as a one-dimensional integral, and for collisions involving one or two neutral atoms, the scattering amplitude is further reduced to a simple closed-form expression.
Sirjoosingh, Andrew; Hammes-Schiffer, Sharon
2011-03-24
The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.
Atom diffraction with a 'natural' metastable atom nozzle beam
International Nuclear Information System (INIS)
Karam, J-C; Wipf, N; Grucker, J; Perales, F; Boustimi, M; Vassilev, G; Bocvarski, V; Mainos, C; Baudon, J; Robert, J
2005-01-01
The resonant metastability-exchange process is used to obtain a metastable atom beam with intrinsic properties close to those of a ground-state atom nozzle beam (small angular aperture, narrow velocity distribution). The estimated effective source diameter (15 μm) is small enough to provide at a distance of 597 mm a transverse coherence radius of about 873 nm for argon, 1236 nm for neon and 1660 nm for helium. It is demonstrated both by experiment and numerical calculations with He*, Ne* and Ar* metastable atoms, that this beam gives rise to diffraction effects on the transmitted angular pattern of a silicon-nitride nano-slit grating (period 100 nm). Observed patterns are in good agreement with previous measurements with He* and Ne* metastable atoms. For argon, a calculation taking into account the angular aperture of the beam (0.35 mrad) and the effect of the van der Waals interaction-the van der Waals constant C 3 1.83 +0.1 -0.15 au being derived from spectroscopic data-leads to a good agreement with experiment