WorldWideScience

Sample records for atomic spectroscopy technologies

  1. Development of atomic spectroscopy technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Hyung Ki; Song, Kyu Seok; Yang, Ki Ho; Baik, Dae Hyun; Lee, Young Joo; Yi, Jong Hoon; Jeong, Do Young; Jeong, Eui Chang; Yoo, Byung Duk; Cha, Byung Heon; Kim, Seong Ho; Nam, Seong Mo; Kim, Sun Kuk; Lee, Byung Cheol; Choi, Hwa Lim; Ko, Dok Yung; Han, Jae Min; Rho, Si Pyo; Lim, Chang Hwan; Choi, An Seong

    1992-12-01

    This project is aimed for the 'Development of extraction and separation techniques for stable isotopes by atomic laser spectroscopy technique'. The project is devided by two sub-projects. One is the 'Development of the selective photoionization technology' and the other is 'Development of ultrasensitive spectroscopic analysis technololgy'. This year studies on Hg and Yb, both of which have 7 isotopes, have been performed and, as a result, it was proved that specific isotopes of these elements could be selectively extracted. In addition study on plasma extraction technique, development of atomizers, design of electron gun have been the result of the project in 1992. In second sub-project trace determination of Pb has been performed with laser resonance ionization spectroscopy. As a result 20 picogram of detection limit has been obtained. In addition to these results, design of high sensitive laser induced fluorescence detection system as well as remote sensing DIAL system have been done. (Author)

  2. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  3. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  4. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  5. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  6. Development of atomic spectroscopy technology -Development of ultrasensitive spectroscopic analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Kee; Suk, Song Kyoo; Kim, Duk Hyun; Hong, Suk Kyung; Lee, Yong Joo; Lee, Jong Hoon; Yang, Kee Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    For the resonance ionization spectroscopy experiment, erbium and samarium were chosen as test elements and their optimum photoionization schemes for trace analysis have been investigated by using multiphoton spectroscopic techniques. With the optimum scheme, the detection limit of various atoms were measured. For the test of laser induced fluorescence system, calibration curves obtained from lead and cadmium standard solutions were made and Pb concentrations of various unknown solutions were determined. By using the developed differential absorption lidar system, backscattering signals from aerosol and ozone have been measured. Error source, error calibration and data interpretation techniques have been also studied. 60 figs, 8 pix, 28 tabs, 30 refs. (Author).

  7. Development of atomic spectroscopy technology -Development of ultrasensitive spectroscopic analysis technology

    International Nuclear Information System (INIS)

    Cha, Hyung Kee; Song Kyoo Suk; Kim, Duk Hyun; Hong, Suk Kyung; Lee, Yong Joo; Lee, Jong Hoon; Yang, Kee Hoh

    1995-07-01

    For the resonance ionization spectroscopy experiment, erbium and samarium were chosen as test elements and their optimum photoionization schemes for trace analysis have been investigated by using multiphoton spectroscopic techniques. With the optimum scheme, the detection limit of various atoms were measured. For the test of laser induced fluorescence system, calibration curves obtained from lead and cadmium standard solutions were made and Pb concentrations of various unknown solutions were determined. By using the developed differential absorption lidar system, backscattering signals from aerosol and ozone have been measured. Error source, error calibration and data interpretation techniques have been also studied. 60 figs, 8 pix, 28 tabs, 30 refs. (Author)

  8. Development of atomic spectroscopy technologies - Hyperfine structure of 2 period atoms using optogalvanic effects

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Nam Ic [Hankuk University of foreign studies, Seoul (Korea)

    2000-03-01

    The source of anomalous broad linewidth of 3{sup 3}P{sub 1},{sub 2},{sub 3}-3{sup 3}D{sub 2},{sub 3},4(3s') transition was explained. The broad optogalvanic spectrum was consisted of two gaussian peaks of different linewidths, and they are separated by 250 MHz. The Narrow peak, which has linewidth of room temperature, is from oxygen atoms already separated, and the shifted broad peak, which has linewidth corresponding to a temperature of 9000 K, is from weakly bound molecular ions. Obtained hyperfine spectrum of fluorine atom at the expected frequency, was too weak to analyze hyperfine structure constants. Microwave discharge might be necessary for higher density of excited state. 16 refs., 11 figs. (Author)

  9. Activities of the data centers on atomic spectroscopy at the National Institute of Standards and Technology

    International Nuclear Information System (INIS)

    Wiese, W.L.

    1990-01-01

    The activities concerning Atomic Energy Levels and Wavelengths, Atomic Transition Probabilities and Spectral Line Shapes and Shifts at the National Institute of Standards and Technology (Gaithersburg, USA) are listed together with the corresponding lists of publications

  10. Coherent atomic spectroscopy

    International Nuclear Information System (INIS)

    Garton, W.R.S.

    1988-01-01

    The Argonne Spectroscopy Laboratory, initiated and advanced over several decades by F.S. Tomkins and M. Fred, has been a major international facility. A range of collaborative work in atomic spectroscopy is selected to illustrate advances in experimental physics which have been made possible by combination of the talents of Tomkins and Fred with the unique facilities of the Argonne Laboratory. (orig.)

  11. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  12. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  13. Development of ultrasensitive spectroscopic analysis technology -Development of atomic spectroscopy technology-

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Baik, Dae Hyun; Shin, Jang Soo; Kim, Duck Hyun; Yang, Ki Ho; Yi, Jong Hoon

    1994-07-01

    In this project, three principal techniques are developed. The laser photoionization spectrometry (LAPIS) is used for the ultrasensitive detection for heavy metals such as Pb and Cd. The Laser atomic fluorescence spectrometry is applied to the quantitative analysis of the lanthanide and actinide elements. And the DIAL remote sensing system is used for monitoring the ozone concentration and the atmospheric pollution. A time-of-flight mass spectrometer and a high efficient atomic beam generator were designed and manufactured. Various spectroscopic parameters and optimum analytical condition were investigated. By using the laser fluorescence technique, U, Eu and Sm in solution were quantitatively analyzed. The basic researches for the direct analytical method of solid samples were also carried out. The DIAL system for ozone remote sensing was developed and ozone concentration above Taejon were obtained. (Author)

  14. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  15. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  16. Symposium on atomic spectroscopy

    International Nuclear Information System (INIS)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented

  17. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  18. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  19. Spectroscopy, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the…

  20. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  1. Atomic spectroscopy with diode lasers

    International Nuclear Information System (INIS)

    Tino, G.M.

    1994-01-01

    Some applications of semiconductor diode lasers in atomic spectroscopy are discussed by describing different experiments performed with lasers emitting in the visible and in the near-infrared region. I illustrate the results obtained in the investigation of near-infrared transitions of atomic oxygen and of the visible intercombination line of strontium. I also describe how two offset-frequency-locked diode lasers can be used to excite velocity selective Raman transitions in Cs. I discuss the spectral resolution, the accuracy of frequency measurements, and the detection sensitivity achievable with diode lasers. (orig.)

  2. Spectroscopy of antiproton helium atoms

    International Nuclear Information System (INIS)

    Hayano, Ryugo

    2005-01-01

    Antiproton helium atom is three-body system consisting of an antiproton, electrons and a helium nucleus (denoted by the chemical symbol, p-bar H + ). The authors produced abundant atoms of p-bar 4 He + , and p-bar 3 He + in a cooled He gas target chamber stopping the p-bar beam decelerated to approximately 100 keV in the Antiproton Decelerator at CERN. A precision laser spectroscopy on the atomic transitions in the p-bar 4 He + , and in p-bar 3 He + was performed. Principle of laser spectroscopy and various modifications of the system to eliminate factors affecting the accuracy of the experiment were described. Deduced mass ratio of antiproton and proton, (|m p -bar - m p |)/m p reached to the accuracy of 10 ppb (10 -8 ) as of 2002, as adopted in the recent article of the Particle Data Group by P.J. Mohr and B.N. Taylor. This value is the highest precise data for the CPT invariance in baryon. In future, antihydrogen atoms will be produced in the same facility, and will provide far accurate value of antiproton mass thus enabling a better confirmation of CPT theorem in baryon. (T. Tamura)

  3. Atomic processes relevant to polarization plasma spectroscopy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Koike, F.; Sakimoto, K.; Okasaka, R.; Kawasaki, K.; Takiyama, K.; Oda, T.; Kato, T.

    1992-04-01

    When atoms (ions) are excited anisotropically, polarized excited atoms are produced and the radiation emitted by these atoms is polarized. From the standpoint of plasma spectroscopy research, we review the existing data for various atomic processes that are related to the polarization phenomena. These processes are: electron impact excitation, excitation by atomic and ionic collisions, photoexcitation, radiative recombination and bremsstrahlung. Collisional and radiative relaxation processes of atomic polarization follow. Other topics included are: electric-field measurement, self alignment, Lyman doublet intensity ratio, and magnetic-field measurement of the solar prominence. (author)

  4. Spectroscopy of highly ionized atoms

    International Nuclear Information System (INIS)

    Livingston, A.E.

    1987-01-01

    The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions

  5. Study on laser atomic spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Kyu Seok; Jeong, Do Young; Kim, Chul Joong; Han, Phil Soon

    1992-01-01

    Electric discharge type atomic vaporizer is developed for the spectroscopic study on actinide elements. Laser induced fluorescence study on actinide elements is performed by using this high temperature type atomizer. For the effective photoionization of elements, copper vapor laser pumped dye laser and electron beam heating type atomic vaporizer are built and their characteristics are measured. In addition, resonance ionization mass spectroscopic analysis for lead sample as well as laser induced fluorescence study on uranium sample in solution phase is made. (Author)

  6. Spectroscopy of two-electron atoms

    International Nuclear Information System (INIS)

    Desesquelles, J.

    1988-01-01

    Spectroscopy of heliumlike ions is discussed putting emphasis on mid and high Z atoms. Experimental aspects of ion charge, excitation production, clean spectra, and precise wavelength measurement are detailed. Recent results obtained at several laboratories including Lyon, Argonne, Notre-Dame, Oxford, Berkeley, Darmstadt, Paris, are used to test the QED contributions and higher order relativistic corrections to two-electron atom energies. (orig.)

  7. Development of selective photoionization spectroscopy technology - Development of a computer program to calculate selective ionization of atoms with multistep processes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Soon; Nam, Baek Il [Myongji University, Seoul (Korea, Republic of)

    1995-08-01

    We have developed computer programs to calculate 2-and 3-step selective resonant multiphoton ionization of atoms. Autoionization resonances in the final continuum can be put into account via B-Spline basis set method. 8 refs., 5 figs. (author)

  8. Small amplitude atomic force spectroscopy

    NARCIS (Netherlands)

    de Beer, Sissi; van den Ende, Henricus T.M.; Ebeling, Daniel; Mugele, Friedrich Gunther; Bhushan, Bharat

    2011-01-01

    Over the years atomic force microscopy has developed from a pure imaging technique to a tool that can be employed for measuring quantitative tip–sample interaction forces. In this chapter we provide an overview of various techniques to extract quantitative tip–sample forces focusing on both

  9. The Atomic Spectroscopy Data Center at the National Institute of Standards and Technology (NIST). Activities 1999-2001

    International Nuclear Information System (INIS)

    Wiese, W.L.

    2001-01-01

    Dr. Wiese discussed activities and trends at the NIST Data Centers in the last two years. He reviewed priorities covered in data work and reviewed the bibliographic and numerical databases now on their website. The Atomic Spectra Database (ASD) is their main atomic physics web database and this is a reference data, e.g., the wavelength data is generally accurate to six significant figures and transition probability data is certain to with less than ±50%. Dr. Wiese also reported about recent work on the compilation and evaluation of data for wavelengths and energy levels of elements Cu, Kr and Mo (and several others), which are fusion relevant

  10. The Atomic Spectroscopy Data Center at the National Institute of Standards and Technology (NIST). Activities 1999-2001

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, W L

    2001-12-01

    Dr. Wiese discussed activities and trends at the NIST Data Centers in the last two years. He reviewed priorities covered in data work and reviewed the bibliographic and numerical databases now on their website. The Atomic Spectra Database (ASD) is their main atomic physics web database and this is a reference data, e.g., the wavelength data is generally accurate to six significant figures and transition probability data is certain to with less than {+-}50%. Dr. Wiese also reported about recent work on the compilation and evaluation of data for wavelengths and energy levels of elements Cu, Kr and Mo (and several others), which are fusion relevant.

  11. Atomic Absorption Spectroscopy. The Present and the Future.

    Science.gov (United States)

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  12. Precision spectroscopy on atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Parthey, Christian Godehard

    2011-12-15

    This Thesis reports on three measurements involving the 1S-2S transition in atomic hydrogen and deuterium conducted on a 5.8 K atomic beam. The transition is excited Doppler-free via two counter-propagating photons near 243 nm. The H/D isotope shift has been determined as {delta}{integral}{sub exp}=670 994 334 606(15) Hz. Comparing with the theoretical value for the isotope shift, excluding the leading nuclear size effect, {delta}{integral}{sub th}=670 999 566.90(66)(60) kHz we confirm, twice more accurate, the rms charge radius difference of the deuteron and the proton as left angle r{sup 2} right angle {sub d}- left angle r{sup 2} right angle {sub p}=3.82007(65) fm{sup 2} and the deuteron structure radius r{sub str}=1.97507(78) fm. The frequency ratio of the 1S-2S transition in atomic hydrogen to the cesium ground state hyperfine transition provided by the mobile cesium fountain clock FOM is measured to be {integral}{sub 1S-2S}=2 466 061 413 187 035 (10) Hz which presents a fractional frequency uncertainty of 4.2 x 10{sup -15}. The second absolute frequency measurement of the 1S-2S transition in atomic hydrogen presents the first application of a 900 km fiber link between MPQ and Physikalisch- Technische Bundesanstalt (PTB) in Braunschweig which we have used to calibrate the MPQ hydrogen maser with the stationary cesium fountain clock CSF1 at PTB. With the result of {integral}{sub 1S-2S}=2 466 061 413 187 017 (11) Hz we can put a constraint on the electron Lorentz boost violating coefficients 0.95c{sub (TX)}-0.29c{sub (TY)}-0.08 c{sub (TZ)}=(2.2{+-}1.8) x 10{sup -11} within the framework of minimal standard model extensions. We limit a possible drift of the strong coupling constant through the ratio of magnetic moments at a competitive level ({partial_derivative})/({partial_derivative}t)ln ({mu}{sub Cs})/({mu}{sub B})=-(3.0{+-}1.2) x 10{sup -15} yr{sup -1}.

  13. Precision spectroscopy on atomic hydrogen

    International Nuclear Information System (INIS)

    Parthey, Christian Godehard

    2011-01-01

    This Thesis reports on three measurements involving the 1S-2S transition in atomic hydrogen and deuterium conducted on a 5.8 K atomic beam. The transition is excited Doppler-free via two counter-propagating photons near 243 nm. The H/D isotope shift has been determined as Δ∫ exp =670 994 334 606(15) Hz. Comparing with the theoretical value for the isotope shift, excluding the leading nuclear size effect, Δ∫ th =670 999 566.90(66)(60) kHz we confirm, twice more accurate, the rms charge radius difference of the deuteron and the proton as left angle r 2 right angle d - left angle r 2 right angle p =3.82007(65) fm 2 and the deuteron structure radius r str =1.97507(78) fm. The frequency ratio of the 1S-2S transition in atomic hydrogen to the cesium ground state hyperfine transition provided by the mobile cesium fountain clock FOM is measured to be ∫ 1S-2S =2 466 061 413 187 035 (10) Hz which presents a fractional frequency uncertainty of 4.2 x 10 -15 . The second absolute frequency measurement of the 1S-2S transition in atomic hydrogen presents the first application of a 900 km fiber link between MPQ and Physikalisch- Technische Bundesanstalt (PTB) in Braunschweig which we have used to calibrate the MPQ hydrogen maser with the stationary cesium fountain clock CSF1 at PTB. With the result of ∫ 1S-2S =2 466 061 413 187 017 (11) Hz we can put a constraint on the electron Lorentz boost violating coefficients 0.95c (TX) -0.29c (TY) -0.08 c (TZ) =(2.2±1.8) x 10 -11 within the framework of minimal standard model extensions. We limit a possible drift of the strong coupling constant through the ratio of magnetic moments at a competitive level (∂)/(∂t)ln (μ Cs )/(μ B )=-(3.0±1.2) x 10 -15 yr -1 .

  14. p anti p atom spectroscopy

    International Nuclear Information System (INIS)

    Kerbikov, B.O.

    1980-01-01

    A detailed investigation of the nuclear shifts of p anti p atom s levels is presented. The problem is discussed within the framework of a simple model assuming the existence of such an interaction radius R that strong interaction may be neglected for the range r>R and the Coulomb one for the range r< R. The analytic structure of the S matrix is taken into account. It is shown that the protonium spectrum may be completely rearranged due to the interaction in n anti n channel. A procedure has been developed for the localization of the instability domains of the multichannel system spectrum. The data on the nuclear shifts do not allow qualitative predictions on the position of the nuclear-like state near the threshold

  15. Photoelectron spectroscopy of heavy atoms and molecules

    International Nuclear Information System (INIS)

    White, M.G.

    1979-07-01

    The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target

  16. Non equilibrium atomic processes and plasma spectroscopy

    International Nuclear Information System (INIS)

    Kato, Takako

    2003-01-01

    Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)

  17. Electronic structure of atoms: atomic spectroscopy information system

    International Nuclear Information System (INIS)

    Kazakov, V V; Kazakov, V G; Kovalev, V S; Meshkov, O I; Yatsenko, A S

    2017-01-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists. (paper)

  18. Electronic structure of atoms: atomic spectroscopy information system

    Science.gov (United States)

    Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.

    2017-10-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.

  19. Direct Frequency Comb Spectroscopy of Alkali Atoms

    Science.gov (United States)

    Pradhananga, Trinity; Palm, Christopher; Nguyen, Khoa; Guttikonda, Srikanth; Kimball, Derek Jackson

    2011-11-01

    We are using direct frequency comb spectroscopy to study transition frequencies and excited state hyperfine structure in potassium and rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the atomic vapor of interest. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. The thermal motion of the atoms in the vapor cell actually eliminates the need to fine-tune the offset frequency and repetition rate, alleviating a somewhat challenging requirement for spectroscopy of cold atoms. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.

  20. Atom location using recoil ion spectroscopy

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1985-01-01

    Low energy ion scattering (LEIS) using inert gas and alkali ions is widely used in studies of the surface atomic layer. The extreme surface sensitivity of this technique ensures that it yields both compositional and structural information on clean and adsorbate covered surfaces. Low Energy Negative recoil Spectroscopy (LENRS) has been applied to a study of oxygen on Ni(110) to gauge the sensitivity to coverage and site location

  1. Atomic Force Microscope for Imaging and Spectroscopy

    Science.gov (United States)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  2. X-ray spectroscopy from exotic atoms

    International Nuclear Information System (INIS)

    Hartmann, F.J.

    1994-01-01

    Why do experimentalists study exotic atoms, in particular antiprotonic atoms? The answer is simple: the information about electromagnetic, weak, and strong interactions that can be obtained by doing X-ray spectroscopy from exotic atoms is really worth the effort. It is possible to (1) enlarge the knowledge about the properties of exotic particles (such as mass and magnetic moment); (2) open a possibility to test quantum electrodynamics; (3) get detailed insight into the shape of nuclei (characterized by the nuclear radium and higher momenta) and even into the neutron distribution in the nucleus (neutron halo); and (4) use it as a powerful tool to learn about the strong interaction at very low relative hadron-nucleon velocities

  3. Advanced technologies and atomic energy

    International Nuclear Information System (INIS)

    1995-01-01

    The expert committee on the research 'Application of advanced technologies to nuclear power' started the activities in fiscal year 1994 as one of the expert research committees of Atomic Energy Society of Japan. The objective of its foundation is to investigate the information on the advanced technologies related to atomic energy and to promote their practice. In this fiscal year, the advanced technologies in the fields of system and safety, materials and measurement were taken up. The second committee meeting was held in March, 1995. In this report, the contents of the lectures at the committee meeting and the symposium are compiled. The topics in the symposium were the meaning of advanced technologies, the advanced technologies and atomic energy, human factors and control and safety systems, robot technology and microtechnology, and functionally gradient materials. Lectures were given at two committee meetings on the development of atomic energy that has come to the turning point, the development of advanced technologies centering around ULSI, the present problems of structural fine ceramics and countermeasures of JFCC, the material analysis using laser plasma soft X-ray, and the fullerene research of advanced technology development in Power Reactor and Nuclear Fuel Development Corporation. (K.I.)

  4. THE EVOLUTION OF ATOMIC SPECTROSCOPY IN MEASURING TOXIC CONTAMINANTS

    Science.gov (United States)

    Three decades of study of environmental conditions necessary for the protection of freshwateraquatic life have been limited by the development and application of analytical methodology utilizing atomic adsorption, atomic fluorescence, and atomic emission spectroscopy.The...

  5. Atoms, molecules and optical physics 1. Atoms and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter

    2015-09-01

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  6. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  7. Atomic spectroscopy sympsoium, Gaithersburg, Maryland, September 23--26, 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Abstracts of one hundred papers given at the conference are presented along with the conference program and an author index. Session topics include: highly ionized atoms; laser spectroscopy and hyperfine structure; complex spectra; laser spectroscopy, radiation theory; theory of highly ionized atoms and analysis of plasmas; plasma spectroscopy, line strengths; spectral analysis, instrumentation, reference wavelengths; beam foil spectroscopy, line strengths, energy levels; absorption spectroscopy, autoionization, and related theory; and spectral analysis, instrumentation, and VUV physics

  8. Magnetism in Pd: Magnetoconductance and transport spectroscopy of atomic contacts

    Science.gov (United States)

    Strigl, F.; Keller, M.; Weber, D.; Pietsch, T.; Scheer, E.

    2016-10-01

    Since the rapid technological progress demands for ever smaller storage units, the emergence of stable magnetic order in nanomaterials down to the single-atom regime has attracted huge scientific attention to date. Electronic transport spectroscopy has been proven to be a versatile tool for the investigation of electronic, magnetic, and mechanical properties of atomic contacts. Here we report a comprehensive experimental study of the magnetoconductance and electronic properties of Pd atomic contacts at low temperature. The analysis of electronic transport (d I /d V ) spectra and the magnetoconductance curves yields a diverse behavior of Pd single-atom contacts, which is attributed to different contact configurations. The magnetoconductance shows a nonmonotonous but mostly continuous behavior, comparable to those found in atomic contacts of band ferromagnets. In the d I /d V spectra, frequently, a pronounced zero-bias anomaly (ZBA) as well as an aperiodic and nonsymmetric fluctuation pattern are observed. While the ZBA can be interpreted as a sign of the Kondo effect, suggesting the presence of magnetic impurity, the fluctuations are evaluated in the framework of conductance fluctuations in relation to the magnetoconductance traces and to previous findings in Au atomic contacts. This thorough analysis reveals that the magnetoconductance and transport spectrum of Au atomic contacts can completely be accounted for by conductance fluctuations, while in Pd contacts the presence of local magnetic order is required.

  9. Collinear laser spectroscopy of atomic cadmium

    CERN Document Server

    Frömmgen, Nadja; Bissell, Mark L.; Bieroń, Jacek; Blaum, Klaus; Cheal, Bradley; Flanagan, Kieran; Fritzsche, Stephan; Geppert, Christopher; Hammen, Michael; Kowalska, Magdalena; Kreim, Kim; Krieger, Andreas; Neugart, Rainer; Neyens, Gerda; Rajabali, Mustafa M.; Nörtershäuser, Wilfried; Papuga, Jasna; Yordanov, Deyan T.

    2015-01-01

    Hyperfine structure $A$ and $B$ factors of the atomic $5s\\,5p\\,\\; ^3\\rm{P}_2 \\rightarrow 5s\\,6s\\,\\; ^3\\rm{S}_1$ transition are determined from collinear laser spectroscopy data of $^{107-123}$Cd and $^{111m-123m}$Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with $s_{1/2}$ and $d_{5/2}$ nuclear ground states and isomeric $h_{11/2}$ states is evaluated and a linear relationship is observed for all nuclear states except $s_{1/2}$. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic $5s\\,5p\\,\\; ^3\\mathrm{P}_2$ level is derived from multi-configuration Dirac-Hartree-Fock calculatio...

  10. Laser fluorescence spectroscopy of sputtered uranium atoms

    International Nuclear Information System (INIS)

    Wright, R.B.; Pellin, M.J.; Gruen, D.M.; Young, C.E.

    1979-01-01

    Laser induced fluorescence (LIF) spectroscopy was used to study the sputtering of 99.8% 238 U metal foil when bombarded by normally incident 500 to 3000 eV Ne + , Ar + , Kr + , and O 2 + . A three-level atom model of the LIF processes is developed to interpret the observed fluorescent emission from the sputtered species. The model shows that close attention must be paid to the conditions under which the experiment is carried out as well as to the details of the collision cascade theory of sputtering. Rigorous analysis shows that when properly applied, LIF can be used to investigate the predictions of sputtering theory as regards energy distributions of sputtered particles and for the determination of sputtering yields. The possibility that thermal emission may occur during sputtering can also be tested using the proposed model. It is shown that the velocity distribution (either the number density or flux density distribution, depending upon the experimental conditions) of the sputtered particles can be determined using the LIF technique and that this information can be used to obtain a description of the basic sputtering mechanisms. These matters are discussed using the U-atom fluorescence measurements as a basis. The relative sputtering yields for various incident ions on uranium were also measured for the first time using the LIF technique. A surprisingly high fraction of the sputtered uranium atoms were found to occupy the low lying metastable energy levels of U(I). The population of the sputtered metastable atoms were found approximately to obey a Boltzman distribution with an effective temperature of 920 +- 100 0 K. 41 references

  11. Application of resonance ionisation spectroscopy in atomic physics

    International Nuclear Information System (INIS)

    Kluge, H.J.

    1997-01-01

    Resonance ionization spectroscopy (RIS) and resonance ionization mass spectroscopy (RIMS) techniques have proved to be a powerful tool in atomic spectroscopy and trace analysis. Detailed atomic spectroscopy can be performed on samples containing less than 10 12 atoms. This sensitivity is especially important for investigating atomic properties of transuranium elements. RIMS is especially suitable for ultra trace determination of long lived radioactive isotopes. The extremely low detection limits allow analysis of samples in the sub-femtogram regime. High elemental and isotopic selectivity can be obtained. To produce isobarically pure ion beams, a RIS based laser ion source can be used

  12. Coherent atomic and molecular spectroscopy in the far infrared

    International Nuclear Information System (INIS)

    Inguscio, M.

    1988-01-01

    Recent advances in far infrared spectroscopy of atoms (fine structure transitions) and molecules (rotational transitions) are reviewed. Results obtained by means of Laser Magnetic Resonance, using fixed frequency lasers, and Tunable Far Infrared spectrometers are illustrated. The importance of far infrared spectroscopy for several fields, including astrophysics, atmospheric physics, atomic structure and metology, is discussed. (orig.)

  13. The rates of elementary atomic processes and laser spectroscopy

    International Nuclear Information System (INIS)

    Rudzikas, Z.; Sereapinas, P.; Kaulakys, B.

    1989-01-01

    Laser spectroscopy and physics of the atom are closely interrelated. Spectra are the fundamental characteristics of atoms. Modern atomic spectroscopy deals with the structure and properties of any atom of the periodic table as well as of ions of any ionization degree. Therefore, one has to develop fairly universal and, at the same time, exact methods. In this paper briefly analyze the contemporary status of the theory of many-electron atoms and ions, the peculiarities of their structure and spectra, as well as of the processes of their interaction with radiation, interatomic interaction and of the plasma spectroscopy. The attention mainly is paid to the spectroscopy of multiply charged ions and to the processes with highly excited atoms

  14. Inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Winge, R.K.; Fassel, V.A.; Peterson, V.J.; Floyd, M.A.

    1985-01-01

    This atlas of inductively coupled plasma-atomic emission spectroscopy records the spectra of the elements in a way that would reveal the general nature of the spectra, in all their simplicity or complexity; and offers a definitive summary of the most prominent spectral lines of the elements, i.e., those most likely to be useful for the determination of trace and ultratrace concentrations; it provides reliable estimates, based on the recorded experimental spectra, of the powers of detection of the listed prominent lines; and assesses the very important problem of spectral interferences. The atlas is composed of three main sections. Part I is concerned with the historical aspects of compilations of spectral information. Part II is based on 232 wavelength scans of 70 elements. Each of the wavelength scans covers an 80 nm spectral region. These scans allow a rapid comparison of the background and spectral line intensities emitted in the ICP and provide a ready means for identification of the most prominent lines of each element and for estimation of the trace element analytical capabilities of these lines. A listing of 973 prominent lines with associated detection limits is also presented. Part III addresses the problem of spectral interferences. On this topic a detailed collection of coincidence profiles is presented for 281 of the most prominent lines, each with profiles of ten of the most prevalent concomitants superimposed. (Auth.)

  15. Nuclear γ-ray spectroscopy of cool free atoms

    International Nuclear Information System (INIS)

    Rivlin, Lev A

    1999-01-01

    Consideration is given to the capabilities of gamma-ray spectroscopy of the nuclei of free neutral atoms cooled employing modern laser light-pressure techniques. This spectroscopy is comparable with the Mossbauer spectroscopy in respect of the expected resolving power. (laser applications and other topics in quantum electronics)

  16. Theoretical Calculations of Atomic Data for Spectroscopy

    Science.gov (United States)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  17. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    Science.gov (United States)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  18. Magnetic field modulation spectroscopy of rubidium atoms

    Indian Academy of Sciences (India)

    the atomic line centre for the easy operation of the servo-loop as required for .... It has been established that the atomic resonances in SAS can be shifted in a control .... from the conventional Faraday rotation observed in the presence of static ...

  19. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  20. Design of a WWW database server for Atomic Spectroscopy Data

    Energy Technology Data Exchange (ETDEWEB)

    Contis, A

    1995-12-01

    The department of Atomic Spectroscopy at Lund Univ produces large amounts of experimental data on energy levels and emissions for atomic systems. In order to make this data easily available to users outside the institution, a database has been produced and made available on the Internet. This report describes the organization of the data and the Internet interface of the data base. 4 refs.

  1. Design of a WWW database server for Atomic Spectroscopy Data

    International Nuclear Information System (INIS)

    Contis, A.

    1995-12-01

    The department of Atomic Spectroscopy at Lund Univ produces large amounts of experimental data on energy levels and emissions for atomic systems. In order to make this data easily available to users outside the institution, a database has been produced and made available on the Internet. This report describes the organization of the data and the Internet interface of the data base. 4 refs

  2. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    Science.gov (United States)

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  3. Laser spectroscopy and laser isotope separation of atomic gadolinium

    International Nuclear Information System (INIS)

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  4. Resonance ionization spectroscopy: Counting noble gas atoms

    International Nuclear Information System (INIS)

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-01-01

    The purpose of this paper is to describe new work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions). When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. We show that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective. (orig./FKS)

  5. Status and problems of multiply ionized atom spectroscopy

    International Nuclear Information System (INIS)

    Kononov, Eh.Ya.; Ryabtsev, A.N.

    1984-01-01

    Principal directions of investigations associated with identification of spectral lines and with determination of energy structure of high multiplicity ions are analyzed. The considered part of atomic spectroscopy is developed both in the direction of obtaining high multiplicity ion spectra and interpretation of spectral details associated with excitation conditions and in the direction of detailed study on compound energy structures of electron shells. Spectroscopy with fast ion beams is widely developed. Accumulated atomic data, developed methods of atomic calculations and improvement of observation technique permit to realize complex spectroscopic diagnostics in astrophysics and hot plasma physics

  6. LXII International conference NUCLEUS 2012. Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies (LXII Meeting on nuclear spectroscopy and nuclear structure). Book of abstracts

    International Nuclear Information System (INIS)

    Vlasnikov, A.K.

    2012-01-01

    The scientific program of the conference covers almost all problems in nuclear physics and its applications. The recent results of experimental investigations of atomic nuclei properties and nuclear reaction mechanisms are presented. The theoretical problems of atomic nuclei and fundamental interactions as well as nuclear reactions are discussed. The new techniques and methods of nuclear physical experiments are considered. The particular attention is given to fundamental problems of nuclear power and qualitative training of russian and foreign specialist in field of nuclear physics and atomic power engineering [ru

  7. Magnetoelectric Jones spectroscopy of alkali atoms

    International Nuclear Information System (INIS)

    Chernushkin, V V; Mironova, P V; Ovsiannikov, V D

    2008-01-01

    The Jones effect in a medium of free atoms exposed to static electric and magnetic fields is a useful tool for determining details of an atomic structure. For atoms in their nS ground states irradiated by a monochromatic wave in resonance with a single-photon transition to an n' D state, the bilinear Jones effect is not shaded by the quadratic Kerr and Cotton-Mouton effects, nor by the linear in magnetic field Faraday effect. The position and shape of the amplitude resonance may provide information on spectroscopic properties of atomic levels. We generalize equations for the Jones-effect amplitude to the case of a doublet structure of energy levels and calculate corresponding parameters for alkali atoms. General equations are derived for the amplitude dependence on the relative orientation of the static electric and magnetic fields and on the angle between the static field and the major axis of the wave polarization vector. These equations demonstrate explicitly that the three bilinear-in-static-fields optical birefringence effects-(i) the Jones birefringence (in parallel fields), (ii) the linear birefringence and (iii) the directional birefringence (the last two in perpendicular fields)-correspond to particular cases of the bilinear-in-static-fields correction to the amplitude of Rayleigh forward scattering

  8. PREFACE: Fourth International Symposium on Atomic Technology

    Science.gov (United States)

    Okada, Shigefumi

    2010-04-01

    The International Symposium on Atomic Technology (ISAT) is held every year. The 4th Symposium (ISAT-4) was held on November 18-19, 2009 at the Seaside Hotel MAIKO VILLA KOBE, Kobe City, Japan presided by the "Atomic Technology Project". The ISAT-4 symposium was intended to offer a forum for the discussion on the latest progress in the atomic technologies. The symposium was attended by 107 delegates. There were 10 invited and 6 oral presentations. The number of poster presentations was 69. From all the contributions, 22 papers selected through review process are contained in this volume. The "Atomic Technology Project" was started in 2006 as a joint project of three institutions; (1) the Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University (CAMT), (2) the Tsukuba Research Center for Interdisciplinary Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba (TIMS) and (3) the Polyscale Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science (PTRC), each of which were independently pursuing nano-technologies and was developing atomic scale operation and diagnostics, functional materials, micro processing and device. The project is funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan. The goal of the project is to contribute to the development of atomic-scale science and technologies such as functional molecules, biomaterials, and quantum functions of atomic-scale structures. Shigefumi Okada Conference Chair Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita-city, Osaka 565-0871, Japan. Conference photograph Kobe photograph

  9. Photoion spectroscopy of atoms using coincidence techniques

    International Nuclear Information System (INIS)

    Hayaishi, Tatsuji

    1990-01-01

    Interaction of atoms or molecules with photons causes many effects which are often obscured because of many decay paths from the event. To pick up an effect in the mixed-up ones, it is necessary to observe the decay path arising the effect alone. There is a coincidence technique in one of experimental means for the purpose of observing the decay path. In this article, two coincidence measurements are presented; a photoelectron-photoion coincidence technique and a threshold photoelectron-photoion coincidence technique. Furthermore, experimental facts of rare gases atoms obtained by the techniques are reviewed. (author)

  10. Principles and applications of force spectroscopy using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Kyu; Kim, Woong; Park, Joon Won [Dept. of Chemistry, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-12-15

    Single-molecule force spectroscopy is a powerful technique for addressing single molecules. Unseen structures and dynamics of molecules have been elucidated using force spectroscopy. Atomic force microscope (AFM)-based force spectroscopy studies have provided picoNewton force resolution, subnanometer spatial resolution, stiffness of substrates, elasticity of polymers, and thermodynamics and kinetics of single-molecular interactions. In addition, AFM has enabled mapping the distribution of individual molecules in situ, and the quantification of single molecules has been made possible without modification or labeling. In this review, we describe the basic principles, sample preparation, data analysis, and applications of AFM-based force spectroscopy and its future.

  11. X-ray spectroscopy with normal and exotic atoms

    International Nuclear Information System (INIS)

    Qureshi, I.E.

    1995-01-01

    X-ray spectroscopy is a powerful analytical tool for elemental analysis and also for the study of nuclear properties. In recent years these has been extensive utilization of x-ray spectral analysis for the purpose of plasma diagnostics. These studies are vital for the development of controlled nuclear fusion technology. The formation of special atoms containing particles heavier than electrons is another area in which x-ray spectra give detailed knowledge of the sizes and shapes of atomic nuclei, masses and magnetic momenta of bound particles and the nature of interaction between bound particle and the nucleus. All these aspects make x-ray spectra of uniquely rich source of information on material and nuclear properties. The present article provides some glimpses of how this information is extracted. The choice of topics is biased towards nuclear physics. The presentation is not attempted to the exhaustive and is aimed at conveying the essential physical ideas without going into technical details. (author) 6 figs

  12. Nonlinear spectroscopy of the Rydberg atoms

    International Nuclear Information System (INIS)

    Delone, N.B.; Krajnov, V.P.; Shepelyanskij, D.L.

    1984-01-01

    The results of investigation into perturbation of Rydberg states (RS) of atoms in an outer alternating field (OAF) are discussed. Both highly excited states of hydrogen atom at the energy Esub(n)=-1/2n -2 (n>>1 - basic quantum number) and excited states of compound atoms with energy Esub(nl)=-1/2(n*) -2 where n*=n-delta sub(e)-effective basic quantum number, delta sub(e)-quantum defect, are implied by RS. Perturbation of atomic state in the OAF is determined not only by field strength E, but by its frequency ω as well. During OAF inclusion the initial state Esub(lambda) transits to quasienergetic at the energy Esub(lambda)(E)+-kω, where K=0, +-1, +-2, .... Solutions of the problem of quasienergetic level population is obtained only for some simple particular cases. A simple case, when a real multilevel atom is replaced by a model system comprising one bound electron state with the basic quantum number n-model of the insulated level (MIL) is considered. Conditions of MIL applicability are discussed. Estimation of critical OAF strength at which MIL approximation becomes faulty are discussed. It is stated that any consideration of RS perturbation in OAF claiming to exceeding MIL frames should comprise consideration of ionization processes. If one keeps to the frames of OAF; the strength of which is lower than the determined critical values then MIL is true and use of this model permits to correctly describe the main features of RS perturbation in an alternating field

  13. Spectroscopy and atomic force microscopy of biomass.

    Science.gov (United States)

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  14. Electron spectroscopy of collisional excited atoms

    International Nuclear Information System (INIS)

    Straten, P. van der.

    1987-01-01

    In this thesis measurements are described in which coincidences are detected between scattered projectiles and emitted electrons. This yields information on two-electron excitation processes. In order to show what can be learnt from coincidence experiments a detailed theoretical analysis is given. The transition amplitudes, which contain all the information, are introduced (ch.2). In ch.3 the experimental set-up is shown. The results for the Li + -He system are shown in ch. 7 and are compared with predictions based on the Molecular-Orbitalmodel which however does not account for two-excitation mechanisms. With the transition amplitudes also the wave function of the excited atom has been completely determined. In ch.8 the shape of the electron cloud, induced by the collision, is derived from the amplitudes. The relation between the oscillatory motion of this cloud after the collision and the correlation between the two electrons of the excited atom is discussed. In ch. 6 it is shown that the broad structures in the non-coincident energy spectra of the Li + -He system are erroneously interpretated as a result of electron emission from the (Li-He) + -quasimolecule. A model is presented which explains, based on the results obtained from the coincidence measurements, these broad structures. In ch. 4 the Post-Collision Interaction process is treated. It is shown that for high-energy collisions, in contrast with general assumptions, PCI is important. In ch. 5 the importance of PCI-processes in photoionization of atoms, followed by Auger decay, are studied. From the formulas derived in ch. 4 simple analytical results are obtained. These are applied to recent experiments and good agreement is achieved. 140 refs.; 55 figs.; 9 tabs

  15. Laser spectroscopy of collisionally prepared target species: atomic caesium

    International Nuclear Information System (INIS)

    Moreau, J.-P.; Tremblay, Julien; Knystautas, E.J.; Laperriere, S.C.; Larzilliere, Michel

    1989-01-01

    Fast ion beam bombardment was used to collisionally prepare a target gas in excited states, to which conventional laser spectroscopy was then applied. The versatility of this method is demonstrated with atomic targets of caesium, for a state of Cs + that is 16 eV above the ground state, as well as for a short-lived state (38 ns) of the neutral atom. The local temperature in the caesium oven is also obtained. (Author)

  16. Thoughts on Documentation of Atomic Power Technology

    International Nuclear Information System (INIS)

    Oh, Jeong Hoon; Lee, Hee Won; Song, Ki Chan

    2012-01-01

    Korean Atomic Energy Research Institute (KAERI) has accumulated a number of technology development and research outcomes, including its representative achievements such as atomic energy technology independence and the first export of atomic energy system, since it was established in 1959. With its long history of over 50 years, KAERI has produced a large amount of information and explicit knowledge such as experiment data, database, design data, report, instructions, and operation data at each stage of its research and development process as it has performed various researches since its establishment. Also, a lot of tacit knowledge has been produced both knowingly and not unknowingly based on the experience of researchers who have participated in many projects. However, in the research environment in Korea where they focus overly on the output, tacit knowledge has not been managed properly compared to explicit knowledge. This tacit knowledge is as an important asset as explicit knowledge for an effective research and development. Moreover, as the first generation of atomic energy independence and research manpower retire, their accumulated experience and knowledge are in danger of disappearing. Therefore, in this study, we sought how to take a whole view and to document atomic energy technology researched and developed by KAERI, from the background to achievement of each field of the technology. Comprehensive and systematic documentation of atomic energy technology will establish a comprehensive management system of national atomic energy technology record to make a foundation of technical advancement and development of atomic energy technology. Also, it is expected to be used as an important knowledge and information resource of atomic energy knowledge management system

  17. Atomic Auger spectroscopy: Historical perspective and recent highlights

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    2000-01-01

    The non-radiating decay of an inner-shell ionized atom by the emission of an electron was discovered by Pierre Auger in cloud-chamber experiments in the years 1923 to 1926. The first spectroscopic investigation of Auger electrons was performed by Robinson and Cassie in 1926, marking the birth date of Auger spectroscopy. The following seven decades of Auger spectroscopy will be divided into three periods. In the first period (1926-1960) Auger spectroscopy was mainly connected with β-ray spectroscopy where inner-shell ionization of atoms in the solid state was caused either by γ-conversion or by electron capture. The second period (beginning in 1960) is characterized by the external excitation of gas-phase or free metallic atoms, opening Auger spectroscopy to electron energies in the range of few eV to few keV. The third period (beginning in 1977/78) is characterized by the use of synchrotron radiation with its outstanding properties of tunability, polarization and narrow-band high intensity for the excitation and ionization of inner-shell electrons. Finally, two recent highlights of Auger spectroscopy, the interference between photo- and Auger electron with equal energies and an 'almost' complete experiment for Auger decay, will be presented

  18. Detection of atomic oxygen in flames by absorption spectroscopy

    International Nuclear Information System (INIS)

    Cheskis, S.; Kovalenko, S.A.

    1994-01-01

    The absolute concentration of atomic oxygen in an atmospheric pressure hydrogen/air flame has been measured using Intracavity Laser Spectroscopy (ICLS) based on a dye laser pumped by an argon-ion laser. Absorptions at the highly forbidden transitions at 630.030 nm and 636.380 nm were observed at an equivalent optical length of up to 10 km. The relatively low intensity of the dye laser avoids photochemical interferences that are inherent to some other methods for detecting atomic oxygen. The detection sensitivity is about 6x10 14 atom/cm 3 and can be improved with better flame and laser stabilization. (orig.)

  19. Auger electron and X-ray spectroscopy of hollow atoms

    NARCIS (Netherlands)

    Morgenstern, R; Johnson, RL; Schmidtbocking, H; Sonntag, BF

    1997-01-01

    Hollow atoms as formed during collisions of multiply charged ions on metallic, semiconducting and insulating surfaces have in recent years successfully been investigated by various spectroscopic methods: low- and high-resolution X-ray spectroscopy as well as high resolution Auger electron

  20. Nuclear and atomic spectroscopy group. Dosimetry in medical physics

    International Nuclear Information System (INIS)

    Rubio, M.

    1990-01-01

    The main activities of radiation physics on the sector of atomic spectroscopy and x-ray fluorescence analysis in the Faculty of Mathematics, Astronomy and Physics (University of Cordoba, Argentina),are presented, including dosimetric studies in radiodiagnostic: dosimetric determination using Monte Carlo method; distortion effect study on PET image and lasers in medicine. (C.G.C.)

  1. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    Science.gov (United States)

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  2. Single atom identification by energy dispersive x-ray spectroscopy

    International Nuclear Information System (INIS)

    Lovejoy, T. C.; Dellby, N.; Krivanek, O. L.; Ramasse, Q. M.; Falke, M.; Kaeppel, A.; Terborg, R.; Zan, R.

    2012-01-01

    Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

  3. Future projects of light kaonic atom X-ray spectroscopy

    International Nuclear Information System (INIS)

    Tatsuno, H.; Bazzi, M.; Beer, G.; Bellotti, G.; Berucci, C.; Bragadireanu, A.M.; Bosnar, D.; Cargnelli, M.; Curceanu, C.; Butt, A.D.; D’Uffizi, A.; Fiorini, C.; Ghio, F.; Guaraldo, C.; Hayano, R.S.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Sandri, P. Levi; Marton, J.; Okada, S.; Pietreanu, D.; Piscicchia, K.; Vidal, A. Romero; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.L.; Sirghi, F.; Doce, O. Vazquez; Widmann, E.; Zmeskal, J.

    2016-01-01

    X-ray spectroscopy of light kaonic atoms is a unique tool to provide precise information on the fundamental K̄N interaction at the low-energy limit and the in-medium nuclear interaction of K"−. The future experiments of kaonic deuterium strong-interaction shift and width (SIDDHARTA-2 and J-PARC E57) can extract the isospin dependent K"−N interaction at threshold. The high-resolution X-ray spectroscopy of kaonic helium with microcalorimeters (J-PARC E62) has the possibility to solve the long-standing potential-strength problem of the attractive K"−-nucleus interaction. Here, the recent experimental results and the future projects of X-ray spectroscopy of light kaonic atoms are presented.

  4. Atomic and molecular spectroscopy basic concepts and applications

    CERN Document Server

    Kakkar, Rita

    2015-01-01

    Spectroscopy is the study of electromagnetic radiation and its interaction with solid, liquid, gas and plasma. It is one of the widely used analytical techniques to study the structure of atoms and molecules. The technique is also employed to obtain information about atoms and molecules as a result of their distinctive spectra. The fast-spreading field of spectroscopic applications has made a noteworthy influence on many disciplines, including energy research, chemical processing, environmental protection and medicine. This book aims to introduce students to the topic of spectroscopy. The author has avoided the mathematical aspects of the subject as far as possible; they appear in the text only when inevitable. Including topics such as time-dependent perturbation theory, laser action and applications of Group Theory in interpretation of spectra, the book offers a detailed coverage of the basic concepts and applications of spectroscopy.

  5. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  6. (e,2e) spectroscopy: from atoms to solids

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M.; McCarthy, I.E.

    1994-11-01

    This paper describes briefly the theory of (e,2e) of atoms and molecules. Subsequently, introduces a simple model for a one-dimensional crystal. The (e,2e) spectra is calculated as would be measured for this hypothetical case, and use this model to make a link between (e,2e) spectroscopy as applied to atoms and molecules and this technique as applied to solids. Slight modifications of the model allow for the simulation of the effects of different band-structures on the (e,2e) spectra. Special attention is paid to the difference in the type of information obtained from (e,2e) spectroscopy and that obtained from angular resolved photo emission. 19 refs., 9 figs.

  7. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Tai Hyun [Department of Physics, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-02-15

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s{sup 2} {sup 1}S{sub 0}{r_reversible} 6s7s {sup 1}S{sub 0}) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm{sup 3} and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s{sup 1}S{sub 0} state via the intercombination 6s6p{sup 3}P{sub 1} state with a high signal-to-noise ratio even at the temperature of 340 Degree-Sign C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  8. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Tai Hyun

    2013-01-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s 2 1 S 0 ↔ 6s7s 1 S 0 ) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm 3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s 1 S 0 state via the intercombination 6s6p 3 P 1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  9. Measurement of trace metals in vitiligo by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Abdel-Hamid, Abdel-Aziz M.; Amin, N.E.; Mohy El-Din, Safaa M.

    1985-01-01

    Zn, Cu, Fe, Pb, Mn, Co, Ag, Ca, and Mg were estimated in hair, fingernails and epidermis of vitiligo patients by atomic absorption spectroscopy. There has been a significant reduction in the concentration of trace metals in the studied sites. It seems that any speculation on the role of trace elements in vitiligo would have to take into account the structural defect which underlies the absence of melanin

  10. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  11. Precision spectroscopy of pionic atoms and chiral symmetry in nuclei

    International Nuclear Information System (INIS)

    Itahashi, Kenta; Ahn, DeukSoon; Berg, Georg P.A.; Dozono, Masanori; Etoh, Daijiro; Fujioka, Hiroyuki; Fukuda, Naoki; Fukunishi, Nobuhisa; Geissel, Hans; Haettner, Emma; Hashimoto, Tadashi; Hayano, Ryugo S.; Hirenzaki, Satoru; Horii, Hiroshi; Ikeno, Natsumi; Inabe, Naoto; Iwasaki, Masahiko; Kameda, Daisuke; Kawase, Shouichiro; Kisamori, Keiichi; Kiyokawa, Yu; Kubo, Toshiyuki; Kusaka, Kensuke; Matsushita, Masafumi; Michimasa, Shin’ichiro; Mishima, Go; Miya, Hiroyuki; Murai, Daichi; Nagahiro, Hideko; Nishi, Takahiro; Ota, Shinsuke; Sakamoto, Naruhiko; Sekiguchi, Kimiko; Suzuki, Hiroshi; Suzuki, Ken; Takaki, Motonobu; Takeda, Hiroyuki; Tanaka, Yoshiki K.; Uesaka, Tomohiro; Wada, Yasumori; Watanabe, Yuni N.; Weick, Helmut; Yamakami, Hiroki; Yanagisawa, Yoshiyuki; Yoshida, Koichi

    2016-01-01

    We conduct an experimental project to make spectroscopy of deeply bound pionic atoms systematically over wide range of nuclei. We aim at studying the strong interaction in the low energy region, which has close connection to spontaneous chiral symmetry breaking and its partial restoration in nuclear matter. First experimental results show improved spectral resolution and much better statistical sensitivity than previous experiments. Present status of the experiment is reported.

  12. Spectroscopy of Rb atoms in hollow-core fibers

    International Nuclear Information System (INIS)

    Slepkov, Aaron D.; Bhagwat, Amar R.; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2010-01-01

    Recent demonstrations of light-matter interactions with atoms and molecules confined to hollow waveguides offer great promise for ultralow-light-level applications. The use of waveguides allows for tight optical confinement over interaction lengths much greater than what could be achieved in bulk geometries. However, the combination of strong atom-photon interactions and nonuniformity of guided light modes gives rise to spectroscopic features that must be understood in order to take full advantage of the properties of such systems. We use light-induced atomic desorption to generate an optically dense Rb vapor at room temperature inside a hollow-core photonic band-gap fiber. Saturable-absorption spectroscopy and passive slow-light experiments reveal large ac Stark shifts, power broadening, and transit-time broadening, that are present in this system even at nanowatt powers.

  13. Inelastic tunneling spectroscopy for magnetic atoms and the Kondo resonance

    International Nuclear Information System (INIS)

    Goldberg, E C; Flores, F

    2013-01-01

    The interaction between a single magnetic atom and the metal environment (including a magnetic field) is analyzed by introducing an ionic Hamiltonian combined with an effective crystal-field term, and by using a Green-function equation of motion method. This approach describes the inelastic electron tunneling spectroscopy and the Kondo resonances as due to atomic spin fluctuations associated with electron co-tunneling processes between the leads and the atom. We analyze in the case of Fe on CuN the possible spin fluctuations between states with S = 2 and 3/2 or 5/2 and conclude that the experimentally found asymmetries in the conductance with respect to the applied bias, and its marked structures, are well explained by the 2↔3/2 spin fluctuations. The case of Co is also considered and shown to present, in contrast with Fe, a resonance at the Fermi energy corresponding to a Kondo temperature of 6 K. (paper)

  14. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, P

    1998-04-15

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  15. Laser resonant ionization spectroscopy and laser-induced resonant fluorescence spectra of samarium atom

    International Nuclear Information System (INIS)

    Jin, Changtai

    1995-01-01

    We have measured new high-lying levels of Sm atom by two-colour resonant photoionisation spectroscopy; we have observed the isotope shifts of Sm atom by laser-induced resonant fluorescence spectroscopy; the lifetime of eight low-lying levels of Sm atom were measured by using pulsed laser-Boxcar technique in atomic beam.

  16. Inductively coupled plasma for atomic emission spectroscopy at the Savannah River Plant

    International Nuclear Information System (INIS)

    Coleman, J.T.

    1986-01-01

    The Savannah River Plant atomic emission spectroscopy laboratory has been in operation for over 30 years. Routine analytical methods and instrumentation are being replaced with current technology. Laboratory renovation will include the installation of contained dual excitation sources (inductively coupled plasma and d-c arc) with a direct reading spectrometer. The instrument will be used to provide impurity analyses of plutonium, uranium, and other nuclear fuel cycle materials

  17. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  18. Atomic column resolved electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Duscher, G.; Pennycook, S.J.; Browning, N.D.

    1998-01-01

    Spatially resolved electron energy-loss spectroscopy (EELS) is rapidly developing into a unique and powerful tool to characterize internal interfaces. Because atomic column resolved Z-contrast imaging can be performed simultaneously with EELS in the scanning transmission electron microscope, this combination allows the atomic structure to be correlated with the electronic structure, and thus the local properties of interfaces or defects can be determined directly. However, the ability to characterize interfaces and defects at that level requires not only high spatial resolution but also the exact knowledge of the beam location, from where the spectrum is obtained. Here we discuss several examples progressing from cases where the limitation in spatial resolution is given by the microscopes or the nature of the sample, to one example of impurity atoms at a grain boundary, which show intensity and fine structure changes from atomic column to atomic column. Such data can be interpreted as changes in valence of the impurity, depending on its exact site in the boundary plane. Analysis ofthis nature is a valuable first step in understanding the microscopic structural, optical and electronic properties of materials. (orig.)

  19. Precision atomic beam density characterization by diode laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Oxley, Paul; Wihbey, Joseph

    2016-01-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 −5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm −3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  20. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, Paul; Wihbey, Joseph [Physics Department, The College of the Holy Cross, Worcester, Massachusetts 01610 (United States)

    2016-09-15

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  1. Atomic and molecular data for optical stellar spectroscopy

    International Nuclear Information System (INIS)

    Heiter, U; Lind, K; Barklem, P S; Asplund, M; Bergemann, M; Magrini, L; Masseron, T; Mikolaitis, Š; Pickering, J C; Ruffoni, M P

    2015-01-01

    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way Galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2–10 m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available data is facilitated by databases and electronic infrastructures such as the NIST Atomic Spectra Database, the VALD database, or the Virtual Atomic and Molecular Data Centre. We illustrate the current status of atomic data for optical stellar spectra with the example of the Gaia-ESO Public Spectroscopic Survey. Data sources for 35 chemical elements were reviewed in an effort to construct a line list for a homogeneous abundance analysis of up to 10 5 stars. (paper)

  2. Atomic and molecular data for optical stellar spectroscopy

    Science.gov (United States)

    Heiter, U.; Lind, K.; Asplund, M.; Barklem, P. S.; Bergemann, M.; Magrini, L.; Masseron, T.; Mikolaitis, Š.; Pickering, J. C.; Ruffoni, M. P.

    2015-05-01

    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way Galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2-10 m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available data is facilitated by databases and electronic infrastructures such as the NIST Atomic Spectra Database, the VALD database, or the Virtual Atomic and Molecular Data Centre. We illustrate the current status of atomic data for optical stellar spectra with the example of the Gaia-ESO Public Spectroscopic Survey. Data sources for 35 chemical elements were reviewed in an effort to construct a line list for a homogeneous abundance analysis of up to 105 stars.

  3. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  4. The influence of atomic alignment on absorption and emission spectroscopy

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong; Richter, Philipp

    2018-06-01

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in the universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionisation fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of PDRs in ρ Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability.

  5. Development of laser atomic spectroscopic technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Ohr, Young Gie; Cha, Hyung Ki

    1990-06-01

    Some preliminary results on the resonant ionization spectroscopy for Na and Pb atoms are presents both in theory and in experiment. A single color multiphoton ionization process is theoretically analysed in detail, for the resonant and non-resonant cases, and several parameters determining the overall ionization rate are summarized. In particular, the AC stark shift, the line width and the non-linear coefficient of ionization rate are recalculated using the perturbation theory in resolvent approach. On the other hand, the fundamental equipments for spectroscopic experiments have been designed and manufactured, which include a Nd:YAG laser, a GIM-type dye laser, a vacuum system ionization cells, a heat pipe oven, and an ion current measuring system. The characteristics of the above equipments have also been examined. Using the spectroscopic data available, several ionization schemes are considered and the relative merits for ionization have been discussed. Moreover, the effects due to the buffer gas pressure, laser intensity, vapor density and electrode voltage have been investigated in detail. The experiments will be extended to multi-color processes with several resonances, and the ultimate goal is to develop a ultrasensitive analytical method for pollutive heavy metal atoms using the resonant ionization spectroscopy. (author)

  6. Mercury pollution surveys in Riga by Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Gavare, Z.; Bogans, E.; Svagere, A.

    2008-01-01

    Practical sessions of mercury pollution measurements in Riga (Latvia) have been performed in several districts using an RA-915+ Zeeman atomic absorption spectrometer coupled with a global positioning system (GPS). The measurements were taken from a driving car and in different days at one particular location (the Institute of Atomic Physics and Spectroscopy) for monitoring the changes in atmospheric mercury concentration. GPS was used to relate the measurement results to particular places, which made it possible to create a digitalized database of pollution for different geographic coordinates in different time spans. The measurements have shown that the background level of mercury concentration in Riga does not exceed 5 ng/m 3 , although there are several areas of elevated mercury pollution that need particular attention. (Authors)

  7. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ν less than or equal to 360 eV and laboratory sources, is divided into three parts

  8. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    International Nuclear Information System (INIS)

    Du, Y.; Liyu, A. V.; Droubay, T. C.; Chambers, S. A.; Li, G.

    2014-01-01

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio

  9. On-line spectroscopy with thermal atomic beams

    International Nuclear Information System (INIS)

    Thibault, C.; Guimbal, P.; Klapisch, R.; Saint Simon, M. de; Serre, J.M.; Touchard, F.; Duong, H.T.; Jacquinot, P.; Juncar, P.

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a cw tunable dye laser interacts at right angles with a thermal atomic beam. sup(76-98)Rb, sup(118-145)Cs and sup(208-213)Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while sup(20-31)Na and sup(38-47)K have been studied by setting the apparaturs directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. (orig.)

  10. Atomic Spectroscopy and Collisions Using Slow Antiprotons \\\\ ASACUSA Collaboration

    CERN Multimedia

    Matsuda, Y; Lodi-rizzini, E; Kuroda, N; Schettino, G; Hori, M; Pirkl, W; Mascagna, V; Leali, M; Malbrunot, C L S; Yamazaki, Y; Eades, J; Simon, M; Massiczek, O; Sauerzopf, C; Nagata, Y; Knudsen, H; Uggerhoj, U I; Mc cullough, R W; Toekesi, K M; Venturelli, L; Widmann, E; Zmeskal, J; Kanai, Y; Kristiansen, H; Todoroki, K; Bartel, M A; Moller, S P; Charlton, M; Diermaier, M; Kolbinger, B

    2002-01-01

    ASACUSA (\\underline{A}tomic \\underline{S}pectroscopy \\underline{A}nd \\underline{C}ollisions \\underline{U}sing \\underline{S}low \\underline{A}ntiprotons) is a collaboration between a number of Japanese and European research institutions, with the goal of studying bound and continuum states of antiprotons with simple atoms.\\\\ Three phases of experimentation are planned for ASACUSA. In the first phase, we use the direct $\\overline{p}$ beam from AD at 5.3 MeV and concentrate on the laser and microwave spectroscopy of the metastable antiprotonic helium atom, $\\overline{p}$He$^+$, consisting of an electron and antiproton bound by the Coulomb force to the helium nucleus. Samples of these are readily created by bringing AD antiproton beam bunches to rest in helium gas. With the help of techniques developed at LEAR for resonating high precision laser beams with antiproton transitions in these atoms, ASACUSA achieved several of these first-phase objectives during a few short months of AD operation in 2000. Six atomic tr...

  11. Project of Atomic Energy Technology Record

    International Nuclear Information System (INIS)

    Song, K. C.; Ko, Y. C.; Kwon, K. C.

    2012-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records whole process, from the background to the performance, of each category in all fields of nuclear science technology which have been researched and developed at KAERI. This project includes development of Data And Documents Advanced at KAERI. This project includes development of Data And Documents Advanced Management System(DADAMS) to collect, organize and preserve various records occurred in each research and development process. In addition, it means the whole records related to nuclear science technology for the past, present and future. This report summarizes research contents and results of 'Project of Atomic Energy Technology Record'. Section 2 summarizes the theoretical background, the current status of records management in KAERI and the overview of this project. And Section 3 to 6 summarize contents and results performed in this project. Section 3 is about the process of sectoral technology record, Section 4 summarizes the process of Information Strategy Master Plan(ISMP), Section 5 summarizes the development of Data And Documents Advanced Management System(DADAMS) and Section 6 summarizes the process of collecting, organizing and digitalizing of records

  12. Atomic spectroscopy sympsoium, Gaithersburg, Maryland, September 23--26, 1975. [Program, abstracts, and author index

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Abstracts of one hundred papers given at the conference are presented along with the conference program and an author index. Session topics include: highly ionized atoms; laser spectroscopy and hyperfine structure; complex spectra; laser spectroscopy, radiation theory; theory of highly ionized atoms and analysis of plasmas; plasma spectroscopy, line strengths; spectral analysis, instrumentation, reference wavelengths; beam foil spectroscopy, line strengths, energy levels; absorption spectroscopy, autoionization, and related theory; and spectral analysis, instrumentation, and VUV physics. (GHT)

  13. Pilot project of atomic energy technology record

    International Nuclear Information System (INIS)

    Song, K. C.; Kim, Y. I.; Kim, Y. G.

    2011-12-01

    Project of the Atomic Energy Technology Record is the project that summarizes and records in each category as a whole summary from the background to the performance at all fields of nuclear science technology which researched and developed at KAERI. This project includes Data and Document Management System(DDMS) that will be the system to collect, organize and preserve various records occurred in each research and development process. To achieve these goals, many problems should be solved to establish technology records process, such as issues about investigation status of technology records in KAERI, understanding and collection records, set-up project system and selection target field, definition standards and range of target records. This is a research report on the arrangement of research contents and results about pilot project which records whole nuclear technology researched and developed at KAERI in each category. Section 2 summarizes the overview of this pilot project and the current status of technology records in domestic and overseas, and from Section 3 to Section 6 summarize contents and results which performed in this project. Section 3 summarizes making TOC(Table of Content) and technology records, Section 4 summarizes sectoral templates, Section 5 summarizes writing detailed plan of technology records, and Section 6 summarizes Standard Document Numbering System(SDNS). Conclusions of this report are described in Section 7

  14. Medical applications of atomic force microscopy and Raman spectroscopy.

    Science.gov (United States)

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  15. Atomic spectroscopy and highly accurate measurement: determination of fundamental constants

    International Nuclear Information System (INIS)

    Schwob, C.

    2006-12-01

    This document reviews the theoretical and experimental achievements of the author concerning highly accurate atomic spectroscopy applied for the determination of fundamental constants. A pure optical frequency measurement of the 2S-12D 2-photon transitions in atomic hydrogen and deuterium has been performed. The experimental setting-up is described as well as the data analysis. Optimized values for the Rydberg constant and Lamb shifts have been deduced (R = 109737.31568516 (84) cm -1 ). An experiment devoted to the determination of the fine structure constant with an aimed relative uncertainty of 10 -9 began in 1999. This experiment is based on the fact that Bloch oscillations in a frequency chirped optical lattice are a powerful tool to transfer coherently many photon momenta to the atoms. We have used this method to measure accurately the ratio h/m(Rb). The measured value of the fine structure constant is α -1 = 137.03599884 (91) with a relative uncertainty of 6.7*10 -9 . The future and perspectives of this experiment are presented. This document presented before an academic board will allow his author to manage research work and particularly to tutor thesis students. (A.C.)

  16. CANAS '01 - Colloquium analytical atomic spectroscopy; CANAS '01 - Colloquium Analytische Atomspektroskopie. Programm. Kurzfassungen der Vortraege und Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The main topics of the meeting on analytical atom spectroscopy were: optical atom spectrometry, x-ray fluorescence analysis, absorption spectroscopy, icp mass spectroscopy, trace analysis, sampling, sample preparation and quality assurance.

  17. CANAS '01 - Colloquium analytical atomic spectroscopy; CANAS '01 - Colloquium Analytische Atomspektroskopie. Programm. Kurzfassungen der Vortraege und Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The main topics of the meeting on analytical atom spectroscopy were: optical atom spectrometry, x-ray fluorescence analysis, absorption spectroscopy, icp mass spectroscopy, trace analysis, sampling, sample preparation and quality assurance.

  18. Experimental projects for spectroscopy of pionic atoms and N*(1535) in nuclei

    International Nuclear Information System (INIS)

    Itahashi, Kenta

    2010-01-01

    This article briefly summarizes two experimental projects to study the chiral dynamics both in the meson and in the baryon sectors, namely, 'Precision spectroscopy of pionic atoms' and 'N * (1535) production and its in-medium spectroscopy'. (author)

  19. Studies on low energy ion-atom collisions by means of electron-spectroscopy

    International Nuclear Information System (INIS)

    Hirosi Suzuki

    1991-01-01

    The typical results of studies on autoionization processes produced by low energy ion-atom collisions are given by means of the ejected electron spectroscopy, which have been performed by Atomic Physics Group of Sophia University

  20. Fine structures of atomic excited states: precision atomic spectroscopy and electron-ion collision process

    International Nuclear Information System (INIS)

    Gao Xiang; Cheng Cheng; Li Jiaming

    2011-01-01

    Scientific research fields for future energies such as inertial confinement fusion researches and astrophysics studies especially with satellite observatories advance into stages of precision physics. The relevant atomic data are not only enormous but also of accuracy according to requirements, especially for both energy levels and the collision data. The fine structure of high excited states of atoms and ions can be measured by precision spectroscopy. Such precision measurements can provide not only knowledge about detailed dynamics of electron-ion interactions but also a bench mark examination of the accuracy of electron-ion collision data, especially incorporating theoretical computations. We illustrate that by using theoretical calculation methods which can treat the bound states and the adjacent continua on equal footing. The precision spectroscopic measurements of excited fine structures can be served as stringent tests of electron-ion collision data. (authors)

  1. Determination of lead in mother's milk by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Bandarchian, F.; Assadian, F

    2002-01-01

    With due attention to increasing air pollution specially the lead amount that is generated from gasoline burning in automobiles, it seems that it is necessary to control the amount of it continuously. Because Pb has an easy absorbability to body and also damages the nervous system. For this reason determination of it in mother's milk has a special importance. In this research, the milks of 15 mothers twice a day were examined and the concentration of Pb were determined by atomic absorption spectroscopy. In accordance the international organization, the permissible amount in body is 0.05 ppm. Fortunately, the obtained data was less than of it and it showed the absorbance of lead by babies is insignificant

  2. The determination of vanadium in brines by atomic absorption spectroscopy

    Science.gov (United States)

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  3. Electrothermal atomization laser-excited atomic fluorescence spectroscopy for the determination of indium

    International Nuclear Information System (INIS)

    Aucelio, R.Q.; Smith, B.W.; Winefordner, J.D.

    1998-01-01

    A dye laser pumped by a high-repetition-rate copper vapor laser was used as the excitation source to determine indium at parts-per-trillion level by electrothermal atomization laser-excited atomic fluorescence spectrometry (ETA-LEAFS). A comparison was made between wall atomization, in pyrolytic and nonpyrolytic graphite tubes, and platform atomization. The influence of several chemical modifiers either in solution or precoated in the graphite tube was evaluated. The influence of several acids and NaOH in the analyte solution was also studied. Optimization of the analytical conditions was carried out to achieve the best signal-to-background ratio and consequently an absolute limit of detection of 1 fg. Some possible interferents of the method were evaluated. The method was evaluated by determining indium in blood, urine, soil, and urban dust samples. Recoveries between 99.17 and 109.17% are reported. A precision of 4.1% at the 10 ng g -1 level in water standards was achieved. copyright 1998 Society for Applied Spectroscopy

  4. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield.

    Science.gov (United States)

    Tizei, Luiz H G; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield

    International Nuclear Information System (INIS)

    Tizei, Luiz H.G.; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission.

  6. Atomic Information Technology Safety and Economy of Nuclear Power Plants

    CERN Document Server

    Woo, Taeho

    2012-01-01

    Atomic Information Technology revaluates current conceptions of the information technology aspects of the nuclear industry. Economic and safety research in the nuclear energy sector are explored, considering statistical methods which incorporate Monte-Carlo simulations for practical applications. Divided into three sections, Atomic Information Technology covers: • Atomic economics and management, • Atomic safety and reliability, and • Atomic safeguarding and security. Either as a standalone volume or as a companion to conventional nuclear safety and reliability books, Atomic Information Technology acts as a concise and thorough reference on statistical assessment technology in the nuclear industry. Students and industry professionals alike will find this a key tool in expanding and updating their understanding of this industry and the applications of information technology within it.

  7. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  8. Two-photon direct frequency comb spectroscopy of alkali atoms

    Science.gov (United States)

    Palm, Christopher; Pradhananga, Trinity; Nguyen, Khoa; Montcrieffe, Caitlin; Kimball, Derek

    2012-11-01

    We have studied transition frequencies and excited state hyperfine structure in rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the rubidium vapor. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. An interesting dependence of the 2-photon spectrum on the energy of the intermediate state of the 2-photon transition is discussed. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.

  9. Investigating single molecule adhesion by atomic force spectroscopy.

    Science.gov (United States)

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  10. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Symposium on atomic spectroscopy (SAS-83): abstracts and program

    International Nuclear Information System (INIS)

    1983-09-01

    Abstracts of papers given at the symposium are presented. Session topics include: Rydbergs, optical radiators, and planetary atoms; highly ionized atoms; ultraviolet radiation; theory, ion traps, and laser cooling; beam foil; and astronomy

  12. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    Science.gov (United States)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  13. Two-pulse atomic coherent control spectroscopy of Eley-Rideal reactions: An application of an atom laser

    International Nuclear Information System (INIS)

    Joergensen, Solvejg; Kosloff, Ronnie

    2003-01-01

    A spectroscopic application of the atom laser is suggested. The spectroscopy termed 2PACC (two-pulse atomic coherent control) employs the coherent properties of matter waves from a two-pulse atom laser. These waves are employed to control a gas-surface chemical recombination reaction. The method is demonstrated for an Eley-Rideal reaction of a hydrogen or alkali atom-laser pulse where the surface target is an adsorbed hydrogen atom. The reaction yields either a hydrogen or alkali hydride molecule. The desorbed gas-phase molecular yield and its internal state is shown to be controlled by the time and phase delay between two atom-laser pulses. The calculation is based on solving the time-dependent Schroedinger equation in a diabatic framework. The probability of desorption which is the predicted 2PACC signal has been calculated as a function of the pulse parameters

  14. Detection of single atoms by resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1986-01-01

    Rutherford's idea for counting individual atoms can, in principle, be implemented for nearly any type of atom, whether stable or radioactive, by using methods of resonance ionization. With the RIS technique, a laser is tuned to a wavelength which will promote a valence electron in a Z-selected atom to an excited level. Additional resonance or nonresonance photoabsorption steps are used to achieve nearly 100% ionization efficiencies. Hence, the RIS process can be saturated for the Z-selected atoms; and since detectors are available for counting either single electrons or positive ions, one-atom detection is possible. Some examples are given of one-atom detection, including that of the noble gases, in order to show complementarity with AMS methods. For instance, the detection of 81 Kr using RIS has interesting applications for solar neutrino research, ice-cap dating, and groundwater dating. 39 refs., 7 figs., 2 tabs

  15. Advanced fuel technologies at General Atomics

    International Nuclear Information System (INIS)

    Back, Christina A.

    2013-01-01

    General Atomics (GA) has made significant contributions since its founding in the 1950's to develop nuclear power for peaceful means. With the conception and construction of the TRIGA reactors and research on TRISO particles, GA has long recognised the importance of 'accident-tolerant' materials. Before the accident at Fukushima Daiichi, GA had already initiated work on silicon carbide (SiC) and SiC-related technologies for application in nuclear reactors. At that time, the work was initiated in support of the GA advanced gas-cooled fast reactor concept called the Energy Multiplier Module, EM2. This work continues, however, the reasons that make SiC materials attractive for fast reactor concepts also make them attractive for advanced light water reactors. These include superior performance over zircaloy for high-temperature strength, especially above 1500 deg. C, and significantly reduced hydrogen production in accident scenarios. The current focus on 'accident-tolerant' components is to develop cladding made of silicon carbide fiber and silicon carbide matrix, SiC-SiC composites. The goal for this work is to produce a cladding that provides strength and impermeability to meet reactor performance and safety requirements. To date, GA has examined the trade-offs between processing time and infiltration uniformity to reduce fabrication time, fabricated cylindrical prototypes, and refined material properties for fracture toughness, impermeability, and thermal conductivity. Generally, the GA programme is developing innovative fuel elements that employ both high density uranium-bearing fuels that enable longer lifetime with higher burn-up, and claddings that are more resistant to neutron damage. In addition to fabrication, significant effort is devoted to measuring the critical parameters, such as thermal conductivity, mechanical strength and component performance at reactor-relevant operational conditions, using a mix of commercial equipment

  16. 7th Czechoslovak spectroscopic conference and VIIIth CANAS (Conference on analytical atomic spectroscopy). Abstracts. Vol. 2

    International Nuclear Information System (INIS)

    1984-01-01

    The conference on spectroscopy held in Ceske Budejovice on June 18-22, 1984, proceeded in three sessions: atomic spectroscopy, molecular spectroscopy and special spectroscopic techniques. In the molecular spectroscopy session, 81 papers were read of which 12 were inputted in INIS. The subject of inputted papers was the use of NMR for the analysis of organic compounds and for the study of radiation defects in semiconductors, and the use of infrared spectroscopy for the analysis of nuclear and irradiated materials. (J.P.)

  17. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    Science.gov (United States)

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  18. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  19. Mineral distribution in rice: Measurement by Microwave Plasma Atomic Emission Spectroscopy (MP-AES)

    International Nuclear Information System (INIS)

    Ramos, Nerissa C.; Ramos, R.G.A.; Quirit, L.L.; Arcilla, C.A.

    2015-01-01

    Microwave Plasma Atomic Emission Spectroscopy (MP-AES) is a new technology with comparable performance and sensitivity to Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Both instrument use plasma as the energy source that produces atomic and ionic emission lines. However, MP-AES uses nitrogen as the plasma gas instead of argon which is an additional expense for ICP-OES. Thus, MP-AES is more economical. This study quantified six essential minerals (Se, Zn, Fe, Cu, Mn and K) in rice using MP-AES. Hot plate digestion was used for sample extraction and the detection limit for each instrument was compared with respect to the requirement for routine analysis in rice. Black, red and non-pigmented rice samples were polished in various intervals to determine the concentration loss of minerals. The polishing time corresponds to the structure of the rice grains such as outer bran layer (0 to 15), inner bran layer (15 to 30), outer endosperm layer (30 to 45), and middle endosperm layer (45 to 60). Results of MP-AES analysis showed that black rice had all essential materials (except K) in high concentration at the outer bran layer. The red and non-pigmented rice samples on the other hand, contained high levels of Se, Zn, Fe, and Mn in the whole bran portion. After 25 seconds, the mineral concentrations remained constant. The concentration of Cu however, gave consistent value in all polishing intervals, hence Cu might be located in the inner endosperm layer. Results also showed that K was uniformly distributed in all samples where 5% loss was consistently observed for every polishing interval. Therefore, the concentration of K was also affected by polishing time. Thus, the new MP-AES technology with comparable performance to ICP-OES is a promising tool for routine analysis in rice. (author)

  20. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  2. On promotion of base technologies of atomic energy

    International Nuclear Information System (INIS)

    1988-01-01

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.)

  3. Enhanced Performance of Recycled Aggregate Concrete with Atomic Polymer Technology

    Science.gov (United States)

    2012-06-01

    The atomic polymer technology in form of mesoporous inorganic polymer (MIP) can effectively improve material durability and performance of concrete by dramatically increase inter/intragranular bond strength of concrete at nano-scale. The strategy of ...

  4. Ion-atom interactions probed by photofragment spectroscopy

    International Nuclear Information System (INIS)

    Helm, H.

    1984-01-01

    Photofragment spectroscopy studies energetic and dynamical properties of molecular states interacting with dissociation continuum. So far, data for eighteen diatomic molecular ions have been gathered by this technique. This paper is a review of these investigations, introduced by a discussion of the experimental methods used. The wealth of information accessible by ion photofragment spectroscopy challenges the experimentalist in the application of innovative techniques and the theoretician for less approximate accounts of the Hamiltonian. (Auth.)

  5. Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review

    Science.gov (United States)

    Morrissey, Michael J.; Deasy, Kieran; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic

    2013-01-01

    The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications. PMID:23945738

  6. Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp

    International Nuclear Information System (INIS)

    Wang Wen-Li; Xu Xin-Ye

    2011-01-01

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp. The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition. (atomic and molecular physics)

  7. Time-resolved and doppler-reduced laser spectroscopy on atoms

    International Nuclear Information System (INIS)

    Bergstroem, H.

    1991-10-01

    Radiative lifetimes have been studied in neutral boron, carbon, silicon and strontium, in singly ionized gadolinium and tantalum and in molecular carbon monoxide and C 2 . The time-resolved techniques were based either on pulsed lasers or pulse-modulated CW lasers. Several techniques have been utilized for the production of free atoms and ions such as evaporation into an atomic beam, sputtering in hollow cathodes and laser-produced plasmas. Hyperfine interactions in boron, copper and strontium have been examined using quantum beat spectroscopy, saturation spectroscopy and collimated atomic beam spectroscopy. Measurement techniques based on effusive hollow cathodes as well as laser produced plasmas in atomic physics have been developed. Investigations on laser produced plasmas using two colour beam deflection tomography for determination of electron densities have been performed. Finally, new possibilities for view-time-expansion in light-in-flight holography using mode-locked CW lasers have been demonstrated. (au)

  8. On promotion of base technologies of atomic energy. Aiming at breakthrough in atomic energy technologies in 21st century

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.).

  9. Spectroscopy of muonic atoms and the proton radius puzzle

    Science.gov (United States)

    Antognini, Aldo

    2017-09-01

    We have measured several 2 S -2 P transitions in muonic hydrogen (μp), muonic deuterium (μd) and muonic helium ions (μ3He, μ4He). From muonic hydrogen we extracted a proton charge radius 20 times more precise than obtained from electron-proton scattering and hydrogen high-precision laser spectroscopy but at a variance of 7 σ from these values. This discrepancy is nowadays referred to as the proton radius puzzle. New insight has been recently provided by the first determination of the deuteron charge radius from laser spectroscopy of μd. The status of the proton charge radius puzzle including the new insights obtained by μd spectroscopy will be discussed. Work supported by the Swiss National Science Foundation SNF-200021-165854 and the ERC CoG. #725039.

  10. Laser induced fluorescence spectroscopy in atomic beams of radioactive nuclides

    International Nuclear Information System (INIS)

    Rebel, H.; Schatz, G.

    1982-01-01

    Measurements of the resonant scattering of light from CW tunable dye lasers, by a well collimated atomic beam, enable hyperfine splittings and optical isotope shifts to be determined with high precision and high sensitivity. Recent off-line atomic beam experiments with minute samples, comprising measurements with stable and unstable Ba, Ca and Pb isotopes are reviewed. The experimental methods and the analysis of the data are discussed. Information on the variation of the rms charge radii and on electromagnetic moments of nuclei in long isotopic chains is presented. (orig.) [de

  11. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  12. Electron spectroscopy for atoms, molecules and condensed matter

    International Nuclear Information System (INIS)

    Siegbahn, K.

    1981-12-01

    A review is given of the research performed at the Institute of Physics, Uppsala under the direction of Prof. Siegbahn. in the field of electron spectroscopy applied to solids, liquids and gases. The developemnt of the spectroscopic methods is the central theme of the review. (L.E.)

  13. Advances in fast-atom-bombardment mass spectroscopy

    International Nuclear Information System (INIS)

    Hemling, M.E.

    1986-01-01

    A comparison of fast atom bombardment and field desorption mass spectrometry was made to determine relative sensitivity and applicability. A series of glycosphingolipids and a series of protected oligonucleotides of known structure were analyzed to ascertain the potential utility of fast atom bombardment mass spectrometry in the structural elucidation of novel compounds in these classes. Negative ion mass markers were also developed. Fast atom bombardment was found to be one-to-two orders of magnitude more sensitive than field desorption based on the analysis of a limited number of compounds from several classes. Superior sensitivity was not universal and field desorption was clearly better in certain cases. In the negative ion mode in particular, fast atom bombardment was found to be a useful tool for the determination of the primary structure of glycosphingolipids and oligonucleotides. Carbohydrate sequence and branching information, and a fatty acid and lipid base composition were readily obtained from the mass spectra of glycosphingolipids while bidirectional nucleotide sequence, nucleotide base, and protecting group assignments were obtained for oligonucleotides. Based on this knowledge, a tentative structure of a human peripheral nervous system glycosphingolipid implicated in certain cases of disorders such as amyotrophic lateral sclerosis, Lou Gehrig's Disease, was proposed. Suitable negative ion mass markers were found in dispersions of poly(ethylene) and poly(propylene)glycols in a triethylenetetramine matrix, a matrix which also proved useful in the analysis of glycosphingolipids. These polyglycol dispersions provided ions for calibration to 2300 daltons

  14. Steelmaking process control using remote ultraviolet atomic emission spectroscopy

    Science.gov (United States)

    Arnold, Samuel

    Steelmaking in North America is a multi-billion dollar industry that has faced tremendous economic and environmental pressure over the past few decades. Fierce competition has driven steel manufacturers to improve process efficiency through the development of real-time sensors to reduce operating costs. In particular, much attention has been focused on end point detection through furnace off gas analysis. Typically, off-gas analysis is done with extractive sampling and gas analyzers such as Non-dispersive Infrared Sensors (NDIR). Passive emission spectroscopy offers a more attractive approach to end point detection as the equipment can be setup remotely. Using high resolution UV spectroscopy and applying sophisticated emission line detection software, a correlation was observed between metal emissions and the process end point during field trials. This correlation indicates a relationship between the metal emissions and the status of a steelmaking melt which can be used to improve overall process efficiency.

  15. Atomic and Molecular Data for Optical Stellar Spectroscopy

    OpenAIRE

    Heiter, U.; Lind, K.; Asplund, M.; Barklem, P. S.; Bergemann, M.; Magrini, L.; Masseron, T.; Mikolaitis, Š.; Pickering, J. C.; Ruffoni, M. P.

    2015-01-01

    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2-...

  16. X-ray spectroscopy of kaonic atoms at SIDDHARTA

    Directory of Open Access Journals (Sweden)

    Cargnelli M.

    2014-06-01

    Full Text Available The X-ray measurements of kaonic atoms play an important role for understanding the low-energy QCD in the strangeness sector. The SIDDHARTA experiment studied the X-ray transitions of 4 light kaonic atoms (H, D, 3He, and 4He using the DAFNE electron-positron collider at LNF (Italy. Most precise values of the shift and width of the kaonic hydrogen 1s state were determined, which have been now used as fundamental information for the low-energy K−p interaction in theoretical studies. An upper limit of the X-ray yield of kaonic deuterium was derived, important for future K−d experiments. The shifts and widths of the kaonic 3He and 4He 2p states were obtained, confirming the end of the “kaonic helium puzzle”. In this contribution also the plans for new experiments of kaonic deuterium are being presented.

  17. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    Directory of Open Access Journals (Sweden)

    Alberto Milani

    2015-02-01

    Full Text Available Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs can be arranged in two possible structures: a sequence of double bonds (cumulenes, resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes, expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms and the type of termination (e.g., atom, molecular group or nanostructure. Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length. Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds.

  18. New trends in atomic and molecular physics advanced technological applications

    CERN Document Server

    2013-01-01

    The field of Atomic and Molecular Physics (AMP) has reached significant advances in high–precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy , astrophysics , fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) To...

  19. AtomDB Progress Report: Atomic data and new models for X-ray spectroscopy.

    Science.gov (United States)

    Smith, Randall K.; Foster, Adam; Brickhouse, Nancy S.; Stancil, Phillip C.; Cumbee, Renata; Mullen, Patrick Dean; AtomDB Team

    2018-06-01

    The AtomDB project collects atomic data from both theoretical and observational/experimental sources, providing both a convenient interface (http://www.atomdb.org/Webguide/webguide.php) as well as providing input to spectral models for many types of astrophysical X-ray plasmas. We have released several updates to AtomDB in response to the Hitomi data, including new data for the Fe K complex, and have expanded the range of models available in AtomDB to include the Kronos charge exchange models from Mullen at al. (2016, ApJS, 224, 2). Combined with the previous AtomDB charge exchange model (http://www.atomdb.org/CX/), these data enable a velocity-dependent model for X-ray and EUV charge exchange spectra. We also present a new Kappa-distribution spectral model, enabling plasmas with non-Maxwellian electron distributions to be modeled with AtomDB. Tools are provided within pyAtomDB to explore and exploit these new plasma models. This presentation will review these enhancements and describe plans for the new few years of database and code development in preparation for XARM, Athena, and (hopefully) Arcus.

  20. Atomic data for beam-stimulated plasma spectroscopy in fusion plasmas

    International Nuclear Information System (INIS)

    Marchuk, O.; Biel, W.; Schlummer, T.; Ralchenko, Yu.; Schultz, D. R.

    2013-01-01

    Injection of high energy atoms into a confined plasma volume is an established diagnostic technique in fusion research. This method strongly depends on the quality of atomic data for charge-exchange recombination spectroscopy (CXRS), motional Stark effect (MSE) and beam-emission spectroscopy (BES). We present some examples of atomic data for CXRS and review the current status of collisional data for parabolic states of hydrogen atoms that are used for accurate MSE modeling. It is shown that the collisional data require knowledge of the excitation density matrix including the off-diagonal matrix elements. The new datasets for transitions between parabolic states are used in an extended collisional-radiative model. The ratios between the σ- and π-components and the beam-emission rate coefficients are calculated in a quasi-steady state approximation. Good agreement with the experimental data from JET is found which points out to strong deviations from the statistical distribution for magnetic sublevels

  1. Atomic-layer-resolved analysis of surface magnetism by diffraction spectroscopy

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2010-01-01

    X-ray absorption near edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) measurements by Auger-electron-yield detection are powerful analysis tools for the electronic and magnetic structures of surfaces, but all the information from atoms within the electron mean-free-path range is summed into the obtained spectrum. In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, diffraction spectroscopy, which is the combination of X-ray absorption spectroscopy and Auger electron diffraction (AED). From a series of measured thickness dependent AED patterns, we deduced a set of atomic-layer-specific AED patterns arithmetically. Based on these AED patterns, we succeeded in disentangling obtained XANES and XMCD spectra into those from different atomic layers.

  2. Electron correlation effects in XUV photoabsorption spectroscopy of atoms

    International Nuclear Information System (INIS)

    Codling, K.

    1976-01-01

    Reference is made to sophisticated experiments involving the measurement of the angular distribution of photo-ejected electrons, coincidence electrons and ion spectroscopy, which can only be interpreted in terms of electron correlation effects. After an introductory review of previous work, the lectures fall under the following headings: experimental procedures (light sources, monochromators, absorption cells, limitations on the simple photoasbsorption experiment, and complementary techniques); experimental results (discrete states in the continuum, gross features in the photoionisation continuum (rare gases, alkalis, alkaline earths, rare earths, transition elements)). (U.K.)

  3. PETOS-BASIC programs for treating data and reporting results in atomic spectroscopy

    International Nuclear Information System (INIS)

    Roca, M.

    1985-01-01

    A PETOS-BASIC program was written which provides the off-line treatment of data in optical emission spectroscopy, flame photometry and, atomic absorption spectroscopy. Polynomial calibration functions are fitted in overlapped steps by the least squares method. The calculated concentrations in unknown samples are stored in sequential files (one per element, up to four), from which they can be read to be reported in a second program. (Author) 7 refs

  4. Petos-Basic programs for treating data and reporting results in atomic spectroscopy

    International Nuclear Information System (INIS)

    Roca, M.

    1985-01-01

    A Petos-Basic program was written which provides the off-line treatment of data in optical emission spectroscopy, flame photometry and atomic absorption spectroscopy. Polynomial calibration functions are fitted in overlapped steps by the leastsquares method. The calculated concentrations in unknown samples are stored in sequential files (one per element, up to four), from which they can be read to be reported in a second program. (author)

  5. Three-photon laser spectroscopy of even-parity bound states of samarium atom

    International Nuclear Information System (INIS)

    Gomonaj, O.Yi.; Kudelich, O.Yi.

    2002-01-01

    The energy spectrum of highly-excited even-parity bound states of a Sm atom, lying in the energy range 34421.1 - 36031.8 cm -1 , is investigated using three-photon resonance-ionization spectroscopy. The energies and total momenta of 48 levels are determined. Eight new levels not observed before are discovered. Thirteen intense two-photon transitions, which can be used in the schemes of Sm atom effective photoionization, are observed

  6. Mössbauer spectroscopy and quality control in ferrate technology

    International Nuclear Information System (INIS)

    Dedushenko, S. K.; Perfiliev, Yu. D.; Kulikov, L. A.

    2013-01-01

    This paper describes some prospective reactants for the ferrate technology of water treatment, the ways of their industrial production and the application of the Mössbauer spectroscopy for their quality control.

  7. Spectroscopy of Atomic Vapors in Nanometer Cells: Dicke Narrowing and Beyond

    International Nuclear Information System (INIS)

    Vartanyan, T A; Khromov, V V

    2012-01-01

    Sub-Doppler spectroscopy of gaseous media confined in thin pillbox-shaped cells was pioneered by R.H. Dicke. In the past, this idea attracted much less attention compared to 'Dicke narrowing' in buffer gas where the atoms or molecules perform a diffusive motion instead of being bounced back and forth between the walls of the cell in a completely predetermined nature. The situation is going to be changed as atomic spectroscopy becoming an essential part of mobile devices for civil and military applications that require tiny spectroscopic cells. In the pillbox shaped cells, the role of the fast moving atoms is diminished, while the slowly moving atoms contribute most to the absorption as well as to the fluorescence. The role of the slowly moving atoms and their transient polarization in selective reflection spectroscopy was highlighted by J.L. Cojan. By merging these two approaches we have developed a theoretical description of optical reflection from and transmission through the narrow slice of atomic vapours.

  8. Delta-ray spectroscopy of quasi-atoms

    International Nuclear Information System (INIS)

    Kozhuharov, C.

    1983-01-01

    The spectroscopy of high energy delta-rays, emitted in collisions of very heavy ions, is studied. The ''orange''-type beta-spectrometer and the achromatic electron channel are the experimental setups. Delta ray production probabilities are studied as a function of the distance of closest approach R /SUB min/ or the impact parameter b. Coulomb ionization, ion trajectory, scaling laws, double differential cross sections, and K-X-rays information is extracted from the experiment. The dependence of delta-ray emission on the united charge number Z /SUB u/ is discussed. Asymmetric collision systems with Z x alpha approx. = 1 (delta ray spectrum from Pb→Sn collisions) are studied. Finally, very heavy collisions, such as 208 Pb + 208 Pb collisions at bombarding energy fas below the Coulomb barrier are touched upon

  9. Photon emission spectroscopy of ion-atom collisions

    International Nuclear Information System (INIS)

    Nystroem, B.

    1995-10-01

    Emission cross sections for the 1snp 1 P 1 -levels have been measured by photon emission spectroscopy for the collision systems He + + He at 10 keV and He 2+ + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr q+ (q=7-9) and Xe q+ (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p 2 P-levels in Na-like Nb are reported together with lifetime for the 3s3p 3 P 1 -level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs

  10. Photon emission spectroscopy of ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, B

    1995-10-01

    Emission cross sections for the 1snp{sup 1}P{sub 1}-levels have been measured by photon emission spectroscopy for the collision systems He{sup +} + He at 10 keV and He{sup 2+} + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr{sup q+} (q=7-9) and Xe{sup q+} (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p{sup 2}P-levels in Na-like Nb are reported together with lifetime for the 3s3p{sup 3}P{sub 1}-level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs.

  11. Atomic force microscope-assisted scanning tunneling spectroscopy under ambient conditions.

    Science.gov (United States)

    Vakhshouri, Amin; Hashimoto, Katsushi; Hirayama, Yoshiro

    2014-12-01

    We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. 33th all-union conference on nuclear spectroscopy and atomic nucleus structure

    International Nuclear Information System (INIS)

    Adam, J.; Bem, P.

    1984-01-01

    The 33rd All-Union Conference on Nuclear Spectroscopy and the Atomic Nucleus Structure was held in Moscow from April 19 to 22. The plenary session heard 5 papers which summed up the results of extensive programmes of theoretical and experimental research. More than two thirds of the conference were held in parallel sessions: Properties of Concrete Nuclei, Nuclear Reactions (theory, experiment), Theory of the Nucleus, Mechanisms of Alpha-, Beta- and Gamma Processes, Nuclear Spectroscopy Techniques and Applied Nuclear Spectroscopy. (B.S.)

  13. An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    CERN Document Server

    Diermaier, Martin; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Sauerzopf, Clemens; Simon, Martin C.; Wolf, Michael; Zmeskal, Johann; Widmann, Eberhard

    2015-01-01

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.

  14. An atomic hydrogen beam to test ASACUSA’s apparatus for antihydrogen spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diermaier, M., E-mail: martin.diermaier@oeaw.ac.at; Caradonna, P.; Kolbinger, B. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Wolf, M.; Zmeskal, J.; Widmann, E. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2015-08-15

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter counterpart to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth’s magnetic field.

  15. Assessing the engagement, learning, and overall experience of students operating an atomic absorption spectrophotometer with remote access technology.

    Science.gov (United States)

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of engagement, learning, and overall experience. Feedback from students suggests that the use of remote access technology is effective in teaching students the principles of chemical analysis by atomic absorption spectroscopy. © 2014 The International Union of Biochemistry and Molecular Biology.

  16. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  17. Wavelength dependence four-wave mixing spectroscopy in a micrometric atomic vapour

    International Nuclear Information System (INIS)

    Yuan-Yuan, Li; Li, Li; Yan-Peng, Zhang; Si-Wen, Bi

    2010-01-01

    This paper presents a theoretical study of wavelength dependence four-wave-mixing (FWM) spectroscopy in a micrometric thin atomic vapour. It compares three cases termed as mismatched case I, matched case and mismatched case II for the probe wavelength less, equal and greater than the pump wavelength respectively. It finds that Dicke-narrowing can overcome width broadening induced by Doppler effects and polarisation interference of thermal atoms, and high resolution FWM spectra can be achieved both in matched and mismatched wavelength for many cases. It also finds that the magnitude of the FWM signal can be dramatically modified to be suppressed or to be enhanced in comparison with that of matched wavelength in mismatched case I or II. The width narrowing and the magnitude suppression or enhancement can be demonstrated by considering enhanced contribution of slow atoms induced by atom-wall collision and transient effect of atom-light interaction in a micrometric thin vapour. (general)

  18. New trends in atomic and molecular physics. Advanced technological applications

    International Nuclear Information System (INIS)

    Mohan, Man

    2013-01-01

    Represents an up-to-date scientific status report on new trends in atomic and molecular physics. Multi-disciplinary approach. Also of interest to researchers in astrophysics and fusion plasma physics. Contains material important for nano- and laser technology. The field of Atomic and Molecular Physics (AMP) has reached significant advances in high-precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy, astrophysics, fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) Tokomak plasma machine which need accurate AMP data.

  19. Solubilization of advanced ceramic materials controlled by chemical analysis by means of atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Amarante Junior, A.

    1992-01-01

    This paper purpose is to show the techniques used in chemical analysis laboratory at Escola SENAI Mario Amato in the ceramic nucleus for opening and solubilization of Advanced Ceramic materials, where the elements in its majority are determined for atomic absorption spectroscopy. (author)

  20. Determination of rare earth elements in aluminum by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Mahanti, H.S.; Barnes, R.M.

    1983-01-01

    Inductively coupled plasma-atomic emission spectroscopy is evaluated for the determination of 14 rare earth elements in aluminum. Spectral line interference, limit of detection, and background equivalent concentration values are evaluated, and quantitative recovery is obtained from aluminum samples spiked with rare earth elements. The procedure is simple and suitable for routine process control analysis. 20 references, 5 tables

  1. Surface reactions during atomic layer deposition of Pt derived from gas phase infrared spectroscopy

    NARCIS (Netherlands)

    Kessels, W.M.M.; Knoops, H.C.M.; Dielissen, S.A.F.; Mackus, A.J.M.; Sanden, van de M.C.M.

    2009-01-01

    Infrared spectroscopy was used to obtain absolute number information on the reaction products during atomic layer deposition of Pt from (methylcyclopentadienyl)trimethylplatinum [(MeCp)PtMe3] and O2. From the detection of CO2 and H2O it was established that the precursor ligands are oxidatively

  2. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    NARCIS (Netherlands)

    Timmermans, E.A.H.; de Groote, F.P.J.; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, van der J.J.A.M.

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly

  3. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    Science.gov (United States)

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  4. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  5. Continuation of Atomic Spectroscopy on Alkali Isotopes at ISOLDE

    CERN Multimedia

    2002-01-01

    Laser optical measurements on Rb, Cs and Fr have already been performed at ISOLDE in 1978-79. The hyperfine structure and isotope shift of |7|6|-|9|8Rb, |1|1|8|-|1|4|5Cs, |2|0|8|-|2|1|3Fr and 14 of their isomers have been studied. Among the wealth of information which has been obtained, the most important are the first observation of an optical transition of the element Fr, the evidence of the onset of nuclear deformation at N~=~60 for Rb isotopes and the shape isomerism isotopes. \\\\ \\\\ From both the atomic and nuclear physics point of view, new studies seem very promising: \\item - the search for new optical transitions in Fr; the shell effect in the rms charge radius at N~=~126 for Fr isotopes \\item - the study of a possible onset of deformation for Cs isotopes beyond |1|4|5Cs \\item - the study of a region of static deformation in neutron-deficient Rb isotopes. \\\\ \\\\ \\end{enumerate} A new apparatus has been built. The principle remains the same as used in our earlier experiments. The improvements concern ess...

  6. Some historic and current aspects of plasma diagnostics using atomic spectroscopy

    Science.gov (United States)

    Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek

    2010-07-01

    In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.

  7. Ramsey spectroscopy by direct use of resonant light on isotope atoms for single-photon detuning

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hoon; Choi, Mi Hyun; Moon, Ye Lin; Kim, Seung Jin; Kim, Jung Bog [Korea National University of Education, Cheongwon (Korea, Republic of)

    2014-03-15

    We demonstrate Ramsey spectroscopy with cold {sup 87}Rb atoms via a two-photon Raman process. One laser beam has a cross-over resonant frequency on the {sup 85}Rb transition and the other beam has a 6.8 GHz shifted frequency. These two laser beams fulfill the two-photon Raman resonance condition, which involves a single-photon detuning of -2.6 GHz. By implementing these two lasers on cold {sup 87}Rb atoms, we demonstrate Ramsey spectroscopy with an interrogation time of the intermediate state by using π/2 Raman pulses. In our laser system, we can change the single-photon detuning to 1.2, 4.2 or -5.6 GHz by changing the {sup 85}Rb transition line used as a locking signal and an injected sideband. The laser system that directly uses resonant light on isotope atoms will be described in this paper.

  8. European Group for Atomic Spectroscopy. Summaries of contributions, eleventh annual conference, Paris-Orsay, July 10-13, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Summaries are presented of talks given at the eleventh conference of the European group for atomic spectroscopy. Topics covered include: lifetimes; collisions; line shape; hyperfine structure; isotope shifts; saturation spectroscopy; Hanle effect; Rydberg levels; quantum beats; helium and helium-like atoms; metrology; and molecules. (GHT)

  9. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    Science.gov (United States)

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  10. Two-photon polarization Fourier spectroscopy of metastable atomic hydrogen

    International Nuclear Information System (INIS)

    Duncan, A.J.; Beyer, H.-J.; Kleinpoppen, H.; Sheikh, Z.A,; B-Z Univ., Multan

    1997-01-01

    A novel Fourier-transform spectroscopic method using two-photon polarization to determine the spectral distribution of the two photons emitted in the spontaneous decay of metastable atomic hydrogen is described. The method uses birefringent retardation plates and takes advantage of the subtle interplay between the spectral properties and the entangled polarization properties of the radiation emitted in the decay. Assuming the validity of the theoretical spectral distribution, it is shown that the experimental results agree well with theory. On the other hand, success in solving the inverse problem of determining the spectral distribution from the experimental results is limited by the small number of experimental points. However, making reasonable assumptions it is deduced that the observed spectrum is characterized by a broadband signal of width (0.43 ± 0.06) x 10 16 rad s -1 and centre angular frequency (0.77 ± 0.03) x 10 16 rad s -1 in good agreement with the predictions of 0.489 x 10 16 rad s -1 and 0.775 x 10 16 rad s -1 , respectively, obtained from the theoretical spectral distribution modified to take account of the absorption of the two-photon radiation in air. The values of 1.5 fs for the coherence time and 440 nm for the coherence length for single photons of the two-photon pair which are obtained from the measured bandwidth imply that, in the ideal case, these values are determined by the essentially zero lifetime of the virtual intermediate state of the decay process rather than the long lifetime of the metastable state which, it is suggested, determines the coherence time and coherence length appropriate to certain types of fourth-order interference experiments. (Author)

  11. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  12. Influence of experimental conditions on atom column visibility in energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dycus, J.H.; Xu, W.; Sang, X. [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way Engineering Building 1, Raleigh, NC 27606 (United States); D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Chen, Z. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); LeBeau, J.M., E-mail: jmlebeau@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way Engineering Building 1, Raleigh, NC 27606 (United States)

    2016-12-15

    Here we report the influence of key experimental parameters on atomically resolved energy dispersive X-ray spectroscopy (EDX). In particular, we examine the role of the probe forming convergence semi-angle, sample thickness, lattice spacing, and dwell/collection time. We show that an optimum specimen-dependent probe forming convergence angle exists to maximize the signal-to-noise ratio of the atomically resolved signal in EDX mapping. Furthermore, we highlight that it can be important to select an appropriate dwell time to efficiently process the X-ray signal. These practical considerations provide insight for experimental parameters in atomic resolution energy dispersive X-ray analysis. - Highlights: • Impacts of microscope operating conditions on EDX signal and atom column contrast are demonstrated. • Influence of sample thickness and lattice spacing is shown. • Conditions for obtaining optimal signal and contrast for different sample types are discussed. • Effects of dwell time during EDX acquisition are discussed.

  13. Spectroscopy of systems of two identical atoms: effects of quantum interference

    International Nuclear Information System (INIS)

    Makarov, A.A.; Yudson, V.I.

    2017-01-01

    Several effects of quantum interference in spectroscopy of a system of two atoms are discussed. (i) In the system of spatially separated atoms in a one-dimensional (1D) geometry (a single-mode waveguide or photon crystal), a (meta)stable excited entangled state can be formed, its decay being very sensitive to the distance between the atoms and to perturbations which cause a difference between their resonance frequencies. (ii) In a system of closely located atoms in 3D space, the extreme sensitivity of absorption and fluorescence spectra to the direction of the applied magnetic field is demonstrated. These theoretical predictions can be useful for the quantum information processing and ultrasensitive measurements.

  14. Spectroscopy of lithium atoms sublimated from isolation matrix of solid Ne.

    Science.gov (United States)

    Sacramento, R L; Scudeller, L A; Lambo, R; Crivelli, P; Cesar, C L

    2011-10-07

    We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid. © 2011 American Institute of Physics

  15. Atomic emission and atomic fluorescence spectroscopy in the direct current plasma

    International Nuclear Information System (INIS)

    Hendrick, M.S.

    1985-01-01

    The Direct Current Plasma (DCP) was investigated as a source for Atomic Emission (AE) and Atomic Fluorescence Spectrometry (AFS). The DCP was optimized for AE analyses using simplex optimization and Box-Behnken partial factorial experimental design, varying argon flows, and plasma position. Results were compared with a univariate search carried out in the region of the simplex optimum. Canonical analysis demonstrated that no true optimum exists for sensitivity, precision, or drift. A stationary ridge, where combinations of conditions gave comparable instrumental responses, was found. The DCP as an excitation source for AFS in a flame was used for diagnostic studies of the DCP. Moving the aerosol introduction tube behind the DCP with respect to the flame improved the characteristics of the DCP as a narrow line source, although self-absorption was observed at high concentrations of metal salt solutions in the DCP. Detection limits for Cd, Co, Cr, Cu, Fe, Mg, Mn, Zn, and Ni were in the low ng/mL region. Theoretical expressions for scatter correction with a two-line technique were derived, although no correction was necessary to achieve accurate results for standard reference materials

  16. Laser spectroscopy of exotic RI atoms in superfluid helium-OROCHI experiment

    International Nuclear Information System (INIS)

    Furukawa, T.; Matsuo, Y.; Hatakeyama, A.; Fujikake, K.; Matsuura, Y.; Kobayashi, T.; Shimoda, T.

    2010-01-01

    We have been developing a new laser spectroscopic technique 'OROCHI,' which is based on the combination of superfluid helium as a stopper of radioactive isotope (RI) beam and in-situ laser spectroscopy of RI atoms, for determining spins and moments of exotic RIs. By using this unique technique, it is feasible to measure nuclear spins and electromagnetic moments of extremely low yield RI (estimated as less than 1 pps). Recently, we have demonstrated that nuclear spins and moments are obtained from Zeeman and hyperfine splittings of stable Rb isotopes measured using this OROCHI technique. Details of this laser spectroscopy method in He II 'OROCHI' and the summary of our development are presented.

  17. Distribution of Fe atom density in a dc magnetron sputtering plasma source measured by laser-induced fluorescence imaging spectroscopy

    Science.gov (United States)

    Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.

    2003-10-01

    Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  18. Atomic and molecular photoelectron and Auger-electron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Southworth, S.H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were also measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra of the ejected electrons. The double-angle-TOF method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collection efficiency and the elimination of certain systematic errors. An electron spectroscopy study of inner-shell photoexcitation and ionization of Xe, photoelectron angular distributions from H 2 and D 2 , and photoionization cross sections and photoelectron asymmetries of the valence orbitals of NO are reported

  19. Measuring the One-Particle Excitations of Ultracold Fermionic Atoms by Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Dao, T.-L.; Georges, Antoine; Dalibard, Jean; Salomon, Christophe; Carusotto, Iacopo

    2007-01-01

    We propose a Raman spectroscopy technique which is able to probe the one-particle Green function, the Fermi surface, and the quasiparticles of a gas of strongly interacting ultracold atoms. We give quantitative examples of experimentally accessible spectra. The efficiency of the method is validated by means of simulated images for the case of a usual Fermi liquid as well as for more exotic states: specific signatures of, e.g., a d-wave pseudogap are clearly visible

  20. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    CERN Document Server

    Hayano, R S

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants.

  1. Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows

    Science.gov (United States)

    Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.

  2. Mapping atomic contact between pentacene and a Au surface using scanning tunneling spectroscopy.

    Science.gov (United States)

    Song, Young Jae; Lee, Kyuho; Kim, Seong Heon; Choi, Byoung-Young; Yu, Jaejun; Kuk, Young

    2010-03-10

    We mapped spatially varying intramolecular electronic structures on a pentacene-gold interface using scanning tunneling spectroscopy. Along with ab initio calculations based on density functional theory, we found that the directional nature of the d orbitals of Au atoms plays an important role in the interaction at the pentacene-gold contact. The gold-induced interface states are broadened and shifted by various pentacene-gold distances determined by the various registries of a pentacene molecule on a gold substrate.

  3. Core excitation and de-excitation spectroscopies of free atoms and molecules

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2006-01-01

    This article provides a review of the current status of core excitation and de-excitation spectroscopy studies of free atoms molecules using a high-resolution soft X-ray monochromator and a high-resolution electron energy analyzer, installed in the soft X-ray photochemistry beam line at SPring-8. Experimental results are discussed for 1s excitation of Ne, O 1s excitation of CO and H 2 O, and F 1s excitation of CF 4 . (author)

  4. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    Science.gov (United States)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  5. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  6. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    International Nuclear Information System (INIS)

    Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-01-01

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4p z atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices

  7. Applications of beam-foil spectroscopy to atomic collisions in solids

    Science.gov (United States)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  8. A distributed atomic physics database and modeling system for plasma spectroscopy

    International Nuclear Information System (INIS)

    Nash, J.K.; Liedahl, D.; Chen, M.H.; Iglesias, C.A.; Lee, R.W.; Salter, J.M.

    1995-08-01

    We are undertaking to develop a set of computational capabilities which will facilitate the access, manipulation, and understanding of atomic data in calculations of x-ray spectral modeling. In this present limited description we will emphasize the objectives for this work, the design philosophy, and aspects of the atomic database, as a more complete description of this work is available. The project is referred to as the Plasma Spectroscopy Initiative; the computing environment is called PSI, or the ''PSI shell'' since the primary interface resembles a UNIX shell window. The working group consists of researchers in the fields of x-ray plasma spectroscopy, atomic physics, plasma diagnostics, line shape theory, astrophysics, and computer science. To date, our focus has been to develop the software foundations, including the atomic physics database, and to apply the existing capabilities to a range of working problems. These problems have been chosen in part to exercise the overall design and implementation of the shell. For successful implementation the final design must have great flexibility since our goal is not simply to satisfy our interests but to vide a tool of general use to the community

  9. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology

    Science.gov (United States)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh

    1998-01-01

    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  10. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Study on atomic and electronic structures of ceramic materials using spectroscopy, microscopy, and first principles calculation

    International Nuclear Information System (INIS)

    Mizoguchi, Teruyasu

    2011-01-01

    In this review, following two topics are introduced: 1) experimental and theoretical electron energy loss (EEL) near edge structures (ELNES) and X-ray absorption near edge structures (XANES), and 2) atomic and electronic structure analysis of ceramic interface by combing spectroscopy, microscopy, and first principles calculation. In the ELNES/XANES calculation, it is concluded that inclusion of core-hole effect in the calculation is essential. By combining high energy resolution observation and theoretical calculation, detailed analysis of the electronic structure is achieved. In addition, overlap population (OP) diagram is used to interpret the spectrum. In the case of AlN, sharp and intense first peak of N-K edge is found to reflect narrow dispersion of the conduction band bottom. By applying ELNES and the OP diagram to Cu/Al 2 O 3 heterointerface, it is revealed that intensity of prepeak in O-K edge is inverse proportional to interface strength. The relationships between atomic structure and defect energetics at SrTiO 3 grain boundary are also investigated, and reveal that the formation behavior of Ti vacancy is sensitive to the structural distortion. In addition, by using state-of-the-art spectroscopy, microscopy, and first principles calculations, atomic scale visualization of fluorine dopant in LaFeOAs and first principles calculation of HfO 2 phase transformation are demonstrated. (author)

  12. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    Science.gov (United States)

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. Copyright © 2015 The American Physiological Society.

  13. Spectrum of hydrogen atom, Niels Bohr and their impact on contemporary science: a glimpse of modern spectroscopy

    International Nuclear Information System (INIS)

    Sastry, M.D.

    2013-01-01

    This contribution reviews developments in the atomic spectroscopy subsequent to Bohr's model. This follows a brief description of Bohr's model of hydrogen atom that accounts for sharp line spectra of hydrogen atom. The developments include the effects of electron and nuclear spins, spectroscopy of multi electron atom which involve electron-electron repulsion and different angular momentum coupling schemes. More recently, Bohr's atom model has found application to processes at nano dimensions of semiconducting materials. It has now become possible to create a hydrogen-like atom, an exciton, with its size comparable or even more than that of the particle it self. This brings in extra quantization and has profound effects on the motion of the particles involved viz electron and hole. (author)

  14. Progression of technology education for atomic energy engineering in Tsuyama National College of Technology

    International Nuclear Information System (INIS)

    Kato, M.; Kobayashi, T.; Okada, T.; Sato, M.; Sasai, Y.; Konishi, D.; Harada, K.; Taniguchi, H.; Toya, H.; Inada, T.; Sori, H.; Yagi, H.

    2011-01-01

    This paper describes the achievements of a program in which technology education is provided to cultivate practical core engineers for low-level radiation. It was made possible by means of (1) an introductory education program starting at an early age and a continuous agenda throughout college days and (2) regional collaboration. First, with regard to the early-age introductory education program and the continuous education agenda, the subjects of study related to atomic energy or nuclear engineering were reorganized as 'Subjects related to Atomic Power Education' for all grades in all departments. These subjects were included in the syllabus and the student guide book, emphasizing a continuous and consistent policy throughout seven-year college study, including the five-year system and additional two-year advanced course. Second, to promote practical education, the contents of lectures, experiments, and internships were enriched and realigned in collaboration with the Japan Atomic Energy Agency, Okayama University and The Cyugoku Electric Power Co., Inc. In addition to the expansion and rearrangement of atomic power education, research on atomic power conducted for graduation thesis projects were undertaken to enhance the educational and research activities. In consequence, it has been estimated that there is now a total of fourteen subject areas in atomic energy technology, more than eight-hundred registered students in the department, and thirteen members of the teaching staff related to atomic energy technology. Furthermore, the 'Tsuyama model' is still being developed. This program was funded by the Ministry of Education, Culture, Sports, Science and Technology. (author)

  15. Progression of technology education for atomic energy engineering in Tsuyama National College of Technology

    International Nuclear Information System (INIS)

    Kato, Manabu; Kobayashi, Toshiro; Okada, Tadashi

    2012-01-01

    This paper describes the achievements of a program in which technology education is provided to cultivate practical core engineers for low-level radiation. It was made possible by means of (1) an introductory education program starting at an early age and a continuous agenda throughout college days and (2) regional collaboration. First, with regard to the early-age introductory education program and the continuous education agenda, the subjects of study related to atomic energy or nuclear engineering were reorganized as “Subjects related to Atomic Power Education” for all grades in all departments. These subjects were included in the syllabus and the student guide book, emphasizing a continuous and consistent policy throughout seven-year college study, including the five-year system and additional two-year advanced course. Second, to promote practical education, the contents of lectures, experiments, and internships were enriched and realigned in collaboration with the Japan Atomic Energy Agency, Okayama University and The Cyugoku Electric Power Co., Inc. In addition to the expansion and rearrangement of atomic power education, research on atomic power conducted for graduation thesis projects were undertaken to enhance the educational and research activities. In consequence, it has been estimated that there is now a total of fourteen subject areas in atomic energy technology, more than eight-hundred registered students in the department, and thirteen members of the teaching staff related to atomic energy technology. Furthermore, the “Tsuyama model” is still being developed. This program was funded by the Ministry of Education, Culture, Sports, Science and Technology. (author)

  16. Atomic substitutions in synthetic apatite; Insights from solid-state NMR spectroscopy

    Science.gov (United States)

    Vaughn, John S.

    Apatite, Ca5(PO4)3X (where X = F, Cl, or OH), is a unique mineral group capable of atomic substitutions for cations and anions of varied size and charge. Accommodation of differing substituents requires some kind of structural adaptation, e.g. new atomic positions, vacancies, or coupled substitutions. These structural adaptations often give rise to important physicochemical properties relevant to a range of scientific disciplines. Examples include volatile trapping during apatite crystallization, substitution for large radionuclides for long-term storage of nuclear fission waste, substitution for fluoride to improve acid resistivity in dental enamel composed dominantly of hydroxylapatite, and the development of novel biomaterials with enhanced biocompatibility. Despite the importance and ubiquity of atomic substitutions in apatite materials, many of the mechanisms by which these reactions occur are poorly understood. Presence of substituents at dilute concentration and occupancy of disordered atomic positions hinder detection by bulk characterization methods such as X-ray diffraction (XRD) and infrared (IR) spectroscopy. Solid-state nuclear magnetic resonance (NMR) spectroscopy is an isotope-specific structural characterization technique that does not require ordered atomic arrangements, and is therefore well suited to investigate atomic substitutions and structural adaptations in apatite. In the present work, solid-state NMR is utilized to investigate structural adaptations in three different types of apatite materials; a series of near-binary F, Cl apatite, carbonate-hydroxylapatite compositions prepared under various synthesis conditions, and a heat-treated hydroxylapatite enriched in 17O. The results indicate that hydroxyl groups in low-H, near binary F,Cl apatite facilitate solid-solution between F and Cl via column reversals, which result in average hexagonal symmetry despite very dilute OH concentration ( 2 mol percent). In addition, 19F NMR spectra indicate

  17. Absolute atomic hydrogen density distribution in a hollow cathode discharge by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Gonzalo, A B; Rosa, M I de la; Perez, C; Mar, S; Gruetzmacher, K

    2004-01-01

    We report on quantitative measurements of ground-state atomic hydrogen densities in a stationary plasma far off thermodynamic equilibrium, generated in a hollow cathode discharge, by two-photon polarization spectroscopy via the 1S-2S transition. Absolute densities are obtained using a well established calibration method based on the non-resonant two-photon polarization signal of xenon gas at room temperature, which serves as the reference at the wavelength of the hydrogen transition. This study is dedicated to demonstrating the capability of two-photon polarization spectroscopy close to the detection limit. Therefore, it requires single-longitudinal mode UV-laser radiation provided by an advanced UV-laser spectrometer

  18. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    Science.gov (United States)

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  19. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    be considered. We have therefore developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion with atomic force microscopy (AFM).[1] A single-cell probe was readily made by picking up a bacterial cell from a glass surface using a tipless AFM cantilever coated...... random immobilization is obtained by submerging the cantilever in a bacterial suspension. The reported method provides a general platform for investigating single cell interactions of bacteria with different surfaces and other cells by AFM force spectroscopy, thus improving our understanding....... The strain-dependent susceptibility to bacterial colonization on conventional PLL-g-PEG illustrates how bacterial diversity challenges development of “universal” antifouling coatings, and AFM single-cell force spectroscopy was proven to be a powerful tool to provide insights into the molecular mechanisms...

  20. Determination of 17 impurity elements in nuclear quality uranium compounds by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Andonie, O.; Smith, L.A.; Cornejo, S.

    1985-01-01

    A method is described for the determination of 17 elements (Al, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, V and Zn) in the ppm level, in nuclearly pure uranium compounds by flame atomic absorption spectroscopy. The analysis is performed by first dissolving the uranium sample in nitric acid and then extracting the uranium with tributyl phosphate solution. The aqueous phase, free of uranium, which contains the elements to analyze is inspirated into the flame of an atomic absorption spectrophotometer using air-acetylene or nitrous oxide-acetylene flame according to the element in study. This method allows to extract the uranium selectively in more than 99.0% and the recovery of the elements sudied was larger 90% (for K) to 100% (for Cr). The sensitivity of the method vary from 0.096 μg/g U (for Cd) to 5.5 μg/g U (for Na). (Author)

  1. Atomic physics studies of highly charged ions on tokamaks using x-ray spectroscopy

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.

    1989-07-01

    An overview is given of atomic physics issues which have been studied on tokamaks with the help resolution x-ray spectroscopy. The issues include the testing of model calculations predicting the excitation of line radiation, the determination of rate coefficients, and accurate atomic structure measurements. Recent research has focussed primarily on highly charged heliumlike (22 ≤ Z ≤ 28) and neonlike (34 ≤ Z ≤ 63) ions, and results are presented from measurements on the PLT and TFTR tokamaks. Many of the measurements have been aided by improved instrumental design and new measuring techniques. Remarkable agreement has been found between measurements and theory in most cases. However, in this review those areas are stressed where agreement is worst and where further investigations are needed. 19 refs., 13 figs., 2 tabs

  2. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  3. Fluorescent atom coincidence spectroscopy of extremely neutron-deficient barium isotopes

    International Nuclear Information System (INIS)

    Wells, S.A.; Evans, D.E.; Griffith, J.A.R.; Eastham, D.A.; Groves, J.; Smith, J.R.H.; Tolfree, D.W.L.; Warner, D.D.; Billowes, J.; Grant, I.S.; Walker, P.M.

    1988-01-01

    Fluorescent atom coincidence spectroscopy (FACS) has been used to measure the nuclear mean square radii and moments of the extremely neutron-deficient isotopes 120-124 Ba. At N=65 an abrupt change in nuclear mean square charge radii is observed which can be understood in terms of the occupation of the spin-orbit partner g 7/2 5/2[413] neutron and g 9/2 9/2[404] proton orbitals and the consequent enhancement of the n-p interaction. (orig.)

  4. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  5. Two photon laser spectroscopy of antiprotonic helium atoms at CERN’s AD

    CERN Document Server

    Hori, M

    2014-01-01

    The ASACUSA collaboration of CERN has carried out two-photon laser spectroscopy of antiprotonic helium atoms using counter-propagating ultraviolet laser beams. This excited some non-linear transitions of the antiproton at the wavelengths λ = 139.8–197.0 nm, in a way that reduced the thermal Doppler broadening of the observed resonances. The resulting narrow spectral lines allowed the measurement of three transition frequencies with fractional precisions of 2.3–5 parts in 109. By comparing these values with three-body QED calculations, the antiproton-to-electron mass ratio was derived as 1836.1526736(23). We briefly review these results.

  6. Platinum assay by neutron activation analysis and atomic absorption spectroscopy in cisplatin treated pregnant mice

    International Nuclear Information System (INIS)

    Esposito, M.; Collecchi, P.; Oddone, M.; Meloni, S.

    1986-01-01

    Cisplatin (CDDP) is an antineoplastic drug used in the treatment of a wide variety of tumors. This paper describes an investigation carried out on pregnant mice after intragastric or intraperitoneally treatment with CDDP from day 11 to 13 of gestation. Platinum content in different tissues, namely liver, kidney, placenta and brain, was determined at 18 day of pregnancy. Two analytical techniques were used, i.e. neutron activation analysis and atomic absorption spectroscopy. Results of both techniques are presented and discussed in terms of precision, accuracy and sensitivity. Neutron activation analysis appears to provide results better correlated with the drug treatment. (author)

  7. Platinum assay by neutron activation analysis and atomic absorption spectroscopy in cisplatin treated pregnant mice

    International Nuclear Information System (INIS)

    Esposito, M.; Collecchi, P.; Oddone, M.; Meloni, S.

    1987-01-01

    Cisplatin (CDDP) is an antineoplastic drug used in the treatment of a wide variety of tumors. This paper describes an investigation carried out on pregnant mice after intragastric or intraperitoneal treatment with CDDP from the 11st to 13rd day of gestation. Platinum content in different liver, kidney, placenta and brain tissues, was determined at 18. day of pregnancy. Neutron activation analysis and atomic absorption spectroscopy were used. Results of both techniques are presented and discussed in terms of precision, accuracy and sensitivity. Neutron activation analysis appears to provide better results correlated with the drug treatment. (author) 10 refs.; 4 tables

  8. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    Science.gov (United States)

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  9. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    Science.gov (United States)

    Hayano, Ryugo S.

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605

  10. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  11. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    Science.gov (United States)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  12. Quantitative Determination of Arsenic in Bottled Drinking Water Using Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Guţu Claudia

    2013-10-01

    Full Text Available Background: Many studies have been performed in the past few years, to determine arsenic speciation in drinking water, food chain and environment, arsenic being a well-recognized carcinogenic and toxic agent mainly in its inorganic species. The instrumental techniques used for arsenic determination, such as hydride generation atomic absorption spectrometry (HGAAS, graphite furnace atomic absorption spectrometry (GFAAS and inductively coupled plasma mass spectrometry (ICP-MS, can provide a great sensitivity only on the total amount. Objective: The aim of this study was to develop a simple and rapid method and to analyze the concentration of total inorganic arsenic in bottled drinking water. Methods: Total arsenic was determined in samples from six different types of commercially available bottled drinking water using atomic absorption spectrometry with electrothermal or hydride generation vaporisation. All drinking water samples were acidified with 0.1M nitric acid to match the acidity of the standards. Results: The method was linear within the studied range (1-5 μg/L, R = 0.9943. The quantification limits for arsenic determination were 0.48 μg/L (HGAAS and 0.03 μg/L (GFAAS. The evaluated arsenic content in drinking water was within the accepted limits provided by law. Conclusions: A simple and sensitive method for the quantification of arsenic in drinking water using atomic absorbtion spectroscopy was described, which can be further used in toxicological studies. As an additional advantage, the system is very fast, efficient and environmental friendly

  13. Local detection of X-ray spectroscopies with an in-situ Atomic Force Microscope

    International Nuclear Information System (INIS)

    Rodrigues, M S; Dhez, O; Denmat, S Le; Felici, R; Comin, F; Chevrier, J

    2008-01-01

    The in situ combination of Scanning Probe Microscopies with X-ray microbeams adds a variety of new possibilities to the panoply of synchrotron radiation techniques. This paper describes an optics-free Atomic Force Microscope that can be directly installed on most of the synchrotron radiation end-stations for combined X-ray and atomic force microscopy experiments. The instrument can be used for atomic force imaging of the investigated sample or to locally measure the X-ray absorption or diffraction, or it can also be used to mechanically interact with the sample while simultaneously taking spectroscopy or diffraction measurements. The local character of these measurements is intrinsically linked with the use of the Atomic Force Microscope tip. It is the sharp tip that gives the opportunity to measure the photons flux impinging on it, or to locally measure the absorption coefficient or the shape of the diffraction pattern. At the end an estimation of the limits of the various techniques presented is also discussed.

  14. Near-infrared spectroscopy. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-07-01

    A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy's (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program

  15. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    International Nuclear Information System (INIS)

    Wahlstroem, C.G.

    1995-01-01

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper

  16. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, C.G. [ed.

    1995-12-31

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper.

  17. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, C G [ed.

    1996-12-31

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper.

  18. The use of atomic spectroscopy in the pharmaceutical industry for the determination of trace elements in pharmaceuticals.

    Science.gov (United States)

    Lewen, Nancy

    2011-06-25

    The subject of the analysis of various elements, including metals and metalloids, in the pharmaceutical industry has seen increasing importance in the last 10-15 years, as modern analytical instrumentation has afforded analysts with the opportunity to provide element-specific, accurate and meaningful information related to pharmaceutical products. Armed with toxicological data, compendial and regulatory agencies have revisited traditional approaches to the testing of pharmaceuticals for metals and metalloids, and analysts have begun to employ the techniques of atomic spectroscopy, such as flame- and graphite furnace atomic absorption spectroscopy (FAAS, Flame AA or FAA and GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), to meet their analytical needs. Newer techniques, such as laser-induced breakdown spectroscopy (LIBS) and Laser Ablation ICP-MS (LAICP-MS) are also beginning to see wider applications in the analysis of elements in the pharmaceutical industry.This article will provide a perspective regarding the various applications of atomic spectroscopy in the analysis of metals and metalloids in drug products, active pharmaceutical ingredients (API's), raw materials and intermediates. The application of atomic spectroscopy in the analysis of metals and metalloids in clinical samples, nutraceutical, metabolism and pharmacokinetic samples will not be addressed in this work. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency doubled dye laser

    International Nuclear Information System (INIS)

    Becker, Th.; Germann, Th.; Thoumany, P.; Stania, G.; Urbonas, L.; Haensch, T.

    2008-01-01

    Full text: Rydberg atoms have played an important role in atomic physics and optical spectroscopy since many years. Due to their long lifetime and the big dipole matrix element between neighbouring Rydberg levels they are an essential tool in microwave cavity-qed experiments. Ultracold Rydberg gases are a promising candidate for realizing controlled quantum gates in atomic ensembles. In most experiments Rydberg atoms are detected destructively, where the optically excited atoms are first ionized followed by an electronic detection of the ionization products. A Doppler-free purely optical detection was reported in a room temperature cell and in an atomic beam apparatus using the technique of electromagnetically induced transparency. In all these experiments the Rydberg atoms are excited with two lasers in a two-step ladder configuration. Here we show that Doppler-free purely optical spectroscopy is also possible with a one step excitation scheme involving a UV laser at 297 nm. We excite the 85 Rb isotope from the 5S 1/2 ground state to the 63P 3/2 state with a frequency doubled dye laser in a room temperature gas cell without buffer gas. Rydberg transitions are detected by monitoring the absorption of 780 nm laser light which is superimposed on the UV light and resonant with one hyperfine component of the Rubidium D2 line. With these two lasers we realize a V-scheme and utilize the quantum amplification effect due to the different natural lifetimes of the upper levels of the two transitions: an excitation into the 63P level hinders many absorption-emission cycles of the D2 transition and leads to a reduced absorption on that line. We discuss the shape of the observed spectra in the context of electron shelving and EIT experiments. By applying a frequency modulation to the UV laser, we can obtain dispersive signals which can be used to stabilize the laser to a specific Rydberg transition. By shifting the frequency of the 780 nm laser to crossover resonances in the

  20. Sub-doppler spectroscopy based on the transit relaxation of atomic particles in a thin gas cell

    International Nuclear Information System (INIS)

    Izmailov, Azad

    2010-01-01

    This paper is the review of methods, achievements and possibilities of the recently elaborated high-resolution laser spectroscopy based on sub-doppler absorption, fluorescence and polarization resonances, which arise because of the specific optical selection of comparatively slow-speed atoms in a thin cell with rarefied gas. It was considered two following mechanisms of such a velocity selection of atomic particles connected with their flight durations between walls of the thin cell : 1) optical pumping of sublevels of the ground atomic term and 2) optical excitation of long-lived quantum levels. Theoretical bases of elaborated spectroscopy methods are presented. In case of the optical pumping mechanism, experimental technique and results on the record of sub-doppler spectral structure of Cs and Rb atoms and on the frequency stabilization of diode lasers by given methods are described. Perspectives of further development and applications of this new direction of the high-resolution spectroscopy are discussed

  1. Nanodisc-Targeted STD NMR Spectroscopy Reveals Atomic Details of Ligand Binding to Lipid Environments.

    Science.gov (United States)

    Muñoz-García, Juan C; Inacio Dos Reis, Rosana; Taylor, Richard J; Henry, Alistair J; Watts, Anthony

    2018-05-18

    Saturation transfer difference (STD) NMR spectroscopy is one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information on the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g., small organic molecules, carbohydrates or lipids) and a protein as the target, in which the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD NMR spectroscopy to investigate the interactions of the neurotransmitter dopamine with mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed either from charged or zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry studies, show that dopamine preferentially binds to negatively charged model membranes, but also provide detailed atomic insights into the mode of interaction of dopamine with membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine and its structural analogues and are of general applicability to other systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sensing of silver nanoparticles on/in endothelial cells using atomic force spectroscopy.

    Science.gov (United States)

    Kolodziejczyk, Agnieszka; Jakubowska, Aleksandra; Kucinska, Magdalena; Wasiak, Tomasz; Komorowski, Piotr; Makowski, Krzysztof; Walkowiak, Bogdan

    2018-05-10

    Endothelial cells, due to their location, are interesting objects for atomic force spectroscopy study. They constitute a barrier between blood and vessel tissues located deeper, and therefore they are the first line of contact with various substances present in blood, eg, drugs or nanoparticles. This work intends to verify whether the mechanical response of immortalized human umbilical vein endothelial cells (EA.hy926), when exposed to silver nanoparticles, as measured using force spectroscopy, could be effectively used as a bio-indicator of the physiological state of the cells. Silver nanoparticles were characterized with transmission electron microscopy and dynamic light scattering techniques. Tetrazolium salt reduction test was used to determine cell viability after treatment with silver nanoparticles. An elasticity of native cells was examined in the Hanks' buffer whereas fixed cells were softly fixed with formaldehyde. Additional aspect of the work is the comparative force spectroscopy utilizing AFM probes of ball-shape and conical geometries, in order to understand what changes in cell elasticity, caused by SNPs, were detectable with each probe. As a supplement to elasticity studies, cell morphology observation by atomic force microscopy and detection of silver nanoparticles inside cells using transmission electron microscopy were also performed. Cells exposed to silver nanoparticles at the highest selected concentrations (3.6 μg/mL, 16 μg/mL) are less elastic. It may be associated with the reorganization of the cellular cytoskeleton and the "strengthening" of the cell cortex caused by presence of silver nanoparticles. This observation does not depend on cell fixation. Agglomerates of silver nanoparticles were observed on the cell membrane as well as inside the cells. Copyright © 2018 John Wiley & Sons, Ltd.

  3. The role of total-reflection x-ray fluorescence in atomic spectroscopy

    International Nuclear Information System (INIS)

    Toelg, G.; Klockenkaemper, R.

    1993-01-01

    Total-reflection X-ray fluorescence (TXRF) is a universal and economic method for the simultaneous determination of elements with atomic numbers > 11 down to the lower pg-level. It is a microanalytical tool for the analysis of small sample amounts placed on flat carriers and for contaminations on flat sample surfaces. Analyses of stratified near-surface layers are made possible by varying the incident angle of the primary beam in the region of total-reflection. This non-destructive method is especially suitable for thin layers of a few nanometres, deposited on wafer material although not usable as a microprobe method with a high lateral resolution. Furthermore, depth profiles of biological samples can be recorded by means of microtome sectioning of only a few micrometres, as, for example in the gradient analysis of human organs. In addition to micro- and surface-layer analysis, TXRF is effectively applied to element trace analysis. Homogeneous solutions, for example aqueous solutions, high-purity acids or body fluids, are pipetted onto carriers and, after evaporation, the dry residues are analyzed directly down to the pg/ml region. Particularly advantageous is the absence of matrix effects, so that an easy calibration can be carried out by adding a single internal standard element. A digestion or separation step preceding the actual determination becomes necessary if a more complex matrix is to be analysed or especially low detection limits have to be reached. A critical evaluation of the recent developments in atomic spectroscopy places TXRF in a leading position. Its outstanding features compete with those of e.g. electrothermal atomic absorption spectrometry (ETAAS), microwave induced plasma optical emission spectroscopy (MIP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) in the field of micro- and trace analysis and with Rutherford backscattering (RBS) and secondary ion mass spectrometry (SIMS) in the surface-layer analysis. (author)

  4. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality.

    Science.gov (United States)

    Carvalho, Filomena A; Martins, Ivo C; Santos, Nuno C

    2013-03-01

    Atomic force microscopy (AFM) applied to biological systems can, besides generating high-quality and well-resolved images, be employed to study protein folding via AFM-based force spectroscopy. This approach allowed remarkable advances in the measurement of inter- and intramolecular interaction forces with piconewton resolution. The detection of specific interaction forces between molecules based on the AFM sensitivity and the manipulation of individual molecules greatly advanced the understanding of intra-protein and protein-ligand interactions. Apart from the academic interest in the resolution of basic scientific questions, this technique has also key importance on the clarification of several biological questions of immediate biomedical relevance. Force spectroscopy is an especially appropriate technique for "mechanical proteins" that can provide crucial information on single protein molecules and/or domains. Importantly, it also has the potential of combining in a single experiment spatial and kinetic measurements. Here, the main principles of this methodology are described, after which the ability to measure interactions at the single-molecule level is discussed, in the context of relevant protein-folding examples. We intend to demonstrate the potential of AFM-based force spectroscopy in the study of protein folding, especially since this technique is able to circumvent some of the difficulties typically encountered in classical thermal/chemical denaturation studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Study of the Neutron Deficient Pb and Bi Isotopes by Simultaneous Atomic- and Nuclear-Spectroscopy

    CERN Multimedia

    Kessler, T

    2002-01-01

    We propose to study systematically nuclear properties of the neutron deficient lead $^{183-189}$Pb, $^{191g}$Pb, $^{193g}$Pb and bismuth isotopes $^{188-200}$Bi by atomic spectroscopy with the ISOLDE resonance ionisation laser ion source (RILIS) combined with simultaneous nuclear spectroscopy at the detection set-up. The main focus is the determination of the mean square charge radii of $^{183-190}$Pb and $^{188-193}$Bi from which the influence of low-lying intruder states should become obvious. Also the nuclear spin and magnetic moments of ground-states and long-lived isomers will be determined unambiguously through evaluation of the hyperfine structure, and new isomers could be discovered. The decay properties of these nuclei can be measured by $\\alpha$-$\\gamma$ and $\\beta$-$\\gamma$ spectroscopy. With this data at hand, possible shape transitions around mid-shell at N$\\sim$104 will be studied. This data is crucial for the direct test of nuclear theory in the context of intruder state influence (e.g. energy ...

  6. Beyond-Born-Oppenheimer effects in sub-kHz-precision photoassociation spectroscopy of ytterbium atoms

    Science.gov (United States)

    Borkowski, Mateusz; Buchachenko, Alexei A.; Ciuryło, Roman; Julienne, Paul S.; Yamada, Hirotaka; Kikuchi, Yuu; Takahashi, Kakeru; Takasu, Yosuke; Takahashi, Yoshiro

    2017-12-01

    We present high-resolution two-color photoassociation spectroscopy of Bose-Einstein condensates of ytterbium atoms. The use of narrow Raman resonances and careful examination of systematic shifts enabled us to measure 13 bound-state energies for three isotopologues of the ground-state ytterbium molecule with standard uncertainties of the order of 500 Hz. The atomic interactions are modeled using an ab initio based mass-scaled Born-Oppenheimer potential whose long-range van der Waals parameters and total WKB phase are fitted to experimental data. We find that the quality of the fit of this model, of about 112.9 kHz (rms) can be significantly improved by adding the recently calculated beyond-Born-Oppenheimer (BBO) adiabatic corrections [J. J. Lutz and J. M. Hutson, J. Mol. Spectrosc. 330, 43 (2016), 10.1016/j.jms.2016.08.007] and by partially treating the nonadiabatic effects using distance-dependent reduced masses. Our BBO interaction model represents the experimental data to within about 30.2 kHz on average, which is 3.7 times better than the "reference" Born-Oppenheimer model. We calculate the s -wave scattering lengths for bosonic isotopic pairs of ytterbium atoms with error bars over two orders of magnitude smaller than previous determinations. For example, the s -wave scattering length for 174Yb is +5.55812 (50 ) nm.

  7. Evidence for atomic scale disorder in indium nitride from perturbed angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Dogra, R; Shrestha, S K; Byrne, A P; Ridgway, M C; Edge, A V J; Vianden, R; Penner, J; Timmers, H

    2005-01-01

    The crystal lattice of bulk grains and state-of-the-art films of indium nitride was investigated at the atomic scale with perturbed angular correlation spectroscopy using the 111 In/Cd radioisotope probe. The probe was introduced during sample synthesis, by diffusion and by ion implantation. The mean quadrupole interaction frequency ν Q = 28 MHz was observed at the indium probe site in all types of indium nitride samples with broad frequency distributions. The observed small, but non-zero, asymmetry parameter indicates broken symmetry around the probe atoms. Results have been compared with theoretical calculations based on the point charge model. The consistency of the experimental results and their independence of the preparation technique suggest that the origin of the broad frequency distribution is inherent to indium nitride, indicating a high degree of disorder at the atomic scale. Due to the low dissociation temperature of indium nitride, furnace and rapid thermal annealing at atmospheric pressure reduce the lattice disorder only marginally

  8. Studies of the reactions of hydrogen atoms by time-resolved E. S. R. spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, R W; Verma, N C [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Chemistry

    1977-01-01

    Time-resolved e.s.r. spectroscopy has been used to follow directly the reactions of H atoms produced by pulse radiolysis of acid solutions. Detailed analysis of the time profile of the e.s.r. signal was carried out by means of modified Bloch equations. The increased signal found when a scavenger for OH such as t-butyl alcohol is present is shown to be mainly the result of slower H atom decay by radical-radical reaction. The reaction H + OH does not appear to produce any signal polarization. The decay curves observed in the presence of solute are readily accounted for by the treatment, and good plots of pseudo first-order rate constant against solute concentration are obtained. The absolute rate constants for reaction with H atoms are for methanol 2.5 x10/sup 6/, for ethanol 2.1 X 10/sup 7/, for isopropanol 6.8 x 10/sup 7/, and for succinic acid 3.0 x 10/sup 6/ dm/sup 3/ mol/sup -1/s/sup -1/. These values are in good agreement with the earlier chemical measurements.

  9. Atomic spectroscopy study of nuclear properties of francium and cesium isotopes

    International Nuclear Information System (INIS)

    Coc, A.

    1986-04-01

    This work is based on the study of cesium ( 118,146 Cs) and francium ( 207-213 Fr, 220-228 Fr) isotopes by hyperfine atomic spectroscopy and on the interpretation of these results from the nuclear physics point of view. The measured nuclear quantities are: the spin, the magnetic moment, the electric quadrupole moment and the mean square charge radius. The experimental method which is based on hyperfine optical pumping with a tunable laser, followed by magnetic analysis of the atoms is described in the first part. Results related to atomic physics are also presented. In the second part, these data are interpreted in the framework of nuclear models. The deformation of light cesium isomers are compared to values obtained from a theoretical self-consistent calculation. Heavy francium isotopes are situated in an area where the existence of static octupole deformations have been predicted. The odd-even staggering measured on the mean square radius is abnormal in this region. However, on the basis of experimental data, no definitive conclusion can be drawn regarding the nature of these deformations. (author)

  10. Precision spectroscopy of the 2S-4P transition in atomic hydrogen

    Science.gov (United States)

    Maisenbacher, Lothar; Beyer, Axel; Matveev, Arthur; Grinin, Alexey; Pohl, Randolf; Khabarova, Ksenia; Kolachevsky, Nikolai; Hänsch, Theodor W.; Udem, Thomas

    2017-04-01

    Precision measurements of atomic hydrogen have long been successfully used to extract fundamental constants and to test bound-state QED. However, both these applications are limited by measurements of hydrogen lines other than the very precisely known 1S-2S transition. Moreover, the proton r.m.s.charge radius rp extracted from electronic hydrogen measurements currently disagrees by 4 σ with the much more precise value extracted from muonic hydrogen spectroscopy. We have measured the 2S-4P transition in atomic hydrogen using a cryogenic beam of hydrogen atoms optically excited to the initial 2S state. The first order Doppler shift of the one-photon 2S-4P transition is suppressed by actively stabilized counter-propagating laser beams and time-of-flight resolved detection. Quantum interference between excitation paths can lead to significant line distortions in our system. We use an experimentally verified, simple line shape model to take these distortions into account. With this, we can extract a new value for rp and the Rydberg constant R∞ with comparable accuracy as the combined previous H world data.

  11. Evaluation on corrosively dissolved gold induced by alkanethiol monolayer with atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Cao Zhong; Zhang Ling; Guo Chaoyan; Gong Fuchun; Long Shu; Tan Shuzhen; Xia Changbin; Xu Fen; Sun Lixian

    2009-01-01

    We have monitored a gold corrosive dissolution behavior accompanied in n-alkanethiol like n-dodecanethiol assembled process with in situ quartz crystal microbalance (QCM), and then observed it with atomic force microscopy (AFM) which showed an evident image of corrosive defects or holes produced on gold substrate, corresponding to gold dissolution induced by the alkanethiol molecules in the presence of oxygen. For detection of the dissolved gold defects during alkanethiol assembled process, an atomic absorption spectroscopy (AAS) has been carried out in this paper, and the detection limit for the dissolved gold could be evaluated to be 15.4 ng/mL. The amount of dissolved gold from the substrates of gold plates as functions of immersion time, acid media, solvents and thiol concentration has been examined in the oxygen saturated solutions. In comparison with in situ QCM method, the kinetics behavior of the long-term gold corrosion on the gold plates in 1.0 mmol/L of n-dodecanethiol solution determined with AAS method was a slow process, and its corrosion rate on gold dissolution could be evaluated to be about 4.4 x 10 -5 ng.cm -2 .s -1 , corresponding to 1.3 x 10 8 Au atoms.cm -2 .s -1 , that was much smaller than that of initial rate monitored with in situ QCM. Both kinetics equations obtained with QCM and AAS showed a consistent corrosion behavior on gold surfaces.

  12. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Science.gov (United States)

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  13. Atomic Scale Structural Studies of Macromolecular Assemblies by Solid-state Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Loquet, Antoine; Tolchard, James; Berbon, Melanie; Martinez, Denis; Habenstein, Birgit

    2017-09-17

    Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13 C/ 15 N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.

  14. Nuclear structure of light thallium isotopes as deduced from laser spectroscopy on a fast atom beam

    International Nuclear Information System (INIS)

    Bounds, J.A.

    1985-08-01

    After optimizing the system by experiments on /sup 201,203,205/Tl, the neutron-deficient isotopes 189-193 Tl have been studied using the collinear fast atom beam laser spectroscopy system at UNISOR on-line to the Holifield Heavy Ion Research Facility. A sensitive system for the measurements was developed since the light isotopes were available in mass-separated beams of only 7 x 10 4 to 4 x 10 5 atoms per second. By laser excitation of the 535 nm atomic transitions of atoms in the beam, the 6s 2 7s 2 S/sub 1/2/ and 6s 2 6s 2 P/sub 3/2/ hyperfine structures were measured, as were the isotope shifts of the 535 nm transitions. From these, the magnetic dipole moments, spectroscopic quadrupole moments and isotopic changes in mean-square charge radius were deduced. The magnetic dipole moments are consistent with previous data. The /sup 190,192/Tl isotopes show a considerable difference in quadrupole deformations as well as an anomalous isotope shift with respect to 194 Tl. A large isomer shift in 193 Tl is observed implying a larger deformation in the 9/2 - isomer than in the 1/2 + ground state. The /sup 189,191,193/Tl isomers show increasing deformation away from stability. A deformed shell model calculation indicates that this increase in deformation can account for the dropping of the 9/2 - band in these isotopes while an increase in neutron pairing correlations, having opposite and compensating effects on the rotational moment of inertia, maintains the 9/2 - strong-coupled band structure. 105 refs., 27 figs

  15. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  16. Atomic scale simulations of hydrogen implantation defects in hydrogen implanted silicon - smart Cut technology

    International Nuclear Information System (INIS)

    Bilteanu, L.

    2010-12-01

    The topic of this thesis is related to the implantation step of the SmartCut TM technology. This technology uses hydrogen in order to transfer silicon layers on insulating substrates. The transfer is performed through a fracture induced by the formation of bidimensional defects well known in literature as 'platelets'. More exactly, we have studied within this thesis work the defects appearing in the post implant state and the evolution of the implantation damage towards a state dominated by platelets. The study is organised into two parts: in the first part we present the results obtained by atomic scale simulations while in the second part we present an infrared spectroscopy study of the evolution of defects concentrations after annealing at different temperatures. The atomic scale simulations have been performed within the density functional theory and they allowed us to compute the formation energies and the migration and recombination barriers. The defects included in our study are: the atomic and diatomic interstitials, the hydrogenated vacancies and multi-vacancies and the several platelets models. The obtained energies allowed us to build a stability hierarchy for these types of defects. This scheme has been confronted with some infrared analysis on hydrogen implanted silicon samples (37 keV) in a sub-dose regime which does not allow usually the formation of platelets during the implantation step. The analysis of the infrared data allowed the detailed description of the defects concentration based on the behaviour of peaks corresponding to the respective defects during annealing. The comparison between these evolutions and the energy scheme obtained previously allowed the validation of an evolution scenario of defects towards the platelet state. (author)

  17. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    International Nuclear Information System (INIS)

    Arp, U.

    1996-01-01

    Argon L 2.3 -M 2.3 M 2.3 Auger-electron spectra were measured in coincidence with Kα fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons

  18. Lattice-Assisted Spectroscopy: A Generalized Scanning Tunneling Microscope for Ultracold Atoms.

    Science.gov (United States)

    Kantian, A; Schollwöck, U; Giamarchi, T

    2015-10-16

    We propose a scheme to measure the frequency-resolved local particle and hole spectra of any optical lattice-confined system of correlated ultracold atoms that offers single-site addressing and imaging, which is now an experimental reality. Combining perturbation theory and time-dependent density matrix renormalization group simulations, we quantitatively test and validate this approach of lattice-assisted spectroscopy on several one-dimensional example systems, such as the superfluid and Mott insulator, with and without a parabolic trap, and finally on edge states of the bosonic Su-Schrieffer-Heeger model. We highlight extensions of our basic scheme to obtain an even wider variety of interesting and important frequency resolved spectra.

  19. Atoms, molecules and optical physics 2. Molecules and photons - Spectroscopy and collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (Germany)

    2015-09-01

    This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  20. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    Science.gov (United States)

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  1. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.

    Science.gov (United States)

    Sapra, K Tanuj

    2013-01-01

    The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

  2. Localization of the antimony impurity atoms in the PbTe lattice determined by the Moessbauer emission spectroscopy

    International Nuclear Information System (INIS)

    Masterov, V.F.; Nasredinov, F.S.; Nemov, S.A.; Seregin, P.P.; Troitskaya, N.N.; Bondarevskij, S.I.

    1997-01-01

    The 119 Sb ( 119m Sn) emission Moessbauer spectroscopy has shown that a localization of the antimony impurity atoms in the PbTe lattice is affected by the conductivity type of the host material, the antimony atoms occupied mainly anion and cation sites in n-type and p-type samples, respectively. The 119 Sn impurity in the anion sublattice of PbTe formed an decay. Its charge state was shown to be independent of the Fermi level position

  3. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  4. Coherent spectroscopy of a {Lambda} atomic system and its prospective application to tunable frequency offset locking

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Y B [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ray, Ayan [Radioactive Ion Beam Group, Variable Energy Cyclotron Centre, Kolkata 700064 (India); Lawande, Q V [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Jagatap, B N, E-mail: yogeshwar84@rediffmail.com, E-mail: ayan_ray_in@rediffmail.com, E-mail: bnj@barc.gov.in [Atomic and Molecular Physics Division and Homi Bhabha National Institute, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2011-09-15

    We investigate the coherent pump-probe spectroscopy of a three-level {Lambda} system, 6s{sub 1/2}F = 3,4{yields}6p{sub 3/2}F{sup '}= 4, in the hyperfine manifold of D{sub 2} transition (852 nm) of cesium with particular reference to the sub-Doppler linewidth resonance arising from Aulter-Townes (AT) splitting and the possibility of using it for realizing a scheme for tunable atomic frequency offset locking (AFOL). We discuss here the theoretical framework for a {Lambda} system interacting with a coherent pump and probe and use it to describe the process of modulation transfer in the AT and electromagnetically induced transparency regimes. We further employ an experimental scheme consisting of a strong pump and a pair of weak probes to resolve the sub-Doppler linewidth ({approx}8 MHz) AT resonance and study its dependence on pump intensity and detuning. In order to explore the possibility of using such a sub-Doppler linewidth resonance for AFOL, we use its first derivative signal as a frequency discriminator to stabilize the probe laser. The frequency stability of the probe is characterized by means of error signal analysis. This study reveals that while the frequency stability of the AT locked laser is limited by the pump laser, the tuning range of the offset frequency lock can cover the entire Doppler profile and its immediate neighbourhood, thereby providing a simple and cost effective alternative to the external modulator. The study described in this paper contributes to the discussion on the subtle link between dressed state spectroscopy and AFOL, which is relevant for developing a master-slave-type laser system in the domain of coherent photon-atom interaction.

  5. Functionalization of gold and nanocrystalline diamond atomic force microscope tips for single molecule force spectroscopy

    Science.gov (United States)

    Drew, Michael E.

    The atomic force microscope (AFM) has fueled interest in nanotechnology because of its ability to image surfaces at the nanometer level and act as a molecular force sensor. Functionalization of the surface of an AFM tip surface in a stable, controlled manner expands the capabilities of the AFM and enables additional applications in the fields of single molecule force spectroscopy and nanolithography. Two AFM tip functionalizations are described: the assembly of tripodal molecular tips onto gold AFM tips and the photochemical attachment of terminal alkenes to nanocrystalline diamond (NCD) AFM tips. Two separate tripodal molecules with different linker lengths and a monopodal molecule terminated with biotin were synthesized to attach to a gold AFM tip for single molecule force spectroscopy. The immobilization of these molecules was examined by contact angle measurements, spectroscopic ellipsometry, infrared, and near edge x-ray absorption fine structure (NEXAFS) spectroscopy. All three molecules displayed rupture forces that agreed with previously reported values for the biotin--avidin rupture. The tripodal molecular tip displayed narrower distribution in their force histograms than the monopodal molecular tip. The performance of the tripodal molecular tip was compared to the monopodal molecular tip in single molecule force spectroscopy studies. Over repeated measurements, the distribution of forces for the monopodal molecular tip shifted to lower forces, whereas the distribution for the tripodal molecular tip remained constant throughout. Loading rate dependence and control experiments further indicated that the rupture forces of the tripod molecular tips were specific to the biotin--NeutrAvidin interaction. The second functionalization method used the photochemical attachment of undecylenic acid to NCD AFM tips. The photochemical attachment of undecylenic acid to hydrogen-terminated NCD wafer surfaces was investigated by contact angle measurements, x

  6. Sustainable progression of technology education for atomic energy engineering in Tsuyama National College of Technology

    International Nuclear Information System (INIS)

    Kobayashi, Toshiro; Kato, Manabu; Sori, Hitoshi; Okada, Tadashi; Sasai, Yuji; Sato, Makoto; Inada, Tomomi; Harada, Kanji

    2014-01-01

    This study describes the achievements of a program that provides technology education about radiation to develop practical core engineers, then the effects of the programed were discussed. An education program starting at an early age and continuous and consistent educational agendas through seven years of college has been constructed in collaboration with regional organizations. Subjects relating to atomic energy or nuclear engineering were regrouped as “Subjects Related to Atomic Power Education” for most grades in each department. These subjects were included in the syllabus and the student guide book to emphasize a continuous and consistent policy throughout the seven-year period of college study, comprising the five-year system and the additional two-year advanced course. Furthermore, the content of lectures, experiments, and internships was enriched and realigned in collaboration with the Japan Atomic Energy Agency (JAEA), Okayama University, and Chugoku Electric Power Co., Inc. Additional educational materials were developed from inspection visits by teaching staff to atomic energy facilities were also used in the classes. Two student experiment textbooks were developed to promote two of the subjects related to atomic energy: “Cloud Chamber Experiment” and “A Test of γ-ray Inverse Square Law.” In addition to the expansion and rearrangement of atomic power education, research on atomic power conducted for graduation thesis projects was undertaken to enhance educational and research activities. Some examples are as follows: “Study on the Relation between γ Dose Rate and Rainfall in Northern Okayama Area,” “Remote Sensing of Radiation Dose Rate by Customizing an Autonomous Robot,” and “Nuclear Reaction Analysis for Composition Measurement of BN Thin Films.” It should be noted that an atomic-energy-related education working group has been in place officially to continue the above activities in the college since 2011. In consequence

  7. Unraveling protein-protein interactions in clathrin assemblies via atomic force spectroscopy.

    Science.gov (United States)

    Jin, Albert J; Lafer, Eileen M; Peng, Jennifer Q; Smith, Paul D; Nossal, Ralph

    2013-03-01

    Atomic force microscopy (AFM), single molecule force spectroscopy (SMFS), and single particle force spectroscopy (SPFS) are used to characterize intermolecular interactions and domain structures of clathrin triskelia and clathrin-coated vesicles (CCVs). The latter are involved in receptor-mediated endocytosis (RME) and other trafficking pathways. Here, we subject individual triskelia, bovine-brain CCVs, and reconstituted clathrin-AP180 coats to AFM-SMFS and AFM-SPFS pulling experiments and apply novel analytics to extract force-extension relations from very large data sets. The spectroscopic fingerprints of these samples differ markedly, providing important new information about the mechanism of CCV uncoating. For individual triskelia, SMFS reveals a series of events associated with heavy chain alpha-helix hairpin unfolding, as well as cooperative unraveling of several hairpin domains. SPFS of clathrin assemblies exposes weaker clathrin-clathrin interactions that are indicative of inter-leg association essential for RME and intracellular trafficking. Clathrin-AP180 coats are energetically easier to unravel than the coats of CCVs, with a non-trivial dependence on force-loading rate. Published by Elsevier Inc.

  8. Irradiation induced defects containing oxygen atoms in germanium crystal as studied by deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Kambe, Yoshiyuki; Saito, Haruo; Matsuda, Koji.

    1984-05-01

    Deep level transient spectroscopy was applied to the electron trapping levels which are associated with the irradiation induced lattice defects in germanium crystals. The germanium crystals used in the study were doped with oxygen, antimony or arsenic and the defects were formed by electron irradiation of 1.5MeV or 10MeV. The nature of so called ''thermal defect'' formed by heat treatment at about 670K was also studied. The trapping levels at Esub(c)-0.13eV, Esub(c)-0.25eV and Esub(c)-0.29eV were found to be associated with defects containing oxygen atoms. From the experimental results the Esub(c)-0.25eV level was attributed to the germanium A-center (interstitial oxygen atom-vacancy pair). Another defect associated with the 715cm -1 infrared absorption band was found to have a trapping level at the same position at Esub(c)-0.25eV. The Esub(c)-0.23eV and Esub(c)-0.1eV levels were revealed to be associated with thermal donors formed by heat treatment at about 670K. Additional two peaks (levels) were observed in the DLTS spectrum. The annealing behavior of the levels suggests that the thermal donors originate from not a single type but several types of defects. (author)

  9. Atomic and ionic density measurement by laser absorption spectroscopy of magnetized or non-magnetized plasmas

    International Nuclear Information System (INIS)

    Le Gourrierec, P.

    1989-11-01

    Laser absorption spectroscopy is an appreciated diagnostic in plasma physics to measure atomic and ionic densities. We used it here more specifically on metallic plasmas. Firstly, a uranium plasma was created in a hollow cathode. 17 levels of U.I and U.II (12 for U.I and 5 for U.II) are measured by this method. The results are compared with the calculated levels of two models (collisional-radiative and LTE). Secondly, the theory of absorption in presence of a magnetic field is recalled and checked. Then, low-density magnetized plasma produced on our ERIC experiment (acronym for Experiment of Resonance Ionic Cyclotron), have been diagnosed successfully. The use of this technique on a low density plasma has not yet been published to our knowledge. The transverse temperature and the density of a metastable atomic level of a barium plasma has been derived. The evolution of a metastable ionic level of this element is studied in terms of two source parameters (furnace temperature and injected hyperfrequency power) [fr

  10. Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia); Weyland, M. [Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800 (Australia); Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Sang, X.; Xu, W.; Dycus, J.H.; LeBeau, J.M. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); D' Alfonso, A.J.; Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Clayton, Victoria 3800 (Australia)

    2016-09-15

    Quantitative agreement on an absolute scale is demonstrated between experiment and simulation for two-dimensional, atomic-resolution elemental mapping via energy dispersive X-ray spectroscopy. This requires all experimental parameters to be carefully characterized. The agreement is good, but some discrepancies remain. The most likely contributing factors are identified and discussed. Previous predictions that increasing the probe forming aperture helps to suppress the channelling enhancement in the average signal are confirmed experimentally. It is emphasized that simple column-by-column analysis requires a choice of sample thickness that compromises between being thick enough to yield a good signal-to-noise ratio while being thin enough that the overwhelming majority of the EDX signal derives from the column on which the probe is placed, despite strong electron scattering effects. - Highlights: • Absolute scale quantification of 2D atomic-resolution EDX maps is demonstrated. • Factors contributing to remaining small quantitative discrepancies are identified. • Experiment confirms large probe-forming apertures suppress channelling enhancement. • The thickness range suitable for reliable column-by-column analysis is discussed.

  11. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  12. VG-400 atomic power and technological installation. Possible core design

    International Nuclear Information System (INIS)

    Komarov, E.V.; Laptev, F.V.; Lyubivyj, A.G.; Mitenkov, F.M.; Samojlov, O.B.; Sukhachevskij, Yu.B.

    1979-01-01

    The main characteristics, basic circuit and configuration of equipment of the VG-400 atomic power and technological installation are considered. This installation is intended for supplying with highly-potential heat of thermal electrochemical hydrogen production and for power generation in the steam-turbine cycle. The main installation characteristics: HTGR reactor heat power 1100 MW, electric power 300 MW, helium coolant pressure 50 atm, output temperature 950 deg C, steam pressure in the second contour 175 atm, temperature 535 deg C, core diameter and height 6.4 m and 4 m, respectively, number of spherical fuel elements 8.5x10 5 . The installation can ensure hydrogen production of 10 5 Nxm 3 /h. For the VG-400 reactor block the integral arrangement of the first circuit equipment in the reinforced concrete is chosen. Two versions of the reactor core with prismatic and spherical fuel elements are compared. It is shown that taking into account great potentialities of the spherical zone in a case of further temperature increase and its positive qualities with respect to construction and processing of fuel elements and graphite blocks, the utilization of simplier units and mechanisms in the overloading system and in the process of profiling of energy distribution the choice of the spherical configuration for the VG-400 pilot plant installation seems to be valid

  13. Shippingport Atomic Power Station decommissioning program and applied technology

    Energy Technology Data Exchange (ETDEWEB)

    Crimi, F P; Skavdahl, R E

    1985-01-01

    The Shippingport Station decommissioning project is the first decommissioning of a large scale nuclear power plant, and also the first nuclear power plant to be decommissioned which has continued the power operation as long as 25 years. The nuclear facilities which have been decommissioned so far have operated for shorter period and were small as compared with commercial power reactors, but the experience gained by those decommissionings as well as that gained by nuclear plant maintenance and modification has helped to establish the technology and cost basis for Shippingport and future decommissioning projects. In this paper, the current status of the preparation being made by the General Electric Co., its subcontractor and the US Department of Energy for starting the decommissioning phase of the Shippingport Atomic Power Station is described. Also remote metal cutting, decontamination, concrete removal, the volume reduction of liquids and solids and robotics which will be applied to the project are discussed. The Shippingport Station is a 72 MWe PWR plant having started operation in 1957, and permanently shut down in 1982, after having generated over 7.4 billion kWh of electricity.

  14. Theoretical experimental study of the factors that govern the molybdenum absorption signal by means of electro thermic atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Garaboto Farfan, M. A.

    1996-01-01

    The formation of molybdenum carbides in the atomizer, used in the electro thermic atomic absorption spectroscopy, is responsible for incomplete analyte removal in its analysis. This generates the apparition of the memory effect and little precision in the results. In this work, different variables that could affect the molybdenum absorption sign were investigated, as well as the influence of hydrochloric acid on the memory effect, by means of studies in the different stages: drying, calcination and atomization, and the samples deposition order in molybdenum solutions, either acidified or not acidified [es

  15. Application of laser fluorescence spectroscopy by two-photon excitation into atomic hydrogen density measurement in reactive plasmas

    International Nuclear Information System (INIS)

    Kajiwara, Toshinori; Takeda, Kazuyuki; Kim, Hee Je; Park, Won Zoo; Muraoka, Katsunori; Akazaki, Masanori; Okada, Tatsuo; Maeda, Mitsuo.

    1990-01-01

    Density profiles of hydrogen atoms in reactive plasmas of hydrogen and methane gases were measured, for the first time, using the laser fluorescence spectroscopy by two-photon excitation of Lyman beta transition and observation at the Balmer alpha radiation. Absolute density determinations showed atomic densities of around 3 x 10 17 m -3 , or the degree of dissociation to be 10 -4 . Densities along the axis perpendicular to the RF electrode showed peaked profiles, which were due to the balance of atomic hydrogen production by electron impact on molecules against diffusion loss to the walls. (author)

  16. Contribution of scientists of Ukraine to nuclear physics and atomic technology

    International Nuclear Information System (INIS)

    Pasyichnik, M.V.

    1994-01-01

    The data on both origin and development of nuclear physics and atomic technology, scientific and research structures and establishment of scientific schools in this field is expounded in the article. All this is illustrated by examples of the Ukrainian scientists' contribution to the development of theoretical nuclear physics and experimental nuclear physics and atomic technology

  17. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  18. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    International Nuclear Information System (INIS)

    Nakano, H.; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-01-01

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure

  19. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  20. Atomic hydrogen and argon ground state density determination in a recombining plasma using visible light absorption spectroscopy

    NARCIS (Netherlands)

    Otorbaev, D.K.; Buuron, A.J.M.; Sanden, van de M.C.M.; Meulenbroeks, R.F.G.; Schram, D.C.

    1995-01-01

    The atomic radical density in the first excited state, obtained by the technique of optical absorption spectroscopy, and a simple kinetic model are used to determine the radical ground state density in a recombining expanding plasma. The kinetic model used does not require knowledge of the shape of

  1. Resonance-enhanced multiphoton ionization photoelectron spectroscopy of even-parity autoionizing Rydberg states of atomic sulphur

    NARCIS (Netherlands)

    Woutersen, S.; de Milan, J.B.; de Lange, C.A.; Buma, W.J.

    1997-01-01

    Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the

  2. Sampled data spectroscopy (SDS): A new technology for radiation instrumentation

    International Nuclear Information System (INIS)

    Odell, D.M.C.

    1992-01-01

    A new instrumentation architecture for radiation spectroscopy is in the early stages of development at Savannah River. Based upon the same digital sampling techniques used in sonar and radar, sampled data spectroscopy (SDS) has produced Na(I)/PMT spectra with resolution comparable to conventional PHA systems. This work has laid the foundation for extending SDS techniques to solid state detector applications as well. Two-dimensional SDS processes raw, unintegrated detector output pulses to produce both energy and shape information that is used to construct a conventional energy spectrum. System advantages include zero electronic deadtime to support very high count rates, elimination of pulse pile-up peaks, high noise immunity, and digital system stability and reliability. Small size and low power requirements make 2-D SDS anideal technology for portable instrumentation and remote monitoring applications. Applications of potential interest at Savannah River include on-the-spot spill analysis, real-time waste stream monitoring, and personnel and area monitoring below background levels. A three-dimensional sampled data architecture is also being developed. Relying on image analysis and enhancement techniques, 3-D SDS identifies spectral peaks without determining the energy of any individual detector pulses. These techniques also open up a new avenue of exploration for reducing or removing Compton effects from the spectra of single detector systems. The intended application for this technique is waste characterization where lower energy isotopes are often obscured by the Compton scattering from dominant isotopes such as Csl37

  3. Precision spectroscopy of the 2S-4P{sub 1/2} transition in atomic hydrogen on a cold thermal beam of optically excited 2S atoms

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Axel; Kolachevsky, Nikolai; Alnis, Janis; Yost, Dylan C.; Matveev, Arthur; Parthey, Christian G.; Pohl, Randolf; Udem, Thomas [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Khabarova, Ksenia [FSUE ' VNIIFTRI' , 141570 Moscow (Russian Federation); Haensch, Theodor W. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet, 80799 Muenchen (Germany)

    2013-07-01

    The 'proton size puzzle', i.e. the discrepancy between the values for the proton r.m.s. charge radius deduced from precision spectroscopy of atomic hydrogen and electron-proton-scattering on one side and the value deduced from muonic hydrogen spectroscopy on the other side, has been persisting for more than two years now. Although huge efforts have been put into trying to resolve this discrepancy from experimental and theoretical side, no convincing argument could be found so far. In this talk, we report on a unique precision spectroscopy experiment on atomic hydrogen, which is aiming to bring some light to the hydrogen part of the puzzle: In contrast to any previous high resolution experiment probing a transition frequency between the meta-stable 2S state and a higher lying nL state (n=3,4,6,8,12, L=S,P,D), our measurement of the 2S-4P{sub 1/2} transition frequency is the first experiment being performed on a cold thermal beam of hydrogen atoms optically excited to the 2S state. We will discuss how this helps to efficiently suppresses leading systematic effects of previous measurements and present the preliminary results we obtained so far.

  4. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-01-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s 5 ) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s 3 ) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations. (paper)

  5. THz spectroscopy: An emerging technology for pharmaceutical development and pharmaceutical Process Analytical Technology (PAT) applications

    Science.gov (United States)

    Wu, Huiquan; Khan, Mansoor

    2012-08-01

    As an emerging technology, THz spectroscopy has gained increasing attention in the pharmaceutical area during the last decade. This attention is due to the fact that (1) it provides a promising alternative approach for in-depth understanding of both intermolecular interaction among pharmaceutical molecules and pharmaceutical product quality attributes; (2) it provides a promising alternative approach for enhanced process understanding of certain pharmaceutical manufacturing processes; and (3) the FDA pharmaceutical quality initiatives, most noticeably, the Process Analytical Technology (PAT) initiative. In this work, the current status and progress made so far on using THz spectroscopy for pharmaceutical development and pharmaceutical PAT applications are reviewed. In the spirit of demonstrating the utility of first principles modeling approach for addressing model validation challenge and reducing unnecessary model validation "burden" for facilitating THz pharmaceutical PAT applications, two scientific case studies based on published THz spectroscopy measurement results are created and discussed. Furthermore, other technical challenges and opportunities associated with adapting THz spectroscopy as a pharmaceutical PAT tool are highlighted.

  6. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Michael, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2015-08-14

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru{sup 0}) and its oxide (RuO{sub 2}) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru{sup 0} and RuO{sub 2} films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO{sub 2} and 0.04 Å/cycle for Ru.{sup 0} An interface dipole of up to −0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO{sub 2}/OH compound whose surface is saturated with hydroxyl groups.

  7. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    Science.gov (United States)

    Schaefer, Michael; Schlaf, Rudy

    2015-08-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru0) and its oxide (RuO2) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru0 and RuO2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO2 and 0.04 Å/cycle for Ru.0 An interface dipole of up to -0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO2/OH compound whose surface is saturated with hydroxyl groups.

  8. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    International Nuclear Information System (INIS)

    Schaefer, Michael; Schlaf, Rudy

    2015-01-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru 0 ) and its oxide (RuO 2 ) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru 0 and RuO 2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO 2 and 0.04 Å/cycle for Ru. 0 An interface dipole of up to −0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO 2 /OH compound whose surface is saturated with hydroxyl groups

  9. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perring, Loic; Basic-Dvorzak, Marija [Department of Quality and Safety Assurance, Nestle Research Centre, P.O. Box 44, Vers chez-les-Blanc, 1000, Lausanne (Switzerland)

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99{+-}5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. (orig.)

  10. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  11. PREFACE: International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (MPS2014)

    Science.gov (United States)

    Ancarani, Lorenzo Ugo

    2015-04-01

    This volume contains a collection of contributions from the invited speakers at the 2014 edition of the International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces held in Metz, France, from 15th to 18th July 2014. This biennial conference alternates with the ICPEAC satellite International Symposium on (e,2e), Double Photoionization and Related Topics, and is concerned with experimental and theoretical studies of radiation interactions with matter. These include many-body and electron-electron correlation effects in excitation, and in single and multiple ionization of atoms, molecules, clusters and surfaces with various projectiles: electrons, photons and ions. More than 80 scientists, from 19 different countries around the world, came together to discuss the most recent progress on these topics. The scientific programme included 28 invited talks and a poster session extending over the three days of the meeting. Amongst the 51 posters, 11 have been selected and were advertised through short talks. Besides, Professor Nora Berrah gave a talk in memory of Professor Uwe Becker who sadly passed away shortly after co-chairing the previous edition of this conference. Financial support from the Institut Jean Barriol, Laboratoire SRSMC, Groupement de Recherche THEMS (CNRS), Ville de Metz, Metz Métropole, Conseil Général de la Moselle and Région Lorraine is gratefully acknowledged. Finally, I would like to thank the members of the local committee and the staff of the Université de Lorraine for making the conference run smoothly, the International Advisory Board for building up the scientific programme, the sessions chairpersons, those who gave their valuable time in carefully refereeing the articles of this volume and last, but not least, all participants for contributing to lively and fruitful discussions throughout the meeting.

  12. Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Opdahl, Aric; Koffas, Telly S; Amitay-Sadovsky, Ella; Kim, Joonyeong; Somorjai, Gabor A

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM) have been used to study polymer surface structure and surface mechanical behaviour, specifically to study the relationships between the surface properties of polymers and their bulk compositions and the environment to which the polymer is exposed. The combination of SFG surface vibrational spectroscopy and AFM has been used to study surface segregation behaviour of polyolefin blends at the polymer/air and polymer/solid interfaces. SFG surface vibrational spectroscopy and AFM experiments have also been performed to characterize the properties of polymer/liquid and polymer/polymer interfaces, focusing on hydrogel materials. A method was developed to study the surface properties of hydrogel contact lens materials at various hydration conditions. Finally, the effect of mechanical stretching on the surface composition and surface mechanical behaviour of phase-separated polyurethanes, used in biomedical implant devices, has been studied by both SFG surface vibrational spectroscopy and AFM. (topical review)

  13. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    Science.gov (United States)

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  14. [Advances of NIR spectroscopy technology applied in seed quality detection].

    Science.gov (United States)

    Zhu, Li-wei; Ma, Wen-guang; Hu, Jin; Zheng, Yun-ye; Tian, Yi-xin; Guan, Ya-jing; Hu, Wei-min

    2015-02-01

    Near infrared spectroscopy (NIRS) technology developed fast in recent years, due to its rapid speed, less pollution, high-efficiency and other advantages. It has been widely used in many fields such as food, chemical industry, pharmacy, agriculture and so on. The seed is the most basic and important agricultural capital goods, and seed quality is important for agricultural production. Most methods presently used for seed quality detecting were destructive, slow and needed pretreatment, therefore, developing one kind of method that is simple and rapid has great significance for seed quality testing. This article reviewed the application and trends of NIRS technology in testing of seed constituents, vigor, disease and insect pests etc. For moisture, starch, protein, fatty acid and carotene content, the model identification rates were high as their relative contents were high; for trace organic, the identification rates were low as their relative content were low. The heat-damaged seeds with low vigor were discriminated by NIRS, the seeds stored for different time could also been identified. The discrimination of frost-damaged seeds was impossible. The NIRS could be used to identify health and infected disease seeds, and did the classification for the health degree; it could identify parts of the fungal pathogens. The NIRS could identify worm-eaten and health seeds, and further distinguished the insect species, however the identification effects for small larval and low injury level of insect pests was not good enough. Finally, in present paper existing problems and development trends for NIRS in seed quality detection was discussed, especially the single seed detecting technology which was characteristic of the seed industry, the standardization of its spectral acquisition accessories will greatly improve its applicability.

  15. Ion-induced Auger electron spectroscopy: a new detection method for compositional homogeneities of alloyed atoms in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, A [Osaka Univ., Japan; Imura, T; Iwami, M; Kim, S C; Ushita, K; Okamoto, H; Hamakawa, Y

    1979-09-01

    Auger spectra of Si LMM transitions induced by keV Ar/sup +/ ion bombardment of Si alloy systems have been studied. The spectra observed are composed of two well-defined peaks termed elsewhere the atomic-like and bulk-like peaks, repsectively. A clear correlation has been found between the intensity of the atomic-like peak lying at 88 eV and the content of the foreign atoms alloyed with Si. Experiments were carried out on metallic silicides, or Si alloys with Au, Cu, Pd and Ni, and covalently bonded non-metallic Si alloys of C and H. From these studies, we propose that ion-induced Auger electron spectroscopy might be a useful tool for the determination of alloyed foreign atoms as well as for the study of their compositional homogeneity in binary alloy systems of silicon.

  16. Determination of lithium in sodium by vacuum distillation-graphite furnace atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Xie Chun; Sun Shiping; Jia Yunteng; Wen Ximeng

    1996-12-01

    When sodium is used as a coolant in China Experimental Fast Reactor, the lithium content in sodium has an effect on the nuclear property of reactor. A method has been developed to determine the trace lithium in sodium metal at the level of less than ten parts per million. About 0.4 g sodium is placed into a high-purity tantalum crucible, then it is placed in a stainless-steel still to distill at 360 degree C under vacuum (0.01 Pa). After the sodium has been removed, the residue is dissolved by nitric acid (1:2) and analyzed with Graphite Furnace Atomic Absorption Spectroscopy at 671.0 nm wavelength. The distillation conditions, working conditions of the instrument and interferences from matrix sodium, acid and concomitant elements have been studied. Standard addition experiments are carried out with lithium chloride and lithium nitrate. The percentage recoveries are 96.8% and 97.4% respectively. The relative standard deviation is less than +- 5%. The method has been used to determine lithium content in high pure sodium and industrial grade sodium. (11 refs., 5 figs., 5 tabs.)

  17. Environmental samples analysis by Atomic Absorption Spectrophotometry and Inductively Coupled Plasma-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Popescu, I.V.; Iordan, M.; Stihi, C.; Bancuta, A.; Busuioc, G.; Dima, G.; Ciupina, V.; Belc, M.; Vlaicu, Gh.; Marian, R.

    2002-01-01

    Biological samples are interesting from many aspects of environmental monitoring. By analyzing tree leaves conclusions can be drown regarding the metal loading in the growth medium. So that, starting from assumption that the pollution factors from environmental medium can modify the normal concentration of elements, we decided to control the presence of toxic elements and the deviation from normal state of elements in leaves of different trees from areas situated at different distances of pollution source. The aim of this work is to determine the elemental composition of tree leaves using Atomic Absorption Spectrophotometry (AAS) method and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) method. Using AAS spectrophotometer SHIMADZU we identified and determined the concentration of: Cd, Co, Cu, Zn, Mn, Cr, Fe, Se, Pb with an instrumental error less than 1% for most of the elements analyzed. The same samples were analyzed by ICP-OES spectrometer, BAIRD ICP2070-Sequential Plasma spectrometer. We identified and determined in leaves of different trees the concentration of Mg, Ca, and Sr with a precision less than 6%. (authors)

  18. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    International Nuclear Information System (INIS)

    Riley, M A; Simpson, J; Paul, E S

    2016-01-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’ . High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum–excitation energy plane that continue to surprise and fascinate scientists. (invited comment)

  19. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    International Nuclear Information System (INIS)

    Timmermans, E.A.H.; Groote, F.P.J. de; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly fluctuating gas composition, a high gas temperature and the presence of fly ash and corrosive effluents. Since the setup is primarily intended for the analysis of combustion gases with extremely high concentrations of pollutants, not much effort has been made to achieve low detection limits. It was found that an inductively coupled argon plasma was too sensitive to molecular gas introduction. Therefore, a microwave induced plasma torch, compromising both the demands of a high durability and an effective evaporation and excitation of the analyte was used as excitation source. The analysis system has been installed at an industrial hazardous waste incinerator and successfully tested on combustion gases present above the incineration process. Abundant elements as zinc, lead and sodium could be easily monitored

  20. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy].

    Science.gov (United States)

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li

    2015-11-01

    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  1. Highly sensitive fiber grating chemical sensors: An effective alternative to atomic absorption spectroscopy

    Science.gov (United States)

    Laxmeshwar, Lata. S.; Jadhav, Mangesh S.; Akki, Jyoti. F.; Raikar, Prasad; Kumar, Jitendra; prakash, Om; Raikar, U. S.

    2017-06-01

    Accuracy in quantitative determination of trace elements like Zinc, present in drinking water in ppm level, is a big challenge and optical fiber gratings as chemical sensors may provide a promising solution to overcome the same. This paper presents design of two simple chemical sensors based on the principle of shift in characteristic wavelength of gratings with change in their effective refractive index, to measure the concentration of Zinc in drinking water using etched short period grating (FBG) and Long period grating (LPG) respectively. Three samples of drinking water from different places have been examined for presence of Zinc. Further, the results obtained by our sensors have also been verified with the results obtained by a standard method, Atomic absorption spectroscopy (AAS). The whole experiment has been performed by fixing the fibers in a horizontal position with the sensor regions at the center of the fibers, making it less prone to disturbance and breaking. The sensitivity of LPG sensor is about 205 times that of the FBG sensor. A few advantages of Fiber grating sensors, besides their regular features, over AAS have also been discussed, that make our sensors potential alternatives for existing techniques in determination of trace elements in drinking water.

  2. Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy

    Science.gov (United States)

    Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli

    2018-03-01

    A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.

  3. Cadmium accumulation in the crayfish, Procambarus clarkii, using graphite furnace atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Mayans, J.; Hernandez, F.; Medina, J.; Del Ramo, J.; Torreblanca, A.

    1986-11-01

    Lake Albufera and the surrounding rice-field waters are being subject to very heavy loads of sewage and toxic industrial residues (including heavy metals and pesticides) from the many urban and wastewaters in this area. The American red crayfish Procambarus clarkii is native to the Louisiana marshes (USA). In 1978, the crayfish appeared in Lake Albufera near Valencia (Spain), and presently, without adequate sanitary controls, the crayfish is being fished commercially for human consumption. In view of this interest, it is important to have accurate information on concentrations of cadmium in natural waters and cadmium levels of tissues of freshwaters animals used as human food, as well as the accumulation rates of this metal in this animal. In the present study, the authors investigated the accumulation of cadmium in several tissues of the red crayfish, P clarkii (Girard) from Lake Albufera following cadmium exposure. Determinations of cadmium were made by flameless atomic absorption spectroscopy and the standard additions method. Digestion of samples was made by wet ashing in open flasks with concentrated HNO/sub 3/ at 80-90/sup 0/C.

  4. MDM2-MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance.

    Science.gov (United States)

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2-MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2-MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD ) in the micromolar range for the MDM2-MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2-MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2-MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation.

  5. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    Science.gov (United States)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  6. Speciation of methylmercury and ethylmercury by gas chromatography cold vapor atomic fluresence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boggess, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Existing models and simulants of tank disposition media at SRS have presumed the presence of high concentrations of inorganic mercury. However, recent quarterly tank analyses show that mercury is present as organomercurial species at concentrations that may present challenges to remediation and disposition and may exceed the Saltstone Waste Acceptance Criteria (WAC). To-date, methylmercury analysis for Savannah River Remediation (SRR) has been performed off-site by Eurofins Scientific (Lancaster, PA). A series of optimization and validation experiments has been performed at SRNL, which has resulted in the development of on-site organomercury speciation capabilities using purge and trap gas chromatography coupled with thermal desorption cold vapor atomic fluorescence spectroscopy (P&T GC/CVAFS). Speciation has been achieved for methylmercury, with a method reporting limit (MRL) values of 1.42 pg for methylmercury. Results obtained by SRNL from the analysis of past quarterly samples from tanks 21, 40, and 50 have demonstrated statistically indistinguishable concentration values compared with the concentration data obtained from Eurofins, while the data from SRNL has demonstrated significantly improved precision and processing time.

  7. Photoelectron imaging spectroscopy for (2+1) resonance-enhanced multiphoton ionization of atomic bromine

    International Nuclear Information System (INIS)

    Kim, Yong Shin; Jung, Young Jae; Kang, Wee Kyung; Jung, Kyung Hoon

    2002-01-01

    Two-photon resonant third photon ionization of atomic bromine (4p 5 2 P 3/2 and 2 P 1/2 ) has been studied using a photoelectron imaging spectroscopy in the wavelength region 250-278 nm. The technique has yielded simultaneously both relative branching ratios to the three levels of Br + ( 3 P 2 , 3 P 0,1 and 1 D 2 ) with 4p 4 configuration and the angular distributions of outgoing photoelectrons. The product branching ratios reveal a strong propensity to populate particular levels in many cases. Several pathways have been documented for selective formation of Br + ( 3 P 2 ) and Br + ( 3 P 0,1 ) ions. In general, the final ion level distributions are dominated by the preservation of the ion core configuration of a resonant excited state. Some deviations from this simple picture are discussed in terms of the configuration interaction of resonant states and the autoionization in the continuum. The photoelectron angular distributions are qualitatively similar for all transitions, with a positive A 2 anisotropy coefficient of 1.0 - 2.0 and negligible A 4 in most cases, which suggests that the angular distribution is mainly determined by the single-photon ionization process of a resonant excited state induced from the third photon absorption

  8. Sub-doppler spectroscopy based on the transit relaxation of atomic particles in a thin gas cell

    International Nuclear Information System (INIS)

    Azad, Izmailov

    2011-01-01

    This paper is the review of methods, achievements, and possibilities of the recently elaborated high-resolution laser spectroscopy based on sub-doppler absorption, fluorescence and polarization resonances (on centers of quantum transitions), which arise because of the specific optical selection of comparatively slow-speed atoms or molecules in a thin cell with a rarefied gas. It is considered two following mechanisms of such velocity selection of atomic particles connected with their flight durations between walls of the thin cell : 1) optical pumping of sublevels of the ground atomic term and 2) optical excitation of long-lived metastable quantum levels. Theoretical bases of elaborated spectroscopy methods are presented. In case of the optical pumping mechanism, experimental technique and results on the record of sub-doppler spectral structure of Cs and Rb atoms and on the frequency stabilization of diode lasers by given methods are described. Perspectives of further development and applications of this new direction of the high-resolution spectroscopy are discussed

  9. Atomic scale properties of magnetic Mn-based alloys probed by emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys on the atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  10. X-ray photoelectron spectroscopy study of the functionalization of carbon metal-containing nanotubes with phosphorus atoms

    International Nuclear Information System (INIS)

    Shabanova, I.N.; Terebova, N.S.

    2013-01-01

    Highlights: •Carbon metal-containing nanotubes (Me–Cu, Ni, Fe) were functionalized with chemical groups containing different concentrations of phosphorous. •The C1s and Me3s spectra were measured by the X-ray photoelectron spectroscopy method. •The values of the atomic magnetic moment of the carbon metal-containing nanotubes were determined. -- Abstract: In the present paper, carbon metal-containing (Me: Cu, Ni, Fe) nanotubes functionalized with phosphorus atoms (ammonium polyphosphate) were studied by X-ray photoelectron spectroscopy (XPS) on an X-ray electron magnetic spectrometer. It is found that the functionalization leads to the change of the metal atomic magnetic moment, i.e. the value of the atomic magnetic moment in the functionalized carbon metal-containing (Cu, Ni, Fe) nanotubes increases and is higher than that in pristine nanotubes. It is shown that the covalent bond of Me and P atoms is formed. This leads to an increase in the activity of the nanostructure surface which is necessary for the modification of materials

  11. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  12. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  13. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells.

    Science.gov (United States)

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P

    2017-04-17

    Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.

  14. Recoil ion momentum spectroscopy in atomic and nuclear physics: applications to low energy ion-atom/molecule collisions and to beta-neutrino angular correlation in beta decay

    International Nuclear Information System (INIS)

    Flechard, X.

    2012-12-01

    Since the early 1990's, Recoil Ion Momentum Spectroscopy is an ideal tool for ion-atom and ion-molecule collisions study. We detail here the development of this experimental technique during the last twenty years, illustrated with some of the most striking results obtained at GANIL (Caen) and J.R. Mac Donald Laboratory (Kansas State University). Recoil Ion Momentum Spectroscopy is also particularly well suited for β-ν angular correlation measurements in nuclear β decay. The LPCTrap experiment, installed at GANIL, is based on this technique, coupled to the use of a Paul trap for the radioactive ions confinement. The precise measurements performed with this setup allow both, to test specific aspects of the Standard Model of elementary particles, and to study the electron shake-off process following β decay. (author)

  15. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    NARCIS (Netherlands)

    Langereis, E.; Keijmel, J.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2008-01-01

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25–150 °C, –CH3 and –OH were unveiled as dominant surface groups after the Al(CH3)3precursor and O2 plasma half-cycles, respectively. At

  16. Dissipation and oscillatory solvation forces in confined liquids studied by small amplitude atomic force spectroscopy

    NARCIS (Netherlands)

    de Beer, Sissi; van den Ende, Henricus T.M.; Mugele, Friedrich

    2010-01-01

    We determine conservative and dissipative tip–sample interaction forces from the amplitude and phase response of acoustically driven atomic force microscope (AFM) cantilevers using a non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering) and atomically flat

  17. A Pragmatic Smoothing Method for Improving the Quality of the Results in Atomic Spectroscopy

    Science.gov (United States)

    Bennun, Leonardo

    2017-07-01

    A new smoothing method for the improvement on the identification and quantification of spectral functions based on the previous knowledge of the signals that are expected to be quantified, is presented. These signals are used as weighted coefficients in the smoothing algorithm. This smoothing method was conceived to be applied in atomic and nuclear spectroscopies preferably to these techniques where net counts are proportional to acquisition time, such as particle induced X-ray emission (PIXE) and other X-ray fluorescence spectroscopic methods, etc. This algorithm, when properly applied, does not distort the form nor the intensity of the signal, so it is well suited for all kind of spectroscopic techniques. This method is extremely effective at reducing high-frequency noise in the signal much more efficient than a single rectangular smooth of the same width. As all of smoothing techniques, the proposed method improves the precision of the results, but in this case we found also a systematic improvement on the accuracy of the results. We still have to evaluate the improvement on the quality of the results when this method is applied over real experimental results. We expect better characterization of the net area quantification of the peaks, and smaller Detection and Quantification Limits. We have applied this method to signals that obey Poisson statistics, but with the same ideas and criteria, it could be applied to time series. In a general case, when this algorithm is applied over experimental results, also it would be required that the sought characteristic functions, required for this weighted smoothing method, should be obtained from a system with strong stability. If the sought signals are not perfectly clean, this method should be carefully applied

  18. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Walder, Robert; Van Patten, William J; Adhikari, Ayush; Perkins, Thomas T

    2018-01-23

    Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.

  19. Summary report of FY 1995 Raman spectroscopy technology development

    International Nuclear Information System (INIS)

    Douglas, J.G.

    1995-11-01

    US DOE is sponsoring development of remote, fiber-optic Raman spectroscopy for rapid chemical characterization of Hanford high-level radioactive tank waste. Deployment targets for this technology are analytical hot cells and, via the Light-Duty Utility Arm and cone penetrometer, the waste tanks themselves. Perceived benefits of fiber-optic Raman spectroscopy are (1) rapid generation of tank-waste safety-related data, (2) reduced personnel exposure to highly radioactive waste, (3) reduced tank-waste sampling and analysis costs, and (4) reduced radioactive analytical waste. This document presents the results from the investigation of two dispersive, transmission-grating Raman systems and four fiber-optic Raman probe designs with non-radioactive tank waste simulants. One Raman system used a 532-nm, 400 mW, solid-state laser; the other used a 785-nm, 500 mW, solid-state diode laser. We found (1) the transmission-grating systems had better wavelength stability than previously tried Czerny-Turner-Based systems and (2) the 785-nm system's specie detection limits in the spectral fingerprint regiion were at least as good as those for the 532-nm system. Based on these results, and the fact that some tank wastes luminesce with 514.5nm excitation, we selected the 785-nm system for hot-cell use. Of the four probes tested, three had a ''six-around-on'' fiber probe design; the fourth probe was a one-fiber-in-one-fiber-out, diffuse-relectance design. Comparison of the four probes' signal-to-noise rations, rations, transmission/collection efficiencies, and probe-silica Raman backgrounds showed that the best probe for use with Hanford-Site tank waste should (1) be filtered as close to the probe tip as possible to reduce the probe-silica Raman background and (2) have multiple collection fibers. The responses of all the probes tested showed a strong dependence on probe-sample distance, and the presence of a probe window appeared to increase the probe's silica Raman background

  20. Atomic physics for fusion plasma spectroscopy; a soft x-ray study of molybdenum ions

    International Nuclear Information System (INIS)

    Fournier, K.B.

    1996-01-01

    Understanding the radiative patterns of the ions of heavy atoms (Z approx-gt 18) is crucial to fusion experiments. The present thesis applies ab initio, relativistic calculations of atomic data to modeling the emission of molybdenum (Z = 42) ions in magnetically confined fusion plasmas. The models are compared to observations made in the Alcator C-Mod tokamak (Plasma Fusion Center, Massachusetts Institute of Technology), and the Frascati Tokamak Upgrade. Experimental confirmation of these models allows confidence in calculations of the total molybdenum concentration and quantitative estimates of the total power lost from the plasmas due to molybdenum line radiation. Charge states in the plasma core (Mo 33+ to Mo 29+ ) emit strong x-ray and XUV spectra which allow benchmarking of models for the spatial distribution of highly stripped molybdenum ions; the models only achieve agreement with observations when the rates of indirect ionization and recombination processes are included in the calculation of the charge state distribution of the central molybdenum ions. The total concentration of molybdenum in the core of the plasma is found, and the total power radiated from the plasma core is computed. Observations of line emission from more highly charged molybdenum ions (Mo 36+ to Mo 34+ ) are presented. open-quotes Bulkclose quotes molybdenum charge states (Mo 25+ to Mo 23+ ) emit complicated XUV spectra from a position in the plasma near C-Mod's half radius; spatial profiles of these ions' emission are analyzed. Models for the line-emission spectra of adjacent ions (Mo 28+ to Mo 26+ ) are offered, and the accuracy and limits of ab initio energy level calculations are discussed. open-quotes Edgeclose quotes charge states (Mo 22+ to Mo 15 ) extend to the last closed magnetic flux surface of the C-Mod plasma. The strongest features from these charge states are emitted in a narrow band from ∼70 Angstrom

  1. Analytical applications of atomic spectroscopy, with particular reference to inductively coupled plasma emission analysis of coal and fly ash

    International Nuclear Information System (INIS)

    Pougnet, M.A.B.

    1983-08-01

    This thesis outlines the analytical applications of atomic emission and absorption spectroscopy to a variety of materials. Special attention was directed to the analysis of coal and coal ashes. A simple slurry sampling technique was developed and used to determine V, Ni, Co, Mo and Mn in the National Bureau of Standards Standard Reference Materials (NBS-SRM) coals 1632a and 1635 by furnace atomic absorption spectroscopy (FAAS). Coal and fly ash were analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The determination of B, Be, Li, C, K and other trace elements by ICP-AES was investigated. Analytical methods were developed for the analysis of coal, fly ash and water samples. Fusion with sodium carbonate and a digestion bomb dissolution method were compared for the determination of boron in a South African boron-rich mineral (Kornerupine). Eight elements were determined in 10 industrial water samples from a power plant. Ca, Mg, Si and B were determined by ICP-AES and V, Ni, Co and Mo by FAAS. Various problems encountered during the course of the work and interferences in ICP-AES analysis are discussed. Some recommendations concerning method development and routine analysis by this technique are suggested

  2. Atoms in industry: Radiation technology supports development [Foreword

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2015-01-01

    Cutting-edge industrial technologies underpin the success of strong economies, in developed and developing countries alike. Nuclear science and technology, in particular, can make a major contribution to economic growth and competitiveness, and have an important role to play in support of sustainable development. The IAEA helps to make nuclear science and technology available to enable countries to pursue wider development objectives in areas including human health, agriculture, natural resource management and environmental protection. This edition of the IAEA Bulletin highlights some of the ways in which the technology is being put to effective use in industry.

  3. Measurement of the population densities in Gd atomic vapor using diode laser absorption spectroscopy in UV transitions

    International Nuclear Information System (INIS)

    Kwon, Duck Hee; Jung, E. C.; Ko, Kwang Hoon; Kim, Tack Soo

    2003-01-01

    We report on the ultraviolet laser absorption spectroscopy of atomic Gd at 394-554 nm where two transition lines are place very closely by using a frequency-doubled beam of external-cavity diode laser (ECDL). One is from 999.121 to 26337.071 cm -1 and the other from 0 to 25337.755 cm -1 . If two transition lines are placed closely within a continuous fine tuning range, the real-time measurement of the atomic excitation temperature is possible without any significant time consumption because at least two transition lines originating from different low-lying energy levels need to be investigated for the Boltzmann-plot. Since the spectral difference between the two transitions is only about 0.195 cm -1 (5.85 GHz), it is possible to record both the absorption spectra simultaneously as shown in Fig. 1. But the transition probabilities (or oscillator strengths) of these lines have not been measured accurately yet to the best of our knowledge. We report on the newly measured transition probabilities by analyzing their absorption spectra at known vapor density conditions. The simultaneous measurement of the atomic excitation temperature and the vapor density demonstrated. In addition we present another ultraviolet laser absorption spectroscopy of atomic Gd at 403.540 nm by means of a commercial blue diode laser and investigate the characteristics of the blue diode laser as well.

  4. FORMULA ESTABLISHMENT OF COLORLESS Pb(II COMPLEX WITH N-BENZOYL-N-PHENYL HYDROXYLAMINE (BPA USING ATOMIC ABSORPTION SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Dhananjay B Sarode

    2012-02-01

    Full Text Available A new method for determination of stoichiometry of colorless complexes by using atomic absorption spectrophotometric technique in continuous variation method and slope ratio method was described here. This method can be used in same manner as that of mole ratio method and slope ratio method. In this method atomic absorption spectroscopy was used instead of UV-Vis spectrophotometry. Atomic absorption spectrophotometric technique is superior to UV-Vis spectrophotometry as it can be applied to colorless soluble complexes. Pb(II and n-benzoyl-n-phenyl hydroxylamine react to form colorless complex at pH 6.5, which can be easily determined by this method. It was found that Pb(II forms 1:2 complex with n-benzoyl-n-phenyl hydroxylamine and is quantitatively extracted back to aqueous solution for AAS analysis.

  5. Mapping of the atomic hydrogen density in combustion processes at atmospheric pressure by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Steiger, A.; Gruetzmacher, K.; Steiger, M.; Gonzalo, A.B.; Rosa, M.I. de la

    2001-01-01

    With laser spectroscopic techniques used so far, quantitative measurements of atomic number densities in flames and other combustion processes at atmospheric pressure yield no satisfying results because high quenching rates remarkably reduce the signal size and the results suffer from large uncertainties. Whereas, two-photon polarization spectroscopy is not limited by quenching, as the polarization signal is a direct measure of the two-photon absorption. This sensitive laser technique with high spatial and temporal resolution has been applied to determine absolute number densities and the kinetic temperatures of atomic hydrogen in flames for the first time. The great potential of this method of measurement comes into its own only in conjunction with laser radiation of highest possible spectral quality, i.e. single-frequency ns-pulses with peak irradiance of up to 1 GW/cm 2 tunable around 243 nm for 1S-2S two-photon transition of atomic hydrogen

  6. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  7. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    Science.gov (United States)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  8. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  9. Atom for peace, code for war. The technology policy of the atomic power solution in Finland between 1955-1970

    International Nuclear Information System (INIS)

    Sarkikoski, T.

    2011-01-01

    This dissertation investigates the atomic power solution in Finland between 1955 - 1970. During these years a national arrangement for atomic energy technology evolved. The foundations of the Finnish atomic energy policy; the creation of basic legislation and the first governmental bodies, were laid between 1955 - 1965. In the late 1960's, the necessary technological and political decisions were made in order to purchase the first commercial nuclear reactor. A historical narration of this process is seen in the international context of 'atoms for peace' policies and Cold War history in general. The geopolitical position of Finland made it necessary to become involved in the balanced participation in international scientific-technical exchange and assistive nuclear programs. The Paris Peace Treaty of 1947 categorically denied Finland acquisition of nuclear weapons. Accordingly, from the 'Geneva year' of 1955, the emphasis was placed on peaceful purposes for atomic energy as well as on the education of national professionals in Finland. An initiative for the governmental atomic energy commission came from academia but the ultimate motive behind it was an anticipated structural change in the supply of national energy. Economically exploitable hydro power resources were expected to be built within ten years and atomic power was seen as a promising and complementing new energy technology. While importing fuels like coal was out of the question, because of scarce foreign currency, domestic uranium mineral deposits were considered as a potential source of nuclear fuel. Nevertheless, even then nuclear energy was regarded as just one of the possible future energy options. In the mid-1960 s a bandwagon effect of light water reactor orders was witnessed in the United States and soon elsewhere in the world. In Finland, two separate invitations for bids for nuclear reactors were initiated. This study explores at length both their preceding grounds and later phases. An

  10. General atomics low speed Maglev technology development program (Supplemental #3)

    Science.gov (United States)

    2005-05-01

    This report details accomplishments of the Low Speed Maglev Technology Development Program, Supplemental #3. The 4 major tasks included: guideway foundation construction, fabrication and installation of 7 guideway modules, system integration and test...

  11. The General Atomics low speed urban Maglev technology development program

    Science.gov (United States)

    2003-01-01

    The overall objective of this program is to develop magnetic levitation technology that is a cost effective, reliable, : and environmentally friendly option for urban mass transportation in the United States. Maglev is a revolutionary : approach in w...

  12. Atoms for peace: Extending the benefits of nuclear technologies

    International Nuclear Information System (INIS)

    Qian, J.; Rogov, A.

    1995-01-01

    The article focuses on the projects co-operatively undertaken through IAEA mechanisms to extend the reach of beneficial nuclear technologies in response to increasing demands for technical support and assistance from its Member States

  13. Estimation of lead, cadmium and nickel content by means of Atomic Absorption Spectroscopy in dry fruit bodies of some macromycetes growing in Poland. II.

    Directory of Open Access Journals (Sweden)

    Jan Grzybek

    2014-08-01

    Full Text Available The content of lead, cadmium, and nickel in dry fruit bodies of 34 species of macromyoetes collected in Poland from 72 natural babitats by means of Atomic Absorption Spectroscopy (AAS was estimated.

  14. One-atom detection and statistical studies with resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Payne, M.G.; Hurst, G.S.

    1982-01-01

    To learn how to take matter apart atom-by-atom and to count each atom according to its type, regardless of its initial chemical or physical state, is presumably a worthy goal in scientific research. The advent of the laser created real hope that these aspirations will be realized. The counting of atoms is not merely an intellectual exercise set apart from real-world applications. On the contrary, even though the capability is scarcely more than five years old, practical applications have been made in many fields of chemistry, physics, the environment, and industry. In this lecture we wish to review how the laser made possible the counting of atoms and how this capability has been put to use in situations where atoms are free to react chemically as they diffuse through a medium. Fluctuation phenomena and statistical mechanics can also be examined in these situations

  15. Two-step resonance ionization spectroscopy of Na atomic beam using cw and pulsed lasers

    International Nuclear Information System (INIS)

    Katsuragawa, H.; Minowa, T.; Shimazu, M.

    1988-01-01

    Two-step photoionization of sodium atomic beam has been carried out using a cw and a pulsed dye lasers. Sodium ions have been detected by a time of flight method in order to reduce background noise. With a proper power of the pulsed dye laser the sodium atomic beam has been irradiated by a resonant cw dye laser. The density of the sodium atomic beam is estimated to be 10 3 cm -3 at the ionization area. (author)

  16. Inductively coupled plasma-atomic emission spectroscopy glovebox assembly system at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-01-01

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ''cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  17. High U-density nuclear fuel development with application of centrifugal atomization technology

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Kim, Ki Hwan; Lee, Don Bae

    1997-01-01

    In order to simplify the preparation process and improve the properties of uranium silicide fuels prepared by mechanical comminution, a fuel fabrication process applying rotating-disk centrifugal atomization technology was invented in KAERI in 1989. The major characteristic of atomized U 3 Si and U 3 Si 2 powders have been examined. The out-pile properties, including the thermal compatibility between atomized particle and aluminum matrix in uranium silicide dispersion fuels, have generally showed a superiority to the comminuted fuels. Moreover, the RERTR (reduced enrichment for research and test reactors) program, which recently begins to develop very-high-density uranium alloy fuels, including U-Mo fuels, requires the centrifugal atomization process to overcome the contaminations of impurities and the difficulties of the comminution process. In addition, a cooperation with ANL in the U.S. has been performed to develop high-density fuels with an application of atomization technology since December 1996. If the microplate and miniplate irradiation tests of atomized fuels, which have been performed with ANL, demonstrated the stability and improvement of in-reactor behaviors, nuclear fuel fabrication technology by centrifugal atomization could be most-promising to the production method of very-high-uranium-loading fuels. (author). 22 refs., 2 tabs., 12 figs

  18. High-resolution inner-shell spectroscopies of free atoms and molecules using soft-x-ray beamlines at the third-generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article reviews the current status of inner-shell spectroscopies of free atoms and molecules using high-resolution soft-x-ray monochromators installed in the soft-x-ray beamlines at the third-generation synchrotron radiation facilities. Beamlines and endstations devoted to atomic and molecular inner-shell spectroscopies and various types of experimental techniques, such as ion yield spectroscopy, resonant photoemission spectroscopy and multiple-coincidence momentum imaging, are described. Experimental results for K-shell excitation of Ne, O K-shell excitation of H 2 O and CO 2 , C K-shell excitation and ionization of CO 2 and B K-shell excitation of BF 3 , obtained at beamline 27SU of SPring-8 in Japan, are discussed as examples of atomic and molecular inner-shell spectroscopies using the third-generation synchrotron radiation sources. (topical review)

  19. Atomic Physics 16: Sixteenth International Conference on Atomic Physics. Proceedings

    International Nuclear Information System (INIS)

    Baylis, W.E.; Drake, G.W.

    1999-01-01

    These proceedings represent papers presented at the 16th International Conference on Atomic Physics held in Windsor, Ontario, Canada, in August, 1998. The topics discussed included a wide array of subjects in atomic physics such as atom holography, alignment in atomic collisions, coulomb-interacting particles, muon experiments, x-rays from comets, atomic electron collisions in intense laser fields, spectroscopy of trapped ions, and Bose-Einstein condensates. This conference represents the single most important meeting world wide on fundamental advances in atomic physics. There were 30 papers presented at the conference,out of which 4 have been abstracted for the Energy, Science and Technology database

  20. Towards atomically resolved EELS elemental and fine structure mapping via multi-frame and energy-offset correction spectroscopy.

    Science.gov (United States)

    Wang, Yi; Huang, Michael R S; Salzberger, Ute; Hahn, Kersten; Sigle, Wilfried; van Aken, Peter A

    2018-01-01

    Electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy are two of the most common means for chemical analysis in the scanning transmission electron microscope. The marked progress of the instrumentation hardware has made chemical analysis at atomic resolution readily possible nowadays. However, the acquisition and interpretation of atomically resolved spectra can still be problematic due to image distortions and poor signal-to-noise ratio of the spectra, especially for investigation of energy-loss near-edge fine structures. By combining multi-frame spectrum imaging and automatic energy-offset correction, we developed a spectrum imaging technique implemented into customized DigitalMicrograph scripts for suppressing image distortions and improving the signal-to-noise ratio. With practical examples, i.e. SrTiO 3 bulk material and Sr-doped La 2 CuO 4 superlattices, we demonstrate the improvement of elemental mapping and the EELS spectrum quality, which opens up new possibilities for atomically resolved EELS fine structure mapping. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    Science.gov (United States)

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  2. Theoretical investigation of the (e,2e) simulation of photoelectron spectroscopy of polarized atoms

    International Nuclear Information System (INIS)

    Cherepkov, N.A.; Kuznetsov, V.V.

    1992-01-01

    It is shown that the (e, 2e) simulation of the photionization process can be used to perform the complete quantum-mechanical experiment provided the target atoms are polarized. The experimental technique developed earlier for simulation of the photoelectron angular distribution measurements can be used to obtain three additional parameters in the case of polarized atoms. (Author)

  3. Atomic spectroscopy with twisted photons: Separation of M 1 -E 2 mixed multipoles

    Science.gov (United States)

    Afanasev, Andrei; Carlson, Carl E.; Solyanik, Maria

    2018-02-01

    We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogs, independently of the details of the atomic wave functions. We analyze the photoabsorption cross sections of mixed-multipolarity E 2 -M 1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar contributions by measuring the photoexcitation rate as a function of the atom's position (or impact parameter) with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented if the target's atom position is resolved with subwavelength accuracy; for example, with Paul traps. Numerical examples are presented for Boron-like highly charged ions.

  4. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  5. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    Science.gov (United States)

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  6. Atomic spectroscopy study of nuclear properties of francium and cesium isotopes; Etude par spectroscopie atomique de proprietes nucleaires d'isotopes de francium et de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Coc, A

    1986-04-15

    This work is based on the study of cesium ({sup 118,146}Cs) and francium ({sup 207-213}Fr,{sup 220-228}Fr) isotopes by hyperfine atomic spectroscopy and on the interpretation of these results from the nuclear physics point of view. The measured nuclear quantities are: the spin, the magnetic moment, the electric quadrupole moment and the mean square charge radius. The experimental method which is based on hyperfine optical pumping with a tunable laser, followed by magnetic analysis of the atoms is described in the first part. Results related to atomic physics are also presented. In the second part, these data are interpreted in the framework of nuclear models. The deformation of light cesium isomers are compared to values obtained from a theoretical self-consistent calculation. Heavy francium isotopes are situated in an area where the existence of static octupole deformations have been predicted. The odd-even staggering measured on the mean square radius is abnormal in this region. However, on the basis of experimental data, no definitive conclusion can be drawn regarding the nature of these deformations. (author)

  7. Atomic spectroscopy and highly accurate measurement: determination of fundamental constants; Spectroscopie atomique et mesures de grande precision: determination de constantes fonfamentales

    Energy Technology Data Exchange (ETDEWEB)

    Schwob, C

    2006-12-15

    This document reviews the theoretical and experimental achievements of the author concerning highly accurate atomic spectroscopy applied for the determination of fundamental constants. A pure optical frequency measurement of the 2S-12D 2-photon transitions in atomic hydrogen and deuterium has been performed. The experimental setting-up is described as well as the data analysis. Optimized values for the Rydberg constant and Lamb shifts have been deduced (R = 109737.31568516 (84) cm{sup -1}). An experiment devoted to the determination of the fine structure constant with an aimed relative uncertainty of 10{sup -9} began in 1999. This experiment is based on the fact that Bloch oscillations in a frequency chirped optical lattice are a powerful tool to transfer coherently many photon momenta to the atoms. We have used this method to measure accurately the ratio h/m(Rb). The measured value of the fine structure constant is {alpha}{sub -1} = 137.03599884 (91) with a relative uncertainty of 6.7*10{sup -9}. The future and perspectives of this experiment are presented. This document presented before an academic board will allow his author to manage research work and particularly to tutor thesis students. (A.C.)

  8. Atomic spectroscopy study of nuclear properties of francium and cesium isotopes; Etude par spectroscopie atomique de proprietes nucleaires d'isotopes de francium et de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Coc, A

    1986-04-15

    This work is based on the study of cesium ({sup 118,146}Cs) and francium ({sup 207-213}Fr,{sup 220-228}Fr) isotopes by hyperfine atomic spectroscopy and on the interpretation of these results from the nuclear physics point of view. The measured nuclear quantities are: the spin, the magnetic moment, the electric quadrupole moment and the mean square charge radius. The experimental method which is based on hyperfine optical pumping with a tunable laser, followed by magnetic analysis of the atoms is described in the first part. Results related to atomic physics are also presented. In the second part, these data are interpreted in the framework of nuclear models. The deformation of light cesium isomers are compared to values obtained from a theoretical self-consistent calculation. Heavy francium isotopes are situated in an area where the existence of static octupole deformations have been predicted. The odd-even staggering measured on the mean square radius is abnormal in this region. However, on the basis of experimental data, no definitive conclusion can be drawn regarding the nature of these deformations. (author)

  9. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  10. On new evolution in development of basic technology of atomic energy

    International Nuclear Information System (INIS)

    1993-01-01

    In 1988, the expert committee on the promotion of basic technology organized in the Atomic Energy Commission presented the report and showed concretely the subjects of research and development to be promoted in four fields of material technology, artificial intelligence technology, laser technology and the technology for evaluating and reducing radiation risks for atomic energy, and the measures of efficiently promoting the technical development. The research and development achieved the steady results following this report. The creation of radiation resistant materials, the development of knowledge base system and robot technology, the development of the laser technology required for atomic energy, and the technology for evaluating and reducing radiation risks and so on have been carried out. As the measures for efficiently promoting the technical development, the promotion of the active interchange of researches, the intentional rearing of creative men, the positive development of international interchange, the introduction of the new evaluation of research and the promotion of spread of the results of research have been carried out. The state of execution and the new development measures of the development of the basic technology are reported. (K.I.)

  11. Helium clusters as cold, liquid matrix for the laser spectroscopy of silver atoms, silver clusters and C60 fullerenes

    International Nuclear Information System (INIS)

    Hoffmann, K.

    1999-01-01

    One of the main obstacles in the study of gas phase metal clusters is their high temperature. Even cooling in a seeded beam is only of limited used, since the condensation continuously releases energy into the system. As a consequence, spectroscopic studies of free metal clusters typically yield broad structures, which are interpreted as plasma resonances of a free electron gas. An experiment on ionic sodium clusters has shown that low temperatures lead to a narrowing of the absorption bands and the appearance of additional structure, that can not be explained within the free electron model. Thus the need for cold clusters is evident. In principle the deposition of metal clusters into inert matrices eliminates the temperature problem but it can also inflict strong changes on the electronic spectra. Droplets of liquid helium serve as a much more gentle matrix that avoids many of the above problems. In this thesis the new technique of helium droplet spectroscopy is presented as a tool for the study of extremely cold metal clusters. Clusters of silver up to a mass greater than 7000 amu have been produced by pickup of single atoms by a beam of helium droplets. The droplets are formed in a supersonic expansion. The cluster's binding energy is removed by evaporative cooling and the system remains at 0.4 K. The doped droplets are probed by laser spectroscopy with a depletion technique or resonant two photon ionization. We were able to measure the first UV absorption spectrum of metal atoms (silver) inside helium droplets. Another experiment shows that a small fraction of the captured silver atoms resides on the surface of the droplet like alkali atoms. In a two photon process previously unobserved s- and d-Rydberg states of the free silver atom (20 left angle n left angle 80) were excited. The silver atoms, initially embedded in the helium droplets, are found to move to the surface and desorb when excited to the broadened 5p level. This is the first result showing laser

  12. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  13. Recent progress in the studies of atomic spectra and transition probabilities by beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Martinson, I.

    1982-01-01

    A review is given of recent studies of atomic structure (in particular atomic spectra, energy levels and transition probabilities) using fast beams from ion accelerators. Thanks to improved spectral resolution detailed and quite accurate studies of energy levels are now possible, a number of such results will be discussed. The non-autoionizing, multiply excited levels in atoms and ions (including negative ions) are being vigorously investigated at present, some new results will be reported. The accuracy in lifetime determinations continues to improve, and several new ways for reduction of cascading effects have been developed. Some selected examples of recent progress in lifetime measurements are also included. (orig.)

  14. Techniques of laser spectroscopy in investigations of lanthanides' free atoms and ions

    International Nuclear Information System (INIS)

    Furmann, B.; Szawiola, G.; Jarosz, A.; Krzykowski, A.; Stefanska, D.; Dembczynski, J.

    2010-01-01

    Various experimental methods, used in Chair of Quantum Engineering and Metrology for determination of the hyperfine structure of electronic levels in lanthanides atoms and ions, are presented. In turn the spectroscopic methods on an atomic beam (laser induced fluorescence and laser-rf double resonance ABMR-LIRF), laser-rf double resonance in a Paul trap and spectroscopic methods in a hollow cathode discharge (optogalvanic detection and laser induced fluorescence) are presented. Each method has been characterized with its potential accuracy and domain of application. The results achieved for the atoms and the ions of lanthanum, praseodymium, neodymium and europium have been published in numerous articles (compiled in the reference list).

  15. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.

    Science.gov (United States)

    Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert

    2008-02-19

    Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.

  16. Electric field measurements in a hollow cathode discharge by two-photon polarization spectroscopy of atomic deuterium

    International Nuclear Information System (INIS)

    Rosa, M I de la; Perez, C; Gruetzmacher, K; Gonzalo, A B; Steiger, A

    2006-01-01

    The local electric field strength (E-field) is an important parameter to be known in low pressure plasmas such as glow discharges, RF and microwave discharges, plasma boundaries in tokamaks etc. In this paper, we demonstrate, for the first time, the potential of two-photon polarization spectroscopy measuring the E-field in the cathode fall region of a hollow cathode discharge, via Doppler-free spectra of the Stark splitting of the 2S level of atomic deuterium. Electric field strength is determined in the range from 2 to 5 kV cm -1 . Compared with LIF, this method has several advantages: it is not affected by background radiation, it can be applied without limitation at elevated pressure and it allows simultaneous measurement of absolute local atomic ground state densities of hydrogen isotopes

  17. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A separation method to overcome the interference of aluminium on zinc determination by inductively coupled plasma atomic emission spectroscopy

    OpenAIRE

    Jesus, Djane S. de; Korn, Maria das Graças Andrade; Ferreira, Sergio Luis Costa; Carvalho, Marcelo Souza de

    2000-01-01

    Texto completo: acesso restrito. p.389–394 The use of polyurethane foam (PUF) to separate zinc from large amounts of aluminium and its determination by inductively coupled plasma atomic emission spectroscopy technique (ICP-AES) in aluminium matrices is described. The proposed method is based on the solid-phase extraction of the zinc(II) cation as a thiocyanate complex. Parameters such as effect of pH on zinc sorption, zinc desorption from the foam and analytical features of the procedure w...

  19. Determination of Hg(II) as a pollutant in Karachi coastal waters by cold vapor atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Naqvi, I.I.; Shazli, J.; Ali, S.R.; Mohiuddin, S.; Zehra, I.

    2002-01-01

    Now a days, environmental monitoring has great importance and mercury is well known for its toxicity. Mercury (which is at trace level) is analyzed by cold vapor atomic absorption spectroscopy with amendments that are appropriate to the present laboratory need. The results are consistent with previous analysis, through other methods, two areas namely Ibrahim Hyderi and Fisheries were found to have mercury levels around 0.193 mu/L and 0.110 mu g/L, respectively. Whereas other areas have mercury levels similar to other places reported earlier. (author)

  20. Determination of Br and Cl in gasoline by neutron activation analysis and Pb by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Jimenez B, J.; Lopez M, B.E.

    1995-01-01

    Several mexican gasolines (NOVA, MAGNA-SIN, DIESEL and DIESEL-SIN) were analyzed by neutron activation technique. Measurements of lead content were carried out by atomic absorption spectroscopy. Important amounts of halogens (bromine and chlorine) and metals (vanadium and aluminium) were found. The amount of lead was < 1 ppm in the MAGNA-SIN, DIESEL and DIESEL-SIN. The presence of bromine in these gasolines is important because they are highly consumed in Mexico, therefore, it is necessary to evaluate its environmental impact. (Author)

  1. Evaluation of emery dust on the manufacture of abrasives by neutron activation analysis and atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Granados Correa, F.

    1992-01-01

    In this work it is presented an evaluation on the degree of contamination by emery dust in a working area where abrasives are manufactured, in a factory located in the industrial area of Toluca City by neutron activation analysis and atomic absorption spectroscopy. The samples were collected on Whatman filters and attacked with hot concentrated HCl. The elements founded were: Al, Si, V, Mg, Br, Mn, Ni, Zn, Fe, Cr, Ca and Pb. They are a risk for the health of the workers. (Author)

  2. Chemical states of localized Fe atoms in ethylene matrices using in-beam Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y., E-mail: kyoshio@pc.uec.ac.jp [University of Electro-Communications, Graduate School of Engineering Science (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan); Tanigawa, S. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Mihara, M. [Osaka University, Graduate School of Science (Japan); Kubo, M. K. [International Christian University, Division of Arts and Sciences (Japan); Sato, W. [Kanazawa University, Institute of Science and Engineering (Japan); Miyazaki, J. [Tokyo University of Agriculture and Technology, Department of Chemical Engineering (Japan); Nagatomo, T. [RIKEN, Nishina Center for Accelerator-Based Science (Japan); Sato, Y.; Natori, D.; Suzuki, M. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Kobayashi, J. [International Christian University, Division of Arts and Sciences (Japan); Sato, S.; Kitagawa, A. [National Institute of Radiological Science (Japan)

    2016-12-15

    The reaction products of isolated single iron atoms in a low concentration matrix of ethylene were studied using in-beam Mössbauer spectroscopy with a short-lived {sup 57}Mn (T{sub 1/2}=1.45 m) beam. The in-beam Mössbauer spectrum of {sup 57}Fe arising from {sup 57}Mn in a matrix of ethylene and argon measured at 16 K was analyzed with four components. Density functional theory calculations were carried out to confirm the assignments. It was suggested that the reaction produced monoiron species of Fe(C {sub 2}H{sub 4}) with a spin state of S = 2.

  3. Unlocking the atom : the Canadian book on nuclear technology

    International Nuclear Information System (INIS)

    Tammemagi, H.; Jackson, D.

    2002-01-01

    This book describes Canada's role in developing a world-class reactor, medical isotope and food irradiation systems and it's leading role in uranium mining. It gives an introduction to both natural and man-made radiation and covers the spectrum of nuclear technology that includes power reactors, nuclear safety, nuclear waste, medicine, uranium, fusion, industrial and research applications. The second chapter in this book introduces the reader to nuclear fission, the fission reactor, nuclear weapons and the Candu Nuclear Power Reactor. The third chapter familiarizes the reader with different types of natural and man-made radiations. The fourth chapter discusses the biological effects of radiation. Electricity and the different technologies to produce electrical power are the subject of chapter five. The Candu reactor and the various Candu designs and performance are discussed in some detail in chapter six. In chapter seven the authors discuss the different types of reactors that have been constructed worldwide. Nuclear safety and nuclear regulations are the subject of chapter eight. In chapter nine the authors discuss nuclear power and the environment. High-level nuclear waste and nuclear waste disposal are discussed in chapter ten. Diagnostic and therapeutic nuclear medicine is the subject of chapter eleven. The benefits of nuclear technology in industry and science are discussed in chapter twelve. Uranium mining and uranium as the nuclear fuel are discussed in chapter thirteen. Chapter fourteen discusses the future of fission with respect to advanced Candu fuel cycles and advanced Candu reactor designs. Chapter fifteen is a discussion of nuclear fusion and Canada's role in fusion research. Chapter sixteen discusses nuclear science and research and the role of the National nuclear laboratory and the universities

  4. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  5. Refinement of atomic position in purely ionic materials using PAC spectroscopy

    International Nuclear Information System (INIS)

    Eslami, E.; Saramad, S.; Moussavi-Zarandi, A.

    2000-01-01

    In pure ionic solids by means of electric field gradients at substitutional radioactive probe the positions of all atoms in the unit cell can be determined by PAC method with an accuracy of 0.3 Pm which is typically 5 times better than the data available from X ray and neutron diffraction experiments. In the case of oxides where to our knowledge no diffraction analysis exists, the PAC analysis predicts the atomic parameters

  6. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  7. Developments in the application of atomic spectroscopy to trace metal analysis

    International Nuclear Information System (INIS)

    Fuavao, V.A.

    1983-01-01

    A method is described for the determination of selenium in horse blood by generation, atomization and analysis of the selenium hydride. A pooled horse blood sample which contained 8.8 μg 1 -1 of selenium exhibited a precision of analysis of 4.32% for ten replicate analyses. A study of the sensitivity of nonresonance and resonance lines of ytterbium utilizing microboat and platform atomization was investigated. Increases of at least twofold for all nonresonance lines were observed. Microboat sensitivity fell between that of the wall and the platform. Alternative surfaces of electrothermal atomization atomic absorption spectrophotometry (ETAAS) and the thermodynamic process for atom formation in ETAAS were investigated. Sensitivities for carbide-formation elements such as ytterbium and molybdenum and other noncarbide formation elements were determined by precoating graphite tubes and inserting collars. An improvement in analytical sensitivity and reduction in memory effect compared to commercially available pyrolytic graphite tubes were observed for all except the molybdenum analyte where a depression in analytical sensitivity resulted. The useful lifetime (analysis cycles) of all surfaces (except metal collars) were recorded at 250 to 400 cycles with acceptable and comparable precisions. A method is described for proposing the thermodynamic process in IL655 ETAAS. Appearance temperatures of analytes and free energy were studied and two major pathways were found operative: 1) thermal dissociation of the analyte oxide; 2) carbon reduction of the oxide followed by atomization of the free metal

  8. Science and Emerging Technology of 2D Atomic Layered Materials and Devices

    Science.gov (United States)

    2017-09-09

    AFRL-AFOSR-JP-TR-2017-0067 Science & Emerging Technology of 2D Atomic Layered Materials and Devices Angel Rubio UNIVERSIDAD DEL PAIS VASCO - EUSKAL...DD-MM-YYYY)      27-09-2017 2.  REPORT TYPE      Final 3.  DATES COVERED (From - To)      19 Feb 2015 to 18 Feb 2017 4.  TITLE AND SUBTITLE Science ...reporting documents for AOARD project 144088, “2D Materials and Devices Beyond Graphene Science & Emerging Technology of 2D Atomic Layered Materials and

  9. Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Savinov, S. V.; Oreshkin, A. I., E-mail: oreshkin@spmlab.phys.msu.su, E-mail: oreshkin@spmlab.ru [Moscow State University (Russian Federation); Oreshkin, S. I. [Moscow State University, Sternberg Astronomical Institute (Russian Federation); Haesendonck, C. van [Laboratorium voor Stoffysica en Magnetisme (Belgium)

    2015-06-15

    We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface might produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.

  10. Calibration of shahid's analytical method for adulterated Zn-edta fertilizers by ion chromatography and atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Khan, M.S.A.; Akram, M.; Qazi, M.A.

    2010-01-01

    Chelated zinc fertilizers are usually recommended in calcareous alkaline soils to provide Zn nutrition in order to prevent possible Zn precipitation. In Punjab (Pakistan), Zn EDTA products are being manufactured, and marketed to meet the zinc requirement of various crops grown in Zn deficient soils. Under fertilizer control order, 1973 (amended), their quality has to be monitored by the Agriculture Department, Government of the Punjab. None of the traditional method was found suitable which can separate the mineral fraction from that of chelated adulterated fertilizer except for those methods based on ion chromatography. Calibration of ion chromatography method was carried out by determining the mineral Zn fraction leading to estimate remaining Zn EDTA fraction in fertilizer samples of adulterated nature i.e. mixture of chelated and mineral fraction. In order to achieve the objective atomic absorption spectroscopy was coupled with ion chromatography. The method offers a specific, reliable technique for determination of chelated zinc in fertilizers. In the first step chelation was broken down with concentrated sulphuric acid treatment and total zinc contents were determined by atomic absorption spectroscopy. In second step, non-chelated (mineral) portion of zinc was determined by ion chromatography using cation column and conductivity detector. Chelated zinc was calculated by subtracting non-chelated (mineral) fraction from total zinc contents. (author)

  11. Development of atomic spectroscopy methods in geological institutes of Faculty of Natural Sciences Comenius University and Slovak Academy of Science

    International Nuclear Information System (INIS)

    Medved, E.

    1998-01-01

    Development of atomic spectrochemistry methods in Geological Institute of Faculty of Natural Sciences, Comenius University (GI FNS CU) is connected with its establishment in 1957. Its instrumental equipment and location resulted from the already existing Laboratory in the Chair for Mineralogy and Crystallography of FNS CU. In Geological Institute of Slovak Academy of Science (GI SAS) the development of atomic spectroscopy methods started later, only since 1963, when the Member of Academy, Prof. RNDr. B. Cambel, DrSc. became its director. In both institutes the methods of atomic emission spectrography were used as first. A new quality in the development started since 1969 when the Institutes moved to common buildings in Petrzalka (Bratislava), the first atomic absorption spectrometers were acquired and the Institutes were 'strengthened' by coming of Prof. Ing. E. Plsko, DrSc. In the following years the Institutes started to collaborate with some other organisations which were equipped with new facilities, e.g. in 1975 with X-ray fluorescence spectrometer, electron microprobe and in 1985 with inductively coupled plasma atomic emission spectrometer. This enabled to improve essentially the quality of research activities of both institutes in the chemical characterisation of geological materials, as well as in pedagogical work (students practice, diploma works and dissertations). In the present time characterized by new economic conditions a reduction of GI SAS laboratory activities has been realised. The laboratories of the GI FNS CU have, thanks to their director Ing. V. Stresko, PhD. shown also hence-forward a rich research, pedagogical and society activities what can be documented by numerous publications, citations, obtained awards, representations in professional societies and commissions, local and foreign advisory boards, accreditation boards etc. (author)

  12. Stereo photograph of atomic arrangement by circularly-polarized-light two-dimensional photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Daimon, Hiroshi

    2003-01-01

    A stereo photograph of atomic arrangement was obtained for the first time. The stereo photograph was displayed directly on the screen of display-type spherical-mirror analyzer without any computer-aided conversion process. This stereo photography was realized taking advantage of the phenomenon of circular dichroism in photoelectron angular distribution due to the reversal of orbital angular momentum of photoelectrons. The azimuthal shifts of forward focusing peaks in a photoelectron angular distribution pattern taken with left and right helicity light in a special arrangement are the same as the parallaxes in a stereo view of atoms. Hence a stereoscopic recognition of three-dimensional atomic arrangement is possible, when the left eye and the right eye respectively view the two images obtained by left and right helicity light simultaneously. (author)

  13. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  14. Atom Interferometer Technologies in Space for Gravity Mapping and Gravity Science

    Science.gov (United States)

    Williams, Jason; Chiow, Sheng-Wey; Kellogg, James; Kohel, James; Yu, Nan

    2015-05-01

    Atom interferometers utilize the wave-nature of atomic gases for precision measurements of inertial forces, with potential applications ranging from gravity mapping for planetary science to unprecedented tests of fundamental physics with quantum gases. The high stability and sensitivity intrinsic to these devices already place them among the best terrestrial sensors available for measurements of gravitational accelerations, rotations, and gravity gradients, with the promise of several orders of magnitude improvement in their detection sensitivity in microgravity. Consequently, multiple precision atom-interferometer-based projects are under development at the Jet Propulsion Laboratory, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory onboard the International Space Station and a highly stable gravity gradiometer in a transportable design relevant for earth science measurements. We will present JPL's activities in the use of precision atom interferometry for gravity mapping and gravitational wave detection in space. Our recent progresses bringing the transportable JPL atom interferometer instrument to be competitive with the state of the art and simulations of the expected capabilities of a proposed flight project will also be discussed. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  15. H atom kinetics in superheated water studied by muon spin spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Percival, Paul W. [Department of Chemistry and TRIUMF, Simon Fraser University, 8888 University Drive, Burnaby BC, V5A 1S6 (Canada)]. E-mail: percival@sfu.ca; Brodovitch, Jean-Claude [Department of Chemistry and TRIUMF, Simon Fraser University, 8888 University Drive, Burnaby BC, V5A 1S6 (Canada); Ghandi, Khashayar [Department of Chemistry and TRIUMF, Simon Fraser University, 8888 University Drive, Burnaby BC, V5A 1S6 (Canada); McCollum, Brett M. [Department of Chemistry and TRIUMF, Simon Fraser University, 8888 University Drive, Burnaby BC, V5A 1S6 (Canada); McKenzie, Iain [Department of Chemistry and TRIUMF, Simon Fraser University, 8888 University Drive, Burnaby BC, V5A 1S6 (Canada)

    2007-08-15

    It is possible to study H atom chemistry in aqueous systems over a wide range of conditions, from standard to supercritical, using the exotic atom muonium (Mu) as an effective light isotope of hydrogen. The Mu rate constants exhibit marked non-Arrhenius behaviour, going through a maximum and fall-off as the density is reduced in the neighbourhood of the critical point, and subsequent recovery as the medium becomes more gas-like. This is illustrated with new kinetic data for the reaction of Mu with methanol.

  16. H atom kinetics in superheated water studied by muon spin spectroscopy

    International Nuclear Information System (INIS)

    Percival, Paul W.; Brodovitch, Jean-Claude; Ghandi, Khashayar; McCollum, Brett M.; McKenzie, Iain

    2007-01-01

    It is possible to study H atom chemistry in aqueous systems over a wide range of conditions, from standard to supercritical, using the exotic atom muonium (Mu) as an effective light isotope of hydrogen. The Mu rate constants exhibit marked non-Arrhenius behaviour, going through a maximum and fall-off as the density is reduced in the neighbourhood of the critical point, and subsequent recovery as the medium becomes more gas-like. This is illustrated with new kinetic data for the reaction of Mu with methanol

  17. IMPURITY SEGREGATION OF STAINLESS STEEL STUDIED BY ATOM-PROBE AND AUGER ELECTRON SPECTROSCOPY

    OpenAIRE

    Koguchi , Y.; Takahashi , K.; Ishikawa , Y.

    1987-01-01

    The surface compositions of type 304 stainless steel heated in vacuum at 600-900°C were determined by an atom-probe and Auger electron spectroscopic analysis. In addition to enrichment and depletion of alloying elements in the surface of the stainless steel, segregation of impurity elements such as carbon, nitrogen, phosphorus and sulfur is known to occur. In this paper the atom-probe was used to measure the impurity segregation in the grains as well as in the grain boundary while the AES was...

  18. Velocity-changing collisional effects in nonlinear atomic spectroscopy and photon echo decay in gases

    Science.gov (United States)

    Herman, R. M.

    1983-01-01

    A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.

  19. Review of coal-water fuel pulverization technology and atomization quality registration methods

    Directory of Open Access Journals (Sweden)

    Zenkov Andrey

    2017-01-01

    Full Text Available Possibilities of coal-water fuel application in industrial power engineering are considered and described. Two main problems and disadvantages of this fuel type are suggested. The paper presents information about liquid fuel atomization technologies and provides data on nozzle type for coal-water fuel pulverization. This article also mentions some of the existing technologies for coal-water slurry spraying quality determination.

  20. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Rehan

    2017-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm of a Nd:YAG pulsed laser. Three samples were collected for this purpose. Spectra of textile dyes were acquired using an HR spectrometer (LIBS2000+, Ocean Optics, Inc. having an optical resolution of 0.06 nm in the spectral range of 200 to 720 nm. Toxic metals like Cr, Cu, Fe, Ni, and Zn along with other elements like Al, Mg, Ca, and Na were revealed to exist in the samples. The %-age concentrations of the detected elements were measured by means of standard calibration curve method, intensities of every emission from every species, and calibration-free (CF LIBS approach. Only Sample 3 was found to contain heavy metals like Cr, Cu, and Ni above the prescribed limit. The results using LIBS were found to be in good agreement when compared to outcomes of inductively coupled plasma/atomic emission spectroscopy (ICP/AES.

  1. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    International Nuclear Information System (INIS)

    Marrs, R.E.; Bennett, C.; Chen, M.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab

  2. In-source laser spectroscopy of polonium isotopes: From atomic physics to nuclear structure

    CERN Multimedia

    Rothe, S

    2014-01-01

    The Resonance Ionization Laser Ion Source RILIS [1] at the CERN-ISOLDE on-line radioactive ion beam facility is essential for ion beam production for the majority of experiments, but it is also powerful tool for laser spectroscopy of rare isotopes. A series of experiments on in-source laser spectroscopy of polonium isotopes [2, 3] revealed the nuclear ground state properties of 191;211;216;218Po. However, limitations caused by the isobaric background of surface-ionized francium isotopes hindered the study of several neutron rich polonium isotopes. The development of the Laser Ion Source and Trap (LIST) [4] and finally its integration at ISOLDE has led to a dramatic suppression of surface ions. Meanwhile, the RILIS laser spectroscopy capabilities have advanced tremendously. Widely tunable titanium:sapphire (Ti:Sa) lasers were installed to complement the established dye laser system. Along with a new data acquisition system [5], this more versatile laser setup enabled rst ever laser spectroscopy of the radioact...

  3. Low-pressure degenerate four-wave mixing spectroscopy with flam atomization

    International Nuclear Information System (INIS)

    Nolan, T.G.; Koutny, L.B.; Blazewicz, P.R.; Whitten, W.B.; Ramsey, J.M.

    1988-01-01

    A combination of degenerate four-wave mixing spectroscopy and a low-pressure sampling technique has been studied for isotopic analysis in an air-acetylene flame. Hyperfine spectra of D lines of sodium and several mixtures of lithium isotopes obtained in this way are presented

  4. Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging

    NARCIS (Netherlands)

    Kharintsev, S.S.; Hoffmann, G.G.; Dorozhkin, P.S.; With, de G.; Loos, J.

    2007-01-01

    Underlying near-field optibal effects on the nanoscale have stimulated the development of apertureless vibrational spectroscopy and imaging with ultrahigh spatial resolution. We demonstrate tip-enhanced Raman spectra of single-walled carbon nanotubes (SWCNTs), recorded with a scanning near-field

  5. Many-body effect in the partial singles N2,3 photoelectron spectroscopy spectrum of atomic Cd

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    We can extract out the photoelectron kinetic energy (KE) dependent imaginary part of the core-hole self-energy by employing Auger-photoelectron coincidence spectroscopy (APECS). The variation with photoelectron KE in the Auger electron spectroscopy (AES) spectral peak intensity of a selected decay channel measured in coincidence with photoelectrons of a selected KE is the partial singles (non-coincidence) photoelectron spectroscopy (PES) spectrum, i.e., the product of the singles PES one and the branching ratio of the partial Auger decay width of a selected decay channel to the imaginary part of the core-hole self-energy. When a decay channel the partial Auger decay width of which is photoelectron KE independent is selected, we can extract out spectroscopically the imaginary part of the core-hole self-energy because the variation with photoelectron KE in the relative spectral intensity of the partial singles PES spectrum to the singles one is that in the branching ratio of the partial Auger decay width of a selected decay channel. As an example we discussed the N 2,3 -hole self-energy of atomic Cd

  6. Interface Energy Alignment of Atomic-Layer-Deposited VOx on Pentacene: an in Situ Photoelectron Spectroscopy Investigation.

    Science.gov (United States)

    Zhao, Ran; Gao, Yuanhong; Guo, Zheng; Su, Yantao; Wang, Xinwei

    2017-01-18

    Ultrathin atomic-layer-deposited (ALD) vanadium oxide (VO x ) interlayer has recently been demonstrated for remarkably reducing the contact resistance in organic electronic devices (Adv. Funct. Mater. 2016, 26, 4456). Herein, we present an in situ photoelectron spectroscopy investigation (including X-ray and ultraviolet photoelectron spectroscopies) of ALD VO x grown on pentacene to understand the role of the ALD VO x interlayer for the improved contact resistance. The in situ photoelectron spectroscopy characterizations allow us to monitor the ALD growth process of VO x and trace the evolutions of the work function, pentacene HOMO level, and VO x defect states during the growth. The initial VO x growth is found to be partially delayed on pentacene in the first ∼20 ALD cycles. The underneath pentacene layer is largely intact after ALD. The ALD VO x is found to contain a high density of defect states starting from 0.67 eV below the Fermi level, and the energy level of these defect states is in excellent alignment with the HOMO level of pentacene, which therefore allows these VO x defect states to provide an efficient hole-injection pathway at the contact interface.

  7. Two photon spectroscopy of rubidium atoms in a magneto-optic trap

    International Nuclear Information System (INIS)

    Fretel, E.

    1997-01-01

    Two photon transitions without doppler effect can be used as an atomic reference. The aim of this work is to study two photon transitions of rubidium atoms in a magneto-optical trap. The chosen transition is from the level 5 2 S 1/2 toward the level 5 2 D 5/2 . The magneto-optical trap is achieved by using 3 pairs of perpendicular laser beams and by setting a magnetic field gradient. About 10 18 atoms are trapped and cooled in a 1 mm 3 volume. In a first stage we have realized an optical double resonance experiment from the level 5 2 S 1/2 toward the level 5 2 D 5/2 by populating the intermediate level 5 2 P 3/2 . Then we have studied the two photon transition in this cluster of cold atoms. A particular setting of the experiment allows to reduce the effect of ray broadening and shifting due to the magnetic field of the trap

  8. Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer

    Science.gov (United States)

    Fink, Samuel D [Aiken, SC; Fondeur, Fernando F [North Augusta, SC

    2011-10-18

    An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.

  9. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    Science.gov (United States)

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  10. Atomic and molecular spectroscopy with optical-frequency-comb-referenced IR coherent sources

    International Nuclear Information System (INIS)

    Cancio, P.; Bartalini, S.; De Rosa, M.; Giusfredi, G.; Mazzotti, D.; Maddaloni, P.; Vitiello, M. S.; De Natale, P.

    2013-01-01

    We provide a review of progress in the development of metrological-grade measurements in atomic and molecular systems through the extension, in the mid-infrared and far-infrared range, of optical frequency combs (OFCs) and the introduction of new techniques and highly coherent sources. (authors)

  11. Nuclear moments and isotopic variation of the mean square charge radii of strontium nuclei by atomic beam laser spectroscopy

    International Nuclear Information System (INIS)

    Chongkum, S.

    1987-10-01

    Hyperfine structure and optical isotope shift measurements have been performed on a series of stable and radioactive strontium isotopes (A = 80 to 90), including two isomers 85m and 87m. The spectroscopy applied continuous wave dye laser induced fluorescence of free atoms at λ=293.2 nm in a well collimated atomic beam. The 293.2 nm ultraviolet light was generated by frequency doubling the output of a dye laser in either a temperature tuned Ammonium Dihydrogen Arsenate (ADA) crystal or an angle tuned Lithium Iodate crystal. A special radio frequency (rf) technique was used to tune the dye laser frequency with long term stability. Radioactive Sr isotopes were produced either by neutron capture of stable strontium or by (α,xn) reactions from krypton gas. The samples were purified by an electromagnetic mass separator and their sizes were of order 100 pg, which corresponds to 10 11 atoms. The observed results of the hyperfine structure components are evaluated in terms of nuclear magnetic dipole moments and electric quadrupole moments. Changes in mean square charge radii of strontium nuclei which were extracted from the isotope shift measurements, exhibit a distinct shell effect at the neutron magic number N=50. The experimental data are analysed and compared with some theoretical nuclear model predictions. The strong increase of the nuclear charge radii with decreasing neutron number of isotopes below N=50 is in agreement with the variation of the mean square deformation extracted from measured B(E2) values. (orig.) [de

  12. Quantitative x-ray photoelectron spectroscopy: Simple algorithm to determine the amount of atoms in the outermost few nanometers

    International Nuclear Information System (INIS)

    Tougaard, Sven

    2003-01-01

    It is well known that due to inelastic electron scattering, the measured x-ray photoelectron spectroscopy peak intensity depends strongly on the in-depth atom distribution. Quantification based only on the peak intensity can therefore give large errors. The problem was basically solved by developing algorithms for the detailed analysis of the energy distribution of emitted electrons. These algorithms have been extensively tested experimentally and found to be able to determine the depth distribution of atoms with nanometer resolution. Practical application of these algorithms has increased after ready-to-use software packages were made available and they are now being used in laboratories worldwide. These software packages are easy to use but they need operator interaction. They are not well suited for automatic data processing and there is an additional need for simplified quantification strategies that can be automated. In this article we report on a very simple algorithm. It is a slightly more accurate version of our previous algorithm. The algorithm gives the amount of atoms within the outermost three inelastic mean free paths and it also gives a rough estimate for the in-depth distribution. An experimental example of its application is also presented

  13. Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra

    Science.gov (United States)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-02-01

    This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.

  14. KARAKTERISASI SPEKTRUM UNSUR Cu UNTUK MENGHITUNG INTENSITAS EMISI ATOM FUNGSI WAKTU TUNDA DENGAN MENGGUNAKAN METODE LASER INDUCED BREAKDOWN SPECTROSCOPY (LIBS

    Directory of Open Access Journals (Sweden)

    Wulansari Efrilinda Diah

    2013-08-01

    Full Text Available Laser-Induced Breakdown Spectroscopy (LIBS is a spectroscopic method is highly reliable for atomic spectrochemical analysis both qualitatively and quantitatively. To achieve this, be aware of the detection parameters, one of which is a function of the atom emission intensity of detection delay time. In this study, plasma is generated by focusing the Nd-YAG laser (1064 nm, 7 ns on the surface of solid Cu sample with 99.99% purity level at 1 atm pressure air environment. Plasma emission spectrometer was arrested by elements of Cu + HR 2500 with specifications: (wavelength range 200-870 nm, resolution 0.1 nm (FWHM, 7 detector CCDs with a combined 14.336 pixels with variation detection delay time 0, 0.5, 1, 1.5, and 2 microseconds after the plasma formation and the energy varies the 60-160mJ. The data showed that the value of the Cu atom emission intensity 521.8 nm of the most highly visible on detection delay time decreased to 0.5 microseconds and detection delay time 2 microseconds. Based on these data it can be concluded that the characterization of the elements Cu to calculate the intensity was in the range of 100-140 mJ laser energy and time delay detection of 0.5 microseconds.

  15. Laser spectroscopy: Assessment of research needs for laser technologies applied to advanced spectroscopic methods

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1990-05-01

    This report is organized as follows. Section 2 summarizes the current program of DOE's Office of Health and Environmental Research (OHER) and provides some remarks on low laser science and technology could beneficially impact most of the research programs. Section 3 provides a brief global perspective on laser technology and attempts to define important trends in the field. Similarly, Section 4 provides a global perspective on laser spectroscopy and addresses important trends. Thus, Section 5 focuses on the trends in laser technology and spectroscopy which could impact the OHER mission in significant ways and contains the basis for recommendations made in the executive summary. For those with limited familiarity with laser technology and laser spectroscopy, reference is made to Appendix 1 for a list of abbreviations and acronyms. Appendix 2 can serve a useful review or tutorial for those who are not deeply involved with laser spectroscopy. Even those familiar with laser spectroscopy and laser technology may find it useful to know precisely what the authors of this document mean by certain specialized terms and expressions. Finally, a note on the style of referencing may be appropriate. Whenever possible a book or review articles is referenced as the preferred citation. However, we frequently found it useful to reference a number of individual papers of recent origin or those which were not conveniently found in the review articles

  16. Laser Spectroscopy : XII International Conference

    CERN Document Server

    Allegrini, Maria; Sasso, Antonio

    1996-01-01

    This text includes all the recent advances in the field of laser spectroscopy. Major results span from the control of matter by electromagnetic fields (trapping and coding) to high precision measurements on simple atomic systems and to quantum optics with single atoms. It includes a report of the Bose-Einstein condensation achieved by laser-cooling of rubidium atoms. Achievements in the technology of tunable sources, in particular of miniaturized solid state devices, are also reported. Most recent advances in molecular spectroscopy are illustrated with emphasis on "cooled" spectra, clusters and high accuracy frequency references. Topics such as atomic interferometry and microcavity quantum optics are also covered.

  17. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  18. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  19. Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy

    CERN Multimedia

    Koester, U H; Kalaninova, Z; Imai, N

    2007-01-01

    We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.

  20. Atomic Species Associated with the Portevin-Le Chatelier Effect in Superalloy 718 Studied by Mechanical Spectroscopy

    Science.gov (United States)

    Max, B.; San Juan, J.; Nó, M. L.; Cloue, J. M.; Viguier, B.; Andrieu, E.

    2018-06-01

    In many Ni-based superalloys, dynamic strain aging (DSA) generates an inhomogeneous plastic deformation resulting in jerky flow known as the Portevin-Le Chatelier (PLC) effect. This phenomenon has a deleterious effect on the mechanical properties and, at high temperature, is related to the diffusion of substitutional solute atoms toward the core of dislocations. However, the question about the nature of the atomic species responsible for the PLC effect at high temperature still remains open. The goal of the present work is to answer this important question; to this purpose, three different 718-type and a 625 superalloy were studied through a nonconventional approach by mechanical spectroscopy. The internal friction (IF) spectra of all the studied alloys show a relaxation peak P 718 (at 885 K for 0.1 Hz) in the same temperature range, 700 K to 950 K, as the observed PLC effect. The activation parameters of this relaxation peak have been measured, E a( P 718) = 2.68 ± 0.05 eV, τ 0 = 2·10-15 ± 1 s as well as its broadening factor β = 1.1. Experiments on different alloys and the dependence of the relaxation strength on the amount of Mo attribute this relaxation to the stress-induced reorientation of Mo-Mo dipoles due to the short distance diffusion of one Mo atom by exchange with a vacancy. Then, it is concluded that Mo is the atomic species responsible for the high-temperature PLC effect in 718 superalloy.

  1. Determination of metallic impurities in raw materials for radioisotope production by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Roca, M.; Alvarez, F.; Capdevila, C.

    1969-01-01

    Atomic absorption spectrometry has been used for the determination of traces of calcium in scandium oxide, copper in zinc, iron in cobalt oxide, manganese In ferric oxide, nickel in copper and zinc in gallium oxide. The influences on the sensitivities arising from the hollow cathode currents, the gas pressures and the acid concentrations have been considered. A study of the interferences from the metallic matrices has also been performed, the interference due to the absorption of the manganese radiation by the atoms of iron being the most outstanding . In order to remove the interfering elements and increase sensitivity, pre-concentration methods have been tested. The addition methods has also been used. (Author) 14 refs

  2. Laser absorption spectroscopy for measurement of He metastable atoms of a microhollow cathode plasma

    Science.gov (United States)

    Ueno, Keisuke; Kamebuchi, Kenta; Kakutani, Jiro; Matsuoka, Leo; Namba, Shinichi; Fujii, Keisuke; Shikama, Taiichi; Hasuo, Masahiro

    2018-01-01

    We generated a 0.3-mm-diameter DC, hollow-cathode helium discharge in a gas pressure range of 10-80 kPa. In discharge plasmas, we measured position-dependent laser absorption spectra for helium 23S1-23P0 transition with a spatial resolution of 55 µm. From the results of the analysis of the measured spectra using Voigt functions and including both the Doppler and collision broadening, we produced two-dimensional maps of the metastable 23S1 atomic densities and gas temperatures of the plasmas. We found that, at all pressures, the gas temperatures were approximately uniform in space with values in the range of 400-1500 K and the 23S1 atomic densities were ˜1019 m-3. We also found that the two-dimensional density distribution profiles became ring-shaped at high gas pressures, which is qualitatively consistent with the two-dimensional fluid simulation results.

  3. Computer programs in BASIC language for atomic absorption flame spectroscopy. Part 2. Documentation

    International Nuclear Information System (INIS)

    Boyle, W.G. Jr.

    1977-01-01

    There are three computer programs, written in the BASIC language, used for taking data from an atomic absorption spectrophotometer operating in the flame mode. The programs are divided into logical sections, and these have been flow-charted. The general features, the structure, the order of subroutines and functions, and the storage of data are discussed. In addition, variables are listed and defined, and a complete listing of each program with a symbol occurrence table is provided

  4. Measurement of Apparent Temperature in Post-Detonation Fireballs Using Atomic Emission Spectroscopy

    Science.gov (United States)

    2011-02-01

    thermometric species into burners.3,12 Interestingly, Wilkin- son et al.6 have recently observed Al atomic emission lines in the spectrum of aluminum...candidate thermometric species must produce several strong emission lines in the spectrum that originate from different upper energy levels in order to...allow the populations of the associated states to be determined. Barium nitrate was chosen as a thermometric impurity for the current work since Ba

  5. Computer programs in BASIC language for atomic absorption flame spectroscopy. Part 1. Operating instructions

    International Nuclear Information System (INIS)

    Boyle, W.G. Jr.

    1977-01-01

    These instructions describe how to use three BASIC language programs to process data from atomic absorption spectrophotometers operated in the flame mode. These programs will also control an automatic sampler if desired. The instructions cover loading the programs, responding to computer prompts, choosing among various options for processing the data, operating the automatic sampler, and producing reports. How the programs differ is also explained. Examples of computer/operator dialogue are presented for typical cases

  6. Laser Raman spectroscopy in heat and flow technology

    International Nuclear Information System (INIS)

    Leipertz, A.

    1981-01-01

    The laser Raman spectroscopy based on the inelastic scattering of incident laser photons on the molecules of the fluid to be investigated, has advantages which partly reach beyond the usual scattered light methods: The signales are molecule-specific, the vibration line of various gases can be spectrally well recognized, the field of application is wide, the energy state of the molecules is hardly influenced. By measuring the line intensity, one obtains the concentration of the observed gas components via the molecule number, the temperature and total pressure; from the uptake of the partial density of the single components one can obtain the density of the gas mixture; vibration temperature and rotation temperature can be measured independently. Measuring methods and construction of a Raman probe are given. (WB) [de

  7. Digital gamma-ray spectroscopy based on FPGA technology

    CERN Document Server

    Bolic, M

    2002-01-01

    A digital pulse processing system convenient for high rate gamma-ray spectroscopy with NaI(Tl) detectors has been designed. The new programmable logic device has been used for implementation of dedicated high-speed pulse processor, as the central part of the system. The processor is capable to operate at the speed of fast ADC, preserving maximum throughput of the system. Special care has been taken to reduce the distortion of energy spectrum caused by pile-up at high-count rates. The developed system is highly flexible, and the parameters of its operation can be changed in software. The performance of the system was tested for high counting rate of 400000 s sup - sup 1.

  8. Recurrence spectroscopy of atoms in electric fields: Failure of classical scaling laws near bifurcations

    International Nuclear Information System (INIS)

    Shaw, J.A.; Robicheaux, F.

    1998-01-01

    The photoabsorption spectra of atoms in a static external electric field shows modulations from recurrences: electron waves that go out from and return to the vicinity of the atomic core. Closed-orbit theory predicts the amplitudes and phases of these modulations in terms of closed classical orbits. A classical scaling law relates the properties of a closed orbit at one energy and field strength to its properties at another energy and field strength at fixed scaled energy ε=EF -1/2 . The scaling law states that the recurrence strength of orbits along the electric field axis scale as F 1/4 . We show how this law fails near bifurcations when the effective Planck constant ℎ≡ℎF 1/4 increases with increasing field at fixed ε. The recurrences of orbits away from the axis scale as F 1/8 in accordance with the classical prediction. These deviations from the classical scaling law are important in interpreting the recurrence spectra of atoms in current experiments. This leads to an extension of the uniform approximation developed by Gao and Delos [Phys. Rev. A 56, 356 (1997)] to complex momenta. copyright 1998 The American Physical Society

  9. Radiation trapping in atomic absorption spectroscopy at lead determination in different matricies

    International Nuclear Information System (INIS)

    El-Gohary, Z.

    2005-01-01

    The determination of lead by flame atomic absorption analysis in the presence of Sn and Fe atoms and different matrices such as OH and SO 3 was investigated with the objective of understanding the spectral interference processes at the analytical lines 283.31 nm for a wide range of concentration. The radiation trapping factor was interpreted and evaluated assuming Voigt distribution of the atomic and rotational lines in the flame. The radiation trapping factor was increased by increasing the number density (plasma of the absorbing medium is optically thick). In plasma, there is a certain point of equilibrium between the trapping and the escaping of radiation, which is relevant to 50% of absorption. The spectral background interference can cause a variation of the number density at equilibrium point as a result of the degree of overlap with the analytical line. The spectral background interference can be easily avoided by using another resonance absorption line for the analysis. The chemical modification of the matrix is applied to minimize the interference effect. Nitric acid, ammonium nitrate and magnesium nitrate are most commonly recommended as matrix modifiers

  10. Atoms for peace and development: Contributing to global progress through nuclear science and technology

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2015-01-01

    Cultivating new crop varieties, reducing soil erosion and helping African countries respond to Ebola Virus Disease are just some of the areas in which the IAEA helps Member States to benefit from nuclear technology. Assisting countries in the safe and secure use of nuclear techniques for development is as important to the IAEA as its non-proliferation work. For many developing countries, it is the most important thing we do. Our mandate has been summarized as Atoms for Peace. Today, I feel that our mandate could be better understood as Atoms for Peace and Development.

  11. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  12. Interferometric measurement of lines shift in flames in connection with interpretation of lined absorption method in atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    L'vov, B.V.; Polzik, L.K.; Katskov, D.A.; Kruglikova, L.P.

    1975-01-01

    This paper is concerned with interferometric measuring of the line shift in flames in the view of interpretation of absorption lines in the atomic absorption spectroscopy. The newly measured line shifts were compared to the known data on Lorentz broadening of the same lines obtained by methods free of the systematic errors. The resonant lines of the alkaline earth elements (Sr, Ca, Ba) were investigated. To reduce self-absorption in the flame the solutions with minimum concentrations of the elements were used. The computation scheme includes the spectrometer apparatus width and line broadening due to the self-absorption. Formulae are given for computing the values studied. Good agreement was observed between the computed and experimental results. Error analysis was performed. It was concluded that any line shifts in the hydrocarbons were correctly taken into an account in the absolute computations of absorption

  13. Evaluation of trace elements in chewing tobacco and snuff using instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS)

    International Nuclear Information System (INIS)

    Waheed, S.; Siddique, N.; Rahman, S.

    2009-01-01

    Nine samples of chewing tobacco, snuff, tobacco leaf and ash were analyzed using Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS). Almost all samples of chewing tobacco and snuff studied in this work contain substantial amounts of Mg, Mn, Na, K. V. Sc, Rb and Fe. Furthermore, varying amounts of Al, Ba, Ca, Ce, Co and Zn were also detected in all tobacco samples. Of the toxic elements which were determined using INAA. As, Sb and Hg were quantified in only few tobacco samples. However, other toxic elements, which were determined using AAS, such as Cu, Pb and Cd were detected in almost all samples of chewing tobacco and snuff. The concentration of majority of the detected elements is high in ash samples which imply that most elements in chewing tobacco and snuff may originate from the addition of ash. (orig.)

  14. Evaluation of trace elements in chewing tobacco and snuff using instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Waheed, S.; Siddique, N.; Rahman, S. [Chemistry Div., Directorate of Science, Pakistan Inst. of Nuclear Science and Tech., Islamabad (Pakistan)

    2009-07-01

    Nine samples of chewing tobacco, snuff, tobacco leaf and ash were analyzed using Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS). Almost all samples of chewing tobacco and snuff studied in this work contain substantial amounts of Mg, Mn, Na, K. V. Sc, Rb and Fe. Furthermore, varying amounts of Al, Ba, Ca, Ce, Co and Zn were also detected in all tobacco samples. Of the toxic elements which were determined using INAA. As, Sb and Hg were quantified in only few tobacco samples. However, other toxic elements, which were determined using AAS, such as Cu, Pb and Cd were detected in almost all samples of chewing tobacco and snuff. The concentration of majority of the detected elements is high in ash samples which imply that most elements in chewing tobacco and snuff may originate from the addition of ash. (orig.)

  15. Structure and orbital ordering of ultrathin LaVO{sub 3} probed by atomic resolution electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors-Vrejoiu, Ionela; Engelmayer, Johannes; Loosdrecht, Paul H.M. van [II. Physikalisches Institut, Koeln Univ. (Germany); Jin, Lei; Jia, Chun-Lin [Peter Gruenberg Institut (PGI-5) and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Juelich GmbH (Germany); Himcinschi, Cameliu [Institut fuer Theoretische Physik, TU Bergakademie Freiberg (Germany); Hensling, Felix; Waser, Rainer; Dittmann, Regina [Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH (Germany)

    2017-03-15

    Orbital ordering has been less investigated in epitaxial thin films, due to the difficulty to evidence directly the occurrence of this phenomenon in thin film samples. Atomic resolution electron microscopy enabled us to observe the structural details of the ultrathin LaVO{sub 3} films. The transition to orbital ordering of epitaxial layers as thin as ∼4 nm was probed by temperature-dependent Raman scattering spectroscopy of multilayer samples. From the occurrence and temperature dependence of the 700 cm{sup -1} Raman active mode it can be inferred that the structural phase transition associated with orbital ordering takes place in ultrathin LaVO{sub 3} films at about 130 K. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Some investigation on trace elements content of Iranian breads using neutron activation analysis and atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Gharib, A.; Fatemi, K.; Moazezi, A.; Mahmoodzadeh, A.; Koushkestani, R.

    1988-01-01

    Since bread is consumed as a principal dietary staple by the majority of Iranian communities, actual natural portion of required protein and energy are provided via bread. Therefore, with respect to this matter, a considerable amount of needed minerals must also be met through this way. Literature survey indicates some elemental deficiencies as the result of consumption of bread in Iran. On the other hand, essentiality of these elements to human which are mostly in the range of trace amounts, makes this investigation very much important and interesting from both sides, nutritionally and instrumentally. To meet the above requirements, applications of very sensitive analytical tools are unavoidable. Hence, atomic absorption spectroscopy and neutron activation analysis both RNAA and INAA are employed. Results are controversial and constructive

  17. Zinc, lead and copper in human teeth measured by induced coupled argon plasma atomic emission spectroscopy (ICP-AES)

    Energy Technology Data Exchange (ETDEWEB)

    Chew, L.T.; Bradley, D.A. E-mail: D.A.Bradley@exeter.ac.uk; Mohd, Y.; Jamil, M

    2000-11-15

    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 {mu}g (g tooth mass){sup -1} to 40.5 {mu}g (g tooth mass){sup -1}, with a median of 9.8 {mu}g (g tooth mass){sup -1}. A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 {mu}g (g tooth mass){sup -1} respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.

  18. Standard test method for determining elements in waste streams by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the specimen. Waste streams from manufacturing processes of nuclear and nonnuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable to process control within waste treatment facilities. This test method is applicable only to waste streams that contain radioactivity levels which do not require special personnel or environmental protection. A list of the elements determined in waste streams and the corresponding lower reporting limit is included

  19. Interaction of an anticancer peptide fragment of azurin with p53 and its isolated domains studied by atomic force spectroscopy.

    Science.gov (United States)

    Bizzarri, Anna Rita; Santini, Simona; Coppari, Emilia; Bucciantini, Monica; Di Agostino, Silvia; Yamada, Tohru; Beattie, Craig W; Cannistraro, Salvatore

    2011-01-01

    p28 is a 28-amino acid peptide fragment of the cupredoxin azurin derived from Pseudomonas aeruginosa that preferentially penetrates cancerous cells and arrests their proliferation in vitro and in vivo. Its antitumor activity reportedly arises from post-translational stabilization of the tumor suppressor p53 normally downregulated by the binding of several ubiquitin ligases. This would require p28 to specifically bind to p53 to inhibit specific ligases from initiating proteosome-mediated degradation. In this study, atomic force spectroscopy, a nanotechnological approach, was used to investigate the interaction of p28 with full-length p53 and its isolated domains at the single molecule level. Analysis of the unbinding forces and the dissociation rate constant suggest that p28 forms a stable complex with the DNA-binding domain of p53, inhibiting the binding of ubiquitin ligases other than Mdm2 to reduce proteasomal degradation of p53.

  20. Thermal effects in equilibrium surface segregation in a copper/10-atomic-percent-aluminum alloy using Auger electron spectroscopy

    Science.gov (United States)

    Ferrante, J.

    1972-01-01

    Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.

  1. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  2. δ-electron spectroscopy and the atomic clock effect in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mueller-Nehler, U.

    1993-11-01

    The properties of strongly bound electrons in superheavy quasimolecular systems with combined nuclear charge numbers Z = Z P + Z T ≥ 110 are investigated. The emission of δ-electrons may serve as an atomic clock for nuclear reactions which is associated with the large overlap of the electron probability density with the nuclear interior. Excitation and emission rates of inner-shell electrons in collisions of very heavy ions with beam energies at or above the nuclear Coulomb barrier depend explicitly on details of the nuclear dynamics. Theoretical and experimental results are reviewed. (orig.)

  3. MDM2–MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance

    Directory of Open Access Journals (Sweden)

    Moscetti I

    2016-08-01

    Full Text Available Ilaria Moscetti,1 Emanuela Teveroni,2,3 Fabiola Moretti,3 Anna Rita Bizzarri,1 Salvatore Cannistraro1 1Biophysics and Nanoscience Centre, Department DEB, Università della Tuscia, Viterbo, Italy; 2Department of Endocrinology and Metabolism, Università Cattolica di Roma, Roma, Italy; 3Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR, Roma, Italy Abstract: Murine double minute 2 (MDM2 and 4 (MDM4 are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2–MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2–MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD in the micromolar range for the MDM2–MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2–MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2–MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. Keywords: MDM2, MDM4, atomic force spectroscopy, surface plasmon resonance

  4. Binding studies of costunolide and dehydrocostuslactone with HSA by spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Gao Wenhua; Li Nana; Chen Gaopan; Xu Yanping; Chen Yaowen; Hu Shunlin; Hu Zhide

    2011-01-01

    Human serum albumin (HSA), a major plasma protein and plasma-derived therapeutic, interacts with a wide variety of drugs and native plasma metabolites. In this study the interactions of costunolide (CE) and dehydrocostuslactone (DE) with HSA were investigated by molecule modeling, atomic force microscopy (AFM), and different optical techniques. In the mechanism discussion, it was proved that fluorescence quenching of HSA by both of the drugs is a result of the formation of drug-HSA complexes. Binding parameters for the reactions were determined according to the Stern-Volmer equation and static quenching. The results of thermodynamic parameters ΔG 0 , ΔH 0 , and ΔS 0 at different temperatures indicated that hydrogen bonding interactions play a major role in the drug-HSA associations process. The binding properties were further studied by quantitative analysis of CD, FTIR, and Raman spectra. Furthermore, AFM results showed that the dimension of HSA molecules became more swollen after binding with the drugs. - Highlights: → Interactions of costunolide and dehydrocostuslactone with HSA have been investigated for the first time. → Raman spectra were used to analyze the drug-HSA interactions. → Atomic force microscopy has been used to study the topography change of HSA by addition of the drugs. → These results are important for the drugs containing costunolide and dehydrocostuslactone distribution and metabolism.

  5. Atom-resolved surface chemistry using scanning tunneling microscopy (STM) and spectroscopy (STS)

    International Nuclear Information System (INIS)

    Avouris, P.

    1989-01-01

    The author shows that by using STM and STS one can study chemistry with atomic resolution. The author uses two examples: the reaction of Si(111)-(7x7) with (a) NH 3 and (b) decaborane (DB). In case (a) the authors can directly observe the spatial distribution of the reaction. He determined which surface atoms have reacted and how the products of the reaction are distributed. He found that the different dangling-bond sites have significantly different reactivities and explain these differences in terms of the local electronic structure. In case (b) the 7x7 reconstruction is eliminated and at high temperatures, (√3 x √3) R30 degree reconstructions are observed. Depending on the amount of DB and the annealing temperature the √3 structures contain variable numbers of B and Si adatoms on T 4 -sites. Calculations show that the structure involving B adatoms, although kinetically favored, is not the lowest energy configuration. The lowest energy state involves B in a substitutional site under a Si adatom

  6. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap

    Science.gov (United States)

    Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.

  7. The interaction of 2-mercaptobenzimidazole with human serum albumin as determined by spectroscopy, atomic force microscopy and molecular modeling.

    Science.gov (United States)

    Li, Yuqin; Jia, Baoxiu; Wang, Hao; Li, Nana; Chen, Gaopan; Lin, Yuejuan; Gao, Wenhua

    2013-04-01

    The interaction of 2-mercaptobenzimidazole (MBI) with human serum albumin (HSA) was studied in vitro by equilibrium dialysis under normal physiological conditions. This study used fluorescence, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR), circular dichroism (CD) and Raman spectroscopy, atomic force microscopy (AFM) and molecular modeling techniques. Association constants, the number of binding sites and basic thermodynamic parameters were used to investigate the quenching mechanism. Based on the fluorescence resonance energy transfer, the distance between the HSA and MBI was 2.495 nm. The ΔG(0), ΔH(0), and ΔS(0) values across temperature indicated that the hydrophobic interaction was the predominant binding Force. The UV, FT-IR, CD and Raman spectra confirmed that the HSA secondary structure was altered in the presence of MBI. In addition, the molecular modeling showed that the MBI-HSA complex was stabilized by hydrophobic forces, which resulted from amino acid residues. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with MBI. Overall, this study suggested a method for characterizing the weak intermolecular interaction. In addition, this method is potentially useful for elucidating the toxigenicity of MBI when it is combined with the biomolecular function effect, transmembrane transport, toxicological testing and other experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A Literature Study of Matrix Element Influenced to the Result of Analysis Using Absorption Atomic Spectroscopy Method (AAS)

    International Nuclear Information System (INIS)

    Tyas-Djuhariningrum

    2004-01-01

    The gold sample analysis can be deviated more than >10% to those thrue value caused by the matrix element. So that the matrix element character need to be study in order to reduce the deviation. In rock samples, the matrix elements can cause self quenching, self absorption and ionization process, so there is a result analysis error. In the rock geochemical process, the elements of the same group at the periodic system have the tendency to be together because of their same characteristic. In absorption Atomic Spectroscopy analysis, the elements associate can absorb primer energy with similar wave length so that it can cause deviation in the result interpretation. The aim of study is to predict matrix element influences from rock sample with application standard method for reducing deviation. In quantitative way, assessment of primer light intensity that will be absorbed is proportional to the concentration atom in the sample that relationship between photon intensity with concentration in part per million is linier (ppm). These methods for eliminating matrix elements influence consist of three methods : external standard method, internal standard method, and addition standard method. External standard method for all matrix element, internal standard method for elimination matrix element that have similar characteristics, addition standard methods for elimination matrix elements in Au, Pt samples. The third of standard posess here accuracy are about 95-97%. (author)

  9. Detection and control of broken symmetries with Andreev bound state tunneling spectroscopy: effects of atomic-scale disorder

    International Nuclear Information System (INIS)

    Greene, L.H.; Hentges, P.J.; Aubin, H.; Aprili, M.; Badica, E.; Covington, M.; Pafford, M.M.; Westwood, G.; Klemperer, W.G.; Jian, Sha; Hinks, D.G.

    2004-01-01

    Quasiparticle planar tunneling spectroscopy is used to study unconventional superconductivity in YBa 2 Cu 3 O 7 (YBCO) thin films and Bi 2 Sr 2 CaCu 2 O 8 (BSCCO) single crystals. Tunneling conductances are obtained as a function of crystallographic orientation, applied magnetic field (magnitude and orientation), atomic substitution and surface damage. Our systematic studies confirm that the observed zero-bias conductance peak (ZBCP), a measure of the near-surface quasiparticle (QP) density of states (DoS), is comprised of Andreev bound states (ABS) resulting directly from the sign change of the d-wave order parameter (OP) at the Fermi surface. Our data, plus a literature search, reveals a consistency in the observation of the splitting of the ZBCP in optimally-doped materials. We note that the splitting of the ZBCP observed in applied field, and the spontaneous splitting observed at lower temperatures in zero field, occur concomitantly in a given junction, and that observation of this splitting is dependent upon two parameters: (1) the magnitude of the tunneling cone and (2) the degree of atomic-scale disorder at the interface

  10. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    Energy Technology Data Exchange (ETDEWEB)

    Hasselstroem, J.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  11. Investigation of specific interactions between T7 promoter and T7 RNA polymerase by force spectroscopy using atomic force microscope.

    Science.gov (United States)

    Zhang, Xiaojuan; Yao, Zhixuan; Duan, Yanting; Zhang, Xiaomei; Shi, Jinsong; Xu, Zhenghong

    2018-01-11

    The specific recognition and binding of promoter and RNA polymerase is the first step of transcription initiation in bacteria and largely determines transcription activity. Therefore, direct analysis of the interaction between promoter and RNA polymerase in vitro may be a new strategy for promoter characterization, to avoid interference due to the cell's biophysical condition and other regulatory elements. In the present study, the specific interaction between T7 promoter and T7 RNA polymerase was studied as a model system using force spectroscopy based on atomic force microscope (AFM). The specific interaction between T7 promoter and T7 RNA polymerase was verified by control experiments, and the rupture force in this system was measured as 307.2 ± 6.7 pN. The binding between T7 promoter mutants with various promoter activities and T7 RNA polymerase was analyzed. Interaction information including rupture force, rupture distance and binding percentage were obtained in vitro , and reporter gene expression regulated by these promoters was also measured according to a traditional promoter activity characterization method in vivo Using correlation analysis, it was found that the promoter strength characterized by reporter gene expression was closely correlated with rupture force and the binding percentage by force spectroscopy. These results indicated that the analysis of the interaction between promoter and RNA polymerase using AFM-based force spectroscopy was an effective and valid approach for the quantitative characterization of promoters. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Analysis of bauxite by inductively coupled plasma-atomic emission spectroscopy

    Science.gov (United States)

    Barnes, Ramon M.; Mahanti, Himansu S.

    Methods are described for the analysis of bauxite by inductively coupled plasma (ICP) emission spectroscopy. Bauxite samples were dissolved either in HCl, HNO 3, and HF at 160°C in all-PTFE bomb or fused with NaOH. Spectral lines were selected after examination of experimental wavelength scans at each potential analyte wavelength. Limits of detection, background equivalent concentration, and analytical figures of merit were established. The accuracy of the method was confirmed by determining 17 elements in NBS-SRM bauxite samples. Silicon in HF solutions was analyzed using a modified ICP torch with a graphite injector tube, an inert nebulizer using PTFE capillary tubes, and a PTFE spray chamber.

  13. A constraint on antigravity of antimatter from precision spectroscopy of simple atoms

    Science.gov (United States)

    Karshenboim, S. G.

    2009-10-01

    Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect to the center of our galaxy and precision spectroscopy data on hydrogen and positronium. The theoretical suggestions for the case of absence of the gravitational field are: equality of electron and positron mass and equality of proton and positron charge. We also assume that QED is correct at the level of accuracy where it is clearly confirmed experimentally.

  14. Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes

    International Nuclear Information System (INIS)

    Howell, R.H.; Cowan, T.E.; Hartley, J.; Sterne, P.; Brown, B.

    1996-05-01

    We are developing a defect analysis capability based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is operational and positron lifetime analysis is performed with a 3 MeV positron beam on thick samples. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for insitu measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopies is under development at the LLNL high current positron source. This beam will enable defect specific, 3-D maps of defect concentration with sub-micron location resolution and when coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification

  15. A method for atomic spectroscopy of highly charged ions in the Pm isoelectronic sequence

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Oe

    1995-08-01

    The aim was to search for alkali-like spectra in the Promethium isoelectronic sequence. Pb{sup 22+} ions were produced by means of an ECR-ion source and accelerated towards a target of He gas. Colliding with He atoms the Pb{sup 22+} ions are likely to capture an electron, thus forming an excited Pm-like ion (Pb{sup 21+}). A 2 m grazing-incidence spectrometer was used for recording the spectra arising as the accelerated ions impinge on the target. No lines were recorded throughout the wavelength region where the spectrometer is sensitive. Further experiments are needed to make clear if this is due to experimental errors or not. 14 refs, 8 figs.

  16. Levels of trace elements in different varieties of wheat determined by Atomic Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Mohamed, A.E.; Taha, G.M.

    2003-01-01

    Trace elements Ag, Au, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in six wheat samples purchased from the open market in different localities (Egypt, Saudi Arabia, Yemen, Oman, Dubai and Australia). The dried powdered samples were decomposed in HNO3-HClO4 acids mixtures and elements were determined using recording atomic absorption spectrophotometer. The results were within the safety baseline of all the assayed elements. Certified biological standards, Brown's Kale (BK), Orchard Leaves (OL) and tomato leaves (TOML) were used to assure the accuracy of results. However, Co, Pb and Sr were absent from samples except the Egyptian samples. The obtained databases were statistically treated. Several significant and strong positive correlation coefficients (r=0.506-1.00) between the groups of elements were observed. On the other hand, strong negative correlations (r=0.492-0.873) between another group of elements were also shown. (author)

  17. Monitoring of lead levels in spices and food colors using atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Rahman, S.; Khalid, N.; Ahmad, S.

    2001-01-01

    The concentration of lead has been monitored in various commercial brands of spices and food colours using atomic absorption spectrometry after digestion in a mixture of nitric acid and perchloric acid. The reliability of the procedure used was checked by analyzing the standard reference materials namely wheat flour (NBS-1567) and rice flour (NBS-1568), for their lead contents. The determined concentration of lead ranged from 5.60 to 10.12 mg g-1 in food spices and from 1.62 to 1.81 mg g-1 in food colours. The study revealed that the piper nigrum contains higher lead contents as compared to capsicum. The effect of processing/milling on the concentration of lead in spices was also studied and discussed. The daily intake of lead by adults through spices and food colours was estimated and was found to be within the recommended WHO tolerance levels. (author)

  18. A method for atomic spectroscopy of highly charged ions in the Pm isoelectronic sequence

    International Nuclear Information System (INIS)

    Andersson, Oe.

    1995-08-01

    The aim was to search for alkali-like spectra in the Promethium isoelectronic sequence. Pb 22+ ions were produced by means of an ECR-ion source and accelerated towards a target of He gas. Colliding with He atoms the Pb 22+ ions are likely to capture an electron, thus forming an excited Pm-like ion (Pb 21+ ). A 2 m grazing-incidence spectrometer was used for recording the spectra arising as the accelerated ions impinge on the target. No lines were recorded throughout the wavelength region where the spectrometer is sensitive. Further experiments are needed to make clear if this is due to experimental errors or not. 14 refs, 8 figs

  19. Estimation of lead and zinc in human hair using atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Kazi, S.; Kazi, T.G.; Kazi, G.H.

    1993-01-01

    Trace elements analysis in hair can be useful in studying the impact of environmental and dietary factors on human in general for lead and zinc content in hair. Samples of people of different age groups, sex with varied living habits of the individual living in different areas of Sind, urban as well as rural areas were of special interest to be studied to find correlation of socioeconomic factors and the presence of these elements in hair samples. The purpose of this study was to determine whether age, sex and physiological status and environmental pollution affect composition of hair. The method of sample preparation and use of atomic absorption techniques providing unequivocal and direct estimation of metals in ppm/ppb range to arrive upon conclusion. (author)

  20. Utilization of atomic emission spectroscopy methods for determination of rare earth elements

    International Nuclear Information System (INIS)

    Kubova, J.; Polakovicova, J.; Medved, J.; Stresko, V.

    1997-01-01

    The authors elaborated and applied procedures for rare earth elements (REE) determination using optical emission spectrograph with D.C arc excitation and ICP atomic emission spectrometry.Some of these analytical method are described. The proposed procedure was applied for the analysis of different types of geological materials from several Slovak localities. The results the REE determination were used for e.g. investigation of REE distribution in volcanic rocks, rhyolite tuffs with uranium-molybdenum mineralization, sandstones with heavy minerals accumulations, phosphatic sandstones, granites, quartz-carbonate veins and in the meteorite found in the locality Rumanova. The REE contents were determined in 19 mineral water sources and the results obtained by the both mentioned methods compared. The total REE contents in the analysed mineral water samples were between 2 · 10 -7 and 3 · 10 -5 g dm -3

  1. Laser spectroscopy of Ag atoms in liquid helium and gaseous helium at low temperatures

    International Nuclear Information System (INIS)

    Hui, Q.; Persson, J. L.; Jakubek, Z. J.; Takami, M.

    1998-01-01

    Neutral Ag atoms are dispersed in liquid and gaseous helium by laser ablation and dissociation. Following the excitation of the D2 line, a broad emission band is observed to the red side of the D1 emission line. This band is assigned to the A 2 Π 3/2 → X 2 Σ + bound-free transition of the AgHe 2 exciplex. The assignment has been confirmed by an ab initio calculation on the AgHe 2 complex. The temperature and the pressure dependences of the D1 emission and the broad emission in the gas phase indicate that the 4d 9 5s 2 2 D 5/2 level may play an important role in the 5p 2 P 3/2 → 5p 2 1/2 non-radiative relaxation and the exciplex formation processes

  2. Atomic spectroscopy on fusion relevant ions and studies of light impurities in the JET tokamak

    International Nuclear Information System (INIS)

    Tunklev, M.

    1999-03-01

    The spectrum and energy levels of C IV and the 3l-4l system of the Mg-like ions in the iron group elements have been investigated. This has led to several hundred identified transitions, many of them previously unknown. Using the Charge Exchange Diagnostic system at JET, ion temperatures, rotation velocities and densities have been derived from visible spectroscopic measurements on fully ionised light impurities, such as He, C, N and Ne. The existence of plume contribution from beam produced hydrogen-like ions has been proven beyond any doubt to affect the deduction of the active charge exchange signal of He II. In the case of C VI the plume signal was estimated to be at least a factor of five lower than the active charge exchange signal. Line integrated passive charge exchange emission between neutral background atoms and fully stripped impurity ions has been investigated and modelled. When the synthetic spectrum is fitted into the experimentally detected spectra the neutral background density can be deduced. The importance of including background atoms (H, D and T) as charge exchange donors, not only in state 2s, but also in state 1s, has shown to be crucial in high temperature shots. Transport of light impurities has been studied with gas puff injections into steady state H-mode plasmas. The results suggest that light impurities are transported as described by the neo-classical Pfirsch-Schlueter regime at the edge, whilst in the centre, sawtoothing, preferably to Banana transport, is mixing the plasma and increases the measured values on the diffusion. For the peaking of impurities in a steady state plasma an anomalous treatment was more in agreement with the experimental data. Certain confinement information, previously predicted theoretically as a part of the peaking equation, has been experimentally verified

  3. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  4. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  5. Ion-cyclotron-resonance- and Fourier-transform-ion-cyclotron-resonance spectroscopy: technology and application

    International Nuclear Information System (INIS)

    Luederwald, I.

    1977-01-01

    Instrumentation and technology of Ion-Cyclotron-Resonance and Fourier-Transform-Ion-Cyclotron-Resonance Spectroscopy are described. The method can be applied to studies of ion/molecule reactions in gas phase, to obtain thermodynamic data as gas phase acidity or basicity, proton and electron affinity, and to establish reaction mechanisms and ion structures. (orig.) [de

  6. Colloquium on Atomic, Molecular and Optical Physics of the French Physics Society. Days of Molecular Spectroscopy, Lille, 7-10 July 2008

    International Nuclear Information System (INIS)

    Balcou, Philippe; Aspect, Alain; Merkt, Frederic; Haroche, Serge; Hendecourt, Louis d'; Dereux, Alain; Bloch, Daniel; Courty, Jean-Michel; Demaison, Jean; Hynes, James T.; Lievin, Jacky; Billy, J.; Josse, V.; Zuo, Z.; Bernard, A.; Hambrecht, B.; Lugan, P.; Clement, D.; Sanchez-Palencia, L.; Bouyer, P.; Aspect, A.; Garreau, Jean-Claude; Chabe, Julien; Szriftgiser, Pascal; Lemarie, Gabriel; Gremaud, Benoit; Delande, Dominique; Simoni, Andrea; Browaeys, Antoine; Kasparian, Jerome; Boutou, Veronique; Guyon, Laurent; Courvoisier, Francois; Roth, Matthias; Roslund, Jon; Rabitz, Herschel; Bonacina, Luigi; Rondi, Ariana; Extermann, Jerome; Wolf, Jean-Pierre; Maitre, Philippe; Zehnacker, Anne; Le Barbu-Debus, Katia; Sidis, Victor; Aguillon, Francois; Sizun, Muriel; Rougeau, Nathalie; Teillet-Billy, Dominique; Bachellerie, Damien; Jeloaica, Leonard; Morisset, Sabine; Picaud, Sylvain; Cacciani, Patrice; Grosliere, Marie-Christine; Joly, Gilles; Joly, Nicolas; Kudlinsky, Alexandre; Martinelli, Gilbert; Buchard, Virginie; Tudorie, Marcela; Khelkhal, Mohamed; Cosleou, Jean; Hennequin, Daniel; Beaugeois, Maxime; Lebrun, Nathalie; Droz, Daniel; El Aydam, Mohamed; Gama, Marie-Jose; Ferri, Sandrine; Schyns, Bernadette; Courty, Jean Michel

    2008-07-01

    This colloquium of the French Physics Society on atomic, molecular and optical physics (and more particularly on molecular spectroscopy) comprised several mini-colloquia: methane and its applications in planetology, moving mirrors and Casimir, atoms and molecules in interaction with surfaces, electronic properties of small molecules, molecular spectroscopy for atmospheric applications, quantum memories in atomic sets, methods and applications of reaction dynamics, dynamics of super-excited molecular statuses, mass spectrometry, quantum spectroscopy and chemistry, spectroscopy and reactivity of of confined molecules, electronic and molecular dynamics, dipolar quantum gases. It also comprised plenary sessions: atto-second optics, the atomic Hanbury-Brown-Twiss effect with fermions and bosons, atom and molecule slowing down by Zeeman effect and by Stark effect on Rydberg levels, non destructive counting of photons trapped in a cavity, interstellar chemistry, atom-surface van der Waals interaction noticed in the exotic regime of short distances, communication, vulgarisation and education (the multiple lives of a scientific result), the actual precision of molecular parameters, towards the formation of an amine acid precursor in the interstellar medium via proton transfer, prediction of the ionized and excited molecular electronic structure by Quantum Chemistry (from bi-atomic to bio-molecules), direct observation of Anderson location of matter waves in a controlled disordered potential, experimental observation of the Anderson transition of cold atoms, ultra-cold collisions as a key towards the quantum world, Quantum physics with a single atom, Teramobile or plasma filaments to study the atmosphere, optimal control or how to discriminate two almost identical bio-molecules, infrared spectroscopy as a new dimension for mass spectrometry, chiral recognition in gaseous phase, interactions and reactions between H atoms and graphite surfaces, modelling of gas

  7. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  8. Field ion microscopy and imaging atom-probe mass spectroscopy of superconducting YBa2Cu3O7/sub -//sub x/

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Brenner, S.S.

    1987-01-01

    The structure and composition of the superconducting oxide YBa 2 Cu 3 O/sub 7-//sub x/ have been examined in atomic detail by field ion microscopy and imaging atom-probe mass spectroscopy. The field ion samples were prepared from hot-pressed disks of the oxide powders. Atomic resolution images were obtained with either argon or hydrogen as the imaging gas. Individual layers of atoms were observed which could be field evaporated in a uniform, layer-by-layer manner. Imaging atom-probe analysis of the field ion tips indicated a metal composition which varied noticeably from sample to sample and an oxygen concentration which was consistently much too low

  9. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  10. Determination of Fe Content of Some Food Items by Flame Atomic Absorption Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental Analysis Laboratory

    Science.gov (United States)

    Fakayode, Sayo O.; King, Angela G.; Yakubu, Mamudu; Mohammed, Abdul K.; Pollard, David A.

    2012-01-01

    This article presents a guided-inquiry (GI) hands-on determination of Fe in food samples including plantains, spinach, lima beans, oatmeal, Frosted Flakes cereal (generic), tilapia fish, and chicken using flame atomic absorption spectroscopy (FAAS). The utility of the GI experiment, which is part of an instrumental analysis laboratory course,…

  11. Safety philiosophies in technology-related law discussed for the example of atomic energy law

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1993-01-01

    In practice, legal ruling and its technical implementation stand isolated side by side. Taking the example of atomic energy law, the reasons for this situation and the significance of the deficit in the legal control of technology are examined. It is discussed how the controlling capacity of the law can be increased through the legal implementation of safety philosophies for technology. The paper deals with the problematic realtionship between technical and legal norms, with safety philosophies in the sense of mental approaches, safety concepts or safety postulates and their legal significance, and with the safety philosophy adhered to by the authorities and courts. The following learning processes in safety philosophy are described: new concepts of protection within the field of determinism, probabilistic safety concepts as well as concepts for the reduction of damage potential. Altogether it can be stated that the safety philosophy currently adhered to in Federal German licensing practice is not the only possible one; rather, that there are many different ways of conceptualizing, stipulating and checking technical safety. At least in the field of atomic energy law, this insight has a twofold significance: de lege lata there are several ways of operationalizing the licence requirements laid down in Article 7 of the Atomic Energy Law and the legally defined requirements for a licence withdrawal with the aid of technical licensing criteria. In all cases the legal wording is indeterminate and does not prescribe any specific safety philosophy. De lege ferenda it must be noted that amendments to the Atomic Energy Law entail a regularization of safety philosophy. This is a political necessity if the Atomic Energy Law is to be developed further and thus maintained as a modern security law. (orig.) [de

  12. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    Science.gov (United States)

    Milne, Chris J.; Pham, Van-Thai; Gawelda, Wojciech; van der Veen, Renske M.; El Nahhas, Amal; Johnson, Steven L.; Beaud, Paul; Ingold, Gerhard; Lima, Frederico; Vithanage, Dimali A.; Benfatto, Maurizio; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Hauser, Andreas; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2009-11-01

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 Å. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  13. Dynamical assessment for evolutions of Atomic-Multinology (AM) in technology innovation using social network theory

    International Nuclear Information System (INIS)

    Woo, Taeho

    2012-01-01

    Highlights: ► The popularity of AM is analyzed by the social network theory. ► The graphical and colorful configurations are used for the meaning of the incident. ► The new industrial field is quantified by dynamical investigations. ► AM can be successfully used in nuclear industry for technology innovation. ► The method could be used for other industries. - Abstract: The technology evolution is investigated. The proposed Atomic Multinology (AM) is quantified by the dynamical method incorporated with Monte-Carlo method. There are three kinds of the technologies as the info-technology (IT), nano-technology (NT), and bio-technology (BT), which are applied to the nuclear technology. AM is initiated and modeled for the dynamic quantifications. The social network algorithm is used in the dynamical simulation for the management of the projects. The result shows that the successfulness of the AM increases, where the 60 years are the investigated period. The values of the dynamical simulation increase in later stage, which means that the technology is matured as time goes on.

  14. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.

    Science.gov (United States)

    Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U

    2006-07-01

    In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. (c) 2006 Wiley Periodicals, Inc.

  15. Determination of Heavy Metals and Radioactive Elements in Alluvial Soil using Atomic Absorption and Gamma Spectroscopy

    International Nuclear Information System (INIS)

    Hamed, S.S.; Walley EI Dine, N.; Soliman, S.I.; Moussa, W.M.

    2008-01-01

    The paper describes some methods dealing with measurements of some heavy and radioactive elements (U, Th and K) in Egyptian cultivated soil samples. Samples were collected from Toshka area. Also, soil and plant samples were collected from Kalube and EI - Gabal EI - Asfar to compare the obtained results from both region. Flame atomic absorption spectrometry (FAAS),Neutron activation analysis (INAA) and Natural radioactivity techniques were followed. FAAS and INAA techniques agreed fairly well for the compared elements Co,Zn and Fe which determined by the two techniques. Also for K which was determined by FAAS and natural radioactivity. It was found that the concentration range in soil samples for Co, Fe, K and Zn lies between 4.18 and 29.2 μg/g, 3.0 and 3.8 mg/g, 3.49 and 13.28 mg/g and 120 and 663 μg/g respectively while in plant samples the concentration of Co was from 3.02 to 4.02 μg/g, Fe from 1.18 to 1.35 mg/g and Zn from 29.63 to 73.02 μg/g

  16. Laser spectroscopy on atoms and ions using short-wavelength radiation

    International Nuclear Information System (INIS)

    Larsson, Joergen.

    1994-05-01

    Radiative properties and energy structures in atoms and ions have been investigated using UV/VUV radiation. In order to obtain radiation at short wavelengths, frequency mixing of pulsed laser radiation in crystals and gases has been performed using recently developed frequency-mixing schemes. To allow the study of radiative lifetimes shorter than the pulses from standard Q-switched lasers, different techniques have been used to obtain sufficiently short pulses. The Hanle effect has been employed following pulsed laser excitation for the same purpose. High-resolution spectroscopic techniques have been adapted for use with the broad-band, pulsed laser sources which are readily available in the UV/VUV spectral region. In order to investigate sources of radiation in the XUV and soft X-ray spectral regions, harmonic generation in rare gases has been studied. The generation of coherent radiation by the interaction between laser radiation and relativistic electrons in a synchrotron storage ring has also been investigated. 60 refs

  17. Contact-resonance atomic force microscopy for nanoscale elastic property measurements: Spectroscopy and imaging

    International Nuclear Information System (INIS)

    Stan, G.; Krylyuk, S.; Davydov, A.V.; Vaudin, M.D.; Bendersky, L.A.; Cook, R.F.

    2009-01-01

    Quantitative measurements of the elastic modulus of nanosize systems and nanostructured materials are provided with great accuracy and precision by contact-resonance atomic force microscopy (CR-AFM). As an example of measuring the elastic modulus of nanosize entities, we used the CR-AFM technique to measure the out-of-plane indentation modulus of tellurium nanowires. A size-dependence of the indentation modulus was observed for the investigated tellurium nanowires with diameters in the range 20-150 nm. Over this diameter range, the elastic modulus of the outer layers of the tellurium nanowires experienced significant enhancement due to a pronounced surface stiffening effect. Quantitative estimations for the elastic moduli of the outer and inner parts of tellurium nanowires of reduced diameter are made with a core-shell structure model. Besides localized elastic modulus measurements, we have also developed a unique CR-AFM imaging capability to map the elastic modulus over a micrometer-scale area. We used this CR-AFM capability to construct indentation modulus maps at the junction between two adjacent facets of a tellurium microcrystal. The clear contrast observed in the elastic moduli of the two facets indicates the different surface crystallography of these facets.

  18. He atom surface spectroscopy: Surface lattice dynamics of insulators, metals and metal overlayers

    International Nuclear Information System (INIS)

    1990-01-01

    During the first three years of this grant (1985--1988) the effort was devoted to the construction of a state-of-the-art He atom scattering (HAS) instrument which would be capable of determining the structure and dynamics of metallic, semiconductor or insulator crystal surfaces. The second three year grant period (1988--1991) has been dedicated to measurements. The construction of the instrument went better than proposed; it was within budget, finished in the proposed time and of better sensitivity and resolution than originally planned. The same success has been carried over to the measurement phase where the concentration has been on studies of insulator surfaces, as discussed in this paper. The experiments of the past three years have focused primarily on the alkali halides with a more recent shift to metal oxide crystal surfaces. Both elastic and inelastic scattering experiments were carried out on LiF, NaI, NaCl, RbCl, KBr, RbBr, RbI, CsF, CsI and with some preliminary work on NiO and MgO

  19. Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    George, Michael; Mussone, Paolo G. [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada); Abboud, Zeinab [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada); Department of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1 (Canada); Bressler, David C., E-mail: david.bressler@ualberta.ca [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada)

    2014-09-30

    The mechanical and moisture resistance properties of natural fibre reinforced composites are dependent on the adhesion between the matrix of choice and the fibre. The main goal of this study was to investigate the effect of NaOH swelling of hemp fibres prior to enzymatic treatment and a novel chemical sulfonic acid method on the physical properties of hemp fibres. The colloidal properties of treated hemp fibres were studied exclusively using an atomic force microscope. AFM imaging in tapping mode revealed that each treatment rendered the surface topography of the hemp fibres clean and exposed the individual fibre bundles. Hemp fibres treated with laccase had no effect on the surface adhesion forces measured. Interestingly, mercerization prior to xylanase + cellulase and laccase treatments resulted in greater enzyme access evident in the increased adhesion force measurements. Hemp fibres treated with sulfonic acid showed an increase in surface de-fibrillation and smoothness. A decrease in adhesion forces for 4-aminotoulene-3-sulfonic acid (AT3S) treated fibres suggested a reduction in surface polarity. This work demonstrated that AFM can be used as a tool to estimate the surface forces and roughness for modified fibres and that enzymatic coupled with chemical methods can be used to improve the surface properties of natural fibres for composite applications. Further, this work is one of the first that offers some insight into the effect of mercerization prior to enzymes and the effect on the surface topography. AFM will be used to selectively screen treated fibres for composite applications based on the adhesion forces associated with the colloidal interface between the AFM tip and the fibre surfaces.

  20. Organization of science and technology and the atomic energy program in Bangladesh

    International Nuclear Information System (INIS)

    Innas, M.; Islam, N.

    1977-01-01

    Bangladesh has developed an indigenous scientific community and a scientific and technological infrastructure. She is now making earnest endeavors to develop her scientific and technological capabilities to permit her to assimilate, adopt, and put to better social use the science of the advanced countries and, at the same time, establish a base for local production of science and technology geared to her own necessities with the ultimate object of achieving self-reliance. The National Council for Science and Technology (NCST) is the policy making and planning organ, which is attached to the Head of the State. The charters, functions, and mode of operation of these organs are discussed briefly. The Government established the Bangladesh Atomic Energy Commission (BAEC) in May 1973 and entrusted it with the task of promoting the peaceful uses of atomic energy in Bangladesh. Bangladesh stands on the Non-Proliferation Treaty and we will discuss the IAEA's safeguards system. In this context, the country's views on a Regional Fuel Cycle Center are also discussed. The paper finally reviews international, regional, and multilateral cooperation in the nuclear field

  1. Scanning tunneling microscopy and atomic force microscopy: application to biology and technology.

    Science.gov (United States)

    Hansma, P K; Elings, V B; Marti, O; Bracker, C E

    1988-10-14

    The scanning tunneling microscope (STM) and the atomic force microscope (AFM) are scanning probe microscopes capable of resolving surface detail down to the atomic level. The potential of these microscopes for revealing subtle details of structure is illustrated by atomic resolution images including graphite, an organic conductor, an insulating layered compound, and individual adsorbed oxygen atoms on a semiconductor. Application of the STM for imaging biological materials directly has been hampered by the poor electron conductivity of most biological samples. The use of thin conductive metal coatings and replicas has made it possible to image some biological samples, as indicated by recently obtained images of a recA-DNA complex, a phospholipid bilayer, and an enzyme crystal. The potential of the AFM, which does not require a conductive sample, is shown with molecular resolution images of a nonconducting organic monolayer and an amino acid crystal that reveals individual methyl groups on the ends of the amino acids. Applications of these new microscopes to technology are demonstrated with images of an optical disk stamper, a diffraction grating, a thin-film magnetic recording head, and a diamond cutting tool. The STM has even been used to improve the quality of diffraction gratings and magnetic recording heads.

  2. The use of atomic absorption spectroscopy to measure arsenic, selenium, molybdenum, and vanadium in water and soil samples from uranium mill tailings sites

    International Nuclear Information System (INIS)

    Hollenbach, M.H.

    1988-01-01

    The Technical Measurements Center (TMC) was established to support the environmental measurement needs of the various DOE remedial action programs. A laboratory intercomparison study conducted by the TMC, using soil and water samples from sites contaminated by uranium mill tailings, indicated large discrepancies in analytical results reported by participating laboratories for arsenic, selenium, molybdenum, and vanadium. The present study was undertaken to investigate the most commonly used analytical techniques for measuring these four elements, ascertain routine and reliable quantification, and assess problems and successes of analysts. Based on a survey of the technical literature, the analytical technique of atomic absorption spectroscopy was selected for detailed study. The application of flame atomic absorption, graphite furnace atomic absorption, and hydride generation atomic absorption to the analysis of tailings-contaminated samples is discussed. Additionally, laboratory sample preparation methods for atomic absorption spectroscopy are presented. The conclusion of this report is that atomic absorption can be used effectively for the determination of arsenic, selenium, molybdenum, and vanadium in water and soil samples if the analyst understands the measurement process and is aware of potential problems. The problem of accurate quantification of arsenic, selenium, molybdenum, and vanadium in water and soil contaminated by waste products from uranium milling operations affects all DOE remedial action programs [Surplus Facilities Management Program (SFMP), Formerly Utilized Site Remedial Action Program (FUSRAP), and Uranium Mill Tailings Remedial Action Program (UMTRAP)], since all include sites where uranium was processed. 96 refs., 9 figs

  3. Low temperature hydrogen plasma-assisted atomic layer deposition of copper studied using in situ infrared reflection absorption spectroscopy

    International Nuclear Information System (INIS)

    Chaukulkar, Rohan P.; Rai, Vikrant R.; Agarwal, Sumit; Thissen, Nick F. W.

    2014-01-01

    Atomic layer deposition (ALD) is an ideal technique to deposit ultrathin, conformal, and continuous metal thin films. However, compared to the ALD of binary materials such as metal oxides and metal nitrides, the surface reaction mechanisms during metal ALD are not well understood. In this study, the authors have designed and implemented an in situ reflection-absorption infrared spectroscopy (IRAS) setup to study the surface reactions during the ALD of Cu on Al 2 O 3 using Cu hexafluoroacetylacetonate [Cu(hfac) 2 ] and a remote H 2 plasma. Our infrared data show that complete ligand-exchange reactions occur at a substrate temperature of 80 °C in the absence of surface hydroxyl groups. Based on infrared data and previous studies, the authors propose that Cu(hfac) 2 dissociatively chemisorbs on the Al 2 O 3 surface, where the Al-O-Al bridge acts as the surface reactive site, leading to surface O-Cu-hfac and O-Al-hfac species. Surface saturation during the Cu(hfac) 2 half-cycle occurs through blocking of the available chemisorption sites. In the next half-reaction cycle, H radicals from an H 2 plasma completely remove these surface hfac ligands. Through this study, the authors have demonstrated the capability of in situ IRAS as a tool to study surface reactions during ALD of metals. While transmission and internal reflection infrared spectroscopy are limited to the first few ALD cycles, IRAS can be used to probe all stages of metal ALD starting from initial nucleation to the formation of a continuous film

  4. Precise X-Ray spectroscopy of the hydrogenlike and heliumlike heavy ions and of the exotic atoms

    International Nuclear Information System (INIS)

    Manil, B.

    2001-10-01

    In this thesis, we present four experiments designed to study hydrogenlike and heliumlike heavy ions, or exotic atoms. These experiments have been run at the Gesellschaft fur Schwerionenforchung (GSI) and the Paul Scherrer Institut (PSI). In the first part of this text, we begin with the description of a focusing, curved-crystal spectrometer in transmission geometry, coupled with a microstrip, germanium position-sensitive detector, which diffract X-ray photons in the range 50-100 keV. With this spectrometer, which can be mounted on the GSI accelerator, we will increase, by one order of magnitude, the accuracy on the measurement of the 1 s Lamb shift in hydrogenlike uranium ions, in order to test QED in strong coulomb field. Next, we detail an experiment that will soon give a new value of the charged-pion mass with a relative accuracy of 1 ppm. For that, we perform X-ray spectroscopy of pionic nitrogen, at PSI. The experimental set-up is made up of a cyclotron trap, a spherical Bragg-crystal focusing spectrometer, in reflection geometry, and a CCD sensitive-position cooled detector. This set-up allows also test QCD and chiral perturbation theory by measurements of radiative transitions of pionic hydrogen. The main subject of the second part is a lifetime measurement of the metastable 2 3 P 0 state in heliumlike gold ions, by Beam Foil Spectroscopy. With this experiment, which provides an important test of relativistic many-body theory, we give, for the first time, an accurate value of the lifetime of this state for an ion with a Z larger than 64, our result is τ(exp) = (22.12 ± 1.21) ps

  5. X-ray photoelectron spectroscopy study of pyrolytically coated graphite platforms submitted to simulated electrothermal atomic absorption spectrometry conditions

    International Nuclear Information System (INIS)

    Ruiz, Frine; Benzo, Zully; Quintal, Manuelita; Garaboto, Angel; Albornoz, Alberto; Brito, Joaquin L.

    2006-01-01

    The present work is part of an ongoing project aiming to a better understanding of the mechanisms of atomization on graphite furnace platforms used for electrothermal atomic absorption spectrometry (ETAAS). It reports the study of unused pyrolytic graphite coated platforms of commercial origin, as well as platforms thermally or thermo-chemically treated under simulated ETAAS analysis conditions. X-ray photoelectron spectroscopy (XPS) was employed to study the elements present at the surfaces of the platforms. New, unused platforms showed the presence of molybdenum, of unknown origin, in concentrations up to 1 at.%. Species in two different oxidations states (Mo 6+ and Mo 2+ ) were detected by analyzing the Mo 3d spectral region with high resolution XPS. The analysis of the C 1s region demonstrated the presence of several signals, one of these at 283.3 eV related to the presence of Mo carbide. The O 1s region showed also various peaks, including a signal that can be attributed to the presence of MoO 3 . Some carbon and oxygen signals were consistent with the presence of C=O and C-O- (probably C-OH) groups on the platforms surfaces. Upon thermal treatment up to 2900 deg. C, the intensity of the Mo signal decreased, but peaks due to Mo oxides (Mo 6+ and Mo 5+ ) and carbide (Mo 2+ ) were still apparent. Thermo-chemical treatment with 3 vol.% HCl solutions and heating up to 2900 deg. C resulted in further diminution of the Mo signal, with complete disappearance of Mo carbide species. Depth profiling of unused platforms by Ar + ion etching at increasing time periods demonstrated that, upon removal of several layers of carbonaceous material, the Mo signal disappears suggesting that this contamination is present only at the surface of the pyrolytic graphite platform

  6. Expectations for prospective applications of new beam technology to atomic energy research

    International Nuclear Information System (INIS)

    Tomimasu, Takio; Yamazaki, Tetsuo; Tanaka, Ryuichi; Tanigawa, Shoichiro; Konashi, Kenji; Mizumoti, Motoharu.

    1991-01-01

    Recently, the new beam technology based on high energy electron beam, for example free electron laser, low speed positrons and so on, has developed remarkably. Moreover, also in the field of ion beams, toward the utilization of further high level, the plans of using micro-beams, heightening energy, increasing electric current and so on are in progress. In near future, it is expected that the advanced application of such new beam technology expands more and more in the fields of materials, physical properties, isotope separation, biology, medical science, medical treatment and so on. In this report, placing emphasis on the examples of application, the development and application of new beam technology are described. Takasaki ion accelerators for advanced radiation application in Japan Atomic Energy Research Institute, the generation of low speed positrons and the utilization for physical property studies, the annihilation treatment of long life radioactive nuclides, and the generation of free electron laser and its application are reported. (K.I.)

  7. Functional materials for information and energy technology: Insights by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Müller, Martina; Nemšák, Slavomír; Plucinski, Lukasz; Schneider, Claus M.

    2016-01-01

    Highlights: • Photoemission spectro/microscopy studies of functional material systems. • Hard X-ray photoemission spectroscopy from magnetic semiconductors and insulators. • Information depth studies in hard X-ray photoemission microscopy. • Soft X-ray standing wave ambient pressure photoemission spectroscopy from liquid films. - Abstract: The evolution of both information and energy technology is intimately connected to complex condensed matter systems, the properties of which are determined by electronic and chemical interactions and processes on a broad range of length and time scales. Dedicated photoelectron spectroscopy and spectromicroscopy experiments can provide important insights into fundamental phenomena and applied functionalities. We discuss some recent methodological developments with application to relevant questions in spintronics, and towards operando studies of resistive switching and electrochemical processes.

  8. Solid sample atomic absorption spectroscopy in a chemical contaminant monitoring pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.; Schmidt, H.; Dirscherl, C.; Muntau, H.

    1987-09-01

    The Institute for Technology and Hygiene of Food of Animal Origin is developing a practible system of monitoring the distribution of toxic substances in the environment, using the dairy cows as bioindicators. A pilot project has been established to solve basic problems as sampling strategy, sample preparation, analysis and data handling. In the preliminary stage of this study the new technique of SS-AAS turned out to be a useful tool. In order to test overall analytical reliability of the data obtained all analytical procedures applied for the different matrices are controlled by the use of reference material of similar matrix compositions. Results of studies on the distribution of admium and lead are reported; the representativity of small sample amounts of cortical tissue (50-60 mg and 1-2 mg dry mass) has additionally been investigated. Direct analysis of wet tissue aliquots (5-10 mg) was not feasible. A possible method of sample preparation of wet tissue is presented which yields reliable results within 10 min of operation time.

  9. High resolution inner-shell spectroscopies of atoms and molecules in gas phase using the soft x-ray photochemistry beamline at SPring-8

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article describes recent activities on inner-shell spectroscopies of atoms and molecules on beamline 27SU, nicknamed soft X-ray photochemistry beamline, at SPring-8, an 8-GeV synchrotron radiation facility in Japan. This beamline provides linearly polarized monochromatic soft X-rays at the resolution higher than 10,000. The end station is designed so that one can perform various kinds of excitation and de-excitation spectroscopies as well as coincidence spectroscopies. Following the description of the beamline and the end station, we present recent results for inner-shell spectroscopies on Ne, CO 2 , BF 3 , and CF 4 . Emphasis is given to illustrate the strategy of the research on this beamline and performance of the beamline and the end station. (author)

  10. Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.

    Science.gov (United States)

    Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji

    2014-01-01

    The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.

  11. A diode-laser optical frequency standard based on laser-cooled Ca atoms: sub-kilohertz spectroscopy by optical shelving detection

    International Nuclear Information System (INIS)

    Oates, C.W.; Bondu, F.; Fox, R.W.; Hollberg, L.

    1999-01-01

    We report an optical frequency standard at 657 nm based on laser-cooled/trapped Ca atoms. The system consists of a novel, compact magneto-optic trap which uses 50 mW of frequency-doubled diode laser light at 423 nm and can trap >10 7 Ca atoms in 20 ms. High resolution spectroscopy on this atomic sample using the narrow 657 nm intercombination line resolves linewidths (FWHM) as narrow as 400 Hz, the natural linewidth of the transition. The spectroscopic signal-to-noise ratio is enhanced by an order of magnitude with the implementation of a ''shelving'' detection scheme on the 423 nm transition. Our present apparatus achieves a fractional frequency instability of 5 x 10 -14 in 1 s with a potential atom shot-noise-limited performance of 10 -16 τ -1/2 and excellent prospects for high accuracy. (orig.)

  12. Standard test method for determining elements in waste Streams by inductively coupled plasma-atomic emission spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the sample. Waste streams from manufacturing processes of nuclear and non-nuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable in process control within waste treatment facilities. 1.2 This test method is applicable only to waste streams that contain radioactivity levels that do not require special personnel or environmental protection. 1.3 A list of the elements determined in waste streams and the corresponding lower reporting limit is found in Table 1. 1.4 This test method has been used successfully for treatment of a large variety of waste solutions and industrial process liquids. The com...

  13. X-ray absorption spectroscopy: EXAFS and XANES - A versatile tool to study the atomic and electronic structure of materials

    International Nuclear Information System (INIS)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-01-01

    X-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-ray Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, they will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and sample limitations

  14. Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD

    Directory of Open Access Journals (Sweden)

    Ironside James W

    2007-08-01

    Full Text Available Abstract Background Sub-clinical variant Creutzfeldt-Jakob disease (vCJD infection and reports of vCJD transmission through blood transfusion emphasise the need for blood screening assays to ensure the safety of blood and transplanted tissues. Most assays aim to detect abnormal prion protein (PrPSc, although achieving required sensitivity is a challenge. Methods We have used innovative Atomic Dielectric Resonance Spectroscopy (ADRS, which determines dielectric properties of materials which are established by reflectivity and penetration of radio/micro waves, to analyse blood samples from patients and controls to identify characteristic ADR signatures unique to blood from vCJD and to sCJD patients. Initial sets of blood samples from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors were screened as training samples to determine group-specific ADR characteristics, and provided a basis for classification of blinded sets of samples. Results Blood sample groups from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors screened by ADRS were classified with 100% specificity and sensitivity, discriminating these by a co-variance expert analysis system. Conclusion ADRS appears capable of recognising and discriminating serum samples from vCJD, sCJD, non-CJD neurological diseases, and normal healthy adults, and might be developed to provide a system for primary screening or confirmatory assay complementary to other screening systems.

  15. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.

    Directory of Open Access Journals (Sweden)

    T Banerjee

    Full Text Available DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM and spectroscopy (AFS. The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA-the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA-the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time.

  16. Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, Daniel J.; Buranda, T. (University of New Mexico, Albuquerque, NM); Burns, Alan Richard

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.

  17. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-01-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities (∼∼ 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs

  18. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A.M.; Ortiz, M.; Campos, J.

    1995-09-01

    Absolute transition probabilities for lines of Cr II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. The plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. The light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 to 4100 A. The spectral resolution of the system was 0.2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sb alloys. To avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000K), electron densities (approx 10 ''16 cm''-3) and self-absorption coefficients have been obtained

  19. Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Fabio G. Santomauro

    2017-07-01

    Full Text Available We report on an element-selective study of the fate of charge carriers in photoexcited inorganic CsPbBr3 and CsPb(ClBr3 perovskite nanocrystals in toluene solutions using time-resolved X-ray absorption spectroscopy with 80 ps time resolution. Probing the Br K-edge, the Pb L3-edge, and the Cs L2-edge, we find that holes in the valence band are localized at Br atoms, forming small polarons, while electrons appear as delocalized in the conduction band. No signature of either electronic or structural changes is observed at the Cs L2-edge. The results at the Br and Pb edges suggest the existence of a weakly localized exciton, while the absence of signatures at the Cs edge indicates that the Cs+ cation plays no role in the charge transport, at least beyond 80 ps. This first, time-resolved element-specific study of perovskites helps understand the rather modest charge carrier mobilities in these materials.

  20. Fingerprinting of complex mixtures with the use of high performance liquid chromatography, inductively coupled plasma atomic emission spectroscopy and chemometrics

    International Nuclear Information System (INIS)

    Ni Yongnian; Peng Yunyan; Kokot, Serge

    2008-01-01

    The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC-a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices-thus, supporting the PCA approach

  1. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.

    Science.gov (United States)

    Banerjee, T; Banerjee, S; Sett, S; Ghosh, S; Rakshit, T; Mukhopadhyay, R

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA-the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA-the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time.

  2. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    Science.gov (United States)

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  3. Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD

    Science.gov (United States)

    Fagge, Timothy J; Barclay, G Robin; Stove, G Colin; Stove, Gordon; Robinson, Michael J; Head, Mark W; Ironside, James W; Turner, Marc L

    2007-01-01

    Background Sub-clinical variant Creutzfeldt-Jakob disease (vCJD) infection and reports of vCJD transmission through blood transfusion emphasise the need for blood screening assays to ensure the safety of blood and transplanted tissues. Most assays aim to detect abnormal prion protein (PrPSc), although achieving required sensitivity is a challenge. Methods We have used innovative Atomic Dielectric Resonance Spectroscopy (ADRS), which determines dielectric properties of materials which are established by reflectivity and penetration of radio/micro waves, to analyse blood samples from patients and controls to identify characteristic ADR signatures unique to blood from vCJD and to sCJD patients. Initial sets of blood samples from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) were screened as training samples to determine group-specific ADR characteristics, and provided a basis for classification of blinded sets of samples. Results Blood sample groups from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) screened by ADRS were classified with 100% specificity and sensitivity, discriminating these by a co-variance expert analysis system. Conclusion ADRS appears capable of recognising and discriminating serum samples from vCJD, sCJD, non-CJD neurological diseases, and normal healthy adults, and might be developed to provide a system for primary screening or confirmatory assay complementary to other screening systems. PMID:17760958

  4. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.

  5. MDM2–MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance

    Science.gov (United States)

    Moscetti, Ilaria; Teveroni, Emanuela; Moretti, Fabiola; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2016-01-01

    Murine double minute 2 (MDM2) and 4 (MDM4) are known as the main negative regulators of p53, a tumor suppressor. They are able to form heterodimers that are much more effective in the downregulation of p53. Therefore, the MDM2–MDM4 complex could be a target for promising therapeutic restoration of p53 function. To this aim, a deeper understanding of the molecular mechanisms underlining the heterodimerization is needed. The kinetic and thermodynamic characterization of the MDM2–MDM4 complex was performed with two complementary approaches: atomic force spectroscopy and surface plasmon resonance. Both techniques revealed an equilibrium dissociation constant (KD) in the micromolar range for the MDM2–MDM4 heterodimer, similar to related complexes involved in the p53 network. Furthermore, the MDM2–MDM4 complex is characterized by a relatively high free energy, through a single energy barrier, and by a lifetime in the order of tens of seconds. New insights into the MDM2–MDM4 interaction could be highly important for developing innovative anticancer drugs focused on p53 reactivation. PMID:27621617

  6. Inner-shell spectroscopy and exchange interaction of Rydberg electrons bound by singly and doubly charged Kr and Xe atoms in small clusters

    International Nuclear Information System (INIS)

    Nagasaka, Masanari; Hatsui, Takaki; Setoyama, Hiroyuki; Ruehl, Eckart; Kosugi, Nobuhiro

    2011-01-01

    Surface-site resolved Kr 3d 5/2 -1 5p and 3d 5/2 -1 6p and Xe 4d 5/2 -1 6p and 4d 5/2 -1 7p Rydberg excited states in small van der Waals Kr and Xe clusters with a mean size of = 15 are investigated by X-ray absorption spectroscopy. Furthermore, surface-site resolved Kr 4s -2 5p, 4s -2 6p, and 4s -1 4p -1 5p shakeup-like Rydberg states in small Kr clusters are investigated by resonant Auger electron spectroscopy. The exchange interaction of the Rydberg electron with the surrounding atoms and the induced polarization of the surrounding atoms in the singly and doubly ionized atoms are deduced from the experimental spectra to analyze different surface-site contributions in small clusters, assuming that the corner, edge, face, and bulk sites have 3, 5-6, 8, and 12 nearest neighbor atoms. These energies are almost proportional to the number of the nearest neighbor atoms. The present analysis indicates that small Kr and Xe clusters with = 15 have an average or mixture structure between the fcc-like cubic and icosahedron-like spherical structures.

  7. X-ray photoelectron spectroscopy studies of nitridation on 4H-SiC (0001) surface by direct nitrogen atomic source

    International Nuclear Information System (INIS)

    Chai, J. W.; Pan, J. S.; Zhang, Z.; Wang, S. J.; Chen, Q.; Huan, C. H. A.

    2008-01-01

    A Si 3 N 4 passivation layer has been successfully grown on the 4H-SiC (0001) surface by direct atomic source nitridation at various substrate temperatures. In situ x-ray photoelectron spectroscopy measurements show that higher substrate temperature leads to higher nitridation rate and good crystallinity of the passivation layer. A thin oxynitride layer on the top of the Si 3 N 4 was observed due to the residual O in the vacuum system, but was decomposed during annealing. In the meantime, excess C was found to be effectively removed by the reactive atomic N source

  8. Broadband integrated mid infrared light sources as enabling technology for point of care mid-infrared spectroscopy

    Science.gov (United States)

    2017-08-20

    AFRL-AFOSR-JP-TR-2017-0061 Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy Alex...mid-infrared light sources as enabling technology for point-of-care mid-infrared spectroscopy 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1-4037...Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy ” Date: 16th August 2017 Name

  9. Atomic layer deposition assisted pattern transfer technology for ultra-thin block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wenhui; Luo, Jun; Meng, Lingkuan; Li, Junjie; Xiang, Jinjuan; Li, Junfeng; Wang, Wenwu; Chen, Dapeng; Ye, Tianchun; Zhao, Chao

    2016-08-31

    As an emerging developing technique for next-generation lithography, directed self-assembly (DSA) of block copolymer (BCP) has attracted numerous attention and has been a potential alternative to supplement the intrinsic limitations of conventional photolithography. In this work, the self-assembling properties of a lamellar diblock copolymer poly(styrene-b-methylmethacrylate) (PS-b-PMMA, 22k-b-22k, L{sub 0} = 25 nm) on Si substrate and an atomic layer deposition (ALD)-assisted pattern transfer technology for the application of DSA beyond 16/14 nm complementary metal oxide semiconductor (CMOS) technology nodes, were investigated. Firstly, two key processing parameters of DSA, i.e. annealing temperatures and durations of BCP films, were optimized to achieve low defect density and high productivity. After phase separation of BCP films, self-assembling patterns of low defect density should be transferred to the substrate. However, due to the nano-scale thickness and the weak resistance of BCP films to dry etching, it is nearly impossible to transfer the BCP patterns directly to the substrate. Therefore, an ALD-based technology was explored in this work, in which deposited Al{sub 2}O{sub 3} selectively reacts with PMMA blocks thus hardening the PMMA patterns. After removing PS blocks by plasma etching, hardened PMMA patterns were left and transferred to underneath SiO{sub 2} hard mask layer. Using this patterned hard mask, nanowire array of 25 nm pitch were realized on Si substrate. From this work, a high-throughput DSA baseline flow and related ALD-assisted pattern transfer technique were developed and proved to have good capability with the mainstream CMOS technology. - Highlights: • Optimization on self-assembly process for high productivity and low defectivity • Enhancement of etching ratio and resistance by atomic layer deposition (ALD) • A hard mask was used for pattern quality improvement and contamination control.

  10. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  11. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    Science.gov (United States)

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  12. Assessing the Engagement, Learning, and Overall Experience of Students Operating an Atomic Absorption Spectrophotometer with Remote Access Technology

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of…

  13. Comparison of colorimetry and electrothermal atomic absorption spectroscopy for the quantification of non-transferrin bound iron in human sera.

    Science.gov (United States)

    Jittangprasert, Piyada; Wilairat, Prapin; Pootrakul, Pensri

    2004-12-01

    This paper describes a comparison of two analytical techniques, one employing bathophenanthrolinedisulfonate (BPT), a most commonly-used reagent for Fe (II) determination, as chromogen and an electrothermal atomic absorption spectroscopy (ETAAS) for the quantification of non-transferrin bound iron (NTBI) in sera from thalassemic patients. Nitrilotriacetic acid (NTA) was employed as the ligand for binding iron from low molecular weight iron complexes present in the serum but without removing iron from the transferrin protein. After ultrafiltration the Fe (III)-NTA complex was then quantified by both methods. Kinetic study of the rate of the Fe (II)-BPT complex formation for various excess amounts of NTA ligand was also carried out. The kinetic data show that a minimum time duration (> 60 minutes) is necessary for complete complex formation when large excess of NTA is used. Calibration curves given by colorimetric and ETAAS methods were linear over the range of 0.15-20 microM iron (III). The colorimetric and ETAAS methods exhibited detection limit (3sigma) of 0.13 and 0.14 microM, respectively. The NTBI concentrations from 55 thalassemic serum samples measured employing BPT as chromogen were statistically compared with the results determined by ETAAS. No significant disagreement at 95% confidence level was observed. It is, therefore, possible to select any one of these two techniques for determination of NTBI in serum samples of thalassemic patients. However, the colorimetric procedure requires a longer analysis time because of a slow rate of exchange of NTA ligand with BPT, leading to the slow rate of formation of the colored complex.

  14. Study of NaCl:Mn2+ nanostructures in the Suzuki phase by optical spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Mejía-Uriarte, E.V.; Kolokoltsev, O.; Navarrete Montesinos, M.; Camarillo, E.; Hernández A, J.; Murrieta S, H.

    2015-01-01

    NaCl:Mn 2+ nanostructures in the Suzuki phase have been studied by fluorescence (emission and excitation) spectroscopy and atomic force microscopy (AFM) as a function of temperature. The “as-grown” samples give rise to two broad emission bands that peak at 508 (green emission) and 610 nm (red emission). The excitation spectrum shows peaks at 227 nm and 232 nm for emission wavelengths at 508 nm and 610 nm, respectively. When the samples are heated continuously from room temperature up to 220 °C, the green emission (associated to the excitation peak at 227 nm) disappears at a temperature close to 120 °C, whilst only the red emission remains, which is characteristic of manganese ions. AFM images on the (0 0 1) surface (freshly cleaved) show several conformations of nanostructures, such as disks of 20–50 nm in diameter. Particularly, the images also reveal nanostructures with rectangular shape of ~280×160 nm 2 and ~6 nm height; these are present only in samples with green emission associated to the Suzuki phase. Then, the evidence suggests that this topographic configuration might be related to the interaction with the first neighbors and the next neighbors, according to the configuration that has been suggested for the Suzuki phase. - Highlights: • NaCl:Mn 2+ single crystals in the Suzuki phase contain rectangular nanostructures. • Double emission of manganese ions: green (508 nm) and red (610 nm) bands. • The excitation peak at 227 nm is attributed to rectangular nanostructures. • The green emission band associated to Suzuki phase is extinguished at 120 °C

  15. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-07-05

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature ( Tm ) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above-as well as below-the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10 -2 -10⁵ Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm . The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures.

  16. Exploring the binding of 4-thiothymidine with human serum albumin by spectroscopy, atomic force microscopy, and molecular modeling methods.

    Science.gov (United States)

    Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui

    2014-01-30

    The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  18. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    Science.gov (United States)

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NARCIS (Netherlands)

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, van der J.J.A.M.; Pupat, N.B.M.

    2006-01-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved

  20. Technology and automation of atomic power engineering and industry. TAAPEI-2009. Materials of branch scientific and technical conference covers the fiftieth anniversary of the Seversk State Engineering Academy

    International Nuclear Information System (INIS)

    2009-01-01

    Materials of the branch scientific and technical conference Technology and automation of atomic power engineering and industry (18-22 May, 2009, Seversk) are performed. Scientific and practical results of investigations into chemical technological developments, creation of machinery and apparatuses, automation of technological processes, application of present-day information technologies in atomic industry as well as ecological and nuclear weapons proliferation problems are shown. Besides issues of professional education and social-economic problems of the atomic branch are considered [ru