WorldWideScience

Sample records for atomic shells k

  1. K-shell ionization in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mehler, G.; Soff, G.; Rumrich, K.; Greiner, W.

    1989-08-01

    We present calculations of K-shell ionization probabilities in asymmetric ion-atom collisions at relativistic velocities of the projectile. The time-dependent Dirac equation is represented as a system of coupled differential equations. The transition probabilities are determined using the coordinate space method. This necessitates an extension of the angular momentum coupling compared with nonrelativistic collision systems. Effects of the relativistic projectile motion on the coupling matrix elements and their consequences on K-shell ionization are discussed. (orig.).

  2. K-shell ionization in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mehler, G.; Rumrich, K.; Greiner, W.; Soff, G.

    1989-02-01

    We present calculations of K-shell ionization probabilities in asymmetric ion-atom collisions at relativistic velocities of the projectile. The time-dependent Dirac equation is represented as a system of coupled differential equations. The transition probabilities are determined using the coordinate space method. This necessitates an extension of the angular momentum coupling compared with nonrelativistic collision systems. Effects of the relativistic projectile motion on the coupling matrix elements and their consequences on K-shell ionization are discussed.

  3. Simultaneous K plus L shell ionized atoms during heavy-ion collision process

    Indian Academy of Sciences (India)

    G A V Ramana Murty; G J Naga Raju; V Vijayan; T Ranjan Rautray; B Seetharami Reddy; S Lakshminarayana; K L Narasimham; S Bhuloka Reddy

    2004-06-01

    The fraction of simultaneous K plus L shell ionized atoms is estimated in Fe, Co and Cu elements using carbon ions at different projectile energies. The present results indicate that the fraction of simultaneous K plus L shell ionization probability decreases with increase in projectile energy as well as with increase in the atomic number of the targets atoms.

  4. K-shell auger decay of atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.C.; Lu, Y.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The aim of the present research is to understand the interaction between the ejected photoelectron and Auger electron produced by the Auger decay of a 1s hole in atomic oxygen, and to understand the influence this interaction has on the shape of the ionization cross sections. To accomplish this the authors have measured the relative ion yields (ion/photon) in the vicinity of the oxygen K-shell (525 - 533 eV) for O{sup +} and O{sup 2+}. The measurements were performed at the ALS on beamline, 6.3.2. The atomic oxygen was produced by passing molecular oxygen through a microwave-driven discharge. A Rydberg analysis of the two series leading to the [1s]2s{sup 2}2p{sup 4}({sup 4}P) and [1s]2s{sup 2}2p{sup 4}({sup 2}P) limits were obtained. This analysis shows some differences to the recently published results by Menzel et al. The energy position of the main 1s{sup 1}2s{sup 2}2p{sup 5}({sup 3}P) resonance differs by approximately 1 eV from the authors value, all members of the ({sup 2}P)np series differ by 0.3 eV, but the members of the ({sup 4}P)np series agree. The molecular resonance at 530.5 eV and those between 539 eV and 543 eV, measured with the microwave discharge off show identical results in both experiments.

  5. A vortex line for K-shell ionization of a carbon atom by electron impact

    Science.gov (United States)

    Ward, S. J.; Macek, J. H.

    2014-10-01

    We obtained using the Coulomb-Born approximation a deep minimum in the TDCS for K-shell ionization of a carbon atom by electron impact for the electron ejected in the scattering plane. The minimum is obtained for the kinematics of the energy of incident electron Ei = 1801.2 eV, the scattering angle θf = 4°, the energy of the ejected electron Ek = 5 . 5 eV, and the angle for the ejected electron θk = 239°. This minimum is due to a vortex in the velocity field. At the position of the vortex, the nodal lines of Re [ T ] and Im [ T ] intersect. We decomposed the CB1 T-matrix into its multipole components for the kinematics of a vortex, taking the z'-axis parallel to the direction of the momentum transfer vector. The m = +/- 1 dipole components are necessary to obtain a vortex. We also considered the electron to be ejected out of the scattering plane and obtained the positions of the vortex for different values of the y-component of momentum of the ejected electron, ky. We constructed the vortex line for the kinematics of Ei = 1801.2 eV and θf = 4°. S.J.W. and J.H.M. acknowledge support from NSF under Grant No. PHYS- 0968638 and from D.O.E. under Grant Number DE-FG02-02ER15283, respectively.

  6. Analytical expression for K- and L-shell cross sections of neutral atoms near ionization threshold by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Campos, C S [Instituto de Geociencias, Centro de Pesquisa em Geologia e GeofIsica, Universidade Federal da Bahia (UFBA), 40170-290 Salvador (Brazil); Vasconcellos, M A Z [Instituto de Fisica, Universidade Federal do Rio Grande do Sul (UFRGS), 91501-970 Porto Alegre, RS (Brazil); Trincavelli, J C [Facultad de Matematica, AstronomIa y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000, Cordoba (Argentina); Segui, S [Centro Atomico Bariloche, Comision Nacional de EnergIa Atomica, 8400 San Carlos de Bariloche, RIo Negro (Argentina)

    2007-10-14

    An analytical expression is proposed to describe the K- and L-shell ionization cross sections of neutral atoms by electron impact over a wide range of atomic numbers (4 {<=} Z {<=} 79) and over voltages U < 10. This study is based on the analysis of a calculated ionization cross section database using the distorted-wave first-order Born approximation (DWBA). The expression proposed for cross sections relative to their maximum height involves only two parameters for each atomic shell, with no dependence on the atomic number. On the other hand, it is verified that these parameters exhibit a monotonic behaviour with the atomic number for the absolute ionization cross sections, which allows us to obtain analytical expressions for the latter.

  7. Atomic x-ray production by relativistic heavy ions. [Cross sections, K and L shells, ionization 3 and 4. 88 GEV holes

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou, J.G.

    1977-12-01

    The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protons and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z/sub 1//sup 2/ for the cross section of the heavy ion with atomic number Z/sub 1/ to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z/sub 2/ of the target of the form (Z/sub 1/ - ..cap alpha..Z/sub 2/)/sup 2/, instead of Z/sub 1//sup 2/, is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology.

  8. Design of an experimental setup to measure the K-shell photoelectric cross sections and other atomic parameters at K edge

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Alvarez, J.A.; Lopez-Pino, N.; Rizo, O. Diaz; Corrales, Y.; Padilla-Cabal, F.; Perez-Liva, M.; Alessandro, K.D.; Maidana, N.L. [Instituto Superior de Tecnologia y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2010-07-01

    Full text: An experimental setup to measure the K shell jump ratio, jump factor and the ratio of total to K-shell photo-electric cross section at K edge was designed with Monte Carlo (MC) simulations, using the MCNPX V 2.6 code. In our arrangement, Bremsstrahlung photons, produced by beta particles from a {sup 90}Sr- {sup 90}Y source (activity - 0.1 mCi) hitting a thin Nickel converter, were used to irradiate the targets. The incident and transmitted spectra were measured with an HPGe detector coupled to conventional electronics. A sharp decrease in intensity at the K-shell binding energy was observed in the transmitted spectra, which, after corrections for photon attenuation, showed the known behavior for the photoelectric cross section as function of photon energy. The photon beam divergence effects were corrected with a calibration curve calculated with MC from simulations of a parallel and a divergent beam. Targets of Dy, Ta, Pt and Au were used to test the setup. The obtained data were processed by fitting either the total cross section to a sigmoidal function or the cross section branches around the K edge to the empirical law {sigma} = (A/E){sup n}. The results obtained using the first method show the influence of detector energy resolution in the data, because the measured jump at the K edge is not so sharp as it should be. Furthermore, additional calculations were done to obtain the anomalous scattering factors and the K-shell oscillator strengths. The values obtained for the K-shell photoelectric cross sections were compared with theoretical and other experimental data. In most cases, relative deviations below 10% were found. (author)

  9. K-shell excitation studied for H- and He-like bismuth ions in collisions with low-z target atoms

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, T. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Ionescu, D.C. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Theoretische Physik; Rymuza, P. [Institute for Nuclear Studies, Swierk (Poland); Bosch, F.; Geissel, H.; Kozhuharov, C.; Ludziejewski, T.; Mokler, P.H.; Scheidenberger, C. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Stachura, Z. [Henryk Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland); Warczak, A. [Krakow Univ. (Poland). Inst. of Physics; Dunford, R.W. [Argonne National Lab., IL (United States)

    1997-09-01

    The formation of excited projectile states via Coulomb excitation is investigated for hydrogen- and helium-like bismuth projectiles (Z=83) in relativistic ion-atom collisions. The excitation process was unambiguously identified by observing the radiative decay of the excited levels to the vacant 1s shell in coincidence with ions that did not undergo charge exchange in the reaction target. In particular, owing to the large fine structure splitting of Bi, the excitation cross-sections to the various L-shell sublevels are determined separately. The results are compared with detailed relativistic calculations, showing that both the relativistic character of the bound-state wave-functions and the magnetic interaction are of considerable importance for the K-shell excitation process in high-Z ions like Bi. The experimental data confirm the result of the complete relativistic calculations, namely that the magnetic part of the Lienard-Wiechert interaction leads to a significant reduction of the K-shell excitation cross-section. (orig.) 27 refs.

  10. Photoionisation of Be-like and Li-like atomic oxygen{\\it K}-shell photoionisation of O$^{4+}$ and O$^{5+}$ ions : experiment and theory

    CERN Document Server

    McLaughlin, B M; Cubaynes, D; Guilbaud, S; Douix, S; Shorman, M M Al; Ghazaly, M O A El; Sakho, I; Gharaibeh, M F

    2016-01-01

    Absolute cross sections for the {\\it K}-shell photoionisation of Be-like (O$^{4+}$) and Li-like (O$^{5+}$) atomic oxygen ions were measured for the first time (in their respective {\\it K}-shell regions) by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/$\\Delta$E $\\approx$ 3200 ($\\approx$ 170 meV, FWHM)was achieved with photon energy from 550 eV up to 670 eV. Rich resonance structure observed in the experimental spectra is analysed using the R-matrix with pseudo-states (RMPS) method. Results are also compared with the screening constant by unit nuclear charge (SCUNC) calculations. We characterise and identify the strong $\\rm 1s \\rightarrow 2p$ resonances for both ions and the weaker $\\rm 1s \\rightarrow np$ resonances ($ n \\ge 3$) observed in the {\\it K}-shell spectra of O$^{4+}$.

  11. Computation of triple differential cross-sections with the inclusion of exchange effects in atomic K-shell ionization by relativistic electrons for symmetric geometry

    Indian Academy of Sciences (India)

    S Dhar; M R Alam

    2007-09-01

    The triple differential cross-section for K-shell ionization of silver and copper atoms by relativistic electrons have been computed in the coplanar symmetric geometry with the inclusion of exchange effects following the multiple scattering theory of Das and Seal [1] multiplied by suitable spinors. Present computed results are marginally improved in some cases from the previous computed results [2]. Present results are compared with measured values [3] and with previous computation results [2]. Some other theoretical computational results are also presented here for comparison.

  12. Measurement of vacancy transfer probability from K to L shell using K-shell fluorescence yields

    Indian Academy of Sciences (India)

    Ö Söğüt; E Büyükkasap; A Küçükönder; T Tarakçioğlu

    2009-10-01

    The vacancy transfer probabilities from K to L shell through radiative decay, KL , have been deduced for the elements in the range 19 ≤ ≤ 58 using K-shell fluorescence yields. The targets were irradiated with photons at 59.5 keV from a 75mCi 241Am annular source. The K X-rays from different targets were detected with a high resolution Si(Li) detector. The measurement of vacancy transfer probabilities are least-squared fitted to second-order polynomials to obtain analytical relations that represent these probabilities as a function of atomic number. The obtained results agree with theoretical and fitted values.

  13. K-shell Photoabsorption of Oxygen Ions

    CERN Document Server

    García, J; Bautista, M A; Gorczyca, T W; Kallman, T R; Palmeri, P

    2004-01-01

    Extensive calculations of the atomic data required for the spectral modelling of the K-shell photoabsorption of oxygen ions have been carried out in a multi-code approach. The present level energies and wavelengths for the highly ionized species (electron occupancies 2 4, lack of measurements, wide experimental scatter, and discrepancies among theoretical values are handicaps in reliable accuracy assessments. The radiative and Auger rates are expected to be accurate to 10% and 20%, respectively, except for transitions involving strongly mixed levels. Radiative and Auger dampings have been taken into account in the calculation of photoabsorption cross sections in the K-threshold region, leading to overlapping lorentzian shaped resonances of constant widths that cause edge smearing. The behavior of the improved opacities in this region has been studied with the XSTAR modelling code using simple constant density slab models, and is displayed for a range of ionization parameters.

  14. Exotic atoms and their electron shell

    Energy Technology Data Exchange (ETDEWEB)

    Simons, L.M.; Abbot, D.; Bach, B.; Bacher, R.; Badertscher, A.; Bluem, P.; DeCecco, P.; Eades, J.; Egger, J.; Elsener, K.; Gotta, D.; Hauser, P.; Heitlinger, K.; Horvath, D.; Kottmann, F.; Morenzoni, E.; Missimer, J.; Reidy, J.J.; Siegel, R.; Taqqu, D.; Viel, D. (Paul Scherrer Inst., Villigen (Switzerland) Coll. of William and Mary, Williamsburg, VA (United States) Kernforschungszentrum Karlsruhe GmbH, Inst. fuer Kernphysik, Karlsruhe (Germany) Inst. fuer Experimentelle Kernphysik, Univ. Karlsruhe (Germany) CERN, Geneva (Switzerland) Forschungszentrum Juelich GmbH, Inst. fuer Kernphysik (Germany) KFKI Research Inst. for Particle and Nuclear Physics, Budapest (Hungary) Univ. Pisa (Italy) INFN - Pisa (Italy) ETH Zuerich, Villigen (Switzerland) Physics Dept., Univ. of Mississippi, University, MS (United States))

    1994-04-01

    Progress in the field of exotic atoms seems to increase proportionally with the number of exotic atoms produced and the increase in energy resolution with which the transition energies are determined. Modern experiments use high resolution crystal spectrometers or even aim at laser spectroscopy. The accuracy of these methods is limited by the interaction of the exotic atoms with their surroundings. The most important source of errors is the energy shift caused by the not well known status of the atomic electron shell. A novel method to eliminate these sources of error is presented and the possibilities for further high precision experiments is outlined. (orig.)

  15. Exotic atoms and their electron shell

    Science.gov (United States)

    Simons, L. M.; Abbot, D.; Bach, B.; Bacher, R.; Badertscher, A.; Blüm, P.; DeCecco, P.; Eades, J.; Egger, J.; Elsener, K.; Gotta, D.; Hauser, P.; Heitlinger, K.; Horváth, D.; Kottmann, F.; Morenzoni, E.; Missimer, J.; Reidy, J. J.; Siegel, R.; Taqqu, D.; Viel, D.

    1994-04-01

    Progress in the field of exotic atoms seems to increase proportionally with the number of exotic atoms produced and the increase in energy resolution with which the transition energies are determined. Modern experiments use high resolution crystal spectrometers or even aim at laser spectroscopy. The accuracy of these methods is limited by the interaction of the exotic atoms with their surroundings. The most important source of errors is the energy shift caused by the not well known status of the atomic electron shell. A novel method to eliminate these sources of error is presented and the possibilities for further high precision experiments is outlined.

  16. A New Atom Trap The Annular Shell Atom Trap (ASAT)

    CERN Document Server

    Pilloff, H S; Pilloff, Herschel S.; Horbatsch, Marko

    2002-01-01

    In the course of exploring some aspects of atom guiding in a hollow, optical fiber, a small negative potential energy well was found just in front of the repulsive or guiding barrier. This results from the optical dipole and the van der Waals potentials. The ground state for atoms bound in this negative potential well was determined by numerically solving the Schrodinger eq. and it was found that this negative well could serve as an atom trap. This trap is referred to as the Annular Shell Atom Trap or ASAT because of the geometry of the trapped atoms which are located in the locus of points defining a very thin annular shell just in front of the guiding barrier. A unique feature of the ASAT is the compression of the atoms from the entire volume to the volume of the annular shell resulting in a very high density of atoms in this trap. This trap may have applications to very low temperatures using evaporative cooling and possibly the formation of BEC. Finally, a scheme is discussed for taking advantage of the d...

  17. Observation of π-K+ and π+K- Atoms

    Science.gov (United States)

    Adeva, B.; Afanasyev, L.; Allkofer, Y.; Amsler, C.; Anania, A.; Aogaki, S.; Benelli, A.; Brekhovskikh, V.; Cechak, T.; Chiba, M.; Chliapnikov, P.; Doskarova, P.; Drijard, D.; Dudarev, A.; Dumitriu, D.; Fluerasu, D.; Gorin, A.; Gorchakov, O.; Gritsay, K.; Guaraldo, C.; Gugiu, M.; Hansroul, M.; Hons, Z.; Horikawa, S.; Iwashita, Y.; Karpukhin, V.; Kluson, J.; Kobayashi, M.; Kruglov, V.; Kruglova, L.; Kulikov, A.; Kulish, E.; Kuptsov, A.; Lamberto, A.; Lanaro, A.; Lednicky, R.; Mariñas, C.; Martincik, J.; Nemenov, L.; Nikitin, M.; Okada, K.; Olchevskii, V.; Pentia, M.; Penzo, A.; Plo, M.; Prusa, P.; Rappazzo, G.; Romero Vidal, A.; Ryazantsev, A.; Rykalin, V.; Saborido, J.; Schacher, J.; Sidorov, A.; Smolik, J.; Takeutchi, F.; Tauscher, L.; Trojek, T.; Trusov, S.; Urban, T.; Vrba, T.; Yazkov, V.; Yoshimura, Y.; Zhabitsky, M.; Zrelov, P.; Dirac Collaboration

    2016-09-01

    The observation of hydrogenlike π K atoms, consisting of π-K+ or π+K- mesons, is presented. The atoms are produced by 24 GeV /c protons from the CERN PS accelerator, interacting with platinum or nickel foil targets. The breakup (ionization) of π K atoms in the same targets yields characteristic π K pairs, called "atomic pairs," with small relative momenta Q in the pair center-of-mass system. The upgraded DIRAC experiment observed 349 ±62 such atomic π K pairs, corresponding to a signal of 5.6 standard deviations. This is the first statistically significant observation of the strange dimesonic π K atom.

  18. Static dipole polarizability of shell-confined hydrogen atom

    Science.gov (United States)

    Sen, K. D.; Garza, Jorge; Vargas, Rubicelia; Aquino, Norberto

    2002-04-01

    Using the Sternheimer perturbation-numerical procedure, calculations of static dipole polarizability are reported for the shell-confined hydrogen atom as defined by two impenetrable concentric spherical walls. Unusually high polarizability states are predicted for the hydrogen atom as the inner sphere radius is increased to larger values inside the outer sphere of a constant radius. Implications of this model in mimicking internal compression leading to the metallic behaviour of the shell-confined hydrogen atoms are discussed.

  19. Observation of $\\pi^- K^+$ and $\\pi^+ K^-$ atoms

    CERN Document Server

    Adeva, B; The PS212 collaboration; Allkofer, Y.; Amsler, C.; Anania, A.; Aogaki, S.; Benelli, A.; Brekhovskikh, V.; Cechak, T.; Chiba, M.; Chliapnikov, P.; Doskarova, P.; Drijard, D.; Dudarev, A.; Dumitriu, D.; Fluerasu, D.; Gorin, A.; Gorchakov, O.; Gritsay, K.; Guaraldo, C.; Gugiu, M.; Hansroul, M.; Hons, Z.; Horikawa, S.; Iwashita, Y.; Karpukhin, V.; Kluson, J.; Kobayashi, M.; Kruglov, V.; Kruglova, L.; Kulikov, A.; Kulish, E.; Kuptsov, A.; Lamberto, A.; Lanaro, A.; Lednicky, R.; Marinas, C.; Martincik, J.; Nikitin, M.; Okada, K.; Olchevskii, V.; Pentia, M.; Penzo, A.; Plo, M.; Prusa, P.; Rappazzo, G.; Vidal, A.Romero; Ryazantsev, A.; Rykalin, V.; Saborido, J.; Sidorov, A.; Smolik, J.; Takeutchi, F.; Tauscher, L.; Trojek, T.; Trusov, S.; Urban, T.; Vrba, T.; Yazkov, V.; Yoshimura, Y.; Zhabitsky, M.; Zrelov, P.

    2016-01-01

    The observation of hydrogen-like $\\pi K$ atoms, consisting of $\\pi^- K^+$ or $\\pi^+ K^-$ mesons, is presented. The atoms have been produced by 24 GeV/$c$ protons from the CERN PS accelerator, interacting with platinum or nickel foil targets. The breakup (ionisation) of $\\pi K$ atoms in the same targets yields characteristic $\\pi K$ pairs, called ``atomic pairs'', with small relative momenta in the pair centre-of-mass system. The upgraded DIRAC experiment has observed $349\\pm62$ such atomic $\\pi K$ pairs, corresponding to a signal of 5.6 standard deviations.

  20. K-shell ionization by antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.

    1987-08-01

    We present calculations for the impact-parameter dependence of K-shell ionization rates in p-bar-Cu and in p-bar-Ag collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the antibinding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross sections for protons.

  1. Observation of π^{-}K^{+} and π^{+}K^{-} Atoms.

    Science.gov (United States)

    Adeva, B; Afanasyev, L; Allkofer, Y; Amsler, C; Anania, A; Aogaki, S; Benelli, A; Brekhovskikh, V; Cechak, T; Chiba, M; Chliapnikov, P; Doskarova, P; Drijard, D; Dudarev, A; Dumitriu, D; Fluerasu, D; Gorin, A; Gorchakov, O; Gritsay, K; Guaraldo, C; Gugiu, M; Hansroul, M; Hons, Z; Horikawa, S; Iwashita, Y; Karpukhin, V; Kluson, J; Kobayashi, M; Kruglov, V; Kruglova, L; Kulikov, A; Kulish, E; Kuptsov, A; Lamberto, A; Lanaro, A; Lednicky, R; Mariñas, C; Martincik, J; Nemenov, L; Nikitin, M; Okada, K; Olchevskii, V; Pentia, M; Penzo, A; Plo, M; Prusa, P; Rappazzo, G; Romero Vidal, A; Ryazantsev, A; Rykalin, V; Saborido, J; Schacher, J; Sidorov, A; Smolik, J; Takeutchi, F; Tauscher, L; Trojek, T; Trusov, S; Urban, T; Vrba, T; Yazkov, V; Yoshimura, Y; Zhabitsky, M; Zrelov, P

    2016-09-01

    The observation of hydrogenlike πK atoms, consisting of π^{-}K^{+} or π^{+}K^{-} mesons, is presented. The atoms are produced by 24  GeV/c protons from the CERN PS accelerator, interacting with platinum or nickel foil targets. The breakup (ionization) of πK atoms in the same targets yields characteristic πK pairs, called "atomic pairs," with small relative momenta Q in the pair center-of-mass system. The upgraded DIRAC experiment observed 349±62 such atomic πK pairs, corresponding to a signal of 5.6 standard deviations. This is the first statistically significant observation of the strange dimesonic πK atom.

  2. Single-photon superradiance and radiation trapping by atomic shells

    Science.gov (United States)

    Svidzinsky, Anatoly A.; Li, Fu; Li, Hongyuan; Zhang, Xiwen; Ooi, C. H. Raymond; Scully, Marlan O.

    2016-04-01

    The collective nature of light emission by atomic ensembles yields fascinating effects such as superradiance and radiation trapping even at the single-photon level. Light emission is influenced by virtual transitions and the collective Lamb shift which yields peculiar features in temporal evolution of the atomic system. We study how two-dimensional atomic structures collectively emit a single photon. Namely, we consider spherical, cylindrical, and spheroidal shells with two-level atoms continuously distributed on the shell surface and find exact analytical solutions for eigenstates of such systems and their collective decay rates and frequency shifts. We identify states which undergo superradiant decay and states which are trapped and investigate how size and shape of the shell affects collective light emission. Our findings could be useful for quantum information storage and the design of optical switches.

  3. Multislice theory of fast electron scattering incorporating atomic inner-shell ionization.

    Science.gov (United States)

    Dwyer, C

    2005-09-01

    It is demonstrated how atomic inner-shell ionization can be incorporated into a multislice theory of fast electron scattering. The resulting theory therefore accounts for both inelastic scattering due to inner-shell ionization and dynamical elastic scattering. The theory uses a description of the ionization process based on the angular momentum representation for both the initial and final states of the atomic electron. For energy losses near threshold, only a small number of independent states of the ejected atomic electron need to be considered, reducing demands on computing time, and eliminating the need for tabulated inelastic scattering factors. The theory is used to investigate the influence of the collection aperture size on the spatial origin of the silicon K-shell EELS signal generated by a STEM probe. The validity of a so-called local approximation is also considered.

  4. Narrow deeply bound K- atomic states

    Science.gov (United States)

    Friedman, E.; Gal, A.

    1999-07-01

    Using optical potentials fitted to a comprehensive set of strong interaction level shifts and widths in K- atoms, we predict that the K- atomic levels which are inaccessible in the atomic cascade process are generally narrow, spanning a range of widths about 50-1500 keV over the entire periodic table. The mechanism for this narrowing is different from the mechanism for narrowing of pionic atom levels. Examples of such `deeply bound' K- atomic states are given, showing that in many cases these states should be reasonably well resolved. Several reactions which could be used to form these `deeply bound' states are mentioned. Narrow deeply bound states are expected also in overlinep atoms.

  5. Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of the projectile charge and velocity; Ionisation et excitation de l'atome de lithium par impact de particules chargees rapides: Identification des mecanismes de creation de deux lacunes en couche K du lithium en fonction de la charge et de la vitesse du projectile

    Energy Technology Data Exchange (ETDEWEB)

    Rangama, J

    2002-11-01

    Ionization and excitation of lithium atoms by fast charged particle impact: identification of mechanisms for double K-shell vacancy production as a function of projectile charge and velocity. Auger electron spectroscopy is used for an experimental investigation of ionization and excitation of lithium atoms by ions (Kr34{sup +} and Ar18{sup +}) and electrons at high impact velocities (from 6 to 60 a.u.). In particular, relative contributions of the mechanisms responsible for lithium K-shell ionization-excitation are determined for various projectile charges Zp and velocities vp. A large range of perturbation parameters |Zp|/vp is explored (|Zp|/vp = 0,05 - 0,7 a.u.). From single K-shell excitation results, it appears that the projectile-electron interaction gives mainly rise to a dipole-like transition 1s -> np Concerning K-shell ionization-excitation, the separation of the TS2 (two independent projectile-electron interactions) and TS1 (one projectile-electron interaction) mechanisms responsible for the formation of the 2snp 1,3P and 2sns 1,3S lithium states is performed. In TS1 process, the projectile-electron interaction can be followed by an electron-electron interaction (dielectronic process) or by an internal rearrangement of the residual target after a sudden potential change (shake process). From Born theory, ab initio calculations are performed. The good agreement between theoretical and experimental results confirms the mechanism identification. For the production of P states, TS1 is found to be strongly dominant for small |Zp|/vp values and TS2 is found to be most important for large |Zp|/vp values. Since P states cannot be formed significantly via a shake process, the TS1 and TS2 separation provides a direct signature of the dielectronic process. On the other hand, the TS1 process is shown to be the unique process for producing the S states. At the moment, only the shake aspect of the TS1 process can explain the fact that the 2s3s configuration is

  6. K-shell transitions in L-shell ions with the EBIT calorimeter spectrometer

    Science.gov (United States)

    Hell, Natalie; Brown, Greg V.; Wilms, Jörn; Beiersdorfer, Peter; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, F. Scott

    2016-10-01

    With the large improvement in effective area of Astro-H's micro-calorimeter soft X-ray spectrometer (SXS) over grating spectrometers, high-resolution X-ray spectroscopy with good signal to noise will become more commonly available, also for faint and extended sources. This will result in a range of spectral lines being resolved for the first time in celestial sources, especially in the Fe region. However, a large number of X-ray line energies in the atomic databases are known to a lesser accuracy than that expected for Astro-H/SXS, or have no known uncertainty at all. To benchmark the available calculations, we have therefore started to measure reference energies of K-shell transition in L-shell ions for astrophysically relevant elements in the range 11ion trap coupled with the NASA/GSFC EBIT calorimeter spectrometer (ECS). The ECS has a resolution of ~5 e V, i.e., similar to Astro-H/SXS and Chandra/HETG. A comparison to crystal spectra of lower charge states of sulfur with ~0.6 e V resolution shows that the analysis of spectra taken at ECS resolution allows to determine the transition energies of the strongest components.

  7. Inner-shell Photoionization Studies of Neutral Atomic Nitrogen

    Science.gov (United States)

    Stolte, W. C.; Jonauskas, V.; Lindle, D. W.; Sant'Anna, M. M.; Savin, D. W.

    2016-02-01

    Inner-shell ionization of a 1s electron by either photons or electrons is important for X-ray photoionized objects such as active galactic nuclei and electron-ionized sources such as supernova remnants. Modeling and interpreting observations of such objects requires accurate predictions for the charge state distribution (CSD), which results as the 1s-hole system stabilizes. Due to the complexity of the complete stabilization process, few modern calculations exist and the community currently relies on 40-year-old atomic data. Here, we present a combined experimental and theoretical study for inner-shell photoionization of neutral atomic nitrogen for photon energies of 403-475 eV. Results are reported for the total ion yield cross section, for the branching ratios for formation of N+, {{{N}}}2+, and {{{N}}}3+, and for the average charge state. We find significant differences when comparing to the data currently available to the astrophysics community. For example, while the branching ratio to {{{N}}}2+ is somewhat reduced, that for N+ is greatly increased, and that to {{{N}}}3+, which was predicted to be zero, grows to ≈ 10% at the higher photon energies studied. This work demonstrates some of the shortcomings in the theoretical CSD data base for inner-shell ionization and points the way for the improvements needed to more reliably model the role of inner-shell ionization of cosmic plasmas.

  8. The shells of atomic structure in metallic glasses

    Science.gov (United States)

    Pan, S. P.; Feng, S. D.; Qiao, J. W.; Dong, B. S.; Qin, J. Y.

    2016-02-01

    We proposed a scheme to describe the spatial correlation between two atoms in metallic glasses. Pair distribution function in a model iron was fully decomposed into several shells and can be presented as the spread of nearest neighbor correlation via distance. Moreover, angle distribution function can also be decomposed into groups. We demonstrate that there is close correlation between pair distribution function and angle distribution function for metallic glasses. We think that our results are very helpful understanding the atomic structure of metallic glasses.

  9. Shell correction for the stopping power of K electrons

    Science.gov (United States)

    Leung, P. T.; Rustgi, M. L.; Long, S. A. T.

    1986-01-01

    In view of the inapplicability of the asymptotic expressions for the stopping number available in the literature at high energies, an alternative approach is taken to compute the shell correction to the stopping number of K electrons. Anholt's formula for the K-shell ionization has been used to calculate the excitation function for longitudinal interaction and numerical integration over energy has been carried out to evaluate the shell correction. Comparison with other theoretical calculations is made. It is proposed that, with the inclusion of relativistic effects, an asymptotic expansion of the stopping number with a leading-term logarithmic in the energy of the incident particle would be more meaningful and might enable one to extract the relativistic contribution to the shell correction from it.

  10. Physical parameters for proton induced K-, L-, and M-shell ionization processes

    Science.gov (United States)

    Shehla; Puri, Sanjiv

    2016-10-01

    The proton induced atomic inner-shell ionization processes comprising radiative and non-radiative transitions are characterized by physical parameters, namely, the proton ionization cross sections, X-ray emission rates, fluorescence yields and Coster-Kronig (CK) transition probabilities. These parameters are required to calculate the K/L/M shell X-ray production (XRP) cross sections and relative X-ray intensity ratios, which in turn are required for different analytical applications. The current status of different physical parameters is presented in this report for use in various applications.

  11. Laboratory Studies of the Fe K-shell Emission

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P

    2004-12-26

    An overview is given of measurements of the Fe K-shell spectrum from low-density laboratory sources. The measurements include wavelengths, electron-impact collision cross sections, innershell ionization phenomena, dielectronic recombination resonance strengths, charge exchange recombination, electron beam polarization effects, resonance excitation, and radiative cascade contributions. K-shell spectra have now also been obtained with microcalorimeters, including microcalorimeter arrays that are twins of the ASTRO-E and ASTRO-E2 missions, which illustrate typical resolving powers and spectral capabilities.

  12. K-shell to K-shell charge transfer in collisions of bare decelerated S ions with Ar

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M.; Justiniano, E.; Konrad, J.; Schuch, R.; Salin, A.

    1987-05-14

    The impact parameter dependence of the single and double K-shell to K-shell charge transfer probabilities was studied by measuring triple coincidences between two K x-rays and the scattered projectiles for 16 MeV S W -Ar. It was found that the data are internally consistent with independent electron assumptions, but cannot be reproduced by different calculations of single electron transfer probabilities applying the independent electron model. Also a calculation of double K-vacancy transfer including electron correlations which described the HeS -He charge transfer probabilities well, is not in good agreement with the present data. The data allow a more sensitive test of various calculations on K to K charge transfer than recent experimental studies on collision systems with hydrogen-like projectiles.

  13. Scattering of low-energy neutrinos on atomic shells

    Energy Technology Data Exchange (ETDEWEB)

    Babič, Andrej [Dept. of Dosimetry and Application of Ionizing Radiation, Czech Technical University, 115 19 Prague, Czech Rep. (Czech Republic); Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague (Czech Republic); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Šimkovic, Fedor [Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague (Czech Republic); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Department of Nuclear Physics and Biophysics, Comenius University, 842 48 Bratislava (Slovakia)

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  14. High-Resolution Spectroscopy of K-shell Praseodymium with a High-Energy Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, D B; Brown, G V; Clementson, J T; Chen, H; Chen, M H; Beiersdorfer, P; Boyce, K R; Kilbourne, C A; Porter, F S; Kelley, R L

    2007-06-05

    We present a measurement of the K-shell spectrum of He-like through Be-like praseodymium ions trapped in the Livermore SuperEBIT electron beam ion trap using a bismuth absorber pixel on the XRS/EBIT microcalorimeter. This measurement is the first of its kind where the n=2 to n=1 transitions of the various charge states are spectroscopically resolved. The measured transition energies are compared with theoretical calculations from several atomic codes.

  15. Laboratory Measurement and Theoretical Modeling of K-shell X-ray Lines from Inner-shell Excited and Ionized Ions of Oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Gu, M; Schmidt, M; Beiersdorfer, P; Chen, H; Thorn, D B; Tr?bert, E; Behar, E; Kahn, S M

    2005-02-05

    We present high resolution laboratory spectra of K-shell X-ray lines from inner-shell excited and ionized ions of oxygen, obtained with a reflection grating spectrometer on the electron beam ion trap (EBIT-I) at the Lawrence Livermore National Laboratory. Only with a multi-ion model including all major atomic collisional and radiative processes, are we able to identify the observed K-shell transitions of oxygen ions from O III to O VI. The wavelengths and associated errors for some of the strongest transitions are given, taking into account both the experimental and modeling uncertainties. The present data should be useful in identifying the absorption features present in astrophysical sources, such as active galactic nuclei and X-ray binaries. They are also useful in providing benchmarks for the testing of theoretical atomic structure calculations.

  16. K -shell ionization during α decay of polonium isotopes and superheavy nuclei

    Science.gov (United States)

    Trzhaskovskaya, M. B.; Nikulin, V. K.

    2016-03-01

    The theory of K -shell ionization during α decay of the 84Po isotopes is considered in detail as a part of our general study of the inner shell ionization probability of heavy and superheavy nuclei. Calculations of K -shell ionization with allowance made for the α -particle tunneling through the atomic Coulomb barrier have been performed in the framework of the fully quantum mechanical treatment developed for the first time by Anholt and Amundsen. Further information is available [Anholt and Amundsen, Phys. Rev. A 25, 169 (1982), 10.1103/PhysRevA.25.169]. As distinct from all previous the K -shell ionization calculations where the Dirac hydrogenlike wave functions have been used, we have found the discrete and continuum electron wave functions in the framework of the relativistic self-consistent Dirac-Fock method. In addition, we have taken into consideration accurately terms associated with the α -particle tunneling. Our exact calculations show that the tunneling contribution to the ionization probability is of great importance while Anholt and Amundsen have asserted that the contribution is small. We have obtained that the K -shell ionization probability during α decay of five isotopes of 84Po correlate better with the available experimental data providing the tunneling is included in calculations. New calculations for K -shell ionization during α decay of superheavy elements Fm249100,No253102,Rg272111, as well as Rn22286 are also presented. The data may be of importance in the combined α ,γ , and conversion-electron spectroscopy used in the superheavy element synthesis analysis.

  17. The role of fullerene shell upon stuffed atom polarization potential

    CERN Document Server

    Amusia, M Ya

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes polarizability into the Neon and Argon endohedrals polarization potential. As a result, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross-sections due to effect of fullerene polarization upon the endohedral polarization potential.

  18. Multiphoton inner-shell ionization of the carbon atom

    CERN Document Server

    Rey, H F

    2015-01-01

    We apply time-dependent R-matrix theory to study inner-shell ionization of C atoms in ultra-short high-frequency light fields with a photon energy between 170 and 245 eV. At an intensity of 10$^{17}$ W/cm$^2$, ionization is dominated by single-photon emission of a $2\\ell$ electron, with two-photon emission of a 1s electron accounting for about 2-3\\% of all emission processes, and two-photon emission of $2\\ell$ contributing about 0.5-1\\%. Three-photon emission of a 1s electron is estimated to contribute about 0.01-0.03\\%. Around a photon energy of 225 eV, two-photon emission of a 1s electron, leaving C$^+$ in either 1s2s2p$^3$ or 1s2p$^4$ is resonantly enhanced by intermediate 1s2s$^2$2p$^3$ states. The results demonstrate the capability of time-dependent R-matrix theory to describe inner-shell ionization processes including rearrangement of the outer electrons.

  19. Narrow deeply bound K- and p atomic states

    Science.gov (United States)

    Friedman, E.; Gal, A.

    2000-01-01

    Examples of recently predicted narrow `deeply bound' K- and p atomic states are shown. The saturation of widths for strong absorptive potentials due to the induced repulsion, and the resulting suppression of atomic wave functions within the nucleus, are demonstrated. Production reactions for K- atomic states using φ(1020) decay, and the (p,p) reaction for p atomic states, are discussed.

  20. Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment

    Science.gov (United States)

    Nayak, S. V.; Badiger, N. M.

    2007-01-01

    We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…

  1. K-shell photoionization of O4 + and O5 + ions: experiment and theory

    Science.gov (United States)

    McLaughlin, B. M.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Douix, S.; Shorman, M. M. Al; Ghazaly, M. O. A. El; Sakho, I.; Gharaibeh, M. F.

    2017-03-01

    Absolute cross-sections for the K-shell photoionization of Be-like (O4 +) and Li-like (O5 +) atomic oxygen ions were measured for the first time (in their respective K-shell regions) by employing the ion-photon merged-beam technique at the SOLEIL synchrotron-radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/ΔE ≈ 3200 (≈170 meV, full width at half-maximum) was achieved with photon energy from 550 to 670 eV. Rich resonance structure observed in the experimental spectra is analysed using the R-matrix with pseudo-states (RMPS) method. Results are also compared with the screening constant by unit nuclear charge (SCUNC) calculations. We characterize and identify the strong 1s → 2p resonances for both ions and the weaker 1s → np resonances (n ≥ 3) observed in the K-shell spectra of O4 +.

  2. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    Science.gov (United States)

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed.

  3. Rydberg atom interactions from 300 K to 300 K

    Science.gov (United States)

    Pillet, P.; Gallagher, T. F.

    2016-09-01

    Cold Rydberg atoms provide novel approaches to many-body problems and quantum simulation. To introduce the recent work presented in this special issue, we present here a quick history of a half-century research activity in the Rydberg-atom field, focusing our attention on the giant interactions between Rydberg atoms and other atoms. These interactions are the origin of many effects observed with Rydberg atoms: pressure shifts, dipole-dipole energy transfer, and avalanche-ionization. These effects have led to evidence of new bound chemical states, such as trilobites states, many-body effects in frozen Rydberg gases, and the spontaneous formation of ultra-cold plasmas. They open exciting new prospects at the intersection of atomic physics, condensed matter physics, and plasma physics.

  4. Imaging the Mott Insulator Shells using Atomic Clock Shifts

    OpenAIRE

    Campbell, Gretchen K.; Mun, Jongchul; Boyd, Micah; Medley, Patrick; Leanhardt, Aaron E.; Marcassa, Luis; Pritchard, David E.; Ketterle, Wolfgang

    2006-01-01

    Microwave spectroscopy was used to probe the superfluid-Mott Insulator transition of a Bose-Einstein condensate in a 3D optical lattice. Using density dependent transition frequency shifts we were able to spectroscopically distinguish sites with different occupation numbers, and to directly image sites with occupation number n=1 to n=5 revealing the shell structure of the Mott Insulator phase. We use this spectroscopy to determine the onsite interaction and lifetime for individual shells.

  5. Chemical effect on the K shell absorption parameters of some selected cerium compounds

    Science.gov (United States)

    Akman, F.; Kaçal, M. R.; Durak, R.

    2016-08-01

    In this study, the photoelectric cross section values of Ce, CeCl3.7H2O, Ce2(SO4)3, Ce(OH)4 and Ce2O3 samples were measured in the energy range from 31.82 keV up to 51.70 keV by adopting in narrow beam geometry. Using these photoelectric cross sections, the K shell photoelectric cross sections at the K-edge, the K shell absorption jump ratios and jump factors, the Davisson-Kirchner ratios and K shell oscillator strength values were estimated experimentally. The measured parameters were compared with the theoretical calculated values. It is observed that the K shell photoelectric cross section at the K-edge and K shell oscillator strength values of an element are affected by the chemical environment of material while the K shell absorption jump ratio, K shell absorption jump factor and Davisson-Kirchner ratio are not affected by the chemical environment of material for the present samples. To the best of our knowledge, the chemical effects on the Davisson-Kirchner ratio and K shell oscillator strength have not been discussed for any element by now.

  6. A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com; Yang, L. B., E-mail: s.duan@163.com; Xie, W. P., E-mail: s.duan@163.com; Duan, S. C., E-mail: s.duan@163.com [Key Lab of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang, Sichuan 621999 (China)

    2014-12-15

    Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certain K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.

  7. Triple differential cross sections for inner-shell ionization of carbon atom by fast electron impact%快电子碰撞碳原子K-壳层电离的三重微分截面

    Institute of Scientific and Technical Information of China (English)

    孙世艳; 武媛; 贾祥富; 刘明海

    2004-01-01

    利用3C、DS3C和S3C模型分别计算了共面非对称几何条件下快电子碰撞碳原子K-壳层电离的三重微分截面(TDCS),将S3C模型计算结果与其它理论结果和实验数据进行了比较.表明:内壳层电离的TDCS呈现出一强的recoil峰,对于某些参量,recoil峰甚至高于binary峰.这一点与外壳层电离过程不相同.S3C模型能够较好地描述这样的电离过程.

  8. K--Nucleus Potentials Consistent with Kaonic Atoms

    Science.gov (United States)

    Cieply, A.; Friedman, E.; Gal, A.; Mares, J.

    2004-03-01

    Various models of the K- nucleus potential have been compared and tested in fits to kaonic atom data. The calculations give basically two vastly different predictions for the depth of the K- optical potential at the nuclear density. The study of the (K-stop, π ) reaction could help to distinguish between K- optical potentials as the Λ -hypernuclear formation rates are sensitive to the details of the initial-state K- wave function.

  9. Wigner’s phase-space function and atomic structure: II. Ground states for closed-shell atoms

    DEFF Research Database (Denmark)

    Springborg, Michael; Dahl, Jens Peder

    1987-01-01

    display and analyze the function for the closed-shell atoms helium, beryllium, neon, argon, and zinc in the Hartree-Fock approximation. The quantum-mechanical exact results are compared with those obtained with the approximate Thomas-Fermi description of electron densities in phase space....

  10. An improved $\\pi$K atom lifetime measurement

    CERN Document Server

    Yazkov, V

    2016-01-01

    This note describes details of analysis of data samples collected by DIRAC experiment on a Pt target in 2007 and Ni targets in 2008–2010 in order to estimate the lifetime of πK atoms. Experimental results consist of eight distinct data samples: both charge combinations ( π + K − and K + π − atoms) obtained in different experimental conditions corresponding to each year of data taking. Estimations of systematic errors are presented. Taking into account both statistical and systematic uncertainties, the lifetime of πK atoms is estimated by the maximum likelihood method. The above sample comprises the total statistics, available for the analysis, thus the improvement over the previous estimation [1,3] of the πK atom lifetime is achieved.

  11. New version: GRASP2K relativistic atomic structure package

    Science.gov (United States)

    Jönsson, P.; Gaigalas, G.; Bieroń, J.; Fischer, C. Froese; Grant, I. P.

    2013-09-01

    comprehensive user manual in pdf format for the program package has been added. Restrictions: The packing algorithm restricts the maximum number of orbitals to be ≤214. The tables of reduced coefficients of fractional parentage used in this version are limited to subshells with j≤9/2 [5]; occupied subshells with j>9/2 are, therefore, restricted to a maximum of two electrons. Some other parameters, such as the maximum number of subshells of a CSF outside a common set of closed shells are determined by a parameter.def file that can be modified prior to compile time. Unusual features: The bioscl3 program reports transition data in the same format as in Atsp2K [6], and the data processing program tables of the latter package can be used. The tables program takes a name.lsj file, usually a concatenated file of all the .lsj transition files for a given atom or ion, and finds the energy structure of the levels and the multiplet transition arrays. The tables posted at the website http://atoms.vuse.vanderbilt.edu are examples of tables produced by the tables program. With the extension of coefficients of fractional parentage to j=9/2, calculations for the lanthanides and actinides become possible. Running time: CPU time required to execute test cases: 70.5 s.

  12. K-shell (e, 3e) double ionization of beryllium by relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Becher, M; Joulakian, B [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, Member FR CNRS 2843 Jean Barriol 1 Bd Arago, 57078 Metz Cedex 3 (France)

    2009-03-28

    The (e, 3e) process, producing hollow metastable Be{sup 2+}(2s{sup 2}) by very energetic electrons (>100 keV), is studied by using a relativistic procedure based on the application of the first term of the Born series for the determination of the corresponding fully differential cross section. The very fast projectile electron, impinging on the K shell of the neutral beryllium, is described by Dirac plane-wave solutions with the appropriate wave vectors. All atomic electrons and the two final-state-bound electrons are taken into account by non-relativistic Jastrow-type correlated functions. The two slow ejected electrons in the continuum are described by the fully correlated three-Coulomb (3C) function. The comparison of the results with those obtained by our recent non-relativistic approach shows the necessity of the introduction of the relativistic treatment.

  13. Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    DEFF Research Database (Denmark)

    Özen, C.; Zinner, Nikolaj Thomas

    2014-01-01

    of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two......-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method...

  14. Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Seselj, Nedjeljko; Poreddy, Raju

    2016-01-01

    We present a facile synthesis protocol for atomically thin platinum (Pt) shells on top of gold (Au) nanoparticles (NPs) (Au@PtNPs) in one pot under mild conditions. The Au@PtNPs exhibited remarkable stability (> 2 years) at room temperature. The synthesis, bimetallic nanostructures and catalytic...... properties were thoroughly characterized by ultraviolet-visible light spectrophotometry, transmission electron microscopy, nanoparticle tracking analysis and electrochemistry. The 8 ± 2 nm Au@PtNPs contained 24 ± 1 mol% Pt and 76 ± 1 mol% Au corresponding to an atomically thin Pt shell. Electrochemical data...

  15. Generalized oscillator strengths for some higher valence-shell excitations of krypton atom

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The valence-shell excitations of krypton atom have been investigated by fast electron impact with an angle-resolved electron-energy-loss spectrometer. The generalized oscillator strengths for some higher mixed valence-shell excitations in 4d, 4f, 5p, 5d, 6s, 6p, 7s ← 4p of krypton atom have been determined. Their profiles are discussed, and the generalized oscillator strengths for the electric monopole and quadrupole excitations in 5p ← 4p are compared with the calculations of Amusia et al. (Phys. Rev. A 67 022703 (2003)). The differences between the experimental results and theoretical calculations show that more studies are needed.

  16. Evidence for $\\pi K$ -atoms with DIRAC-II

    CERN Document Server

    Allkofer, Yves

    2008-01-01

    DIRAC-II is a fixed-target experiment at the CERN Proton Synchroton (PS) which has been designed to search for piK atoms, a bound state of a pi±K± pair, and measure their lifetime. These atoms are observed through an excess of low energetic piK pairs over the background, detected in the two spectrometer arms. This excess comes from the ionization of piK atoms in the target and can be related to their mean life. The piK S-wave scattering length combination |a1/2 - a3/2| (for isospin 1/2 and 3/2) can be related to the latter. The aim of the upgraded DIRAC-II experiment is a measurement of the scattering length combination |a1/2 - a3/2| with a precision of 5%. piK atoms have not been observed so far. The original DIRAC experiment was designed to measure the scattering lengths of pipi atoms. So far, close to 15 000 atoms have been detected, leading to a precision on |a0 - a2| which is better than 10%. In chiral perturbation theories (ChPT) the pipi scattering lengths have been calculated with 2% precision a...

  17. Kaonic atoms and in-medium K-N amplitudes

    Science.gov (United States)

    Friedman, E.; Gal, A.

    2012-05-01

    Recent work on the connection between in-medium subthreshold K-N amplitudes and kaonic atom potentials is updated by using a next to leading order chirally motivated coupled channel separable interaction model that reproduces K¯N observables at low energies, including the very recent SIDDHARTA results for the atomic K--hydrogen 1s level shift and width. The corresponding K--nucleus potential is evaluated self-consistently within a single-nucleon approach and is critically reviewed with respect to empirical features of phenomenological optical potentials. The need to supplement the single-nucleon based approach with multi-nucleon interactions is demonstrated by showing that additional empirical absorptive and dispersive terms, beyond the reach of chirally motivated K--nucleus potentials, are required in order to achieve good agreement with the bulk of the data on kaonic atoms.

  18. K- and p¯ deeply bound atomic states

    Science.gov (United States)

    Friedman, E.; Gal, A.

    1999-12-01

    The strongly absorptive optical potentials Vopt which have been deduced from the strong-interaction level shifts and widths in X-ray spectra of K- and p¯ atoms produce effective repulsion leading to substantial suppression of the atomic wave functions within the nucleus. The width of atomic levels then saturates as function of the strength of Im Vopt. We find that `deeply bound' atomic states, which are inaccessible in the atomic cascade process, are generally narrow, due to this mechanism, over the entire periodic table and should be reasonably well resolved. These predictions are insensitive to Vopt, provided it was fitted to the observed X-ray spectra. In contrast, the nuclear states bound by Vopt are very broad and their spectrum depends sensitively on details of Vopt. We discuss production reactions for K- atomic states using slow K- mesons from the decay of the φ(1020) vector meson, and the ( p¯,p ) reaction for p¯ atomic states. Rough cross section estimates are given.

  19. Ultrafast atomic process in X-ray emission by using inner-shell ionization method for sodium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-07-01

    An ultrafast inner-shell ionization process with X-ray emission stimulated by high-intensity short-pulse X-ray is studied. Carbon and sodium atoms are treated as target matter. It is shown that atomic processes of the target determine the necessary X-ray intensity for X-ray laser emission as well as the features of X-ray laser such as wavelength and duration time. The intensity also depends on the density of initial atoms. Furthermore, we show that as the intensity of X-ray source becomes high, the multi-inner-shell ionization predominates, leading to the formation of hollow atoms. As the density of hollow atoms is increased by the pumping X-ray power, the emission of X-rays is not only of significance for high brightness X-ray measurement but also is good for X-ray lasing. New classes of experiments of pump X-ray probe and X-ray laser are suggested. (author)

  20. The investigation of K+π-, π+K- and π+π- atoms

    Science.gov (United States)

    Yazkov, Valeriy

    2016-11-01

    Theory, using Low Energy QCD, predicts with high precision the pion-pion and pion-kaon scattering lengths. There is accurate relation between K+π- and π+K- atoms lifetime and pion-kaon S-wave scattering lengths with isospin 1/2 and 3/2. Experiment DIRAC at CERN PS detects 345 ± 61 pairs from K+π- and π+K- atoms breakup. It allows to achieve the first observation of exotic atoms consisted of pion and kaon. Measured values of πK atom lifetime and corresponding pion-kaon scattering length difference are presented. It is shown, that experimental accuracy for pion-kaon scattering length difference could be significantly improved with an experiment at SPS energy.

  1. Laboratory study of K-shell photoionization of oxygen and oxygen hydrides ions

    Science.gov (United States)

    Bizau, Jean-Marc

    2016-05-01

    The interpretation of the spectra sent by satellites required the knowledge of many atomic data, including photoionization cross sections or energy and oscillator strength of bound-bound transitions for many ions, over a broad photon energy range going from infra-red to x-rays. These data are mainly provided by theoretical results using state-of-the-art methods like R-matrix. Recently, discrepancies have been observed between the calculated energy of the Kα transitions in atomic oxygen and its ions and those determined from the satellites observations. The results of the experimental studies of K-shell photoionization of oxygen ions performed at the French synchrotron radiation center SOLEIL will be presented. A merged-beam setup installed on the PLEIADES beam line allows for the determination of absolute photoionization cross sections and transitions energy on singly- and multiply-charged ions in the 10-1000 eV photon energy range. The first results obtained with this setup on oxygen hydrides will be also presented.

  2. Laboratory measurements of K-shell transitions in highly charged iron ions

    Science.gov (United States)

    Steinbrügge, René; Rudolph, Jan K.; Bernitt, Sven; Crespo López-Urrutia, José R.

    2016-09-01

    The x-ray spectra of celestial sources show a plethora of features originating from highly charged ions. These can be used to determine the flow, temperatures, and abundances of elements in the star, which are needed to benchmark-stellar evolution models. However, the underlying atomic transition data of the ions are often only known by theoretical calculations, thus testing them in laboratory measurements is crucial. We present our measurements of energies, natural linewidths, radiative and Auger decay rates for K-shell transitions in He-like to F-like iron ions. In this experiments, an electron beam ion trap was used to create a target of highly charged ions, which were resonantly excited by monochromatic light from the PETRA III synchrotron radiation source. Fluorescence was observed while simultaneously detecting photoionization by the change in the ionic charge state. This method, combined with the high resolution of the monochromator used, yields uncertainties on the ppm-level for the excitation energies and below 10% for the linewidths and transition rates, thus providing a valuable benchmark for atomic theory.

  3. K-shell spectroscopy in hot plasmas: Stark effect, Breit interaction and QED corrections

    CERN Document Server

    Pain, Jean-Christophe; Comet, Maxime; Gilles, Dominique

    2016-01-01

    The broadening of lines by Stark effect is widely used for inferring electron density and temperature in plasmas. Stark-effect calculations often rely on atomic data (transition rates, energy levels,...) not always exhaustive and/or valid only for isolated atoms. In this work, we first present a recent development in the detailed opacity code SCO-RCG for K-shell spectroscopy. The approach is adapted from the work of Gilles and Peyrusse. Neglecting non-diagonal terms in dipolar and collision operators, the line profile is expressed as a sum of Voigt functions associated to the Stark components. The formalism relies on the use of parabolic coordinates and the relativistic fine-structure of Lyman lines is included by diagonalizing the hamiltonian matrix associated to quantum states having the same principal quantum number n. The SCO-RCG code enables one to investigate plasma environment effects, the impact of the microfield distribution, the decoupling between electron and ion temperatures and the role of satell...

  4. Chemical effect on the K shell fluorescence yield of Fe, Mn, Co, Cr and Cu compounds

    Indian Academy of Sciences (India)

    U Turgut

    2004-11-01

    Chemical effects on the K shell fluorescence yields of Fe, Mn, Co, Cr and Cu compounds were investigated. Samples were excited using 59.5 keV energy photons from a 241Am radioisotope source. K X-rays emitted by samples were counted by a Si(Li) detector with a resolution 160 eV at 5.9 keV. Chemical effects on the K shell fluorescence yields (K) for Fe, Mn, Co, Cr and Cu compounds were observed. The values are compared with theoretical, semiempirical fit and experimental ones for the pure elements.

  5. K{sub β} to K{sub α} X-ray intensity ratios and K to L shell vacancy transfer probabilities of Co, Ni, Cu, and Zn

    Energy Technology Data Exchange (ETDEWEB)

    Anand, L. F. M.; Gudennavar, S. B., E-mail: shivappa.b.gudennavar@christuniversity.in; Bubbly, S. G. [Christ University Bengaluru, Department of Physics (India); Kerur, B. R. [Gulbarga University Kalaburgi, Department of Physics (India)

    2015-12-15

    The K to L shell total vacancy transfer probabilities of low Z elements Co, Ni, Cu, and Zn are estimated by measuring the K{sub β} to K{sub α} intensity ratio adopting the 2π-geometry. The target elements were excited by 32.86 keV barium K-shell X-rays from a weak {sup 137}Cs γ-ray source. The emitted K-shell X-rays were detected using a low energy HPGe X-ray detector coupled to a 16 k MCA. The measured intensity ratios and the total vacancy transfer probabilities are compared with theoretical results and others’ work, establishing a good agreement.

  6. Properties of atomic intercalated carbon K4 crystals

    OpenAIRE

    Itoh, Masahiro; Takami, Seiichi; Kawazoe, Yoshiyuki; Adschiri, Tadafumi

    2009-01-01

    The stability of atomic intercalated carbon $K_{4}$ crystals, XC$_{2}$ (X=H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ga, Ge, As, Se, Br, Rb or Sr) is evaluated by geometry optimization and frozen phonon analysis based on first principles calculations. Although C $K_{4}$ is unstable, NaC$_{2}$ and MgC$_{2}$ are found to be stable. It is shown that NaC$_{2}$ and MgC$_{2}$ are metallic and semi conducting, respectively.

  7. New Generation of the Monte Carlo Shell Model for the K Computer Era

    CERN Document Server

    Shimizu, Noritaka; Tsunoda, Yusuke; Utsuno, Yutaka; Yoshida, Tooru; Mizusaki, Takahiro; Honma, Michio; Otsuka, Takaharu

    2012-01-01

    We present a newly enhanced version of the Monte Carlo Shell Model method by incorporating the conjugate gradient method and energy-variance extrapolation. This new method enables us to perform large-scale shell-model calculations that the direct diagonalization method cannot reach. This new generation framework of the MCSM provides us with a powerful tool to perform most-advanced large-scale shell-model calculations on current massively parallel computers such as the K computer. We discuss the validity of this method in ab initio calculations of light nuclei, and propose a new method to describe the intrinsic wave function in terms of the shell-model picture. We also apply this new MCSM to the study of neutron-rich Cr and Ni isotopes using the conventional shell-model calculations with an inert 40Ca core and discuss how the magicity of N = 28, 40, 50 remains or is broken.

  8. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T.

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  9. Inner-shell Annihilation of Positrons in Argon, Iron and Copper Atoms

    CERN Document Server

    Abdel-Raouf, M A; El-Bakry, S Y

    2007-01-01

    The annihilation parameters of positrons with electrons in different shells of Argon, Iron and Copper atoms are calculated below the positronium (Ps) formation thresholds. Quite accurate ab initio calculations of the bound state wavefunctions of Argon, Iron and Copper orbitals are obtained from Cowan computer code. A least-squares variational method (LSVM) is used for determining the wavefunction of the positrons. The program is employed for calculating the s-wave partial cross sections of positrons scattered by Iron and Copper atoms. Our results of the effective charge are compared with available experimental and theoretical ones. --

  10. Alloying effect on K-shell fluorescence parameters of porous NiTi shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cengiz, E., E-mail: erhan_cengiz@ktu.edu.tr [Karadeniz Technical University, Science Faculty, Department of Physics, 61080 Trabzon (Turkey); Ozkendir, O.M. [Mersin University, Tarsus Faculty of Technology, Tarsus (Turkey); Kaya, M. [Adiyaman University, Department of Material Science Engineering, 02040 Adiyaman (Turkey); Tirasoglu, E. [Karadeniz Technical University, Science Faculty, Department of Physics, 61080 Trabzon (Turkey); Karahan, I.H. [Mustafa Kemal University, Faculty of Arts and Sciences, Department of Physics, Antakya, Hatay (Turkey); Kimura, S.; Hajiri, T. [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan)

    2014-01-01

    Highlights: • The K{sub α,β} shell production cross-sections and K{sub β}/K{sub α} intensity ratios of porous NiTi SMAs were determined by ED-XRF. • To analyze the changes in the structures due to the preheating and solution heat treatment processes, XRD and XPS measurements were also performed. • The deviations between the experimental and theoretical were interpreted to charge transfer phenomena. - Abstract: The K{sub α,β} shell production cross-sections and K{sub β}/K{sub α} intensity ratios of porous Ni −49 at% Ti shape memory alloys were determined using energy dispersive X-ray fluorescence (EDXRF) technique. Also, the alloying effect on the K shell fluorescence parameters was investigated. The samples were excited by 59.5 keV γ-rays from an {sup 241}Am annular radioactive source. The K X-rays emitted by the samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The structure analyses of the samples were also made using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The deviations between the present results and theoretical values, calculated for pure Ti and Ni, were attributed to charge transfer phenomena and/or rearrangement of valance shell electrons and porosity.

  11. K-shell excitation by K- to L-shell charge transfer in slow Krsup(q+)-Kr and Xesup(q+)-Xe collisions

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.; Justiniano, E.; Hoffmann, R. (Heidelberg Univ. (Germany, F.R.). Physikalisches Inst.); Schadt, W.; Schmidt-Boecking, H. (Frankfurt Univ. (Germany, F.R.). Inst. fuer Kernphysik); Mokler, P.H.; Bosch, F.; Schoenfeldt, W.A.; Stachura, Z. (Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.))

    1983-06-14

    K vacancy production probabilities with decelerated highly-charged Krsup(q+) (2.8 MeV u/sup -1/) on Kr and Xesup(q+) (3.6 MeV u/sup -1/) on Xe were measured by particle-photon coincidences. The impact-parameter-dependent probabilities reveal a dramatic change in shape and absolute height as soon as the projectile bears L-shell vacancies. From a comparison with calculations it is concluded that K- to L-shell charge transfer can be described, even in the heavy collision system Xe on Xe, by the 2p..pi..-2psigma rotational coupling mechanism when the relativistic energy splitting is taken into account. Deviations from a statistical distribution of the projectile L vacancies between the molecular levels are found.

  12. Structure of various K L1 x-ray satellite lines of heavy atoms

    Science.gov (United States)

    Polasik, Marek; Lewandowska-Robak, Maja

    2004-11-01

    Multiconfiguration Dirac-Fock calculations with the inclusion of the transverse (Breit) interaction and QED corrections have been carried out for Pd, Sn, Tb, Ta, Pb, and Th in order to obtain positions and intensities of various electric dipole, electric quadrupole, and magnetic dipole K x-ray diagram lines and of their KL1 satellites. Theoretically constructed stick spectra have been presented together with synthesized spectra (the sum of the Lorentzian natural line shapes) for each studied element. Taking into account the existence of an L -shell hole in the 2s or 2p subshell, the effect of additional L -shell ionization on the shapes and structure of the K x-ray spectra has been examined. It has been observed that generally with increasing atomic number Z the shapes of particular satellite line groups tend to become smoother and to differ less from the shapes of appropriate diagram lines. Relations between the values of energy shifts of various satellite lines for each element and the changes of these relations with Z have also been studied. Additionally, the relations between the intensities of different diagram lines for each element have been systematically analyzed, likewise the changes with Z of the role of particular diagram lines. This study can be helpful in reliable and quantitative interpretation of many experimental K x-ray spectra of Pd, Sn, Tb, Ta, Pb, and Th induced in collisions with various projectiles.

  13. Properties of atomic intercalated boron nitride K4 type crystals

    OpenAIRE

    Itoh, Masahiro; Takami, Seiichi; Kawazoe, Yoshiyuki; Adschiri, Tadafumi

    2010-01-01

    The stability of atomic intercalated boron nitride K4 crystal structures, XBN (X=H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ga, Ge, As, Se, Br, Rb or Sr) is evaluated by the geometric optimization and frozen phonon calculations based on the first principles calculations. NaBN, MgBN, GaBN, FBN and ClBN are found to be stable. NaBN, GaBN, FBN and ClBN are metallic, whereas MgBN is semiconducting.

  14. Fast ranking influential nodes in complex networks using a k-shell iteration factor

    Science.gov (United States)

    Wang, Zhixiao; Zhao, Ya; Xi, Jingke; Du, Changjiang

    2016-11-01

    Identifying the influential nodes of complex networks is important for optimizing the network structure or efficiently disseminating information through networks. The k-shell method is a widely used node ranking method that has inherent advantages in performance and efficiency. However, the iteration information produced in k-shell decomposition has been neglected in node ranking. This paper presents a fast ranking method to evaluate the influence capability of nodes using a k-shell iteration factor. The experimental results with respect to monotonicity, correctness and efficiency have demonstrated that the proposed method can yield excellent performance on artificial and real world networks. It discriminates the influence capability of nodes more accurately and provides a more reasonable ranking list than previous methods.

  15. Lifetime analysis of individual-atom contacts and crossover to geometric-shell structures in unstrained silver nanowires

    Directory of Open Access Journals (Sweden)

    Christian Obermair

    2011-11-01

    Full Text Available We study the crossover of quantum point contacts from (i individual-atom contacts to (ii electronic-shell effects and finally to (iii geometric-shell effects in electrochemically deposited silver contacts. The method allows the fabrication of mechanically unstrained structures, which is a requirement for determining the individual atomic configuration by means of a detailed lifetime analysis of their conductance. Within the geometric-shell model, the sequence of conductance maxima is explained quantitatively based on the crystal structure data of silver, and the growth mechanism of the nanowires is discussed.

  16. K-shell X-ray production in Silicon (Z2 = 14) by (1 ⩽ Z1 ⩽ 53) slow ions

    Science.gov (United States)

    Lei, Yu; Zhao, Yongtao; Zhou, Xianming; Cheng, Rui; Wang, Xing; Sun, Yuanbo; Liu, Shidong; Ren, Jieru; Wang, Yuyu; Zhang, Xiaoan; Li, Yaozong; Liang, Changhui; Xiao, Guoqing

    2016-03-01

    K-shell X-ray emission of Silicon induced by near-Bohr-velocity ions was systematically investigated in collision systems for which the ratio of projectile-to-target atomic numbers (Z1/Z2) ranged from 0.07 to 3.79. The results show that, in asymmetric collisions, the measured K-shell X-ray production cross sections of Silicon fit very well with the predictions of different direct ionization models depending on the atomic number of projectile. In the case of near-symmetric collisions (Z1/Z2 ∼ 1), an obvious enhancement of the X-ray production cross section was observed, which can be attributed to the vacancy transfer within the framework of quasi-molecular model.

  17. K. cap alpha. sup(h) hypersatellite spectrum and K shell double photoionization cross-section for Ar

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, E.; Ahopelto, J. (Helsinki University of Technology, Espoo (Finland). Lab. of Physics)

    1983-04-01

    The K..cap alpha..sup(h) hypersatellite spectrum of gaseous Ar has been measured in photon excitation with a plane crystal Bragg spectrometer. The experimental energy of K..cap alpha../sub 2/sup(h) line is obtained. The result is in good agreement with available theoretical calculations. The K shell double photoionization cross-section is estimated from the measured hypersatellite intensity and it is compared with existing theoretical calculations based on the shake theory and correlated wave functions.

  18. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy

    Science.gov (United States)

    Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.

    2016-09-01

    Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.

  19. Determination of experimental K-shell fluorescence yield for potassium and calcium compounds

    Indian Academy of Sciences (India)

    E Tiraşoğlu; Ö Söğüt

    2008-03-01

    K-shell fluorescence yields were experimentally determined for potassium and calcium compounds using a Si(Li) X-ray detector system (FWHM=5.96 keV at 160 eV). The samples were excited by 5.96 keV photons produced by a 55Fe radioisotope source. The experimental values are systematically lower than the theoretical values.

  20. Atomically thin spherical shell-shaped superscatterers based on a Bohr model.

    Science.gov (United States)

    Li, Rujiang; Lin, Xiao; Lin, Shisheng; Liu, Xu; Chen, Hongsheng

    2015-12-18

    Graphene monolayers can be used for atomically thin three-dimensional shell-shaped superscatterer designs. Due to the excitation of the first-order resonance of transverse magnetic (TM) graphene plasmons, the scattering cross section of the bare subwavelength dielectric particle is enhanced significantly by five orders of magnitude. The superscattering phenomenon can be intuitively understood and interpreted with a Bohr model. In addition, based on the analysis of the Bohr model, it is shown that contrary to the TM case, superscattering is hard to achieve by exciting the resonance of transverse electric (TE) graphene plasmons due to their poor field confinements.

  1. Electron impact ionization of individual sub-shells and total of L and M shells of atomic targets with Z = 38–92

    Science.gov (United States)

    Haque, A. K. F.; Maaza, M.; Uddin, M. A.; Patoary, M. Atiqur R.; Ismail Hossain, M.; Basak, A. K.; Saha, B. C.; Mahbub, M. Selim

    2017-03-01

    We report an extension and modification of the MCN model of Haque et al (2013 Rad. Phys. Chem. 91 50–9) (XMCN) to study the electron impact ionization of inner L and M shells of neutral atoms by introducing new parameters of the MCN model. The extended XMCN model, including the relativistic effect, has been applied with success to evaluate ionization cross-sections of various atomic targets with Z = 38–92 for both individual subshells and total L-shell and the corresponding cross-sections for the M shell for Z = 79–92 at incident energies E Threshold ≤slant T ≤slant 1 GeV. A comparison with other available theoretical and experimental cross-sections reveals that our results reproduce the experimental measurements with a reasonable accuracy.

  2. Criticality safety evaluation of disposing of K Basin sludge in double-shell tank AW-105

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    1999-06-04

    A criticality safety evaluation is made of the disposal of K Basin sludge in double-shell tank (DST) AW-105 located in the 200 east area of Hanford Site. The technical basis is provided for limits and controls to be used in the development of a criticality prevention specification (CPS). A model of K Basin sludge is developed to account for fuel burnup. The iron/uranium mass ration required to ensure an acceptable magrin of subcriticality is determined.

  3. Atomic force microscopy indentation to determine mechanical property for polystyrene–silica core–shell hybrid particles with controlled shell thickness

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Qian, Cheng [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Miao, Naiming [School of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu 213016 (China)

    2015-03-31

    The positively charged polystyrene (PS) particles with a size of ca. 200 nm were synthesized by soap-free polymerization. The PS cores were coated with silica shells of tunable thickness employing the modified Stöber method. The PS cores were removed by thermal decomposition at 500 °C, resulting in well-defined silica hollow spheres (10–30 nm in shell thickness). The elastic response of the as-synthesized samples was probed by an atomic force microscope (AFM). A point load was applied to the particle surface through a sharp AFM tip, and the force–displacement curves were recorded. Elastic moduli (E) for the PS particles (2.01 ± 0.70 GPa) and the core–shell structured hybrid particles were determined on the basis of Hertzian contact model. The calculated E values of composites exhibited a linear dependence on the silica shell thickness. While the shell thickness increased from ca. 10 to 15 and 20 nm, the E values of composites increased from 4.42 ± 0.27 to 5.88 ± 0.48 and 9.07 ± 0.94 GPa. For core–shell structured organic/inorganic composites, the E values of the hybrid particles were much lower than those of inorganic shells, while these values were much close to those of organic cores. Moreover, the moduli of elasticity of the composites appeared to be determined by the properties of the polymer cores, the species of inorganic shells and the thickness of shells. Besides, the inorganic shells enhanced the mechanical properties of the polymer cores. This work will provide essential experimental and theoretical basis for the design and application of core–shell structured organic/inorganic composite abrasives in chemical mechanical polishing/planarization. - Highlights: • The elastic moduli (E) of the PS/SiO{sub 2} hybrid particles were probed by AFM. • The E values of composites exhibited a linear dependence on the shell thickness. • The elasticity appeared to be determined by the properties of the organic cores. • The E values were affected

  4. Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes.

    Science.gov (United States)

    Shao, Qing; Zhou, Jian; Lu, Linghong; Lu, Xiaohua; Zhu, Yudan; Jiang, Shaoyi

    2009-03-01

    We performed molecular dynamics simulations of the hydration of Na+ and K+ in infinitely long single-walled armchair carbon nanotubes (CNTs) at 298 K. Simulation results indicate that the preferential orientation of water molecules in coordination shells of these two cations presents an anomalous change in the CNTs and causes a diameter-dependent variation for the interaction energy between the cation and water molecules in its coordination shell. In the five CNTs of this work, it is energetically favorable for confining a hydrated K+ inside the two narrow CNTs with diameters of 0.60 and 0.73 nm, whereas the situation is reverse inside the wide CNTs with diameters of 0.87, 1.0, and 1.28 nm. This finding is important for CNT applications in ionic systems that control the selectivity and the ionic flow.

  5. The grasp2K relativistic atomic structure package

    Science.gov (United States)

    Jönsson, P.; He, X.; Froese Fischer, C.; Grant, I. P.

    2007-10-01

    This paper describes grasp2K, a general-purpose relativistic atomic structure package. It is a modification and extension of the GRASP92 package by [F.A. Parpia, C. Froese Fischer, I.P. Grant, Comput. Phys. Comm. 94 (1996) 249]. For the sake of continuity, two versions are included. Version 1 retains the GRASP92 formats for wave functions and expansion coefficients, but no longer requires preprocessing and more default options have been introduced. Modifications have eliminated some errors, improved the stability, and simplified interactive use. The transition code has been extended to cases where the initial and final states have different orbital sets. Several utility programs have been added. Whereas Version 1 constructs a single interaction matrix for all the J's and parities, Version 2 treats each J and parity as a separate matrix. This block structure results in a reduction of memory use and considerably shorter eigenvectors. Additional tools have been developed for this format. The CPU intensive parts of Version 2 have been parallelized using MPI. The package includes a "make" facility that relies on environment variables. These make it easier to port the application to different platforms. The present version supports the 32-bit Linux and ibmSP environments where the former is compatible with many Unix systems. Descriptions of the features and the program/data flow of the package will be given in some detail in this report. Program summaryProgram title: grasp2K Catalogue identifier: ADZL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 213 524 No. of bytes in distributed program, including test data, etc.: 1 328 588 Distribution format: tar.gz Programming language: Fortran and C Computer: Intel

  6. L- and K-shell emission from X-FEL heated iron

    Science.gov (United States)

    Heimann, Philip; Hansen, Stephanie; Loisel, Guillaume; Bailey, James; Gamboa, Eliseo; Glenzer, Siegfried; Mancini, Roberto; Saunders, Alison; Falcone, Roger; Galtier, Eric

    2016-10-01

    At the LCLS MEC instrument, a tightly focused X-ray FEL beam is used to isochorically heat thin iron samples. Two compound refractive lenses produce a focus estimated to be 0.5 microns (FWHM). The L-emission from the hot, solid-density samples is measured by RAP(001) crystal and grating spectrometers. In addition, the K-emission is observed by a Ge(111) crystal spectrometer. The L-shell emission from iron, which is initially photoionized by the X-ray FEL, tests recent measurements indicating higher-than-predicted broadening of the L-shell emission lines. Heating at 7 and 9.2 keV photon energies compares different heating mechanisms.

  7. Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity.

    Science.gov (United States)

    Kayaci, Fatma; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2012-11-01

    Polymer-inorganic core-shell nanofibers were produced by two-step approach; electrospinning and atomic layer deposition (ALD). First, nylon 6,6 (polymeric core) nanofibers were obtained by electrospinning, and then zinc oxide (ZnO) (inorganic shell) with precise thickness control was deposited onto electrospun nylon 6,6 nanofibers using ALD technique. The bead-free and uniform nylon 6,6 nanofibers having different average fiber diameters (∼80, ∼240 and ∼650 nm) were achieved by using two different solvent systems and polymer concentrations. ZnO layer about 90 nm, having uniform thickness around the fiber structure, was successfully deposited onto the nylon 6,6 nanofibers. Because of the low deposition temperature utilized (200 °C), ALD process did not deform the polymeric fiber structure, and highly conformal ZnO layer with precise thickness and composition over a large scale were accomplished regardless of the differences in fiber diameters. ZnO shell layer was found to have a polycrystalline nature with hexagonal wurtzite structure. The core-shell nylon 6,6-ZnO nanofiber mats were flexible because of the polymeric core component. Photocatalytic activity of the core-shell nylon 6,6-ZnO nanofiber mats were tested by following the photocatalytic decomposition of rhodamine-B dye. The nylon 6,6-ZnO nanofiber mat, having thinner fiber diameter, has shown better photocatalytic efficiency due to higher surface area of this sample. These nylon 6,6-ZnO nanofiber mats have also shown structural stability and kept their photocatalytic activity for the second cycle test. Our findings suggest that core-shell nylon 6,6-ZnO nanofiber mat can be a very good candidate as a filter material for water purification and organic waste treatment because of their photocatalytic properties along with structural flexibility and stability.

  8. K-Shell Photoionization of Nickel Ions Using R-Matrix

    Science.gov (United States)

    Witthoeft, M. C.; Bautista, M. A.; Garcia, J.; Kallman, T. R.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ions stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.

  9. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    KAUST Repository

    Nie, Anmin

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations, by X-ray diffraction, high-resolution transmission electron microscopy, selected area electron diffraction and Raman spectra, reveal that single crystalline rutile TiO 2 shells can be epitaxially grown on SnO 2 NWs with an atomically sharp interface at low temperature (250 °C). The growth behavior of the TiO 2 shells highly depends on the surface orientations and the geometrical shape of the core SnO 2 NW cross-section. Atomically smooth surfaces are found for growth on the {110} surface. Rough surfaces develop on {100} surfaces due to (100) - (1 × 3) reconstruction, by introducing steps in the [010] direction as a continuation of {110} facets. Lattice mismatch induces superlattice structures in the TiO 2 shell and misfit dislocations along the interface. Conformal epitaxial growth has been observed for SnO 2 NW cores with an octagonal cross-section ({100} and {110} surfaces). However, for a rectangular core ({101} and {010} surfaces), the shell also derives an octagonal shape from the epitaxial growth, which was explained by a proposed model based on ALD kinetics. The surface steps and defects induced by the lattice mismatch likely lead to improved photoluminescence (PL) performance for the yellow emission. Compared to the pure SnO 2 NWs, the PL spectrum of the core-shell nanostructures exhibits a stronger emission peak, which suggests potential applications in optoelectronics. © The Royal Society of Chemistry 2012.

  10. K-shell X-ray spectroscopy of laser produced aluminum plasma

    Science.gov (United States)

    Kaur, Channprit; Chaurasia, S.; Poswal, A. K.; Munda, D. S.; Rossall, A. K.; Deo, M. N.; Sharma, Surinder M.

    2017-01-01

    Optimization of a laser produced plasma (LPP) X-ray source has been performed by analyzing K-shell emission spectra of Al plasma at a laser intensity of 1013-1014 W/cm2. The effect of varying the laser intensity on the emissivity of the K-shell resonance lines is studied and found to follow a power law, Ix =(IL) α with α=2.2, 2.3, 2.4 for Heβ, Heγ, Heδ respectively. The emission of these resonance lines has been found to be heavily anisotropic. A Python language based code has been developed to generate an intensity profile of K-shell spectral lines from the raw data. In theoretical calculations, the temperature is estimated by taking the ratio of the Li-like satellite (1s22p-1s2p3p) and the Heβ (1s2-1s3p) resonance line and the ratio of the He-like satellite (1s2p-2p2) and the Lyα (1s-2p) resonance line. To determine the plasma density, stark broadening of the Lyβ spectral line is used. Simulation was carried out using the FLYCHK code to generate a synthetic emission spectrum. The results obtained by FLYCHK are Te=160 eV, Th=1 keV, f=0.008, ne=5×1020 cm-3 and the analytical model resulted Te=260-419 eV and ne=3x1020 cm-3.

  11. Coupled-channel calculations of K-shell ionisation in asymmetric collision systems

    Energy Technology Data Exchange (ETDEWEB)

    Mehler, G.; Greiner, W.; Soff, G.

    1987-06-28

    Theoretical results on K-shell ionisation for a variety of asymmetric collision systems are reported. The calculated ionisation rates are compared with experimental data. The coupled-channel formalism underlying these calculations is presented. It is based on a set of relativistic target centred states, taking a screened potential of Dirac-Fock-Slater type into account. The effects of different matrix elements are discussed, e.g. continuum-continuum couplings. The binding effect is inherently contained in the present approach and described in a dynamical way.

  12. Quantum-Shell Corrections to the Finite-Temperature Thomas-Fermi-Dirac Statistical Model of the Atom

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, A B

    2003-07-22

    Quantum-shell corrections are made directly to the finite-temperature Thomas-Fermi-Dirac statistical model of the atom by a partition of the electronic density into bound and free components. The bound component is calculated using analytic basis functions whose parameters are chosen to minimize the energy. Poisson's equation is solved for the modified density, thereby avoiding the need to solve Schroedinger's equation for a self-consistent field. The shock Hugoniot is calculated for aluminum: shell effects characteristic of quantum self-consistent field models are fully captures by the present model.

  13. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, G. E., E-mail: kemp10@llnl.gov; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M. [Lawrence Livermore National Laboratory, Livermore, California 94550-9698 (United States)

    2015-05-15

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3–5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (∼n{sub c}/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from CRETIN, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3–5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ∼100–150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (∼20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3–5 keV x-ray source on NIF.

  14. Prominent role of multielectron processes in K -shell double and triple photodetachment of oxygen anions

    Science.gov (United States)

    Schippers, S.; Beerwerth, R.; Abrok, L.; Bari, S.; Buhr, T.; Martins, M.; Ricz, S.; Viefhaus, J.; Fritzsche, S.; Müller, A.

    2016-10-01

    The photon-ion merged-beam technique was used at a synchrotron light source for measuring the absolute cross sections of the double and triple photodetachment of O- ions. The experimental photon energy range of 524-543 eV comprised the threshold for K -shell ionization. Using resolving powers of up to 13 000, the position, strength, and width of the below-threshold 1 s 2 s22 p6 2S resonance as well as the positions of the 1 s 2 s22 p5 3P and 1 s 2 s22 p5 1P thresholds for K -shell ionization were determined with high precision. In addition, systematically enlarged multiconfiguration Dirac-Fock calculations have been performed for the resonant detachment cross sections. Results from these ab initio computations agree very well with the measurements for the widths and branching fractions for double and triple detachment, if double shakeup (and shakedown) of the valence electrons and the rearrangement of the electron density is taken into account. For the absolute cross sections, however, a previously found discrepancy between measurements and theory is confirmed.

  15. Complex Organic and Inorganic Compounds in Shells of Lithium-rich K Giant Stars

    CERN Document Server

    de la Reza, Ramiro; Oliveira, Isa; Rengaswamy, Sridharan

    2015-01-01

    Hydrocarbon organic material, as found in the interstellar medium, exists in complex mixtures of aromatic and aliphatic forms. It is considered to be originated from carbon enriched giant stars during their final stages of evolution, when very strong mass loss occurs in a few thousand years on their way to become planetary nebulae. We show here that the same organic compounds appear to be formed in previous stages of the evolution of giant stars. More specifically, during the first ascending giant branch K-type stars. According to our model this happens only when these stars are being abruptly enriched with lithium together with the formation of a circumstellar shell with a strong mass loss during just a few thousand years. This sudden mass loss is, on an average, a thousand times larger than that of normal Li-poor K giant stars. This shell would later be detached, specially when the star stops its Li enrichment and a rapid photospheric Li depletion occurs. In order to gain extra carbon-based material to form...

  16. Understanding Bright 13 keV Kr K-shell X-ray Sources at the NIF

    Science.gov (United States)

    May, M. J.; Colvin, J. D.; Kemp, G. E.; Fournier, K. B.; Scott, H.; Patel, M.; Barrios, Widmann; Widmann, K.

    2015-11-01

    High x-ray conversion efficiency (CE) K-shell Kr sources are being investigated for High Energy Density experiments. These sources are 4.1 mm in diameter 4.4 mm tall hollow epoxy tubes having a 40 μm thick wall holding either 1.2 or 1.5 atm of Kr gas. The CE of K-shell Kr is dependent upon the peak electron temperature in the radiating plasma. In the NIF experiments, the available energy heats the source to Te = 6-7 keV, well below the temperature of Te ~25 keV needed to optimize the Kr CE. The CE is a steep function of the peak electron temperature. A spatially averaged electron temperature can be estimated from measured He(α) and Ly(α) line ratios. Some disagreement has been observed in the simulated and measured line ratios for some of these K-shell sources. Disagreements have been observed between the simulated and measured line ratios for some of these K-shell sources. To help understand this issue, Kr gas pipes have been shot with 3 ω light at ?750 kJ at ~210, ~140 TW and ~120 TW power levels with 3.7, 5.2 and 6.7 ns pulses, respectively. The power and pulse length scaling of the measured CE and K-shell line ratios and their comparison to simulations will be discussed. This work was performed under the auspic

  17. Spectral and Atomic Physics Analysis of Xenon L-Shell Emission From High Energy Laser Produced Plasmas

    Science.gov (United States)

    Thorn, Daniel; Kemp, G. E.; Widmann, K.; Benjamin, R. D.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Fournier, K. B.; Liedahl, D.; Moore, A. S.; Blue, B. E.

    2016-10-01

    The spectrum of the L-shell (n =2) radiation in mid to high-Z ions is useful for probing plasma conditions in the multi-keV temperature range. Xenon in particular with its L-shell radiation centered around 4.5 keV is copiously produced from plasmas with electron temperatures in the 5-10 keV range. We report on a series of time-resolved L-shell Xe spectra measured with the NIF X-ray Spectrometer (NXS) in high-energy long-pulse (>10 ns) laser produced plasmas at the National Ignition Facility. The resolving power of the NXS is sufficiently high (E/ ∂E >100) in the 4-5 keV spectral band that the emission from different charge states is observed. An analysis of the time resolved L-shell spectrum of Xe is presented along with spectral modeling by detailed radiation transport and atomic physics from the SCRAM code and comparison with predictions from HYDRA a radiation-hydrodynamics code with inline atomic-physics from CRETIN. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  18. K- and L-shell ionization of heavy targets by various 20-and 80-MeV/u projectiles

    NARCIS (Netherlands)

    Kravchuk, VL; van den Berg, AM; Fleurot, F; de Huu, MA; Lohner, H; Wilschut, HW; Polasik, M; Lewandowska-Robak, M; Slabkowska, K

    2001-01-01

    K- and L-shell ionization induced by 20 MeV/u He, C, O, and Ne beams on Ta, Pb, and Th targets, and 80 MeV/u He, C, O beams on a Pb target has been studied. K x-ray production cross sections have been measured and compared with theoretical calculations. Probabilities of creation of one additional L-

  19. ISICS2011, an updated version of ISICS: A program for calculation K-, L-, and M-shell cross sections from PWBA and ECPSSR theories using a personal computer

    Science.gov (United States)

    Cipolla, Sam J.

    2011-11-01

    In this new version of ISICS, called ISICS2011, a few omissions and incorrect entries in the built-in file of electron binding energies have been corrected; operational situations leading to un-physical behavior have been identified and flagged. New version program summaryProgram title: ISICS2011 Catalogue identifier: ADDS_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADDS_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6011 No. of bytes in distributed program, including test data, etc.: 130 587 Distribution format: tar.gz Programming language: C Computer: 80486 or higher-level PCs Operating system: WINDOWS XP and all earlier operating systems Classification: 16.7 Catalogue identifier of previous version: ADDS_v4_0 Journal reference of previous version: Comput. Phys. Commun. 180 (2009) 1716. Does the new version supersede the previous version?: Yes Nature of problem: Ionization and X-ray production cross section calculations for ion-atom collisions. Solution method: Numerical integration of form factor using a logarithmic transform and Gaussian quadrature, plus exact integration limits. Reasons for new version: General need for higher precision in output format for projectile energies; some built-in binding energies needed correcting; some anomalous results occur due to faulty read-in data or calculated parameters becoming un-physical; erroneous calculations could result for the L and M shells when restricted K-shell options are inadvertently chosen; to achieve general compatibility with ISICSoo, a companion C++ version that is portable to Linux and MacOS platforms, has been submitted for publication in the CPC Program Library approximately at the same time as this present new standalone version of ISICS [1]. Summary of revisions: The format field for

  20. Isolation and Structural Characterization of a Mackay 55-Metal-Atom Two-Shell Icosahedron of Pseudo-Ih Symmetry, Pd55L12(μ3-CO)20 (L = PR3, R = Isopropyl): Comparative Analysis with Interior Two-Shell Icosahedral Geometries in Capped Three-Shell Pd145, Pt-Centered Four-Shell Pd-Pt M165, and Four-Shell Au133 Nanoclusters.

    Science.gov (United States)

    Erickson, Jeremiah D; Mednikov, Evgueni G; Ivanov, Sergei A; Dahl, Lawrence F

    2016-02-10

    We present the first successful isolation and crystallographic characterization of a Mackay 55-metal-atom two-shell icosahedron, Pd55L12(μ3-CO)20 (L = PPr(i)3) (1). Its two-shell icosahedron of pseudo-Ih symmetry (without isopropyl substituents) enables a structural/bonding comparison with interior 55-metal-atom two-shell icosahedral geometries observed within the multi-shell capped 145-metal-atom three-shell Pd145(CO)72(PEt3)30 and 165-metal-atom four-shell Pt-centered (μ12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x ≈ 7) nanoclusters, and within the recently reported four-shell Au133(SC6H4-p-Bu(t))52 nanocluster. DFT calculations carried out on a Pd55(CO)20(PH3)12 model analogue, with triisopropyl phosphine substituents replaced by H atoms, revealed a positive +0.84 e charge for the entire Pd55 core, with a highly positive second-shell Pd42 surface of +1.93 e.

  1. Measurements of K Shell Emission of Highly Charged Ions with the XRS at EBIT

    Science.gov (United States)

    Porter, F. Scott; Beiersdorfer, P.; Boyce, K.; Brown, G. V.; Chen, H.; Kahn, S.; Kelley, R.; Kilbourne, C. A.

    2004-01-01

    The XRS/EBIT is a 32 channel microcalorimeter spectrometer operating at the electron beam ion trap (EBIT) facility at Lawrence Livermore National Laboratory. The system contains a flight candidate detector array from the XRS instrument for the Astro-E2 mission. The detector array in the XRS/EBIT is functionally identical to the flight array integrated into the XRS instrument and benefits from the enormous amount of calibration data from the XRS program. Since the XRSEBIT was upgraded with the new detector array in October 2003, the system has been used for a number of experiments including a survey of the K shell emission from He-like and H-like O, Ne, Ar, Fe, Ni and Kr as well as for L shell emission to measure the 3C/3D line ratio in Ni. Here we present some basic operational parameters of the instrument as well as direct excitation and simulated maxwellian spectra of He-like and E-like Fe. We show that the XRS instrument can resolve the Lyal and Lya2 lines from each other as well as from the dielectronic recombination satellites in thermal H-like Fe. We also show exactly how well the XRS instrument on Astro-E2 will resolve the thermal He-like triplet in collisionally excited Fe. This work was funded under NASA's Research Opportunities in Space Science program.

  2. Metastable Innershell Molecular State (MIMS II: K-shell X-ray satellites in heavy ion impact on solids

    Directory of Open Access Journals (Sweden)

    Young K. Bae

    2014-01-01

    Full Text Available Metastable Innershell Molecular State (MIMS, an innershell-bound ultra-high-energy molecule, was previously proposed to explain a ∼40% efficiency of soft-X-ray generation in ∼0.05 keV/amu nanoparticle impact on solids. Here, the MIMS model has been extended and applied to interpreting the experimental K-shell X-ray satellite spectra for more than 40 years in keV-MeV/amu heavy-ion impact on solids. The binding energies of the K-shell MIMS of elements from Al to Ti were determined to be 80–200 eV. The successful extension of the model to the K-shell MIMS confirms that all elements in the periodic table and their combinations are subjected to the MIMS formation.

  3. Photoabsorption and desorption studies on thiophene-based polymers following sulphur K-shell excitation

    Energy Technology Data Exchange (ETDEWEB)

    Santa Rita, J.R.; Arantes, C.; Araujo, G. [Departamento de Fisico-Quimica, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, RJ (Brazil); Roman, L.S. [Departamento de Fisica, Universidade Federal do Parana, 81531-990 Curitiba, PR (Brazil); Micaroni, L. [Departamento de Quimica, Universidade Federal do Parana, 81531-990 Curitiba, PR (Brazil); Rocco, M.L.M., E-mail: luiza@iq.ufrj.br [Departamento de Fisico-Quimica, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, RJ (Brazil)

    2011-04-15

    Research highlights: {yields} Photon stimulated ion desorption (PSID) measurements at the S K-shell excitation energies were performed on three thiophene-based polymer films, following their NEXAFS spectra. {yields} For poly(thiophene) (PT) and poly(3-methylthiophene) (P3MT) it was found that the S 1s {yields} {pi}*, {sigma}* (S-C) excitation produces S{sup +} desorption efficiently, showing the importance of the resonant Auger process for breaking the C-S bond. {yields} In the case of poly(3-hexylthiophene) (P3HT) S{sup +} desorption seems to be suppressed due to the orientation of 3-hexyl side-chains on the surface. {yields} Desorption ion yield curves for molecular fragments reproduce the photoabsorption spectrum, indicating that the indirect process is here predominant. - Abstract: Photon stimulated ion desorption (PSID) and NEXAFS studies have been performed on thiophene-based polymers at the Brazilian Synchrotron Light Source following sulphur K-shell photoexcitation. For poly(thiophene) (PT) and poly(3-methylthiophene) (P3MT) it was found that the S 1s {yields} {pi}*, {sigma}{sup *} (S-C) excitation produces S{sup +} desorption efficiently. On the other hand, S{sup 2+} desorption is enhanced at higher energy excitations. These results are interpreted in terms of the Auger-stimulated ion desorption mechanism. For poly(3-hexylthiophene) (P3HT) S{sup +} desorption seems to be suppressed, which may be due to the hexyl side-chains. Desorption ion yield curves for molecular fragments reproduce the photoabsorption spectrum, being dominated by the indirect process.

  4. Clear evidence of charge conjugation and parity violation in K atoms from atomic permanent electric dipole moment experiments

    CERN Document Server

    You, Pei-Lin

    2008-01-01

    Quantum mechanics thinks that atoms do not have permanent electric dipole moment (EDM) because of their spherical symmetry. Therefore, there is no polar atom in nature except for polar molecules. The electric susceptibility Xe caused by the orientation of polar substances is inversely proportional to the absolute temperature T while the induced susceptibility of atoms is temperature independent. This difference in temperature dependence offers a means of separating the polar and non-polar substances experimentally. Using special capacitor our experiments discovered that the relationship between Xe of Potassium atom and T is just Xe=B/T, where the slope B is approximately 283(K) as polar molecules, but appears to be disordered using the traditional capacitor. Its capacitance C at different voltage V was measured. The C-V curve shows that the saturation polarization of K vapor has be observed when E more than 105V/m and nearly all K atoms (over 98.9 per cent) are lined up with the field! The ground state neutra...

  5. Incipient manifestation of the shell structure of atoms within the WDA model for the exchange and kinetic energy density functionals

    Science.gov (United States)

    Glossman, M. D.; Balbás, L. C.; Alonso, J. A.

    1995-07-01

    The radial electron density obtained for all the atoms of the main groups of the Periodic Table through the solution of the Euler equation associated with the nonlocal weighted density approximation (WDA) for the exchange and kinetic energy density functionals shows an incipient shell structure which is absent in other calculations using kinetic energy functionals based on the electronic density. The WDA radial density reveals two local maxima and the position of the first maximum correlates with the position of the maximum for the 1s orbital in the Hartree-Fock approximation. The cusp condition at the nucleus is fulfilled accurately. Also we study the density-based electron localization function (DELF) as a complementary procedure for the visualization of shells.

  6. K-shell decomposition reveals hierarchical cortical organization of the human brain

    Science.gov (United States)

    Lahav, Nir; Ksherim, Baruch; Ben-Simon, Eti; Maron-Katz, Adi; Cohen, Reuven; Havlin, Shlomo

    2016-08-01

    In recent years numerous attempts to understand the human brain were undertaken from a network point of view. A network framework takes into account the relationships between the different parts of the system and enables to examine how global and complex functions might emerge from network topology. Previous work revealed that the human brain features ‘small world’ characteristics and that cortical hubs tend to interconnect among themselves. However, in order to fully understand the topological structure of hubs, and how their profile reflect the brain’s global functional organization, one needs to go beyond the properties of a specific hub and examine the various structural layers that make up the network. To address this topic further, we applied an analysis known in statistical physics and network theory as k-shell decomposition analysis. The analysis was applied on a human cortical network, derived from MRI\\DSI data of six participants. Such analysis enables us to portray a detailed account of cortical connectivity focusing on different neighborhoods of inter-connected layers across the cortex. Our findings reveal that the human cortex is highly connected and efficient, and unlike the internet network contains no isolated nodes. The cortical network is comprised of a nucleus alongside shells of increasing connectivity that formed one connected giant component, revealing the human brain’s global functional organization. All these components were further categorized into three hierarchies in accordance with their connectivity profile, with each hierarchy reflecting different functional roles. Such a model may explain an efficient flow of information from the lowest hierarchy to the highest one, with each step enabling increased data integration. At the top, the highest hierarchy (the nucleus) serves as a global interconnected collective and demonstrates high correlation with consciousness related regions, suggesting that the nucleus might serve as a

  7. Local atomic structure of solid solutions with overlapping shells by EXAFS: The regularization method

    Energy Technology Data Exchange (ETDEWEB)

    Babanov, Yu.A., E-mail: babanov@imp.uran.ru [M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Ponomarev, D.A.; Ustinov, V.V. [M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Baranov, A.N. [M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Zubavichus, Ya.V. [Russian Research Centre “Kurchatov Institute”, 123182 Moscow (Russian Federation)

    2016-08-15

    Highlights: • A method for determining bond lengths from combined EXAFS spectra for solid oxide solutions is proposed. • We have demonstrated a high resolution in r-space of close spacing atoms in the Periodical Table. • These results were obtained without any assumptions concerning interatomic distances for multi-component systems. • Coordinates ions for the solid solution with rock salt structure are determined. - Abstract: The regularization method of solving ill-posed problem is used to determine five partial interatomic distances on the basis of combined two EXAFS spectra. Mathematical algorithm and experimental results of the EXAFS analysis for Ni{sub c}Zn{sub 1−c}O (c = 0.0, 0.3, 0.5, 0.7, 1.0) solid solutions with the rock salt (rs) crystal structure are discussed. Samples were synthesized from the binary oxide powders at pressure of 7.7 GPa and temperatures 1450–1650 K. The measurements were performed using synchrotron facilities (Russian Research Centre “Kurchatov Institute”, Moscow). The Ni and Zn K absorption spectra were recorded in transmission mode under room temperature. It is shown, the ideal rock salt lattice is distorted and long-range order exists only in the average (Vegard law). In order to determine coordinates ions for the solid solution with rock salt structure, we used the Pauling model. The simulation is performed for 343,000 cluster of oxide ions. The distribution functions for ions (Ni−O, Ni−Ni, Ni−Zn, Zn−Zn, Zn−O, O−O) depending on the distance are obtained. The width of the Gaussian distribution function is determined by the difference of the radii of the metal ions. The results are consistent with the data both X-ray diffraction and the EXAFS spectroscopy.

  8. Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser irradiated Cu foil targets

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, W; Akli, K; Clarke, R; Delettrez, J A; Freeman, R R; Glenzer, S; Green, J; Gregori, G; Heathcote, R; Izumi, N; King, J A; Koch, J A; Kuba, J; Lancaster, K; MacKinnon, A J; Key, M; Mileham, C; Myatt, J; Neely, D; Norreys, P A; Park, H; Pasely, J; Patel, P; Regan, S P; Sawada, H; Shepherd, R; Snavely, R; Stephens, R B; Stoeckl, C; Storm, M; Zhang, B; Sangster, T C

    2005-12-13

    A hot, T{sub e} {approx} 2- to 3-keV surface plasma was observed in the interaction of a 0.7-ps petawatt laser beam with solid copper-foil targets at intensities >10{sup 20} W/cm{sup 2}. Copper K-shell spectra were measured in the range of 8 to 9 keV using a single-photon-counting x-ray CCD camera. In addition to K{sub {alpha}} and K{sub {beta}} inner-shell lines, the emission contained the Cu He{sub {alpha}} and Ly{sub {alpha}} lines, allowing the temperature to be inferred. These lines have not been observed previously with ultrafast laser pulses. For intensities less than 3 x 10{sup 18} W/cm{sup 2}, only the K{sub {alpha}} and K{sub {beta}} inner-shell emissions are detected. Measurements of the absolute K{sub {alpha}} yield as a function of the laser intensity are in agreement with a model that includes refluxing and confinement of the suprathermal electrons in the target volume.

  9. Theory for the atomic shell structure of the cluster magnetic moment and magnetoresistance of a cluster ensemble

    Science.gov (United States)

    Jensen, P. J.; Bennemann, K. H.

    1995-12-01

    We present a simple theory for the cluster size dependence of the average cluster magnetic moment of transition metal clusters. Assuming a local environmental dependence of the atomic magnetic moments, the cluster magnetization exhibits a magnetic shell structure, reflecting the atomic structure of the cluster. Thus, the observed oscillations of the average cluster magnet moment may serve as a fingerprint of the cluster geometry. We also discuss the giant magnetoresistance (GMR) exhibited by an ensemble of magnetic clusters embedded in a metallic matrix. It is shown that the magnetic anisotropy affects strongly the magnetization of the cluster ensemble under certain conditions. Since the GMR depends on the cluster ensemble magnetization, it can be used to determine the cluster magnetic anisotropy energy.

  10. K, L, and M shell datasets for PIXE spectrum fitting and analysis

    Science.gov (United States)

    Cohen, David D.; Crawford, Jagoda; Siegele, Rainer

    2015-11-01

    Routine PIXE analysis programs, like GUPIX, GEOPIXE and PIXAN generally perform at least two key functions firstly, the fitting of K, L and M characteristic lines X-ray lines to a background, including unfolding of overlapping lines and secondly, the use of a fitted primary Kα, Lα or Mα line area to determine the elemental concentration in a given matrix. To achieve these two results to better than 3-5% the data sets for fluorescence yields, emission rates, Coster-Kronig transitions and ionisation cross sections should be determined to better than 3%. There are many different theoretical and experimental K, L and M datasets for these parameters. How they are applied and used in analysis programs can vary the results obtained for both fitting and concentration determinations. Here we discuss several commonly used datasets for fluorescence yields, emission rates, Coster-Kronig transitions and ionisation cross sections for K, L and M subshells and suggests an optimum set to obtain consistent results for PIXE analyses across a range of elements with atomic numbers from 5 ⩽ Z ⩽ 100.

  11. Kaonic atoms and in-medium K-N amplitudes II: Interplay between theory and phenomenology

    Science.gov (United States)

    Friedman, E.; Gal, A.

    2013-02-01

    A microscopic kaonic-atom optical potential VK-(1) is constructed, using the Ikeda-Hyodo-Weise NLO chiral K-N subthreshold scattering amplitudes constrained by the kaonic hydrogen SIDDHARTA measurement, and incorporating Pauli correlations within the Waas-Rho-Weise generalization of the Ericson-Ericson multiple-scattering approach. Good fits to kaonic atom data over the entire periodic table require additionally sizable K-NN-motivated absorptive and dispersive phenomenological terms, in agreement with our former analysis based on a post-SIDDHARTA in-medium chirally-inspired NLO separable model by Cieplý and Smejkal. Such terms are included by introducing a phenomenological potential VK-(2) and coupling it self-consistently to VK-(1). Properties of resulting kaonic atom potentials are discussed with special attention paid to the role of K--nuclear absorption and to the extraction of density-dependent amplitudes representing K- multi-nucleon processes.

  12. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.

    Science.gov (United States)

    Huang, Rao; Wen, Yu-Hua; Shao, Gui-Fang; Sun, Shi-Gang

    2016-06-22

    Bimetallic nanoparticles comprising noble metal and non-noble metal have attracted intense interest over the past few decades due to their low cost and significantly enhanced catalytic performances. In this article, we have explored the atomic structure and thermal stability of Pt-Fe alloy and core-shell nanoparticles by molecular dynamics simulations. In Fe-core/Pt-shell nanoparticles, Fe with three different structures, i.e., body-centered cubic (bcc), face-centered cubic (fcc), and amorphous phases, has been considered. Our results show that Pt-Fe alloy is the most stable configuration among the four types of bimetallic nanoparticles. It has been discovered that the amorphous Fe cannot stably exist in the core and preferentially transforms into the fcc phase. The phase transition from bcc to hexagonal close packed (hcp) has also been observed in bcc-Fe-core/Pt-shell nanoparticles. In contrast, Fe with the fcc structure is the most preferred as the core component. These findings are helpful for understanding the structure-property relationships of Pt-Fe bimetallic nanoparticles, and are also of significance to the synthesis and application of noble metal based nanoparticle catalysts.

  13. Inner- and outer-shell electron dynamics in proton collisions with sodium atoms

    NARCIS (Netherlands)

    Zapukhlyak, M.; Kirchner, T.; Ludde, H.J.; Knoop, S.; Morgenstern, R.W.H.; Hoekstra, R.A.

    2005-01-01

    p+Na collisions have been investigated theoretically and experimentally at impact energies in the keV regime. We present results for capture and ionization processes; and, in particular, analyse the role of initial inner-shell electrons, whose active participation is identified in the experiments th

  14. K, L, and M shell datasets for PIXE spectrum fitting and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David D., E-mail: dcz@ansto.gov.au; Crawford, Jagoda; Siegele, Rainer

    2015-11-15

    Highlights: • Differences between several datasets commonly used by PIXE codes for spectrum fitting and concentration estimates have been highlighted. • A preferred option dataset was selected which includes ionisation cross sections, fluorescence yield, Coster–Kronig probabilities and X-ray line emission rates for K, L and M subshells. • For PIXE codes differences of several tens of percent can be seen for selected elements for L and M lines depending on the data sets selected. - Abstract: Routine PIXE analysis programs, like GUPIX, GEOPIXE and PIXAN generally perform at least two key functions firstly, the fitting of K, L and M characteristic lines X-ray lines to a background, including unfolding of overlapping lines and secondly, the use of a fitted primary Kα, Lα or Mα line area to determine the elemental concentration in a given matrix. To achieve these two results to better than 3–5% the data sets for fluorescence yields, emission rates, Coster–Kronig transitions and ionisation cross sections should be determined to better than 3%. There are many different theoretical and experimental K, L and M datasets for these parameters. How they are applied and used in analysis programs can vary the results obtained for both fitting and concentration determinations. Here we discuss several commonly used datasets for fluorescence yields, emission rates, Coster–Kronig transitions and ionisation cross sections for K, L and M subshells and suggests an optimum set to obtain consistent results for PIXE analyses across a range of elements with atomic numbers from 5 ⩽ Z ⩽ 100.

  15. Ag K-shell ionization by electron impact: New cross-section measurements between 50 and 100 keV and review of previous experimental data

    Science.gov (United States)

    Vanin, V. R.; Manso Guevara, M. V.; Maidana, N. L.; Martins, M. N.; Fernández-Varea, J. M.

    2016-02-01

    We report the measurement of Ag K-shell ionization cross-section by electron impact in the range 50-100 keV and review the experimental data found in the literature. The sample consisted in a thin film of Ag evaporated on a thin C backing. The x-ray spectra generated by electron bombardment in the São Paulo Microtron were observed with a planar HPGe detector. The ratios between characteristic and bremsstrahlung x-ray yields were transformed to ionization cross sections with the help of theoretical atomic-field bremsstrahlung cross sections. The measured cross sections are compared with existing experimental values and calculations based on the semi-relativistic distorted-wave Born approximation. According to our experiment, the ratio of Ag Kβ to Kα x-ray intensities is 0.2018(24).

  16. $K$-series X-rays yield measurement of kaonic hydrogen atoms in gaseous target

    CERN Document Server

    Bazzi, M; Bellotti, G; Berucci, C; Bragadireanu, A M; Bosnar, D; Cargnelli, M; Curceanu, C; Butt, A D; d'Uffizi, A; Fiorini, C; Ghio, F; Guaraldo, C; Hayanao, R S; Iliescu, M; Ishiwatari, T; Iwasaki, M; Sandri, P Levi; Marton, J; Okada, S; Pietreanu, D; Piscicchia, K; Vidal, A Romero; Sbardella, E; Scordo, A; Shi, H; Sirghi, D L; Sirghi, F; Tatsuno, H; Doce, O Vazquez; Widmann, E; Zmeskal, J

    2016-01-01

    We measured the $K$-series X-rays of the $K^{-}p$ exotic atom in the SIDDHARTA experiment with a gaseous hydrogen target of 1.3 g/l, which is about 15 times the $\\rho_{\\rm STP}$ of hydrogen gas. At this density, the absolute yields of kaonic X-rays, when a negatively charged kaon stopped inside the target, were determined to be 0.012$^{+0.004}_{-0.003}$ for $K_{\\alpha}$ and 0.043$^{+0.012}_{-0.011}$ for all the $K$-series transitions $K_{tot}$. These results, together with the KEK E228 experiment results, confirm for the first time a target density dependence of the yield predicted by the cascade models, and provide valuable information to refine the parameters used in the cascade models for the kaonic atoms.

  17. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  18. Preliminary Measurement of the K-Shell Ionization Cross Sections of Ti by Positron Impact in the Low Energy Region

    Institute of Scientific and Technical Information of China (English)

    田丽霞; 刘慢天; 朱敬军; 安竹; 王宝义; 秦秀波

    2012-01-01

    Measurements were performed of K-shell ionization cross sections of Ti element by 10~30 keV positron impact using the thick-target method. The effects of multiple scattering of incident positron and from bremsstrahlung photons and annihilation photons with the thick-target method are discussed with the Monte Carlo code PENELOPE. Meanwhile, the Monte Carlo method is also applied to determine the detection efficiencies of X- and γ-ray detectors. Our experimental K-shell ionization cross sections for Ti element are compared with the distorted-wave Born approximation (DWBA) theoretical predictions, and it is found that the agreement of the experimental data and theoretical values is good and this indicates that the experimental method adopted in this study is applicable.

  19. Quantifying immediate price impact of trades based on the k-shell decomposition of stock trading networks

    Science.gov (United States)

    Xie, Wen-Jie; Li, Ming-Xia; Xu, Hai-Chuan; Chen, Wei; Zhou, Wei-Xing; Stanley, H. Eugene

    2016-10-01

    Traders in a stock market exchange stock shares and form a stock trading network. Trades at different positions of the stock trading network may contain different information. We construct stock trading networks based on the limit order book data and classify traders into k classes using the k-shell decomposition method. We investigate the influences of trading behaviors on the price impact by comparing a closed national market (A-shares) with an international market (B-shares), individuals and institutions, partially filled and filled trades, buyer-initiated and seller-initiated trades, and trades at different positions of a trading network. Institutional traders professionally use some trading strategies to reduce the price impact and individuals at the same positions in the trading network have a higher price impact than institutions. We also find that trades in the core have higher price impacts than those in the peripheral shell.

  20. Radiationless transitions to atomic M 1,2,3 shells - Results of relativistic theory

    Science.gov (United States)

    Chen, M. H.; Crasemann, B.; Mark, H.

    1983-01-01

    Radiationless transitions filling vacancies in atomic M1, M2, and M3 subshells have been calculated relativistically with Dirac-Hartree-Slater wave functions for ten elements with atomic numbers 67-95. Results are compared with those of nonrelativistic calculations and experiment. Relativistic effects are found to be significant. Limitations of an independent-particle model for the calculation of Coster-Kronig rates are noted.

  1. Laboratory Measurements of the K-shell transition energies in L-shell ions of Si and S

    CERN Document Server

    Hell, N; Wilms, J; Grinberg, V; Clementson, J; Liedahl, D; Porter, F S; Kelley, R L; Kilbourne, C A; Beiersdorfer, P

    2016-01-01

    We have measured the energies of the strongest 1s-2ell (ell=s,p) transitions in He- through Ne-like silicon and sulfur ions to an accuracy of better than 1eV using Lawrence Livermore National Laboratory's electron beam ion traps, EBIT-I and SuperEBIT, and the NASA/GSFC EBIT Calorimeter Spectrometer (ECS). We identify and measure the energies of 18 and 21 X-ray features from silicon and sulfur, respectively. The results are compared to new Flexible Atomic Code calculations and to semi-relativistic Hartree Fock calculations by Palmeri et al. (2008). These results will be especially useful for wind diagnostics in high mass X-ray binaries, such as Vela X-1 and Cygnus X-1, where high-resolution spectral measurements using Chandra's high energy transmission grating has made it possible to measure Doppler shifts of 100km/s. The accuracy of our measurements is consistent with that needed to analyze Chandra observations, exceeding Chandra's 100km/s limit. Hence, the results presented here not only provide benchmarks f...

  2. Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy.

    Science.gov (United States)

    Armini, Silvia; Vakarelski, Ivan U; Whelan, Caroline M; Maex, Karen; Higashitani, Ko

    2007-02-13

    Atomic force microscopy was employed to probe the mechanical properties of surface-charged polymethylmethacrylate (PMMA)-based terpolymer and composite terpolymer core-silica shell particles in air and water media. The composite particles were achieved with two different approaches: using a silane coupling agent (composite A) or attractive electrostatic interactions (composite B) between the core and the shell. Young's moduli (E) of 4.3+/-0.7, 11.1+/-1.7, and 8.4+/-1.7 GPa were measured in air for the PMMA-based terpolymer, composite A, and composite B, respectively. In water, E decreases to 1.6+/-0.2 GPa for the terpolymer; it shows a slight decrease to 8.0+/-1.2 GPa for composite A, while it decreases to 2.9+/-0.6 GPa for composite B. This trend is explained by considering a 50% swelling of the polymer in water confirmed by dynamic light scattering. Close agreement is found between the absolute values of elastic moduli determined by nanoindentation and known values for the corresponding bulk materials. The thickness of the silica coating affects the mechanical properties of composite A. In the case of composite B, because the silica shell consists of separate particles free to move in the longitudinal direction that do not individually deform when the entire composite deforms, the elastic properties of the composites are determined exclusively by the properties of the polymer core. These results provide a basis for tailoring the mechanical properties of polymer and composite particles in air and in solution, essential in the design of next-generation abrasive schemes for several technological applications.

  3. NARROW-DISPERSED CROSSLINKED CORE-SHELL POLYMER MICROSPHERES PREPARED BY SURFACE-INITIATED ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Yu-zeng Zhao; Xin-lin Yang; Feng Bai; Wen-qiang Huang

    2005-01-01

    Grafting of polystyrene with narrowly dispersed polymer microspheres through surface-initiated atom transfer radical polymerization (ATRP) was investigated. Polydivinylbenzene (PDVB) microspheres were prepared by dispersion polymerization with poly(N-vinyl pyrrolidone) (PVP) as stabilizer. The surfaces of PDVB microspheres were chloromethylated by chloromethyl methyl ether in the presence of zinc chloride as catalyst to form chloromethylbenzene initiating core sites for subsequent ATRP grafting of styrene using CuC1/bpy as catalytic system. Polystyrene was found to be grafted not only from the particle surfaces but also from within a thin shell layer, resulting in the formation of particles size increased from 2.38-2.58 μm, which can further grow to 2.93 μm during secondary grafting polymerization of styrene. This demonstrates that grafting polymerization proceeds through a typical ATRP procedure with living nature. All of the prepared microspheres have narrow particle size distribution with coefficient of variation around 10%.

  4. Charge-transfer energy in closed-shell ion-atom interactions. [for H and Li ions in He

    Science.gov (United States)

    Alvarez-Rizzatti, M.; Mason, E. A.

    1975-01-01

    The importance of charge-transfer energy in the interactions between closed-shell ions and atoms is investigated. Ab initio calculations on H(plus)-He and Li(plus)-He are used as a guide for the construction of approximate methods for the estimation of the charge-transfer energy for more complicated systems. For many alkali ion-rate gas systems the charge-transfer energy is comparable to the induction energy in the region of the potential minimum, although for doubly charged alkaline-earth ions in rare gases the induction energy always dominates. Surprisingly, an empirical combination of repulsion energy plus asymptotic induction energy plus asymptotic dispersion energy seems to give a fair representation of the total interaction, especially if the repulsion energy is parameterized, despite the omission of any explicit charge-transfer contribution. More refined interaction models should consider the charge-transfer energy contribution.

  5. Evaluation of Orbital-and Ground State Energies of Some Open-and Closed-Shell Atoms over Integer and Noninteger Slater Type Orbitals

    Institute of Scientific and Technical Information of China (English)

    YAKAR,Yusuf

    2007-01-01

    Ab initio calculations of the orbital and the ground state energies of some open- and closed-shell atoms over Slater type orbitals with quantum numbers integer and Slater type orbitals with quantum numbers noninteger have been performed. In order to increase the efficiency of these calculations the atomic two-electron integrals were expressed in terms of incomplete beta function. Results were observed to be in good agreement with the literature.

  6. Electronic anisotropy between open shell atoms in first and second order perturbation theory

    NARCIS (Netherlands)

    Groenenboom, G.C.; Chu, X.; Krems, R.V.

    2007-01-01

    The interaction between two atoms in states with nonzero electronic orbital angular momenta is anisotropic and can be represented by a spherical tensor expansion. The authors derive expressions for the first order (electrostatic) and second order (dispersion and induction) anisotropic interaction co

  7. M-shell resolved high-resolution X-ray spectroscopic study of transient matter evolution driven by hot electrons in kJ-laser produced plasmas

    Science.gov (United States)

    Condamine, F. P.; Šmíd, M.; Renner, O.; Dozières, M.; Thais, F.; Angelo, P.; Rosmej, F. B.

    2017-03-01

    Hot electrons represent a key subject for high intensity laser produced plasmas and atomic physics. Simulations of the radiative properties indicate a high sensitivity to hot electrons, that in turn provides the possibility for their detailed characterization by high-resolution spectroscopic methods. Of particular interest is X-ray spectroscopy due to reduced photo-absorption in dense matter and their efficient generation by hot electrons (inner-shell ionization/excitation). Here, we report on an experimental campaign conducted at the ns, kJ laser facility PALS at Prague in Czech Republic. Thin copper foils have been irradiated with 1ω pulses. Two spherically bent quartz Bragg crystal spectrometers with high spectral (λ/Δλ > 5000) and spatial resolutions (Δx = 30µm) have been set up simultaneously to achieve a high level of confidence for the complex Kα emission group. In particular, this group, which shows a strong overlap between lines, can be resolved in several substructures. Furthermore, an emission on the red wing of the Kα2 transition (λ = 1.5444A) could be identified with Hartree-Fock atomic structure calculations. We discuss possible implications for the analysis of non-equilibrium phenomena and present first simulations.

  8. Isolation of atomically precise mixed ligand shell PdAu24 clusters

    Science.gov (United States)

    Sels, Annelies; Barrabés, Noelia; Knoppe, Stefan; Bürgi, Thomas

    2016-05-01

    Exposure of PdAu24(2-PET)18 (2-PET: 2-phenylethylthiolate) to BINAS (1,1-binaphthyl-2,2-dithiol) leads to species of composition PdAu24(2-PET)18-2x(BINAS)x due to ligand exchange reactions. The BINAS adsorbs in a specific mode that bridges the apex and one core site of two adjacent S(R)-Au-S(R)-Au-S(R) units. Species with different compositions of the ligand shell can be separated by HPLC. Furthermore, site isomers can be separated. For the cluster with exactly one BINAS in its ligand shell only one isomer is expected due to the symmetry of the cluster, which is confirmed by High-Performance Liquid Chromatography (HPLC). Addition of a second BINAS to the ligand shell leads to several isomers. In total six distinguishable isomers are possible for PdAu24(2-PET)14(BINAS)2 including two pairs of enantiomers concerning the adsorption pattern. At least four distinctive isomers are separated by HPLC. Calculations indicate that one of the six possibilities is energetically disfavoured. Interestingly, diastereomers, which have an enantiomeric relationship concerning the adsorption pattern of chiral BINAS, have significantly different stabilities. The relative intensity of the observed peaks in the HPLC does not reflect the statistical weight of the different isomers. This shows, as supported by the calculations, that the first adsorbed BINAS molecule influences the adsorption of the second incoming BINAS ligand. In addition, experiments with the corresponding Pt doped gold cluster reveal qualitatively the same behaviour, however with slightly different relative abundances of the corresponding isomers. This finding points towards the influence of electronic effects on the isomer distribution. Even for clusters containing more than two BINAS ligands a limited number of isomers were found, which is in contrast to the corresponding situation for monothiols, where the number of possible isomers is much larger.Exposure of PdAu24(2-PET)18 (2-PET: 2-phenylethylthiolate) to BINAS (1

  9. Antiproton and proton collisions with the alkali-metal atoms Li, Na, and K

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2008-01-01

    Single-electron ionization and excitation cross sections as well as cross sections for excitation into the first excited p state of the alkali-metal atoms Li(2s), Na(3s), and K(4s) colliding with antiprotons and protons were calculated using a time-dependent channel-coupling approach....... For antiprotons an impact-energy range from 0.25 to 1000 keV and for protons from 2 to 1000 keV was considered. The target atoms are treated as effective one-electron systems using a model potential. The results are compared with theoretical and experimental data from literature and calculated cross sections...

  10. Quantum Degenerate Fermi-Bose Mixtures of 40K and 87Rb Atoms in a Quadrupole-Ioffe Configuration Trap

    Institute of Scientific and Technical Information of China (English)

    XIONG De-Zhi; CHEN Hai-Xia; WANG Peng-Jun; YU Xu-Dong; GAO Feng; ZHANG Jing

    2008-01-01

    @@ We report on the attainment of quantum degeneracy of 40K by means of efficient thermal collisions with the evaporatively cooled 87Rb atoms.In a quadrupole-Ioffe configuration trap,potassium atoms are cooled to 0.5 times the Fermi temperature.We obtain up to 7.59 × 105 degenerate fermions 40K.

  11. Atomic resolution structure of serine protease proteinase K at ambient temperature

    Science.gov (United States)

    Masuda, Tetsuya; Suzuki, Mamoru; Inoue, Shigeyuki; Song, Changyong; Nakane, Takanori; Nango, Eriko; Tanaka, Rie; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Mikami, Bunzo; Nureki, Osamu; Numata, Keiji; Iwata, So; Sugahara, Michihiro

    2017-01-01

    Atomic resolution structures (beyond 1.20 Å) at ambient temperature, which is usually hampered by the radiation damage in synchrotron X-ray crystallography (SRX), will add to our understanding of the structure-function relationships of enzymes. Serial femtosecond crystallography (SFX) has attracted surging interest by providing a route to bypass such challenges. Yet the progress on atomic resolution analysis with SFX has been rather slow. In this report, we describe the 1.20 Å resolution structure of proteinase K using 13 keV photon energy. Hydrogen atoms, water molecules, and a number of alternative side-chain conformations have been resolved. The increase in the value of B-factor in SFX suggests that the residues and water molecules adjacent to active sites were flexible and exhibited dynamic motions at specific substrate-recognition sites. PMID:28361898

  12. Inner-shell magnetic dipole transition in Tm atom as a candidate for optical lattice clocks

    CERN Document Server

    Sukachev, D; Tolstikhina, I; Kalganova, E; Vishnyakova, G; Khabarova, K; Tregubov, D; Golovizin, A; Sorokin, V; Kolachevsky, N

    2016-01-01

    We consider a narrow magneto-dipole transition in the $^{169}$Tm atom at the wavelength of $1.14\\,\\mu$m as a candidate for a 2D optical lattice clock. Calculating dynamic polarizabilities of the two clock levels $[\\text{Xe}]4f^{13}6s^2 (J=7/2)$ and $[\\text{Xe}]4f^{13}6s^2 (J=5/2)$ in the spectral range from $250\\,$nm to $1200\\,$nm, we suggest the "magic" wavelength for the optical lattice at $807\\,$nm. Frequency shifts due to black-body radiation (BBR), the van der Waals interaction, the magnetic dipole-dipole interaction and other effects which can perturb the transition frequency are calculated. The transition at $1.14\\,\\mu$m demonstrates low sensitivity to the BBR shift corresponding to $8\\times10^{-17}$ in fractional units at room temperature which makes it an interesting candidate for high-performance optical clocks. The total estimated frequency uncertainty is less than $5 \\times 10^{-18}$ in fractional units. By direct excitation of the $1.14\\,\\mu$m transition in Tm atoms loaded into an optical dipole ...

  13. Isotopic shift of atom-dimer Efimov resonances in K-Rb mixtures: Critical effect of multichannel Feshbach physics

    CERN Document Server

    Kato, K; Kobayashi, J; Julienne, P S; Inouye, S

    2016-01-01

    The multichannel Efimov physics is investigated in ultracold heteronuclear admixtures of K and Rb atoms. We observe a shift in the scattering length where the first atom-dimer resonance appears in the $^{41}$K-$^{87}$Rb system relative to the position of the previously observed atom-dimer resonance in the $^{40}$K-$^{87}$Rb system. This shift is well explained by our calculations with a three-body model including the van der Waals interactions, and, more importantly, the multichannel spinor physics. With only minor difference in the atomic masses of the admixtures, the shift in the atom-dimer resonance positions can be cleanly ascribed to the isolated and overlapping Feshbach resonances in the $^{40}$K-$^{87}$Rb and $^{41}$K-$^{87}$Rb systems, respectively. Our study demonstrates the role of the multichannel Feshbach physics in determining Efimov resonances in heteronuclear three-body systems.

  14. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from {sub 55}Cs to {sub 80}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Tatewaki, Hiroshi, E-mail: htatewak@nsc.nagoya-cu.ac.jp [Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501 (Japan); Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota, Aichi 470-0393 (Japan); Hatano, Yasuyo [School of Information Science and Technology, Chukyo University, Toyota, Aichi 470-0393 (Japan); Noro, Takeshi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Yamamoto, Shigeyoshi [School of International Liberal Studies, Chukyo University, Nagoya, Aichi 466-8666 (Japan)

    2015-06-15

    We consider, for atoms from {sub 55}Cs to {sub 80}Hg, the effective atomic radius (r{sub ear}), which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He{sub 2}. The values of r{sub ear} are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of r{sub ear} decreases from {sub 55}Cs to {sub 56}Ba and undergoes increases and decreases with rising nuclear charge from {sub 57}La to {sub 70}Y b. In fact r{sub ear} is understood as comprising two interlaced sequences; one consists of {sub 57}La, {sub 58}Ce, and {sub 64}Gd, which have electronic configuration (4f{sup n−1})(5d{sup 1})(6s{sup 2}), and the remaining atoms have configuration (4f{sup n})(6s{sup 2}). The sphere defined by r{sub ear} contains 85%–90% of the 6s electrons. From {sub 71}Lu to {sub 80}Hg the radius r{sub ear} also involves two sequences, corresponding to the two configurations 5d{sup n+1}6s{sup 1} and 5d{sup n}6s{sup 2}. The radius r{sub ear} according to the present methodology is considerably larger than r{sub vdW} obtained by other investigators, some of who have found values of r{sub vdW} close to .

  15. Metallicity measurements using atomic lines in M and K dwarf stars

    CERN Document Server

    Woolf, V M; Woolf, Vincent M.; Wallerstein, George

    2004-01-01

    We report the first survey of chemical abundances in M and K dwarf stars using atomic absorption lines in high resolution spectra. We have measured Fe and Ti abundances in 35 M and K dwarf stars using equivalent widths measured from (lambda / Delta lambda) = 33,000 spectra. Our analysis takes advantage of recent improvements in model atmospheres of low-temperature dwarf stars. The stars have temperatures between 3300 and 4700 K, with most cooler than 4100 K. They cover an iron abundance range of -2.44 < [Fe/H] < +0.16. Our measurements show [Ti/Fe] decreasing with increasing [Fe/H], a trend similar to that measured for warmer stars where abundance analysis techniques have been tested more thoroughly. This study is a step toward the observational calibration of procedures to estimate the metallicity of low-mass dwarf stars using photometric and low-resolution spectral indices.

  16. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms

    OpenAIRE

    Khabibullaev, P. K.

    2000-01-01

    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  17. Implementation and Application of the Relativistic Equation of Motion Coupled-cluster Method for the Excited States of Closed-shell Atomic Systems

    CERN Document Server

    Nandy, D K; Sahoo, B K

    2014-01-01

    We report the implementation of equation-of-motion coupled-cluster (EOMCC) method in the four-component relativistic framework with the spherical atomic potential to generate the excited states from a closed-shell atomic configuration. This theoretical development will be very useful to carry out high precision calculations of varieties of atomic properties in many atomic systems. We employ this method to calculate excitation energies of many low-lying states in a few Ne-like highly charged ions, such as Cr XV, Fe XVII, Co XVIII and Ni XIX ions, and compare them against their corresponding experimental values to demonstrate the accomplishment of the EOMCC implementation. The considered ions are apt to substantiate accurate inclusion of the relativistic effects in the evaluation of the atomic properties and are also interesting for the astrophysical studies. Investigation of the temporal variation of the fine structure constant (\\alpha) from the astrophysical observations is one of the modern research problems...

  18. The thermal Casimir-Polder interaction of an atom with spherical plasma shell

    CERN Document Server

    Khusnutdinov, Nail R

    2012-01-01

    The van der Waals and Casimir-Polder interaction energy of an atom with an infinitely thin sphere with finite conductivity is investigated in the framework of the hydrodynamic approach at finite temperature. The Lifshits approach is used to find the free energy. We find the close expression for the free energy and make the analysis of it for i) high and low temperatures, ii) large radii of sphere and ii) short distance from sphere. At low temperatures the thermal part of the free energy tends to zero as forth power of the temperature while for high temperatures it is proportional to the first degree of the temperature. We show that the entropy of this system is positive for small radii of sphere and it becomes negative at low temperatures and for large radii of the sphere.

  19. Coordination-resolved local bond strain and 3p energy entrapment of K atomic clusters and K(1 1 0) skin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ting; Bo, Maolin; Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Chen, Hefeng [United Superconductive Institution, Shanghai Jiaotong University, Shanghai 200240 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-09-15

    Graphical abstract: - Highlights: • Coordination environment resolves electron binding-energy shift of K{sub 44}, K{sub 46}, K{sub 55} clusters. • Predict the effective coordination number of K nanoclusters when we get the atomic number N. • Atomic under coordination shortens the local bonds and entrapment. • XPS derives core level of an isolated atom and its bulk shift. - Abstract: We have examined the atomic coordination effect on the local bond strain and the 3p core-level shift of K(1 1 0) skin and nanoclusters using a combination of the bond order–length–strength correlation notion, tight-binding approach, density functional theory calculations, and photoelectron spectroscopy measurements. It turns out that: (i) the 3p core-level shifts from 15.595 ± 0.003 eV for an isolated K atom by 2.758 eV to the bulk value of 18.353 eV; (ii) the effective atomic coordination number reduces from the bulk value of 12 to 3.93 for the first layer and to 5.81 for the second layer of K(1 1 0) skin associated with the local lattice strain of 12.76%, a binding energy density 72.67%, and atomic cohesive energy −62.46% for the skin; and (iii) K cluster size reduction lowers the effective atomic coordination number and enhances further the skin electronic attribution. Results have revealed that the 3p core-level shifts of K(1 1 0) and nanoclusters originate from perturbation of the Hamiltonian by under-coordination induced charge densification and quantum entrapment.

  20. Prominent role of multi-electron processes in K-shell double and triple photodetachment of oxygen anions

    CERN Document Server

    Schippers, S; Abrok, L; Bari, S; Buhr, T; Martins, M; Ricz, S; Viefhaus, J; Fritzsche, S; Müller, A

    2016-01-01

    The photon-ion merged-beams technique was used at a synchrotron light source for measuring absolute cross sections of double and triple photodetachment of O$^{-}$ ions. The experimental photon energy range of 524-543 eV comprised the threshold for K-shell ionization. Using resolving powers of up to 13,000, the position, strength and width of the below-threshold 1s 2s2 2p6 2S resonance as well as the positions of the 1s 2s2 2p5 3P and 1s 2s2 2p5 1P thresholds for K-shell ionization were determined with high precision. In addition, systematically enlarged multi-configuration Dirac-Fock calculations have been performed for the resonant detachment cross sections. Results from these ab-initio computations agree very well with the measurements for the widths and branching fractions for double and triple detachment, if double shake-up (and -down) of the valence electrons and the rearrangement of the electron density is taken into account. For the absolute cross sections, however, a previously found discrepancy betwe...

  1. First-Principles Calculation of Principal Hugoniot and K-Shell X-ray Absorption Spectra for Warm Dense KCl

    CERN Document Server

    Zhao, Shijun; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu

    2015-01-01

    Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. Pressure ionization and thermal smearing are shown as the major factors to prevent the deviation of pressure from global accumulation along the Hugoniot. In addition, cancellation between electronic kinetic pressure and virial pressure further reduces the deviation. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the $3p$ electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.

  2. Demonstration of a 13-keV Kr K-shell x-ray source at the National Ignition Facility.

    Science.gov (United States)

    Fournier, K B; May, M J; Colvin, J D; Barrios, M A; Patterson, J R; Regan, S P

    2013-09-01

    We report 3% conversion efficiency of laser energy into Kr K-shell (≈13 keV) radiation, consistent with theoretical predictions. This is ≈10× greater than previous work. The emission was produced from a 4.1-mm-diameter, 4-mm-tall gas pipe target filled with 1.2 or 1.5 atm of Kr gas. 160 of the National Ignition Facility laser beams deposited ≈700 kJ of 3ω light into the target in an ≈140 TW, 5.0-ns-duration square pulse. The Dante diagnostics measured ≈5 TW into 4π solid angle of ≥12 keV x rays for ≈4 ns, which includes both continuum emission and flux in the Kr He_{α} line at 13 keV.

  3. Atom-photon entanglement in the system with competing k-photon and l-photon transitions

    Institute of Scientific and Technical Information of China (English)

    Wu Qin; Fang Mao-Fa; Hu Yao-Hua

    2007-01-01

    We have investigated the evolution of the atomic quantum entropy and the entanglement of atom-photon in the system with competing k-photon and l-photon transitions by means of fully quantum theory, and examined the effects of competing photon numbers (k and l), the relative coupling strength between the atom and the two-mode field(λ/g),and the initial photon number of the field on the atomic quantum entropy and the entanglement of atom-photon.The results show that the multiphoton competing transitions or the large relative coupling strength can lead to the strong entanglement between atoms and photons. The maximal atom-photon entanglement can be prepared via the appropriate selection of system parameters and interaction time.

  4. Excitation and decay dynamics of ls2s inner-shell double-vacancy states of neon atoms

    Institute of Scientific and Technical Information of China (English)

    Ding Xiao-Bin; Dong Chen-Zhong; Fumihiro Koike; Takako Kato; Stephan Fritzsche

    2008-01-01

    The photo-excitation and Auger decay processes of inner-shell double vacancy states 1s2s2p6(1,3S)3s3p of neutral neon atoms have been studied theoretically.Multi-configuration Dirac-Fock (MCDF) calculations have been carried out,with electron correlation effects taken into consideration.The relaxation of core and excited orbitals and configuration interaction are found to be crucial to creating the double vacancy states by single photo-absorption.The predominant decay paths for the double vacancy states turn out to be of the LLM Auger decay to is 2s22p53s(3p),KLL Auger decay to 1s22s2p43s3p,and KLM Auger decay to 1s22pS3s(3p).They lead to further Auger decay,creating the neon ions of multiple charge states.For both double and single vacancy states the spectator type of Auger process is dominated in all the Auger decay processes.Theoretical Auger electron spectra are presented for further investigations,experimental and theoretical.

  5. Photoionization of Ne Atoms and Ne+ Ions Near the K Edge: Precision Spectroscopy and Absolute Cross-sections

    Science.gov (United States)

    Müller, Alfred; Bernhardt, Dietrich; Borovik, Alexander, Jr.; Buhr, Ticia; Hellhund, Jonas; Holste, Kristof; Kilcoyne, A. L. David; Klumpp, Stephan; Martins, Michael; Ricz, Sandor; Seltmann, Jörn; Viefhaus, Jens; Schippers, Stefan

    2017-02-01

    Single, double, and triple photoionization of Ne+ ions by single photons have been investigated at the synchrotron radiation source PETRA III in Hamburg, Germany. Absolute cross-sections were measured by employing the photon–ion merged-beams technique. Photon energies were between about 840 and 930 eV, covering the range from the lowest-energy resonances associated with the excitation of one single K-shell electron up to double excitations involving one K- and one L-shell electron, well beyond the K-shell ionization threshold. Also, photoionization of neutral Ne was investigated just below the K edge. The chosen photon energy bandwidths were between 32 and 500 meV, facilitating the determination of natural line widths. The uncertainty of the energy scale is estimated to be 0.2 eV. For comparison with existing theoretical calculations, astrophysically relevant photoabsorption cross-sections were inferred by summing the measured partial ionization channels. Discussion of the observed resonances in the different final ionization channels reveals the presence of complex Auger-decay mechanisms. The ejection of three electrons from the lowest K-shell-excited Ne+(1s2{s}22{p}6{}2{{{S}}}1/2) level, for example, requires cooperative interaction of at least four electrons.

  6. K--nucleus relativistic mean field potentials consistent with kaonic atoms

    Science.gov (United States)

    Friedman, E.; Gal, A.; Mareš, J.; Cieplý, A.

    1999-08-01

    K- atomic data are used to test several models of the K- nucleus interaction. The t(ρ)ρ optical potential, due to coupled channel models incorporating the Λ(1405) dynamics, fails to reproduce these data. A standard relativistic mean field (RMF) potential, disregarding the Λ(1405) dynamics at low densities, also fails. The only successful model is a hybrid of a theoretically motivated RMF approach in the nuclear interior and a completely phenomenological density dependent potential, which respects the low density theorem in the nuclear surface region. This best-fit K- optical potential is found to be strongly attractive, with a depth of 180+/-20 MeV at the nuclear interior, in agreement with previous phenomenological analyses.

  7. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV

    Science.gov (United States)

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max.; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-01

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed Cc/Cs corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  8. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.

    Science.gov (United States)

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-12

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  9. RCCPAC: A parallel relativistic coupled-cluster program for closed-shell and one-valence atoms and ions in FORTRAN

    Science.gov (United States)

    Mani, B. K.; Chattopadhyay, S.; Angom, D.

    2017-04-01

    We report the development of a parallel FORTRAN code, RCCPAC, to solve the relativistic coupled-cluster equations for closed-shell and one-valence atoms and ions. The parallelization is implemented through the use of message passing interface, which is suitable for distributed memory computers. The coupled-cluster equations are defined in terms of the reduced matrix elements, and solved iteratively using Jacobi method. The ground and excited states of coupled-cluster wave functions obtained from the code could be used to compute different properties of closed-shell and one-valence atom or ion. As an example we compute the ground state correlation energy, attachment energies, E1 reduced matrix elements and hyperfine structure constants.

  10. Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization.

    Science.gov (United States)

    Ito, Yosuke; Sato, Daichi; Kamada, Keigo; Kobayashi, Tetsuo

    2016-07-11

    An optically pumped K-Rb hybrid atomic magnetometer can be a useful tool for biomagnetic measurements due to the high spatial homogeneity of its sensor property inside a cell. However, because the property varies depending on the densities of potassium and rubidium atoms, optimization of the densities is essential. In this study, by using the Bloch equations of K and Rb and considering the spatial distribution of the spin polarization, we confirmed that the calculation results of spin polarization behavior are in good agreement with the experimental data. Using our model, we calculated the spatial distribution of the spin polarization and found that the optimal density of K atoms is 3 × 1019 m-3 and the optimal density ratio is nK/nRb ~ 400 to maximize the output signal and enhance spatial homogeneity of the sensor property.

  11. The estimation of production rates of {\\pi }^{+}{K}^{-}, {\\pi }^{-}{K}^{+} and {\\pi }^{+}{\\pi }^{-} atoms in proton-nucleus interactions at 450 GeV c-1

    Science.gov (United States)

    Gorchakov, O. E.; Nemenov, L. L.

    2016-09-01

    Short-lived (τ ˜ 3× {10}-15 s) {π }+{K}-, {K}+{π }- and {π }+{π }- atoms as well as long-lived (τ ≥slant 1× {10}-11 s) {π }+{π }- atoms produced in proton-nucleus interactions at 24 GeV c-1 are observed and studied in the DIRAC experiment at the CERN Proton Synchroton. The purpose of this paper is to show that the yields of the short-lived {π }+{K}-, {K}+{π }- and {π }+{π }- atoms in proton-nucleus interactions at 450 GeV c-1 and {θ }{{lab}}=4^\\circ are estimated to be, respectively 67 ± 13, 31 ± 6 and 15 ± 2 times higher. This may allow a significant improvement of the precision of their lifetime measurement and π π and π K scattering length combinations | {a}0-{a}2| and | {a}1/2-{a}3/2| . The yields of the long-lived {π }+{K}-, {K}+{π }- and {π }+{π }- atoms at 450 GeV c-1 are estimated to be 265 ± 53, 120 ± 24 and 60 ± 9 times higher per time unit than at 24 GeV c-1. This may allow the resonance method to be used for measuring the Lamb shift in the π π atom and a new π π scattering length combination 2{a}0+{a}2 to be obtained.

  12. A probable vacuum state containing a large number of hydrogen atom of excited state or ground state K, Rb or Cs atom

    CERN Document Server

    You, Pei-Lin

    2008-01-01

    The linear Stark effect shows that the first excited state of hydrogen atom has large permanent electric dipole moment (EDM), d(H)=3eao (ao is Bohr radius). Using special capacitors our experiments discovered that the ground state K, Rb or Cs atom is polar atom with a large EDM of the order of eao as hydrogen atom of excited state. Their capacitance(C) at different voltage (V) was measured. The C-V curve shows that the saturation polarization of K, Rb or Cs vapor has be observed when the field E more than ten to the fifth power V/m. When the saturation polarization appeared, nearly all K, Rb or Cs atoms(more than 98 percent) turned toward the direction of the field, and C is approximately equal to Co (Co is vacuum capacitance) or their dielectric constant is nearly the same as vacuum! K, Rb or Cs vapor just exist in the lowest energy state, so we see the vacuum state containing a large number of atoms! Due to the saturation polarization of hydrogen vapor of excited state is easily appears, we conjecture that ...

  13. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  14. Suzaku Discovery of Fe K-Shell Line from the O-Rich SNR G292.0+1.8

    CERN Document Server

    Kamitsukasa, Fumiyoshi; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Nakajima, Hiroshi; Takahashi, Hiroaki; Ueda, Shutaro; Mori, Koji; Katsuda, Satoru; Uchida, Hiroyuki

    2014-01-01

    We report the Suzaku/XIS results of the Galactic oxygen-rich supernova remnant (SNR), G292.0+1.8, a remnant of a core-collapse supernova. The X-ray spectrum of G292.0+1.8 consists of two type plasmas, one is in collisional ionization equilibrium (CIE) and the other is in non-equilibrium ionization (NEI). The CIE plasma has nearly solar abundances, and hence would be originated from the circumstellar and interstellar mediums. The NEI plasma has super-solar abundances, and the abundance pattern indicates that the plasma originates from the supernova ejecta with a main sequence of 30-35 Msolar. Iron K-shell line at energy of 6.6 keV is detected for the first time in the NEI plasma.

  15. Kinetics and mechanism of the gas-phase reaction of Cl atoms and OH radicals with fluorobenzene at 296 K

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Nielsen, Ole John; Hurley, MD;

    2002-01-01

    constant for the reaction of C6H5F with Cl atoms. The equilibrium between Cl atoms, C6H5F, and the C6H5F-Cl adduct is established rapidly and has an equilibrium constant estimated to be K-5b=[C6H5F]/[Cl]/[C6H5F][Cl] = (3.2 +/- 2.4) x 10(-1)8 cm(3) molecule(-1). An upper limit of k(9)

  16. Interaction of antiprotons with Rb atoms and a comparison of antiproton stopping powers of the atoms H, Li, Na, K, and Rb

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Fischer, Nicolas; Saenz, Alejandro

    2009-01-01

    Ionization and excitation cross sections as well as electron-energy spectra and stopping powers of the alkali metal atoms Li, Na, K, and Rb colliding with antiprotons were calculated using a time-dependent channel-coupling approach. An impact-energy range from 0.25 to 4000 keV was considered....... The target atoms are treated as effective one-electron systems using a model potential. The results are compared with calculated cross sections for antiproton-hydrogen atom collisions....

  17. Dirac-Fock calculations of K -, L -, and M -shell fluorescence and Coster-Kronig yields for Ne, Ar, Kr, Xe, Rn, and Uuo

    Science.gov (United States)

    Sampaio, J. M.; Madeira, T. I.; Guerra, M.; Parente, F.; Santos, J. P.; Indelicato, P.; Marques, J. P.

    2015-05-01

    In this work, we calculated the fluorescence and Coster-Kronig yields for the K shell and the L and M subshells of Ne, Ar, Kr, Xe, Rn, and Uuo (Z =118 ), using a Dirac-Fock model which provides a better description of the electron-electron interaction than previous approaches, and is suitable to handle superheavy elements. The results are compared with available data from other authors. In what concerns Ne, Ar, Kr, Xe, and Rn K shells, the obtained results are in very good agreement with the adopted values of Krause [25] and with experiment when available. For the L subshells, our results are in line with existing ones. For the M subshells and for all shells of Uuo there are no previous experimental and theoretical results to compare to our calculations.

  18. Studies of K-shell x-ray energy shifts induced by MeV/u heavy ions

    Institute of Scientific and Technical Information of China (English)

    Song Zhang-Yong; Yang Zhi-Hu; Shao Jian-Xiong; Cui Ying; Zhang Hong-Qiang; Ruan Fang-Fang; Du Juan; Gao Zhi-Min; Yu De-Yang; Chen Xi-Meng; Cai Xiao-Hong

    2009-01-01

    This paper reports that the K x-ray spectra of the thin target 47Ag,48Cd,49In and 50Sn were measured by an HPGe semi-conductor detector in collisions with 84.5 MeV 6C4+ ions.Our experiment revealed the Kα x-ray energy shifts were not obvious and the Kβ1 x-ray energy shifts were about 90~110 eV.The simple model of Burch et al has been previously used to calculate the K x-ray energy shifts due to an additional vacancy in 2p orbit.The present work extends the model of Butch to calculate the x-ray energy shifts of multiple ionized atoms induced by heavy ions with kinetic energy of MeV/u.In addition to our experimental results,many other experimental results are compared with the calculated values by using the model.

  19. Space-time-wave number-frequency Z(x, t, k, f) analysis of SAW generation on fluid filled cylindrical shells.

    Science.gov (United States)

    Martinez, Loïc; Morvan, Bruno; Izbicki, Jean Louis

    2004-04-01

    A new 4D space-time-wave number-frequency representation Z(x,t,k,f) is introduced. The Z(x,t,k,f) representation is used for processing 2D space-time signal collection issued from wave propagation along a 1D medium. This representation is an extension along the time dimension of the space-wave number-frequency representation. The Z(x,t,k,f) representation is obtained by short time-space 2D Fourier transforming the space-time collection. The Z(x,t,k,f) representation allows the characterization transient aspects of wave generation and propagation in both space and time dimensions. The Z(x,t,k,f) representation is used to experimentally investigate Lamb wave generation and propagation around a cylindrical shell (relative thickness is equal to 0.03) surrounded by water and excited by a pulse (0.1 micros duration with 1-5 MHz transducers). Three kinds of fluids have been used inside the shell: air, water, propanol. In all the cases, the Z(x,t,k,f) analysis clearly identify the reflected field on the insonified side of the shell and it allows the measurement of the local reflection coefficients R(x,t,k,f). The generation and the propagation of Lamb waves are also quantified. For the liquid filled shells, the multiple internal reflections are revealed by Z(x,t,k,f) analysis: the local transmission coefficients T(x,t,k,f) are also measured. When local matching conditions allows Lamb wave generation, the multiple regeneration of Lamb wave is observed. Based on these results, a link is establish toward the theoretical results obtained by steady state approach and Sommerfeld-Watson transform.

  20. The estimation of production rates of $\\pi^+K^-, \\pi^-K^+$ and $\\pi^+\\pi^-$ atoms in proton-nucleus interactions at 450 GeV/c

    CERN Document Server

    Gorchakov, O

    2015-01-01

    Short-lived (τ ∼ 3 × 10 − 15 s) π+ K− , K+ π− and π+ π− atoms as well as long- lived (τ ≥ 1 × 10 − 11 s) π+ π− atoms produced in proton-nucleus interactions at 24 GeV/c are observed and studied in the DIRAC experiment at the CERN PS. The purpose of this paper is to show that the yields of the short-lived π+ K−, K+ π− and π+ π− atoms in proton-nucleus interactions at 450 GeV/c and θ lab = 4◦ are estimated to be, respectively, 17, 38 and 16 times higher per time unit. This may allow significantly improving the precision of their lifetime measurement and ππ and πK scattering length combinations |a0 − a2| and |a 1/2 − a3/2| . The yields of the long-lived π+ K− , K+ π− and π+ π− atoms at 450 GeV/c are estimated to be 370, 1600 and 750 times higher than at 24 GeV/c. This may allow the resonance method to be used for measuring the Lamb shift in the ππ atom and a new ππ scattering length combination 2 a0 + a2 to be obtained.

  1. Picosecond Streaked K-Shell Spectroscopy of Near Solid-Density Aluminum Plasmas

    Science.gov (United States)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.

    2016-10-01

    The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured. The targets were driven by high-contrast 1 ω or 2 ω laser pulses at focused intensities up to 1 ×1019W/Wcm2 cm2 . A streaked x-ray spectrometer recorded the Al Heα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E/E ΔE 700). Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Line widths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic model to provide the average plasma conditions in the buried layer as a function of time. It was observed that the resonance line tends toward lower photon energies at high electron densities. The measured shifts will be compared to predicted shifts from Stark-operator calculations at the inferred plasma conditions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the office of Fusion Energy Sciences Award Number DE-SC0012317, and the Stewardship Science Graduate Fellowship Grant Number DE-NA0002135.

  2. K-shell Emission of Neutral Iron Line from Sgr B2 Excited by Subrelativistic Protons

    CERN Document Server

    Dogiel, Vladimir; Koyama, Katsuji; Nobukawa, Masayoshi; Cheng, Kwong-Sang

    2011-01-01

    We investigated the emission of K$\\alpha$ iron line from the massive molecular clouds in the Galactic center (GC). We assume that at present the total flux of this emission consists of time variable component generated by primary X-ray photons ejected by Sagittarius A$^\\ast$ (Sgr A$^\\ast$) in the past and a relatively weak quasi-stationary component excited by impact of protons which were generated by star accretion onto the central black hole. The level of background emission was estimated from a rise of the 6.4 keV line intensity in the direction of several molecular clouds, that we interpreted as a stage when the X-ray front ejected by Sgr A$^\\ast$ entered into these clouds. The 6.4 keV emission before this intensity jump we interpreted as emission generated by subrelativistic cosmic rays there. The cross-section of K$\\alpha$ vacancies produced by protons differs from that of electrons or X-rays. Therefore, we expect that this processes can be distinguished from the analysis of the equivalent width of the ...

  3. A replacement of high-k process for CMOS transistor by atomic layer deposition

    Science.gov (United States)

    Han, Jin-Woo; Choi, Byung Joon; Yang, J. Joshua; Moon, Dong-Il; Choi, Yang-Kyu; Williams, R. Stanley; Meyyappan, M.

    2013-08-01

    A replacement of high-k process was implemented on an independent double gate FinFET, following the ordinary gate-first process with minor modifications. The present scheme involves neither exotic materials nor unprecedented processing. After the source/drain process, the sacrificial gate oxide was selectively substituted with amorphous Ta2O5 via conformal plasma enhanced atomic layer deposition. The present gate-first gate-dielectric-last scheme combines the advantages of the process and design simplicity of the gate-first approach and the control of the effective gate workfunction and the interfacial oxide of the gate-dielectric-last approach. Electrical characterization data and cross-sectional images are provided as evidence of the concept.

  4. Local atomic and magnetic structure of dilute magnetic semiconductor (Ba,K)(Zn,Mn)$_2$As$_2$

    OpenAIRE

    Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; Banerjee, Soham; Chen, Bijuan; Jin, Changqing; Feygenson, Mikhail; Uemura, Yasutomo J.; Billinge, Simon J. L.

    2016-01-01

    We have studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba,K)(Zn,Mn)$_2$As$_2$ through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. We detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-def...

  5. Soft-photon emission in extreme-relativistic Compton scattering by K-shell electrons and connection to photoeffect

    CERN Document Server

    Florescu, V

    2000-01-01

    We have recently obtained cross-sections for Compton scattering by K-shell electrons at extreme-relativistic (ER) energies of the incoming photon. Our method is essentially analytical, and only at the end did it require a modest numerical computation. The results are valid for the Compton line of the scattered photon spectrum, but do not cover the infrared divergence at the soft-photon end of the spectrum. This case is treated in the present paper. The method we apply here is an adaptation of the one used for the Compton line. This allows us to make use of many previous results. The quadruply and doubly differential Compton cross-sections can be expressed in analytical forms which allow factorization of the ER photoeffect cross-sections (differential or total, respectively). This result is shown to be a manifestation of the soft-photon theorem connecting the Compton matrix element at low emitted photon frequencies to that of the photoeffect. The computation of ER Compton cross-sections with soft-photon emissi...

  6. Four shells atomic model to computer the counting efficiency of electron-capture nuclides; Modelo de cuatro capas para calcular la eficiencia de deteccion en nucleidos que se desintegran por captura electronica pura

    Energy Technology Data Exchange (ETDEWEB)

    Grau Malonda, A.; Fernandez Martinez, A.

    1985-07-01

    The present paper develops a four-shells atomic model in order to obtain the efficiency of detection in liquid scintillation courting, Mathematical expressions are given to calculate the probabilities of the 229 different atomic rearrangements so as the corresponding effective energies. This new model will permit the study of the influence of the different parameters upon the counting efficiency for nuclides of high atomic number. (Author) 7 refs.

  7. Production of graphitic carbon-based nanocomposites from K2CO3-activated coconut shells as counter electrodes for dye-sensitized solar-cell applications

    Science.gov (United States)

    Loryuenyong, Vorrada; Buasri, Achanai; Lerdvilainarit, Parichat; Manachevakulm, Konnatee; Sompong, Siripond

    2016-01-01

    In this study, graphitic carbon-activated carbon nanocomposites fabricated from K2CO3 chemically-activated coconut shells by using Fe-catalytic chemical vapor deposition are reported. The present method was simple, environmentally-friendly, low cost, but successfully offered graphitic carbon-based materials that demonstrated promise for use as counter electrodes in dye-sensitized solar cells. The results showed that the coconut shell:catalyst ratio (1:0, 1:4, 1:1, and 4:1) significantly affected the structural, physical and electrochemical properties of the samples. Graphitic carbon and activated carbon nanocomposites with a high specific surface area of 1230 m2/g and high electrochemical activity in iodide reduction are obtained for samples with a coconut shells/iron precursor (Fe(NO3)3) ratio of 4:1.

  8. Upgraded DIRAC spectrometer at CERN PS for the investigation of ππ and πK atoms

    Science.gov (United States)

    Adeva, B.; Afanasyev, L.; Allkofer, Y.; Amsler, C.; Anania, A.; Aogaki, S.; Benelli, A.; Brekhovskikh, V.; Caragheorgheopol, Gh.; Cechak, T.; Chiba, M.; Chliapnikov, P.; Ciocarlan, C.; Constantinescu, S.; Detraz, C.; Doskarova, P.; Drijard, D.; Dudarev, A.; Duma, M.; Dumitriu, D.; Fluerasu, D.; Gorin, A.; Gorchakov, O.; Gritsay, K.; Guaraldo, C.; Gugiu, M.; Hansroul, M.; Hons, Z.; Horikawa, S.; Iwashita, Y.; Karpukhin, V.; Kluson, J.; Kobayashi, M.; Kruglov, V.; Kruglova, L.; Kulikov, A.; Kulish, E.; Kuptsov, A.; Lamberto, A.; Lanaro, A.; Lednicky, R.; Mariñas, C.; Martincik, J.; Nemenov, L.; Nikitin, M.; Okada, K.; Olchevskii, V.; Pentia, M.; Penzo, A.; Plo, M.; Prusa, P.; Rappazzo, G. F.; Vidal, A. Romero; Ryazantsev, A.; Rykalin, V.; Saborido, J.; Schacher, J.; Sidorov, A.; Smolik, J.; Takeutchi, F.; Tauscher, L.; Trojek, T.; Trusov, S.; Ullaland, O.; Urban, T.; Vrba, T.; Yazkov, V.; Yoshimura, Y.; Zhabitsky, M.; Zrelov, P.

    2016-12-01

    The DIRAC spectrometer installed at CERN PS was upgraded in order to study simultaneously A2π and AπK atoms, namely the bound states of two π mesons, and of π and K mesons, respectively. The detector system can now accept a high intensity beam of 2-6×1011 primary protons per second. The electronics and the data-acquisition system can handle a very large amount of data to identify π, K, p, e and μ, allowing the selection of ππ and πK pairs in the offline analysis. The resolution of the longitudinal and transverse components of the relative momentum Q of each meson pair in their center-of-mass system with respect to the direction of the pair was substantially improved. The analysis of their distributions allowed an reliable separation between the meson pairs originating from hadronic atoms and the backgrounds permitting the measurement of the lifetimes of hadronic atoms in the ground state and π-π, π-K s-wave scattering lengths. The upgraded setup also allowed the study of the long-lived excited states of ππ atoms.

  9. Non-dipole effects in the angular distribution of photoelectrons from the K-shell of N{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, K [Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Adachi, J [Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Photon Factory, Institute of Materials Structure Science, Tsukuba-shi, Ibaraki 305-0801 (Japan); Golovin, A V [Photon Factory, Institute of Materials Structure Science, Tsukuba-shi, Ibaraki 305-0801 (Japan); Institute of Physics, St Petersburg State University, 198504 St Petersburg (Russian Federation); Takahashi, M [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Teramoto, T [Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Watanabe, N [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Yagishita, A [Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Photon Factory, Institute of Materials Structure Science, Tsukuba-shi, Ibaraki 305-0801 (Japan); Semenov, S K [State University of Aerospace Instrumentation, 190000 St Petersburg (Russian Federation); Cherepkov, N A [State University of Aerospace Instrumentation, 190000 St Petersburg (Russian Federation)

    2006-01-28

    Measurements and calculations of the contribution of the non-dipole terms in the angular distribution of photoelectrons from the K-shell of randomly oriented N{sub 2} molecules are reported. The angular distributions have been measured in the plane containing the photon polarization and the photon momentum vectors of linearly polarized radiation. Calculations have been performed in the relaxed core Hartree-Fock approximation with a fractional charge, and many-electron correlations were taken into account in the random phase approximation. Both theory and experiment show that the non-dipole effects are rather small in the photon energy region from the ionization threshold of the K-shell up to about 70 eV above it. From the theory, it follows that the non-dipole terms for the individual 1{sigma}{sub g} and 1{sigma}{sub u} shells are considerably large; therefore measurements resolving the contributions of the 1{sigma}{sub g} and 1{sigma}{sub u} shells are desirable. (letter to the editor)

  10. Relativistic calculations of K-, L- and M-shell X-ray production cross-sections by electron impact for Ne, Ar, Kr, Xe, Rn and Uuo

    Science.gov (United States)

    Sampaio, J. M.; Madeira, T. I.; Guerra, M.; Parente, F.; Indelicato, P.; Santos, J. P.; Marques, J. P.

    2016-10-01

    In this work, we derive X-ray production cross-sections from electron-impact ionization cross-sections for Ne, Ar, Kr, Xe, Rn, and Uuo, calculated in the modified relativistic binary-encounter-Bethe model, and using as the only input parameter the binding energies obtained in the Dirac-Fock approach. Radiative and radiationless transition probabilities necessary to compute the inter- and intra-shell atomic yields were calculated in the same approach. Shell electron-impact ionization cross-sections and X-ray production cross-sections are compared with the corresponding cross-sections retrieved from the National Institute of Standards and Technology Reference Database and available experimental data.

  11. The permanent electric dipole moment of K, Rb or Cs atom can not be calculated by using the Boltzmann constant

    CERN Document Server

    You, Pei-Lin

    2008-01-01

    Using special capacitors our experiments discovered that the electric susceptibility Xe of K, Rb or Cs vapor varies in direct proportion to their density N, and inversely proportional to the absolute temperature T as polar molecules. Their capacitance(C) at different voltage (V) was measured. The C-V curve shows that the saturation polarization of K, Rb or Cs vapor has be observed when the field E more than ten to fiveth power V/m. The measurements show that the ground state K, Rb or Cs atom is polar atom with a large permanent electric dipole moment (EDM) of the order of eao (ao is Bohr radius) as excited state of hydrogen atom. But we can not calculate the EDM of an atom using Boltzmann constant. Because of the mechanism of polar atoms by which orientation polarization arises completely differs from polar molecules. The orientation polarization of polar molecule, such as HCl or H2O etc, is a molecule as a whole turned toward the direction of an external field. Unlike polar molecules, the orientation polariz...

  12. Characterization of a hybrid target multi-keV x-ray source by a multi-parameter statistical analysis of titanium K-shell emission

    Science.gov (United States)

    Primout, M.; Babonneau, D.; Jacquet, L.; Gilleron, F.; Peyrusse, O.; Fournier, K. B.; Marrs, R.; May, M. J.; Heeter, R. F.; Wallace, R. J.

    2016-03-01

    We have studied the titanium K-shell emission spectra from multi-keV x-ray source experiments with hybrid targets on the OMEGA laser facility. Using the collisional-radiative TRANSPEC code, dedicated to K-shell spectroscopy, we reproduced the main features of the detailed spectra measured with the time-resolved MSPEC spectrometer. We have developed a general method to infer the Ne, Te and Ti characteristics of the target plasma from the spectral analysis (ratio of integrated Lyman-α to Helium-α in-band emission and the peak amplitude of individual line ratios) of the multi-keV x-ray emission. These thermodynamic conditions are compared to those calculated independently by the radiation-hydrodynamics transport code FCI2.

  13. Efimov studies of an ultracold cloud of 39 K atoms in microgravity: Numerical modelling and experimental design

    Science.gov (United States)

    Mossman, Maren; Engels, Peter; D'Incao, Jose; Jin, Deborah; Cornell, Eric

    2016-05-01

    Ultracold atomic gases at or near quantum degeneracy provide a powerful tool for the investigation of few-body physics. A particularly intriguing few-body phenomenon is the existence of Efimov trimer states at large interatomic scattering lengths. These trimers are predicted to exhibit universal geometric scaling relations, but in practice the situation is complicated e.g. by finite-range and finite-temperature effects. While some Efimov trimers have already been experimentally observed by several groups in ground-based experiments, NASA's Cold Atom Laboratory (CAL) onboard the ISS will greatly enhance the experimentally accessible regimes by providing ultracold clouds of 39 K atoms with temperatures at or below 1 nK, low densities, and long observation times. We present results of numerical modelling and simulations that lay out Efimov experiments capitalizing on the particular strengths of CAL.

  14. Atomic layer deposition of TiO2 on surface modified nanoporous low-k films.

    Science.gov (United States)

    Levrau, Elisabeth; Devloo-Casier, Kilian; Dendooven, Jolien; Ludwig, Karl F; Verdonck, Patrick; Meersschaut, Johan; Baklanov, Mikhail R; Detavernier, Christophe

    2013-10-01

    This paper explores the effects of different plasma treatments on low dielectric constant (low-k) materials and the consequences for the growth behavior of atomic layer deposition (ALD) on these modified substrates. An O2 and a He/H2 plasma treatment were performed on SiCOH low-k films to modify their chemical surface groups. Transmission FTIR and water contact angle (WCA) analysis showed that the O2 plasma changed the hydrophobic surface completely into a hydrophilic surface, while the He/H2 plasma changed it only partially. In a next step, in situ X-ray fluorescence (XRF), ellipsometric porosimetry (EP), and Rutherford backscattering spectroscopy (RBS) were used to characterize ALD growth of TiO2 on these substrates. The initial growth of TiO2 was found to be inhibited in the original low-k film containing only Si-CH3 surface groups, while immediate growth was observed in the hydrophilic O2 plasma treated film. The latter film was uniformly filled with TiO2 after 8 ALD cycles, while pore filling was delayed to 17 ALD cycles in the hydrophobic film. For the He/H2 plasma treated film, containing both Si-OH and Si-CH3 groups, the in situ XRF data showed that TiO2 could no longer be deposited in the He/H2 plasma treated film after 8 ALD cycles, while EP measurements revealed a remaining porosity. This can be explained by the faster deposition of TiO2 in the hydrophilic top part of the film than in the hydrophobic bulk which leaves the bulk porous, as confirmed by RBS depth profiling. The outcome of this research is not only of interest for the development of advanced interconnects in ULSI technology, but also demonstrates that ALD combined with RBS analysis is a handy approach to analyze the modifications induced by a plasma treatment on a nanoporous thin film.

  15. Updated DIRAC spectrometer at CERN PS for the investigation of ππ and πK atoms

    CERN Document Server

    Adeva, B; Allkofer, Y; Amsler, C; Anania, A; Aogaki, S; Benelli, A; Brekhovskikh, V; Caragheorgheopol, Gh; Cechak, T; Chiba, M; Chliapnikov, P; Ciocarlan, C; Constantinescu, S; Detraz, C; Doskarova, P; Drijard, D; Dudarev, A; Duma, M; Dumitriu, D; Fluerasu, D; Gorin, A; Gorchakov, O; Gritsay, K; Guaraldo, C; Gugiu, M; Hansroul, M; Hons, Z; Horikawa, S; Iwashita, Y; Karpukhin, V; Kluson, J; Kobayashi, M; Kruglov, V; Kruglova, L; Kulikov, A; Kulish, E; Kuptsov, A; Lamberto, A; Lanaro, A; Lednicky, R; Mariñas, C; Martincik, J; Nemenov, L; Nikitin, M; Okada, K; Olchevskii, V; Pentia, M; Penzo, A; Plo, M; Prusa, P; Rappazzo, G F; Romero Vidal, A; Ryazantsev, A; Rykalin, V; Saborido, J; Schacher, J; Sidorov, A; Smolik, J; Takeutchi, F; Tauscher, L; Trojek, T; Trusov, S; Ullaland, O; Urban, T; Vrba, T; Yazkov, V; Yoshimura, Y; Zhabitsky, M; Zrelov, P

    2015-01-01

    The DIRAC spectrometer installed at CERN PS was redesigned and upgraded in order to study simultaneously Aππ and AπK atoms, namely the bound states of π+π–, and π+K–, π–K+ mesons. The detector system which is able to accept a high intensity beam such as 2 - 6 × 1011 primary protons per second, the electronics and the data-acquisition system adapted to handle very large amount of data actually allowed to identify successfully π, K, p, e and µ and to give the possibility to select π-π and π-K pairs in the off-line analysis. The setup’s capability of giving a high resolution in the reconstruction of the relative momentum in the pair-CMS Q gave the possibility to analyze the distributions of its components, in order to identify the signal from pairs originating from hadronic atoms, and to measure their lifetimes in the ground state and π-π and π-K s-wave scattering lengths. The setup also allowed to study long-lived excited states of π-π atoms.

  16. Comment on "Atomic mass compilation 2012" by B. Pfeiffer, K. Venkataramaniah, U. Czok, C. Scheidenberger

    CERN Document Server

    Audi, Georges; Block, Michael; Bollen, Georg; Herfurth, Frank; Goriely, Stéphane; Hardy, John C; Kondev, Filip G; Kluge, Juergen H; Lunney, David; Pearson, Mike J; Savard, Guy; Sharma, Kumar; Wang, Meng; Zhang, Yuhu

    2014-01-01

    This "Comment" submitted to ADNDT on December 13, 2013 concerns a publication entitled "Atomic Mass Compilation 2012", which is due to appear in the March 2014 issue of the journal Atomic Data and Nuclear Data Tables (available online on September 6, 2013). We would like to make it clear that this paper is not endorsed by the Atomic Mass Evaluation (AME) international collaboration. The AME provides carefully recommended evaluated data, published periodically. The "Atomic Mass Compilation 2012" is not to be associated with the latest publication, AME2012, nor with any of the previously published mass evaluations that were developed under the leadership of Prof. A.H. Wapstra. We found the data presented in "Atomic Mass Compilation 2012" to be misleading and the approach implemented to be lacking in rigour since it does not allow to unambiguously trace the original published mass values. Furthermore, the method used in "Atomic Mass Compilation 2012" is not valid and leads to erroneous and contradictory outputs,...

  17. Signatures of Quantum-Tunneling Diffusion of Hydrogen Atoms on Water Ice at 10 K

    OpenAIRE

    2015-01-01

    Reported here is the first observation of the tunneling surface diffusion of a hydrogen (H) atom on water ice. Photostimulated desorption and resonance-enhanced multiphoton ionization methods were used to determine the diffusion rates at 10 Kon amorphous solid water and polycrystalline ice. H-atom diffusion on polycrystalline ice was 2 orders of magnitude faster than that of deuterium atoms, indicating the occurrence of tunneling diffusion. Whether diffusion is by tunneling or thermal hopping...

  18. Auger Spectra and Different Ionic Charges Following 3s, 3p and 3d Sub-Shells Photoionization of Kr Atoms

    Directory of Open Access Journals (Sweden)

    Yehia A. Lotfy

    2006-01-01

    Full Text Available The decay of inner-shell vacancy in an atom through radiative and non-radiative transitions leads to final charged ions. The de-excitation decay of 3s, 3p and 3d vacancies in Kr atoms are calculated using Monte-Carlo simulation method. The vacancy cascade pathway resulted from the de-excitation decay of deep core hole in 3s subshell in Kr atoms is discussed. The generation of spectator vacancies during the vacancy cascade development gives rise to Auger satellite spectra. The last transitions of the de-excitation decay of 3s, 3p and 3d holes lead to specific charged ions. Dirac-Fock-Slater wave functions are adapted to calculate radiative and non-radiative transition probabilities. The intensity of Kr^{4+} ions are high for 3s hole state, whereas Kr^{3+} and Kr^{2+} ions have highest intensities for 3p and 3d hole states, respectively. The present results of ion charge state distributions agree well with the experimental data.

  19. Relativistic calculations of the K-K charge transfer and K-vacancy production probabilities in low-energy ion-atom collisions

    CERN Document Server

    Tupitsyn, I I; Shabaev, V M; Bondarev, A I; Deyneka, G B; Maltsev, I A; Hagmann, S; Plunien, G; Stoehlker, Th

    2011-01-01

    The previously developed technique for evaluation of charge-transfer and electron-excitation processes in low-energy heavy-ion collisions [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701(2010)] is extended to collisions of ions with neutral atoms. The method employs the active electron approximation, in which only the active electron participates in the charge transfer and excitation processes while the passive electrons provide the screening DFT potential. The time-dependent Dirac wave function of the active electron is represented as a linear combination of atomic-like Dirac-Fock-Sturm orbitals, localized at the ions (atoms). The screening DFT potential is calculated using the overlapping densities of each ions (atoms), derived from the atomic orbitals of the passive electrons. The atomic orbitals are generated by solving numerically the one-center Dirac-Fock and Dirac-Fock-Sturm equations by means of a finite-difference approach with the potential taken as the sum of the exact reference ion (atom) Dirac-Fock...

  20. Stability of Titanium Nitride and Titanium Carbide When Exposed to Hydrogen Atoms from 298 to 1950 K

    Science.gov (United States)

    Philipp, Warren H.

    1961-01-01

    Titanium nitride and titanium carbide deposited on tungsten wires were exposed to hydrogen atoms (10(exp -4) atm pressure) produced by the action of microwave radiation on molecular hydrogen. The results of these experiments in the temperature range 298 to 1950 K indicate that no appreciable reaction takes place between atomic hydrogen and TiN or TiC. The formation of reaction products (NH3, CH4, C2H2) should be favored at lower temperatures. However, because of the high catalytic activity of Ti for H atom recombination, the rate of such reactions with H atoms is controlled by the rate of evaporation of Ti from the surface, this rate being low at temperatures below 1200 K. In order to interpret the stability of TiN and TiC in H atoms more fully, the stability of TiN and TiC in vacuum and H2 gas was also studied. The thermodynamic computations conform in order of magnitude to the experimentally found rates of decomposition of TiN and TiC in vacuum and are also consistent with the fact that no appreciable reaction is found with these compounds in molecular H2 at a pressure of 10(exp -3) atmosphere in the temperature range 2980 to 2060 K. When TiN or TiC was heated in atomic H or molecular H2, no reaction products other than those obtained from the simple decomposition of the nitride and carbide were observed. The gaseous products were analyzed in a mass spectrometer.

  1. Development of an optically pumped atomic magnetometer using a K-Rb hybrid cell and its application to magnetocardiography

    Directory of Open Access Journals (Sweden)

    Yosuke Ito

    2012-09-01

    Full Text Available We have developed an optically pumped atomic magnetometer using a hybrid cell of K and Rb. The hybrid optical pumping technique can apply dense alkali-metal vapor to the sensor head and leads to high signal intensity. We use dense Rb vapor as probed atoms, and achieve a sensitivity of approximately 100 fTrms/Hz1/2 around 10 Hz. In this case, the sensitivity is limited by the system noise, and the magnetic linewidth is narrower than that for direct Rb optical pumping. We demonstrated magnetocardiography using the magnetometer and obtained clear human magnetocardiograms.

  2. ESR study of atomic hydrogen and tritium in solid T$_{2}$ and T$_{2}$:H$_{2}$ matrices below 1K

    CERN Document Server

    Sheludiakov, S; Järvinen, J; Vainio, O; Lehtonen, L; Zvezdov, D; Vasiliev, S; Lee, D M; Khmelenko, V V

    2016-01-01

    We report on the first ESR study of atomic hydrogen and tritium stabilized in a solid T$_{2}$ and T$_{2}$:H$_{2}$ matrices down to 70$\\,$mK. The concentrations of T atoms in pure T$_{2}$ approached $2\\times10^{20}$cm$^{-3}$ and record-high concentrations of H atoms $\\sim1\\times10^{20}$cm$^{-3}$ were reached in T$_{2}$:H$_{2}$ solid mixtures where a fraction of T atoms became converted into H due to the isotopic exchange reaction T+H$_2\\rightarrow$TH+H. The maximum concentrations of unpaired T and H atoms was limited by their recombination which becomes enforced by efficient atomic diffusion due to a presence of a large number of vacancies and phonons generated in the matrices by $\\beta$-particles. Recombination also appeared in an explosive manner both being stimulated and spontaneously in thick films where sample cooling was insufficient. We suggest that the main mechanism for H and T migration is physical diffusion related to tunneling or hopping to vacant sites in contrast to isotopic chemical reactions wh...

  3. A pseudo-atomic model for the capsid shell of bacteriophage lambda using chemical cross-linking/mass spectrometry and molecular modeling.

    Science.gov (United States)

    Singh, Pragya; Nakatani, Eri; Goodlett, David R; Catalano, Carlos Enrique

    2013-09-23

    Bacteriophage lambda is one of the most exhaustively studied of the double-stranded DNA viruses. Its assembly pathway is highly conserved among the herpesviruses and many of the bacteriophages, making it an excellent model system. Despite extensive genetic and biophysical characterization of many of the lambda proteins and the assembly pathways in which they are implicated, there is a relative dearth of structural information on many of the most critical proteins involved in lambda assembly and maturation, including that of the lambda major capsid protein. Toward this end, we have utilized a combination of chemical cross-linking/mass spectrometry and computational modeling to construct a pseudo-atomic model of the lambda major capsid protein as a monomer, as well as in the context of the assembled procapsid shell. The approach described here is generalizable and can be used to provide structural models for any biological complex of interest. The procapsid structural model is in good agreement with published biochemical data indicating that procapsid expansion exposes hydrophobic surface area and that this serves to nucleate assembly of capsid decoration protein, gpD. The model further implicates additional molecular interactions that may be critical to the assembly of the capsid shell and for the stabilization of the structure by the gpD decoration protein.

  4. Origin and shape evolution of core-shell nanoparticles in Au-Pd: from few atoms to high Miller index facets

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Nabraj; Casillas, Gilberto; Khanal, Subarna; Velazquez Salazar, J. Jesus; Ponce, Arturo; Jose-Yacaman, Miguel, E-mail: miguel.yacaman@utsa.edu [University of Texas at San Antonio, Department of Physics and Astronomy (United States)

    2013-06-15

    Au-Pd core-shell nanocubes and triangular nanoparticles were systematically synthesized from a few Pd layers up to fully grown morphologies by a modified seed-mediated growth method. The shape evolution of Au-Pd core-shell nanoparticles from single crystal and singly twinned seed to final concave nanocube and triangular plates are presented at atomic level by Cs-corrected scanning transmission electron microscopy (STEM). The growth mechanism of both morphologies was studied throughout different sizes. It was found that the concave nanocubes grew from octahedral Au seeds due to fast growth along Left-Pointing-Angle-Bracket 111 Right-Pointing-Angle-Bracket directions; while the triangular nanoparticles grew from singly twinned Au seeds, growing twice as fast in Left-Pointing-Angle-Bracket 110 Right-Pointing-Angle-Bracket directions along the twin boundary; compared to the Left-Pointing-Angle-Bracket 111 Right-Pointing-Angle-Bracket direction perpendicular to the twin boundary. Both the concave nanocubes and triangular nanoparticles presented high index facet (HIF) surfaces that will increase the catalytic activity of different reactions.

  5. Nuclear Polarization Correction of Atomic Energy Levels%核极化对K-原子能级的修正

    Institute of Scientific and Technical Information of China (English)

    王炳章; 游阳明; 张学龙

    2011-01-01

    基于SIC-Xα的较为严格的计算方法,对K-Pb原子体系中的Rydberg电子态的交换参数采用自洽场模型,并考虑Rydberg电子与原子实间相互作用的影响.借助此方法计算核极化用以修正C.J.Batty光学模型势下的K-Pb能级跃迁,整个计算过程不依赖任何经验参数,结果比经典方法更为精确,为奇异原子的深入分析提供了理论参考.%Based on the more stringent calculating method of SIC- Xα , the self-consistent field model is used to exchange parameters of Rydberg electron of K- Pb atoms, and the influence of the interaction between Rydberg electron and atomic kernel is considered. The nuclear polarization is calculated by using the method to correct K-Pb energy level transition under C. J. Battery optical model potential. The whole calculations is independent of empirical parameters. Its results are much more accurate than those calculated by the classical method, which provides a theoretical basis for the depth analysis of the exotic atoms.

  6. Temperature dependent kinetics (195-798 K) and H atom yields (298-498 K) from reactions of (1)CH(2) with acetylene, ethene, and propene.

    Science.gov (United States)

    Gannon, K L; Blitz, M A; Liang, C H; Pilling, M J; Seakins, P W; Glowacki, D R

    2010-09-09

    The rate coefficients for the removal of the excited state of methylene, (1)CH(2) (a(1)A(1)), by acetylene, ethene, and propene have been studied over the temperature range 195-798 K by laser flash photolysis, with (1)CH(2) being monitored by laser-induced fluorescence. The rate coefficients of all three reactions exhibit a negative temperature dependence that can be parametrized as k((1)CH(2)+C(2)H(2)) = (3.06 +/- 0.11) x 10(-10) T ((-0.39+/-0.07)) cm(3) molecule(-1) s(-1), k((1)CH(2)+C(2)H(4)) = (2.10 +/- 0.18) x 10(-10) T ((-0.84+/-0.18)) cm(3) molecule(-1) s(-1), k((1)CH(2)+C(3)H(6)) = (3.21 +/- 0.02) x 10(-10) T ((-0.13+/-0.01)) cm(3) molecule(-1) s(-1), where the errors are statistical at the 2sigma level. Removal of (1)CH(2) occurs by chemical reaction and electronic relaxation to ground state triplet methylene. The H atom yields from the reactions of (1)CH(2) with acetylene, ethene, and propene have been determined by laser-induced fluorescence over the temperature range 298-498 K. For the reaction with propene, H atom yields are close to the detection limit, but for acetylene and ethene, the fraction of H atom production is approximately 0.88 and 0.71, respectively, at 298 K, rising to unity by 398 K, with the balance of the reaction with acetylene presumed to be electronic relaxation. Experimental constraints limit studies to a maximum of 1 Torr of bath gas; master equation calculations using an approach that allows treatment of intermediates with deep energy wells have been carried out to explore the role of collisional stabilization for the reaction of (1)CH(2) with acetylene. Stabilization is calculated to be insignificant under the experimental conditions, but does become significant at higher pressures. Between pressures of 100 and 1000 Torr, propyne and allene are formed in similar amounts with a slight preference for propyne. At higher pressures propyne formation becomes about a factor two greater than that of allene, and above 10(5) Torr (300 < T

  7. Experimental investigation of evaporative cooling mixture of bosonic 87Rb and fermionic 40K atoms with microwave and radio frequency radiation

    Institute of Scientific and Technical Information of China (English)

    wang Peng-Jun; xiong De-Zhi; Fu Zheng-Kun; Zhang Jing

    2011-01-01

    We investigate sympathetic cooling fermions 40K by evaporatively cooling bosonic 87Rb atoms in a magnetic trap with microwave and radio frequency induced evaporations in detail. The mixture of bosonic and fermionic atoms is Quadrupole-Ioffe-Configuration trap. Comparing microwave with radio frequency evaporatively cooling bosonic 87Rb states, which are generated in the evaporative process, gives rise to a significant loss of 40K due to inelastic collisions.Thus, the rubidium atoms populated in the |2, 1> Zeeman states should be removed in order to effectively perform sympathetically cooling 40K with the evaporatively cooled 87Rb atoms.

  8. Shifts in the ESR spectra of alkali-metal atoms (Li, Na, K, Rb) on helium nanodroplets.

    Science.gov (United States)

    Hauser, Andreas W; Gruber, Thomas; Filatov, Michael; Ernst, Wolfgang E

    2013-03-18

    He-droplet-induced changes of the hyperfine structure constants of alkali-metal atoms are investigated by a combination of relativistically corrected ab initio methods with a simulation of the helium density distribution based on He density functional theory. Starting from an accurate description of the variation of the hyperfine structure constant in the M-He diatomic systems (M=Li, Na, K, Rb) as a function of the interatomic distance we simulate the shifts induced by droplets of up to 10,000 (4)He atoms. All theoretical predictions for the relative shifts in the isotropic hyperfine coupling constants of the alkali-metal atoms attached to helium droplets of different size are then tied to a single, experimentally derived parameter of Rb.

  9. Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser pulse irradiation

    Indian Academy of Sciences (India)

    V Arora; U Chakravarty; Manoranjan P Singh; J A Chakera; P A Naik; P D Gupta

    2014-02-01

    Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ∼1018 W cm-2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the synthetic spectra generated using the spectroscopic code Prism-SPECT. It is observed that He-like resonance line emission occurs from the plasma region having sub-critical density, whereas K- emission arises from the bulk solid heated to a temperature of 10 eV by the impact of hot electrons. K- line from Be-like ions was used to estimate the hot electron temperature. A power law fit to the electron temperature showed a scaling of 0.47 with laser intensity.

  10. K-shell X-ray production cross sections of Ni induced by protons, alpha-particles, and He{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Bertol, A.P.L. [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Hinrichs, R. [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Vasconcellos, M.A.Z., E-mail: marcos@if.ufrgs.br [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2015-11-15

    The proton, alpha-particle, and He{sup +} induced X-ray emissions of Ni were measured on mono-elemental thin films in order to obtain the K-shell X-ray production cross section in the energy range of 0.7–2.0 MeV for protons, 4.0–6.5 MeV for alpha-particles, and 3.0–4.0 MeV for He{sup +}. The proton-induced X-ray production cross section for Ni agreed well with the theoretical values, endorsing the quality of the measurements. The X-ray production cross section induced with alpha-particles is in good agreement with ECPSSR theory in the complete range of energies, while for He{sup +} that quantity is systematically below. K{sub β}/K{sub α} ratios were evaluated and compared with experimental and theoretical values.

  11. Spectroscopic Investigation of p-Shell Lambda Hypernuclei by the (e,e'K+) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chunhua [Hampton Univ., Hampton, VA (United States)

    2014-08-01

    Hypernuclear spectroscopy is a powerful tool to investigate Lambda-N interaction. Compared with other Lambda hypernuclei productions, electroproduction via the (e,e'K+) reaction has the advantage of exciting states deeply inside of the hypernucleus and achieving sub-MeV energy resolution. The E05-115 experiment, which was successfully performed in 2009, is the third generation hypernuclear experiment in JLab Hall C. A new splitter magnet and electron spectrometer were installed, and beam energy of 2.344 GeV was selected in this experiment. These new features gave better field uniformity, optics quality and made the tilt method more effective in improving yield-to-background ratio. The magnetic optics of the spectrometers were carefully studied with GEANT simulation, and corrections were applied to compensate for the fringe field cross talk between the compact spectrometer magnets. The non-linear least chi-squared method was used to further calibrate the spectrometer with the events from Lambda, Sigma0 and B12Lambda and uniform magnetic optics as well as precise kinematics were achieved. Several p-shell Lambda hypernuclear spectra, including B12Λ, Be10Λ, He7Λ, were obtained with high energy resolution and good accuracy. For B12Λ, eight peaks were recognized with the resolution of ~540keV (FWHM), and the ground state binding energy was obtained as 11.529 ± 0.012(stat.) ± 0.110(syst.) MeV. Be10Λ, twelve peaks were recognized with the resolution of ~520keV (FWHM), and the binding energy of the ground state was determined as 8.710 ± 0.059(stat.) ± 0.114(syst.) MeV. For He7Λ, three peaks were recognized with the resolution of ~730keV, and the ground state binding energy was obtained as 5.510 ± 0.050(stat.) ± 0.120(syst.) MeV. Compared with the published data of B12Λ from the JLab Hall A experiment

  12. Study of coordination environments around Pd and Pt in a Pd-core Pt-shell nanoparticle during heating

    Science.gov (United States)

    Nishimura, Y. F.; Hamaguchi, T.; Yamaguchi, S.; Takagi, H.; Dohmae, K.; Nonaka, T.; Nagai, Y.

    2016-05-01

    Local coordination environments around Pd and Pt in a Pd-core Pt-shell nanoparticle (NP) at temperatures ranging from 473 to 873 K was evaluated by utilizing in situ XAFS measurement technique to investigate the temperature range in which a core-shell structure is preserved. The core-shell structure was considered to be kept up to 673 K and start to change at about 773 K. Heating to 873 K accelerated atomic mixing in the core-shell NPs. Catalytic properties of the present Pd-core Pt-shell NP are available in the stoichiometric C3H6-O2 atmosphere at temperatures less than 773 K at most.

  13. Atomic Layer Deposition of High-k Dielectrics Using Supercritical CO2

    Science.gov (United States)

    Shende, Rajesh

    2005-03-01

    Atomic layer deposition (ALD) of high-κdielectric was performed in supercritical CO2 (SCCO2), using a two-step reaction sequence. In step one, tetraethoxy silane (TEOS) precursor was injected in SCCO2 at 80-100 C and 50 MPa pressure to obtain a chemisorbed surface monolayer, which was then oxidized into SiO2 using peroxide entrained in SCCO2. ALD process was controlled by estimating precursor solubility and its mass transport with respect to the density of SCCO2, and correlating these parameters with precursor injection volume. In the ALD process, 7 pulses of precursor were used anticipating deposition of one atomic layer in each of the pulses. The thickness of the SiO2 atomic layers deposited using SCCO2 was measured by variable angle spectroscopic ellipsometry (VASE), and the C-V measurements were also performed. The result obtained using VASE indicates that there were 7 monolayers of SiO2 with total thickness of 35 å, and the dielectric constant of the deposited layers was 4.0±0.1. Our initial findings clearly demonstrate that SCCO2 is capable of atomic layer deposition of high quality dielectric films at very low process temperatures preventing interface reaction. More research is in progress to achieve ALD of HfO2 and TiO2 in SCCO2.

  14. Long-range interactions between an atom in its ground S state and an open-shell linear molecule

    CERN Document Server

    Skomorowski, Wojciech

    2010-01-01

    Theory of long-range interactions between an atom in its ground S state and a linear molecule in a degenerate state with a non-zero projection of the electronic orbital angular momentum is presented. It is shown how the long-range coefficients can be related to the first and second-order molecular properties. The expressions for the long-range coefficients are written in terms of all components of the static and dynamic multipole polarizability tensor, including the nonadiagonal terms connecting states with the opposite projection of the electronic orbital angular momentum. It is also shown that for the interactions of molecules in excited states that are connected to the ground state by multipolar transition moments additional terms in the long-range induction energy appear. All these theoretical developments are illustrated with the numerical results for systems of interest for the sympathetic cooling experiments: interactions of the ground state Rb($^2$S) atom with CO($^3\\Pi$), OH($^2\\Pi$), NH($^1\\Delta$),...

  15. Algebraic tools for dealing with the atomic shell model. I. Wavefunctions and integrals for hydrogen-like ions

    Science.gov (United States)

    Surzhykov, Andrey; Koval, Peter; Fritzsche, Stephan

    2005-01-01

    Today, the 'hydrogen atom model' is known to play its role not only in teaching the basic elements of quantum mechanics but also for building up effective theories in atomic and molecular physics, quantum optics, plasma physics, or even in the design of semiconductor devices. Therefore, the analytical as well as numerical solutions of the hydrogen-like ions are frequently required both, for analyzing experimental data and for carrying out quite advanced theoretical studies. In order to support a fast and consistent access to these (Coulomb-field) solutions, here we present the DIRAC program which has been developed originally for studying the properties and dynamical behavior of the (hydrogen-like) ions. In the present version, a set of MAPLE procedures is provided for the Coulomb wave and Green's functions by applying the (wave) equations from both, the nonrelativistic and relativistic theory. Apart from the interactive access to these functions, moreover, a number of radial integrals are also implemented in the DIRAC program which may help the user to construct transition amplitudes and cross sections as they occur frequently in the theory of ion-atom and ion-photon collisions. Program summaryTitle of program:DIRAC Catalogue number: ADUQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUQ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Computer for which the program is designed and has been tested: All computers with a license of the computer algebra package MAPLE [1] Program language used: Maple 8 and 9 No. of lines in distributed program, including test data, etc.:2186 No. of bytes in distributed program, including test data, etc.: 162 591 Distribution format: tar gzip file CPC Program Library subprograms required: None Nature of the physical problem: Analytical solutions of the hydrogen atom are widely used in very different fields of physics [2,3]. Despite of the rather simple structure

  16. Improved characteristics of near-band-edge and deep-level emissions from ZnO nanorod arrays by atomic-layer-deposited Al2O3 and ZnO shell layers

    Directory of Open Access Journals (Sweden)

    He Jr-Hau

    2011-01-01

    Full Text Available Abstract We report on the characteristics of near-band-edge (NBE emission and deep-level band from ZnO/Al2O3 and ZnO/ZnO core-shell nanorod arrays (NRAs. Vertically aligned ZnO NRAs were synthesized by an aqueous chemical method, and the Al2O3 and ZnO shell layers were prepared by the highly conformal atomic layer deposition technique. Photoluminescence measurements revealed that the deep-level band was suppressed and the NBE emission was significantly enhanced after the deposition of Al2O3 and ZnO shells, which are attributed to the decrease in oxygen interstitials at the surface and the reduction in surface band bending of ZnO core, respectively. The shift of deep-level emissions from the ZnO/ZnO core-shell NRAs was observed for the first time. Owing to the presence of the ZnO shell layer, the yellow band associated with the oxygen interstitials inside the ZnO core would be prevailed over by the green luminescence, which originates from the recombination of the electrons in the conduction band with the holes trapped by the oxygen vacancies in the ZnO shell. PACS 68.65.Ac; 71.35.-y; 78.45.+h; 78.55.-m; 78.55.Et; 78.67.Hc; 81.16.Be; 85.60.Jb.

  17. Local atomic and magnetic structure of dilute magnetic semiconductor (Ba ,K ) (Zn,Mn ) 2As2

    Science.gov (United States)

    Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; Banerjee, Soham; Chen, Bijuan; Jin, Changqing; Feygenson, Mikhail; Uemura, Yasutomo J.; Billinge, Simon J. L.

    2016-09-01

    We have studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba ,K )(Zn ,Mn )2As2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. We detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5 Å , resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment of Mn spins along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. We discuss these results in the context of other experiments and theoretical studies on this system.

  18. The single-nucleon energies of closed shell nuclei, influenced by n(k,rho), in the framework of Hartree-Fock inspired-scheme and LOCV method

    CERN Document Server

    Mariji, Hodjat

    2016-01-01

    The nucleon single-particle energies (SPEs) of the selected closed shell nuclei; that is, 16O, 40Ca, and 56Ni, are obtained by using the diagonal matrix elements of two-body effective interaction, which generated through the lowest order constrained variational (LOCV) calculations for the symmetric nuclear matter with the AV18 phenomenological nucleon-nucleon potential. The SPEs at the major levels of nuclei are calculated by employing a Hartree-Fock inspired-scheme in the spherical harmonic oscillator basis. In the scheme, the correlation influences are taken into account by imposing the nucleon effective mass factor on the radial wave functions of the major levels. Replacing the density-dependent one-body momentum distribution functions of nucleons, n(k,rho), with the Heaviside functions, the role of n(k,rho) on the nucleon SPEs at the major levels of the selected closed shell nuclei, is investigated. The best fit of spin-orbit splitting is taken into account when correcting the major levels of the nuclei b...

  19. X-ray study of M -shell ionization of heavy atoms by 8.0-35.2-MeV Oq+ ions: The role of the multiple-ionization effects

    Science.gov (United States)

    Czarnota, M.; Banaś, D.; Braziewicz, J.; Semaniak, J.; Pajek, M.; Jaskóła, M.; Korman, A.; Trautmann, D.; Kretschmer, W.; Lapicki, G.; Mukoyama, T.

    2009-03-01

    The M -shell ionization in high- Z atoms by Oq+ ions have been studied systematically in the energy range of 8.0-35.2 MeV in order to verify the available theoretical approaches describing the M -shell ionization by charged particles in asymmetric collisions. The measured M x-ray spectra were analyzed taking into account the effects of x-ray line shifting and broadening caused by the multiple ionization in the M and N shells. The M -subshell ionization cross sections, derived by using the M -shell decay rates modified for the multiple ionization effects, have been compared with the theoretical predictions based on the plane-wave Born approximation (PWBA), the semiclassical approximation (SCA), and the binary-encounter approximation (BEA). In the PWBA approach two theoretical calculations were considered: the energy-loss Coulomb deflection perturbed stationary state relativistic (ECPSSR) theory and its recent modification called the energy-loss Coulomb deflection united and separated atoms relativistic (ECUSAR) theory, which corrects a description of the electron binding effect to account for the united and separated atoms (USA) electron binding energy limits. In the SCA calculations performed with relativistic hydrogenic wave functions the binding effect was included in the limiting cases of separated-atom (SA) and united-atom (UA) limits. The measured M -subshell ionization cross sections are the best reproduced by the SCA-UA calculations, with exception of the M2,3(3p) -subshell cross sections which are strongly enhanced and cannot be reproduced by the discussed calculations.

  20. Formation of hydrogen peroxide and water from the reaction of cold hydrogen atoms with solid oxygen at 10K

    CERN Document Server

    Miyauchi, N; Chigai, T; Nagaoka, A; Watanabe, N; Kouchi, A

    2008-01-01

    The reactions of cold H atoms with solid O2 molecules were investigated at 10 K. The formation of H2O2 and H2O has been confirmed by in-situ infrared spectroscopy. We found that the reaction proceeds very efficiently and obtained the effective reaction rates. This is the first clear experimental evidence of the formation of water molecules under conditions mimicking those found in cold interstellar molecular clouds. Based on the experimental results, we discuss the reaction mechanism and astrophysical implications.

  1. Synthesis of well-defined structurally silica-nonlinear polymer core-shell nanoparticles via the surface-initiated atom transfer radical polymerization

    Science.gov (United States)

    Chen, Jiucun; Hu, Min; Zhu, Wendong; Li, Yaping

    2011-05-01

    We report on the synthesis of the well-defined structurally silica-nonlinear polymer core-shell nanoparticles via the surface-initiated atom transfer radical polymerization. At first, 3-(2-bromoisobutyramido)propyl(triethoxy)-silane (the ATRP initiator) was prepared by the reaction of 3-aminopropyltriethoxysilane with 2-bromoisobutyryl bromide. The ATRP initiator was covalently attached onto the nanosilica surface. The subsequent ATRP of HEMA from the initiator-attached SiO 2 surface was carried out in order to afforded functional nanoparticles bearing a hydroxyl moiety at the chain end, SiO 2-g-PHEMA-Br. The esterification reaction of pendent hydroxyl moieties of PHEMA segment with 2-bromoisobutyryl bromide afforded the SiO 2-based multifunctional initiator, SiO 2-g-PHEMA(-Br)-Br, bearing one bromine moiety on each monomer repeating unit within the PHEMA segment. Finally, the synthesis of SiO 2-g-PHEMA(-g-PSt)-b-PSt was accomplished by the ATRP of St monomer using SiO 2-g-PHEMA(-Br)-Br as multifunctional initiator. These organic/inorganic hybrid materials have been extensively characterized by FT-IR, XPS, TG, and TEM.

  2. Challenges in Atomic-Scale Characterization of High-k Dielectrics and Metal Gate Electrodes for Advanced CMOS Gate Stacks

    Institute of Scientific and Technical Information of China (English)

    Xinhua Zhu; Jianmin Zhu; Aidong Li; Zhiguo Liu; Naiben Ming

    2009-01-01

    The decreasing feature sizes in complementary metal-oxide semiconductor (CMOS) transistor technology will require the replacement of SiO2 with gate dielectrics that have a high dielectric constant (high-k) because as the SiO2 gate thickness is reduced below 1.4 nm, electron tunnelling effects and high leakage currents occur in SiO2, which present serious obstacles to future device reliability.In recent years significant progress has been made on the screening and selection of high-k gate dielectrics, understanding their physical properties, and their integration into CMOS technology.Now the family of hafnium oxide-based materials has emerged as the leading candidate for high-k gate dielectrics due to their excellent physical properties.It is also realized that the high-k oxides must be implemented in conjunction with metal gate electrodes to get sufficient potential for CMOS continue scaling.In the advanced nanoscale Si-based CMOS devices, the composition and thickness of interfacial layers in the gate stacks determine the critical performance of devices.Therefore, detailed atomicscale understandings of the microstructures and interfacial structures built in the advanced CMOS gate stacks,are highly required.In this paper, several high-resolution electron, ion, and photon-based techniques currently used to characterize the high-k gate dielectrics and interfaces at atomic-scale, are reviewed.Particularly, we critically review the research progress on the characterization of interface behavior and structural evolution in the high-k gate dielectrics by high-resolution transmission electron microscopy (HRTEM) and the related techniques based on scanning transmission electron microscopy (STEM), including high-angle annular darkfield (HAADF) imaging (also known as Z-contrast imaging), electron energy-loss spectroscopy (EELS), and energy dispersive X-ray spectroscopy (EDS), due to that HRTEM and STEM have become essential metrology tools for characterizing the dielectric

  3. Lifetime Measurements of $ \\pi ^+ \\pi ^- $ and $\\pi^{+-} K^{-+}$ Atoms to Test Low-Energy QCD Predictions

    CERN Multimedia

    Ponta, T C; Dumitriu, D E; Afanasyev, L; Zhabitskiy, M; Rykalin, V; Hons, Z; Schacher, J; Yazkov, V; Gerndt, J; Detraz, C C; Guaraldo, C; Dreossi, D; Smolik, J; Gorchakov, O; Nikitin, M; Dudarev, A; Kluson, J; Hansroul, M; Okada, K; Constantinescu, S; Kruglov, V; Komarov, V; Takeutchi, F; Tarta, P D; Kuptsov, A; Nemenov, L; Karpukhin, V; Shliapnikov, P; Brekhovskikh, V; Saborido silva, J J; Drijard, D; Rappazzo, G F; Pentia, M C; Gugiu, M M; Kruglova, L; Pustylnik, Z; Trojek, T; Vrba, T; Iliescu, M A; Duma, M; Ciocarlan, C; Kulikov, A; Ol'shevskiy, V; Ryazantsev, A; Chiba, M; Anania, A; Tarasov, A; Gritsay, K; Lapchine, V; Cechak, T; Lopez aguera, A

    2002-01-01

    %PS212 \\\\ \\\\ The proposed experiment aims to measure the lifetime of $ \\pi ^+ \\pi ^- $ atoms in the ground state with 10\\% precision, using the 24~GeV/c proton beam of the CERN Proton Synchrotron. As the value of the above lifetime of order 10$ ^- ^{1} ^{5} $s is dictated by a strong interaction at low energy, the precise measurement of this quantity enables to determine a combination of S-wave pion scattering lengths to 5\\%. Pion scattering lengths have been calculated in the framework of chiral perturbation theory and values predicted at the same level of accuracy have, up to now, never been confronted with accurate experimental data. Such a measurement would submit the understanding of chiral symmetry breaking of QCD to a crucial test.

  4. Novel highly ordered core–shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sonal; Hossain, Mohammad D.; Mayanovic, Robert A.; Wirth, Richard; Gordon, Robert A.

    2016-10-26

    Core–shell nanoparticles have potential for a wide range of applications due to the tunability of their magnetic, catalytic, electronic, optical, and other physicochemical properties. A frequent drawback in the design of core–shell nanoparticles and nanocrystals is the lack of control over an extensive, disordered, and compositionally distinct interface that occurs due to the dissimilarity of structural and compositional phases of the core and shell. In this work, we demonstrate a new hydrothermal nanophase epitaxy (HNE) technique to synthesize highly structurally ordered α-Cr2O3@α-Co0.38Cr1.62O2.92 inverted core–shell nanoparticles (CSNs) with evidence for the nanoscale growth of corundum structure beginning from the core and extending completely into the shell of the CSNs with minimal defects at the interface. The high-resolution TEM results show a sharp interface exhibiting epitaxial atomic registry of shell atoms over highly ordered core atoms. The XPS and Co K-edge XANES analyses indicate the +2 oxidation state of cobalt is incorporated in the shell of the CSNs. Our XPS and EXAFS results are consistent with oxygen vacancy formation in order to maintain charge neutrality upon substitution of the Co2+ ion for the Cr3+ ion in the α-Co0.38Cr1.62O2.92 shell. Furthermore, the CSNs exhibit the magnetic exchange bias effect, which is attributed to the exchange anisotropy at the interface made possible by the nanophase epitaxial growth of the α-Co0.38Cr1.62O2.92 shell on the α-Cr2O3 core of the nanoparticles. The combination of a well-structured, sharp interface and novel nanophase characteristics is highly desirable for nanostructures having enhanced magnetic properties.

  5. The estimation of production rates of $π^+ K^−, π^− K^+$ and $π^+π^−$ atoms in proton-nucleus interactions at 24 and 450 GeV/c

    CERN Document Server

    Gorchakov, O

    2016-01-01

    Short-lived ( τ ∼ 3 × 10 − 15 s ) π + K − , K + π − and π + π − atoms as well as long-lived ( τ ≥ 1 × 10 − 11 s) π + π − atoms produced in proton-nucleus interactions at 24 GeV/c are observed and studied in the DIRAC experiment at the CERN P S. The purpose of this paper is to show that the yields of the short-lived π + K − , K + π − and π + π − atoms in proton-nucleus interactions at 450 GeV/c and θ lab = 4 ◦ are estimated to be, respectively, 17, 38 and 16 times higher. This may allow sign ificantly improving the precision of their lifetime measurement and ππ and πK scattering length combinations | a 0 − a 2 | and | a 1 / 2 − a 3 / 2 | . The yields of the long-lived π + K − , K + π − and π + π − atoms at 450 GeV/c are estimated to be 180,800 and 370 times higher p er time unit than at 24 GeV/c. This may allow the resonance method to be used for measuring the Lamb shift in the ππ atom and a new ππ scattering length combination 2a0 + a2 to be obtaine...

  6. Improving Resolution in k and r Space: A FEFF-based Wavelet for EXAFS Data Analysis

    Science.gov (United States)

    Funke, H.; Chukalina, M.; Voegelin, A.; Scheinost, A. C.

    2007-02-01

    Applying a wavelet analysis based on the Morlet mother function, we previously demonstrated the presence of both Al and Zn atoms in the first metal shell (r ≈ 3 Å from the central Zn atom) of Zn-Al layered double hydroxide (LDH). However, this approach was not suited to resolve the second and third metal shells (r ≈ 5 - 6 Å) in r and k space independently. Therefore, we developed a new FEFF-Morlet wavelet, where the EXAFS function itself, extracted from the FEFF model, is combined with the complex Morlet wavelet. With this method, we were able to distinguish the second metal shell (Zn atoms only) from the third metal shell (Zn and Al atoms), thereby proving a regular, dioctahedral distribution of Zn atoms in the hydroxide layers.

  7. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    Science.gov (United States)

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  8. Set-up of a High-Resolution 300 mK Atomic Force Microscope in an Ultra-High Vacuum Compatible 3He/10T Cryostat

    CERN Document Server

    von Allwörden, Henning; Köhler, Arne; Eelbo, Thomas; Schwarz, Alexander; Wiesendanger, Roland

    2016-01-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped 3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where tip and sample can be exchanged in-situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  9. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible 3He/10 T cryostat

    Science.gov (United States)

    von Allwörden, H.; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A.; Wiesendanger, R.

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped 3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  10. K-, L- and M-shell X-ray productions induced by argon ions in the 0.8-1.6 MeV/amu range

    Science.gov (United States)

    Gluchshenko, N.; Gorlachev, I.; Ivanov, I.; Kireyev, A.; Kozin, S.; Kurakhmedov, A.; Platov, A.; Zdorovets, M.

    2016-04-01

    The X-ray emissions induced by argon ions for the elements from Mg to Bi were measured on mono-elemental thin films. K-, L- and M-shells X-ray production cross section were obtained for the 40Ar projectile energies of 32, 40, 48, 56 and 64 MeV, considering absorption corrections. For the most of target elements the approach used is based on the calculation of X-ray production cross sections through the cross section of Rutherford backscattering. The efficiency of the X-ray detector was determined using standard calibrated radioactive sources. The experimental results are compared to the predictions of the ECPSSR and PWBA theories calculated with the ISICS code.

  11. Integration of atomic layer deposited high-k dielectrics on GaSb via hydrogen plasma exposure

    Directory of Open Access Journals (Sweden)

    Laura B. Ruppalt

    2014-12-01

    Full Text Available In this letter we report the efficacy of a hydrogen plasma pretreatment for integrating atomic layer deposited (ALD high-k dielectric stacks with device-quality p-type GaSb(001 epitaxial layers. Molecular beam eptiaxy-grown GaSb surfaces were subjected to a 30 minute H2/Ar plasma treatment and subsequently removed to air. High-k HfO2 and Al2O3/HfO2 bilayer insulating films were then deposited via ALD and samples were processed into standard metal-oxide-semiconductor (MOS capacitors. The quality of the semiconductor/dielectric interface was probed by current-voltage and variable-frequency admittance measurements. Measurement results indicate that the H2-plamsa pretreatment leads to a low density of interface states nearly independent of the deposited dielectric material, suggesting that pre-deposition H2-plasma exposure, coupled with ALD of high-k dielectrics, may provide an effective means for achieving high-quality GaSb MOS structures for advanced Sb-based digital and analog electronics.

  12. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Ruiqi

    2016-03-04

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  13. Extremely scalable algorithm for 10$^8$-atom quantum material simulation on the full system of the K computer

    CERN Document Server

    Hoshi, Takeo; Kumahata, Kiyoshi; Terai, Masaaki; Miyamoto, Kengo; Minami, Kazuo; Shoji, Fumiyoshi

    2016-01-01

    An extremely scalable linear-algebraic algorithm was developed for quantum material simulation (electronic state calculation) with 10$^8$ atoms or 100-nm-scale materials. The mathematical foundation is generalized shifted linear equations ((zB - A) x = b), instead of conventional generalized eigenvalue equations. The method has a highly parallelizable mathematical structure. The fundamental theory is mathematical and is applicable also to other scientific fields. The benchmark shows an extreme strong scaling and a qualified time-to-solution on the full system of the K computer. The method was demonstrated in a real material research for ultra-flexible (organic) devices, key devices of next-generation IoT products. The present paper shows that an innovative scalable algorithm for a real research can appear by the co-design among application, algorithm and architecture.

  14. Atomization and merging of two Al and W wires driven by a 1 kA, 10 ns current pulse

    Science.gov (United States)

    Wu, Jian; Li, Xingwen; Lu, Yihan; Lebedev, S. V.; Yang, Zefeng; Jia, Shenli; Qiu, Aici

    2016-11-01

    Possibility of preconditioning of wires in wire array Z-pinch loads by an auxiliary low-level current pulse was investigated in experiments with two aluminum or two polyimide-coated tungsten wires. It was found that the application of a 1 kA, 10 ns current pulse could convert all the length of the Al wires (1 cm long, 15 μm diameter) and ˜70% of length of the W wires (1 cm long, 15 μm diameter, 2 μm polyimide coating) into a gaseous state via ohmic heating. The expansion and merging of the wires, positioned at separations of 1-3 mm, were investigated with two-wavelength (532 nm and 1064 nm) laser interferometry. The gasified wire expanded freely in a vacuum and its density distribution at different times could be well described using an analytic model for the expansion of the gas into vacuum. Under an energy deposition around its atomization enthalpy of the wire material, the aluminum vapor column had an expansion velocity of 5-7 km/s, larger than the value of ˜4 km/s from tungsten wires. The dynamic atomic polarizabilities of tungsten for 532 nm and 1064 nm were also estimated.

  15. The estimation of production rates of $\\pi^+K^-, \\pi^-K^+$ and $\\pi^+\\pi^-$ atoms in proton-Ni interactions at proton momentum of 450 GeV/c

    CERN Document Server

    Gorchakov, O

    2015-01-01

    In the DIRAC experiment at CERN the π+ K− , K+ π− and π+ π− atoms generated in proton-nucleus interaction at proton momentum Pp = 24 GeV/c were investigated. This work shows that the yields of π+ K− , K+ π− and π+ π− atoms in the p-nucleus interactions at Pp = 450 GeV/c and θ lab = 4◦ are 17, 38 and 16 times more than the one in the DIRAC experiment. The increased yields of the short-lived ππ ( πK ) atoms with minimum lifetime τ th = 2.9 . 10 − 15 s ( τ th = 3.5 . 10 − 15 s ) allows to improve the precisions of their lifetime measurement and ππ ( πK ) scattering length combinations | a 0 − a 2 | ( | a 1 / 2 − a 3/2 | ). In the DIRAC experiment the long-lived ππ atoms( τ th ≥ 1.2 . 10 − 11 s) were observed also. It was detected n A = 436 ± 61 π + π − pairs(atomic pairs) originating in the breakup of long-lived ππ atoms in the Pt foil with probability more than 90%. After the change of experiment scheme the number of produced long-lived π+ π− , π+ K− a...

  16. Scale heights and equivalent widths of the iron K-shell lines in the Galactic diffuse X-ray emission

    CERN Document Server

    Yamauchi, Shigeo; Nobukawa, Masayoshi; Uchiyama, Hideki; Koyama, Katsuji

    2016-01-01

    This paper reports the analysis of the X-ray spectra of the Galactic diffuse X-ray emission (GDXE) in the Suzaku archive. The fluxes of the Fe I K alpha (6.4 keV), Fe XXV,He alpha (6.7 keV) and Fe XXVI Ly alpha (6.97 keV) lines are separately determined. From the latitude distributions, we confirm that the GDXE is decomposed into the Galactic center (GCXE), the Galactic bulge (GBXE) and the Galactic ridge (GRXE) X-ray emissions. The scale heights (SHs) of the Fe XXV He alpha line of the GCXE, GBXE and GRXE are determined to be ~40, ~310 and ~140 pc, while those of the Fe I K alpha line are ~30, ~160 and ~70 pc, respectively. The mean equivalent widths (EWs) of the sum of the Fe XXV He alpha and Fe XXVI Ly alpha lines are ~750 eV, ~600 eV and ~550 eV, while those of the Fe I K alpha line are ~150~eV, ~60~eV and ~100~eV for the GCXE, GBXE and GRXE, respectively. The origin of the GBXE, GRXE and GCXE is separately discussed based on the new results of the SHs and EWs, in comparison with those of the Cataclysmic ...

  17. NaYF4:Er3+,Yb3+/SiO2 Core/Shell Upconverting Nanocrystals for Luminescence Thermometry up to 900 K

    Science.gov (United States)

    2017-01-01

    The rapid development of nanomaterials with unique size-tunable properties forms the basis for a variety of new applications, including temperature sensing. Luminescent nanoparticles (NPs) have demonstrated potential as sensitive nanothermometers, especially in biological systems. Their small size offers the possibility of mapping temperature profiles with high spatial resolution. The temperature range is however limited, which prevents use in high-temperature applications such as, for example, nanoelectronics, thermal barrier coatings, and chemical reactors. In this work, we extend the temperature range for nanothermometry beyond 900 K using silica-coated NaYF4 nanoparticles doped with the lanthanide ions Yb3+ and Er3+. Monodisperse ∼20 nm NaYF4:Yb,Er nanocrystals were coated with a ∼10 nm silica shell. Upon excitation with infrared radiation, bright green upconversion (UC) emission is observed. From the intensity ratio between 2H11/2 and 4S3/2 UC emission lines at 520 and 550 nm, respectively, the temperature can be determined up to at least 900 K with an accuracy of 1–5 K for silica-coated NPs. For bare NaYF4:Yb,Er NPs, the particles degrade above 600 K. Repeated thermal cycling experiments demonstrate the high durability and reproducibility of the silica-coated nanocrystals as temperature probes without any loss of performance. The present results open avenues for the development of a new class of highly stable nanoprobes by applying a silica coating around a wide variety of lanthanide-doped NPs. PMID:28303168

  18. NaYF4:Er(3+),Yb(3+)/SiO2 Core/Shell Upconverting Nanocrystals for Luminescence Thermometry up to 900 K.

    Science.gov (United States)

    Geitenbeek, Robin G; Prins, P Tim; Albrecht, Wiebke; van Blaaderen, Alfons; Weckhuysen, Bert M; Meijerink, Andries

    2017-02-16

    The rapid development of nanomaterials with unique size-tunable properties forms the basis for a variety of new applications, including temperature sensing. Luminescent nanoparticles (NPs) have demonstrated potential as sensitive nanothermometers, especially in biological systems. Their small size offers the possibility of mapping temperature profiles with high spatial resolution. The temperature range is however limited, which prevents use in high-temperature applications such as, for example, nanoelectronics, thermal barrier coatings, and chemical reactors. In this work, we extend the temperature range for nanothermometry beyond 900 K using silica-coated NaYF4 nanoparticles doped with the lanthanide ions Yb(3+) and Er(3+). Monodisperse ∼20 nm NaYF4:Yb,Er nanocrystals were coated with a ∼10 nm silica shell. Upon excitation with infrared radiation, bright green upconversion (UC) emission is observed. From the intensity ratio between (2)H11/2 and (4)S3/2 UC emission lines at 520 and 550 nm, respectively, the temperature can be determined up to at least 900 K with an accuracy of 1-5 K for silica-coated NPs. For bare NaYF4:Yb,Er NPs, the particles degrade above 600 K. Repeated thermal cycling experiments demonstrate the high durability and reproducibility of the silica-coated nanocrystals as temperature probes without any loss of performance. The present results open avenues for the development of a new class of highly stable nanoprobes by applying a silica coating around a wide variety of lanthanide-doped NPs.

  19. Photofragmentation of BF{sub 3} on B and F K-shell excitation by partial ion yield spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guillemin, Renaud [CNRS, UMR 7614, Laboratoire de Chimie Physique Matiere et Rayonnement, F-75005 Paris (France); Stolte, Wayne C; Lindle, Dennis W [Department of Chemistry, University of Nevada, Las Vegas, NV 89154-4003 (United States); Piancastelli, Maria Novella, E-mail: renaud.guillemin@upmc.f [Department of Physics and Astronomy, Uppsala University, PO Box 516, SE-751 20 Uppsala (Sweden)

    2010-11-14

    The fragmentation of core-excited BF{sub 3} has been studied by means of partial cation and anion yield measurements around the B and F K edges. All detectable ionic fragments are reported, and differences among the fragments are discussed. The observations confirm earlier findings on the dynamics of molecular fragmentation studied by partial ion yields, notably on the influence of Rydberg excitations on fragmentation, the behaviour of anion production near threshold, and the importance of intramolecular rearrangement in the formation of F{sup +}{sub 2} ions.

  20. K/Ar chronologies of tephra units from the Middle Jurassic Sundance, and Late Early Cretaceous Mowry and Shell Creek Formations, Big Horn Basin, WY

    Science.gov (United States)

    Jiang, H.; Meyer, E. E.; Johnson, G. D.

    2013-12-01

    The Middle Jurassic Sundance and Late Early Cretaceous Shell Creek and Mowry Formations of the Big Horn Basin, Wyoming, contain an extensive record of altered tephra. These tephra are likely related to contemporary volcanic activity in the Sierra Nevada and various Coast Range terranes to the west and provide valuable chronometric control on the sedimentary record within a portion of the Sevier-aged and later Cordilleran foreland basin. In addition, several of these altered tephra (bentonites) provide a valuable economic resource. Despite the prominence of these strata across the basin, few isotopic ages have been reported to date. Here we present new K/Ar ages on biotite phenocrysts from those tephra occurrences as a chronometric check on samples that contained zircons with significant Pb loss, that preclude more precise U/Pb age determinations. A bulk biotite sample extracted from an altered tuff in the Lower Sundance Formation gives an age of 167.5 × 5 Ma. This tuff occurs just above a dinosaur track-bearing peritidal sequence. Bulk biotite ages from the lower Shell Creek Formation give an age of 100.3 × 3 Ma and are statistically indistinguishable from biotite grains dated at 103.1 × 3 Ma extracted from the economically important 'Clay Spur' bentonite found at the top of the Mowry Shale. This work provides important new chronometric constraints on a portion of the Medial Jurassic to Late Early Cretaceous stratigraphy of the Big Horn Basin, Wyoming, and may be useful in understanding the regional tectonics that helped shape the development of the Sevier foreland basin and Western Interior Seaway.

  1. Direct K-shell ionization probabilities in 30-MeV/u Ne- and 8.3-MeV/u C-induced reactions near zero impact parameter

    NARCIS (Netherlands)

    Kravchuk, VL; Wilschut, HW; van den Berg, AM; Davids, B; Fleurot, F; Hunyadi, M; de Huu, MA; Lohner, H; van der Woude, A

    2003-01-01

    Direct K-shell ionization probabilities were measured in coincidence with elastically scattered particles in 30-MeV/u Ne+Sn, Tb, Pb, Th and 8.3-MeV/u C+Zr, Ag, Sn, Sm, Au, Pb, Th reactions. Experimental data were compared with calculations in the semiclassical approximation. The transitional behavio

  2. First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications

    Science.gov (United States)

    Ri, Gum-Chol; Yu, Chol-Jun; Kim, Jin-Song; Hong, Song-Nam; Jong, Un-Gi; Ri, Mun-Hyok

    2016-08-01

    First-principles calculations were carried out to investigate the structural, energetic, and electronic properties of ternary graphite compounds cointercalated with alkali atoms (AM = Li, Na, and K) and normal alkylamine molecules (nCx; x = 1, 2, 3, 4), denoted as AM-nCx-GICs. From the optimization of the orthorhombic unit cells for the crystalline compounds, it was found that, with the increase in the atomic number of alkali atoms, the layer separations decrease in contrast to AM-GICs, while the bond lengths between alkali atoms and graphene layer, and nitrogen atom of alkylamine increase. The calculated formation energies and interlayer binding energies of AM-nC3-GICs indicate that the compounds is increasingly stabilized from Li to K, and the energy barriers for migration of alkali atoms suggest that alkali cation with larger ionic radius diffuses more smoothly in graphite, being similar to AM-GICs. Through the analysis of electronic properties, it was established that more extent of electronic charge is transferred from more electropositive alkali atom to the carbon ring of graphene layer, and the hybridization of valence electron orbitals between alkylamine molecules and graphene layer is occurred.

  3. The fission time scale measured with an atomic clock

    NARCIS (Netherlands)

    Kravchuk, VL; Wilschut, HW; Hunyadi, M; Kopecky, S; Lohner, H; Rogachevskiy, A; Siemssen, RH; Krasznahorkay, A; Hamilton, JH; Ramayya, AV; Carter, HK

    2003-01-01

    We present a new direct method of measuring the fission absolute time scale using an atomic clock based on the lifetime of a vacancy in the atomic K-shell. We studied the reaction Ne-20 + Th-232 -> O-16 + U-236* at 30 MeV/u. The excitation energy of about 115 MeV in such a reaction is in the range w

  4. Formation of hollow atoms above a surface

    Science.gov (United States)

    Briand, Jean Pierre; Phaneuf, Ronald; Terracol, Stephane; Xie, Zuqi

    2012-06-01

    Slow highly stripped ions approaching or penetrating surfaces are known to capture electrons into outer shells of the ions, leaving the innermost shells empty, and forming hollow atoms. Electron capture occurs above and below the surfaces. The existence of hollow atoms below surfaces e.g. Ar atoms whose K and L shells are empty, with all electrons lying in the M and N shells, was demonstrated in 1990 [1]. At nm above surfaces, the excited ions may not have enough time to decay before hitting the surfaces, and the formation of hollow atoms above surfaces has even been questioned [2]. To observe it, one must increase the time above the surface by decelerating the ions. We have for the first time decelerated O^7+ ions to energies as low as 1 eV/q, below the minimum energy gained by the ions due to the acceleration by their image charge. As expected, no ion backscattering (trampoline effect) above dielectric (Ge) was observed and at the lowest ion kinetic energies, most of the observed x-rays were found to be emitted by the ions after surface contact. [4pt] [1] J. P. Briand et al., Phys.Rev.Lett. 65(1990)159.[0pt] [2] J.P. Briand, AIP Conference Proceedings 215 (1990) 513.

  5. K-shell photoabsorption and photoionisation of trace elements. I. Isoelectronic sequences with electron number 3 ≤N ≤ 11

    Science.gov (United States)

    Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Witthoeft, M. C.; Kallman, T. R.

    2016-05-01

    Context. With the recent launching of the Hitomi X-ray space observatory, K lines and edges of chemical elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn, can be resolved and used to determine important properties of supernova remnants, galaxy clusters and accreting black holes and neutron stars. Aims: The second stage of the present ongoing project involves the computation of the accurate photoabsorption and photoionisation cross sections required to interpret the X-ray spectra of such trace elements. Methods: Depending on target complexity and computer tractability, ground-state cross sections are computed either with the close-coupling Breit-Pauli R-matrix method or with the autostructure atomic structure code in the isolated-resonance approximation. The intermediate-coupling scheme is used whenever possible. In order to determine a realistic K-edge behaviour for each species, both radiative and Auger dampings are taken into account, the latter being included in the R-matrix formalism by means of an optical potential. Results: Photoabsorption and total and partial photoionisation cross sections are reported for isoelectronic sequences with electron numbers 3 ≤ N ≤ 11. The Na sequence (N = 11) is used to estimate the contributions from configurations with a 2s hole (i.e. [2s]μ) and those containing 3d orbitals, which will be crucial when considering sequences with N > 11. Conclusions: It is found that the [2s]μ configurations must be included in the target representations of species with N ≥ 11 as they contribute significantly to the monotonic background of the cross section between the L and K edges. Configurations with 3d orbitals are important in rendering an accurate L edge, but they can be practically neglected in the K-edge region.

  6. Evidence for ultra-fast outflows in radio-quiet AGNs: I - detection and statistical incidence of Fe K-shell absorption lines

    CERN Document Server

    Tombesi, F; Reeves, J N; Palumbo, G G C; Yaqoob, T; Braito, V; Dadina, M

    2010-01-01

    We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies E>7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3x10^-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability <10^-7. We identify the lines as Fe XXV and Fe XXVI K-shell resonant absorption. They are systematically blue-shifted, with a velocity distribution ranging from zero up to 0.3c, with a peak and mean value at 0.1c. We detect variability of the lines on both EWs and blue-shifted velocities among different observations even on time-scales as short as a few days, possibly suggesting somewhat compact absorbers. Moreover, we find no significant correlation between the cosmological red-sh...

  7. Probing atomic and molecular dynamics from within

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, N. E-mail: berrah@wmich.edu; Bilodeau, R.C.; Ackerman, G.; Bozek, J.D.; Turri, G.; Kukk, E.; Cheng, W.T.; Snell, G

    2004-08-01

    We have investigated with unprecedented levels of detail photodetachment of negative ions and photoionization of molecules using the brightness, spectral resolution, and tunability of the Advanced Light Source at Lawrence Berkeley National Laboratory. In particular, we report here on investigations carried out in K-shell photodetachment of atomic Li{sup -} and He{sup -}. We also report on angular distribution of core-level iodine 4d photoelectrons from the HI molecule. In both cases comparison with calculations is discussed.

  8. Comment on "Optical Response of Gas-Phase Atoms at Less than lambda/80 from a Dielectric Surface" published by K. A. Whittaker et al.

    CERN Document Server

    Bloch, Daniel

    2015-01-01

    Comment on "Optical Response of Gas-Phase Atoms at Less than lambda/80 from a Dielectric Surface" published by K. A. Whittaker, J. Keaveney, I. G. Hughes, A. Sargsyan, D. Sarkisyan, C. S. Adams in Phys. Rev. Lett. Lett 112 253201 (2014)

  9. An investigation into the effect of spray drying temperature and atomizing conditions on miscibility, physical stability, and performance of naproxen-PVP K 25 solid dispersions.

    Science.gov (United States)

    Paudel, Amrit; Loyson, Yves; Van den Mooter, Guy

    2013-04-01

    The present study investigates the effect of changing spray drying temperature (40°C-120°C) and/or atomizing airflow rate (AR; 5-15 L/min) on the phase structure, physical stability, and performance of spray-dried naproxen-polyvinylpyrrolidone (PVP) K 25 amorphous solid dispersions. The modulated differential scanning calorimetry, attenuated total internal reflectance-Fourier transform infrared, and powder X-ray diffractometry (pXRD) studies revealed that higher inlet temperature (IT) or atomization airflow leads to the formation of amorphous-phase-separated dispersions with higher strongly H-bonded and free PVP fractions, whereas that prepared with the lowest IT was more homogeneous. The dispersion prepared with the lowest atomization AR showed trace crystallinity. Upon exposure to 75% relative humidity (RH) for 3 weeks, the phase-separated dispersions generated by spray drying at higher temperature or higher atomization airflow retained relatively higher amorphous drug fraction compared with those prepared at slow evaporation conditions. The humidity-controlled pXRD analysis at 98% RH showed that the dispersion prepared with highest atomization AR displayed the slowest kinetics of recrystallization. The molecular-level changes occurring during recrystallization at 98% RH was elucidated by spectroscopic monitoring at the same humidity. The rate and extent of the drug dissolution was the highest for dispersions prepared at the highest atomizing AR and the lowest for that prepared with the slowest atomizing condition.

  10. Evidence for Ultra-fast Outflows in Radio-quiet Active Galactic Nuclei. II. Detailed Photoionization Modeling of Fe K-shell Absorption Lines

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-11-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s-1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ~10,000 km s-1 (~0.03c) up to ~100,000 km s-1 (~0.3c), with a peak and mean value of ~42,000 km s-1 (~0.14c). The ionization parameter is very high and in the range log ξ ~ 3-6 erg s-1 cm, with a mean value of log ξ ~ 4.2 erg s-1 cm. The associated column densities are also large, in the range N H ~ 1022-1024 cm-2, with a mean value of N H ~ 1023 cm-2. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can

  11. Probing/Manipulating the Interfacial Atomic Bonding between High k Dielectrics and InGaAs for Ultimate CMOS

    Science.gov (United States)

    2015-04-24

    elucidated the mechanism and nature of the bonding between the Hf atom in TEMAHf and In/As atoms of the reconstructed In0.53Ga0.47As(001)-4x2 surface... SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 11 19a. NAME OF RESPONSIBLE PERSON Kenneth Caster, Ph.D...identification of atom-toatom interaction at this interface. This work has elucidated the mechanism and nature of the bonding between the Hf atom in TEMAHf

  12. Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition

    Science.gov (United States)

    Kayaci, Fatma; Vempati, Sesha; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2014-05-01

    Heterojunctions are a well-studied material combination in photocatalysis studies, the majority of which aim to improve the efficacy of the catalysts. Developing novel catalysts begs the question of which photo-generated charge carrier is more efficient in the process of catalysis and the associated mechanism. To address this issue we have fabricated core-shell heterojunction (CSHJ) nanofibers from ZnO and TiO2 in two combinations where only the `shell' part of the heterojunction is exposed to the environment to participate in the photocatalysis. Core and shell structures were fabricated via electrospinning and atomic layer deposition, respectively which were then subjected to calcination. These CSHJs were characterized and studied for photocatalytic activity (PCA). These two combinations expose electrons or holes selectively to the environment. Under suitable illumination of the ZnO-TiO2 CSHJ, e/h pairs are created mainly in TiO2 and the electrons take part in catalysis (i.e. reduce the organic dye) at the conduction band or oxygen vacancy sites of the `shell', while holes migrate to the core of the structure. Conversely, holes take part in catalysis and electrons diffuse to the core in the case of a TiO2-ZnO CSHJ. The results further revealed that the TiO2-ZnO CSHJ shows ~1.6 times faster PCA when compared to the ZnO-TiO2 CSHJ because of efficient hole capture by oxygen vacancies, and the lower mobility of holes.Heterojunctions are a well-studied material combination in photocatalysis studies, the majority of which aim to improve the efficacy of the catalysts. Developing novel catalysts begs the question of which photo-generated charge carrier is more efficient in the process of catalysis and the associated mechanism. To address this issue we have fabricated core-shell heterojunction (CSHJ) nanofibers from ZnO and TiO2 in two combinations where only the `shell' part of the heterojunction is exposed to the environment to participate in the photocatalysis. Core and

  13. Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition.

    Science.gov (United States)

    Kayaci, Fatma; Vempati, Sesha; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2014-06-07

    Heterojunctions are a well-studied material combination in photocatalysis studies, the majority of which aim to improve the efficacy of the catalysts. Developing novel catalysts begs the question of which photo-generated charge carrier is more efficient in the process of catalysis and the associated mechanism. To address this issue we have fabricated core-shell heterojunction (CSHJ) nanofibers from ZnO and TiO2 in two combinations where only the 'shell' part of the heterojunction is exposed to the environment to participate in the photocatalysis. Core and shell structures were fabricated via electrospinning and atomic layer deposition, respectively which were then subjected to calcination. These CSHJs were characterized and studied for photocatalytic activity (PCA). These two combinations expose electrons or holes selectively to the environment. Under suitable illumination of the ZnO-TiO2 CSHJ, e/h pairs are created mainly in TiO2 and the electrons take part in catalysis (i.e. reduce the organic dye) at the conduction band or oxygen vacancy sites of the 'shell', while holes migrate to the core of the structure. Conversely, holes take part in catalysis and electrons diffuse to the core in the case of a TiO2-ZnO CSHJ. The results further revealed that the TiO2-ZnO CSHJ shows ∼1.6 times faster PCA when compared to the ZnO-TiO2 CSHJ because of efficient hole capture by oxygen vacancies, and the lower mobility of holes.

  14. Stereo and scanning electron microscopy of in-shell Brazil nut (Bertholletia excelsa H.B.K.): part two-surface sound nut fungi spoilage susceptibility.

    Science.gov (United States)

    Scussel, Vildes M; Manfio, Daniel; Savi, Geovana D; Moecke, Elisa H S

    2014-11-01

    This work reports the in-shell Brazil nut spoilage susceptible morpho-histological characteristics and fungi infection (shell, edible part, and brown skin) through stereo and scanning electron microscopies (SEM). The following characteristics related to shell (a) morphology-that allow fungi and insects' entrance to inner nut, and (b) histology-that allow humidity absorption, improving environment conditions for living organisms development, were identified. (a.1) locule in testae-the nut navel, which is a cavity formed during nut detaching from pods (located at 1.0 to 2.0/4th of the shell B&C nut faces linkage). It allows the nut brown skin (between shell and edible part) first contact to the external environment, through the (a.2) nut channel-the locule prolongation path, which has the water/nutrients cambium function for their transport and distribution to the inner seed (while still on the tree/pod). Both, locule followed by the channel, are the main natural entrance of living organisms (fungi and insects), including moisture to the inner seed structures. In addition, the (a.3) nut shell surface-which has a crinkled and uneven surface morphology-allows water absorption, thus adding to the deterioration processes too. The main shell histological characteristic, which also allows water absorption (thus improving environment conditions for fungi proliferation), is the (b.1) cell wall porosity-the multilayered wall and porous rich cells that compose the shell faces double tissue layers and the (b.2) soft tissue-the mix of tissues 2 faces corner/linkage. This work also shows in details the SEM nut spoilage susceptible features highly fungi infected with hyphae and reproductive structures distribution.

  15. Comparative band alignment of plasma-enhanced atomic layer deposited high-k dielectrics on gallium nitride

    Science.gov (United States)

    Yang, Jialing; Eller, Brianna S.; Zhu, Chiyu; England, Chris; Nemanich, Robert J.

    2012-09-01

    Al2O3 films, HfO2 films, and HfO2/Al2O3 stacked structures were deposited on n-type, Ga-face, GaN wafers using plasma-enhanced atomic layer deposition (PEALD). The wafers were first treated with a wet-chemical clean to remove organics and an in-situ combined H2/N2 plasma at 650 °C to remove residual carbon contamination, resulting in a clean, oxygen-terminated surface. This cleaning process produced slightly upward band bending of 0.1 eV. Additional 650 °C annealing after plasma cleaning increased the upward band bending by 0.2 eV. After the initial clean, high-k oxide films were deposited using oxygen PEALD at 140 °C. The valence band and conduction band offsets (VBOs and CBOs) of the Al2O3/GaN and HfO2/GaN structures were deduced from in-situ x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). The valence band offsets were determined to be 1.8 and 1.4 eV, while the deduced conduction band offsets were 1.3 and 1.0 eV, respectively. These values are compared with the theoretical calculations based on the electron affinity model and charge neutrality level model. Moreover, subsequent annealing had little effect on these offsets; however, the GaN band bending did change depending on the annealing and processing. An Al2O3 layer was investigated as an interfacial passivation layer (IPL), which, as results suggest, may lead to improved stability, performance, and reliability of HfO2/IPL/GaN structures. The VBOs were ˜0.1 and 1.3 eV, while the deduced CBOs were 0.6 and 1.1 eV for HfO2 with respect to Al2O3 and GaN, respectively.

  16. Kinetics of the reaction of F atoms with Osub>2sub> and UV spectrum of FOsub>2sub> radicals in the gas phase at 295 K

    DEFF Research Database (Denmark)

    Ellermann, T.; Sehested, J.; Nielsen, O.J.

    1994-01-01

    The ultraviolet absorption spectrum of FO2 radicals and the kinetics of the reaction of F atoms with O2 have been studied in the gas phase at 295 K using pulse radiolysis combined with kinetic UV spectroscopy. At 230 nm, sigma(FO2) = (5.08 +/- 0.70) X 10(-18) cm2 molecule-1. The kinetics of the r......The ultraviolet absorption spectrum of FO2 radicals and the kinetics of the reaction of F atoms with O2 have been studied in the gas phase at 295 K using pulse radiolysis combined with kinetic UV spectroscopy. At 230 nm, sigma(FO2) = (5.08 +/- 0.70) X 10(-18) cm2 molecule-1. The kinetics...

  17. Deposition of conductive TiN shells on SiO2 nanoparticles with a fluidized bed ALD reactor

    Science.gov (United States)

    Didden, Arjen; Hillebrand, Philipp; Wollgarten, Markus; Dam, Bernard; van de Krol, Roel

    2016-02-01

    Conductive TiN shells have been deposited on SiO2 nanoparticles (10-20 nm primary particle size) with fluidized bed atomic layer deposition using TDMAT and NH3 as precursors. Analysis of the powders confirms that shell growth saturates at approximately 0.4 nm/cycle at TDMAT doses of >1.2 mmol/g of powder. TEM and XPS analysis showed that all particles were coated with homogeneous shells containing titanium. Due to the large specific surface area of the nanoparticles, the TiN shells rapidly oxidize upon exposure to air. Electrical measurements show that the partially oxidized shells are conducting, with apparent resistivity of approximately 11 kΩ cm. The resistivity of the powders is strongly influenced by the NH3 dose, with a smaller dose giving an order-of-magnitude higher resistivity.

  18. The study of the action of self-friction field on the atom and molecular structures by using combined Hartree-Fock-Roothaan theory for closed and open shells of any symmetry

    Science.gov (United States)

    Mamedov, B. A.; Çopuroğlu, E.

    2016-06-01

    In this work, we study the effects of self-friction field on the states of a single configuration of closed and open shells by using the Combined Hartree-Fock-Roothaan equations for atomic-molecular and nuclear systems. Here, we present a program that implements the evaluation of the various properties of atoms and molecular systems with respect to the various values of self-friction quantum numbers. An especially fast and accurate algorithm for the calculation of the self-friction multicenter molecular integrals is obtained by using one-range addition theorems. To demonstrate the action of self-friction field on the atomic and molecular systems we have performed the calculations of H2O, CH3, CH2 and NH3 molecules. For the derivations of the orbital, kinetic and total energies and linear combination coefficients, the results are given for various values of self-friction quantum numbers. For various values of self-friction quantum numbers the obtained results of the orbital, kinetic and total energies and linear combination coefficients have been analyzed.

  19. Rate coefficients for hydrogen abstraction reaction of pinonaldehyde C10H16O2 with Cl atoms between 200 and 400 K: A DFT study

    Indian Academy of Sciences (India)

    G SRINIVASULU; B RAJAKUMAR

    2016-06-01

    The kinetics of the reaction between pinonaldehyde C10H16O2 and Cl atom were studied usinghigh level ab initio G3(MP2) and DFT based MPWB1K/6-31+G(d) and MPW1K/6-31+G(d) levels of theoriescoupled with Conventional Transition State Theory in the temperature range between 200 and 400 K. Thenegative temperature dependent rate expression for the title reaction obtained with Wigner’s and Eckart’s symmetricaltunneling corrections are k(T)=(5.1 ± 0.56) × 10−19T2.35exp[(2098 ± 2)/T] cm3 molecule-1 s-1, and k(T)=(0.92 ± 0.18) × 10-19T2.60exp[(2204 ± 4)/T] cm3 molecule-1 s-1, respectively, at G3(MP2)//MPWB1Kmethod. The H abstraction reaction from the –CHO group was found to be the most dominant reaction channelamong all the possible reaction pathways and its corresponding rate coefficient at 300 K is kEckart’s unsymmetrical= 3.86 ×10-10 cm3 molecule-1 s-1. Whereas the channel with immediate lower activation energy is the H-abstraction from –CH- group (Tertiary H-abstraction site, Cg). The rate coefficient for this channel is kCg(Eckart’s unsymmetrical) = 1.83 ×10-15 cm3 molecule-1 s-1 which is smaller than the dominant channel byfive orders of magnitude. The atmospherically relevant parameters such as lifetimes were computed in thisinvestigation of its reaction with Cl atom.

  20. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range

    Science.gov (United States)

    Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  1. Observation of internal structure of the L-shell x-ray hypersatellites for palladium atoms multiply ionized by fast oxygen ions

    OpenAIRE

    Czarnota, M.; Banaś, D; Berset, Michel; Chmielewska, D; Dousse, Jean-Claude; Hoszowska, Joanna; Maillard, Yves-Patrick; Mauron, Olivier; Pajek, M.; Polasik, M.; Raboud, Pierre-Alexandre; Rzadkiewicz, J.; Słabkowska, K.; Sujkowski, Z.

    2010-01-01

    An observation of the internal structure of the L-shell hypersatellite x rays resulting from the one-photon decay of L⁻² double-vacancy states in palladium multiply ionized by oxygen ions is reported. The Pd L₃→M4,5 x-ray spectrum was measured with a von Hamos high-resolution crystal spectrometer. The complex shape of the observed spectrum could be interpreted in detail using relativistic multiconfiguration Dirac-Fock calculations. The relative intensities of the measured x rays were found to...

  2. Absorption spectrum of very low pressure atomic hydrogen

    CERN Document Server

    Moret-Bailly, Jacques

    2015-01-01

    Spectra of quasars result primarily from interactions of natural light with atomic hydrogen. A visible absorption of a sharp and saturated spectral line in a gas requires a low pressure, so a long path without blushing as a cosmological redshift. Burbidge and Karlsson observed that redshifts of quasars result from fundamental redshifts, written 3K and 4K, that cause a shift of absorbed beta and gamma lines of H to alpha gas line. Thus absorbed spectrum is shifted until an absorbed line overlaps with Lyman alpha line of gas: redshift only occurs if an alpha absorption pumps atoms to 2P state. Thus, space is divided into spherical shells centered on the quasar, containing or not 2P atoms. Neglecting collisional de-excitations in absorbing shells, more and more atoms are excited until amplification of a beam having a long path in a shell, thus perpendicular to the observed ray, is large enough for a superradiant flash at alpha frequency. Energy is provided by atoms and observed ray, absorbing a line at local Lym...

  3. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    Science.gov (United States)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  4. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karcı, Özgür [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Dede, Münir [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Oral, Ahmet, E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  5. Study of apical oxygen atoms in a spin-ladder cuprate compound by X-ray absorption spectroscopy near the Cu K edge

    Energy Technology Data Exchange (ETDEWEB)

    Hatterer, C.J.; Eustache, B.; Collin, L.; Beuran, C.F.; Partiot, C.; Germain, P.; Xu, X.Z.; Lagues, M. [CNRS, Paris (France). Surfaces et Supraconducteurs; Michalowicz, A. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France)]|[LURE, Universite Paris Sud, 91405, Orsay Cedex (France); Moscovici, J. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France); Deville Cavellin, C. [CNRS, Paris (France). Surfaces et Supraconducteurs]|[Laboratoire d`Electronique, Universite Paris XII Val-de-Marne, 61 av. du general de Gaulle, 94010, Creteil Cedex (France); Traverse, A. [LURE, Universite Paris Sud, 91405, Orsay Cedex (France)

    1997-04-01

    The structure of high-T{sub c} superconducting cuprate compounds is based on CuO{sub 2} planes alternating with blocks that behave as charge reservoirs. The apical oxygen atoms which belong to these reservoirs are suspected to play a role in the mechanism of superconductivity. It thus seems necessary to measure the amount of apical oxygen atoms in various compounds, as a function of the superconducting properties. Polarisation dependent X-ray absorption spectroscopy (XAS) measurements were performed near the Cu K-edge on three types of phases. We collected information about the neighbourhood of the copper atom in the cuprate planes and in the direction perpendicular to these planes. Two of these phases have well known structures: Bi2212 in which copper atoms are on a pyramidal site and infinite layer phase, a square planar cuprate without apical oxygen. We used the obtained results as reference data to study a new copper-rich phase related to the spin-ladder series. (orig.)

  6. Adiabatic Channel Capture Theory Applied to Cold Atom-Molecule Reactions: Li + CaH -> LiH + Ca at 1 K

    CERN Document Server

    Tscherbul, Timur V

    2014-01-01

    We use quantum and classical adiabatic capture theories to study the chemical reaction Li + CaH -> LiH + Ca. Using a recently developed ab initio potential energy surface, which provides an accurate representation of long-range interactions in the entrance reaction channel, we calculate the adiabatic channel potentials by diagonalizing the atom-molecule Hamiltonian as a function of the atom-molecule separation. The resulting adiabatic channel potentials are used to calculate both the classical and quantum capture probabilities as a function of collision energy, as well as the temperature dependencies of the partial and total reaction rates. The calculated reaction rate agrees well with the measured value at 1 K [V. Singh et al., Phys. Rev. Lett. 108, 203201 (2012)], suggesting that the title reaction proceeds without an activation barrier. The calculated classical adiabatic capture rate agrees well with the quantum result in the multiple partial wave regime of relevance to the experiment. Significant differen...

  7. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  8. Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone.

    Science.gov (United States)

    Cheng, Lanxia; Qin, Xiaoye; Lucero, Antonio T; Azcatl, Angelica; Huang, Jie; Wallace, Robert M; Cho, Kyeongjae; Kim, Jiyoung

    2014-08-13

    We present an Al2O3 dielectric layer on molybdenum disulfide (MoS2), deposited using atomic layer deposition (ALD) with ozone/trimethylaluminum (TMA) and water/TMA as precursors. The results of atomic force microscopy and low-energy ion scattering spectroscopy show that using TMA and ozone as precursors leads to the formation of uniform Al2O3 layers, in contrast to the incomplete coverage we observe when using TMA/H2O as precursors. Our Raman and X-ray photoelectron spectroscopy measurements indicate minimal variations in the MoS2 structure after ozone treatment at 200 °C, suggesting its excellent chemical resistance to ozone.

  9. Aqueous extract of pecan nut shell (Carya illinoensis [Wangenh.] K. Koch) exerts protection against oxidative damage induced by cyclophosphamide in rat testis.

    Science.gov (United States)

    Benvegnu, Dalila M; Barcelos, Raquel C S; Roversi, Katiane; Boufleur, Nardelli; Pase, Camila S; Trevizol, Fabiola; Segat, Hecson J; Dias, Verônica T; Dolci, Geisa S; Antoniazzi, Caren T D; Reckziegel, Patricia; Lima, Fernanda; de Lima, Luiz A R; de Carvalho, Leandro M; da Silva Junior, Valdemiro A; Burger, Marilise E

    2013-01-01

    This study investigated the protective effect of pecan nut (Carya illinoensis) shell aqueous extract (AE) on the oxidative and morphological status of rat testis treated with cyclophosphamide (CP). Wistar rats received water or AE (5%) ad libitum for 37 days. On day 30, half of each group received a single intraperitoneal administration of vehicle or CP 200 mg/kg. After 7 days, the animals were killed and their testis removed. Rats treated with CP presented reduced levels of lactate dehydrogenase, vitamin C, and gluthatione, as well as decreased catalase activity, increased lipid peroxidation levels and superoxide dismutase activity, no alteration in carbonyl protein levels, and a loss of morphological testicular integrity. In contrast, cotreatment with pecan shell AE totally prevented the decrease of lactate dehydrogenase and vitamin C levels and catalase activity and partially prevented the depletion of gluthatione levels. Moreover, it totally prevented the increase in superoxide dismutase activity and lipid peroxidation levels and maintained testicular integrity. These findings show the protective role of pecan shell AE in CP-induced testicular toxicity. The use of this phytotherapy may be considered to minimize deleterious effects related to this chemotherapy.

  10. Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles

    KAUST Repository

    Ding, Yong

    2010-09-08

    Using a two-step seed-mediated growth method, we synthesized bimetallic nanoparticles (NPs) having a gold octahedron core and a palladium epitaxial shell with controlled Pd-shell thickness. The mismatch-release mechanism between the Au core and Pd shell of the NPs was systematically investigated by high-resolution transmission electron microscopy. In the NPs coated with a single atomic layer of Pd, the strain between the surface Pd layer and the Au core is released by Shockley partial dislocations (SPDs) accompanied by the formation of stacking faults. For NPs coated with more Pd (>2 nm), the stacking faults still exist, but no SPDs are found. This may be due to the diffusion of Au atoms into the Pd shell layers to eliminate the SPDs. At the same time, a long-range ordered L11 AuPd alloy phase has been identified in the interface area, supporting the assumption of the diffusion of Au into Pd to release the interface mismatch. With increasing numbers of Pd shell layers, the shape of the Au-Pd NP changes, step by step, from truncated-octahedral to cubic. After the bimetallic NPs were annealed at 523 K for 10 min, the SPDs at the surface of the NPs coated with a single atomic layer of Pd disappeared due to diffusion of the Au atoms into the surface layer, while the stacking faults and the L11 Au-Pd alloyed structure remained. When the annealing temperature was increased to 800 K, electron diffraction patterns and diffraction contrast images revealed that the NPs became a uniform Au-Pd alloy, and most of the stacking faults disappeared as a result of the annealing. Even so, some clues still support the existence of the L11 phase, which suggests that the L11 phase is a stable, long-range ordered structure in Au-Pd bimetallic NPs. © 2010 American Chemical Society.

  11. 利用K—shell分析合著网络中的作者传播影响力%Influential Spreaders in Co -author Network Based on K- shell

    Institute of Scientific and Technical Information of China (English)

    张金柱

    2012-01-01

    以情报学领域的12种期刊在2000—2009年间的7389位作者形成的合著网络为例,分别基于度和K—shell,介数和K—shell对作者传播影响力进行比较分析。结果表明,K—shell值较度、介数能更好地表征作者的传播影响力。这种方法可以推广到基于科技文献数据的其他网络中,如识别文献共被引网络、文献耦合网络中最具传播影响力的关键文献。%Based on the data comes from 12 journals between 2000 -2009 which contains 7 389 different authors, this paper computes the degree, betweenness centrality and K - shell and makes a comparative analysis. The results show that K - shell does better in identification of influential spreaders in co - author network. This method can be also used in co - citation network and coupling network for identification of influential spreaders.

  12. The atomic orbitals of the topological atom.

    Science.gov (United States)

    Ramos-Cordoba, Eloy; Salvador, Pedro; Mayer, István

    2013-06-07

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure.

  13. Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100 at 5 K: Probing the probe

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2012-01-01

    Full Text Available Background: Noncontact atomic force microscopy (NC-AFM now regularly produces atomic-resolution images on a wide range of surfaces, and has demonstrated the capability for atomic manipulation solely using chemical forces. Nonetheless, the role of the tip apex in both imaging and manipulation remains poorly understood and is an active area of research both experimentally and theoretically. Recent work employing specially functionalised tips has provided additional impetus to elucidating the role of the tip apex in the observed contrast.Results: We present an analysis of the influence of the tip apex during imaging of the Si(100 substrate in ultra-high vacuum (UHV at 5 K using a qPlus sensor for noncontact atomic force microscopy (NC-AFM. Data demonstrating stable imaging with a range of tip apexes, each with a characteristic imaging signature, have been acquired. By imaging at close to zero applied bias we eliminate the influence of tunnel current on the force between tip and surface, and also the tunnel-current-induced excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100.Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100 surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide a valuable resource for theoreticians working on the development of realistic tip structures for NC-AFM simulations. Force spectroscopy measurements show that the tip termination critically affects both the short-range force and dissipated energy.

  14. The effect of the Wyckoff position of the K atom on the crystal structure and electronic properties of the compound KFe₂Se₂.

    Science.gov (United States)

    Yan, Xun-Wang; Gao, Miao

    2012-11-14

    By means of first-principles electronic structure calculations, we study the effect of the Wyckoff position of the K atom on the crystal and electronic structures of the compound KFe(2)Se(2). When the K atoms take up the Wyckoff positions 2a, 2b and 4c (the related structures of KFe(2)Se(2) are referred to as Struc-2a, Struc-2b and Struc-4c), the calculated lattice constants c lie in the ranges 13.5-14.5, 15.5-16.7 or 18.6-19.1 Å respectively. Three concentric cylinder-like Fermi surfaces emerge around Γ-Z in the Brillouin zone for Struc-2b in the nonmagnetic state, unlike the cases for Struc-2a and Struc-4c. The Fe-Se-Fe angles are 107.8°, 108.8° and 110.7° respectively in the collinear antiferromagnetic state, and the superexchange interactions J(2) between two next neighbor Fe moments are 13.08 meV S(-2), 20.75 meV S(-2) and 11.86 meV S(-2) for the Struc-2a, Struc-2b and Struc-4c structures respectively. Struc-2b and Struc-4c have good correspondence with the newly discovered superconducting phases with T(c) = 40 and 30 K in KFe(2)Se(2). Our findings suggest a reasonable approach for achieving an understanding of the existence of multiple superconducting phases in alkali metal intercalated FeSe superconductor.

  15. Fabrication of 3D core-shell multiwalled carbon nanotube@RuO2 lithium-ion battery electrodes through a RuO2 atomic layer deposition process.

    Science.gov (United States)

    Gregorczyk, Keith E; Kozen, Alexander C; Chen, Xinyi; Schroeder, Marshall A; Noked, Malachi; Cao, Anyuan; Hu, Liangbing; Rubloff, Gary W

    2015-01-27

    Pushing lithium-ion battery (LIB) technology forward to its fundamental scaling limits requires the ability to create designer heterostructured materials and architectures. Atomic layer deposition (ALD) has recently been applied to advanced nanostructured energy storage devices due to the wide range of available materials, angstrom thickness control, and extreme conformality over high aspect ratio nanostructures. A class of materials referred to as conversion electrodes has recently been proposed as high capacity electrodes. RuO2 is considered an ideal conversion material due to its high combined electronic and ionic conductivity and high gravimetric capacity, and as such is an excellent material to explore the behavior of conversion electrodes at nanoscale thicknesses. We report here a fully characterized atomic layer deposition process for RuO2, electrochemical cycling data for ALD RuO2, and the application of the RuO2 to a composite carbon nanotube electrode scaffold with nucleation-controlled RuO2 growth. A growth rate of 0.4 Å/cycle is found between ∼ 210-240 °C. In a planar configuration, the resulting RuO2 films show high first cycle electrochemical capacities of ∼ 1400 mAh/g, but the capacity rapidly degrades with charge/discharge cycling. We also fabricated core/shell MWCNT/RuO2 heterostructured 3D electrodes, which show a 50× increase in the areal capacity over their planar counterparts, with an areal lithium capacity of 1.6 mAh/cm(2).

  16. Saturation Effect of Projectile Excitation in Ion-Atom Collisions

    Science.gov (United States)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.

  17. Role of ICAM-1 polymorphisms (G241R, K469E) in mediating its single-molecule binding ability: Atomic force microscopy measurements on living cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Rui [Chinese (301) General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853 (China); Yi, Shaoqiong [Beijing Institute of Biotechnology, 20 Dongdajie, Fengtai, Beijing 100071 (China); Zhang, Xuejie [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry Chinese Academy of Sciences, 2 Zhongguancun North 1st Street, Beijing 100190 (China); Liu, Huiliang, E-mail: lhl518@vip.sina.com [Department of Cardiology, The General Hospital of Chinese People’s Armed Police Forces, Beijing 100039 (China); Fang, Xiaohong, E-mail: xfang@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry Chinese Academy of Sciences, 2 Zhongguancun North 1st Street, Beijing 100190 (China)

    2014-06-13

    Highlights: • We evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations. • AFM was used to measure single-molecule binding ability on living cells. • The SNP of ICAM-1 may induce changes in expressions rather than single-molecule binding ability. - Abstract: Atherosclerosis (As) is characterized by chronic inflammation and is a major cause of human mortality. ICAM-1-mediated adhesion of leukocytes in vessel walls plays an important role in the pathogenesis of atherosclerosis. Two single nucleotide polymorphisms (SNPs) of human intercellular adhesion molecule-1 (ICAM-1), G241R and K469E, are associated with a number of inflammatory diseases. SNP induced changes in ICAM-1 function rely not only on the expression level but also on the single-molecule binding ability which may be affected by single molecule conformation variations such as protein splicing and folding. Previous studies have shown associations between G241R/K469E polymorphisms and ICAM-1 gene expression. Nevertheless, few studies have been done that focus on the single-molecule forces of the above SNPs and their ligands. In the current study, we evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations – GK (G241/K469), GE (G241/E469), RK (R241/K469) and RE (R241/E469). No difference in adhesion ability was observed via cell adhesion assay or atomic force microscopy (AFM) measurement when comparing the GK, GE, RK, or RE genotypes of ICAM-1 to each other. On the other hand, flow cytometry suggested that there was significantly higher expression of GE genotype of ICAM-1 on transfected CHO cells. Thus, we concluded that genetic susceptibility to diseases related to ICAM-1 polymorphisms, G241R or K469E, might be due to the different expressions of ICAM-1 variants rather than to the single-molecule binding ability of ICAM-1.

  18. The effect of gap in n(k, ρ) on the single-particle properties of nucleons and the ground-state binding energy of closed-shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mariji, H. [University of Coimbra, Centro de Fisica Computacional, Department of Physics, Coimbra (Portugal)

    2016-04-15

    The present work evaluates the effect of gap in the density-dependent one-body momentum distribution, n(k, ρ), at the Fermi surface on the calculation of the single-particle properties of nucleons, i.e., the momentum- and density-dependent single-particle potential and the nucleon effective mass, and also on the calculation of the ground-state binding energy of the selected closed-shell nuclei, i.e., {sup 16}O, {sup 40}Ca, and {sup 56}Ni. In order to do this, n(k, ρ) is constructed by use of the calculations of the lowest-order constrained variational method for the symmetric nuclear matter with the Av{sub 18} potential up to J{sub max} = 2 and 5. It is shown that the gap in n(k, ρ) at the Fermi surface has no significant effect on the calculation of single-particle properties in the case of J{sub max} = 5. In the relevant evaluation of the ground-state binding energy of selected nuclei, it is seen that the binding energy of {sup 16}O, improved by including n(k, ρ), is closer to the experimental data, contrary to {sup 40}Ca and {sup 56}Ni. (orig.)

  19. Surface Chemistry and Interface Evolution during the Atomic Layer Deposition of High-k Metal Oxides on InAs(100) and GaAs(100) Surfaces

    Science.gov (United States)

    Henegar, Alex J.

    Device scaling has been key for creating faster and more powerful electronic devices. Integral circuit components like the metal-oxide semiconductor field-effect transistor (MOSFET) now rely on material deposition techniques, like atomic layer deposition (ALD), that possess atomic-scale thickness precision. At the heart of the archetypal MOSFET is a SiO2/Si interface which can be formed to near perfection. However when the thickness of the SiO 2 layer is shrunk down to a few nanometers several complications arise like unacceptably high leakage current and power consumption. Replacing Si with III-V semiconductors and SiO2 with high-k dielectric materials is appealing but comes with its own set of challenges. While SiO2 is practically defect-free, the native oxides of III-Vs are poor dielectrics. In this dissertation, the surface chemistry and interface evolution during the ALD of high-k metal oxides on Si(100), GaAs(100) and InAs(100) was studied. In particular, the surface chemistry and crystallization of TiO2 films grown on Si(100) was investigated using transmission Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Large, stable, and highly reactive anatase TiO2 grains were found to form during a post-deposition heat treatment after the ALD at 100 °C. The remainder of this work was focused on the evolution of the interfacial oxides during the deposition of TiO2 and Al2O3 on InAs(100) and GaAs(100) and during the deposition of Ta2O 5 on InAs(100). In summary the ALD precursor type, deposited film, and substrate had an influence in the evolution of the native oxides. Alkyl amine precursors fared better at removing the native oxides but the deposited films (TiO2 and Ta2O5) were susceptible to significant native oxide diffusion. The alkyl precursor used for the growth of Al 2O3 was relatively ineffective at removing the oxides but was

  20. Study of porogen removal by atomic hydrogen generated by hot wire chemical vapor deposition for the fabrication of advanced low-k thin films

    Energy Technology Data Exchange (ETDEWEB)

    Godavarthi, S., E-mail: srinivas@cinvestav.mx [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Fisicas, Av. Universidad, Cuernavaca, Morelos (Mexico); Wang, C.; Verdonck, P. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Matsumoto, Y.; Koudriavtsev, I. [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Dutt, A. [SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Tielens, H.; Baklanov, M.R. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-30

    In order to obtain low-k dielectric films, a subtractive technique, which removes sacrificial porogens from a hydrogenated silicon oxycarbide (SiOC:H) film, has been used successfully by different groups in the past. In this paper, we report on the porogen removal from porogenated SiOC:H films, using a hot wire chemical vapor deposition (HWCVD) equipment. Molecular hydrogen is dissociated into atomic hydrogen by the hot wires and these atoms may successfully remove the hydrocarbon groups from the porogenated SiOC:H films. The temperature of the HWCVD filaments proved to be a determining factor. By Fourier transform infrared spectroscopy, X-ray reflectivity (XRR), secondary ion mass spectrometry (SIMS), ellipsometric porosimetry and capacitance-voltage analyses, it was possible to determine that for temperatures higher than 1700 °C, efficient porogen removal occurred. For temperatures higher than 1800 °C, the presence of OH groups was detected. The dielectric constant was the lowest, 2.28, for the samples processed at a filament temperature of 1800 °C, although porosity measurements showed higher porosity for the films deposited at the higher temperatures. XRR and SIMS analyses indicated densification and Tungsten (W) incorporation at the top few nanometers of the films.

  1. Phasons modulate the atomic Debye-Waller factors in incommensurate structures: Experimental evidence in ThBr[sub 4] at 55 K

    Energy Technology Data Exchange (ETDEWEB)

    Madariaga, G. (Dept. de Fisica de la Materia Condensada, Facultad de Ciencias, Univ. del Pais Vasco, Bilbao (Spain)); Perez-Mato, J.M. (Dept. de Fisica de la Materia Condensada, Facultad de Ciencias, Univ. del Pais Vasco, Bilbao (Spain)); Aramburu, I. (Dept. de Fisica de la Materia Condensada, Facultad de Ciencias, Univ. del Pais Vasco, Bilbao (Spain))

    1993-04-01

    The incommensurate displacive structure of [beta]-ThBr[sub 4] at 55 K has been determined from a neutron diffraction data set including main reflections and first-order satellites. The superspace group is Psub(s anti 1 s1)sup(I4[sub 1]/amd). Final agreement factors are 0.0193, 0.0186 and 0.045 for all, main and satellite reflections, respectively. It is shown that the effect of phasons on the atomic Debye-Waller factors can be quantified by two additional structural parameters: The modulus [beta][sub 11,2][sup Br] and the phase [chi][sub 11,2][sup Br] of a second harmonic that spatially modulates the temperature factors of Br atoms. Results are in good agreement, within the resolution of the experimental data, with the theoretically expected value for [chi][sub 11,2][sup Br]. Crystal data for the average structure: M[sub r]=551.65, tetragonal, I4[sub 1]/amd, a=8.919(1), c=7.902(1) A, V=628.6(2) A[sup 3], Z=4, D[sub x]=5.82 Mg m[sup -3], [lambda]=0.84 A, wavevector q=0.32c*. (orig.).

  2. Atomic layer deposition of crystalline SrHfO{sub 3} directly on Ge (001) for high-k dielectric applications

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Martin D.; Ngo, Thong Q.; Ekerdt, John G., E-mail: ekerdt@utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Hu, Chengqing; Jiang, Aiting; Yu, Edward T. [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); Lu, Sirong; Smith, David J. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Posadas, Agham; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-02-07

    The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k gate dielectric for Ge-based transistors. SrHfO{sub 3} (SHO) is grown directly on Ge by atomic layer deposition and becomes crystalline with epitaxial registry after post-deposition vacuum annealing at ∼700 °C for 5 min. The 2 × 1 reconstructed, clean Ge (001) surface is a necessary template to achieve crystalline films upon annealing. The SHO films exhibit excellent crystallinity, as shown by x-ray diffraction and transmission electron microscopy. The SHO films have favorable electronic properties for consideration as a high-k gate dielectric on Ge, with satisfactory band offsets (>2 eV), low leakage current (<10{sup −5} A/cm{sup 2} at an applied field of 1 MV/cm) at an equivalent oxide thickness of 1 nm, and a reasonable dielectric constant (k ∼ 18). The interface trap density (D{sub it}) is estimated to be as low as ∼2 × 10{sup 12 }cm{sup −2 }eV{sup −1} under the current growth and anneal conditions. Some interfacial reaction is observed between SHO and Ge at temperatures above ∼650 °C, which may contribute to increased D{sub it} value. This study confirms the potential for crystalline oxides grown directly on Ge by atomic layer deposition for advanced electronic applications.

  3. Compton scattering in a unitary approach with causality constraints 11.55.Fv; 13.40.Gp; 13.60.Fz; Nucleon-photon vertex; Off-shell form factors; K-matrix formalism; Compton scattering; Dispersion relations

    CERN Document Server

    Kondratyuk, S

    2000-01-01

    Pion-loop corrections for Compton scattering are calculated in a novel approach based on the use of dispersion relations in a formalism obeying unitarity. The basic framework is presented, including an application to Compton scattering. In the approach the effects of the non-pole contribution arising from pion dressing are expressed in terms of (half-off-shell) form factors and the nucleon self-energy. These quantities are constructed through the application of dispersion integrals to the pole contribution of loop diagrams, the same as those included in the calculation of the amplitudes through a K-matrix formalism. The prescription of minimal substitution is used to restore gauge invariance. The resulting relativistic-covariant model combines constraints from unitarity, causality, and crossing symmetry.

  4. Proton induced K-shell ionization cross sections for a wide range of elements (4 ≤ Z ≤ 92 within ECPSSR theory and updated experimental data

    Directory of Open Access Journals (Sweden)

    B. Deghfel

    2014-10-01

    Full Text Available Within the individual treatment of the elements from beryllium (4Be to uranium (92U, the experimental databases are normalized to their corresponding values of the ECPSSR model to deduce the semi-empirical cross sections. These databases rely on the different compilations available in the literature and on the other data extracted from papers published from 1953 till 2010. In the present paper, a fourth order polynomial was used to fit very well the existing normalized database of K-shell ionization cross sections by proton. These procedures generate a new set of parameters for the sake of the quick calculation of the semi-empirical cross sections. A comparison is made between the deduced results and those obtained by using the ECPSSR model where a remarkable discrepancy is observed at low-proton velocity regime especially for the lightest elements.

  5. Shell structure of potassium isotopes deduced from their magnetic moments

    CERN Document Server

    Papuga, J; Kreim, K; Barbieri, C; Blaum, K; De Rydt, M; Duguet, T; Garcia Ruiz, R F; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nortershauser, W; Rajabali, M M; Sanchez, R; Smirnova, N; Soma, V; Yordanov, D T

    2014-01-01

    $\\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\\\ \\\\ $\\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\\\ \\\\ $\\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\\\ \\\\ $\\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\\textit{ab initio}$ framework is al...

  6. The double-well oscillating potential of oxygen atoms in perovskite system Ba(K)BiO sub 3 : EXAFS - analysis results

    CERN Document Server

    Menushenkov, A P; Konarev, P V; Meshkov, A A; Benazeth, S; Purans, J

    2000-01-01

    Temperature-dependent X-ray absorption investigations were made on the Bi L sub 3 -edge in Ba sub 1 sub - sub x K sub x BiO sub 3 with x=0.0, 0.4 and 0.5. For the superconducting samples (x=0.4 and 0.5) it has been found that the local structure differs from the ideal cubic in contrast to the neutron and X-ray diffraction data. The provided analysis of the EXAFS spectra indicates that the oxygen atoms move in double-well potential produced by the existence of two non-equivalent octahedral types of the oxygen environment of bismuth. The vibrations in such a potential lead to modulations of the Bi-O lengths with low frequency which is determined by the soft oxygen octahedron rotation mode frequency. This induces strong electron-phonon interaction and may be the reason for relatively high-temperature transition (T sub c approx 30 K) to the superconducting state.

  7. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  8. Entropy squeezing and atomic inversion in the k-photon Jaynes—Cummings model in the presence of the Stark shift and a Kerr medium: A full nonlinear approach

    Science.gov (United States)

    H, R. Baghshahi; M, K. Tavassoly; A, Behjat

    2014-07-01

    The interaction between a two-level atom and a single-mode field in the k-photon Jaynes—Cummings model (JCM) in the presence of the Stark shift and a Kerr medium is studied. All terms in the Hamiltonian, such as the single-mode field, its interaction with the atom, the contribution of the Stark shift and the Kerr medium effects are considered to be f-deformed. In particular, the effect of the initial state of the radiation field on the dynamical evolution of some physical properties such as atomic inversion and entropy squeezing are investigated by considering different initial field states (coherent, squeezed and thermal states).

  9. Study on atomic layer deposition preparation of core-shell structured nanometer materials%原子层沉积方法制备核-壳型纳米材料研究

    Institute of Scientific and Technical Information of China (English)

    李勇; 李惠琪; 夏洋; 刘邦武

    2013-01-01

    Monocrystal Pt nanoparticles, amorphous Al2O3 thin film, polycrystalline ZnO and TiO2 thin films were fabricated on black carbon nanoparticles by means of atomic layer deposition (ALD). Using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometer (XPS), energy dispersive spectroscopy (EDS), We have characterized and analyzed the surface morphology, crystal structure and composition of the ranopasticles and thin filins. Results indicate that the ALD method is an ideal method to prepare core-shell stuctured nanometer materials. In addition, the reasons why the formation of ALD films with different crystal morphologies, such as monocrystal, amorphous, polycrystalline, were discussed.%采用原子层沉积方法在碳黑纳米颗粒表面分别沉积Al2 O3, ZnO, TiO2和Pt,成功制备出核-壳型纳米材料。通过高分辨率透射电子显微镜、X射线光电子能谱仪、能谱仪对材料的表面形貌、晶体结构、薄膜成分进行了表征和分析。结果表明,原子层沉积方法是制备核壳型纳米材料的理想方法。此外,还分析了采用原子层沉积方法沉积不同材料,所生长的薄膜材料有单晶、多晶、非晶等多种存在形式的形成原因。

  10. In situ atomic layer nitridation on the top and down regions of the amorphous and crystalline high-K gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Meng-Chen [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lee, Min-Hung [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Kuo, Chin-Lung; Lin, Hsin-Chih [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Miin-Jang, E-mail: mjchen@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2016-11-30

    Highlights: • The structural and electrical characteristics of the ZrO{sub 2} high-K dielectrics, treated with the in situ atomic layer doping of nitrogen into the top and down regions (top and down nitridation, TN and DN, respectively), were investigated. • The amorphous DN sample has a lower leakage current density (J{sub g}) than the amorphous TN sample, attributed to the formation of SiO{sub x}N{sub y} in the interfacial layer (IL). • The crystalline TN sample exhibited a lower CET and a similar J{sub g} as compared with the crystalline DN sample, which can be ascribed to the suppression of IL regrowth. • The crystalline ZrO{sub 2} with in situ atomic layer doping of nitrogen into the top region exhibited superior scaling limit, electrical characteristics, and reliability. - Abstract: Amorphous and crystalline ZrO{sub 2} gate dielectrics treated with in situ atomic layer nitridation on the top and down regions (top and down nitridation, abbreviated as TN and DN) were investigated. In a comparison between the as-deposited amorphous DN and TN samples, the DN sample has a lower leakage current density (J{sub g}) of ∼7 × 10{sup −4} A/cm{sup 2} with a similar capacitance equivalent thickness (CET) of ∼1.53 nm, attributed to the formation of SiO{sub x}N{sub y} in the interfacial layer (IL). The post-metallization annealing (PMA) leads to the transformation of ZrO{sub 2} from the amorphous to the crystalline tetragonal/cubic phase, resulting in an increment of the dielectric constant. The PMA-treated TN sample exhibits a lower CET of 1.22 nm along with a similar J{sub g} of ∼1.4 × 10{sup −5} A/cm{sup 2} as compared with the PMA-treated DN sample, which can be ascribed to the suppression of IL regrowth. The result reveals that the nitrogen engineering in the top and down regions has a significant impact on the electrical characteristics of amorphous and crystalline ZrO{sub 2} gate dielectrics, and the nitrogen incorporation at the top of crystalline

  11. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135.

    Science.gov (United States)

    De Luca, Maria Antonietta; Castelli, M Paola; Loi, Barbara; Porcu, Alessandra; Martorelli, Mariella; Miliano, Cristina; Kellett, Kathryn; Davidson, Colin; Stair, Jacqueline L; Schifano, Fabrizio; Di Chiara, Gaetano

    2016-06-01

    In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.

  12. NIF Double Shell outer-shell experiments

    Science.gov (United States)

    Merritt, E. C.; Montgomery, D. S.; Kline, J. L.; Daughton, W. S.; Wilson, D. C.; Dodd, E. S.; Renner, D. B.; Cardenas, T.; Batha, S. H.

    2016-10-01

    At the core of the Double Shell concept is the kinetic energy transfer from the outer shell to the inner shell via collision. This collision sets both the implosion shape of the inner shell, from imprinting of the shape of the outer shell, as well as the maximum energy available to compress the DT fuel. Therefore, it is crucial to be able to control the time-dependent shape of the outer shell, such that the outer shell is nominally round at the collision time. We present the experiment results from our sub-scale ( 1 MJ) NIF outer-shell only shape tuning campaign, where we vary shape by changing a turn-on time delay between the same pulse shape on the inner and outer cone beams. This type of shape tuning is unique to this platform and only possible since the Double Shell design uses a single-shock drive (4.5 ns reverse ramp pulse). The outer-shell only targets used a 5.75 mm diameter standard near-vacuum NIF hohlraum with 0.032 mg/cc He gas fill, and a Be capsule with 0.4% uniform Cu dopant, with 242 um thick ablator. We also present results from a third outer-shell only shot used to measure shell trajectory, which is critical in determining the shell impact time. This work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  13. Evidence for ultra-fast outflows in radio-quiet AGNs: II - detailed photo-ionization modeling of Fe K-shell absorption lines

    CERN Document Server

    Tombesi, F; Reeves, J N; Palumbo, G G C; Braito, V; Dadina, M

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blueshifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\sim100,000km/s (\\sim0.3c), with a peak and mean value of \\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6erg s^{-1} cm, with a mean value of log\\xi 4.2 erg s^{-1} cm. The associated column densities are also large, in the range N_H\\sim10^{22}-10^{24...

  14. Facile preparation of hybrid core-shell nanorods for photothermal and radiation combined therapy

    Science.gov (United States)

    Deng, Yaoyao; Li, Erdong; Cheng, Xiaju; Zhu, Jing; Lu, Shuanglong; Ge, Cuicui; Gu, Hongwei; Pan, Yue

    2016-02-01

    The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy.The hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy. Therefore, the as-prepared core-shell nanorods could play an important role in facilitating synergistic therapy between photothermal and radiation therapy to achieve better therapeutic efficacy. Electronic supplementary information (ESI) available: Details of general experimental procedures. See DOI: 10.1039/c5nr09102k

  15. Electronic transitions in highly charged ion-atom collisions

    Science.gov (United States)

    Schmidt-Böcking, H.; Ullrich, J.; Schuch, R.; Olson, R. E.; Dörner, R.

    1989-09-01

    Three different aspects of electronic transitions in fast, highly charged ion-atom collisions are discussed. First, experimental data and n-CTMC calculations for differential multiple ionization cross sections of 1.4 {MeV}/{u} U 32+on rare gas atoms are presented. It is shown that the electronic motion has a dramatic influence on the kinematics of the emitted particles (in particular the nuclei). The possibility is discussed to measure in fast ionizing processes by a recoil ion-projectile coincidence technique the internal sum momentum of "electron clusters" in atoms. This new "technique" opens a new field of atomic structure research at high-energy heavy-ion accelerators. Second, the use of the H-like heavy ions as projectiles is discussed to measure, through observable interference structures, static and dynamic properties of transiently formed superheavy quasimolecular systems. Third, the "ancient" gas target-solid target difference in the impact-parameter dependence of K-shell ionization in nearly symmetric ion-atom collisions is presented. This severe discrepancy between gas and solid still remains an unsolved fundamental problem in the field of inner-shell ionization in the MO regime.

  16. 2 MeV electron irradiation effects on bulk and interface of atomic layer deposited high-k gate dielectrics on silicon

    Energy Technology Data Exchange (ETDEWEB)

    García, H., E-mail: hecgar@ele.uva.es [Departamento de Electricidad y Electrónica, ETSI Telecomunicación, Universidad de Valladolid, 47011 Valladolid (Spain); Castán, H.; Dueñas, S.; Bailón, L. [Departamento de Electricidad y Electrónica, ETSI Telecomunicación, Universidad de Valladolid, 47011 Valladolid (Spain); Campabadal, F.; Rafí, J.M.; Zabala, M.; Beldarrain, O. [Institut de Microelectrònica de Barcelona (IMB-CNM), CSIC, Campus UAB, 08193 Bellaterra (Spain); Ohyama, H.; Takakura, K.; Tsunoda, I. [Department of Electronic Engineering, Kumamoto National College of Technology, Kumamoto 861-1102 (Japan)

    2013-05-01

    2 MeV electron irradiation effects on the electrical properties of Al{sub 2}O{sub 3} and HfO{sub 2}-based metal–insulator–semiconductor capacitors have been studied. High-k dielectrics were directly grown on silicon by atomic layer deposition. Capacitors were exposed to three different electron irradiation doses of 0.025, 0.25 and 2.5 MGy. Capacitance–voltage, deep-level transient spectroscopy, conductance transients, flat-band voltage transients and current–voltage techniques were used to characterize the defects induced or activated by irradiation on the dielectric bulk and on the interface with silicon substrate. In all cases, positive charge is trapped in the dielectric bulk after irradiation indicating the existence of hole traps in the dielectric. When the samples are exposed to 2 MeV electron beam (e-beam) irradiation, electron–hole pairs are created and holes are then captured by the hole traps. Insulator/semiconductor interface quality slightly improves for low irradiation doses, but it is degraded for high doses. Irradiation always degrades the dielectric layers in terms of gate leakage current: the trapped holes are mobile charge which can contribute to leakage current by hopping from trap to trap. - Highlights: ► Positive charge accumulates inside dielectrics after electron irradiation. ► Irradiation improves oxide/semiconductor interface for low doses. ► Irradiation increases gate leakage current.

  17. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G. G. C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-10-01

    Context. Blue-shifted Fe K absorption lines have been detected in recent years between 7 and 10 keV in the X-ray spectra of several radio-quiet AGNs. The derived blue-shifted velocities of the lines can often reach mildly relativistic values, up to 0.2-0.4c. These findings are important because they suggest the presence of a previously unknown massive and highly ionized absorbing material outflowing from their nuclei, possibly connected with accretion disk winds/outflows. Aims: The scope of the present work is to statistically quantify the parameters and incidence of the blue-shifted Fe K absorption lines through a uniform analysis on a large sample of radio-quiet AGNs. This allows us to assess their global detection significance and to overcome any possible publication bias. Methods: We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. A simple uniform model composed by an absorbed power-law plus Gaussian emission and absorption lines provided a good fit for all the data sets. We derived the absorption lines parameters and calculated their detailed detection significance making use of the classical F-test and extensive Monte Carlo simulations. Results: We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies higher than 7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3 × 10-8, and their detection have been independently confirmed by a spectral analysis of the MOS data, with associated random probability UFOs) those highly ionized absorbers with outflow velocities higher than 104 km s-1, then the majority of the lines are consistent with being associated to UFOs and the fraction of objects with detected UFOs in the whole sample is at least ~35%. This fraction is similar for type 1 and type 2 sources. The global covering fraction of

  18. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs. 2; Detailed Photoionization Modeling of Fe K-Shell Absorption Lines

    Science.gov (United States)

    Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.

  19. Exploring the First Steps in Core–Shell Electrocatalyst Preparation: In Situ Characterization of the Underpotential Deposition of Cu on Supported Au Nanoparticles

    Science.gov (United States)

    2011-01-01

    The underpotential deposition (upd) of a Cu shell on a non-Pt nanoparticle core followed by galvanic displacement of the Cu template shell to form core–shell electrocatalyst materials is one means by which the Pt-based mass activity targets required for commercialization of PEM fuel cells may be reached. In situ EXAFS measurements were conducted at both the Au L3 and the Cu K absorption edges during deposition of Cu onto a carbon-supported Au electrocatalyst to study the initial stages of formation of such a core–shell electrocatalyst. The Au L3 EXAFS data obtained in 0.5 mol dm–3 H2SO4 show that the shape of the Au core is potential dependent, from a flattened to a round spherical shape as the Cu upd potential is approached. Following the addition of 2 mmol dm–3 Cu, the structure was also measured as a function of the applied potential. At +0.2 V vs Hg/Hg2SO4, the Cu2+ species was found to be a hydrated octahedron. As the potential was made more negative, single-crystal studies predict an ordered bilayer of sulfate anions and partially discharged Cu ions, followed by a complete/uniform layer of Cu atoms. In contrast, the model obtained by fitting the Au L3 and Cu K EXAFS data corresponds first to partially discharged Cu ions deposited at the defect sites in the outer shell of the Au nanoparticles at −0.42 V, followed by the growth of clusters of Cu atoms at −0.51 V. The absence of a uniform/complete Cu shell, even at the most negative potentials investigated, has implications for the structure, and the activity and/or stability, of the core–shell catalyst that would be subsequently formed following galvanic displacement of the Cu shell. PMID:22032178

  20. Exploring the first steps in core-shell electrocatalyst preparation: in situ characterization of the underpotential deposition of Cu on supported Au nanoparticles.

    Science.gov (United States)

    Price, Stephen W T; Speed, Jonathon D; Kannan, Prabalini; Russell, Andrea E

    2011-12-07

    The underpotential deposition (upd) of a Cu shell on a non-Pt nanoparticle core followed by galvanic displacement of the Cu template shell to form core-shell electrocatalyst materials is one means by which the Pt-based mass activity targets required for commercialization of PEM fuel cells may be reached. In situ EXAFS measurements were conducted at both the Au L(3) and the Cu K absorption edges during deposition of Cu onto a carbon-supported Au electrocatalyst to study the initial stages of formation of such a core-shell electrocatalyst. The Au L(3) EXAFS data obtained in 0.5 mol dm(-3) H(2)SO(4) show that the shape of the Au core is potential dependent, from a flattened to a round spherical shape as the Cu upd potential is approached. Following the addition of 2 mmol dm(-3) Cu, the structure was also measured as a function of the applied potential. At +0.2 V vs Hg/Hg(2)SO(4), the Cu(2+) species was found to be a hydrated octahedron. As the potential was made more negative, single-crystal studies predict an ordered bilayer of sulfate anions and partially discharged Cu ions, followed by a complete/uniform layer of Cu atoms. In contrast, the model obtained by fitting the Au L(3) and Cu K EXAFS data corresponds first to partially discharged Cu ions deposited at the defect sites in the outer shell of the Au nanoparticles at -0.42 V, followed by the growth of clusters of Cu atoms at -0.51 V. The absence of a uniform/complete Cu shell, even at the most negative potentials investigated, has implications for the structure, and the activity and/or stability, of the core-shell catalyst that would be subsequently formed following galvanic displacement of the Cu shell.

  1. Close shell interactions in 3-ethoxycarbonyl-4-hydroxy-6-methoxymethyleneoxy-1-methyl-2-quinolone: 100 K single crystal neutron diffraction study and ab initio calculations

    Science.gov (United States)

    Pozzi, C. G.; Fantoni, A. C.; Goeta, A. E.; Wilson, C. C.; Autino, J. C.; Punte, G.

    2005-10-01

    The molecular and crystal structures of the title compound have been determined from a single crystal neutron diffraction experiment at 100 K. A comparison between the main geometrical features and related properties of the in-crystal and the ab initio optimized free molecule structures has shown that crystal packing induces a significant distortion in the molecular geometry. Packing instead would only have a moderate effect on the observed intramolecular resonance assisted hydrogen bond. Supermolecular ab initio molecular orbital calculations have been performed on the six different dimers one molecule forms with its nine nearest neighbours. The obtained results clearly show that dispersion contributions dominate in the most strongly interacting dimers, in good qualitative accord with the predictions made by using different empirical potentials. A qualitative description of the most prominent inductive effects determined from the electron density deformation upon dimer formation is presented. Topological analyses of the dimers charge densities have been performed in the framework of the Bader's AIM theory and all the intermolecular bond critical points have been identified. An attempt to determine some of the interaction energies only from topological quantities made evident the practical limitations of such an approach.

  2. Single Photon K-2 and K-1K-1 Double Core Ionization in C2H2n (n=1-3), CO, and N2 as a Potential New Tool for Chemical Analysis

    Science.gov (United States)

    Nakano, M.; Penent, F.; Tashiro, M.; Grozdanov, T. P.; Žitnik, M.; Carniato, S.; Selles, P.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Shigemasa, E.; Iwayama, H.; Hikosaka, Y.; Soejima, K.; Suzuki, I. H.; Kouchi, N.; Ito, K.

    2013-04-01

    We have observed single photon double K-shell photoionization in the C2H2n (n=1-3) hydrocarbon sequence and in N2 and CO, using synchrotron radiation and electron coincidence spectroscopy. Our previous observations of the K-2 process in these molecules are extended by the observations of a single photon double photoionization with one core hole created at each of the two neighboring atoms in the molecule (K-1K-1 process). In the C2H2n sequence, the spectroscopy of K-1K-1 states is much more sensitive to the bond length than conventional electron spectroscopy for chemical analysis spectroscopy based on single K-shell ionization. The cross section variation for single photon K-1K-1 double core ionization in the C2H2n sequence and in the isoelectronic C2H2, N2 and CO molecules validates a knock-out mechanism in which a primary ionized 1s photoelectron ejects another 1s electron of the neighbor atom. The specific Auger decay from such states is clearly observed in the CO case.

  3. Exciton dynamics in GaAs/(Al,Ga)As core-shell nanowires with shell quantum dots

    Science.gov (United States)

    Corfdir, Pierre; Küpers, Hanno; Lewis, Ryan B.; Flissikowski, Timur; Grahn, Holger T.; Geelhaar, Lutz; Brandt, Oliver

    2016-10-01

    We study the dynamics of excitons in GaAs/(Al,Ga)As core-shell nanowires by continuous-wave and time-resolved photoluminescence and photoluminescence excitation spectroscopy. Strong Al segregation in the shell of the nanowires leads to the formation of Ga-rich inclusions acting as quantum dots. At 10 K, intense light emission associated with these shell quantum dots is observed. The average radiative lifetime of excitons confined in the shell quantum dots is 1.7 ns. We show that excitons may tunnel toward adjacent shell quantum dots and nonradiative point defects. We investigate the changes in the dynamics of charge carriers in the shell with increasing temperature, with particular emphasis on the transfer of carriers from the shell to the core of the nanowires. We finally discuss the implications of carrier localization in the (Al,Ga)As shell for fundamental studies and optoelectronic applications based on core-shell III-As nanowires.

  4. The Practice of Cast lron Shell Protection of 500 kV Submarine Cable in Immediate Off-Shore Areas and the Relative Concerns%500kV海底电缆浅滩铸铁套管保护实践与思考

    Institute of Scientific and Technical Information of China (English)

    王裕霜

    2011-01-01

    介绍海南联网的500 kV海底电缆浅滩套管保护工程,包括套管安装地质条件、施工过程和安装工程控制.基于该工程实践,提出了海缆保护套管运行后,可能带来的问题与思考,诸如海缆在套管内散热问题,海缆套管的感应磁场问题和海缆套管内注入海水问题.%The cast iron shell protection in the immediate off-shore areas for Hainan Interconnected Project is introduced, including the geological conditions, construction procedure, and installation-project control. Based on the project practices, the problems and relative concerns after the protection project being operation are put forward such as heat dissipation, induced field, and water seepage of the cast iron shell.

  5. Shell Analysis Manual

    Science.gov (United States)

    1968-04-01

    loading (e. g. shallow shell theory , Geckeler’s approximation for symmetrically loaded shells, etc.) Although the Shear Deformation and Specialized...interest. Included are the Reissner-Meissner equations, Geckeler’s approximations, shallow - shell theory , Donnell’s theory, and others. A. General Shells of

  6. Influence of flame atomic absorption on measurement of K using laser-induced breakdown spectroscopy%火焰原子吸收对K元素激光诱导击穿光谱测量的影响

    Institute of Scientific and Technical Information of China (English)

    张志昊; 宋蔷; 姚强

    2014-01-01

    When the measurement of alkali metals is performed using laser-induced breakdow n spectroscopy (LIBS) in flame ,the emission of the alkali atoms in the plasma can be absorbed by the alkali atoms outside the plasma in the flame ,influencing the LIBS measurement accuracy . Based on the Beer-Lambert law and the thermodynamic equilibrium calculation ,a flame atomic absorption model covering the concentration range of K released during practical biomass com-bustion was developed ,and the influences of the atmosphere of the flame ,the K distribution and the total K concentration on the flame atomic absorption efficiency were analyzed .It is found that ,with the increase of the O2/CH4 ratio ,the equilibrium molar fraction of atomic K in all K-containing species decreases from approximate 25% ,leading to the decrease of the flame atomic absorption efficiency from 86 .8% .When the O2/CH4 molar ratio ratio exceeds 2 ,excess O2 exists in the flame ,and the flame atomic absorption efficiency is always less than 13% . Meanwhile ,by proper adjustment of K distribution and the total K concentration ,the flame a-tomic absorption efficiency can also be reduced .Based on this ,it is proposed that to reduce the flame atomic absorption efficiency and facilitate the K LIBS measurement accuracy in flame ,an oxidizing flame atmosphere and a proper K distribution profile should be created .%当使用激光诱导击穿光谱技术(L IBS )测量火焰场内碱金属元素时,等离子体内碱金属原子所发出的LIBS信号,会受到等离子体外火焰中基态碱金属原子的吸收,影响测量精度。基于Beer-Lambert定律和CH4-空气火焰场内气态含K物质的热力学平衡原理,建立了火焰场内K元素LIBS信号的原子吸收模型,并分析了实际生物质颗粒燃烧K元素释放浓度范围内,火焰气氛、K元素浓度分布以及总K浓度对火焰原子吸收效率的影响。研究发现,随着O2/C H4的摩尔比值的增加,火焰

  7. Concentrations of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, and Zn in uruguayan rice determined by atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mario E. Rivero Huguet

    2011-04-01

    Full Text Available The United Nations General Assembly declared the year 2004 the International Year of Rice and the concept "Rice is life". The largest nutritional problems occurring globally are protein-energy malnutrition, and Ca, Fe, I, Zn, and vitamin A deficiency. In this report, 49 rice samples (Oryza sativa L. were digested by dry ashing in order to determine As, Cd, Cr, and Pb by ETA-AAS; while Ca, Co, Cu, Fe, K, Mg, Mo, Mn, Na, Ni, and Zn were determined by FAAS; and Hg by CV-AAS using microwave-assisted decomposition. The following concentration ranges were obtained for Ca (9.1-15 mg/100 g, Cd (2.30-4.12 µg/kg, Co (41-60 µg/kg, Cu (1.33-180 mg/kg, Fe (4.41-7.15 mg/kg, K (167-217 mg/100 g, Mg (45-121 mg/100 g, Mo (0.52-0.97 mg/kg, Mn (5.45-25.4 mg/kg, Na (0.95-2.50 mg/100g, Ni (0.53-0.72 mg/kg, and Zn (5.86-12.6 mg/kg. Mean recoveries of elements from fortified rice were: 87±12% for As, 95.3±8.9% for Ca, 106.2±7.7% for Cd, 103.3±6.5% for Co, 89.4±8.1% for Cr, 99.3±4.6% for Cu, 103±10% for Fe, 96.3±9.3% for Hg, 95.4±12% for K, 98.3±8.0% for Mg, 93.4±7.8% for Mo, 95.3±9.9% for Mn, 89±12% for Na, 90.3±9.7% for Ni, 91.2±5.5% for Pb and 92.0±9.4% for Zn. The concentrations of the minerals and microelements studied fall within the typical range of rice grown around the world. Potassium was the most abundant mineral, followed by Mg and Ca; among microelements, the concentrations of Cu, Fe, Mo, Mn, Na, and Zn in rice were outstanding. It was also found that the milling process highly affects the K, Mg, Mn, Na, and Zn concentrations, while it has little influence on Ca, Co, Cu, and Fe. On the other hand, there is a loss of Ca, Fe, and Mn during the parboiling process. Recent studies have shown the potential to exploit the genetic variation of rice seeds with regard to the concentration of some minerals (Ca, Fe, Zn, etc. without affecting yield or adding new traits. All rice samples tested showed lower levels of As, Cd, Hg, and Pb in comparison

  8. Shell Model Estimate of Electric Dipole Moments for Xe Isotopes

    Science.gov (United States)

    Teruya, Eri; Yoshinaga, Naotaka; Higashiyama, Koji

    The nuclear Schiff moments of Xe isotopes which induce electric dipole moments of neutral Xe atoms is theoretically estimated. Parity and time-reversal violating two-body nuclear interactions are assumed. The nuclear wave functions are calculated in terms of the nuclear shell model. Influences of core excitations on the Schiff moments in addition to the over-shell excitations are discussed.

  9. Multiple shells in IRC+10216: shell properties

    Science.gov (United States)

    Mauron, N.; Huggins, P. J.

    2000-07-01

    We report on the properties of the multiple shells in the circumstellar envelope of IRC+10216, using deep optical imaging, including data from the Hubble Space Telescope. The intensity profiles confirm the presence of thin ( ~ 0farcs5 -3'' ec), limb-brightened shells in the envelope, seen in stellar and ambient Galactic light scattered by dust. The shells are spaced at irregular intervals of ~ 5'' ec-20'' ec, corresponding to time scales of 200-800 yr, although intervals as short as ~ 1'' ec (40 yr) are seen close to the star. The location of the main shells shows a good correlation with high-resolution, molecular line maps of the inner envelope, indicating that the dust and gas are well coupled. The shell/intershell density contrast is typically ~ 3, and we find that the shells form the dominant mass component of the circumstellar envelope. The shells exhibit important evolutionary effects: the thickness increases with increasing radius, with an effective dispersion velocity of 0.7 km s-1 and there is evidence for shell interactions. Despite the presence of bipolar structure close to the star, the global shell pattern favors a roughly isotropic, episodic mass loss mechanism, with a range of time scales. Based on observations made with the Canada-France-Hawaii telescope, operated by CNRS, NRCC and UH, and on dearchived observations made with the NASA/ESA Hubble Space Telescope, operated by AURA Inc., under NASA contract NAS5-26555

  10. Strontium clusters: electronic and geometry shell effects

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Solov'yov, Ilia; Greiner, Walter

    2008-01-01

    is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters. It is shown that the excessive charge essentially affects the optimized geometry......The optimized structure and electronic properties of neutral, singly and doubly charged strontium clusters have been investigated using it ab initio theoretical methods based on density-functional theory. We have systematically calculated the optimized geometries of neutral, singly and doubly...... charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, and spectra of the density of electronic states (DOS). It is demonstrated that the size-evolution of structural and electronic properties of strontium clusters...

  11. Diagram X-ray emission spectra of a hollow atom: the Kh alpha1,2 and Kh beta1,3 hypersatellites of Fe.

    Science.gov (United States)

    Diamant, R; Huotari, S; Hämäläinen, K; Sharon, R; Kao, C C; Deutsch, M

    2003-11-07

    High-resolution Fe K(h) beta(1,3) and K(h) alpha(1,2) hypersatellite spectra were measured, using monochromatized synchrotron radiation photoexcitation. The lines' energies, splitting, excitation thresholds, and the K(h) alpha(1)/K(h) alpha(2) intensity ratio were derived with high accuracy. Having both spectra, not hitherto available for any atom with high resolution, allows separating out the energy shifts of the outer levels caused by a K shell spectator vacancy. Comparison with ab initio relativistic multiconfigurational Dirac-Fock calculations reveals that while the influence of relativity and QED effects is mostly accounted for, discrepancies remain in the lines' intensity ratio, which sensitively measures the intermediacy of the coupling. Similar discrepancies, of unknown origin, are found in the energy shifts of the outer levels due to the final-state K shell spectator vacancy.

  12. Comment on “Atomic mass compilation 2012” by B. Pfeiffer, K. Venkataramaniah, U. Czok, C. Scheidenberger

    Energy Technology Data Exchange (ETDEWEB)

    Audi, G., E-mail: amdc.audi@gmail.com [CSNSM, CNRS/IN2P3, Université Paris-Sud, Bât. 108, F-91405 Orsay Campus (France); Blaum, K. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Block, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Bollen, G. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Goriely, S. [Institut d’Astronomie et d’Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels (Belgium); Hardy, J.C. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Herfurth, F. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Kondev, F.G. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Kluge, H.-J. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); University of Heidelberg, D-69120 Heidelberg (Germany); Lunney, D. [CSNSM, CNRS/IN2P3, Université Paris-Sud, Bât. 108, F-91405 Orsay Campus (France); Pearson, J.M. [Département de Physique, Université de Montréal, Montréal, Québec, H3C 3J7 (Canada); Savard, G. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Sharma, K.S. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); and others

    2015-05-15

    In order to avoid errors and confusion that may arise from the recent publication of a paper entitled “Atomic Mass Compilation 2012”, we explain the important difference between a compilation and an evaluation; the former is a necessary but insufficient condition for the latter. The simple list of averaged mass values offered by the “Atomic Mass Compilation” uses none of the numerous links and correlations present in the large body of input data that are carefully maintained within the “Atomic Mass Evaluation”. As such, the mere compilation can only produce results of inferior accuracy. Illustrative examples are given.

  13. Atomic physics with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  14. Resonant Auger Destruction and Iron K-Alpha Spectra in Compact X-ray Sources

    OpenAIRE

    Liedahl, Duane A.

    2005-01-01

    We examine the effects of resonant Auger destruction in modifying the intensities and flux distributions of K-alpha spectra from iron L-shell ions. Applications include X-ray irradiated stellar winds in X-ray binaries and accretion disk atmospheres. Using detailed atomic models, we find that resonant Auger destruction is selective, in that only a subset of the emitted K-alpha lines is highly attenuated. We also show that that the local excitation conditions can have a dramatic effect on the K...

  15. Measurements of egg shell plasma parameters using laser-induced breakdown spectroscopy

    Indian Academy of Sciences (India)

    Wenfeng Luo; Xiaoxia Zhao; Shuyuan Lv; Haiyan Zhu

    2015-07-01

    Measurements of 1064 nm laser-induced egg shell plasma parameters are presented in this paper. Of special interests were its elemental identification and the determination of spectroscopic temperature and electron density. The electron temperature of 5956 K was inferred using an improved iterative Boltzmann plot method with six calcium atomic emission lines, and the electron number density of 6.1 × 1016 cm−3 was determined by measuring the width of Stark-broadened once-ionized calcium line at 393.37 nm. Based on the experimental results, the laser-induced egg shell plasma was verified to be optically thin and satisfy local thermodynamic equilibrium (LTE). Furthermore, experiments also demonstrated that the loss of energy due to the reflection of the laser beam from the plasma can be neglected and the inverse bremsstrahlung (IB) absorption was the dominant mechanism of plasma heating at the IR wavelength.

  16. (Super)alkali atoms interacting with the σ electron cloud: a novel interaction mode triggers large nonlinear optical response of M@P₄ and M@C₃H₆ (M=Li, Na, K and Li₃O).

    Science.gov (United States)

    Zhao, Xingang; Yu, Guangtao; Huang, Xuri; Chen, Wei; Niu, Min

    2013-12-01

    Under high-level ab initio calculations, the geometrical structures and nonlinear optical properties of M@P₄ (M=Li, Na, K and Li₃O) and M@C₃H₆ (M=Li and Li₃O) were investigated; all were found to exhibit considerable first hyperpolarizabilities (18110, 1440, 22490, 50487, 2757 and 31776 au, respectively). The computational results revealed that when doping the (super)alkali atom M into the tetrahedral P₄ molecule, the original dual spherical aromaticity of the P₄ moiety is broken and new σ electron cloud is formed on the face of P₄ part interacting with the M atom. It was found that interaction of the (super)alkali atom with the σ electron cloud is a novel mode to produce diffuse excess electrons effectively to achieve a considerable β₀ value. Further, beyond the alkali atom, employing the superalkali unit can be a more effective approach to significantly enhance the first hyperpolarizability of the systems, due to the much lower vertical ionization potential. These results were further supported by the case of the (super)alkali atom interacting with the cyclopropane C₃H₆ molecule with its typical σ aromatic electron cloud. Moreover, the β₀ values of the M@P₄ series are nonmonotonic dependent on alkali atomic number, namely, 1440 au (M = Na) alkali atom and the interacting surface with the σ electron cloud in P4 is a crucial geometrical factor in determining their first hyperpolarizabilities. These intriguing findings will be advantageous for promoting the design of novel high-performance nonlinear optical materials.

  17. Nuclear internal conversion between bound atomic states

    Science.gov (United States)

    Chemin, J. F.; Harston, M. R.; Karpeshin, F. F.; Carreyre, J.; Attallah, F.; Aleonard, M. M.; Scheurer, J. N.; Boggaert, G.; Grandin, J. R.; Trzhaskovskaya, M. B.

    2003-01-01

    We present experimental and theoretical results for rate of decay of the (3/2)+ isomeric state in 125Te versus the ionic charge state. For charge state larger than 44 the nuclear transition lies below the threshold for emission of a K-shell electron into the continuum with the result that normal internal conversion is energetically forbiden. Rather surprisingly, for the charge 45 and 46 the lifetime of the level was found to have a value close to that in neutral atoms. We present direct evidence that the nuclear transition could still be converted but without the emission of the electron into the continuum, the electron being promoted from the K-shell to an other empty bound state lying close to the continuum. We called this process BIC. The experimental results agree whith theoretical calculations if BIC resonances are taken into account. This leads to a nuclear decay constant that is extremely sensitive to the precise initial state and simple specification of the charge state is no longer appropriate. The contribution to decay of the nucleus of BIC has recently been extended to the situation in which the electron is promoted to an intermediate filled bound state (PFBIC) with an apparent violation of the Pauli principle. Numerical results of the expected dependence of PFBIC on the charge state will be presented for the decay of the 77.351 keV level in 197Au.

  18. Windows Server 2012 -palvelimen hallinta PowerShell-komennoilla

    OpenAIRE

    2013-01-01

    Tämän opinnäytetyön tavoitteena oli perehtyä Windows Server 2012 -palvelimen ja aktiivihakemiston hallintaan käyttäen Windows PowerShell -komentotulkkia. PowerShell on Microsoftin kehittämä komentotulkki ja skriptausympäristö, jonka tarkoitus on tehostaa ja automatisoida Windows-käyttöjärjestelmien ja sovellusten hallintaa komentorivin ja skriptien avulla. Opinnäytetyössä käsiteltiin Windows Server 2012 -käyttöjärjestelmään, aktiivihakemistoon ja Windows PowerShell -komentotulkkiin liitty...

  19. A neon-matrix isolation study of the reaction of non-energetic H-atoms with CO molecules at 3 K.

    Science.gov (United States)

    Pirim, C; Krim, L

    2011-11-21

    The efficiency of HCO formation stemming from non-energetic H-atoms and CO molecules is highlighted both in the condensed phase and within a neon matrix environment, which is half-way between the condensed-phase and gas-phase. Our experiments demonstrated that HCO production within the neon-matrix needed very little or no activation energy. The efficiency of HCO formation depended only on the capability of H-atoms to diffuse in the solid and to subsequently encounter CO molecules. The novelty of the presented matrix experiment sheds light on the debated question of whether activation energy is required in order to produce HCO, because of the use of non-energetic ground state H-atoms within the neon-matrix.

  20. Unambiguous observation of F-atom core-hole localization in CF4 through body-frame photoelectron angular distributions

    Science.gov (United States)

    McCurdy, C. W.; Rescigno, T. N.; Trevisan, C. S.; Lucchese, R. R.; Gaire, B.; Menssen, A.; Schöffler, M. S.; Gatton, A.; Neff, J.; Stammer, P. M.; Rist, J.; Eckart, S.; Berry, B.; Severt, T.; Sartor, J.; Moradmand, A.; Jahnke, T.; Landers, A. L.; Williams, J. B.; Ben-Itzhak, I.; Dörner, R.; Belkacem, A.; Weber, Th.

    2017-01-01

    A dramatic symmetry breaking in K -shell photoionization of the CF4 molecule in which a core-hole vacancy is created in one of four equivalent fluorine atoms is displayed in the molecular frame angular distribution of the photoelectrons. Observing the photoejected electron in coincidence with an F+ atomic ion after Auger decay is shown to select the dissociation path where the core hole was localized almost exclusively on that atom. A combination of measurements and ab initio calculations of the photoelectron angular distribution in the frame of the recoiling CF3+ and F+ atoms elucidates the underlying physics that derives from the Ne-like valence structure of the F(1 s-1 ) core-excited atom.

  1. Inner-shell couplings in transiently formed superheavy quasimolecules

    Energy Technology Data Exchange (ETDEWEB)

    Verma, P [Kalindi College, University of Delhi, New Delhi 110008 (India); Mokler, P H [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Braeuning-Demian, A; Kozhuharov, C; Braeuning, H; Bosch, F; Hagmann, S; Liesen, D [GSI Helmholzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Anton, J; Fricke, B [Universitaet Kassel, 34109 Kassel (Germany); Stachura, Z [Institute for Nuclear Physics, Cracow PL 31342 (Poland); Wahab, M A, E-mail: p.verma.du@gmail.com [Jamia Millia Islamia, Jamia Nagar, New Delhi 110025 (India)

    2011-06-15

    The inner-shell couplings for U{sup q+}-ions (73{<=}q{<=}91) moving moderately slow at {approx}69 MeV u{sup -1} and bombarding thin Au targets have been investigated. Having established the definite survival probability of incoming projectile K vacancies in these targets in an earlier publication, the transfer of these vacancies to the target K-shell due to inner-shell couplings has been studied. As the system is in the quasiadiabatic collision regime for the K-shell of collision partners, advanced SCF-DFS (self-consistent field-Dirac-Fock-Slater) multielectron level diagrams have been used for interpretation. Using a simple model, the L-K shell coupling interaction distance has been estimated and compared with level diagram calculations.

  2. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    Science.gov (United States)

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  3. Comment on ‘‘Atomic mass compilation 2012’’ by B. Pfeiffer, K. Venkataramaniah, U. Czok, C. Scheidenberger

    OpenAIRE

    Audi, G.; Blaum, K.; Block, M; Bollen, G.; S. Goriely; Hardy, J.; Herfurth, F.; Kondev, F.; Kluge, H.; Lunney, D.; J. Pearson; Savard, G.; Sharma, K; Wang, M.; Zhang, Y.

    2015-01-01

    In order to avoid errors and confusion that may arise from the recent publication of a paper entitled ‘‘Atomic Mass Compilation 2012’’, we explain the important difference between a compilation and an evaluation; the former is a necessary but insufficient condition for the latter. The simple list of averaged mass values offered by the ‘‘Atomic Mass Compilation’’ uses none of the numerous links and correlations present in the large body of input data that are carefully maintained within the ‘‘...

  4. Observation of shell effects in nanowires for the noble metals copper, silver and gold

    OpenAIRE

    Mares, A. I.; van Ruitenbeek, J. M.

    2005-01-01

    We extend our previous shell effect observation in gold nanowires at room temperature under ultra high vacuum to the other two noble metals: silver and copper. Similar to gold, silver nanowires present two series of exceptionally stable diameters related to electronic and atomic shell filling. This observation is in concordance to what was previously found for alkali metal nanowires. Copper however presents only electronic shell filling. Remarkably we find that shell structure survives under ...

  5. Multiple electron capture in close ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, A.S.; Stearns, J.W.; Berkner, K.H.; Bernstein, E.M.; Clark, M.W.; DuBois, R.D.; Graham, W.G.; Morgan, T.J.; Mueller, D.W.; Stockli, M.P.; Tanis, J.A.; Woodland, W.T. (Lawrence Berkeley Lab., CA (USA); Western Michigan Univ., Kalamazoo, MI (USA); Pacific Northwest Lab., Richland, WA (USA); Queen' s Univ., Belfast, Northern Ireland (UK); Wesleyan Univ., Middletown, CT (USA); University of North Tex

    1989-07-24

    Collisions in which a fast highly charged ion passes within the orbit of K electron of a target gas atom are selected by emission of a K x-ray from the projectile or target. Measurement of the projectile charge state after the collision, in coincidence with the K x-ray, allows measurement of the charge-transfer probability during these close collisions. When the projectile velocity is approximately the same as that of target electrons, a large number of electrons can be transferred to the projectile in a single collision. The electron-capture probability is found to be a linear function of the number of vacancies in the projectile L shell for 47-MeV calcium ions in an Ar target. 18 refs., 9 figs.

  6. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NARCIS (Netherlands)

    Irimia, D.; Dobrikov, D.; Kortekaas, R.; Voet, H.; Ende, D.A. van den; Groen, W.A.; Janssen, M.H.M.

    2009-01-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms t

  7. Growth of CuPd nanoalloys encapsulated in carbon-shell

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H. Y.; Wang, H. P., E-mail: wanghp@mail.ncku.edu.tw [National Cheng Kung University, Department of Environmental Engineering (China)

    2013-05-15

    Preparation of nanostructured copper-palladium (CuPd) alloys is getting more attention because specific catalytic properties can be tuned by controlling their composition, size, and shape. Thus, a better understanding especially in the formation mechanism of the CuPd nanoalloys is of great importance in designing the catalysts. Growth of CuPd nanoalloys encapsulated in carbon-shell (CuPd-C) was, therefore, studied by in situ synchrotron small-angle X-ray scattering during temperature-programed carbonization (TPC) of the Cu{sup 2+}- and Pd{sup 2+}-{beta}-cyclodextrin complexes. A rapid reduction of Cu{sup 2+} and Pd{sup 2+} with nucleation is found at the temperatures of <423 K, followed by coalescence at 453-573 K. The well-dispersed CuPd nanoalloys having the sizes of 7.6-7.9 nm in diameter are encapsulated in carbon-shell of 1.4-1.8 nm in thickness. The refined extended X-ray absorption fine structure spectra indicate that the bond distances of the first-shell Cu-Pd are 2.61-2.64 A with the coordination numbers of 5.1-5.6. A homogeneous CuPd alloy at the Cu/Pd atomic ratio of 1 is observed. Note that at the high Cu/Pd ratio, Cu is enriched on the CuPd nanoalloy surfaces, attributable to the relatively low surface free energy of Cu.

  8. Mg K-edge XANES of sepiolite and palygorskite

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [ESRF, BP 220 F-38043 Grenoble Cedex (France)]. E-mail: srio@esrf.fr; Suarez, M. [Dpto. Geologia, Universidad de Salamanca, E-37008 Salamanca (Spain); Garcia Romero, E. [Dpto. Cristalografia y Mineralogia, U. Complutense de Madrid, E-28040 Madrid (Spain); Alianelli, L. [INFM, c/o ESRF, BP 220 F-38043 Grenoble Cedex (France); Felici, R. [INFM, c/o ESRF, BP 220 F-38043 Grenoble Cedex (France); Martinetto, P. [Lab. Cristallographie, CNRS, Grenoble BP 166, F-38042 Grenoble Cedex 09 (France); Dooryhee, E. [Lab. Cristallographie, CNRS, Grenoble BP 166, F-38042 Grenoble Cedex 09 (France); Reyes-Valerio, C. [INAH, Mexico DF (Mexico); Borgatti, F. [TASC-INFM Area Science Park, I-34012 Trieste (Italy); Doyle, B. [TASC-INFM Area Science Park, I-34012 Trieste (Italy); Giglia, A. [TASC-INFM Area Science Park, I-34012 Trieste (Italy); Mahne, N. [TASC-INFM Area Science Park, I-34012 Trieste (Italy); Pedio, M. [TASC-INFM Area Science Park, I-34012 Trieste (Italy); Nannarone, S. [TASC-INFM Area Science Park, I-34012 Trieste (Italy)

    2005-08-15

    We present a study of the Mg K-edge on sepiolite and palygorskite performed at the INFM BEAR beamline at Elettra synchrotron light source (Trieste). These two clays, although having very similar structures, show some different features in their near-edge. Mg is in octahedral coordination with oxygens, hydroxyl groups or water, for both palygorskite and sepiolite. The differences found in the near-edge seem to reflect the fact that, on average, an Mg atom in palygorskite 'sees' less Mg in higher coordination shells than sepiolite.

  9. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  10. Maximally Atomic Languages

    Directory of Open Access Journals (Sweden)

    Janusz Brzozowski

    2014-05-01

    Full Text Available The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.

  11. Blended Isogeometric Shells

    Science.gov (United States)

    2012-08-01

    engendered by shell intersections, folds, boundary conditions the merging of NURBS patches, etc.We illustrate the blended theory?s performance on a...general and effective treatment of kinematic constraints engendered by shell intersections, folds, boundary con- ditions, the merging of NURBS patches...etc. We illustrate the blended theory’s performance on a series of test problems. Key words: isogeometric analysis, NURBS , shells, rotation-free

  12. Off-Shell Tachyons

    OpenAIRE

    Tang, Yi-Lei

    2015-01-01

    The idea that the new particles invented in some models beyond the standard model can appear only inside the loops is attractive. In this paper, we fill these loops with off-shell tachyons, leading to a solution of the zero results of the loop diagrams involving the off-shell non-tachyonic particles. We also calculate the Passarino-Veltman $A_0^o$ and $B_0^o$ of the off-shell tachyons.

  13. Spiral Shell Collection

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    In 1988 Zheng Haigen, a seaman with the Towboat Company of the Shanghai Salvage Bureau, began collecting spiral shells. Today he has more than 600 in his collection. The most valuable are the rare parrot shell and a shell whose spirals wind counter-clockwise. In 1991 a miniature conch with a diameter of 0.31 millimeters that he found buried in tons of sand made the Guinness Book of World Records.

  14. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  15. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots.

    Science.gov (United States)

    Lee, Dea Uk; Kim, Dae Hun; Choi, Dong Hyuk; Kim, Sang Wook; Lee, Hong Seok; Yoo, Keon-Ho; Kim, Tae Whan

    2016-01-25

    CdSe/CdS/ZnS core-shell-shell quantum dots (QDs) were synthesized by using a solution process. High-resolution transmission electron microscopy images and energy dispersive spectroscopy profiles confirmed that stoichiometric CdSe/CdS/ZnS core-shell-shell QDs were formed. Ultraviolet-visible absorption and photoluminescence (PL) spectra of CdSe/CdS/ZnS core-shell-shell QDs showed the dominant excitonic transitions from the ground electronic subband to the ground hole subband (1S(e)-1S(3/2)(h)). The PL mechanism is suggested; the carriers generated by the exciting high-energy photons in the shell region are relaxed to the band-edge states of the core region and recombined to emit lower-energy photons. The activation energy of the carriers confined in the CdSe/CdS/ZnS core-shell-shell QDs, as obtained from temperature-dependent PL spectra, was 200 meV. The quantum efficiency of the CdSe/CdS/ZnS core-shell-shell QDs at 300 K was estimated to be approximately 57%.

  16. Role of Ge and Si substrates in higher-k tetragonal phase formation and interfacial properties in cyclical atomic layer deposition-anneal Hf1-xZrxO2/Al2O3 thin film stacks

    Science.gov (United States)

    Dey, Sonal; Tapily, Kandabara; Consiglio, Steven; Clark, Robert D.; Wajda, Cory S.; Leusink, Gert J.; Woll, Arthur R.; Diebold, Alain C.

    2016-09-01

    Using a five-step atomic layer deposition (ALD)-anneal (DADA) process, with 20 ALD cycles of metalorganic precursors followed by 40 s of rapid thermal annealing at 1073 K, we have developed highly crystalline Hf1-xZrxO2 (0 ≤ x ≤ 1) thin films (DADA ALD process. We surmise that the interfacial metal germanate layer also function as a diffusion barrier limiting excessive Ge uptake into the dielectric film. An ALD Al2O3 passivation layer of thickness ≥1.5 nm is required to minimize Ge diffusion for developing highly conformal and textured HfO2 based higher-k dielectrics on Ge substrates using the DADA ALD process.

  17. Measurement of K-X-rays fluorescence cross-sections, fluorescence yields and intensity ratios for elements in the atomic range 21 < Z < 74 excited by 59 keV photons

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Avila, J.; Lopez-Pino, N.; Padilla-Cabal, F.; Van Espen, P.; Cabal, A.; Pena, M. Ruiz; Alessandro, K.D.; Maidana, N.L. [Instituto Superior de Tecnologia y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Antwerp Univ. (Belgium). Micro Trace Analytical Center; CEADEN, La Habana (Cuba); Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear

    2010-07-01

    Full text: Using 59 keV photons, we measured the K{sub {alpha}}, K{sub {beta}} and total K X-rays fluorescence cross sections of 17 elements in the atomic range 21 < Z < 74. Furthermore, the fluorescence yields and the I{sub K{beta}} / I{sub K{alpha}} intensity ratios for these elements were also determined. An annular radioactive source of {sup 241}Am (activity 1 Ci) was employed to excite the elements in targets with the shape of foils or pellets (99% purity and 20 mm, in diameter). The pellets were formed with a mixture of cellulose and a chemical compound containing the element of interest, pressed at 15 tons. The K X-rays emitted from the irradiated samples were detected by a Si(Li) detector with a frontal Pb collimator, coupled to conventional electronics, with dead time below 10%. The fluxes reaching the targets and the crystal detector were determined by means of Monte Carlo (MC) simulations using the MCNPX V 2.6 code. The input geometries included the detector, the sample-source holder and the Pb collimator. The optimal diameter for the samples as well as the collimator dimensions were estimated by means of MC simulations. Using several elements (Ti, Ni, Br, Ag, Cs, Dy and W) a calibration curve for the effective flux of photons (I{sub 0}G{sub {epsilon}}) as function of the K X-rays energy was measured. Correction by different sizes and self-absorption coefficients of the samples were also performed. The data obtained for the X-rays fluorescence cross sections were compared with semi-empirical calculations and with experimental values reported by other authors; the relative deviations were less than 10%. Keywords: fluorescence cross section, fluorescence yields, Monte Carlo (author)

  18. Synthesis and Characterization of Monodisperse Metallodielectric SiO2@Pt@SiO2 Core-Shell-Shell Particles.

    Science.gov (United States)

    Petrov, Alexey; Lehmann, Hauke; Finsel, Maik; Klinke, Christian; Weller, Horst; Vossmeyer, Tobias

    2016-01-26

    Metallodielectric nanostructured core-shell-shell particles are particularly desirable for enabling novel types of optical components, including narrow-band absorbers, narrow-band photodetectors, and thermal emitters, as well as new types of sensors and catalysts. Here, we present a facile approach for the preparation of submicron SiO2@Pt@SiO2 core-shell-shell particles. As shown by transmission and scanning electron microscopy, the first steps of this approach allow for the deposition of closed and almost perfectly smooth platinum shells onto silica cores via a seeded growth mechanism. By choosing appropriate conditions, the shell thickness could be adjusted precisely, ranging from ∼3 to ∼32 nm. As determined by X-ray diffraction, the crystalline domain sizes of the polycrystalline metal shells were ∼4 nm, regardless of the shell thickness. The platinum content of the particles was determined by atomic absorption spectroscopy and for thin shells consistent with a dense metal layer of the TEM-measured thickness. In addition, we show that the roughness of the platinum shell strongly depends on the storage time of the gold seeds used to initiate reductive platinum deposition. Further, using polyvinylpyrrolidone as adhesion layer, it was possible to coat the metallic shells with very homogeneous and smooth insulating silica shells of well-controlled thicknesses between ∼2 and ∼43 nm. After depositing the particles onto silicon substrates equipped with interdigitated electrode structures, the metallic character of the SiO2@Pt particles and the insulating character of the SiO2 shells of the SiO2@Pt@SiO2 particles were successfully demonstrated by charge transport measurements at variable temperatures.

  19. Distribution of Cold (≲300 K) Atomic Gas in Galaxies: Results from the GBT H i Absorption Survey Probing the Inner Halos (ρ < 20 kpc) of Low-z Galaxies

    Science.gov (United States)

    Borthakur, Sanchayeeta

    2016-10-01

    We present the Green Bank Telescope absorption survey of cold atomic hydrogen (≲300 K) in the inner halo of low-redshift galaxies. The survey aims to characterize the cold gas distribution and to address where the condensation—the process where ionized gas accreted by galaxies condenses into cold gas within the disks of galaxies—occurs. Our sample consists of 16 galaxy-quasar pairs with impact parameters of ≤20 kpc. We detected an H i absorber associated with J0958+3222 (NGC 3067) and H i emission from six galaxies. We also found two Ca ii absorption systems in the archival SDSS data associated with galaxies J0958+3222 and J1228+3706. Our detection rate of H i absorbers with optical depths of ≥0.06 is ˜7%. We also find that the cold H i phase (≲300 K) is 44(±18)% of the total atomic gas in the sightline probing J0958+3222. We find no correlation between the peak optical depth and impact parameter or stellar and H i radii normalized impact parameters, ρ/R 90 and ρ/R H i . We conclude that the process of condensation of inflowing gas into cold (≲300 K) H i occurs at the ρ ≪ 20 kpc. However, the warmer phase of neutral gas (T ˜ 1000 K) can exist out to much larger distances, as seen in emission maps. Therefore, the process of condensation of warm to cold H i is likely occurring in stages from ionized to warm H i in the inner halo and then to cold H i very close to the galaxy disk. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  20. Molecular dynamics study on core-shell structure stability of aluminum encapsulated by nano-carbon materials

    Science.gov (United States)

    Yi, Qingwen; Xu, Jingcheng; Liu, Yi; Zhai, Dong; Zhou, Kai; Pan, Deng

    2017-02-01

    A ReaxFF reactive forcefield for aluminum-carbon composite system has been developed to investigate structural stability and thermal decomposition mechanism of nano-carbon materials coating aluminum particles. Research results indicated the Al@C particles were structurally stable in a broad temperature range from room temperature up to 2735 K. In particular, the broken carbon cage self-healed to reconstruct a more stable Al@C core-shell structure after Al atoms sequentially departing from carbon cage during thermal decomposition, proffering an effective protection for aluminum surface-activeness.

  1. Vibrational properties and specific heat of core-shell Ag-Au icosahedral nanoparticles.

    Science.gov (United States)

    Sauceda, Huziel E; Garzón, Ignacio L

    2015-11-14

    The vibrational density of states (VDOS) of metal nanoparticles can be a fingerprint of their geometrical structure and determine their low-temperature thermal properties. Theoretical and experimental methods are available nowadays to calculate and measure it over a size range of 1-4 nm. In this work, we present theoretical results regarding the VDOS of Ag-Au icosahedral nanoparticles with a core-shell structure in that size range (147-923 atoms). The results are obtained by changing the size and type of atoms in the core-shell structure. For all sizes investigated, a smooth and monotonic variation of the VDOSs from Ag to Au is obtained by increasing the number of core Au atoms, and vice versa. Nevertheless, the Ag561Au362 nanoparticle, with a Ag core, shows an anomalous enhancement at low frequencies. An analysis of the calculated VDOSs indicates that as a general trend the low-frequency region is mainly due to the shell contribution, whereas at high frequencies the core effect would be dominant. A linear variation with size is obtained for the period of quasi-breathing mode (QBM), in agreement with the behaviour obtained for pure Ag and Au nanoparticles. A non-monotonic variation is obtained for the QBM frequency as a function of the Ag concentration for all nanoparticles investigated. The calculated specific heat at low temperatures of the Ag-Au nanoparticles is smaller (larger) than the corresponding one calculated for the pure Au (Ag) nanoparticles of same size. Nevertheless, the enhancement of VDOS at low frequencies of the Ag561Au362 nanoparticle with a Ag core induced larger values of specific heat than those of the pure Au923 nanoparticle in the temperature range of 5-15 K.

  2. Distribution of Cold ($\\lesssim 300$K) Atomic Gas in Galaxies: Results from the GBT HI Absorption Survey Probing the Inner Halos ($\\rho<20$kpc) of Low-z Galaxies

    CERN Document Server

    Borthakur, Sanchayeeta

    2016-01-01

    We present the Green Bank Telescope absorption survey of cold atomic hydrogen ($\\lesssim 300$K) in the inner halo of low-redshift galaxies. The survey aims to characterize the cold gas distribution and to address where condensation - the process where ionized gas accreted by galaxies condenses into cold gas within the disks of galaxies - occurs. Our sample consists of 16 galaxy-quasar pairs with impact parameters of $\\le$ 20kpc. We detected an HI absorber associated with J0958+3222 (NGC 3067) and HI emission from six galaxies. We also found two \\ion{Ca}{2} absorption system in the archival SDSS data associated with galaxies J0958+3222 and J1228+3706, although the sample was not selected based on the presence of metals in absorption. Our detection rate of HI absorbers with optical depths of $\\ge 0.06$ is $\\sim$7\\%. We also find that cold HI phase ($\\lesssim$300K) is 44($\\pm$18)\\% of the total atomic gas in the sightline probing J0958+3222. We find no correlation between the peak optical depth and impact parame...

  3. Kinetics Analysis of Coconut Shell Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    LIU; Xue-mei; JIANG; Jian-chun; SUN; Kang; XU; Fan; XU; Yu

    2012-01-01

    [Objective] The paper aimed to study kinetics analysis of coconut shell pyrolysis. [Method] Thermo gravimetric analysis was used to study the pyrolysis characteristic of coconut shell at different pyrolysis rates (5, 10, 20 K/min). [Result] The pyrolysis process included 3 stages, water loss, pyrolysis, and thermal condensation. The pyrolysis process can be described through first-order reaction model. With the increasing pyrolysis rate, activation energy in the first stage rose, but activation energy in the second stage reduced. [Conclusion] The study provided theoretical basis for the promotion and application of biomass energy.

  4. In situ atomic layer nitridation on the top and down regions of the amorphous and crystalline high-K gate dielectrics

    Science.gov (United States)

    Tsai, Meng-Chen; Lee, Min-Hung; Kuo, Chin-Lung; Lin, Hsin-Chih; Chen, Miin-Jang

    2016-11-01

    Amorphous and crystalline ZrO2 gate dielectrics treated with in situ atomic layer nitridation on the top and down regions (top and down nitridation, abbreviated as TN and DN) were investigated. In a comparison between the as-deposited amorphous DN and TN samples, the DN sample has a lower leakage current density (Jg) of ∼7 × 10-4 A/cm2 with a similar capacitance equivalent thickness (CET) of ∼1.53 nm, attributed to the formation of SiOxNy in the interfacial layer (IL). The post-metallization annealing (PMA) leads to the transformation of ZrO2 from the amorphous to the crystalline tetragonal/cubic phase, resulting in an increment of the dielectric constant. The PMA-treated TN sample exhibits a lower CET of 1.22 nm along with a similar Jg of ∼1.4 × 10-5 A/cm2 as compared with the PMA-treated DN sample, which can be ascribed to the suppression of IL regrowth. The result reveals that the nitrogen engineering in the top and down regions has a significant impact on the electrical characteristics of amorphous and crystalline ZrO2 gate dielectrics, and the nitrogen incorporation at the top of crystalline ZrO2 is an effective approach to scale the CET and Jg, as well as to improve the reliability.

  5. Room temperature nanojoining of Cu-Ag core-shell nanoparticles and nanowires

    Science.gov (United States)

    Wang, Jiaqi; Shin, Seungha

    2017-02-01

    Room temperature ( T room, 300 K) nanojoining of Ag has been widely employed in fabrication of microelectronic applications where the shapes and structures of microelectronic components must be maintained. In this research, the joining processes of pure Ag nanoparticles (NPs), Cu-Ag core-shell NPs, and nanowires (NWs) are studied using molecular dynamics simulations at T room. The evolution of densification, potential energy, and structural deformation during joining process are analyzed to identify joining mechanisms. Depending on geometry, different joining mechanisms including crystallization-amorphization, reorientation, Shockley partial dislocation are determined. A three-stage joining scenario is observed in both joining process of NPs and NWs. Besides, the Cu core does not participate in all joining processes, however, it enhances the mobility of Ag shell atoms, contributing to a higher densification and bonding strength at T room, compared with pure Ag nanomaterials. The tensile test shows that the nanojoint bears higher rupture strength than the core-shell NW itself. This study deepens understanding in the underlying joining mechanisms and thus nanojoint with desirable thermal, electrical, and mechanical properties could be potentially achieved.

  6. Core–Shell to Doped Quantum Dots: Evolution of the Local Environment Using XAFS

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Avijit; Chattopadhyay, Soma; Shibata, Tomohiro; Viswanatha, Ranjani (JNCASR); (IIT)

    2016-09-30

    Internal structure study at an atomic level is a challenging task with far reaching consequences to its material properties, specifically in the field of transition metal doping in quantum dots. Diffusion of transition metal ions in and out of quantum dots forming magnetic clusters has been a major bottleneck in this class of materials. Diffusion of the magnetic ions from the core into the nonmagnetic shell in a core/shell heterostructure architecture to attain uniform doping has been recently introduced and yet to be understood. In this work, we have studied the local structure variation of Fe as a function of CdS matrix thickness and annealing time during the overcoating of Fe3O4 core with CdS using X-ray absorption spectroscopy. The data reveals that Fe3O4 core initially forms a core/shell structure with CdS followed by alloying at the interface eventually completely diffusing all the way through the CdS matrix to form homogeneously Fe-doped CdS QDs with excellent control over size and size distribution. Study of Fe K-edge shows a complete change of Fe local environment from Fe–O to FeS.

  7. Inelastic studies of Th and ThO collisions below 1 K

    Science.gov (United States)

    Connolly, Colin; Au, Yat; Ketterle, Wolfgang; Doyle, John

    2013-05-01

    The actinide series is among very few parts of the periodic table that is virtually unexplored at low temperatures. We present the first experimental investigations of cold collisions of actinide atoms and actinide-containing molecules below 1 K. Using atomic thorium (Th), we measure Zeeman relaxation due to collisions with 3He. Although ground-state Th has ``submerged shell'' structure--with a spherical outer valence electron shell--these collisions proceed about 100 times faster than those of the lanthanide series, while still about 100 times slower than anisotropic open-shell atoms. In contrast, we find that the first excited state (3P0) is collisionally stable (no quenching observed within >106 collisions with 3He) and has a long radiative lifetime exceeding 200 ms. We also investigate collisions of the molecule ThO (ground state and metastable H-state) with 3He. No quenching of the metastable H-state is observed within > 3 ×104 collisions, allowing for a new measurement of the ThO(H) radiative lifetime. Evidence is presented for formation of ThO-He van der Waals molecules. ThO(H) is used in the ACME search for the electron EDM (Vutha, A. C. et al. Journal of Physics B 43, 074007 (2010)).

  8. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    Science.gov (United States)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; de Vries, C. P.; Zatsarinny, O.

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  9. Many-Body Theory of Atomic Transitions

    Science.gov (United States)

    Holmes, Charles Potter

    This dissertation presents a systematic approach to the derivation of transition widths and cross sections for atomic radiative and/or nonradiative processes. By applying the transition theory of Goldberger and Watson ^1, all transition properties are derived from proper solutions of the time-dependent Schrodinger equation. The focus is on situations where initial and final wave functions are nonorthogonal functions that belong to different self-consistent fields. This approach is particularly useful in the treatment of ionizing transitions where the outgoing free electron sees a different atomic potential from that of the initial bound state. Transition amplitudes are expressed as perturbation expansions in which singularities have been removed algebraically. These singularities are due to states which are degenerate with the initial and final states and represent the competing transition channels. The perturbation expansions show clearly the role of the nonorthogonality of the participating states leading to terms representing "shake" processes competing with higher-order electron correlation processes. Transition amplitudes including all second-order processes, are derived for the following transitions: X-ray, Auger, photoionization, radiative recombination, dielectronic recombination, radiative -Auger. Comparisons are made with the expressions frequently used by other workers. Using a Hartree-Fock-Slater model K- and L-shell X-ray and Auger transition widths are calculated for the range 5 Z Theory, (John Wiley & Sons, New York, 1964), Chapter 8, page 424.

  10. Method of making dense, conformal, ultra-thin cap layers for nanoporous low-k ILD by plasma assisted atomic layer deposition

    Science.gov (United States)

    Jiang, Ying-Bing; Cecchi, Joseph L.; Brinker, C. Jeffrey

    2011-05-24

    Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.

  11. Elastic platonic shells.

    Science.gov (United States)

    Yong, Ee Hou; Nelson, David R; Mahadevan, L

    2013-10-25

    On microscopic scales, the crystallinity of flexible tethered or cross-linked membranes determines their mechanical response. We show that by controlling the type, number, and distribution of defects on a spherical elastic shell, it is possible to direct the morphology of these structures. Our numerical simulations show that by deflating a crystalline shell with defects, we can create elastic shell analogs of the classical platonic solids. These morphologies arise via a sharp buckling transition from the sphere which is strongly hysteretic in loading or unloading. We construct a minimal Landau theory for the transition using quadratic and cubic invariants of the spherical harmonic modes. Our approach suggests methods to engineer shape into soft spherical shells using a frozen defect topology.

  12. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    Science.gov (United States)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was

  13. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  14. Atomic energy

    CERN Multimedia

    1996-01-01

    Interviews following the 1991 co-operation Agreement between the Department of Atomic Energy (DAE) of the Government of India and the European Organization for Nuclear Research (CERN) concerning the participation in the Large Hadron Collider Project (LHC) . With Chidambaram, R, Chairman, Atomic Energy Commission and Secretary, Department of Atomic Energy, Department of Atomic Energy (DAE) of the Government of India and Professor Llewellyn-Smith, Christopher H, Director-General, CERN.

  15. Dynamic Analysis of Shells

    Directory of Open Access Journals (Sweden)

    Charles R. Steele

    1995-01-01

    Full Text Available Shell structures are indispensable in virtually every industry. However, in the design, analysis, fabrication, and maintenance of such structures, there are many pitfalls leading to various forms of disaster. The experience gained by engineers over some 200 years of disasters and brushes with disaster is expressed in the extensive archival literature, national codes, and procedural documentation found in larger companies. However, the advantage of the richness in the behavior of shells is that the way is always open for innovation. In this survey, we present a broad overview of the dynamic response of shell structures. The intention is to provide an understanding of the basic themes behind the detailed codes and stimulate, not restrict, positive innovation. Such understanding is also crucial for the correct computation of shell structures by any computer code. The physics dictates that the thin shell structure offers a challenge for analysis and computation. Shell response can be generally categorized by states of extension, inextensional bending, edge bending, and edge transverse shear. Simple estimates for the magnitudes of stress, deformation, and resonance in the extensional and inextensional states are provided by ring response. Several shell examples demonstrate the different states and combinations. For excitation frequency above the extensional resonance, such as in impact and acoustic excitation, a fine mesh is needed over the entire shell surface. For this range, modal and implicit methods are of limited value. The example of a sphere impacting a rigid surface shows that plastic unloading occurs continuously. Thus, there are no short cuts; the complete material behavior must be included.

  16. Low temperature formation of higher-k cubic phase HfO{sub 2} by atomic layer deposition on GeO{sub x}/Ge structures fabricated by in-situ thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R., E-mail: zhang@mosfet.t.u-tokyo.ac.jp [School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Huang, P.-C.; Taoka, N.; Yokoyama, M.; Takenaka, M.; Takagi, S. [School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-02-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO{sub 2} using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO{sub x} interfacial layer. It is found that the cubic phase is dominant in the HfO{sub 2} film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO{sub 2} film on a 1-nm-thick GeO{sub x} form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO{sub 2} can be induced by the formation of six-fold crystalline GeO{sub x} structures in the underlying GeO{sub x} interfacial layer.

  17. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  18. Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang, E-mail: cy.jpu@126.com [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Li, Zhina [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Miao, Naiming [School of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu 213016 (China)

    2014-09-30

    Highlights: • The damage-free polishing mechanism of core/shell composite abrasive was explored. • The organic core is help to decrease surface roughness and mechanical damages. • The inorganic shell is in favor of improving material removal rate. • The enhanced CMP behavior is due to the synergistic effect between core and shell. - Abstract: Core/shell structured organic/inorganic composite microspheres has an important potential application in efficient and damage-free chemical mechanical planarization/polishing (CMP) as a kind of novel abrasive due to its uniform non-rigid mechanical property. However, the synergistic effect of material removal between organic cores and inorganic shells of composite abrasives is ambiguous. In this work, oxide-CMP performances of various slurries, containing polystyrene (PS) spheres, solid abrasives (SiO{sub 2} or CeO{sub 2}), mixed abrasives ((PS + SiO{sub 2}) or (PS + CeO{sub 2})), core/shell composites (PS/SiO{sub 2} or PS/CeO{sub 2}), were investigated by atomic force microscopy. Experiment results indicated that the surfaces polished by composite abrasives exhibited lower surface roughness, fewer scratches as well as lower topographical variations than those by other type of abrasives. The core/shell structure of composite abrasives plays an important role in improving CMP behavior. Moreover, the organic cores are mainly beneficial to decrease surface roughness and mechanical damages, and the inorganic shells are in favor of improving material removal rate.

  19. Core/shell formation and surface segregation of multi shell icosahedral silver-palladium bimetallic nanostructures: A dynamic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Hewage, Jinasena W., E-mail: jinasena@chem.ruh.ac.lk

    2016-05-01

    Core/shell formation and surface segregation of multi shell icosahedral bimetallic silver-palladium nanostructures with the size of 55 and 147 atoms were studied by using the Molecular Dynamics simulations, and calculating Helmholtz free energy changes in the penetration of palladium atoms from shell to core, core to shell transition of silver and melting temperatures by using statistical mechanical densities of states. In 55 atoms icosahedra, two core–shell motifs, Ag{sub 13}Pd{sub 42} and Pd{sub 13}Ag{sub 42} with their isomers Pd{sub 13}(Pd{sub 29}Ag{sub 13}) and Ag{sub 13}(Ag{sub 29}Pd{sub 13}) were considered. Similarly in 147 atoms icosahedra, all mutations corresponding to the occupations of either silver atoms or palladium atoms in the core, inner shell or outer shell and their isomers generated by interchanging thirteen core atoms with thirteen atoms of the other type in the inner and outer shells were considered. It is found that the palladium-core clusters are more stable than the silver-core clusters and cohesive energy increases with the palladium composition. Phase transition of each cluster was studied by means of constant volume heat capacity. The trend in variation of melting temperature is accordance with the energy trend. Helmholtz free energy changes in palladium penetration, core to shell transition of silver and in surface mixing and segregation revealed the thermodynamic stability of the formation of Pd{sub core}Ag{sub shell} structures especially at silver rich environment and the surface segregation of silver. - Highlights: • Nanostructures of Pd{sub m}Ag{sub n} clusters for m + n = 55 and 147 have been studied. • Structures favor the formation of palladium-core surrounded by silver shell. • Calculated thermodynamic parameters confirm the energetic results. • Core/shell formation is favored at concentration of silver. • Silver segregation on surface while palladium penetration to core is observed.

  20. Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel.

    Science.gov (United States)

    Campos, Fabiana V; Chanda, Baron; Roux, Benoît; Bezanilla, Francisco

    2007-05-01

    It is now well established that the voltage-sensing S4 segment in voltage-dependent ion channels undergoes a conformational change in response to varying membrane potential. However, the magnitude of the movement of S4 relative to the membrane and the rest of the protein remains controversial. Here, by using histidine scanning mutagenesis in the Shaker K channel, we identified mutants I241H (S1 segment) and I287H (S2 segment) that generate inward currents at hyperpolarized potentials, suggesting that these residues are part of a hydrophobic plug that separates the water-accessible crevices. Additional experiments with substituted cysteine residues showed that, at hyperpolarized potentials, both I241C and I287C can spontaneously form disulphide and metal bridges with R362C, the position of the first charge-carrying residue in S4. These results constrain unambiguously the closed-state positions of the S4 segment with respect to the S1 and S2 segments, which are known to undergo little or no movement during gating. To satisfy these constraints, the S4 segment must undergo an axial rotation of approximately 180 degrees and a transmembrane (vertical) movement of approximately 6.5 A at the level of R362 in going from the open to the closed state of the channel, moving the gating charge across a focused electric field.

  1. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  2. Multi-Shell Hollow Nanogels with Responsive Shell Permeability.

    Science.gov (United States)

    Schmid, Andreas J; Dubbert, Janine; Rudov, Andrey A; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I; Richtering, Walter

    2016-03-17

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.

  3. Strange exotic atoms

    Science.gov (United States)

    Friedman, E.

    1998-08-01

    Exotic atoms of K- and Σ- are analyzed using density-dependent optical potentials constrained by a low-density limit. Emphasis is placed on radial sensitivities of the real potential. A potential depth of 180MeV inside nuclei is confirmed for K-. For Σ- a shallow attractive potential outside the nuclear surface becomes repulsive in the interior. The information content of limited data sets is demonstrated.

  4. HPAM: Hirshfeld partitioned atomic multipoles

    Science.gov (United States)

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2012-02-01

    molecular charge density ρ(r) is partitioned into Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge densities ρ(r) on a grid. Atomic charges q and multipoles Qlma are calculated from the partitioned atomic charge densities ρ(r) by numerical integration. Solution method: Molecular and isolated atomic grids are generated for the molecule of interest. The ab initio density matrix P and basis functions χ(r) are read in from 'formatted checkpoint' files obtained from the Gaussian 03 or 09 quantum chemistry programs. The ab initio density is evaluated for the molecule and the isolated atoms/atomic ions on grids and used to construct Hirshfeld (HD) and Hirshfeld-I (HD-I) partitioned atomic charges densities ρ(r), which are used to calculate atomic charges q and atomic multipoles Qlma by integration. Restrictions: The ab initio density matrix can be calculated at the HF, DFT, MP2, or CCSD levels with ab initio Gaussian basis sets that include up to s, p, d, f, g functions for either closed shell or open shell molecules. Running time: The running time varies with the size of the molecule, the size of the ab initio basis set, and the coarseness of the desired grid. The run time can range from a minute or less for water to ˜15 minutes for neopentane.

  5. Investigation of (235)U, (226)Ra, (232)Th, (40)K, (137)Cs, and heavy metal concentrations in Anzali international wetland using high-resolution gamma-ray spectrometry and atomic absorption spectroscopy.

    Science.gov (United States)

    Zare, Mohammad Reza; Kamali, Mahdi; Fallahi Kapourchali, Maryam; Bagheri, Hashem; Khoram Bagheri, Mahdi; Abedini, Ali; Pakzad, Hamid Reza

    2016-02-01

    Measurements of natural radioactivity levels and heavy metals in sediment and soil samples of the Anzali international wetland were carried out by two HPGe-gamma ray spectrometry and atomic absorption spectroscopy techniques. The concentrations of (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs in sediment samples ranged between 1.05 ± 0.51-5.81 ± 0.61, 18.06 ± 0.63-33.36 ± .0.34, 17.57 ± 0.38-45.84 ± 6.23, 371.88 ± 6.36-652.28 ± 11.60, and 0.43 ± 0.06-63.35 ± 0.94 Bq/kg, while in the soil samples they vary between 2.36-5.97, 22.71-38.37, 29.27-42.89, 472.66-533, and 1.05-9.60 Bq/kg for (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs, respectively. Present results are compared with the available literature data and also with the world average values. The radium equivalent activity was well below the defined limit of 370 Bq/kg. The external hazard indices were found to be less than 1, indicating a low dose. Heavy metal concentrations were found to decrease in order as Fe > Mn > Sr > Zn > Cu > Cr > Ni > Pb > Co > Cd. These measurements will serve as background reference levels for the Anzali wetland.

  6. Controlling the Exchange Bias Field in Co core/CoO Shell Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Feygenson, M.; Yiu, Y.; Kou, A.; Kim, K.-S.; Aronson, M.C.

    2010-05-28

    We have determined how the anomalous exchange bias effect in Co/CoO nanoparticles of 11 nm in diameter depends on the Co core and CoO shell dimensions. The oxidation of the Co nanoparticles used in this study is carefully controlled, yielding highly crystalline and oriented interfaces. The dimensions of the core and shell are determined from magnetization and small angle x-ray scattering measurements. The exchange bias field in Co/CoO core-shell nanoparticles depends nonmonotonically on the CoO shell thickness, reaching a maximum value of {approx}7 kOe at 30 K when the core and shell dimensions are similar. We propose that lattice strain induces a net moment at the core-shell interface, and it is the variation of this moment with strain, which is responsible for the vanishing of H{sub EB} at both large and small Co shell thicknesses.

  7. Controlling the exchange bias field in Co core/CoO shell nanoparticles

    Science.gov (United States)

    Feygenson, Mikhail; Yiu, Yuen; Kou, Angela; Kim, Ki-Sub; Aronson, Meigan C.

    2010-05-01

    We have determined how the anomalous exchange bias effect in Co/CoO nanoparticles of 11 nm in diameter depends on the Co core and CoO shell dimensions. The oxidation of the Co nanoparticles used in this study is carefully controlled, yielding highly crystalline and oriented interfaces. The dimensions of the core and shell are determined from magnetization and small angle x-ray scattering measurements. The exchange bias field in Co/CoO core-shell nanoparticles depends nonmonotonically on the CoO shell thickness, reaching a maximum value of ≈7kOe at 30 K when the core and shell dimensions are similar. We propose that lattice strain induces a net moment at the core-shell interface, and it is the variation of this moment with strain, which is responsible for the vanishing of HEB at both large and small Co shell thicknesses.

  8. 正电子碰撞Ag,In,Sn原子L壳层电离截面的理论计算%Theoretical calculation of L-shell ionization cross section of Ag, In, and Sn atoms by positron impact

    Institute of Scientific and Technical Information of China (English)

    何彪; 何建新; 易有根; 江少恩; 郑志坚

    2011-01-01

    在David Botz分析模型的基础上,综合考虑正电子及电子碰撞电离的库仑效应和电子交换效应,引入离子效应和相对论效应修正因子,计算了Ag,In,Sn原子的L壳层电离截面.计算结果表明,引入了修正因子的计算结果明显优于平面波波恩近似和扭曲波波恩近似的计算结果,并和最近文献的实验值符合得较好.其计算结果可为激光等离子体模拟提供准确参数.%Based on the analytical formulas of David Botz, considering the Coulomb effect and exchange effect in the ionization by positron and electron impact, the total cross sections of positron-impact Lshell ionization of Ag? In, Sn atomic are calculated by incorporating both ionic and relativistic corrections in it. In comparison with the quantum mechanical predictions of plane-wave and distorted-wave Born approximations, it is found that the improved analytical formulas are in better agreement with the experimental results. The calculated results can be used to simlate the laser plasma.

  9. Vacancy cascades in small molecules following x-ray inner shell photoionization

    Science.gov (United States)

    Ray, D.; Dunford, R. W.; Southworth, S. H.; Kanter, E. P.; Doumy, G.; Gao, Y.; Ho, P. J.; Picon, A.

    2014-05-01

    We are investigating molecular effects in vacancy cascades of small molecules containing heavy atoms - IBr, Br2 and CH2BrI - following K-shell ionization. In addition to fundamental interest in the physics of such decay processes, there are practical applications such as medical treatments that use energetic fragmentation of iodinated compounds with high energy x-rays to selectively treat tumorous cells. Other biological applications are also promising. We utilize the tunable monochromatic x-ray beam at the Advanced Photon Source to trigger K-shell photoionization of Br and I, and measure charge distributions and the kinetic energies released to the fragment ions. A newly designed detection device allows us to do multi-fold coincidence measurements involving momentum imaging of all the ion fragments with very high detection efficiency in coincidence with x-ray fluorescence detection. By comparing the molecular fragmentation probabilities and the kinetic energies released in Br2, IBr and CH2BrI we aim to gain understanding of the fragmentation mechanism as a function of the bond distance between I and Br. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.

  10. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  11. Cu-Ni core-shell nanoparticles: structure, stability, electronic, and magnetic properties: a spin-polarized density functional study

    Science.gov (United States)

    Wang, Qiang; Wang, Xinyan; Liu, Jianlan; Yang, Yanhui

    2017-02-01

    Bimetallic core-shell nanoparticles (CSNPs) have attracted great interest not only because of their superior stability, selectivity, and catalytic activity but also due to their tunable properties achieved by changing the morphology, sequence, and sizes of both core and shell. In this study, the structure, stability, charge transfer, electronic, and magnetic properties of 13-atom and 55-atom Cu and Cu-Ni CSNPs were investigated using the density functional theory (DFT) calculations. The results show that Ni@Cu CSNPs with a Cu surface shell are more energetically favorable than Cu@Ni CSNPs with a Ni surface shell. Interestingly, three-shell Ni@Cu12@Ni42 is more stable than two-shell Cu13@Ni42, while two-shell Ni13@Cu42 is more stable than three-shell Cu@Ni12@Cu42. Analysis of Bader charge illustrates that the charge transfer increases from Cu core to Ni shell in Cu@Ni NPs, while it decreases from Ni core to Cu shell in Ni@Cu NPs. Furthermore, the charge transfer results that d-band states have larger shift toward the Fermi level for the Ni@Cu CSNPs with Cu surface shell, while the Cu@Ni CSNPs with Ni surface shell have similar d-band state curves and d-band centers with the monometallic Ni NPs. In addition, the Cu-Ni CSNPs possess higher magnetic moment when the Ni atoms aggregated at core region of CSNPs, while having lower magnetic moment when the Ni atoms segregate on surface region. The change of the Cu atom location in CSNPs has a weak effect on the total magnetic moment. Our findings provide useful insights for the design of bimetallic core-shell catalysts.

  12. Optical cooling and trapping of highly magnetic atoms: the benefits of a spontaneous spin polarization

    Science.gov (United States)

    Dreon, Davide; Sidorenkov, Leonid A.; Bouazza, Chayma; Maineult, Wilfried; Dalibard, Jean; Nascimbene, Sylvain

    2017-03-01

    From the study of long-range-interacting systems to the simulation of gauge fields, open-shell lanthanide atoms with their large magnetic moment and narrow optical transitions open novel directions in the field of ultracold quantum gases. As for other atomic species, the magneto-optical trap (MOT) is the working horse of experiments but its operation is challenging, due to the large electronic spin of the atoms. Here we present an experimental study of narrow-line dysprosium MOTs. We show that the combination of radiation pressure and gravitational forces leads to a spontaneous polarization of the electronic spin. The spin composition is measured using a Stern–Gerlach separation of spin levels, revealing that the gas becomes almost fully spin-polarized for large laser frequency detunings. In this regime, we reach the optimal operation of the MOT, with samples of typically 3× {10}8 atoms at a temperature of 15 μK. The spin polarization reduces the complexity of the radiative cooling description, which allows for a simple model accounting for our measurements. We also measure the rate of density-dependent atom losses, finding good agreement with a model based on light-induced Van der Waals forces. A minimal two-body loss rate β ∼ 2× {10}-11 cm3 s–1 is reached in the spin-polarized regime. Our results constitute a benchmark for the experimental study of ultracold gases of magnetic lanthanide atoms.

  13. Comparison of chromium determination in capsule shells by Zeeman flame and graphite furnace atomic absorption spectrophotometry%塞曼火焰原子吸收与石墨炉原子吸收法测定明胶空心胶囊壳中铬的方法比较

    Institute of Scientific and Technical Information of China (English)

    安代志; 王莉莉; 岳丽君; 戚红卷; 刘雪林

    2012-01-01

    Objective; To investigate effects of Zeeman flame atomic absorption spectrophotometry ( AAS) and graphite furnace AAS on the determination of chromium in capsule shells. Methods; Microwave digestion was adopted to digest the capsule shells. Zeeman effect was used in the background correction. The slit width was set at 1. 3 tun, lamp current 7. 5 mA, and the content of chromium was determined at a wavelength of 359. 3 nm by Zeeman flame AAS and graphite furnace AAS respectively. Results; For the Zeeman flame AAS method, the calibration curve was linear in the range of 0 - 1. 0 μg · mL-1 (r =0. 9998) ,the detection limit was 5. 26 ng · mL-1 ,RSD was 0. 68% - 1. 0% and the average recovery was 100. 0% - 116. 7%. For the graphite furnace AAS method,the calibration curve was linear in the range of 0 - 20 ng · mL -1 ( r = 0. 9999 ) , the detection limit was 0. 26 ng · mL -1, RSD was 1. 7% - 4. 9% and the average recovery was 98. 2% - 105. 6% . Conclusion: The Zeeman flame AAS method is simple, fast, and suitable for the preliminary determination of chromium in capsule shells in emergent cases ; the graphite furnace AAS method is sensitive, accurate, and suitable for the determination of chromium in capsule shells in any case.%目的:研究塞曼效应背景校正的火焰和石墨炉原子吸收法测定胶囊中铬的影响.方法:采用微波消解仪对胶囊壳样品进行消解,在波长359.3 nm下,灯电流7.5 mA;狭缝宽1.3 nm,塞曼背景校正,分别采用塞曼火焰原子吸收和石墨炉原子吸收法进行测定.结果:火焰原子吸收法:线性范围0.04~1.0 mg·mL-1;相关系数为0.9998,检测限5.26 ng· mL-1,RSD为0.68%~1.0%,加样回收率为100.0%~116.7%;石墨炉原子吸收法:线性范围为1~20 ng· mL-1,相关系数为0.9998,检测限为0.26 ng·mL-1,RSD为1.7%~4.9%,加样回收率为98.2% ~ 105.6%.结论:塞曼火焰原子吸收法简便、快捷,能满足大量样品筛选及企业内部质控筛选与

  14. Rules on intrapair and interpair correlation energy for Cl,Cl~- and MCl(M=H,Li,Na,K)

    Institute of Scientific and Technical Information of China (English)

    韦吉崇; 禚淑苹; 居冠之

    2001-01-01

    According to the calculation results of the intrapair and interpair correlation energy for the title systems, it has been found that the intrapair correlation energy of K shell of Cl is almost a constant and both the intrashell and intershell correlation energy of K and L shell changes little. It has also been found that in MCI series compounds the value of Cl correlation energy contribution depends on the ionicity of MCI compounds, i.e., the Cl correlation energy contribution increases with the increase of the ionic bond strength of the compound and this value is always less than the correlation energy of Cl" anion but always larger than that of Cl atom. These rules are helpful for the estimation of the correlation energy of ionic compounds and the energy changes of chemical reactions.

  15. Rules on intrapair and interpair correlation energy for Cl, Cl- and MCl (M=H, Li, Na, K)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    According to the calculation results of the intrapair and interpair correlation energy for the title systems, it has been found that the intrapair correlation energy of K shell of Cl is almost a constant and both the intrashell and intershell correlation energy of K and L shell changes little. It has also been found that in MCl series compounds the value of Cl correlation energy contribution depends on the ionicity of MCl compounds, i.e., the Cl correlation energy contribution increases with the increase of the ionic bond strength of the compound and this value is always less than the correlation energy of Cl- anion but always larger than that of Cl atom. These rules are helpful for the estimation of the correlation energy of ionic compounds and the energy changes of chemical reactions.

  16. Fabrication of diamond shells

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  17. Sensational spherical shells

    Science.gov (United States)

    Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.

    1986-01-01

    Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.

  18. Investigation of physical vapor deposition techniques of conformal shell coating for core/shell structures by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cansizoglu, H., E-mail: hxis@ualr.edu; Yurukcu, M.; Cansizoglu, M.F.; Karabacak, T.

    2015-05-29

    Vertically aligned core/shell nanowire (nanorod) arrays are favorable candidates in many nano-scale devices such as solar cells, detectors, and integrated circuits. The quality of the shell coating around nanowire arrays is as crucial as the quality of the nanowires in device applications. For this reason, we worked on different physical vapor deposition (PVD) techniques and conducted Monte Carlo simulations to estimate the best deposition technique for a conformal shell coating. Our results show that a small angle (≤ 45°) between incoming flux of particles and the substrate surface normal is necessary for PVD techniques with a directional incoming flux (e.g. thermal or e-beam evaporation) for a reasonable conformal coating. On the other hand, PVD techniques with an angular flux distribution (e.g. sputtering) can provide a fairly conformal shell coating around nanowire arrays without a need of small angle deposition. We also studied the shape effect of the arrays on the conformality of the coating and discovered that arrays of the tapered-top nanorods and the pyramids can be coated with a more conformal and thicker coating compared to the coating on the arrays of flat-top nanowires due to their larger openings in between structures. Our results indicate that conventional PVD techniques, which offer low cost and large scale thin film fabrication, can be utilized for highly conformal and uniform shell coating formation in core/shell nanowire device applications. - Highlights: • We examined the shell coating growth in core/shell nanostructures. • We investigated the effect of physical vapor deposition method on the conformality of the shell. • We used Monte Carlo simulations to simulate the shell growth on nanowire templates. • Angular atomic flux (i.e., sputtering at high pressure) leads to conformal and uniform coatings. • A small angle (< 45°) to the directional flux needs to be introduced for conformal coatings.

  19. The Beginning of Japan Nuclear Power:Japan-U.K Atomic Agreement in 1958%日本核电的开端:1958年日英原子能协定

    Institute of Scientific and Technical Information of China (English)

    陈巍

    2011-01-01

    It was in the late 1950s that the nuclear technique developed quickly,nuclear power generation had got access to the practical stage.Japan,the only country that had been attacked by atomic bomb in the world,began to develop and introduced urgently the nuclear equipments and technologies.The Japan-U.K Atomic Agreement signed by Japan and Britain jointly was a milestone which indicated that Japan made use of the nuclear power generation for the first time after introducing gas-cooled reactor.Although Japan had comprised in the negotiation because of the need for the help from Britain,the signed agreement and introduction of nuclear equipments established a new era for the Japanese history of usage of nuclear power.%20世纪50年代后期,世界核能和平利用技术迅速发展,核能发电已进入实用阶段。作为世界上唯一受过原子弹轰炸国家的日本,由于预计到未来能源的短缺,开始迫切地发展和引进核电设备和技术。这一时期通过与英国签定《日英原子能一般协定》,引进气冷式反应堆发电所,开启了日本核能发电之滥觞。虽然在交涉中,由于在技术上有求于人,日本作了不少让步,但《协定》的达成和核能设备的引进,却开辟了日本利用核能的新时代。

  20. Nature of sodium atoms/(Na(+), e(-)) contact pairs in liquid tetrahydrofuran.

    Science.gov (United States)

    Glover, William J; Larsen, Ross E; Schwartz, Benjamin J

    2010-09-09

    With no internal vibrational or rotational degrees of freedom, atomic solutes serve as the simplest possible probe of a condensed-phase environment's influence on solute electronic structure. Of the various atomic species that can be formed in solution, the quasi-one-electron alkali atoms in ether solvents have been the most widely studied experimentally, primarily due to the convenient location of their absorption spectra at visible wavelengths. The nature of solvated alkali atoms, however, remains controversial: the consensus view is that solvated alkali atoms exist as (Na(+), e(-)) tight-contact pairs (TCPs), species in which the alkali valence electron is significantly displaced from the alkali nucleus and confined primarily by the first solvent shell. Thus, to shed light on the nature of alkali atoms in solution and to further our understanding of condensed-phase effects on solutes' electronic structure, we have performed mixed quantum/classical molecular dynamics simulations of sodium atoms in liquid tetrahydrofuran (Na(0)/THF). Our interest in this particular system stems from recent pump-probe experiments in our group, which found that the rate at which this species is solvated depends on how it was created ( Science 2008 , 321 , 1817 ); in other words, the solvation dynamics of this system do not obey linear response. Our simulations reproduce the experimental spectroscopy of this system and clearly indicate that neutral Na atoms exist as (Na(+), e(-)) TCPs in solution. We find that the driving force for the displacement of sodium's valence electron is the formation of a tight solvation shell around the partially exposed Na(+). On average, four THF oxygens coordinate the cation end of the TCP; however, we also observe fluctuations to other solvent coordination numbers. Furthermore, we find that species with different solvent coordination numbers have unique absorption spectra and that interconversion between species with different solvent coordination

  1. Windows Server 2016 -käyttöjärjestelmän merkittävimmät muutokset: Nano Server, Windows PowerShell 5.0, Windows Server Containers ja Hyper-V Containers

    OpenAIRE

    2016-01-01

    Valitsin opinnäytetyöaiheekseni Windows Server 2016 -käyttöjärjestelmän merkittävimmät muutokset. Aihe on ajankohtainen, koska Windows Server 2016 julkaistiin 26.-30.9.2016 Microsoft Ignite -konferenssissa. Työni tavoite on selvittää, mitä suuria muutoksia Windows Server 2016 -käyttöjärjestelmä sisältää ja miten ne toimivat, koska siinä on paljon suuria muutoksia, joiden oppiminen vie aikaa. Tämän takia halusin käydä läpi, mitä suuria muutoksia Windows Server 2016 sisältää, kuinka ne otetaan ...

  2. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties.

    Science.gov (United States)

    Zhang, Fan; Che, Renchao; Li, Xiaomin; Yao, Chi; Yang, Jianping; Shen, Dengke; Hu, Pan; Li, Wei; Zhao, Dongyuan

    2012-06-13

    Lanthanide-doped upconversion nanoparticles have shown considerable promise in solid-state lasers, three-dimensional flat-panel displays, and solar cells and especially biological labeling and imaging. It has been demonstrated extensively that the epitaxial coating of upconversion (UC) core crystals with a lattice-matched shell can passivate the core and enhance the overall upconversion emission intensity of the materials. However, there are few papers that report a precise link between the shell thickness of core/shell nanoparticles and their optical properties. This is mainly because rare earth fluoride upconversion core/shell structures have only been inferred from indirect measurements to date. Herein, a reproducible method to grow a hexagonal NaGdF(4) shell on NaYF(4):Yb,Er nanocrystals with monolayer control thickness is demonstrated for the first time. On the basis of the cryo-transmission electron microscopy, rigorous electron energy loss spectroscopy, and high-angle annular dark-field investigations on the core/shell structure under a low operation temperature (96 K), direct imaging the NaYF(4):Yb,Er@NaGdF(4) nanocrystal core/shell structure at the subnanometer level was realized for the first time. Furthermore, a strong linear link between the NaGdF(4) shell thickness and the optical response of the hexagonal NaYF(4):Yb,Er@NaGdF(4) core/shell nanocrystals has been established. During the epitaxial growth of the NaGdF(4) shell layer by layer, surface defects of the nanocrystals can be gradually passivated by the homogeneous shell deposition process, which results in the obvious enhancement in overall UC emission intensity and lifetime and is more resistant to quenching by water molecules.

  3. Atomic physics

    CERN Document Server

    Born, Max

    1989-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  4. Excitation Potentials and Shell Corrections for the Elements Z2=20 to Z2=30

    DEFF Research Database (Denmark)

    Andersen, H.H.; Sørensen, H.; Vadja, P.

    1969-01-01

    Excitation potentials and shell corrections for the elements Z 2=20 to Z2=30 are evaluated from experimental stopping-power data for 5-12-MeV protons and deuterons. Use is made of Walske's K- and L-shell corrections and shell corrections calculated by Bonderup (1967) on the basis of the Thomas-Fe...

  5. MEASUREMENTS OF TOTAL CROSS SECTIONS FOR K—SHELL IONIZATION BY ELECTRON BOMBARDMENT

    Institute of Scientific and Technical Information of China (English)

    李景文; 董志强; 等

    1994-01-01

    Cross sections for K-shell ionization have been measured at electron energies of 0.1-0.40MeV for Cu and Sn,and of 0.30MeV for Ag.The present results have been compared with theoretical calculations and previously reported experimental values.A great deal of experimental and theoretical work has been devoted in recent years to the study of the ionization cross sections of atoms or ions by electron impact[1-3],The importance of an accurate evaluation of these cross sections is evidenced by the wide variety of physical phenomana,the interpretations of which demand a knowledge of reaction rates for ionization by electron impact.Examples of such phenomena arise in the field of plamsa physics,in study of stellar atomospheres and the solar corona,in studies of gas discharges and of the passage of shock waves through gases,and in astrophysics.

  6. Simulation for double shell pinch

    Institute of Scientific and Technical Information of China (English)

    Wang Gang-Hua; Hu Xi-Jing; Sun Cheng-Wei

    2004-01-01

    Basic shock phenomena are presented in a composite pinch, a hybrid of the Z-pinch. The successive transfer of current within the plasma structure is demonstrated by our calculations. Properties of the shock wave are described.The current distribution between the two shells after the outer shell hitting the inner shell is also discussed.

  7. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  8. Radar attenuation in Europa's ice shell: obstacles and opportunities for constraining shell thickness and thermal structure

    Science.gov (United States)

    Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe

    2016-10-01

    With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the

  9. Recent Advances in Shell Evolution with Shell-Model Calculations

    CERN Document Server

    Utsuno, Yutaka; Tsunoda, Yusuke; Shimizu, Noritaka; Honma, Michio; Togashi, Tomoaki; Mizusaki, Takahiro

    2014-01-01

    Shell evolution in exotic nuclei is investigated with large-scale shell-model calculations. After presenting that the central and tensor forces produce distinctive ways of shell evolution, we show several recent results: (i) evolution of single-particle-like levels in antimony and cupper isotopes, (ii) shape coexistence in nickel isotopes understood in terms of configuration-dependent shell structure, and (iii) prediction of the evolution of the recently established $N=34$ magic number towards smaller proton numbers. In any case, large-scale shell-model calculations play indispensable roles in describing the interplay between single-particle character and correlation.

  10. Relativistic calculations of the non-resonant two-photon ionization of neutral atoms

    CERN Document Server

    Hofbrucker, Jiri; Fritzsche, Stephan

    2016-01-01

    The non-resonant two-photon one-electron ionization of neutral atoms is studied theoretically in the framework of relativistic second-order perturbation theory and independent particle approximation. In particular, the importance of relativistic and screening effects in the total two-photon ionization cross section is investigated. Detailed computations have been carried out for the K-shell ionization of neutral Ne, Ge, Xe, and U atoms. The relativistic effects significantly decrease the total cross section, for the case of U, for example, they reduce the total cross section by a factor of two. Moreover, we have found that the account for the screening effects of the remaining electrons leads to occurrence of an unexpected minimum in the total cross section at the total photon energies equal to the ionization threshold, for the case of Ne, for example, the cross section drops there by a factor of three.

  11. Digestive ripening: a synthetic method par excellence for core-shell, alloy, and composite nanostructured materials

    Indian Academy of Sciences (India)

    Srilakshmi P Bhaskar; Balaji R Jagirdar

    2012-11-01

    The solvated metal atom dispersion (SMAD) method has been used for the synthesis of colloids of metal nanoparticles. It is a top-down approach involving condensation of metal atoms in low temperature solvent matrices in a SMADreactor maintained at 77 K.Warming of the matrix results in a slurry ofmetal atoms that interact with one another to form particles that grow in size. The organic solvent solvates the particles and acts as a weak capping agent to halt/slow down the growth process to a certain extent. This as-prepared colloid consists of metal nanoparticles that are quite polydisperse. In a process termed as digestive ripening, addition of a capping agent to the as-prepared colloid which is polydisperse renders it highly monodisperse either under ambient or thermal conditions. In this, as yet not well-understood process, smaller particles grow and the larger ones diminish in size until the system attains uniformity in size and a dynamic equilibrium is established. Using the SMAD method in combination with digestive ripening process, highly monodisperse metal, core-shell, alloy, and composite nanoparticles have been synthesized. This article is a review of our contributions together with some literature reports on this methodology to realize various nanostructured materials.

  12. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack....

  13. QED theory of the nuclear recoil effect in atoms

    CERN Document Server

    Shabaev, V M

    1998-01-01

    The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \\alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.

  14. Atomic Resolution Interfacial Structure of Lead-free Ferroelectric K0.5Na0.5NbO3 Thin films Deposited on SrTiO3.

    Science.gov (United States)

    Li, Chao; Wang, Lingyan; Wang, Zhao; Yang, Yaodong; Ren, Wei; Yang, Guang

    2016-11-25

    Oxide interface engineering has attracted considerable attention since the discovery of its exotic properties induced by lattice strain, dislocation and composition change at the interface. In this paper, the atomic resolution structure and composition of the interface between the lead-free piezoelectric (K0.5Na0.5)NbO3 (KNN) thin films and single-crystalline SrTiO3 substrate were investigated by means of scanning transmission electron microscopy (STEM) combining with electron energy loss spectroscopy (EELS). A sharp epitaxial interface was observed to be a monolayer composed of Nb and Ti cations with a ratio of 3/1. The First-Principles Calculations indicated the interface monolayer showed different electronic structure and played the vital role in the asymmetric charge distribution of KNN thin films near the interface. We also observed the gradual relaxation process for the relatively large lattice strains near the KNN/STO interface, which remarks a good structure modulation behavior of KNN thin films via strain engineering.

  15. Atomic structure and phason modes of the Sc-Zn icosahedral quasicrystal.

    Science.gov (United States)

    Yamada, Tsunetomo; Takakura, Hiroyuki; Euchner, Holger; Pay Gómez, Cesar; Bosak, Alexei; Fertey, Pierre; de Boissieu, Marc

    2016-07-01

    The detailed atomic structure of the binary icosahedral (i) ScZn7.33 quasicrystal has been investigated by means of high-resolution synchrotron single-crystal X-ray diffraction and absolute scale measurements of diffuse scattering. The average atomic structure has been solved using the measured Bragg intensity data based on a six-dimensional model that is isostructural to the i-YbCd5.7 one. The structure is described with a quasiperiodic packing of large Tsai-type rhombic triacontahedron clusters and double Friauf polyhedra (DFP), both resulting from a close-packing of a large (Sc) and a small (Zn) atom. The difference in chemical composition between i-ScZn7.33 and i-YbCd5.7 was found to lie in the icosahedron shell and the DFP where in i-ScZn7.33 chemical disorder occurs on the large atom sites, which induces a significant distortion to the structure units. The intensity in reciprocal space displays a substantial amount of diffuse scattering with anisotropic distribution, located around the strong Bragg peaks, that can be fully interpreted as resulting from phason fluctuations, with a ratio of the phason elastic constants K 2/K 1 = -0.53, i.e. close to a threefold instability limit. This induces a relatively large perpendicular (or phason) Debye-Waller factor, which explains the vanishing of 'high-Q perp' reflections.

  16. HCl yield and chemical kinetics study of the reaction of Cl atoms with CH3I at the 298K temperature using the infra-red tunable diode laser absorption spectroscopy.

    Science.gov (United States)

    Sharma, R C; Blitz, M; Wada, R; Seakins, P W

    2014-07-15

    Pulsed ArF excimer laser (193 nm)-CW infrared (IR) tunable diode laser Herriott type absorption spectroscopic technique has been made for the detection of product hydrochloric acid HCl. Absorption spectroscopic technique is used in the reaction chlorine atoms with methyl iodide (Cl+CH3I) to the study of kinetics on reaction Cl+CH3I and the yield of (HCl). The reaction of Cl+CH3I has been studied with the support of the reaction Cl+C4H10 (100% HCl) at temperature 298 K. In the reaction Cl+CH3I, the total pressure of He between 20 and 125 Torr at the constant concentration of [CH3I] 7.0×10(14) molecule cm(-3). In the present work, we estimated adduct formation is very important in the reaction Cl+CH3I and reversible processes as well and CH3I molecule photo-dissociated in the methyl [CH3] radical. The secondary chemistry has been studied as CH3+CH3ICl = product, and CH3I+CH3ICl = product2. The system has been modeled theoretically for secondary chemistry in the present work. The calculated and experimentally HCl yield nearly 65% at the concentration 1.00×10(14) molecule cm(-3) of [CH3I] and 24% at the concentration 4.0×10(15) molecule cm(-3) of [CH3I], at constant concentration 4.85×10(12) molecule cm(-3) of [CH3], and at 7.3×10(12) molecule cm(-3) of [Cl]. The pressure dependent also studied product of HCl at the constant [CH3], [Cl] and [CH3I]. The experimental results are also very good matching with the modelling work at the reaction CH3+CH3ICl = product (k = (2.75±0.35)×10(-10) s(-1)) and CH3I+CH3ICl = product2 (k = 1.90±0.15)×10(-12) s(-1). The rate coefficients of the reaction CH3+CH3ICl and CH3I+CH3ICl has been made in the present work. The experimental results has been studied by two method (1) phase locked and (2) burst mode.

  17. Characterization of high-k gate dielectrics by atomic-resolution electron microscopy: current progress and future prospects%高k栅介质原子分辨率的电镜表征:研究进展和展望

    Institute of Scientific and Technical Information of China (English)

    朱信华; 朱健民; 刘治国; 闵乃本

    2009-01-01

    As the downscaling of the feature sizes of complementary metal oxide semiconductor (CMOS) devices enters into the "nuno" era, nanoscale structural characterization at device dimensions becomes critical. A full structural analysis of processed semiconductor devices reqnires an ability to determine atomic positions and local chemical elements and electronic structure. Highresolution (analytical) transmission electron microscopes (HR (A)TEM ), which provide the microscopy techniques such as diffraction contrast imaging (smplimde contrast imaging), high-resolution TEM imaging (phase contrast imaging), selected area electron diffraction and convergent beam electron diffraction, and X-ray energy-dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS), have become essential metrology tools in the semiconductor industry. Scanning transmission electron microscope (STEM) with high-angle annular dark field (HAADF) imaging (or Z-contrast incoherent imaging) can directly reveal the structure and chemistry of materials at the atomic scale, due to its imaging intensity being approximately proportional to the square of atomic number (Z) of element. By using Z-contrast imaging and high-resolved EELS spectroscopy, it is very powerful to determine the interfacial structures and the elemental/cbemical environment at/around interfaces within advanced CMOS gate stacks. In recent years the new development of aberration corrector (or, Cs-corrector) makes a revolutionizing the performance of HRTEM/STEM instruments, allowing one to achieve a spatial resolution better than 0.08 nm and an energy resolution better than 0.2 eV, thereby making the characterization of individual nanoscale device structure at sub-atomic scale available. The new generation HRTEM/STEM facility equipped with Cs-corrector will benefit high-k gate materials research in the new era. In this review, some basic principles and key features of atomic-resolution electron microscopy, and the associated high

  18. Hirshfeld atom refinement

    Directory of Open Access Journals (Sweden)

    Silvia C. Capelli

    2014-09-01

    Full Text Available Hirshfeld atom refinement (HAR is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's, all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules, the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  19. Neutron Diffraction Studies of the Atomic Vibrations of Bulk and Surface Atoms of Nanocrystalline SiC

    Science.gov (United States)

    Stelmakh, S.; Grzanka, E.; Zhao, Y.; Palosz, W.; Palosz, B.

    2004-01-01

    Thermal atomic motions of nanocrystalline Sic were characterized by two temperature atomic factors B(sub core), and B(sub shell). With the use of wide angle neutron diffraction data it was shown that at the diffraction vector above 15A(exp -1) the Wilson plots gives directly the temperature factor of the grain interior (B(sub core)). At lower Q values the slope of the Wilson plot provides information on the relative amplitudes of vibrations of the core and shell atoms.

  20. Experiments with Ξ- atoms

    Science.gov (United States)

    Batty, C. J.; Friedman, E.; Gal, A.

    1999-01-01

    Experiments with Ξ- atoms are proposed in order to study the nuclear interaction of Ξ hyperons. The production of Ξ- in the (K-,K+) reaction, the Ξ- stopping in matter, and its atomic cascade are incorporated within a realistic evaluation of the results expected for Ξ- x-ray spectra across the periodic table, using an assumed Ξ-nucleus optical potential Vopt. Several optimal targets for measuring the strong-interaction shift and width of the x-ray transition to the ``last'' atomic level observed are singled out: F, Cl, I, and Pb. The sensitivity of these observables to the parameters of Vopt is considered. The relevance of such experiments is discussed in the context of strangeness -2 nuclear physics and multistrange nuclear matter. Finally, with particular reference to searches for the H dibaryon, the properties of Ξ-d atoms are also discussed. The role of Stark mixing and its effect on S and P state capture of Ξ- by the deuteron together with estimates of the resulting probability for producing the H dibaryon are considered in detail.

  1. Hot Electron Diagnostic in a Solid Laser Target by Buried K-Shell Fluorer Technique from Ultra-Intense (3x1020W/cm2,< 500 J) Laser-Plasma Interactions on the Petawatt Laser at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Yasuike, K.; Key, M.H.; Hatchett, S.P.; Snavely, R.A.

    2000-06-29

    Characterization of hot electron production (a conversion efficiency from laser energy into electrons) in ultra intense laser-solid target interaction, using 1.06 {micro}m laser light with an intensity of up to 3 x 10{sup 20}W cm{sup -2} and an on target laser energy of {le}500 J, has been done by observing K{sub {beta}} as well as K{sub {alpha}} emissions from a buried Mo layer in the targets, which are same structure as in the previous 100 TW experiments but done under less laser intensity and energy conditions ({le} 4 x 10{sup 19} Wcm{sup -2} and {le} 30 J). The conversion efficiency from the laser energy into the energy, carried by hot electrons, has been estimated to be {approx}50%, which are little bit higher than the previous less laser energy ({approx} 20 J) experiments, yet the x-ray emission spectra from the target has change drastically, i.e., gamma flash.

  2. First detection of cold dust in the northern shell of NGC 5128 (Centaurus A)

    Science.gov (United States)

    Stickel, M.; van der Hulst, J. M.; van Gorkom, J. H.; Schiminovich, D.; Carilli, C. L.

    2004-02-01

    Deep far-infrared (FIR) imaging data obtained with ISOPHOT at 90 μm, 150 μm, and 200 μm detected the thermal emission from cold dust in the northern shell region of NGC 5128 (Centaurus A), where previously neutral hydrogen and molecular gas has been found. A somewhat extended FIR emission region is present in both the 150 μm and 200 μm map, while only an upper flux limit could be derived from the 90 μm data. The FIR spectral energy distribution can be reconciled with a modified blackbody spectrum with very cold dust color temperatures and emissivity indices in the range 13 K β > 1, respectively, where the data favor the low temperature end. A representative value for the associated dust mass is MDust ≈ 7×104 M⊙, which together with the HI gas mass gives a gas-to-dust ratio of ≈300, close the average values of normal inactive spiral galaxies. This value, in conjunction with the atomic to molecular gas mass ratio typical for a spiral galaxy, indicates that the interstellar medium (ISM) from the inner part of a captured disk galaxy is likely the origin of the outlying gas and dust. These observations are in agreement with recent theoretical considerations that in galaxy interactions leading to stellar shell structures the less dissipative clumpy component of the ISM from the captured galaxy can lead to gaseous shells. Alternatively, the outlying gas and dust could be a rotating ring structure resulting from an interaction or even late infall of tidal material of a merger in the distant past. With all three components (atomic gas, molecular gas, dust) of the ISM present in the northern shell region, local star formation may account for the chains of young blue stars surrounding the region to the east and north. The dust cloud may also be involved in the disruption of the large scale radio jet before entering the brighter region of the northern radio lobe. Based on observations with ISO, an ESA project with instruments funded by ESA Member States

  3. A kilobyte rewritable atomic memory

    Science.gov (United States)

    Kalff, F. E.; Rebergen, M. P.; Fahrenfort, E.; Girovsky, J.; Toskovic, R.; Lado, J. L.; Fernández-Rossier, J.; Otte, A. F.

    2016-11-01

    The advent of devices based on single dopants, such as the single-atom transistor, the single-spin magnetometer and the single-atom memory, has motivated the quest for strategies that permit the control of matter with atomic precision. Manipulation of individual atoms by low-temperature scanning tunnelling microscopy provides ways to store data in atoms, encoded either into their charge state, magnetization state or lattice position. A clear challenge now is the controlled integration of these individual functional atoms into extended, scalable atomic circuits. Here, we present a robust digital atomic-scale memory of up to 1 kilobyte (8,000 bits) using an array of individual surface vacancies in a chlorine-terminated Cu(100) surface. The memory can be read and rewritten automatically by means of atomic-scale markers and offers an areal density of 502 terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude. Furthermore, the chlorine vacancies are found to be stable at temperatures up to 77 K, offering the potential for expanding large-scale atomic assembly towards ambient conditions.

  4. PREONS SHELLS AND ATOMIC STRUCTURE Преоновые оболочки и структура атома

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2013-03-01

    Full Text Available We consider the model of the structure of electrons and quarks, in which these particles are presented consisting of elementary particles preons. From this model, the theory of electron shells, as a continuation of the quark nuclear shells has been proposed

  5. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan

    2015-01-14

    Conducting polymers such as polyaniline (PAni) show a great potential as pseudocapacitor materials for electrochemical energy storage applications. Yet, the cycling instability of PAni resulting from structural alteration is a major hurdle to its commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD) on PAni nanofibers plays a crucial role in stabilizing the PAni pseudocapacitors and improving their energy density. The pseudocapacitors, which are based on optimized PAni-RuO2 core-shell nanostructured electrodes, exhibit very high specific capacitance (710 F g-1 at 5 mV s-1) and power density (42.2 kW kg-1) at an energy density of 10 Wh kg-1. Furthermore, they exhibit remarkable capacitance retention of ≈88% after 10 000 cycles at very high current density of 20 A g-1, superior to that of pristine PAni-based pseudocapacitors. This prominently enhanced electrochemical stability successfully demonstrates the buffering effect of ALD coating on PAni, which provides a new approach for the preparation of metal-oxide/conducting polymer hybrid electrodes with excellent electrochemical performance.

  6. Deposition of conductive TiN shells on SiO2 nanoparticles with a fluidized bed ALD reactor

    NARCIS (Netherlands)

    Didden, A.; Hillebrand, P.; Wollgarten, M.; Dam, B.; Van de Krol, R.

    2016-01-01

    Conductive TiN shells have been deposited on SiO2 nanoparticles (10–20 nm primary particle size) with fluidized bed atomic layer deposition using TDMAT and NH3 as precursors. Analysis of the powders confirms that shell growth saturates at approximately 0.4 nm/cycle at TDMAT doses of >1.2 mmol/g of p

  7. Core-shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters.

    Science.gov (United States)

    Wang, Xinqin; Cui, Yingqi; Yu, Shengping; Zeng, Qun; Yang, Mingli

    2016-04-07

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe)(x)@(CdSe)(y) and their Zn-substituted complexes of x = 2-4 and y = 16-28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn-Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition-structure-property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  8. Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain.

    Science.gov (United States)

    Wu, Shih-Ying; Chen, Cherry C; Tung, Yao-Sheng; Olumolade, Oluyemi O; Konofagou, Elisa E

    2015-08-28

    Lipid-shelled microbubbles have been used in ultrasound-mediated drug delivery. The physicochemical properties of the microbubble shell could affect the delivery efficiency since they determine the microbubble mechanical properties, circulation persistence, and dissolution behavior during cavitation. Therefore, the aim of this study was to investigate the shell effects on drug delivery efficiency in the brain via blood-brain barrier (BBB) opening in vivo using monodisperse microbubbles with different phospholipid shell components. The physicochemical properties of the monolayer were varied by using phospholipids with different hydrophobic chain lengths (C16, C18, and C24). The dependence on the molecular size and acoustic energy (both pressure and pulse length) were investigated. Our results showed that a relatively small increase in the microbubble shell rigidity resulted in a significant increase in the delivery of 40-kDa dextran, especially at higher pressures. Smaller (3kDa) dextran did not show significant difference in the delivery amount, suggesting that the observed shell effect was molecular size-dependent. In studying the impact of acoustic energy on the shell effects, it was found that they occurred most significantly at pressures causing microbubble destruction (450kPa and 600kPa); by increasing the pulse length to deliver the 40-kDa dextran, the difference between C16 and C18 disappeared while C24 still achieved the highest delivery efficiency. These indicated that the acoustic energy could be used to modulate the shell effects. The acoustic cavitation emission revealed the physical mechanisms associated with different shells. Overall, lipid-shelled microbubbles with long hydrophobic chain length could achieve high delivery efficiency for larger molecules especially with high acoustic energy. Our study, for the first time, offered evidence directly linking the microbubble monolayer shell with their efficacy for drug delivery in vivo.

  9. Calculation of Al-Zn diagram from central atoms model

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A slightly modified central atoms model was proposed. The probabilities of various clusters with the central atoms and their nearest neighboring shells can be calculated neglecting the assumption of the param eter of energy in the central atoms model in proportion to the number of other atoms i (referred with the central atom). A parameter Pα is proposed in this model, which equals to reciprocal of activity coefficient of a component, therefore, the new model can be understood easily. By this model, the Al-Zn phase diagram and its thermodynamic properties were calculated, the results coincide with the experimental data.

  10. Selection of influential spreaders in complex networks using Pareto Shell decomposition

    Science.gov (United States)

    Yeruva, Sujatha; Devi, T.; Reddy, Y. Samtha

    2016-06-01

    The selection of prominent nodes in order to maximize the ability of spreading is very crucial in complex networks. The well known K-Shell method, which comprises nodes located at the core of a network, is better than the degree centrality and betweenness centrality, in capturing the spreading ability for a single origin spreader. As per the multiple origin spreaders, the K-Shell method fails to yield similar results when compared to the degree centrality. Current research proposes a Pareto-Shell Decomposition. It employs Pareto front function. It's Pareto optimal set comprises non-dominated spreads, with the ratio of high out-degree to in-degree and high in-degree. Pareto-Shell decomposition outperforms the K-Shell and the degree centrality for multiple origin spreaders, with the simulation of epidemic spreading process.

  11. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  12. Multi-shell effective interactions

    CERN Document Server

    Tsunoda, Naofumi; Hjorth-Jensen, Morten; Otsuka, Takaharu

    2013-01-01

    Background: Effective interactions, either derived from microscopic theories or based on fitting selected properties of nuclei in specific mass regions, are widely used inputs to shell-model studies of nuclei. Until recently, most shell-model calculations have been confined to a single oscillator shell. Recent interest in nuclei away from the stability line, requires however larger shell-model spaces. Since the derivation of microscopic effective interactions has been limited to degenerate model spaces, there are both conceptual and practical limits to present shell-model calculations that utilize such interactions. Purpose: The aim of this work is to present a novel microscopic method to calculate effective interactions for the nuclear shell model. Its main difference from existing theories is that it can be applied not only to degenerate model spaces but also to non-degenerate model spaces. Methods: The formalism is presented in the form of many-body perturbation theory based on the recently developed Exten...

  13. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  14. Shell-structure effects on high-pressure Rankine-Hugoniot shock adiabats

    CERN Document Server

    Pain, J C

    2007-01-01

    Rankine-Hugoniot shock adiabats are calculated in the pressure range 1 Mbar-10 Gbar with two atomic-structure models: the atom in a spherical cell and the atom in a jellium of charges. These quantum self-consistent-field models include shell effects, which have a strong impact on pressure and shock velocity along the shock adiabat. Comparisons with experimental data are presented and quantum effects are interpreted in terms of electronic specific heat. A simple analytical estimate for the maximum compression is proposed, depending on initial density, atomic weight and atomic number.

  15. Contemporary models of the atomic nucleus

    CERN Document Server

    Nemirovskii, P E

    2013-01-01

    Contemporary Models of the Atomic Nucleus discusses nuclear structure and properties, expounding contemporary theoretical concepts of the low-energy nuclear processes underlying in nuclear models. This book focuses on subjects such as the optical nuclear model, unified or collective model, and deuteron stripping reaction. Other topics discussed include the basic nuclear properties; shell model; theoretical analysis of the shell model; and radiative transitions and alpha-decay. The deuteron theory and the liquid drop nuclear model with its application to fission theory are also mentioned, but o

  16. P-si nanowires/n-ZnO thin film based core-shell heterojunction diodes with improved effective Richardson constant.

    Science.gov (United States)

    Hazra, Purnima; Jit, S

    2014-07-01

    This paper reports the temperature dependent electrical parameters of p-Silicon nanowires (SiNWs)/n-ZnO thin film based core-shell heterojunction diodes fabricated by conformally deposited zinc oxide (ZnO) by atomic layer deposition (ALD) technique on metal-assisted chemically etched SiNWs. The temperature-dependent current-voltage characteristics of the device have been estimated using the modified thermionic emission model in which a Gaussian distributed barrier height function is assumed to include the effects of barrier inhomogeneity phenomenon at the p-SiNW /n-ZnO heterojunction interface. Various parameters such as the turn-on voltage, ideality factor (eta), barrier height (phi(b)) and reverse saturation current are estimated over the operating temperature range of 303 K to 423 K of the diode. The value of the Richardson constant is observed to be largely changed from an impractical value of 1.989 x 10(-6) A cm(-2) K-2 to a realistic value of 36.6 A cm(-2) K-2 once the barrier inhogeneity phenomenon is taken into consideration in the analysis. The estimated value of the Richardson constant is believed to be the best among the reported results. The study is also believed to be the first in case of p-SiNWs/n-ZnO core-shell heterojunction diodes.

  17. Alloying effect on K shell X-ray fluorescence cross-sections and intensity ratios of Cu and Sn in Cu1Sn1-x alloys using the 59.5 keV gamma rays

    Science.gov (United States)

    Dogan, M.; Olgar, M. A.; Cengiz, E.; Tıraşoglu, E.

    2016-09-01

    Kβ/Kα, intensity ratios and σKα,β production cross-sections of Cu and Sn were measured in pure metals and in different alloys which have different compositions (CuxSn1-x x=0.48, 0.41, 0.14 and 0.06). The samples were excited by 59.5 keV γ-rays from 241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. Comparison of the σKβ production cross-sections and Kβ/Kα X-ray intensity ratio values for Cu and Sn with the theoretical and semi-empirical calculations indicates that they are in the inverse direction with concentration of constituent element in the alloys. The results show that variations in these parameters can be explained with the charge transfer process between the elements which constitute the alloys.

  18. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  19. Magnetic heating properties and neutron activation of tungsten-oxide coated biocompatible FePt core-shell nanoparticles.

    Science.gov (United States)

    Seemann, K M; Luysberg, M; Révay, Z; Kudejova, P; Sanz, B; Cassinelli, N; Loidl, A; Ilicic, K; Multhoff, G; Schmid, T E

    2015-01-10

    Magnetic nanoparticles are highly desirable for biomedical research and treatment of cancer especially when combined with hyperthermia. The efficacy of nanoparticle-based therapies could be improved by generating radioactive nanoparticles with a convenient decay time and which simultaneously have the capability to be used for locally confined heating. The core-shell morphology of such novel nanoparticles presented in this work involves a polysilico-tungstate molecule of the polyoxometalate family as a precursor coating material, which transforms into an amorphous tungsten oxide coating upon annealing of the FePt core-shell nanoparticles. The content of tungsten atoms in the nanoparticle shell is neutron activated using cold neutrons at the Heinz Maier-Leibnitz (FRMII) neutron facility and thereby transformed into the radioisotope W-187. The sizeable natural abundance of 28% for the W-186 precursor isotope, a radiopharmaceutically advantageous gamma-beta ratio of γβ≈30% and a range of approximately 1mm in biological tissue for the 1.3MeV β-radiation are promising features of the nanoparticles' potential for cancer therapy. Moreover, a high temperature annealing treatment enhances the magnetic moment of nanoparticles in such a way that a magnetic heating effect of several degrees Celsius in liquid suspension - a prerequisite for hyperthermia treatment of cancer - was observed. A rise in temperature of approximately 3°C in aqueous suspension is shown for a moderate nanoparticle concentration of 0.5mg/ml after 15min in an 831kHz high-frequency alternating magnetic field of 250Gauss field strength (25mT). The biocompatibility based on a low cytotoxicity in the non-neutron-activated state in combination with the hydrophilic nature of the tungsten oxide shell makes the coated magnetic FePt nanoparticles ideal candidates for advanced radiopharmaceutical applications.

  20. 7 CFR 51.2289 - Shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2289 Shell. Shell means the outer shell and/or the woody partition from between the halves of the kernel, and any fragments of either....

  1. Probing superheavy quasimolecular collisions with incoming inner shell vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Verma, P. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany) and JMI University, New Delhi (India) and Vaish College, Rohtak (India)]. E-mail: P.Verma@gsi.de; Mokler, P.H. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); J. Liebig University, Giessen (Germany); Braeuning-Demian, A. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Braeuning, H. [J. Liebig University, Giessen (Germany); Kozhuharov, C. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Bosch, F. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Liesen, D. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Hagmann, S. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); J.W. Goethe University, Frankfurt (Germany); Stoehlker, Th. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Stachura, Z. [Institute for Nuclear Physics, Cracow (Poland); Banas, D. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Swietokrzyska Academy, Kielce (Poland); Orsic-Muthig, A. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Schoeffler, M. [J.W. Goethe University, Frankfurt (Germany); Sierpowski, D. [Jagellonian University, Cracow (Poland); Spillmann, U. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Tashenov, S. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Toleikis, S. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Wahab, M.A. [JMI University, New Delhi (India)

    2006-04-15

    With the advanced accelerator technologies used at the SIS/ESR heavy ion facility at GSI, the highest charge states (bare, H-like, etc.) even for the heaviest ions can be provided for experiments at moderate collision velocities (v {sub ion} < v {sub K}). Hence, inner shell vacancies can be provided prior to collisions for the innermost shells of transiently formed superheavy quasimolecules. However, projectile K-vacancies may be destroyed while penetrating solids. The goal of the present investigation is to establish how far at relatively low collision velocities, high incoming ionic charge states do survive in thin solid targets and hence, how far thin solid targets can be utilized for studying superheavy quasimolecules with well-defined, open, incoming, inner shell vacancy channels. The dependence of quasimolecular collisions on projectile charge state (q) and target thickness (t) is studied in very thin Au solid targets for 69 MeV/u U {sup q+} ions (73 {<=} q {<=} 91)

  2. Unified description of pf-shell nuclei by the Monte Carlo shell model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio

    1998-03-01

    The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)

  3. Multi-Shell Shell Model for Heavy Nuclei

    CERN Document Server

    Sun, Y; Sun, Yang; Wu, Cheng-Li

    2003-01-01

    Performing a shell model calculation for heavy nuclei has been a long-standing problem in nuclear physics. Here we propose one possible solution. The central idea of this proposal is to take the advantages of two existing models, the Projected Shell Model (PSM) and the Fermion Dynamical Symmetry Model (FDSM), to construct a multi-shell shell model. The PSM is an efficient method of coupling quasi-particle excitations to the high-spin rotational motion, whereas the FDSM contains a successful truncation scheme for the low-spin collective modes from the spherical to the well-deformed region. The new shell model is expected to describe simultaneously the single-particle and the low-lying collective excitations of all known types, yet keeping the model space tractable even for the heaviest nuclear systems.

  4. Hydride formation in core-shell alloyed metal nanoparticles

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2016-07-01

    The model and analysis presented are focused on hydride formation in nanoparticles with a Pd shell and a core formed by another metal. The arrangement of metal atoms is assumed to be coherent (no dislocations). The lattice strain distribution, elastic energy, and chemical potential of hydrogen atoms are scrutinized. The slope of the chemical potential (as a function of hydrogen uptake) is demonstrated to decrease with increasing the core volume, and accordingly the critical temperature for hydride formation and the corresponding hysteresis loops are predicted to decrease as well.

  5. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the rig...

  6. Shell model and spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Poves, P. [Madrid Univ. Autonoma and IFT, UAM/CSIC, E-28049 (Spain)

    2007-07-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  7. Zeeman Relaxation of Cold Atomic Iron and Nickel in Collisions with 3He

    CERN Document Server

    Johnson, Cort; Brahms, Nathan; Doyle, John M; Kleppner, Daniel; Greytak, Thomas J

    2010-01-01

    We have measured the ratio of the diffusion cross-section to the angular momentum reorientation cross-section in the colliding Fe-3He and Ni-3He systems. Nickel (Ni) and iron (Fe) atoms are introduced via laser ablation into a cryogenically cooled experimental cell containing cold (< 1 K) 3He buffer gas. Elastic collisions rapidly cool the translational temperature of the ablated atoms to the helium temperature. The cross-section ratio is extracted by measuring the decays of the atomic Zeeman sublevels. For our experimental conditions, thermal energy is comparable to the Zeeman splitting. As a result, thermal excitations between Zeeman sublevels significantly impact the observed decay. To determine the cross-section ratio accurately, we introduce a model of Zeeman state dynamics that includes thermal excitations. We find the cross-section ratio for Ni-3He = 5 x 10^3 and Fe-3He <= 3 x 10^3 at 0.75 K in a 0.8 T magnetic field. These measurements are interpreted in the context of submerged shell suppressio...

  8. Local bonding and atomic environments in Ni-catalyzed complex hydrides.

    Science.gov (United States)

    Graetz, J; Chaudhuri, S; Salguero, T T; Vajo, J J; Meyer, M S; Pinkerton, F E

    2009-05-20

    The local bonding and atomic environments in the Ni-catalyzed destabilized system LiBH4/MgH2 and the quaternary borohydride-amide phase Li3BN2H8, were studied by x-ray absorption spectroscopy. In both cases the Ni catalyst was introduced as NiCl2 and a qualitative comparison of the Ni K-edge near-edge structure suggests the Ni2+ is reduced to primarily Ni0 after ball milling. The extended fine structure of the Ni K edge indicates that the Ni is coordinated by approximately 3 boron atoms with an interatomic distance of approximately 2.1 A and approximately 11 Ni atoms in a split shell at around 2.5 and 2.8 A. These results, and the lack of long-range order, suggest that the Ni is present as a disordered nanocluster with a local structure similar to that of Ni3B. In the fully hydrogenated phase of LiBH4/MgH2 a small amount Mg2NiHx was also present. Surface calculations performed using density functional theory suggest that the lowest kinetic barrier for H2 chemisorption occurs on the Ni3B(100) surface.

  9. Biomineralisation in Mollusc shells

    Science.gov (United States)

    Dauphin, Y.; Cuif, J. P.; Salomé, M.; Williams, C. T.

    2009-04-01

    The main components of Mollusc shells are carbonate minerals: calcite and aragonite. ACC is present in larval stages. Calcite and aragonite can be secreted simultaneously by the mantle. Despite the small number of varieties, the arrangement of the mineral components is diverse, and dependant upon the taxonomy. They are also associated with organic components much more diverse, the diversity of which reflects the large taxonomic diversity. From TGA analyses, the organic content (water included) is high (>5% in some layers). The biomineralisation process is not a passive precipitation process, but is strongly controlled by the organism. The biological-genetic control is shown by the constancy of the arrangement of the layers, the mineralogy and the microstructure in a given species. Microstructural units (i.e. tablets, prisms etc.) have shapes that do not occur in non-biogenic counterparts. Nacreous tablets, for example, are flattened on their crystallographic c axis, which is normally the axis of maximum growth rate for non-biogenic aragonite. Morever, their inner structure is species-specific: the arrangements of nacreous tablets in Gastropoda - Cephalopoda, and in Bivalvia differ, and the inner arrangement of the nacreous tablets is different in ectocochlear and endocochlear Cephalopoda. The organic-mineral ratios also differ in the various layers of a shell. Differences in chemical composition also demonstrates the biological-genetic control: for example, aragonite has a low Sr content unknown in non-biogenic samples; two aragonitic layers in a shell have different Sr and Mg contents, S is higher in calcitic layers. Decalcification releases soluble (SOM) and insoluble (IOM) organic components. Insoluble components form the main part of the intercrystalline membranes, and contain proteins, polysaccharides and lipids. Soluble phases are present within the crystals and the intercrystalline membranes. These phases are composed of more or less glycosylated proteins

  10. Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction.

    Science.gov (United States)

    Borden, Mark A; Kruse, Dustin E; Caskey, Charles F; Zhao, Shukui; Dayton, Paul A; Ferrara, Katherine W

    2005-11-01

    We present the first study of the effects of monolayer shell physicochemical properties on the destruction of lipid-coated microbubbles during insonification with single, one-cycle pulses at 2.25 MHz and low-duty cycles. Shell cohesiveness was changed by varying phospholipid and emulsifier composition, and shell microstructure was controlled by postproduction processing. Individual microbubbles with initial resting diameters between 1 and 10 microm were isolated and recorded during pulsing with bright-field and fluorescence video microscopy. Microbubble destruction occurred through two modes: acoustic dissolution at 400 and 600 kPa and fragmentation at 800 kPa peak negative pressure. Lipid composition significantly impacted the acoustic dissolution rate, fragmentation propensity, and mechanism of excess lipid shedding. Less cohesive shells resulted in micron-scale or smaller particles of excess lipid material that shed either spontaneously or on the next pulse. Conversely, more cohesive shells resulted in the buildup of shell-associated lipid strands and globular aggregates of several microns in size; the latter showed a significant increase in total shell surface area and lability. Lipid-coated microbubbles were observed to reach a stable size over many pulses at intermediate acoustic pressures. Observations of shell microstructure between pulses allowed interpretation of the state of the shell during oscillation. We briefly discuss the implications of these results for therapeutic and diagnostic applications involving lipid-coated microbubbles as ultrasound contrast agents and drug/gene delivery vehicles.

  11. Atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.E.; Kukla, K.; Cheng, S. [Univ. of Toledo, OH (United States)] [and others

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  12. Optical cooling and trapping highly magnetic atoms: The benefits of a spontaneous spin polarization

    CERN Document Server

    Dreon, Davide; Bouazza, Chayma; Maineult, Wilfried; Dalibard, Jean; Nascimbene, Sylvain

    2016-01-01

    From the study of long-range-interacting systems to the simulation of gauge fields, open-shell Lanthanide atoms with their large magnetic moment and narrow optical transitions open novel directions in the field of ultracold quantum gases. As for other atomic species, the magneto-optical trap (MOT) is the working horse of experiments but its operation is challenging, due to the large electronic spin of the atoms. Here we present an experimental study of narrow-line Dysprosium MOTs. We show that the combination of radiation pressure and gravitational forces leads to a spontaneous polarization of the electronic spin. The spin composition is measured using a Stern-Gerlach separation of spin levels, revealing that the gas becomes almost fully spin-polarized for large laser frequency detunings. In this regime, we reach the optimal operation of the MOT, with samples of typically $3\\times 10^8$ atoms at a temperature of 20$\\,\\mu$K. The spin polarization reduces the complexity of the radiative cooling description, whi...

  13. Preparation and characterization of antibacterial Au/C core-shell composite

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yanhong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Zhang Nianchun [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Zhong Yuwen [Centers for Disease Control and Prevention of Guangdong Province, Guangzhou 510300, Guangdong (China); Cai Huaihong [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China); Liu Yingliang, E-mail: tliuyl@jnu.edu.cn [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Huangpudadaoxi Road, Guangzhou 510632, Guangdong (China)

    2010-09-01

    An environment-friendly oxidation-reduction method was used to prepare Au/C core-shell composite using carbon as core and gold as shell. The chemical structures and morphologies of Au/C core-shell composite and carbon sphere were characterized by X-ray diffraction, transmission electron microscope, energy dispersion X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). The antibacterial properties of the Au/C core-shell composite against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were examined by the disk diffusion assay and minimal inhibition concentration (MIC) methods. In addition, antibacterial ability of Au/C core-shell composite was observed by atomic force microscope. Results demonstrated that gold homogeneously supported on the surface of carbon spheres without aggregation and showed efficient antibacterial abilities.

  14. An extension of the Eisberg-Resnick treatment for electron energies in many-electron atoms

    Science.gov (United States)

    Whitaker, M. A. B.; Bennett, I.

    1989-03-01

    Eisberg and Resnick present a simple argument for the energy of an electron in a multielectron atom using the concept of shielding from electrons in inner shells. The results of such a treatment are unfortunately confined so as to be out of range of experimental values. Here, the effect of electrons in outer shells is included, and, in the nonrelativistic region, energies are obtained for electrons in the first and second shells in reasonable agreement with experiment.

  15. Study on Key Technology of Using Shell Sand as Backfill for Sea Reclamation

    Institute of Scientific and Technical Information of China (English)

    LI Neng-hui; QU Yi-rong; HE Wen-qin; CHEN Hui

    2005-01-01

    The results of a study on the key technology of using shell sand, a kind of sea sand, as backfill for sea reclamation are described briefly. Laboratory tests show that the physical and mechanical properties of shell sand are as good as normal quartz sand. Based on the chemical test and durability test of shell sand it could be concluded that the influence of corrosion of shell sand by acid rain and sea water might be ignored in the evaluation of the safety and durability of the engineering project. The results of field improvement tests show that the bearing capacity of shell sand backfill foundation is more than 200 kPa after vibroflotation improvement or dynamic compaction improvement. The shell sand is a good backfill material for sea reclamation.

  16. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  17. Atomic physics with highly charged ions. Progress report, FY 1989--91

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  18. Testing chiral dynamics in pionic atoms

    Science.gov (United States)

    Friedman, E.; Gal, A.

    2004-01-01

    The energy dependence of chirally expanded πN isoscalar and isovector amplitudes b0(E) and b1(E), respectively, for zero-momentum off-shell pions near threshold, is used to impose the minimal substitution requirement E→E-VC on the properly constructed pion optical potential within a large-scale fit to 100 pionic-atom data across the periodic table which also include the recently established 'deeply bound' pionic atoms of Pb and Sn. This fit cannot be reconciled with the well-known free-space values of the πN threshold amplitudes. In contrast, introducing the empirically known energy dependence for on-shell pions leads to a better fit and to satisfactory values for the πN threshold amplitudes. The difference between these two approaches is briefly discussed.

  19. The Atomic orbitals of the topological atom

    OpenAIRE

    Ramos-Cordoba, Eloy; Salvador Sedano, Pedro

    2013-01-01

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These c...

  20. Dynamical symmetries of the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P

    2000-07-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  1. Furfural production from fruit shells by acid-catalyzed hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk Univ., Konya (Turkey). Dept. of Chemical Engineering

    2006-01-21

    Pentosans are hydrolyzed to pentoses by dilute mineral acid hydrolysis. The main source of pentosans is hemicelluloses. Furfural can be produced by the acid hydrolysis of pentosan from fruit shells such as hazelnut, sunflower, walnut, and almond of agricultural wastes. Further dehydration reactions of the pentoses yield furfural. The hydrolysis of each shell sample was carried out in dilute sulfuric acid (0.05 to 0.200 mol/l), at high temperature (450-525 K), and short reaction times (from 30 to 600 s). (author)

  2. Listening to Shells: Galaxy Masses from Disrupted Satellites

    Science.gov (United States)

    Westfall, Kyle; Sanderson, R.

    2014-01-01

    Our ability to measure the dynamical mass of an individual galaxy is limited by the radial extent of the luminous tracers of its potential. For elliptical galaxies, it is difficult to go much beyond two effective radii using integrated light. Appealing to particle tracers like globular clusters has allowed for mass measurements out to ten effective radii. The extended atomic-gas disks of spiral galaxies allow one to measure rotation curves well beyond the optical disk to a few effective radii; however, such mass measurements are limited to a single plane and can often be confused by warps. As surface-brightness limits have pushed ever deeper, the revealed abundance of disrupted satellites in galaxy halos may present a unique opportunity for determining the enclosed mass at very large radii (more than five effective radii), provided our technology is up to the challenge. Here, we discuss the prospect of using integrated light spectroscopy of tidal shells to measure the masses of individual galaxies at redshifts of up to 0.1. Our study considers the limitations of current and projected instrumentation on 4-, 10-, and 30-meter class telescopes. The observational constraints are indeed very stringent, requiring both high sensitivity (with V-band surface brightness limits below 25 mag per square arsecond) and high spectral resolution (R>10k), whereas spatial resolution is effectively irrelevant. Bigger is not necessarily better for our application because of the limited field-of-view (FOV) of large telescopes, which dramatically limits their total grasp. We find the two most-promising setups are (1) a large FOV (1 square arcminute) integral-field unit (IFU) on a 4-meter class telescope and (2) a multiplexed suite of small FOV (10 square arcseconds) IFUs on a 10- or 30-meter class telescope. Two prospective instruments that may meet these requirements are WEAVE, an instrument currently planned for the William Herschel Telescope at La Palma, and an OPTIMOS

  3. Mn(Ⅱ)-5-Br-PADAP共沉淀-火焰原子吸收光谱法测定虾、贝样中的镉%Determination of Cadmium in Shrimp and Shell Fish Samples by Coprecipitation Enrichment with Mn(Ⅱ)-5-Br-PADAP Flame Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    陈清慧; 万瑶宇; 李倩; 姚俊学

    2016-01-01

    as a carrier which chelated with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol to detect the content of trace cadmium in shrimp and shell fish samples with flame atomic absorption spectrometry for the first time.The precipitate could be easily dissolved with concentrated nitric acid.The optimum coprecipitation of this new method including the amount of reagent,amount of manganese (Ⅱ),the pH,and the standing time of the precipitate had been confirmed for the quantitative recoveries of the analytes.The effect of matrix ions and the interference of co-existing ions were also evaluated.Under the experimental conditions established by the optimization step,the system of Mn(Ⅱ)-5-Br-PADAP was able to overcome the matrix interference which showed the effect of separation and enrichment well.The linear range of cadmium content was determined to be 0.1~1.0 mg·L-1 .The sensitivity and the relative standard deviation(RSD)were found 0.147(mg·L-1 )-1 ,0.73%,respectively.The optimum proce-dure allows the determination of cadmium with limit of detection of 4.27μg·L-1 .The complexity of preprocessing was deter-mined by the complexity of food samples.So the differences of cadmium content in the samples between the direct determination with atomic absorption spectrometry and the measurement after coprecipitation were examined,which providedevidences for the superiority of the system again.Cadmium in shell fish and shrimp samples were 1.85 mg·kg-1 and 1.74 mg·kg-1 ,which in line with international standards of the Codex Alimentarius Commission(CAC).The credibility of the method was evaluated by standard additional method and recovery experiments.The standard addition recoveries of sample and RSDs of the method were in the range of 99.9%~100.3% and 0.15%~0.83%.The results of recovery experiment showed that the presented coprecipi-tation procedure had good repetition,high accuracy.In addition,with the method,we could draw conclusions that the experi-ments were simple and rapid

  4. Atomically precise gold nanocrystal molecules with surface plasmon resonance.

    Science.gov (United States)

    Qian, Huifeng; Zhu, Yan; Jin, Rongchao

    2012-01-17

    Since Faraday's pioneering work on gold colloids, tremendous scientific research on plasmonic gold nanoparticles has been carried out, but no atomically precise Au nanocrystals have been achieved. This work reports the first example of gold nanocrystal molecules. Mass spectrometry analysis has determined its formula to be Au(333)(SR)(79) (R = CH(2)CH(2)Ph). This magic sized nanocrystal molecule exhibits fcc-crystallinity and surface plasmon resonance at approximately 520 nm, hence, a metallic nanomolecule. Simulations have revealed that atomic shell closing largely contributes to the particular robustness of Au(333)(SR)(79), albeit the number of free electrons (i.e., 333 - 79 = 254) is also consistent with electron shell closing based on calculations using a confined free electron model. Guided by the atomic shell closing growth mode, we have also found the next larger size of extraordinarily stability to be Au(~530)(SR)(~100) after a size-focusing selection--which selects the robust size available in the starting polydisperse nanoparticles. This work clearly demonstrates that atomically precise nanocrystal molecules are achievable and that the factor of atomic shell closing contributes to their extraordinary stability compared to other sizes. Overall, this work opens up new opportunities for investigating many fundamental issues of nanocrystals, such as the formation of metallic state, and will have potential impact on condensed matter physics, nanochemistry, and catalysis as well.

  5. A dense gas of laser-cooled atoms for hybrid atom-ion trapping

    Science.gov (United States)

    Höltkemeier, Bastian; Glässel, Julian; López-Carrera, Henry; Weidemüller, Matthias

    2017-01-01

    We describe the realization of a dark spontaneous-force trap of rubidium atoms. The atoms are loaded from a beam provided by a two-dimensional magneto-optical trap yielding a capture efficiency of 75%. The dense and cold atomic sample is characterized by saturated absorption imaging. Up to 10^9 atoms are captured with a loading rate of 3× 10^9 atoms/s into a cloud at a temperature of 250 μK with the density exceeding 10^{11} atoms/cm^3. Under steady-state conditions, more than 90% of the atoms can be prepared into the absolute atomic ground state, which provides favorable conditions for the investigation of sympathetic cooling of ions in a hybrid atom-ion trap.

  6. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz

    Science.gov (United States)

    Keaveney, James; Hamlyn, William J.; Adams, Charles S.; Hughes, Ifan G.

    2016-09-01

    We report on the development of a diode laser system - the "Faraday laser" - using an atomic Faraday filter as the frequency-selective element. In contrast to typical external-cavity diode laser systems which offer tunable output frequency but require additional control systems in order to achieve a stable output frequency, our system only lases at a single frequency, set by the peak transmission frequency of the internal atomic Faraday filter. Our system has both short-term and long-term stability of less than 1 MHz, which is less than the natural linewidth of alkali-atomic D-lines, making similar systems suitable for use as a "turn-key" solution for laser-cooling experiments.

  7. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth $<400$ kHz and long-term stability of $<1$ MHz

    CERN Document Server

    Keaveney, James; Adams, Charles S; Hughes, Ifan G

    2016-01-01

    We report on the development of a diode laser system - the `Faraday laser' - using an atomic Faraday filter as the frequency-selective element. In contrast to typical external-cavity diode laser systems which offer tunable output frequency but require additional control systems in order to achieve a stable output frequency, our system only lases at a single frequency, set by the peak transmission frequency of the internal atomic Farady filter. Our system has both short-term and long-term stability of less than 1~MHz, which is less than the natural linewidth of alkali-atomic D-lines, making similar systems suitable for use as a `turn-key' solution for laser cooling experiments.

  8. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz.

    Science.gov (United States)

    Keaveney, James; Hamlyn, William J; Adams, Charles S; Hughes, Ifan G

    2016-09-01

    We report on the development of a diode laser system - the "Faraday laser" - using an atomic Faraday filter as the frequency-selective element. In contrast to typical external-cavity diode laser systems which offer tunable output frequency but require additional control systems in order to achieve a stable output frequency, our system only lases at a single frequency, set by the peak transmission frequency of the internal atomic Faraday filter. Our system has both short-term and long-term stability of less than 1 MHz, which is less than the natural linewidth of alkali-atomic D-lines, making similar systems suitable for use as a "turn-key" solution for laser-cooling experiments.

  9. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  10. Electron double ionization cross section in sodium obtained from K. cap alpha. sup(h) hypersatellite spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J.; Keski-Rahkonen, O. (Laboratory of Physics, Helsinki University of Technology, Espoo, Finland)

    1983-05-01

    The K..cap alpha..sup(h) hypersatellite spectrum of Na metal has been measured in electron excitation with voltages from 4 to 25 kV. The spectrum shows lines with initial K/sup -2/ (K..cap alpha../sub 2/sup(h)) and K/sup -2/L/sup -1/ holes. The energies of these lines as well as the K/sup 2/ binding energy have been determined and compared with theoretical calculations. The intensity of the line group with K/sup -2/L/sup -1/ initial configuration relative to the K/sup -2/ group has been measured and found to be in agreement with simple shake-off calculation. The electron double ionization cross section (EDC) of the K-shell has been determined from both thick and thin target measurements using the method developed by Saijonmaa and Keski-Rahkonen, and found to yield equivalent results. The EDC has also been calculated theoretically using classical and quantum mechanical binary encounter approximations as devised by Saijonmaa. Theory reproduces fairly well the magnitude and the atomic number dependence of the EDC whereas the shape of the EDC-curve as function of energy deviates clearly from observed values.

  11. Laser-Free Cold-Atom Gymnastics

    Science.gov (United States)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  12. Simulasi Performansi Heat Exchanger Type Shell And Tube Dengan Double Segmental Baffle Terhadap Helical Baffle

    Directory of Open Access Journals (Sweden)

    Anggareza Adhitiya

    2013-12-01

    Full Text Available Pada heat exchanger type shell and tube, selain pengunaan baffle yang bertujuan untuk mengarahkan aliran pada sisi shell juga bertujuan untuk meningkatkan laju perpindahan panas yang terjadi antara fluida kerja dengan cara menimbulkan olakan aliran di sisi shell. Olakan –olakan ini nantinya yang akan mempengaruhi besarnya perpindahan panas dalam sisi shell. Pada kondisi standart baffle yang digunakan pada tugas akhir ini adalah jenis double segmental. Double segmental baffle mempunyai tingkat pressure drop yang cukup besar. sehingga perlu di ganti dengan baffle jenis helical yang mempunyai pressure drop yang lebih kecil. Untuk mengetahui performansi heat exchanger maka perlu adanya penelitian lebih lanjut simulasi numerik pada baffle heat exchanger type shell and tube. agar didapat pengaruh jenis baffle yang di gunakan terhadap karakteristik aliran dan perpindahan panas dari suatu heat exchanger type shell and tube. Tugas Akhir ini menggunakan program GAMBIT 2.4.6 untuk penggambaran geometri secara tiga dimensi dan program FLUENT 6.3.26 untuk mensimulasi aliran yang terjadi di dalam shell and tube heat exchanger. Pada software FLUENT 6.3.26 digunakan permodelan 3D Steady Flow dengan  memilih k – Epsilon RNG sebagai turbulence modeling serta mengaktifkan persamaan energy. Penelitian dilakukan dengan menggunakan dua variasi heat exchanger dengan jenis baffle yang berbeda .Heat exchanger type shell and tube dengan jenis double segmental baffle mempunyai nilai koefisien konveksi rata-rata = 218.408 w/m2.K. Sedangkan untuk helical baffle sebesar = 171.122 w/m2.K. Temperature outflow pada heat exchanger type shell and tube dengan jenis double segmental baffle = 306.7450K. Di ikuti dengan pressure drop sebesar = 2100 pascal Sedangkan untuk helical baffle mempunyai temperatur outflow sebesar = 307.0220K dengan pressure drop sebesar = 500 pascal.

  13. WR 120bb and WR 120bc: a pair of WN9h stars with possibly interacting circumstellar shells

    CERN Document Server

    Burgemeister, Sonja; Stringfellow, Guy S; Kniazev, Alexei Y; Todt, Helge; Hamann, Wolf-Rainer; 10.1093/mnras/sts588

    2012-01-01

    Two optically obscured Wolf-Rayet (WR) stars have been recently discovered by means of their infrared (IR) circumstellar shells, which show signatures of interaction with each other. Following the systematics of the WR star catalogues, these stars obtain the names WR\\,120bb and WR\\,120bc. In this paper, we present and analyse new near-IR, $J$, $H$, and $K$-band, spectra using the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For that purpose, the atomic data base of the code has been extended in order to include all significant lines in the near-IR bands. The spectra of both stars are classified as WN9h. As their spectra are very similar the parameters that we obtained by the spectral analyses hardly differ. Despite their late spectral subtype, we found relatively high stellar temperatures of 63 kK. The wind composition is dominated by helium, while hydrogen is depleted to 25 per cent by mass. Because of their location in the Scutum-Centaurus arm, WR\\,120bb and WR\\,120bc appear highly reddened, $A_{K_{\\rm ...

  14. Probability Distribution Function of Passive Scalars in Shell Models

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-Ping; ZHANG Xiao-Qiang; LIU Yu-Rong; WANG Guang-Rui; HE Da-Ren; CHEN Shi-Gang; ZHU Lu-Jin

    2008-01-01

    A shell-model version of passive scalar problem is introduced, which is inspired by the model of K. Ohkitani and M. Yakhot [K. Ohkitani and M. Yakhot, Phys. Rev. Lett. 60 (1988) 983; K. Ohkitani and M. Yakhot, Prog. Theor. Phys. 81 (1988) 329]. As in the original problem, the prescribed random velocity field is Gaussian and 5 correlated in time. Deterministic differential equations are regarded as nonlinear Langevin equation. Then, the Fokker-Planck equations of PDF for passive scalars axe obtained and solved numerically. In energy input range (n < 5, n is the shell number.), the probability distribution function (PDF) of passive scalars is near the Gaussian distribution. In inertial range (5 < n < 16) and dissipation range (n ≥ 17), the probability distribution function (PDF) of passive scalars has obvious intermittence. And the scaling power of passive scalar is anomalous. The results of numerical simulations are compared with experimental measurements.

  15. Modeling of the growth of GaAs–AlGaAs core–shell nanowires

    Science.gov (United States)

    Voorhees, Peter W; Davis, Stephen H

    2017-01-01

    Heterostructured GaAs–AlGaAs core–shell nanowires with have attracted much attention because of their significant advantages and great potential for creating high performance nanophotonics and nanoelectronics. The spontaneous formation of Al-rich stripes along certain crystallographic directions and quantum dots near the apexes of the shell are observed in AlGaAs shells. Controlling the formation of these core–shell heterostructures remains challenging. A two-dimensional model valid on the wire cross section, that accounts for capillarity in the faceted surface limit and deposition has been developed for the evolution of the shell morphology and concentration in AlxGa1− xAs alloys. The model includes a completely faceted shell–vapor interface. The objective is to understand the mechanisms of the formation of the radial heterostructures (Al-rich stripes and Al-poor quantum dots) in the nanowire shell. There are two issues that need to be understood. One is the mechanism responsible for the morphological evolution of the shells. Analysis and simulation results suggest that deposition introduces facets not present on the equilibrium Wulff shapes. A balance between diffusion and deposition yields the small facets with sizes varying slowly over time, which yield stripe structures, whereas deposition-dominated growth can lead to quantum-dot structures observed in experiments. There is no self-limiting facet size in this case. The other issue is the mechanism responsible for the segregation of Al atoms in the shells. It is found that the mobility difference of the atoms on the {112} and {110} facets together determine the non-uniform concentration of the atoms in the shell. In particular, even though the mobility of Al on {110} facets is smaller than that of Ga, Al-rich stripes are predicted to form along the {112} facets when the difference of the mobilities of Al and Ga atoms is sufficiently large on {112} facets. As the size of the shell increases, deposition

  16. High thermal stability of core-shell structures dominated by negative interface energy.

    Science.gov (United States)

    Zhu, Yong-Fu; Zhao, Ning; Jin, Bo; Zhao, Ming; Jiang, Qing

    2017-03-29

    Nanoscale core/shell structures are of interest in catalysis due to their superior catalytic properties. Here we investigated the thermal stability of the coherent core-shell structures in a thermodynamic way by considering the impact from the core with the bulk melting point Tm(∞) lower or higher than the shell. When a low-Tm(∞) core is adopted, core-shell melting induced by the melting depression of the core does not occur upon heating because of the superheating, although the melting depression of the core can be triggered ultimately by the preferential melting of the high-Tm(∞) shell for small cores. The superheating of the core is contributed by the negative solid-solid interface energy, while the depression is originated from the positive solid-liquid interface energy. Owing to the presence of the negative interface energy, moreover, the low-Tm(∞)-core structure possesses a low difference in thermal expansion between the core and the shell, high activation energy of outward atomic diffusion from the core to shell, and low heat capacity. This result is beneficial for the core-shell structure design for its application in catalysis.

  17. Kinetics of the gas-phase reactions of chlorine atoms with CH2F2, CH3CCl3 and CF3CFH2 over the temperature range 253 – 551 K

    DEFF Research Database (Denmark)

    Nilsson, Elna Johanna Kristina; Johnson, Matthew Stanley; Nielsen, Ole John;

    2009-01-01

    Relative rate techniques were used to study the title reactions in 930–1200 mbar of N2 diluent. The reaction rate coefficients measured in the present work are summarized by the expressions k(Cl+CH2F2) = 1.19×10-17 T 2 exp(-1023/T ) cm3 molecule-1 s-1 (253– 553 K), k(Cl+CH3CCl3) = 2.41×10-12 exp(...

  18. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  19. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, P. -H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Finnerty, P. S.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O’Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.

    2016-11-11

    A search for Pauli-exclusion-principle-violating K electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.

  20. 40 Years of Shell Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Shell has been using scenario planning for four decades. During that time these scenarios have helped the company and governments across the world to make better strategic choices. Scenarios provide lenses that help see future prospects more clearly, make richer judgments and be more sensitive to uncertainties. Discover how the Shell Scenarios team has helped guide decision makers at major moments in history and get a peek at the team future focus, including the intricate relationship between energy, water and food.

  1. Rotating thin-shell wormhole

    Science.gov (United States)

    Ovgun, A.

    2016-11-01

    We construct a rotating thin-shell wormhole using a Myers-Perry black hole in five dimensions, using the Darmois-Israel junction conditions. The stability of the wormhole is analyzed under perturbations. We find that exotic matter is required at the throat of the wormhole to keep it stable. Our analysis shows that stability of the rotating thin-shell wormhole is possible if suitable parameter values are chosen.

  2. Atomic magnetometer

    Science.gov (United States)

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  3. Stellar Populations of Shell Galaxies

    CERN Document Server

    Carlsten, S; Zenteno, A

    2016-01-01

    We present a study of the inner (out to $\\sim$1 R$_{\\mathrm{eff}}$) stellar populations of 9 shell galaxies. We derive stellar population parameters from long slit spectra by both analyzing the Lick indices of the galaxies and by fitting Single Stellar Population model spectra to the full galaxy spectra. The results from the two methods agree reasonably well. Many of the shell galaxies in our sample appear to have lower central $\\mathrm{Mg}_{2}$ index values than non-shell galaxies of the same central velocity dispersion, which is likely due to a past interaction event. Our shell galaxy sample shows a relation between central metallicity and velocity dispersion that is consistent with previous samples of non-shell galaxies. Analyzing the metallicity gradients in our sample, we find an average metallicity gradient of -0.16$\\pm$0.10 dex per decade in radius. We compare this with formation models to constrain the merging history of shell galaxies. We argue that our galaxies likely have undergone major mergers in...

  4. Photoassociation of cold metastable helium atoms

    NARCIS (Netherlands)

    Woestenenk, G.R.

    2001-01-01

    During the last decades the study of cold atoms has grown in a great measure. Research in this field has been made possible due to the development of laser cooling and trapping techniques. We use laser cooling to cool helium atoms down to a temperature of 1 mK and we are able to tr

  5. Discovery of Molecular Gas Shells around the Unusual Galaxy Centaurus A

    Science.gov (United States)

    2000-03-01

    - and farther out than most of the stars - would be liberated earlier than the stars. As a consequence, one would also expect to observe a certain displacement between the gaseous and stellar shells. The SEST observations ESO PR Photo 08a/00 ESO PR Photo 08a/00 [Preview - JPEG: 343 x 400 pix - 188k] [Normal - JPEG: 686 x 800 pix - 560k] [High-Res - JPEG: 2571 x 3000 pix - 4.4M] Caption : ESO PR Photo 08a/00 shows an optical image of the galaxy Centaurus A (from the 1-m ESO Schmidt telescope at La Silla), with the surrounding shells outlined as contours. The image has been enhanced to show the full extent of the galaxy; due to this process, the central dust band is less visible. The stellar shells (see the text) are indicated in yellow; they are otherwise only visible on very deep images. The contours of the observed distribution of atomic hydrogen gas are white. The radio jet from the active centre of Centaurus A is shown in blue. The new SEST observations prove the existence of carbon monoxide (CO) in the S1 and S2 shells (indicated in red). The field measures approx. 32 x 32 arcmin 2. North is up and East is left. A detailed photo of Centaurus A was recently obtained with the FORS2 instrument at VLT KUEYEN, cf. ESO PR Photo 05b/00 ESO PR Photo 08b/00 ESO PR Photo 08b/00 [Preview - JPEG: 247 x 400 pix - 60k] [Normal - JPEG: 493 x 800 pix - 128k] [High-Res - JPEG: 3000 x 1847 pix - 756k] Caption : ESO PR Photo 08b/00 shows the observed CO emission spectra in the S1 and S2 shells. In both cases, two lines from different molecular states were observed that stand out clearly from the sky noise. The abscissa indicates the velocity (i.e., the radio frequency) and the ordinate the temperature (i.e., the intensity). These diagrammes represent approx. 20 and 30 hours of observation, respectively. In order to test this hypothesis, the astronomers decided to look for the possible presence in the shells around some nearby elliptical galaxies of specific gases that are typical of

  6. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  7. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  8. Large momentum beamsplitting in atom interferometry

    Institute of Scientific and Technical Information of China (English)

    G; D; McDonald; P; M; anju; P; B; Wigley; P; J; Everitt; WEI; Chunhua; M; A; Sooriyabandara; M; Boozarjmehr; A; Kordbacheh; C; Quinlivan; C; N; Kuhn; J; E; Debs; K; S; Hardman; N; P; Robins

    2015-01-01

    Large momentum transfer( LM T) beamsplitting in atom interferometry is review ed,focusing on the use of Bloch Oscillations to achieve high momentum separation w ithout loss of visibility. Phase sensitivity w ith a fringe visibility of 7% is observed in a horizontally guided,acceleration-sensitive atom interferometer w ith a momentum separation of 80k betw een its arms.In addition,a 510 k beamsplitter is demonstrated.

  9. Electronic structure interpolation via atomic orbitals.

    Science.gov (United States)

    Chen, Mohan; Guo, G-C; He, Lixin

    2011-08-17

    We present an efficient scheme for accurate electronic structure interpolation based on systematically improvable optimized atomic orbitals. The atomic orbitals are generated by minimizing the spillage value between the atomic basis calculations and the converged plane wave basis calculations on some coarse k-point grid. They are then used to calculate the band structure of the full Brillouin zone using the linear combination of atomic orbitals algorithms. We find that usually 16-25 orbitals per atom can give an accuracy of about 10 meV compared to the full ab initio calculations, and the accuracy can be systematically improved by using more atomic orbitals. The scheme is easy to implement and robust, and works equally well for metallic systems and systems with complicated band structures. Furthermore, the atomic orbitals have much better transferability than Shirley's basis and Wannier functions, which is very useful for perturbation calculations.

  10. Critical velocity of sandwich cylindrical shell under moving internal pressure

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Critical velocity of an infinite long sandwich shell under moving internal pres-sure is studied using the sandwich shell theory and elastodynamics theory. Propagation of axisymmetric free harmonic waves in the sandwich shell is studied using the sandwich shell theory by considering compressibility and transverse shear deformation of the core, and transverse shear deformation of face sheets. Based on the elastodynamics theory, displacement components expanded by Legendre polynomials, and position-dependent elastic constants and densities are introduced into the equations of motion. Critical ve-locity is the minimum phase velocity on the desperation relation curve obtained by using the two methods. Numerical examples and the finite element (FE) simulations are pre-sented. The results show that the two critical velocities agree well with each other, and two desperation relation curves agree well with each other when the wave number κ is relatively small. However, two limit phase velocities approach to the shear wave velocities of the face sheet and the core respectively when k limits to infinite. The two methods are efficient in the investigation of wave propagation in a sandwich cylindrical shell when κ is relatively small. The critical velocity predicted in the FE simulations agrees with theoretical prediction.

  11. X-ray fluorescence cross sections for K and L x rays of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Krause, M.O.; Nestor, C.W. Jr.; Sparks, C.J. Jr.; Ricci, E.

    1978-06-01

    X-ray fluorescence cross sections are calculated for the major x rays of the K series 5 less than or equal to Z less than or equal to 101, and the three L series 12 less than or equal to Z less than or equal to 101 in the energy range 1 to 200 keV. This calculation uses Scofield's theoretical partical photoionization cross sections, Krause's evaluation of fluorescence and Coster-Kronig yields, and Scofield's theoretical radiative rates. Values are presented in table and graph format, and an estimate of their accuracy is made. The following x rays are considered: K..cap alpha../sub 1/, K..cap alpha../sub 1/,/sub 2/, K..beta../sub 1/, K..beta../sub 1/,/sub 3/, L..cap alpha../sub 1/, L..cap alpha../sub 1/,/sub 2/, L..beta../sub 1/, L..beta../sub 2/,/sub 15/, L..beta../sub 3/, Ll, L..gamma../sub 1/, L..gamma../sub 4/, and L/sub 1/ ..-->.. L/sub 2/,/sub 3/. For use in x-ray fluorescence analysis, K..cap alpha.. and L..cap alpha.. fluorescence cross sections are presented at specific energies: TiK identical with 4.55 keV, CrK identical with 5.46 keV, CoK identical with 7.00 keV, CuK identical with 8.13 keV, MoK..cap alpha.. identical with 17.44 keV, AgK identical with 22.5 keV, DyK identical with 47.0 keV, and /sup 241/Am identical with 59.54 keV. Supplementary material includes fluorescence and Coster--Kronig yields, fractional radiative rates, fractional fluorescence yields, total L-shell fluorescence cross sections, fluorescence and Coster-Kronig yields in condensed matter, effective fluorescence yields, average L-shell fluorescence yield, L-subshell photoionization cross section ratios, and conversion factors from barns per atom to square centimeters per gram.

  12. Spectral fine structure of the atomic ground states based on full relativistic theory

    Institute of Scientific and Technical Information of China (English)

    Zhenghe Zhu; Yongjian Tang

    2011-01-01

    @@ We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.%We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.

  13. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability.

    Science.gov (United States)

    Jeun, Jeong-Hoon; Park, Kyu-Young; Kim, Dai-Hong; Kim, Won-Sik; Kim, Hong-Chan; Lee, Byoung-Sun; Kim, Honggu; Yu, Woong-Ryeol; Kang, Kisuk; Hong, Seong-Hyeon

    2013-09-21

    SnO2@TiO2 double-shell nanotubes have been facilely synthesized by atomic layer deposition (ALD) using electrospun PAN nanofibers as templates. The double-shell nanotubes exhibited excellent high rate cyclability for lithium ion batteries. The retention of hollow structures during cycling was demonstrated.

  14. Applications of beam-foil spectroscopy to atomic collisions in solids

    Science.gov (United States)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  15. Core-shell nanoparticle arrays double the strength of steel.

    Science.gov (United States)

    Seol, J-B; Na, S-H; Gault, B; Kim, J-E; Han, J-C; Park, C-G; Raabe, D

    2017-02-22

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material's strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties.

  16. Core-shell nanoparticle arrays double the strength of steel

    Science.gov (United States)

    Seol, J.-B.; Na, S.-H.; Gault, B.; Kim, J.-E.; Han, J.-C.; Park, C.-G.; Raabe, D.

    2017-01-01

    Manipulating structure, defects and composition of a material at the atomic scale for enhancing its physical or mechanical properties is referred to as nanostructuring. Here, by combining advanced microscopy techniques, we unveil how formation of highly regular nano-arrays of nanoparticles doubles the strength of an Fe-based alloy, doped with Ti, Mo, and V, from 500 MPa to 1 GPa, upon prolonged heat treatment. The nanoparticles form at moving heterophase interfaces during cooling from the high-temperature face-centered cubic austenite to the body-centered cubic ferrite phase. We observe MoC and TiC nanoparticles at early precipitation stages as well as core-shell nanoparticles with a Ti-C rich core and a Mo-V rich shell at later precipitation stages. The core-shell structure hampers particle coarsening, enhancing the material’s strength. Designing such highly organized metallic core-shell nanoparticle arrays provides a new pathway for developing a wide range of stable nano-architectured engineering metallic alloys with drastically enhanced properties. PMID:28225022

  17. ASYMPTOTIC ANALYSIS OF DYNAMIC PROBLEMS FOR LINEARLY ELASTIC SHELLS JUSTIFICATION OF EQUATIONS FOR DYNAMIC KOITER SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Under certain conditions, the dynamic equatioins of membrane shells and the dynamic equations of flexural shells are obtained from dynamic equations of Koiter shells by the method of asymptotic analysis.

  18. Studies on Thin-shells and Thin-shell Wormholes

    CERN Document Server

    Övgün, Ali

    2016-01-01

    The study of traversable wormholes is very hot topic for the past 30 years. One of the best possible way to make traversable wormhole is using the thin-shells to cut and paste two spacetime which has tunnel from one region of space-time to another, through which a traveler might freely pass in wormhole throat. These geometries need an exotic matter which involves a stress-energy tensor that violates the null energy condition. However, this method can be used to minimize the amount of the exotic matter. The goal of this thesis study is to study on thin-shell and thin-shell wormholes in general relativity in 2+1 and 3+1 dimensions. We also investigate the stability of such objects.

  19. Black hole entropy off-shell vs on-shell

    CERN Document Server

    Frolov, V P; Zelnikov, A I

    1996-01-01

    Different methods of calculation of quantum corrections to the thermodynamical characteristics of a black hole are discussed and compared. The relation between on-shell and off-shell approaches is established. The off-shell methods are used to explicitly demonstrate that the thermodynamical entropy S^{TD} of a black hole, defined by the first thermodynamical law, differs from the statistical-mechanical entropy S^{SM}, determined as S^{SM}=-\\mbox{Tr}(\\hat{\\rho}^H\\ln\\hat{\\rho}^H) for the density matrix \\hat{\\rho}^H of a black hole. It is shown that the observable thermodynamical black hole entropy can be presented in the form S^{TD}=\\pi {\\bar r}_+^2+S^{SM}-S^{SM}_{Rindler}. Here {\\bar r}_+ is the radius of the horizon shifted because of the quantum backreaction effect, and S^{SM}_{Rindler} is the statistical-mechanical entropy calculated in the Rindler space.

  20. Pd@Pt Core–Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction

    Science.gov (United States)

    A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics ...

  1. Vitamin K

    Science.gov (United States)

    Vitamins are substances that your body needs to grow and develop normally. Vitamin K helps your body by making proteins for ... blood clotting. If you don't have enough vitamin K, you may bleed too much. Newborns have ...

  2. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    Science.gov (United States)

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-01-01

    Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite.

  3. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Adeela Nairan

    2016-04-01

    Full Text Available Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD, High resolution transmission electron microscope (HR-TEM and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC and Field cooled (FC plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite.

  4. Synthesis of core-shell iron nanoparticles from decomposition of Fe-Sn nanocomposite and studies on their microwave absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vatsana; Patra, Manoj K.; Shukla, Anuj; Saini, Lokesh; Songara, Sandhya; Jani, Rajkumar; Vadera, Sampat R.; Kumar, Narendra, E-mail: nkjainjd@yahoo.com [Defence Laboratory (India)

    2012-12-15

    Core-shell iron nanoparticles have been synthesized by pyrolysis of nanocomposite of oxides of iron-tin (Fe-Sn). The core-shell nanoparticles of phase pure iron in carbonaceous shell are formed only at very low concentration of tin (0.0011 mol) in the nanocomposite sample. From different studies viz. X-ray diffraction, high-resolution transmission electron microscopy, atomic force microscopy, and Raman spectroscopy, it has been established that core-shell nanostructures have been formed with Fe as core and amorphous carbon as the shell. The heating of nanocomposite at different temperatures up to 900 Degree-Sign C revealed very interesting dynamics of formation of core-shell structure wherein above 650 Degree-Sign C the iron carbide phase decomposes and carbon atoms move out to form an amorphous shell around iron nanoparticles. This process of formation of core-shell structures is quite different from conventional way wherein synthesis of core material precedes formation of shell in two different steps. The microwave absorption properties of core-shell nanoparticles have been studied by making their composites in nitrile butadiene rubber. Reflection loss simulation studies show high values in the X and Ku bands of microwave region. The frequency of maximum return loss can be tuned through variation of composition and thickness of composite layer.

  5. Atomic Manipulation on Metal Surfaces

    Science.gov (United States)

    Ternes, Markus; Lutz, Christopher P.; Heinrich, Andreas J.

    Half a century ago, Nobel Laureate Richard Feynman asked in a now-famous lecture what would happen if we could precisely position individual atoms at will [R.P. Feynman, Eng. Sci. 23, 22 (1960)]. This dream became a reality some 30 years later when Eigler and Schweizer were the first to position individual Xe atoms at will with the probe tip of a low-temperature scanning tunneling microscope (STM) on a Ni surface [D.M. Eigler, E.K. Schweizer, Nature 344, 524 (1990)].

  6. Spatial confinement of muonium atoms

    Science.gov (United States)

    Khaw, K. S.; Antognini, A.; Prokscha, T.; Kirch, K.; Liszkay, L.; Salman, Z.; Crivelli, P.

    2016-08-01

    We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into a vacuum from mesoporous silica reflects between two SiO2 confining surfaces separated by 1 mm. From the data, one can extract that the reflection probability on the confining surfaces kept at 100 K is about 90% and the reflection process is well described by a cosine law. This technique enables new experiments with this exotic atomic system and is a very important step towards a measurement of the 1 S -2 S transition frequency using continuous-wave laser spectroscopy.

  7. The photochemistry of carbon-rich circumstellar shells

    Science.gov (United States)

    Huggins, P. J.; Glassgold, A. E.

    1982-01-01

    The effect of ambient ultraviolet photons on the chemical structure of carbon-rich, circumstellar envelopes is investigated with a simple formulation of the time-dependent, photochemical rate equations valid for optically thick shells. Molecules injected into the shielded inner envelope are broken down when they reach the outer regions where ambient ultraviolet photons can penetrate. A quantitative description of the abundance variations is obtained for the case of uniform expansion by detailed consideration of the shielding of the radiation by the dust and molecules of the envelope. Representative results are presented to illustrate the role of shielding in defining the extent of molecular envelopes, the formation of C I and C II shells by photodestruction of carbon-bearing molecules, and the development of layered chemical structures from the photobreakup of polyatomic molecules. Photochemistry makes the outer parts of thick, carbon-rich envelopes into complex regions containing radicals, ions, and atoms which are of considerable observational and theoretical interest.

  8. Stability of core–shell nanowires in selected model solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-30

    Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  9. Electronic shell and supershell structure in graphene flakes

    CERN Document Server

    Manninen, M; Akola, J

    2008-01-01

    We use a simple tight-binding (TB) model to study electronic properties of free graphene flakes. Valence electrons of triangular graphene flakes show a shell and supershell structure which follows an analytical expression derived from the solution of the wave equation for triangular cavity. However, the solution has different selection rules for triangles with armchair and zigzag edges, and roughly 40000 atoms are needed to see clearly the first supershell oscillation. In the case of spherical flakes, the edge states of the zigzag regions dominate the shell structure which is thus sensitive to the flake diameter and center. A potential well that is made with external gates cannot have true bound states in graphene due to the zero energy band gap. However, it can cause strong resonances in the conduction band.

  10. Interplay of electronic and geometry shell effects in properties of neutral and charged Sr clusters

    DEFF Research Database (Denmark)

    Lyalin, Andrey; Solov'yov, Ilia; Solov'yov, Andrey V.

    2007-01-01

    that the size evolution of structural and electronic properties of strontium clusters is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters......The optimized structure and electronic properties of neutral, singly, and doubly charged strontium clusters have been investigated using ab initio theoretical methods based on density-functional theory. We have systematically calculated the optimized geometries of neutral, singly, and doubly...... charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, the gap between the highest occupied and the lowest unoccupied molecular orbitals, and spectra of the density of electronic states (DOS). It is demonstrated...

  11. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  12. Controlling interactions between highly-magnetic atoms with Feshbach resonances

    CERN Document Server

    Kotochigova, Svetlana

    2014-01-01

    This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic $^7$S$_3$ chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on Dysprosium and Erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

  13. Diffusion behaviors of helium atoms at two Pd grain boundaries

    Institute of Scientific and Technical Information of China (English)

    XIA Ji-xing; HU Wang-yu; YANG Jian-yu; AO Bing-yun

    2006-01-01

    The diffusion behaviors of helium atoms at two symmetric grain boundaries (Σ5{210} and Σ3 {112}) of Pd were investigated using molecular dynamics simulations through an analytical embedded-atom method(MAEAM) model. The simulations demonstrate that the interstitial helium atoms are easily trapped at the grain boundaries and precipitated into clusters. Due to the closed-shell electronic configurations of both helium and palladium,Pd grain boundaries yield strong capability of retaining helium atoms. By calculating the mean square displacements(MSD) of an interstitial helium atom at the grain boundaries,the diffusion coefficients were determined,and the linear fits to Arrhenius relation. The diffusion activation energies of interstitial helium atom at these two Pd grain boundaries were also evaluated.

  14. In Situ Generation of Two-Dimensional Au–Pt Core–Shell Nanoparticle Assemblies

    Directory of Open Access Journals (Sweden)

    Khalid Madiha

    2009-01-01

    Full Text Available Abstract Two-dimensional assemblies of Au–Pt bimetallic nanoparticles are generated in situ on polyethyleneimmine (PEI silane functionalized silicon and indium tin oxide (ITO coated glass surfaces. Atomic force microscopy (AFM, UV–Visible spectroscopy, and electrochemical measurements reveal the formation of core–shell structure with Au as core and Pt as shell. The core–shell structure is further supported by comparing with the corresponding data of Au nanoparticle assemblies. Static contact angle measurements with water show an increase in hydrophilic character due to bimetallic nanoparticle generation on different surfaces. It is further observed that these Au–Pt core–shell bimetallic nanoparticle assemblies are catalytically active towards methanol electro-oxidation, which is the key reaction for direct methanol fuel cells (DMFCs.

  15. Mass Measurements Demonstrate a Strong N =28 Shell Gap in Argon

    CERN Document Server

    Meisel, Z; Ahn, S; Browne, J; Bazin, D; Brown, B A; Carpino, J F; Chung, H; Cyburt, R H; Estradé, A; Famiano, M; Gade, A; Langer, C; Matoš, M; Mittig, W; Montes, F; Morrissey, D J; Pereira, J; Schatz, H; Schatz, J; Scott, M; Shapira, D; Smith, K; Stevens, J; Tan, W; Tarasov, O; Towers, S; Wimmer, K; Winkelbauer, J R; Yurkon, J; Zegers, R G T

    2015-01-01

    We present results from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. We report the first mass measurements of 48Ar and 49Ar and find atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively. These masses provide strong evidence for the closed shell nature of neutron number N=28 in argon, which is therefore the lowest even-Z element exhibiting the N=28 closed shell. The resulting trend in binding-energy differences, which probes the strength of the N=28 shell, compares favorably with shellmodel calculations in the sd-pf shell using SDPF-U and SDPF-MU Hamiltonians.

  16. Time scales for formation and spreading of velocity shells of pickup ions in the solar wind

    Science.gov (United States)

    Gaffey, J. D., Jr.; Wu, C. S.; Winske, D.

    1988-01-01

    This paper discusses the process of assimilation (pickup) by the solar wind of newly ionized atoms and molecules. Generally, the pickup process is considered to evolve in three stages: (1) the initial interaction of newly created ions with the interplanetary magnetic field to form the ring-beam distribution; (2) pitch angle scattering of the ring beam to form a hollow shell; and (3) slower velocity diffusion to form a partially filled-in shell distribution. Using numerical simulations of turbulence such as would occur naturally in the solar wind and such as would be encountered near cometary bow shocks, the processes of shell formation and evolution are studied, and the results are used to estimate the time scales for shell formation and diffusion in several situations of recent observational interest, the interstellar He data obtained by AMPTE and cometary ion pickup distributions obtained by various spacecraft at comets Giacobini-Zinner and Halley.

  17. Influences of organic matter and calcification rate on trace elements in aragonitic estuarine bivalve shells

    Science.gov (United States)

    Takesue, R.K.; Bacon, C.R.; Thompson, J.K.

    2008-01-01

    A suite of elements (B, Na, Mg, S, K, Ca, V, Mn, Cr, Sr, and Ba) was measured in aragonitic shells of the estuarine bivalve Corbula amurensis, the Asian clam, using the Sensitive High-Resolution Ion MicroProbe with Reverse Geometry (SHRIMP RG). Our initial intent was to explore potential geochemical proxy relationships between shell chemistry and salinity (freshwater inflow) in northern San Francisco Bay (SFB). In the course of this study we observed variations in shell trace element to calcium ([M]/Ca) ratios that could only be attributed to internal biological processes. This paper discusses the nature and sources of internal trace element variability in C. amurensis shells related to the shell organic fraction and shell calcification rates. The average organic content of whole C. amurensis shells is 19%. After treating whole powdered shells with an oxidative cleaning procedure to remove organic matter, shells contained on average 33% less total Mg and 78% less total Mn. Within our analytical uncertainty, Sr and Ba contents were unchanged by the removal of organic matter. These results show that aragonitic C. amurensis shells have a large component of non-lattice-bound Mg and Mn that probably contribute to the dissimilarity of [M]/Ca profiles among five same-sized shells. Non-lattice-bound trace elements could complicate the development and application of geochemical proxy relationships in bivalve shells. Because B, Ba and Sr occur exclusively in shell aragonite, they are good candidates for external proxy relationships. [M]/Ca ratios were significantly different in prismatic and nacreous aragonite and in two valves of the same shell that had different crystal growth rates. Some part of these differences can be attributed to non-lattice-bound trace elements associated with the organic fraction. The differences in [M]/Ca ratios were also consistent with the calcification rate-dependent ion transport model developed by Carr?? et al. [Carr?? M., Bentaleb I

  18. Productions of hollow atoms from solids irradiated by high intensity laser

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, K.; Sasaki, A.; Zhidkov, A. [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst. (Japan)

    2001-07-01

    The production of hollow atoms through the collisions of fast electrons with a solid is studied. These electrons are produced by high-intensity short-pulse laser irradiation on a solid. The inner-shell ionization and excitation processes by the fast electron impact are investigated. It is found that ionization processes give more significant contribution to the production of hollow atoms. (orig.)

  19. Estimation of Schiff moments using the nuclear shell model

    Science.gov (United States)

    Teruya, Eri; Yoshinaga, Naotaka; Arai, Ryoichi; Higashiyama, Koji

    2014-09-01

    The existence of finite permanent electric dipole moment (EDM) of an elementary particle or an atom indicates violation of time-reversal symmetry. The time reversal invariance implies violation of charge and parity symmetry through the CPT theorem. The predicted fundamental particle's EDMs are too small to be observed in the Standard Model. However, some models beyond the Standard Model produce much larger EDMs which may be observed in future. Thus, if we observe finite EDMs, we can conclude that we need a new extended model for the Standard Model and the specific value of an EDM gives a constraint on constructing a new model. Experimental efforts searching for atomic EDMs are now in progress. The EDM of a neutral atom is mainly induced by the nuclear Schiff moment, since the electron EDM is very small and the nuclear EDM is shielded by outside electrons owing to the Schiff theorem. In this work we estimate the Schiff moments for the lowest 1/2+ states of Xe isotopes around the mass 130. The nuclear wave functions beyond mean-field theories are calculated in terms of the nuclear shell model. We discuss influences of core excitations and over shell excitations on the Schiff moments.

  20. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  1. Developing an "atomic clock" for fission lifetime measurements

    NARCIS (Netherlands)

    Wilschut, H.W.E.M.; Kravchuk, V.

    2004-01-01

    The relevance of measuring fission lifetimes of hot nuclei is briefly discussed. It is shown that K X-ray emission prior to fission can be used to measure fission lifetimes. The preparation of the K-shell hole, the simultaneous nuclear excitation, and the analysis of the X-ray spectra is described.

  2. Asymptotic safety goes on shell

    Science.gov (United States)

    Benedetti, Dario

    2012-01-01

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters.

  3. AI-Based Diagnostic Shell

    Directory of Open Access Journals (Sweden)

    R. L. Verma

    1989-01-01

    Full Text Available This paper datails the design and implementation of an AI-based diagnostic shell. The shell has a user-interface which takes in the complaint and aids the user throughout the consultation. The 'expert knowledge' is acquired and encoded in the form of 'IF-THEN' rules, The control mechanism routes through the rules chaining first backwards to identify a fault and then forwards to confirm it.Explanation facilities have been provided to enable the user query the reason for any question asked, a facility to go back and re-answer any previous question, and a trace and explanation of the path of reasoning.This shell was developed and first used for the diagnosis of a digital exchange. It was then applied for the fault-finding of the moving target indicator used in the radar.

  4. Shell Models of Magnetohydrodynamic Turbulence

    CERN Document Server

    Plunian, Franck; Frick, Peter

    2012-01-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...

  5. Quantum Phases of Atom-Molecule Mixtures of Fermionic Atoms

    Science.gov (United States)

    Lopez, Nicolas; Tsai, Shan-Wen

    2009-11-01

    Cold atom experiments have observed atom-molecule mixtures by tuning the interactions between particles.footnotetextM.L. Olsen, J. D. Perreault, T. D. Cumby, and D. S. Jin, Phys. Rev. A 80, 030701(R) (2009) We study many particle interactions by examaning a simple model that describes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa. A set of functional Renomalization Group equationsfootnotetextR. Shankar, Rev. Mod. Phys., Vol 66 No. 1, January 1994^,footnotetextS.W. Tsai, A.H. Castro Neto, R. Shankar, D.K. Campbell, Phys. Rev. B 72, 054531 (2005) describing these processes are set up and solved numerically. The Self Energy of the fermions are attained as a function of frequency and we search for frequency dependent instabilities that could denote a transition from a disordered liquid to a BCS phase. (Financial support from NSF DMR-084781 and UC-Lab Fees Research Program.)

  6. Atomic Orbitals for the New Millennium

    CERN Document Server

    Williams, J M

    1999-01-01

    This very short article introduces a set of nested atomic orbitals, called MCAS, to replace the current s, p, d, and f orbitals. The simplest orbital is a tetrahedrally directed, four lobed, mono-orbital instead of the spherical s orbital. All the other orbitals, no matter what their energy (shell) level is, are nested with this one. All the electrons have the same spin and only one electron is allotted to each orbital. Electron spin pairing is accomplished through opposing orbitals instead of actual electron spin reversal. Orbital energy level is maintained by nuclear propulsion through perigee kick. Orbitals hybridize as Aufbau proceeds, in contrast to the inflexible, current building model. The inert gases have completely uniform electronic shells that contain only one orbital type per shell. Since outer completed shells have only one type of orbital, all eight outer electrons are identical rather than being of two types as occurs in the current model; hence, Lewis' electron-dot octet. Hydrogen should resi...

  7. Learning Shell scripting with Zsh

    CERN Document Server

    Festari, Gaston

    2014-01-01

    A step-by-step tutorial that will teach you, through real-world examples, how to configure and use Zsh and its various features. If you are a system administrator, developer, or computer professional involved with UNIX who are looking to improve on their daily tasks involving the UNIX shell, ""Learning Shell Scripting with Zsh"" will be great for you. It's assumed that you have some familiarity with an UNIX command-line interface and feel comfortable with editors such as Emacs or vi.

  8. Stability of facetted translation shells

    DEFF Research Database (Denmark)

    Almegaard, Henrik; Vanggaard, Ole

    2004-01-01

    This article is discussing the spatial stability i.e. rigidity of double curved shell surfaces under different support conditions. It is based upon a method developed by Henrik Almegaard, as part of the theory concerning the stringer system (ALM04a).......This article is discussing the spatial stability i.e. rigidity of double curved shell surfaces under different support conditions. It is based upon a method developed by Henrik Almegaard, as part of the theory concerning the stringer system (ALM04a)....

  9. Comparison of the local structures of Ca0.82La0.18FeAs2 and Ba0.64K0.36Fe2As2 pnictide superconductors using atomic pair distribution function analysis

    Science.gov (United States)

    Joseph, Boby; Iadecola, Antonella; Bernasconi, Andrea; Rispoli, Pasquale; Demitri, Nicola; Xing, Xiangzhuo; Zhou, Wei; Shi, Zhixiang

    2015-09-01

    A comparative local structure study of pnictide superconductors Ca0.82La0.18FeAs2 (112-type, Tc∼ 40 K) and Ba0.64K0.36Fe2As2 (122-type, Tc∼ 37 K), using room temperature x-ray total scattering measurements is reported. The Fe-As superconducting active layer is found to be globally similar in both the systems consisting of edge-sharing FeAs4/4 tetrahedra as in all the iron-pnictide superconductors discovered so far. Although optimally superconducting, the active layer in these compounds is found to sustain a large local inhomogeneity. These results thus imply that a nanoscopic manipulation of the Fe-As active layer, rather than its isotropic structural tuning, is the key parameter to control the superconducting properties of the iron-based systems.

  10. Shell model study of $^{40}$Ca muon capture and the $(0^+, 0)

    CERN Document Server

    Gorringe, T P

    2006-01-01

    We report results from shell model studies of muon capture on $^{40}$Ca to low-lying levels of $^{40}$K. We discuss the comparison between calculated capture rates, measured capture rates and analogous transitions in ($e$,$e^{\\prime}$) scattering in terms of the particle-hole structure of the $^{40}$Ca-$^{40}$K nuclei. We highlight the $^{40}$Ca$(0^+, 0)

  11. The restructuring of Shell Downstream; La restructuration de Shell Downstream

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, F.

    2005-01-15

    To facing a more and more competitive environment, the Group Shell began a restructuring. While the group was organized on horizontal national lines, it is creating today an integrated downstream activity. The word of this restructuring is profit. (A.L.B.)

  12. Design of a stabilizing shell for KTX

    Energy Technology Data Exchange (ETDEWEB)

    You, Wei [CAS Key Laboratory of Geospace Environment, Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Li, Hong, E-mail: honglee@ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Tan, Mingsheng; Lu, Mingjian; Wu, Yanqi; Mao, Wenzhe; Bai, Wei; Tu, Cui; Luo, Bing; Li, Zichao; Adil, Yolbarsop; Hu, Jintong [CAS Key Laboratory of Geospace Environment, Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Song, Yuntao; Yang, Qingxi; Zhang, Ping [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230026 (China); Xie, Jinlin; Lan, Tao; Liu, Adi [CAS Key Laboratory of Geospace Environment, Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Ding, Weixing [CAS Key Laboratory of Geospace Environment, Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Xiao, Chijin [CAS Key Laboratory of Geospace Environment, Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Department of Physics and Engineering Physics, University of Saskatchewan, SK S7 N 5N2 (Canada); and others

    2016-10-15

    The conductive shell in reversed field pinch devices plays an important role in controlling plasma and in suppressing MHD instabilities. The shell in the Keda torus experiment reversed field pinch (KTX-RFP) device includes a 6-mm stainless steel vacuum chamber and a 1.5-mm stabilizing copper shell. This stabilizing shell has both poloidal and toroidal gaps to allow a coupling of electromagnetic energy to the plasma. Nevertheless, any gaps in this shell generate error fields. A 3D electromagnetic field model has been used to study effects of the gap on the shell. Using off-center current filaments instead of the distributed plasma current density, numerical analyses render the induced current distribution on the stabilizing shell and the resultant error field distribution at a specific frequency. From the analyses and comparisons of different configurations for the stabilizing shell, a suitable shell design is chosen consisting of three sections: one primary shell, two poloidal shield shells, and two toroidal shield shells. Moreover, the time evolution of the magnetic field inside and outside the stabilizing shell was obtained for this design and the dependence of the magnetic field penetration time on mode number and location has been investigated.

  13. A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues.

    Science.gov (United States)

    Zayats, Vasilina; Stockner, Thomas; Pandey, Saurabh Kumar; Wörz, Katharina; Ettrich, Rüdiger; Ludwig, Jost

    2015-05-01

    Potassium ion (K+) uptake in yeast is mediated mainly by the Trk1/2 proteins that enable cells to survive on external K+ concentration as low as a few μM. Fungal Trks are related to prokaryotic TRK and Ktr and plant HKT K+ transport systems. Overall sequence similarity is very low, thus requiring experimental verification of homology models. Here a refined structural model of the Saccharomyces cerevisiae Trk1 is presented that was obtained by combining homology modeling, molecular dynamics simulation and experimental verification through functional analysis of mutants. Structural models and experimental results showed that glycines within the selectivity filter, conserved among the K-channel/transporter family, are not only important for protein function, but are also required for correct folding/membrane targeting. A conserved aspartic acid in the PA helix (D79) and a lysine in the M2D helix (K1147) were proposed earlier to interact. Our results suggested individual roles of these residues in folding, structural integrity and function. While mutations of D79 completely abolished protein folding, mutations at position 1147 were tolerated to some extent. Intriguingly, a secondary interaction of D79 with R76 could enhance folding/stability of Trk1 and enable a fraction of Trk1[K1147A] to fold. The part of the ion permeation path containing the selectivity filter is shaped similar to that of ion channels. However below the selectivity filter it is obstructed or regulated by a proline containing loop. The presented model could provide the structural basis for addressing the long standing question if Trk1 is a passive or active ion-translocation system.

  14. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    CERN Document Server

    Okaba, Shoichi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturisation. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kKagome-lattice hollow-core photonic crystal fibre (HC-PCF) are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the $^1 S_0-{}^3P_1$ (m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibresHC-PCFs improve the optical depth while preserving atomic coherence time.

  15. AtomDB and PyAtomDB: Atomic Data and Modelling Tools for High Energy and Non-Maxwellian Plasmas

    Science.gov (United States)

    Foster, Adam; Smith, Randall K.; Brickhouse, Nancy S.; Cui, Xiaohong

    2016-04-01

    The release of AtomDB 3 included a large wealth of inner shell ionization and excitation data allowing accurate modeling of non-equilibrium plasmas. We describe the newly calculated data and compare it to published literature data. We apply the new models to existing supernova remnant data such as W49B and N132D. We further outline progress towards AtomDB 3.1, including a new energy-dependent charge exchange cross sections.We present newly developed models for the spectra of electron-electron bremsstrahlung and those due to non-Maxwellian electron distributions.Finally, we present our new atomic database access tools, released as PyAtomDB, allowing powerful use of the underlying fundamental atomic data as well as the spectral emissivities.

  16. Ex Vacuo Atom Chip Bose-Einstein Condensate (BEC)

    CERN Document Server

    Squires, Matthew B; Kasch, Brian; Stickney, James A; Erickson, Christopher J; Crow, Jonathan A R; Carlson, Evan J; Burke, John H

    2016-01-01

    Ex vacuo atom chips, used in conjunction with a custom thin walled vacuum chamber, have enabled the rapid replacement of atom chips for magnetically trapped cold atom experiments. Atoms were trapped in $>2$ kHz magnetic traps created using high power atom chips. The thin walled vacuum chamber allowed the atoms to be trapped $\\lesssim1$ mm from the atom chip conductors which were located outside of the vacuum system. Placing the atom chip outside of the vacuum simplified the electrical connections and improved thermal management. Using a multi-lead Z-wire chip design, a Bose-Einstein condensate was produced with an external atom chip. Vacuum and optical conditions were maintained while replacing the Z-wire chip with a newly designed cross-wire chip. The atom chips were exchanged and an initial magnetic trap was achieved in less than three hours.

  17. Atomic phase diagram

    Institute of Scientific and Technical Information of China (English)

    LI Shichun

    2004-01-01

    Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.

  18. Deposition of conductive TiN shells on SiO{sub 2} nanoparticles with a fluidized bed ALD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Didden, Arjen [Delft University of Technology, Faculty of Applied Sciences, Materials for Energy Conversion and Storage (Netherlands); Hillebrand, Philipp; Wollgarten, Markus [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Solar Fuels (Germany); Dam, Bernard; Krol, Roel van de, E-mail: roel.vandekrol@helmholtz-berlin.de [Delft University of Technology, Faculty of Applied Sciences, Materials for Energy Conversion and Storage (Netherlands)

    2016-02-15

    Conductive TiN shells have been deposited on SiO{sub 2} nanoparticles (10–20 nm primary particle size) with fluidized bed atomic layer deposition using TDMAT and NH{sub 3} as precursors. Analysis of the powders confirms that shell growth saturates at approximately 0.4 nm/cycle at TDMAT doses of >1.2 mmol/g of powder. TEM and XPS analysis showed that all particles were coated with homogeneous shells containing titanium. Due to the large specific surface area of the nanoparticles, the TiN shells rapidly oxidize upon exposure to air. Electrical measurements show that the partially oxidized shells are conducting, with apparent resistivity of approximately ∼11 kΩ cm. The resistivity of the powders is strongly influenced by the NH{sub 3} dose, with a smaller dose giving an order-of-magnitude higher resistivity.

  19. Ancient shell industry at Bet Dwarka island

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Sundaresh; Patankar, V.

    medicinal use. Several other varieties of shells from different trenches Table 1. Shells recovered during Bet Dwarka excav a tion Species BDK - I BDK - II BDK - III BDK - VI Adusta onyx 1 Anadara ehrenbergi 1 4 1...

  20. Statistical mechanics of thin spherical shells

    CERN Document Server

    Kosmrlj, Andrej

    2016-01-01

    We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes and the local out-of-plane undulations, leads to novel phenomena. In spherical shells thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated "pressure". Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows non-linearly with increasing outward pressure, with the same universal power law expone...