WorldWideScience

Sample records for atomic scattering factor

  1. Robust parameterization of elastic and absorptive electron atomic scattering factors

    International Nuclear Information System (INIS)

    Peng, L.M.; Ren, G.; Dudarev, S.L.; Whelan, M.J.

    1996-01-01

    A robust algorithm and computer program have been developed for the parameterization of elastic and absorptive electron atomic scattering factors. The algorithm is based on a combined modified simulated-annealing and least-squares method, and the computer program works well for fitting both elastic and absorptive atomic scattering factors with five Gaussians. As an application of this program, the elastic electron atomic scattering factors have been parameterized for all neutral atoms and for s up to 6 A -1 . Error analysis shows that the present results are considerably more accurate than the previous analytical fits in terms of the mean square value of the deviation between the numerical and fitted scattering factors. Parameterization for absorptive atomic scattering factors has been made for 17 important materials with the zinc blende structure over the temperature range 1 to 1000 K, where appropriate, and for temperature ranges for which accurate Debye-Waller factors are available. For other materials, the parameterization of the absorptive electron atomic scattering factors can be made using the program by supplying the atomic number of the element, the Debye-Waller factor and the acceleration voltage. For ions or when more accurate numerical results for neutral atoms are available, the program can read in the numerical values of the elastic scattering factors and return the parameters for both the elastic and absorptive scattering factors. The computer routines developed have been tested both on computer workstations and desktop PC computers, and will be made freely available via electronic mail or on floppy disk upon request. (orig.)

  2. On the Debye-Waller factor in atom-surface scattering

    International Nuclear Information System (INIS)

    Garcia, N.; Maradudin, A.A.; Celli, V.

    1982-01-01

    A theory for the Debye-Waller factor in atom-surface scattering is presented, to lowest order in the phonon contributions. Multiple-scattering effects as well as the cross-correlated surface atom displacements are included. The theory accounts for experimental data without the necessity of introducing the Armand effect, which is due to the finite size of the incident atom. The work presented here implies that the Kirchhoff approximation fails when the energy of the incident particle is in the energy range of the phonon spectrum. The results of the calculation are presented in the high-temperature limit, and it is observed that the Rayleigh surface phonons contribute three-quarters of the Debye-Waller factor, while the bulk phonons account for the rest. This result is interesting because the calculation of the former contribution is simpler than that of the latter. (author)

  3. Analytical evaluation of atomic form factors: Application to Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)

    2015-05-15

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  4. Reconstruction of atomic effective potentials from isotropic scattering factors

    International Nuclear Information System (INIS)

    Romera, E.; Angulo, J.C.; Torres, J.J.

    2002-01-01

    We present a method for the approximate determination of one-electron effective potentials of many-electron systems from a finite number of values of the isotropic scattering factor. The method is based on the minimum cross-entropy technique. An application to some neutral ground-state atomic systems has been done within a Hartree-Fock framework

  5. X-ray holography with an atomic scatterer

    Energy Technology Data Exchange (ETDEWEB)

    Mityureva, A.A.; Smirnov, V.V., E-mail: valery_smirnov@mail.ru

    2016-08-15

    X-ray holography scheme with reference scatterer consisting of heavy atom as reference center and its link to an object consisting of several light atoms and using controlled variation of the alignment is represented. The scheme can reproduce an object in three dimensions with atomic resolution. The distorting factors of reconstruction are considered. - Highlights: • X-ray holography scheme with a reference wave formed by atomic scatterer. • 3D object reconstruction with atomic resolution from the set of holograms. • Simple formula for the distorting factor in reconstruction.

  6. Scattering of photons from atomic electrons

    International Nuclear Information System (INIS)

    Pratt, R.H.; Zhou, B.; Bergstrom, P.M. Jr.; Pisk, K.; Suric, T.

    1990-01-01

    Validity of simpler approaches for elastic and inelastic photon scattering by atoms and ions is assessed by comparison with second-order S-matrix predictions. A simple scheme for elastic scattering based on angle-independent anomalous scattering factors has been found to give useful predictions near and below photoeffect thresholds. In inelastic scattering, major deviations are found from A 2 -based calculations. Extension of free-atom and free-ion cross sections to the dense plasma regime is discussed. 20 refs., 6 figs

  7. X-ray atomic scattering factors of low-Z ions with a core hole

    International Nuclear Information System (INIS)

    Hau-Riege, Stefan P.

    2007-01-01

    Short and intense x-ray pulses may be used for atomic-resolution diffraction imaging of single biological molecules. One of the dominant damage mechanisms is atomic ionization, resulting in a large fraction of atoms with core holes. We calculated the atomic scattering factor of atoms with atomic charge numbers between 3 and 10 in different ionization states with and without a core hole. Our results show that orbital occupation and the change of the orbitals upon core ionization (core relaxation) have a significant impact on the diffraction pattern

  8. Atomic scattering factor of the ASTRO-H (Hitomi) SXT reflector around the gold's L edges

    DEFF Research Database (Denmark)

    Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu

    2016-01-01

    The atomic scattering factor in the energy range of 11.2-15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT) is reported. The large effective area of the SXT makes use of photon spectra above 10 keV viable, unlike most other X-ray satellites with total-reflection mirror optics. Presence of gold's L-edges...... in the energy band is a major issue, as it complicates the function of the effective area. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4-0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f......2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henke's atomic scattering factor....

  9. Atomic form factors, incoherent scattering functions, and photon scattering cross sections

    International Nuclear Information System (INIS)

    Hubbell, J.H.; Veigele, W.J.; Briggs, E.A.; Brown, R.T.; Cromer, D.T.; Howerton, R.J.

    1975-01-01

    Tabulations are presented of the atomic form factor, F (α,Z), and the incoherent scattering function, S (x,Z), for values of x (=sin theta/2)/lambda) from 0.005 A -1 to 10 9 A -1 , for all elements A=1 to 100. These tables are constructed from available state-of-the-art theoretical data, including the Pirenne formulas for Z=1, configuration-into action results by Brown using Brown-Fontana and Weiss correlated wavefunctions for Z=2 to 6 non-relativistic Hartree-Fock results by Cromer for Z=7 to 100 and a relativistic K-shell analytic expression for F (x,Z) by Bethe Levinger for x>10 A -1 for all elements Z=2 to 100. These tabulated values are graphically compared with available photon scattering angular distribution measurements. Tables of coherent (Rayleigh) and incoherent (Compton) total scattering cross sections obtained by nummerical integration over combinations of F 2 (x,Z) with the Thomson formula and S (x,Z) with the Klum-Nishina Formual, respectively, are presented for all elements Z=1 to 100, for photon energies 100 eV (lambda=124 A) to 100 MeV (0.000124 A). The incoherent scattering cross sections also include the radiative and double-Compton corrections as given by Mork. Similar tables are presented for the special cases of terminally-bonded hydrogen and for the H 2 molecule, interpolated and extrapolated from values calculated by Stewart et al., and by Bentley and Stewart using Kolos-Roothaan wavefunctions

  10. Small-angle scattering of ions or atoms by atomic hydrogen

    International Nuclear Information System (INIS)

    Franco, V.

    1982-01-01

    A theory for small-angle scattering of arbitrary medium- or high-energy atoms or ions by atomic hydrogen is described. Results are obtained in terms of the known closed-form and easily calculable Glauber-approximation scattering amplitudes for electron-hydrogen collisions and for collisions between the nucleus (treated as one charged particle) of the ion or atom and the hydrogen atom, and in terms of the transition form factor of the arbitrary ion or atom. Applications are made to the angular differential cross sections for the excitation of atomic hydrogen to its n = 2 states by singly charged ground-state helium ions having velocities of roughly between 1/2 and 1 a.u. The differential cross sections are obtained in terms of electron-hydrogen amplitudes and the known He + ground-state form factor. Comparisons are made with other calculations and with recent measurements. The results are in good agreement with the data. It is seen that the effect of the He + electron is to produce significant constructive interference at most energies

  11. Magnetic scattering of neutrons by atoms

    International Nuclear Information System (INIS)

    Stassis, C.; Deckman, H.W.

    1976-01-01

    The magnetic scattering of neutrons by an atom or ion possessing both a spin and orbital magnetic moment is examined. For an atom in the 1sup(n) electronic configuration the magnetic scattering amplitude is determined by matrix elements of even-order electric and odd-order magnetic multipoles, whose order of multipolarity k is less than or equal to 21 + 1. The calculation of the matrix elements of these multipoles is separated into evaluating radial matrix elements and matrix elements of the Racah tensors Wsup(0,k) and Wsup(1,k') where k is an even integar less than or equal to 21. The calculation of the matrix elements of these tensors is considerably simplified by selection rules based on the groups Sp(41 + 2), R(21 + 1), R(3) and in the case of f-electrons, the special group G 2 . It is shown that, in the case of elastic scattering by an atom or an ion whose state is a single Russell-Saunders state, the magnetic scattering amplitude can be written in the conventional form p(q)qsub(m).sigma. General expressions for the amplitude p(q) as well as the elastic magnetic form factor are obtained. The evaluation of the coherent magnetic scattering amplitude by an atom in a magnetic field is discussed, and the small-q approximation to the elastic magnetic scattering is considered. The formation is illustrated for the important case of d- and f-electrons. The generalization of the formalism to the case of mixed atomic configurations is examined in some detail. (author)

  12. Electron scattering by trapped fermionic atoms

    International Nuclear Information System (INIS)

    Wang Haijun; Jhe, Wonho

    2002-01-01

    Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems

  13. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  14. Atom-dimer scattering in a heteronuclear mixture with a finite intraspecies scattering length

    Science.gov (United States)

    Gao, Chao; Zhang, Peng

    2018-04-01

    We study the three-body problem of two ultracold identical bosonic atoms (denoted by B ) and one extra atom (denoted by X ), where the scattering length aB X between each bosonic atom and atom X is resonantly large and positive. We calculate the scattering length aad between one bosonic atom and the shallow dimer formed by the other bosonic atom and atom X , and investigate the effect induced by the interaction between the two bosonic atoms. We find that even if this interaction is weak (i.e., the corresponding scattering length aB B is of the same order of the van der Waals length rvdW or even smaller), it can still induce a significant effect for the atom-dimer scattering length aad. Explicitly, an atom-dimer scattering resonance can always occur when the value of aB B varies in the region with | aB B|≲ rvdW . As a result, both the sign and the absolute value of aad, as well as the behavior of the aad-aB X function, depends sensitively on the exact value of aB B. Our results show that, for a good quantitative theory, the intraspecies interaction is required to be taken into account for this heteronuclear system, even if this interaction is weak.

  15. Multislice theory of fast electron scattering incorporating atomic inner-shell ionization

    International Nuclear Information System (INIS)

    Dwyer, C.

    2005-01-01

    It is demonstrated how atomic inner-shell ionization can be incorporated into a multislice theory of fast electron scattering. The resulting theory therefore accounts for both inelastic scattering due to inner-shell ionization and dynamical elastic scattering. The theory uses a description of the ionization process based on the angular momentum representation for both the initial and final states of the atomic electron. For energy losses near threshold, only a small number of independent states of the ejected atomic electron need to be considered, reducing demands on computing time, and eliminating the need for tabulated inelastic scattering factors. The theory is used to investigate the influence of the collection aperture size on the spatial origin of the silicon K-shell EELS signal generated by a STEM probe. The validity of a so-called local approximation is also considered

  16. PREFACE: Atom-surface scattering Atom-surface scattering

    Science.gov (United States)

    Miret-Artés, Salvador

    2010-08-01

    It has been a privilege and a real pleasure to organize this special issue or festschrift in the general field of atom-surface scattering (and its interaction) in honor of J R Manson. This is a good opportunity and an ideal place to express our deep gratitude to one of the leaders in this field for his fundamental and outstanding scientific contributions. J R Manson, or Dick to his friends and colleagues, is one of the founding fathers, together with N Cabrera and V Celli, of the 'Theory of surface scattering and detection of surface phonons'. This is the title of the very well-known first theoretical paper by Dick published in Physical Review Letters in 1969. My first meeting with Dick was around twenty years ago in Saclay. J Lapujoulade organized a small group seminar about selective adsorption resonances in metal vicinal surfaces. We discussed this important issue in surface physics and many other things as if we had always known each other. This familiarity and warm welcome struck me from the very beginning. During the coming years, I found this to be a very attractive aspect of his personality. During my stays in Göttingen, we had the opportunity to talk widely about science and life at lunch or dinner time, walking or cycling. During these nice meetings, he showed, with humility, an impressive cultural background. It is quite clear that his personal opinions about history, religion, politics, music, etc, come from considering and analyzing them as 'open dynamical systems'. In particular, with good food and better wine in a restaurant or at home, a happy cheerful soirée is guaranteed with him, or even with only a good beer or espresso, and an interesting conversation arises naturally. He likes to listen before speaking. Probably not many people know his interest in tractors. He has an incredible collection of very old tractors at home. In one of my visits to Clemson, he showed me the collection, explaining to me in great detail, their technical properties

  17. Scattering theory of molecules, atoms and nuclei

    CERN Document Server

    Canto, L Felipe

    2012-01-01

    The aim of the book is to give a coherent and comprehensive account of quantum scattering theory with applications to atomic, molecular and nuclear systems. The motivation for this is to supply the necessary theoretical tools to calculate scattering observables of these many-body systems. Concepts which are seemingly different for atomic/molecular scattering from those of nuclear systems, are shown to be the same once physical units such as energy and length are diligently clarified. Many-body resonances excited in nuclear systems are the same as those in atomic systems and come under the name

  18. Nanometer-range atomic order directly recovered from resonant diffuse scattering

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Kub, Jiří; Fábry, Jan; Hlinka, Jiří

    2016-01-01

    Roč. 93, č. 5 (2016), 1-8, č. článku 054202. ISSN 1098-0121 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : diffuse scattering * resonant scattering * atomic structure * perovskites * relaxors * PbMg 1/3 Nb 2/3 O 3 (PMN) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  19. Exploiting Universality in Atoms with Large Scattering Lengths

    International Nuclear Information System (INIS)

    Braaten, Eric

    2012-01-01

    The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.

  20. Variational methods in electron-atom scattering theory

    CERN Document Server

    Nesbet, Robert K

    1980-01-01

    The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low­ energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Cha...

  1. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.

    Science.gov (United States)

    Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M

    2018-04-13

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  2. Scattering of Hyperthermal Nitrogen Atoms from the Ag(111) Surface

    NARCIS (Netherlands)

    Ueta, H.; Gleeson, M. A.; Kleyn, A. W.

    2009-01-01

    Measurements on scattering of hyperthermal N atoms from the Ag(111) Surface at temperatures of 500, 600, and 730 K are presented. The scattered atoms have a two-component angular distribution. One of the N components is very broad. In contrast, scattered Ar atoms exhibit only a sharp,

  3. Analysis of the factors that affect photon counts in Compton scattering

    International Nuclear Information System (INIS)

    Luo, Guang; Xiao, Guangyu

    2015-01-01

    Compton scattering has been applied in a variety of fields. The factors that affect Compton scattering have been studied extensively in the literature. However, the factors that affect the measured photon counts in Compton scattering are rarely considered. In this paper, we make a detailed discussion on those factors. First, Compton scattering experiments of some alloy series and powder mixture series are explored. Second, the electron density is researched in terms of atom and lattice constants. Third, the factor of attenuation coefficient is discussed. And then, the active degree of electrons is discussed based on the DFT theory. Lastly, the conclusions are made, that the factors affecting Compton scattering photon counts include mainly electron number density, attenuation coefficient and active degree of electrons. - Highlights: • Compton scattering experiments of some alloy series and powder mixture series are explored. • The influence of electron density is researched in terms of atom and lattice constants. • The influence of attenuation coefficient is discussed. • The active degree of electrons is discussed detailedly based on DFT theory

  4. Positronium-alkali atom scattering at medium energies

    International Nuclear Information System (INIS)

    Chakraborty, Ajoy; Basu, Arindam; Sarkar, Nirmal K; Sinha, Prabal K

    2004-01-01

    We investigate the scattering of orthopositronium (o-Ps) atom off different atomic alkali targets (Na to Cs) at low and medium energies (up to 120 eV). Projectile-elastic and target-elastic close-coupling models have been employed to investigate the systems in addition to the static-exchange model. Elastic, excitation and total cross sections have been reported for all four systems. The magnitude of the alkali excitation cross section increases with increasing atomic number of the target atom while the position of the peak value shifts towards lower incident energies. The magnitudes of the Ps excitation and ionization cross sections increase steadily with atomic number with no change in the peak position. The reported results show regular behaviour with increasing atomic number of the target atom. Scattering parameters for the Ps-Rb and Ps-Cs systems are being reported for the first time

  5. On the influence of resonance photon scattering on atom interference

    International Nuclear Information System (INIS)

    Bozic, M; Arsenovic, D; Sanz, A S; Davidovic, M

    2010-01-01

    Here, the influence of resonance photon-atom scattering on the atom interference pattern at the exit of a three-grating Mach-Zehnder interferometer is studied. It is assumed that the scattering process does not destroy the atomic wave function describing the state of the atom before the scattering process takes place, but only induces a certain shift and change of its phase. We find that the visibility of the interference strongly depends on the statistical distribution of transferred momenta to the atom during the photon-atom scattering event. This also explains the experimentally observed (Chapman et al 1995 Phys. Rev. Lett. 75 2783) dependence of the visibility on the ratio d p /λ i =y' 12 (2π/kdλ i ), where y' 12 is the distance between the place where the scattering event occurs and the first grating, k is the wave number of the atomic centre-of-mass motion, d is the grating constant and λ i is the photon wavelength. Furthermore, it is remarkable that photon-atom scattering events happen experimentally within the Fresnel region, i.e. the near-field region, associated with the first grating, which should be taken into account when drawing conclusions about the relevance of 'which-way' information for the interference visibility.

  6. Scattering amplitudes and static atomic correction factors for the composition-sensitive 002 reflection in sphalerite ternary III-V and II-VI semiconductors.

    Science.gov (United States)

    Schowalter, M; Müller, K; Rosenauer, A

    2012-01-01

    Modified atomic scattering amplitudes (MASAs), taking into account the redistribution of charge due to bonds, and the respective correction factors considering the effect of static atomic displacements were computed for the chemically sensitive 002 reflection for ternary III-V and II-VI semiconductors. MASAs were derived from computations within the density functional theory formalism. Binary eight-atom unit cells were strained according to each strain state s (thin, intermediate, thick and fully relaxed electron microscopic specimen) and each concentration (x = 0, …, 1 in 0.01 steps), where the lattice parameters for composition x in strain state s were calculated using continuum elasticity theory. The concentration dependence was derived by computing MASAs for each of these binary cells. Correction factors for static atomic displacements were computed from relaxed atom positions by generating 50 × 50 × 50 supercells using the lattice parameter of the eight-atom unit cells. Atoms were randomly distributed according to the required composition. Polynomials were fitted to the composition dependence of the MASAs and the correction factors for the different strain states. Fit parameters are given in the paper.

  7. Matter-wave scattering and guiding by atomic arrays

    International Nuclear Information System (INIS)

    Vaishnav, J. Y.; Walls, J. D.; Apratim, M.; Heller, E. J.

    2007-01-01

    We investigate the possibility that linear arrays of atoms can guide matter waves, much as fiber optics guide light. We model the atomic line as a quasi-one-dimensional array of s-wave point scatterers embedded in two-dimensions. Our theoretical study reveals how matter-wave guiding arises from the interplay of scattering phenomena with bands and conduction along the array. We discuss the conditions under which a straight or curved array of atoms can guide a beam focused at one end of the array

  8. Semiempirical potentials for positron scattering by atoms

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Walters, H. R. J.; Arretche, Felipe; Dutra, Adriano; Mohallem, J. R. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910, Vitoria, ES (Brazil); Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast, BT7 1NN (United Kingdom); Departamento de Fisica, Universidade do Estado de Santa Catarina, 89223-100, Joinville, SC (Brazil); Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG (Brazil)

    2011-08-15

    We report calculations of differential and integral cross sections for positron scattering by noble gas and alkaline-earth atoms within the same methodology. The scattering potentials are constructed by scaling adiabatic potentials so that their minima coincide with the covalent radii of the target atoms. Elastic differential and integral cross sections are calculated for Ne, Ar, Be, and Mg, and the results are very close to experimental and best theoretical data. Particularly, elastic differential cross sections for Be and Mg at low energies are reported.

  9. Classical theory of atom-surface scattering: The rainbow effect

    Science.gov (United States)

    Miret-Artés, Salvador; Pollak, Eli

    2012-07-01

    The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the “washboard model” in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.

  10. A summary of the low angle x-ray atomic scattering factors which have been measured by the critical voltage effect in High Energy Electron Diffraction (HEED)

    International Nuclear Information System (INIS)

    Fox, A.G.; Fisher, R.M.

    1987-08-01

    A tabulated summary of all the accurate (/approximately/0.1%) low-angle x-ray atomic scattering (form) factors which have been determined by the systematic critical voltage technique in HEED is presented. For low atomic number elements (Z/approx lt/40) the low angle form factors can be significantly different to best free atom values, and so the best band structure calculated and/or x-ray measured form factors consistent with the critical voltage measurements are also indicated. At intermediate atomic numbers Z≅40→50 only the very low-angle form factors appear to be different to the best free atom values, and even then only by a small amount. For heavy elements (Z/approx lt/70) the best free atom form factors appear to agree very closely with the critical voltage measured values and so, in this case, critical voltage measurements give very accurate measurements of Debye-Waller factors. 48 refs

  11. Electron scattering from atoms in the presence of a laser field. III

    International Nuclear Information System (INIS)

    Mittleman, M.H.

    1977-01-01

    The development of the theory of the effect of a laser on electron-atom scattering is continued by the derivation of explicit relations between the observed electron-atom scattering cross sections in the presence of a laser and exact electron-atom scattering cross sections with no laser present. No approximation concerning the scattering interaction is made. The only approximations concerning the laser are that (1) the laser-atom interaction energy is small compared to atomic energies, (2) the Rabi frequency times the collision time is small, and (3) the laser intensity in appropriate units is small

  12. Measurement of angular differential cross sections at the SSL Atomic Scattering Facility

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1988-01-01

    The design of the SSL Atomic Scattering Facility (ASF) located at the NASA/Marshall Space Flight Center as well as some of the initial experiments to be performed with it, are covered. The goal is to develop an apparatus capable of measuring angular differential cross sections (ADCS) for the scattering of 2 to 14 eV atomic oxygen from various gaseous targets. At present little is known about atomic oxygen scattering with kinetic energies of a few eV. This apparatus is designed to increase the understanding of collisions in this energy region. Atomic oxygen scattering processes are of vital interest to NASA because the space shuttle as well as other low earth orbit satellites will be subjected to a flux of 5 eV atomic oxygen on the ram surfaces while in orbit. The primary experiments will involve the measurements of ADCS for atomic oxygen scattering from gaseous targets (in particular, molecular nitrogen). These, as well as the related initial experiments involving thermal He scattering from N2 and O2 targets will be described

  13. Electron and positron atomic elastic scattering cross sections

    International Nuclear Information System (INIS)

    Stepanek, Jiri

    2003-01-01

    A method was developed to calculate the total and differential elastic-scattering cross sections for incident electrons and positrons in the energy range from 0.01 eV to 1 MeV for atoms of Z=1-100. For electrons, hydrogen, helium, nitrogen, oxygen, krypton, and xenon, and for positrons, helium, neon, and argon atoms were considered for comparison with experimental data. First, the variationally optimized atomic static potentials were calculated for each atom by solving the Dirac equations for bound electron states. Second, the Dirac equations for a free electron or positron are solved for an atom using the previously calculated static potential accomplished (in the case of electrons) by 'adjusted' Hara's exchange potential for a free-state particle. Additional to the exchange effects, the charge cloud polarization effects are considered applying the correlation-polarization potential of O'Connell and Lane (with correction of Padial and Norcross) for incident electrons, and of Jain for incident positrons. The total, cutoff and differential elastic-scattering cross sections are calculated for incident electrons and positrons with the help of the relativistic partial wave analysis. The solid state effects for scattering in solids are described by means of a muffin-tin model, i.e. the potentials of neighboring atoms are superpositioned in such a way that the resulting potential and its derivative are zero in the middle distance between the atoms. The potential of isolated atom is calculated up to the radius at which the long-range polarization potential becomes a value of -10 -8

  14. Schwinger variational principle in charged particle scattering by mesic atoms and atoms

    International Nuclear Information System (INIS)

    Zubarev, A.L.; Podkopaev, A.P.

    1981-01-01

    The way for solving the strong channel coupling method equation with the use of the Shcwinger variational method is proposed. The equation obtained is valid for atomic and mesoatomic physics when the account of the large number of closed channels is necessary and virtual transitions in continuum. In this variational method the trial functions are chosen in the form of expansion into eigenfunctions. The region of the equation validity is found. The problems of the e + H and p-dμ scattering are studied. The e + H scattering length turns out to be 1.8 a. u. which is in accordance with other results. The scattering cross section for p-dμ scattering is equal to 5.7x10 -21 cm -2 which also qualitatively is in agreement with results obtained elsewhere. The bound state which is stable relative to the decay into a positron and hydrogen atom is found for the e + H system [ru

  15. Theory of direct scattering of neutral and charged atoms

    Science.gov (United States)

    Franco, V.

    1979-01-01

    The theory for direct elastic and inelastic collisions between composite atomic systems formulated within the framework of the Glauber approximation is presented. It is shown that the phase-shift function is the sum of a point Coulomb contribution and of an expression in terms of the known electron-hydrogen-atom and proton-hydrogen-atom phase shift function. The scattering amplitude is reexpressed, the pure Coulomb scattering in the case of elastic collisions between ions is isolated, and the exact optical profile function is approximated by a first-order expansion in Glauber theory which takes into account some multiple collisions. The approximate optical profile function terms corresponding to interactions involving one and two electrons are obtained in forms of Meijer G functions and as a one-dimensional integral, and for collisions involving one or two neutral atoms, the scattering amplitude is further reduced to a simple closed-form expression.

  16. Theory of atom displacements induced by fast electron elastic scattering in solids

    International Nuclear Information System (INIS)

    Cruz, C. M.; Pinera, I.; Abreu, Y.; Leyva, A.

    2006-01-01

    Present contribution deals with the theoretical description of the conditions favoring the occurrence of single fast electron elastic scattering in solids, leading to the displacement of atoms from their crystalline sites. Firstly, the Moliere-Bethe-Goudsmit-Saunderson theory of Multiple Electron Scattering is applied, determining the limiting angle θ l over which the single electron elastic scattering prevails over the multiple one, leading to the evaluation of the total macroscopic cross-section for single electron elastic scattering on the basis of the Mott-Rutherford differential cross-section. On the basis of single electron elastic scattering by atoms in the solid matrix, it was determined the relative number of Atom Displacements produced by the Gamma Radiation as a primary act, as well as the energy and linear momentum of the ejected atoms. The statistical distributions of single electron elastic scattering and of those inducing Atom Displacements at different electron initial energies in comparison with the others electron inelastic scattering channels are discussed, where the statistical sampling methods on the basis of the rejection one where applied simulating different practical situations. (Full text)

  17. Atomic scattering in the presence of a low-frequency laser

    International Nuclear Information System (INIS)

    Banerji, J.

    1982-01-01

    In the first four chapters of this thesis previous work on non-resonant potential scattering, resonant potential scattering and non-resonant electron-atom scattering in the presence of a low-frequency laser has been discussed and extended. Chapter 6 deals with the experimental aspects of laser-modified atomic scattering. In chapter 7, the problem of electron-atom ionizing collisions (both resonant and non-resonant) in the presence of a low-frequency laser is discussed. In the next chapter the cut-off Coulomb potential scattering in the presence of a low-frequency laser has been considered. Because of the long range of the Coulomb potential, the result deviates sharply from that obtained for short range potentials unless, of course, the collision energy is very high. Moreover, it has been suggested that the experiments are not reproducible unless the details of the cut-off Coulomb potential are spelled out

  18. Angular momentum effects in electron scattering from atoms

    International Nuclear Information System (INIS)

    Williams, J F; Cvejanovie, D; Samarin, S; Pravica, L; Napier, S; Sergeant, A

    2007-01-01

    This paper concerns angular momentum-dependent phenomena in excited gas-phase atoms using incident photons or electrons in scattering experiments. A brief overview indicates the main capabilities of experimental techniques and the information which can be deduced about atomic structure and dynamics from conservation of momenta with measurement of polarization and detection of the number of emerging electrons, photons and ions. Maximum information may be obtained when the incident particles and the targets are state-selected both before and after scattering. The fundamental scattering amplitudes and their relative phases, and consequently derived quantities such as the parameters describing the electron charge cloud of the atomic target, have enabled significant advances of understanding of collision mechanisms. The angular momentum-dependent scattering probabilities change when, for example, the spin-orbit interaction for the target electrons becomes large compared with the Coulomb electron-electron interactions and also when electron exchange and the relative orientation of the electron spins change. Several examples are discussed to indicate significant principles and recent advances. Major contributions to this field from the technology associated with electron spin production and detection time, as well as time-coincidence detection, are discussed. New results from the authors' laboratory are presented

  19. ZZ ELAST2, Database of Cross Sections for the Elastic Scattering of Electrons and Positrons by Atoms

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Historical background and information: This database is an extension of the earlier database, 'Elastic Scattering of Electrons and Positrons by Atoms: Database ELAST', Report NISTIR 5188, 1993. Cross sections for the elastic scattering of electrons and positrons by atoms were calculated at energies from 1 KeV to 100 MeV. Up to 10 MeV the RELEL code of Riley was used. Above 10 MeV the ELSCAT code was used, which calculated the factored cross sections and evaluates the screening factor Kscr in WKB approximation. 2 - Application of the data: This database was developed to provide input for the transport codes, such as ETRAN, and includes differential cross sections, the total cross section, and the transport cross sections. In addition, a code TRANSX is provided that generates transport cross section of arbitrary order needed as input for the calculation of Goudsmit-Saunderson multiple-scattering angular distribution 3 - Source and scope of data: The database includes cross sections at 61 energies for electrons and 41 energies from positrons, covering the energy region from 1 KeV to 100 MeV. The number of deflection angles included in the database is 314 angles. Total and transport cross sections are also included in this package. The data files have an extension (jjj) that represents the atomic number of the target atom. The database includes auxiliary data files that enable the ELASTIC code to include the following optional modifications: (i) the inclusion of the exchange correction for electrons scattering; (ii) the conversion of the cross sections for scattering by free atoms to cross sections for scattering by atoms in solids; (iii) ti reduction of the cross sections at large angles and at high energies when the nucleus is treated as an extended rather than a point charge

  20. Theory of inelastic effects in resonant atom-surface scattering

    International Nuclear Information System (INIS)

    Evans, D.K.

    1983-01-01

    The progress of theoretical and experimental developments in atom-surface scattering is briefly reviewed. The formal theory of atom-surface resonant scattering is reviewed and expanded, with both S and T matrix approaches being explained. The two-potential formalism is shown to be useful for dealing with the problem in question. A detailed theory based on the S-matrix and the two-potential formalism is presented. This theory takes account of interactions between the incident atoms and the surface phonons, with resonant effects being displayed explicitly. The Debye-Waller attenuation is also studied. The case in which the atom-surface potential is divided into an attractive part V/sub a/ and a repulsive part V/sub r/ is considered at length. Several techniques are presented for handling the scattering due to V/sub r/, for the case in which V/sub r/ is taken to be the hard corrugated surface potential. The theory is used to calculate the scattered intensities for the system 4 He/LiF(001). A detailed comparison with experiment is made, with polar scans, azimuthal scans, and time-of-flight measurements being considered. The theory is seen to explain the location and signature of resonant features, and to provide reasonable overall agreement with the experimental results

  1. Comparison of electrothermal atomization diode laser Zeeman- and wavelength-modulated atomic absorption and coherent forward scattering spectrometry

    International Nuclear Information System (INIS)

    Blecker, Carlo R.; Hermann, Gerd M.

    2009-01-01

    Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions

  2. Symmetry-forbidden intervalley scattering by atomic defects in monolayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Martiny, Johannes H. J.; Low, Tony

    2017-01-01

    protectionmechanism against intervalley scattering in monolayer TMDs. The predicteddefectdependent selection rules for intervalley scattering can be verified viaFourier transform scanning tunneling spectroscopy (FT-STS), and provide aunique identification of, e.g., atomic vacancy defects (M vs X). Our findingsare......Intervalley scattering by atomic defects in monolayer transition metaldichalcogenides (TDMs; MX2) presents a serious obstacle for applicationsexploiting their unique valley-contrasting properties. Here, we show that thesymmetry of the atomic defects can give rise to an unconventional...

  3. Scattering of 20Ne atoms from the (001) face of LiF

    International Nuclear Information System (INIS)

    Semerad, E.; Hoerl, E.M.

    1983-01-01

    An apparatus for measurements of inelastic scattering processes of gas atoms from crystal surfaces is described. Scattering experiments with Neon atoms of thermal energy on the (001) LiF surface in the azimuth are discussed. Inelastic scattering shows large contributions of single phonon interactions as well as of modes originating from the bulk bands. (Author)

  4. Rayleigh scattering under light-atom coherent interaction

    OpenAIRE

    Takamizawa, Akifumi; Shimoda, Koichi

    2012-01-01

    Semi-classical calculation of an oscillating dipole induced in a two-level atom indicates that spherical radiation from the dipole under coherent interaction, i.e., Rayleigh scattering, has a power level comparable to that of spontaneous emission resulting from an incoherent process. Whereas spontaneous emission is nearly isotropic and has random polarization generally, Rayleigh scattering is strongly anisotropic and polarized in association with incident light. In the case where Rabi frequen...

  5. DiSCaMB: a software library for aspherical atom model X-ray scattering factor calculations with CPUs and GPUs.

    Science.gov (United States)

    Chodkiewicz, Michał L; Migacz, Szymon; Rudnicki, Witold; Makal, Anna; Kalinowski, Jarosław A; Moriarty, Nigel W; Grosse-Kunstleve, Ralf W; Afonine, Pavel V; Adams, Paul D; Dominiak, Paulina Maria

    2018-02-01

    It has been recently established that the accuracy of structural parameters from X-ray refinement of crystal structures can be improved by using a bank of aspherical pseudoatoms instead of the classical spherical model of atomic form factors. This comes, however, at the cost of increased complexity of the underlying calculations. In order to facilitate the adoption of this more advanced electron density model by the broader community of crystallographers, a new software implementation called DiSCaMB , 'densities in structural chemistry and molecular biology', has been developed. It addresses the challenge of providing for high performance on modern computing architectures. With parallelization options for both multi-core processors and graphics processing units (using CUDA), the library features calculation of X-ray scattering factors and their derivatives with respect to structural parameters, gives access to intermediate steps of the scattering factor calculations (thus allowing for experimentation with modifications of the underlying electron density model), and provides tools for basic structural crystallographic operations. Permissively (MIT) licensed, DiSCaMB is an open-source C++ library that can be embedded in both academic and commercial tools for X-ray structure refinement.

  6. Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter

    CERN Document Server

    Whelan, Colm T

    2005-01-01

    Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.

  7. Ion-reversibility studies in amorphous solids using the two-atom scattering model

    International Nuclear Information System (INIS)

    Oen, O.S.

    1981-06-01

    An analytical two-atom scattering model has been developed to treat the recent discovery of the enhancement near 180 0 of Rutherford backscattering yields from disordered solids. In contrast to conventional calculations of Rutherford backscattering that treat scattering from a single atom only (the backscattering atom), the present model includes the interaction of a second atom lying between the target surface and the backscattering plane. The projectile ion makes a glancing collision with this second atom both before and after it is backscattered. The model predicts an enhancement effect whose physical origin arises from the tolerance of path for those ions whose inward and outward trajectories lie in the vicinity of the critical impact parameter. Results using Moliere scattering show how the yield enhancement depends on ion energy, backscattering depth, exit angle, scattering potential, atomic numbers of the projectile and target, and target density. In the model the critical impact parameter and critical angle play important roles. It is shown that these quantities depend on a single dimensionless parameter and analytical expressions for them are given which are accurate to better than 1%

  8. Optical model theory of elastic electron- and positron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Joachain, C.J.

    1977-01-01

    It is stated that the basic idea of the optical model theory is to enable analysis of the elastic scattering of a particle from a complex target by replacing the complicated interactions between the beam and the target by an optical potential, or pseudopotential, in which the incident particle moves. Once the optical potential is determined the original many-body elastic scattering problem reduces to a one-body situation. The resulting optical potential is, however, a very complicated operator, and the formal expressions obtained from first principles for the optical potential can only be evaluated approximately in a few simple cases, such as high energy elastic hadron-nucleus scattering, for the the optical potential can be expressed in terms of two-body hadron-nucleon amplitudes, and the non-relativistic elastic scattering of fast charged particles by atoms. The elastic scattering of an electron or positron by a neutral atom at intermediate energies is here considered. Exchange effects between the projectile and the atomic electrons are considered; also absorption and polarisation effects. Applications of the full-wave optical model have so far only been made to the elastic scattering of fast electrons and positrons by atomic H, He, Ne, and Ar. Agreements of the optical model results with absolute measurements of differential cross sections for electron scattering are very good, an agreement that improves as the energy increases, but deteriorates quickly as the incident energy becomes lower than 50 eV for atomic H or 100 eV for He. For more complex atoms the optical model calculations also appear very encouraging. With regard to positron-atom elastic scattering the optical model results for positron-He scattering differ markedly at small angles from the corresponding electron-He values. It would be interesting to have experimental angular distributions of positron-atom elastic scattering in order to check predictions of the optical model theory. (U.K.)

  9. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1992-01-01

    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H - is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991

  10. Schwinger variational principle in scattering problems of charged particles on mesic atoms and atoms

    International Nuclear Information System (INIS)

    Belyaev, V.B.; Zubarev, A.L.; Podkopaev, A.P.

    1978-01-01

    The Schwinger variational principle is applied to solve the problems of atomic physics. A separable approximation for a Hamiltonian of a bound subsystem is used. The length of e + H-scattering and the elastic p(dμ)-scattering cross section are calculated in the second Born approximation

  11. Chaotic scattering from hydrogen atoms in a circularly polarized laser field

    International Nuclear Information System (INIS)

    Okon, Elias; Parker, William; Chism, Will; Reichl, Linda E.

    2002-01-01

    We investigate the classical dynamics of a hydrogen atom in a circularly polarized laser beam with finite radius. The spatial cutoff for the laser field allows us to use scattering processes to examine the laser-atom dynamics. We find that for certain field parameters, the delay times, the angular momentum, and the distance of closest approach of the scattered electron exhibit fractal behavior. This fractal behavior is a signature of chaos in the dynamics of the atom-field system

  12. Scattering amplitude of ultracold atoms near the p-wave magnetic Feshbach resonance

    International Nuclear Information System (INIS)

    Zhang Peng; Naidon, Pascal; Ueda, Masahito

    2010-01-01

    Most of the current theories on the p-wave superfluid in cold atomic gases are based on the effective-range theory for the two-body scattering, where the low-energy p-wave scattering amplitude f 1 (k) is given by f 1 (k)=-1/[ik+1/(Vk 2 )+1/R]. Here k is the incident momentum, V and R are the k-independent scattering volume and effective range, respectively. However, due to the long-range nature of the van der Waals interaction between two colliding ultracold atoms, the p-wave scattering amplitude of the two atoms is not described by the effective-range theory [J. Math. Phys. 4, 54 (1963); Phys. Rev. A 58, 4222 (1998)]. In this paper we provide an explicit calculation for the p-wave scattering of two ultracold atoms near the p-wave magnetic Feshbach resonance. We show that in this case the low-energy p-wave scattering amplitude f 1 (k)=-1/[ik+1/(V eff k 2 )+1/(S eff k)+1/R eff ] where V eff , S eff , and R eff are k-dependent parameters. Based on this result, we identify sufficient conditions for the effective-range theory to be a good approximation of the exact scattering amplitude. Using these conditions we show that the effective-range theory is a good approximation for the p-wave scattering in the ultracold gases of 6 Li and 40 K when the scattering volume is enhanced by the resonance.

  13. Optical-potential model for electron-atom scattering

    International Nuclear Information System (INIS)

    Callaway, J.; Oza, D.H.

    1985-01-01

    It is proposed that the addition of a matrix optical potential to a close-coupling calculation should lead to improved results in studies of electron-atom scattering. This procedure is described with use of a pseudostate expansion to evaluate the optical potential. The integro-differential equations are solved by a linear-algebraic method. As a test case, applications are made to electron-hydrogen scattering, and the results are compared with those obtained by other calculational procedures, and with experiment

  14. The dispersion relation for the forward elastic electron-atom scattering amplitude

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1978-01-01

    The analytical properties of forward elastic electron-atom scattering amplitude are discussed. It is noted that the occurrence of exchange between the incoming and atomic electrons leads to the appearance of a number of singularities on the negative real axis in the complex energy plane. The conclusion is drawn that the dispersion relation for the forward electron-atom scattering amplitude should also include an integration over the negative energy from - I to - infinity, where I is the ionization potential. (author)

  15. Elastic scattering of low-energy electrons with Sr atoms

    International Nuclear Information System (INIS)

    Yuan, J.; Zhang, Z.; Wan, H.

    1990-01-01

    Static-exchange, plus correlation-polarization-potential calculations are performed for elastic low-energy electron scattering from Sr atoms while paying attention to the low-lying shape resonances. The correlation potential is calculated both with and without a scaling factor. A 2 D-shape resonance is produced at 1.0 eV with a parameter-free, and at 1.25 eV with a scaled, correlation potential. No 2 P-shape resonances are predicted, but evidence to support the existence of a stable negative ion Sr - in the 5s 2 5p electron configuration is given from the viewpoint of electron scattering. The bound energy of the extra electron in the negative ion is estimated by transforming the phase shift of the corresponding partial wave into the polarization quantum-defect number and extrapolating the number from positive to negative energies

  16. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of “elastic” scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  17. Dynamics of entanglement between two atomic samples with spontaneous scattering

    International Nuclear Information System (INIS)

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio

    2004-01-01

    We investigate the effects of spontaneous scattering on the evolution of entanglement of two atomic samples, probed by phase-shift measurements on optical beams interacting with both samples. We develop a formalism of conditional quantum evolutions and present a wave function analysis implemented in numerical simulations of the state vector dynamics. This method allows us to track the evolution of entanglement and to compare it with the predictions obtained when spontaneous scattering is neglected. We provide numerical evidence that the interferometric scheme to entangle atomic samples is only marginally affected by the presence of spontaneous scattering and should thus be robust even in more realistic situations

  18. Heavy particle scattering by atomic and nuclear systems

    International Nuclear Information System (INIS)

    Lazauskas, R.

    2003-10-01

    In this thesis quantum mechanical non-relativistic few-body problem is discussed. Basing on fundamentals ideas from Faddeev and Yakubovski three and four body equations are formulated and solved for fermionic atomic and nuclear systems. Former equations are modified to include long range interactions. Original results for nuclear and molecular physics were obtained: -) positively charged particle scattering on hydrogen atoms was considered; predictions for π + → H, μ + → H and p + → H scattering lengths were given. Existence of an unknown, very weakly bound H + 2 bound state was predicted. -) Motivated by the possible observation of bound four neutron structure at GANIL we have studied compatibility of such an existence within the current nuclear interaction models. -) 4 nucleon scattering at low energies was investigated. Results for n → 3 H, p → 3 H and p → 3 He systems were compared with the experimental data. Validity of realistic nucleon-nucleon interaction models is questioned. (author)

  19. Quasiparticles in Raman scattering of an electromagnetic wave by an atomic condensate

    International Nuclear Information System (INIS)

    Il’ichev, L. V.

    2011-01-01

    Raman scattering of an intense electromagnetic wave by a free atomic Bose condensate is considered. In a system of atoms and photons, a subsystem is separated whose dynamics can be naturally described in terms of quasiparticles: quasi-atoms and quasi-photons. The dispersion laws of quasiparticles are interrupted by the instability interval. The introduction of quasiparticles within this interval is impossible, while dispersion laws that are continued formally acquire imaginary components. The dynamic scattering model is generalized by including dissipative annihilation processes of scattered photons and uncondensed atoms. A stationary solution of the corresponding quantum control equation is found, allowing the calculation of momentum distributions of real particles and quasiparticles. The outlook for the experimental detection of quasiparticles is discussed.

  20. Scattering of atoms by molecules adsorbed at solid surfaces

    International Nuclear Information System (INIS)

    Parra, Zaida.

    1988-01-01

    The formalism of collisional time-correlation functions, appropriate for scattering by many-body targets, is implemented to study energy transfer in the scattering of atoms and ions from molecules adsorbed on metal surfaces. Double differential cross-sections for the energy and angular distributions of atoms and ions scattered by a molecule adsorbed on a metal surface are derived in the limit of impulsive collisions and within a statistical model that accounts for single and double collisions. They are found to be given by the product of an effective cross-section that accounts for the probability of deflection into a solid angle times a probability per unit energy transfer. A cluster model is introduced for the vibrations of an adsorbed molecule which includes the molecular atoms, the surface atoms binding the molecule, and their nearest neighbors. The vibrational modes of CO adsorbed on a Ni(001) metal surface are obtained using two different cluster models to represent the on-top and bridge-bonding situations. A He/OC-Ni(001) potential is constructed from a strongly repulsive potential of He interacting with the oxygen atom in the CO molecule and a van der Waals attraction accounting for the He interaction with the free Ni(001) surface. A potential is presented for the Li + /OC-Ni(001) where a coulombic term is introduced to account for the image force. Trajectory studies are performed and analyzed in three dimensions to obtain effective classical cross-sections for the He/OC-Ni(001) and Li + /OC-Ni(001) systems. Results for the double differential cross-sections are presented as functions of scattering angles, energy transfer and collisional energy. Temperature dependence results are also analyzed. Extensions of the approach and inclusion of effects such as anharmonicity, collisions at lower energies, and applications of the approach to higher coverages are discussed

  1. Forward elastic scattering of electrons by hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Garibotti, C.R. (Instituto de Fisica Teorica, R. Pamplona 145, Sao Paulo (Brazil)); Massaro, P.A. (Bari Univ. (Italy). Ist. di Fisica)

    1978-01-11

    The available theoretical and experimental values for the elastic, inelastic and ionization cross-sections of electrons by hydrogen atoms are used to obtain the total cross-section. The optical theorem and a dispersion relation are used to calculate the forward e-H scattering amplitude for medium and high energies. Using this quantity the reliability of the Born expansion for elastic e-H scattering is tested.

  2. XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms

    Science.gov (United States)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.

    2017-12-01

    Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.

  3. Compton scattering and electron-atom scattering in an elliptically polarized laser field of relativistic radiation power

    International Nuclear Information System (INIS)

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2003-01-01

    Presently available laser sources can yield powers for which the ponderomotive energy of an electron U p can be equal to or even larger than the rest energy mc 2 of an electron. Therefore it has become of interest to consider fundamental radiation-induced or assisted processes in such powerful laser fields. In the present work we consider laser-induced Compton scattering and laser-assisted electron atom scattering in such fields, assuming that the laser beam has arbitrary elliptic polarization. We investigate in detail the angular and polarisation dependence of the differential cross-sections of the two laser-induced or laser-assisted nonlinear processes as a function of the order N of absorbed or emitted laser photons ω. The present work is a generalization of our previous analysis of Compton scattering and electron-atom scattering in a linearly polarized laser field. (authors)

  4. Electron scattering by hydrogen atoms

    International Nuclear Information System (INIS)

    Fujii, D.H.

    1981-02-01

    A variational method to calculate the differential cross section of the electron-hydrogen atom scattering process is presented. The second Born approximation is calculated, through a variational calculation using the energy and electronic charge simultaneously as parameters, in order to calculate the differential cross section which is written in a fractional form according to the Schwinger variational principle. Effects due to the electron change are included in the calculations. (L.C.) [pt

  5. Study of the electrons elastic scattering by atoms through pseudopotentials

    International Nuclear Information System (INIS)

    Bettega, M.H.F.

    1990-01-01

    Pseudopotentials allow an extraordinary simplification in the calculation of the electronic structure of atoms, molecules and crystals. Though they have been used extensively for electronic structure calculations, little is known of their applicability to scattering. A study of the pseudopotentials of Bachelet, Hamann and Schuter in the electron scattering by atoms was made, calculating phase-shifts and cross sections for angular momenta 1=0,1 and 2 and energy up to 5 R y. The results for the pseudopotential were compared all-electron calculations. The agreement is very good in a broad energy band. A simplification of the calculation of scattering by complex molecules where an all-electron calculation is impossible is aimed. (author)

  6. Cross sections for inelastic scattering of electrons by atoms: selected topics related to electron microscopy

    International Nuclear Information System (INIS)

    Inokuti, M.; Manson, S.T.

    1982-01-01

    We begin with a resume of the Bethe theory, which provides a general framework for discussing the inelastic scattering of fast electrons and leads to powerful criteria for judging the reliability of cross-section data. The central notion of the theory is the generalized oscillator strength as a function of both the energy transfer and the momentum transfer, and is the only non-trivial factor in the inelastic-scattering cross section. Although the Bethe theory was initially conceived for free atoms, its basic ideas apply to solids, with suitable generalizations; in this respect, the notion of the dielectric response function is the most fundamental. Topics selected for discussion include the generalized oscillator strengths for the K-shell and L-shell ionization for all atoms with Z less than or equal to 30, evaluated by use of the Hartree-Slater potential. As a function of the energy transfer, the generalized oscillator strength most often shows a non-monotonic structure near the K-shell and L-shell thresholds, which has been interpreted as manifestations of electron-wave propagation through atomic fields. For molecules and solids, there are additional structures due to the scattering of ejected electrons by the fields of other atoms

  7. Atom-atom scattering under cylindrical harmonic confinement: Numerical and analytic studies of the confinement induced resonance

    International Nuclear Information System (INIS)

    Bergeman, T.; Moore, M.G.; Olshanii, M.

    2003-01-01

    It was recently predicted [Phys. Rev. Lett. 81, 938 (1998)10.1103/PhysRevLett.81.938] that atom-atom scattering under transverse harmonic confinement is subject to a 'confinement-induced resonance' where the effective one-dimensional coupling strength diverges at a particular ratio of the confinement and scattering lengths. As the initial prediction made use of the zero-range pseudopotential approximation, we now report numerical results for finite-range interaction potentials that corroborate this resonance. In addition, we now present a physical interpretation of this effect as a novel type of Feshbach resonance in which the transverse modes of the confining potential assume the roles of 'open' and 'closed' scattering channels

  8. Theory of neutron scattering by atomic electrons: jj-coupling scheme

    International Nuclear Information System (INIS)

    Balcar, E.; Lovesey, S.W.; Uppsala Univ.

    1991-02-01

    Expressions are reported for the matrix element of the neutron-electron interaction for atomic electrons in a j n configuration, appropriate for palladium and platinum group compounds and rare earth and actinide materials. For the latter, f-electron systems, an isolated ion is a realistic approximation. Compact expressions are provided, together with tables of reduced matrix elements, for elastic and inelastic structure factors, and compared with the corresponding Russell-Saunders expressions. Inelastic scattering by two f-electrons, including non-equivalent states, is presented in detail. (author)

  9. Low-energy Scattering of Positronium by Atoms

    Science.gov (United States)

    Ray, Hasi

    2007-01-01

    The survey reports theoretical studies involving positronium (Ps) - atom scattering. Investigations carried out in last few decades have been briefly reviewed in this article. A brief description of close-coupling approximation (CCA), the first-Born approximation (FBA) and the Born-Oppenheimer approximation (BOA) for Ps-Atom systems are made. The CCA codes of Ray et a1 [1-6] are reinvestigated using very fine mesh-points to search for resonances. The article advocates the need for an extended basis set & a systematic study using CCAs.

  10. Resonant x-ray Raman scattering from atoms and molecules

    International Nuclear Information System (INIS)

    Cowan, P.L.

    1992-01-01

    Inelastic x-ray scattering and elastic x-ray scattering are fundamentally related processes. When the x-ray photon energy is near the ionization threshold for an inner shell, the inelastic channel is dominated by resonant x-ray Raman scattering. Studies of this emission not only illuminate the resonant scattering process in general, they also point to new opportunities for spectral studies of electronic structure using x-rays. Atoms in the form of a free gas provide an ideal target for testing the current theoretical understanding of resonant x-ray Raman scattering. In addition, x-ray scattering from molecular gases demonstrates the effect of bonding symmetry on the polarization and angular distribution of the scattered x-rays. Comparisons of experimental data with theory demonstrate both the successes and limitations of simple, single-electron interpretations of the scattering process

  11. MUTIL, Asymmetry Factor of Mott Cross-Sections for Electron, Positron Scattering

    International Nuclear Information System (INIS)

    Idoeta, R.; Legarda, F.

    2002-01-01

    1 - Description of program or function: The asymmetry factor S of Mott's differential cross section for the scattering of electrons and positrons by point nuclei without screening is calculated for any energy, atomic number and angle of scattering. 2 - Method of solution: We have summed the conditionally convergent series, F and G, appearing in the asymmetry factor using two consecutive transformations: The one of Yennie, Ravenhall and Wilson and that of Euler till we have seven times six significant figures repeated in the factor S. 3 - Restrictions on the complexity of the problem: Those appearing in the use of Mott's cross section for unscreened point nuclei

  12. Time-resolved X-ray scattering by electronic wave packets: analytic solutions to the hydrogen atom

    DEFF Research Database (Denmark)

    Simmermacher, Mats; Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2017-01-01

    Modern pulsed X-ray sources permit time-dependent measurements of dynamical changes in atoms and molecules via non-resonant scattering. The planning, analysis, and interpretation of such experiments, however, require a firm and elaborated theoretical framework. This paper provides a detailed...... description of time-resolved X-ray scattering by non-stationary electronic wave packets in atomic systems. A consistent application of the Waller-Hartree approximation is discussed and different contributions to the total differential scattering signal are identified and interpreted. Moreover......, it is demonstrated how the scattering signal of wave packets in the hydrogen atom can be expressed analytically. This permits simulations without numerical integration and establishes a benchmark for both efficiency and accuracy. Based on that, scattering patterns of an exemplary wave packet in the hydrogen atom...

  13. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  14. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    Energy Technology Data Exchange (ETDEWEB)

    Umarov, F.F. E-mail: farid1945@yahoo.com; Bazarbaev, N.N.; Kudryashova, L.B.; Krylov, N.M

    2002-11-01

    In the present work, an experimental study of low-energy (E{sub 0}=20-500 eV) heavy Cs{sup +} ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E{sub 0} (E{sub 0}) for Si (E{sub b}=4.64 eV/atom) and Ni (E{sub b}=4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E{sub b} are approximately equal to each other. It is found that the scattering angles of Cs{sup +} ions considerably exceed a limiting scattering angle {theta}{sub lim} in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle interactions (simultaneous ion interaction with several target atoms). It has been shown that during the many-particle interactions the structure of energy spectra disappears; high relative energy of scattering ions and their dependence on energy of bombardment is observed. It has been found that the energy of scattered ions depends on binding energy, melting temperature and packing density of target atoms.

  15. Theory of phonon inelastic atom--surface scattering. I. Quantum mechanical treatment of collision dynamics

    International Nuclear Information System (INIS)

    Choi, B.H.; Poe, R.T.

    1985-01-01

    We present a systematic formulation of the atom--surface scattering dynamics which includes the vibrational states of the atoms in the solid (phonons). The properties of the total scattering wave function of the system, a representation of the interaction potential matrix, and the characteristics of the independent physical solutions are all derived from the translational invariance of the full Hamiltonian. The scattering equations in the integral forms as well as the related Green functions were also obtained. The configurational representations of the Green functions, in particular, are quite different from those of the conventional scattering theory where the collision partners are spatially localized. Various versions of the integral expression of scattering, transition, and reactance matrices were also obtained. They are useful for introducing approximation schemes. From the present formulation, some specific theoretical schemes which are more realistic compared to those that have been employed so far and at the same time capable of yielding effective ab initio computation are derived in the following paper. The time reversal invariance and the microscopic reversibility of the atom--surface scattering were discussed. The relations between the in and outgoing scattering wave functions which are satisfied in the atom--surface system and important in the transition matrix methods were presented. The phonon annihilation and creation, and the adsorption and desorption of the atom are related through the time reversal invariance, and thus the microscopic reversibility can be tested by the experiment

  16. Multiple pole in the electron--hydrogen-atom scattering amplitude

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Kuchiev, M.Y.

    1982-01-01

    It is demonstrated that the amplitude for electron--hydrogen-atom forward scattering has the third-order pole at the point E = -13.6 eV, E being the energy of the incident electron. The coefficients which characterize the pole are calculated exactly. The invalidity of the Born approximation is proved. The contribution of the pole singularity to the dispersion relation for the scattering amplitude is discussed

  17. Elastic and inelastic photon scattering on the atomic nuclei

    International Nuclear Information System (INIS)

    Piskarev, I.M.

    1982-01-01

    Works on investigation of elastic and inelastic scattering of photons on heavy and intermediate nuclei are briefly reviewed. Theoretical problems of nuclear and electron Tompson, Releev and Delbrueck scatterings as well as nuclear resonance scattering are briefly discussed. It is shown that differential cross section of coherent elastic scattering is expressed by means of partial amplitudes of shown processes. Experimental investigations on elastic scattering in the region of threshold energies of photonucleon reactions are described. Problems of theoretical description of elastic scattering in different variants of collective models are considered. Discussed are works, investigating channels of inelastic photon scattering with excitation of nuclear Raman effect. It is noted that to describe channels of inelastic photon scattering it is necessary to use models, that correctly regard the microscopic structure of giant resonance levels to obtain information on the nature of these levels. Investigations of processes of photon elastic and inelastic scattering connected with fundamental characteristics of atomic nucleus, permit to obtain valuable spectroscopic information on high-lying levels of nucleus. Detail investigation of photon scattering in a wide range of energies is necessary [ru

  18. Forward and backward scattering experiments in ultra-cold Rubidium atoms

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo

    project, we have studied coherent forward scattering in the form of a memory experiment. In such an experiment we convert the input light pulse to an atomic excitation, and at a later time convert back the atomic excitation into the retrieved light pulse. In the first project, we investigate the source...

  19. A simple algorithm for calculating the scattering angle in atomic collisions

    International Nuclear Information System (INIS)

    Belchior, J.C.; Braga, J.P.

    1996-01-01

    A geometric approach to calculate the classical atomic scattering angle is presented. The trajectory of the particle is divided into several straight-lines and changing in direction from one sector to the other is used to calculate the scattering angle. In this model, calculation of the scattering angle does not involve either the direct evaluation of integrals nor classical turning points. (author)

  20. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    CERN Document Server

    Umarov, F F; Kudryashova, L B; Krylov, N M

    2002-01-01

    In the present work, an experimental study of low-energy (E sub 0 =20-500 eV) heavy Cs sup + ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E sub 0 (E sub 0) for Si (E sub b =4.64 eV/atom) and Ni (E sub b =4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E sub b are approximately equal to each other. It is found that the scattering angles of Cs sup + ions considerably exceed a limiting scattering angle theta sub l sub i sub m in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle inter...

  1. Quasi-elastic helium-atom scattering from surfaces: experiment and interpretation

    International Nuclear Information System (INIS)

    Jardine, A.P.; Ellis, J.; Allison, W.

    2002-01-01

    Diffusion of an adsorbate is affected both by the adiabatic potential energy surface in which the adsorbate moves and by the rate of thermal coupling between the adsorbate and substrate. In principle both factors are amenable to investigation through quasi-elastic broadening in the energy spread of a probing beam of helium atoms. This review provides a topical summary of both the quasi-elastic helium-atom scattering technique and the available data in relation to the determination of diffusion parameters. In particular, we discuss the activation barriers deduced from experiment and their relation to the adiabatic potential and the central role played by the friction parameter, using the CO/Cu(001) system as a case study. The main issues to emerge are the need for detailed molecular dynamics simulations in the interpretation of data and the desirability of significantly greater energy resolution in the experiments themselves. (author)

  2. About effect of the Ramsauer-Townsend type at scattering of relativistic electrons by crystal atomic string

    International Nuclear Information System (INIS)

    Shul'ga, N.F.; Truten', V.I.

    1999-01-01

    It is shown that a considerable decrease in a total cross-section of the elastic scattering of relativistic electrons by a crystal atomic string can take place at certain values of particle incidence angles. This effect is similar to the Ramsauer-Townsend effect of slow electrons scattering by an atom. It is shown that the decrease in the angle of particles incidence on the atomic string essentially changes the process of particles scattering. The phenomena of the particle rainbow scattering and orbiting may occur in this case. 14 refs., 5 figs

  3. Coherent scattering of three-level atoms in the field of a bichromatic standing light wave

    International Nuclear Information System (INIS)

    Pazgalev, A.S.; Rozhdestvenskii, Yu.V.

    1996-01-01

    We discuss the coherent scattering of three-level atoms in the field of two standing light waves for two values of the spatial shift. In the case of a zero spatial shift and equal frequency detunings of the standing waves, the problem of scattering of a three-level atoms is reduced to scattering of an effectively two-level atom. For the case of an exact resonance between the waves and transitions we give expressions for the population probability of the states of the three-level atom obtained in the short-interaction-time approximation. Depending on the initial population distribution over the states, different scattering modes are realized. In particular, we show that there can be initial conditions for which the three-level system does not interact with the field of the standing waves, with the result that there is no coherent scattering of atoms. In the case of standing waves shifted by π/2, there are two types of solution, depending on the values of the frequency detuning. For instance, when the light waves are detuned equally we give the exact solution for arbitrary relationships between the detuning and the standing wave intensities valid for any atom-field interaction times. The case of 'mirror' detunings and shifted standing waves is studied only numerically

  4. Dynamic bremsstrahlung from relativistic particles scattered by atom

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bujmistrov, V.M.; Krotov, Yu.A.; Mikhajlov, L.K.; Trakhtenberg, L.I.

    1985-01-01

    The bremsstrahlung cross section for a relativistic particle scattered by an atom is calculated. In contrast to the screening approximation usually employed, the influence of the atomic electron on the bremsstrahlung is taken into account exactly, viz., the atomic electron is considered as a moving particle interacting with the electromagnetic field and not only as the source of a static external field. Consequently, along with the static term which leads to the Bethe-Heitw,ler formula, a ne dynamic, term appears in the transition amplitude. The corresponding cross section, the dynamic bremsstrahlung cross section, in certain frequensy ranges and certain ranges of the directions of photon emission exceeds considerably the static bremsstrahlung cross section

  5. Diffractive scattering of H atoms from the (001) surface of LiF at 78 K

    International Nuclear Information System (INIS)

    Caracciolo, G.; Iannotta, S.; Scoles, G.; Valbusa, U.

    1980-01-01

    We have built an apparatus for the measurement of high resolution diffractive scattering of hydrogen atoms from crystal surfaces. The apparatus comprises a hydrogen atom beam source, a hexapolar magnetic field velocity selector, a variable temperature UHV crystal manipulator, and a rotatable bolometer detector. The diffraction pattern of a beam of hydrogen atoms scattered by a (001) LiF surface at 78 K has been obtained for different angles of incidence and different orientations of the crystal. The Debye--Waller factor has been measured leading to a surface Debye temperature theta/sub S/=550 +- 38 K. The corrugated-hard-wall-with-a-well model of Garibaldi et al. [Surf. Sci. 48, 649 (1975)] has been used for the interpretation of the intensities of the diffracted peaks. By means of a best fit procedure we obtain a main ''corrugation'' parameter xi 0 =0.095 A. By comparison of the data with the theory of Cabrera et al. [Surf. Sci. 19, 70 (1967] at the first order, the strength parameters of a periodic Morse potential have been determined

  6. Generalized Hartree-Fock method for electron-atom scattering

    International Nuclear Information System (INIS)

    Rosenberg, L.

    1997-01-01

    In the widely used Hartree-Fock procedure for atomic structure calculations, trial functions in the form of linear combinations of Slater determinants are constructed and the Rayleigh-Ritz minimum principle is applied to determine the best in that class. A generalization of this approach, applicable to low-energy electron-atom scattering, is developed here. The method is based on a unique decomposition of the scattering wave function into open- and closed-channel components, so chosen that an approximation to the closed-channel component may be obtained by adopting it as a trial function in a minimum principle, whose rigor can be maintained even when the target wave functions are imprecisely known. Given a closed-channel trial function, the full scattering function may be determined from the solution of an effective one-body Schroedinger equation. Alternatively, in a generalized Hartree-Fock approach, the minimum principle leads to coupled integrodifferential equations to be satisfied by the basis functions appearing in a Slater-determinant representation of the closed-channel wave function; it also provides a procedure for optimizing the choice of nonlinear parameters in a variational determination of these basis functions. Inclusion of additional Slater determinants in the closed-channel trial function allows for systematic improvement of that function, as well as the calculated scattering parameters, with the possibility of spurious singularities avoided. Electron-electron correlations can be important in accounting for long-range forces and resonances. These correlation effects can be included explicitly by suitable choice of one component of the closed-channel wave function; the remaining component may then be determined by the generalized Hartree-Fock procedure. As a simple test, the method is applied to s-wave scattering of positrons by hydrogen. copyright 1997 The American Physical Society

  7. Handbook of theoretical atomic physics data for photon absorption, electron scattering, and vacancies decay

    CERN Document Server

    Amusia, Miron Ya; Yarzhemsky, Victor

    2012-01-01

    The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomi...

  8. Unified quantum theory of elastic and inelastic atomic scattering from a physisorbed monolayer solid

    DEFF Research Database (Denmark)

    Bruch, L. W.; Hansen, Flemming Yssing; Dammann, Bernd

    2017-01-01

    A unified quantum theory of the elastic and inelastic scattering of low energy He atoms by a physisorbed monolayer solid in the one-phonon approximation is given. It uses a time-dependent wave packet with phonon creation and annihilation components and has a self-consistent feedback between...... the wave functions for elastic and inelastic scattered atoms. An attenuation of diffraction scattering by inelastic processes thus is inherent in the theory. The atomic motion and monolayer vibrations in the harmonic approximation are treated quantum mechanically and unitarity is preserved. The evaluation...... of specific one-phonon events includes contributions from diffuse inelastic scattering in other phonon modes. Effects of thermally excited phonons are included using a mean field approximation. The theory is applied to an incommensurate Xe/Pt(111) monolayer (incident energy Ei = 4-16 meV), a commensurate Xe...

  9. Cross-channel coupling in positron-atom scattering

    International Nuclear Information System (INIS)

    McAlinden, M.T.; Kernoghan, A.A.; Walters, H.R.J.

    1994-01-01

    Coupled-state calculations including positronium channels are reported for positron scattering by atomic hydrogen, lithium and sodium. Integrated cross sections and total cross sections are presented for all three atoms. For lithium differential cross sections are also given. Throughout, comparison is made between results calculated with and without inclusion of the positronium channels. S-wave cross sections for positron scattering by atomic hydrogen in the Ps(1s, 2s, 2p) + H(1s, 2s, 2p) approximation show the high energy resonance first observed by Higgins and Burke in the coupled-static approximation. This resonance has now moved up to 51.05 eV and narrowed in width to 2.92 eV. Other pronounced structure is seen in the S-wave cross sections between 10 and 20 eV; it is tentatively suggested that this structure may be due to the formation of a temporary pseudo-molecular collision complex. Results calculated in the Ps(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) + H(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) approximation show convergence towards accurate values in the energy region below and in the Ore gap. Contrary to previous work on lithium using only an atomic basis, it is found that coupling to the 3d state of lithium is not so important when positronium channels are included; this is because a mixed basis of atom and positronium states gives a more rapidly convergent approximation than an expansion based on atom states alone. The threshold behaviour of the elastic cross section and the Ps(1s) formation cross section for lithium is investigated. Results in the Ps(1s, 2s, 2p) + Na(3s, 3p) approximation for sodium show good agreement with the total cross section measurements of Kwan et al. (orig.)

  10. Positron scattering by atomic hydrogen at intermediate energies

    International Nuclear Information System (INIS)

    Higgins, K.; Burke, P.G.; Walters, H.R.J.

    1990-01-01

    Results of an accurate calculation based upon the intermediate energy R-matrix theory are reported for elastic scattering of positrons by atomic hydrogen. T-matrix elements for both low and intermediate energy scattering are evaluated for the S e , P o , D e and F o partial wave symmetries. The low-energy elastic phaseshifts are found to be in good agreement with previous accurate variational calculations. Using an optical potential approach to include the effect of the higher partial waves, elastic and total cross sections are presented for energies ranging from near threshold to 3.7 Rydbergs. (author)

  11. Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Takashi, E-mail: sakuma@mx.ibaraki.ac.jp; Makhsun,; Sakai, Ryutaro [Institute of Applied Beam Science, Ibaraki University, Mito 310-8512 (Japan); Xianglian [College of Physics and Electronics Information, Inner Mongolia University for the Nationalities, Tongliao 028043 (China); Takahashi, Haruyuki [Institute of Applied Beam Science, Ibaraki University, Hitachi 316-8511 (Japan); Basar, Khairul [Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Igawa, Naoki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai 319-1195 (Japan); Danilkin, Sergey A. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Kirrawee DC NSW 2232 (Australia)

    2015-04-16

    Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.

  12. Atomic dynamics in fluids studied by inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Inui, Masanori; Kajihara, Yukio; Matsuda, Kazuhiro; Ishikawa, Daisuke; Tsutsui, Satoshi; Baron, Alfred Q.

    2010-01-01

    Studies on atomic dynamics in supercritical fluids at high temperature and high pressure have remarkably been advanced by using an inelastic x-ray scattering technique that achieved a meV-energy resolution in the middle of 1990's. In this article, we describe a brief review of the theoretical background on liquid dynamics, our own high-temperature high-pressure technique and recent results of atomic dynamics in supercritical fluids. In particular, we report the results of inelastic x-ray scattering measurements for expanding fluid Hg at high temperature and high pressure, which were conduced at BL35XU/SPring-8. We found that in the metal-nonmetal transition in fluid Hg, the excitation energy of the acoustic mode disperses three times faster than the adiabatic sound velocity obtained by ultrasonic measurements. This phenomenon must be crucial to understand how a metallic state is formed during atomic condensation accurately. Finally we put a future development of this field in perspective. (author)

  13. Measurement of effective atomic number of composite materials using scattering of γ-rays

    International Nuclear Information System (INIS)

    Singh, M.P.; Sandhu, B.S.; Singh, Bhajan

    2007-01-01

    In the present experiment, to determine the effective atomic number of composite materials, the scattering of 145 keV γ-rays is studied using a high-resolution HPGe semiconductor detector placed at 70 deg. to the incident beam. The experiment is performed on various elements of different atomic number, 6≤Z≤64, for 145 keV incident photons. The intensity ratio of Rayleigh to Compton scattered peaks, corrected for photo-peak efficiency of the γ-detector and absorption of photons in the target and air, is plotted as a function of atomic number and constituted a fit curve. From this fit curve, the respective effective atomic numbers of the composite materials are determined. The agreement of measured values of effective atomic number with the theory is found to be quite satisfactory

  14. An Efficient Method for Electron-Atom Scattering Using Ab-initio Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang [Shanxi University, Taiyuan (China)

    2017-02-15

    We present an efficient method based on ab-initio calculations to investigate electron-atom scatterings. Those calculations profit from methods implemented in standard quantum chemistry programs. The new approach is applied to electron-helium scattering. The results are compared with experimental and other theoretical references to demonstrate the efficiency of our method.

  15. Nonspherical atomic ground-state densities and chemical deformation densities from x-ray scattering

    International Nuclear Information System (INIS)

    Ruedenberg, K.; Schwarz, W.H.E.

    1990-01-01

    Presuming that chemical insight can be gained from the difference between the molecular electron density and the superposition of the ground-state densities of the atoms in a molecule, it is pointed out that, for atoms with degenerate ground states, an unpromoted ''atom in a molecule'' is represented by a specific ensemble of the degenerate atomic ground-state wave functions and that this ensemble is determined by the anisotropic local surroundings. The resulting atomic density contributions are termed oriented ground state densities, and the corresponding density difference is called the chemical deformation density. The constraints implied by this conceptual approach for the atomic density contributions are formulated and a method is developed for determining them from x-ray scattering data. The electron density of the appropriate promolecule and its x-ray scattering are derived, the determination of the parameters of the promolecule is outlined, and the chemical deformation density is formulated

  16. Phonon scattering and thermal conductance properties in two coupled graphene nanoribbons modulated with bridge atoms

    International Nuclear Information System (INIS)

    Tan, Shi-Hua; Tang, Li-Ming; Chen, Ke-Qiu

    2014-01-01

    The phonon scattering and thermal conductance properties have been studied in two coupled graphene nanoribbons connected by different bridge atoms by using density functional theory in combination with non-equilibrium Green's function approach. The results show that a wide range of thermal conductance tuning can be realized by changing the chemical bond strength and atom mass of the bridge atoms. It is found that the chemical bond strength (bridge atom mass) plays the main role in phonon scattering at low (high) temperature. A simple equation is presented to describe the relationship among the thermal conductance, bridge atom, and temperature.

  17. Factorization and non-factorization in diffractive hard scattering

    International Nuclear Information System (INIS)

    Berera, Arjun

    1997-01-01

    Factorization, in the sense defined for inclusive hard scattering, is discussed for diffractive hard scattering. A factorization theorem similar to its inclusive counterpart is presented for diffractive DIS. For hadron-hadron diffractive hard scattering, in contrast to its inclusive counterpart, the expected breakdown of factorization is discussed. Cross section estimates are given from a simple field theory model for non-factorizing double-pomeron-exchange (DPE) dijet production with and without account for Sudakov suppression

  18. Inelastic scattering and local heating in atomic gold wires

    DEFF Research Database (Denmark)

    Frederiksen, Thomas; Brandbyge, Mads; Lorente, N.

    2004-01-01

    We present a method for including inelastic scattering in a first-principles density-functional computational scheme for molecular electronics. As an application, we study two geometries of four-atom gold wires corresponding to two different values of strain and present results for nonlinear...

  19. ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules

    Science.gov (United States)

    Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.

    2005-01-01

    The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1

  20. Handbook of theoretical atomic physics. Data for photon absorption, electron scattering, and vacancies decay

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, Miron [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Chernysheva, Larissa [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Yarzhemsky, Victor [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation)

    2012-07-01

    The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomic data are presented. The atomic data are useful for investigating the electronic structure and physical processes in solids and liquids, molecules and clusters, astronomical objects, solar and planet atmospheres and atomic nucleus. Deep understanding of chemical reactions and processes is reached by deep and accurate knowledge of atomic structure and processes with participation of atoms. This book is useful for theorists performing research in different domains of contemporary physics, chemistry and biology, technologists working on production of new materials and for experimentalists performing research in the field of photon and electron interaction with atoms, molecules, solid bodies and liquids.

  1. Scattering of atoms on a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Poulsen, Uffe V.; Moelmer, Klaus

    2003-01-01

    We study the scattering properties of a Bose-Einstein condensate held in a finite depth well when the incoming particles are identical to the ones in the condensate. We calculate phase shifts and corresponding transmission and reflection coefficients, and we show that the transmission times can be negative, i.e., the atomic wave packet seemingly leaves the condensate before it arrives

  2. Analysis of the elastic scattering of negative muons from atomic hydrogen

    International Nuclear Information System (INIS)

    Muller, R.J.

    1977-01-01

    The total elastic cross section and the transport cross section for the scattering of negative muons from the hydrogen atom is determined by making a partial wave analysis of the elastic scattering amplitude. An effective Schrodinger equation for the muon-hydrogen system is obtained, using a static model of the field of the hydrogen atom, and its numerical solution allows the phase shifts for fifty partial waves to be obtained over a wide range of energies. A polarization potential term is then included, and the results of the scattering from the effective potential obtained are compared with the results from the static field. The results show a substantial effect of the polarization in the cross sections at low energy. The analysis of the low energy behavior of the phase shifts indicates that a substantial number of bound states for the muon exist in both the static and the static + polarization fields of hydrogen

  3. Fast atom diffraction for grazing scattering of Ne atoms from a LiF(0 0 1) surface

    International Nuclear Information System (INIS)

    Gravielle, M.S.; Schueller, A.; Winter, H.; Miraglia, J.E.

    2011-01-01

    Angular distributions of fast Ne atoms after grazing collisions with a LiF(0 0 1) surface under axial surface channeling conditions are experimentally and theoretically studied. We use the surface eikonal approximation to describe the quantum interference of scattered projectiles, while the atom-surface interaction is represented by means of a pairwise additive potential, including the polarization of the projectile atom. Experimental data serve as a benchmark to investigate the performance of the proposed potential model, analyzing the role played by the projectile polarization.

  4. Fast atom diffraction for grazing scattering of Ne atoms from a LiF(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S., E-mail: msilvia@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Schueller, A.; Winter, H. [Institut fuer Physik, Humboldt Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin-Adlershof (Germany); Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2011-06-01

    Angular distributions of fast Ne atoms after grazing collisions with a LiF(0 0 1) surface under axial surface channeling conditions are experimentally and theoretically studied. We use the surface eikonal approximation to describe the quantum interference of scattered projectiles, while the atom-surface interaction is represented by means of a pairwise additive potential, including the polarization of the projectile atom. Experimental data serve as a benchmark to investigate the performance of the proposed potential model, analyzing the role played by the projectile polarization.

  5. Modeling inelastic phonon scattering in atomic- and molecular-wire junctions

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2005-01-01

    Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green's function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between the f...

  6. Derivation of Inter-Atomic Force Constants of Cu2O from Diffuse Neutron Scattering Measurement

    Directory of Open Access Journals (Sweden)

    T. Makhsun

    2013-04-01

    Full Text Available Neutron scattering intensity from Cu2O compound has been measured at 10 K and 295 K with High Resolution Powder Diffractometer at JRR-3 JAEA. The oscillatory diffuse scattering related to correlations among thermal displacements of atoms was observed at 295 K. The correlation parameters were determined from the observed diffuse scattering intensity at 10 and 295 K. The force constants between the neighboring atoms in Cu2O were estimated from the correlation parameters and compared to those of Ag2O

  7. Double electron ionization in Compton scattering of high energy photons by helium atoms

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Mikhailov, A.I.

    1995-01-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of open-quotes double-to-singleclose quotes ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification

  8. Double electron ionization in Compton scattering of high energy photons by helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Y.; Mikhailov, A.I. [St. Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    1995-08-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of {open_quotes}double-to-single{close_quotes} ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification.

  9. Scattering resonances of ultracold atoms in confined geometries

    International Nuclear Information System (INIS)

    Saeidian, Shahpoor

    2008-01-01

    Subject of this thesis is the investigation of the quantum dynamics of ultracold atoms in confined geometries. We discuss the behavior of ground state atoms inside a 3D magnetic quadrupole field. Such atoms in enough weak magnetic fields can be approximately treated as neutral point-like particles. Complementary to the well-known positive energy resonances, we point out the existence of short-lived negative energy resonances. The latter originate from a fundamental symmetry of the underlying Hamiltonian. We drive a mapping of the two branches of the spectrum. Moreover, we analyze atomic hyperfine resonances in a magnetic quadrupole field. This corresponds to the case for which both the hyperfine and Zeeman interaction, are comparable, and should be taken into account. Finally, we develop a general grid method for multichannel scattering of two atoms in a two-dimensional harmonic confinement. With our approach we analyze transverse excitations/deexcitations in the course of the collisional process (distinguishable or identical atoms) including all important partial waves and their couplings due to the broken spherical symmetry. Special attention is paid to suggest a non-trivial extension of the CIRs theory developed so far only for the single-mode regime and zero-energy limit. (orig.)

  10. Scattering resonances of ultracold atoms in confined geometries

    Energy Technology Data Exchange (ETDEWEB)

    Saeidian, Shahpoor

    2008-06-18

    Subject of this thesis is the investigation of the quantum dynamics of ultracold atoms in confined geometries. We discuss the behavior of ground state atoms inside a 3D magnetic quadrupole field. Such atoms in enough weak magnetic fields can be approximately treated as neutral point-like particles. Complementary to the well-known positive energy resonances, we point out the existence of short-lived negative energy resonances. The latter originate from a fundamental symmetry of the underlying Hamiltonian. We drive a mapping of the two branches of the spectrum. Moreover, we analyze atomic hyperfine resonances in a magnetic quadrupole field. This corresponds to the case for which both the hyperfine and Zeeman interaction, are comparable, and should be taken into account. Finally, we develop a general grid method for multichannel scattering of two atoms in a two-dimensional harmonic confinement. With our approach we analyze transverse excitations/deexcitations in the course of the collisional process (distinguishable or identical atoms) including all important partial waves and their couplings due to the broken spherical symmetry. Special attention is paid to suggest a non-trivial extension of the CIRs theory developed so far only for the single-mode regime and zero-energy limit. (orig.)

  11. Parity Violation in Atoms and Polarized Electron Scattering

    CERN Document Server

    Bouchiat, Marie-Anne; PAVI'97

    1999-01-01

    This work is an extensive review of the advances in the field of parity violation experiments in electron scattering at high energy and and in atomic physics. The results are a challenge to the standard electroweak theory and the understanding of hadron structure. The theoretical framework is presented at a pedagogical level, experiments and future projects are reviewed, and the results and their interpretation are discussed.

  12. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kroes, Geert-Jan, E-mail: g.j.kroes@chem.leidenuniv.nl; Pavanello, Michele [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Blanco-Rey, María [Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20080 Donostia-San Sebastián (Spain); Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Alducin, Maite [Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Auerbach, Daniel J. [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany); Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen (Germany)

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction (“EF”) model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated “post” (“p”) the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy

  13. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).

    Science.gov (United States)

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the

  14. Coupled-channel optical calculation of electron-atom scattering: elastic scattering from sodium at 20 to 150 eV

    International Nuclear Information System (INIS)

    Bray, Igor; Konovalov, D.A.; McCarthy, I.E.

    1991-04-01

    A coupled-channel optical method for electron-atom scattering is applied to elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 eV. It is demonstrated that the effect of all the inelastic channels on elastic scattering may be well reproduced by the 'ab initio' calculated complex non-local polarization potential. Whilst the experiments generally agree at small angles and therefore agree on the total elastic cross section, there is considerable discrepancy at intermediate and backward angles. 9 refs., 2 tabs., 1 fig

  15. Abstract ID: 176 Geant4 implementation of inter-atomic interference effect in small-angle coherent X-ray scattering for materials of medical interest.

    Science.gov (United States)

    Paternò, Gianfranco; Cardarelli, Paolo; Contillo, Adriano; Gambaccini, Mauro; Taibi, Angelo

    2018-01-01

    Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated. Copyright © 2017.

  16. Calculation of inelastic helium atom scattering from H2/ NaCl(001)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing; Traeger, F.

    2011-01-01

    The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determi......The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 me...

  17. Excitation of the shear horizontal mode in a monolayer by inelastic helium atom scattering

    DEFF Research Database (Denmark)

    Bruch, L. W.; Hansen, Flemming Yssing

    2005-01-01

    Inelastic scattering of a low-energy atomic helium beam (HAS) by a physisorbed monolayer is treated in the one-phonon approximation using a time-dependent wave,packet formulation. The calculations show that modes with shear horizontal polarization can be excited near high symmetry azimuths....... The diffraction and inelastic processes arise from a strong coupling of the incident atom to the target and the calculated results show large departures from expectations based on analogies to inelastic thermal neutron scattering....

  18. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    Zoest, J.M. van.

    1986-01-01

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  19. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    Science.gov (United States)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  20. Small angle elastic scattering of electrons by noble gas atoms

    International Nuclear Information System (INIS)

    Wagenaar, R.W.

    1984-01-01

    In this thesis, measurements are carried out to obtain small angle elastic differential cross sections in order to check the validity of Kramers-Kronig dispersion relations for electrons scattered by noble gas atoms. First, total cross sections are obtained for argon, krypton and xenon. Next, a parallel plate electrostatic energy analyser for the simultaneous measurement of doubly differential cross section for small angle electron scattering is described. Also absolute differential cross sections are reported. Finally the forward dispersion relation for electron-helium collisions is dealt with. (Auth.)

  1. Scatter factor corrections for elongated fields

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sohn, W.H.; Sibata, C.H.; McCarthy, W.A.

    1989-01-01

    Measurements have been made to determine scatter factor corrections for elongated fields of Cobalt-60 and for nominal linear accelerator energies of 6 MV (Siemens Mevatron 67) and 18 MV (AECL Therac 20). It was found that for every energy the collimator scatter factor varies by 2% or more as the field length-to-width ratio increases beyond 3:1. The phantom scatter factor is independent of which collimator pair is elongated at these energies. For 18 MV photons it was found that the collimator scatter factor is complicated by field-size-dependent backscatter into the beam monitor

  2. Quantum theory of scattering of atoms and diatomic molecules by solid surfaces

    International Nuclear Information System (INIS)

    Liu, W.S.

    1973-01-01

    The unitary treatment, based on standard t-matrix theory, of the quantum theory of scattering of atoms by solid surfaces, is extended to the scattering of particles having internal degrees of freedom by perfect harmonic crystalline surfaces. The diagonal matrix element of the interaction potential which enters into the quantum scattering theory is obtained to represent the potential for the specular beam. From the two-potential formula, the scattering intensities for the diffracted beams and the inelastic beams with or without internal transitions of the particles are obtained by solving the equation for the t-matrix elements. (author)

  3. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    International Nuclear Information System (INIS)

    Sinha, Prabal K.; Ghosh, A. S.

    2006-01-01

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10 -16 -10 -4 a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature

  4. Electronic isotope shifts, muonic atoms, and electron scattering

    International Nuclear Information System (INIS)

    Shera, E.B.

    1982-01-01

    The roles of electronic isotope shift, muonic atom, and electron scattering experiments in studying the nuclear charge distribution are discussed in terms of the potentials of each probe. Barium isotope shift data are presented as an example of a combined muonic-optical analysis and the results are compared with droplet and IBA model predictions. A survey of muonic and (e,e) results is presented with emphasis on shell-structure related features

  5. Population of collective modes in light scattering by many atoms

    Science.gov (United States)

    Guerin, William; Kaiser, Robin

    2017-05-01

    The interaction of light with an atomic sample containing a large number of particles gives rise to many collective (or cooperative) effects, such as multiple scattering, superradiance, and subradiance, even if the atomic density is low and the incident optical intensity weak (linear optics regime). Tracing over the degrees of freedom of the light field, the system can be well described by an effective atomic Hamiltonian, which contains the light-mediated dipole-dipole interaction between atoms. This long-range interaction is at the origin of the various collective effects, or of collective excitation modes of the system. Even though an analysis of the eigenvalues and eigenfunctions of these collective modes does allow distinguishing superradiant modes, for instance, from other collective modes, this is not sufficient to understand the dynamics of a driven system, as not all collective modes are significantly populated. Here, we study how the excitation parameters, i.e., the driving field, determines the population of the collective modes. We investigate in particular the role of the laser detuning from the atomic transition, and demonstrate a simple relation between the detuning and the steady-state population of the modes. This relation allows understanding several properties of cooperative scattering, such as why superradiance and subradiance become independent of the detuning at large enough detuning without vanishing, and why superradiance, but not subradiance, is suppressed near resonance. We also show that the spatial properties of the collective modes allow distinguishing diffusive modes, responsible for radiation trapping, from subradiant modes.

  6. Observations of resonance-like structures for positron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Dou, L.

    1993-01-01

    Absolute values of elastic differential cross sections (DCS's) are measured for position (e + ) scattering by argon (8.7-300 eV) krypton (6.7-400 eV) and also neon (13.6-400 eV) using a crossed-beam experimental setup. When the DCS's are plotted at fixed scattering angles of 30 degrees, 60 degrees, 90 degrees and 120 degrees versus energy it has been found that well-defined resonance-like structures are found at an energy of 55-60 eV for argon and at 25 and 200 eV for krypton, with a broader structure found between 100-200 eV for neon. These observed resonance-like structures are unusual because they occur at energies well above the known inelastic thresholds for these atoms. They may represent examples of open-quotes coupled channel shape resonancesclose quotes, first predicted by Higgins and Burke [1] for e + -H scattering in the vicinity of 36 eV (width ∼ 4 eV), which occurs only when both the elastic and positronium formation scattering channels are considered together. A more recent e + -H calculation by Hewitt et al. [2] supports the Higgins and Burke prediction. These predictions and the present observations suggest the existence of a new type of atomic scattering resonance

  7. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1991-01-01

    This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic targets at intermediate energies. The immediate goal is to study elastic scattering, single electron detachment, and target excitation/ionization in H - scattering from noble gas targets. For the target inelastic processes, these cross sections are unknown both experimentally and theoretically. The present measurements will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion collisions. This series of experiments required the construction of a new facility, and significant progress toward its operation has been realized during this period. The proposed research is described in this report. The progress on and the status of the apparatus is also detailed in this report

  8. Optical potential study of positron scattering by hydrogenic-type atoms

    International Nuclear Information System (INIS)

    Kuru Ratnavelu; Nithyanandan Natchimuthu; Kalai Kumar Rajgopal

    1999-01-01

    An optical potential method based on the close-coupling formalism has been implemented to study positron scattering by hydrogenic-type atoms. The present work will be reviewed in the context of other theories. Preliminary results will be presented and compared with experimental results. (author)

  9. Numerical tables of anomalous scattering factors calculated by the Cromer and Liberman's method

    International Nuclear Information System (INIS)

    Sasaki, Satoshi.

    1989-02-01

    Anomalous scattering factors f' and f'' have been calculated for the atoms Li through Bi, plus U, using the relativistic treatment described by Cromer and Liberman. The final f' value does not include the Jensen's correction term on the magnetic scattering. The tables are presented with the f' and f'' values (i) at 0.01 A intervals in the wavelength range from 0.1 to 2.89 A and (ii) at 0.0001 A intervals in the neighborhood of the K, L 1 , L 2 , and L 3 absorption edges. (author)

  10. Properties of the scattering amplitude for electron-atom collisions

    International Nuclear Information System (INIS)

    Combes, J.M.; Tip, A.

    1983-02-01

    For the scattering of an electron by an atom finiteness of the amplitude at non threshold energies is proved in the framework of the N-body Schroedinger equation. It is also shown that both the direct and exchange amplitudes have analytic continuations for complex values of incident momentum, with pole or cut singularities on the imaginary axis

  11. Recent progress in electron scattering from atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Brunger, M. J. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Buckman, S. J. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia and Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Sullivan, J. P.; Palihawadana, P. [Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Chiari, L.; Pettifer, Z. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Lopes, M. C. A. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Duque, H. V. [Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Masin, Z.; Gorfinkiel, J. D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Garcia, G. [Instituto de Fisica Fundamental, CSIC, Madrid E-28006 (Spain); Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, Tokyo, 102-8554 (Japan); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-03-05

    We present and discuss recent results, both experimental and theoretical (where possible), for electron impact excitation of the 3s[3/2 ]{sub 1} and 3s′[1/2 ]{sub 1} electronic states in neon, elastic electron scattering from the structurally similar molecules benzene, pyrazine, and 1,4-dioxane and excitation of the electronic states of the important bio-molecule analogue α-tetrahydrofurfuryl alcohol. While comparison between theoretical and experimental results suggests that benchmarked cross sections for electron scattering from atoms is feasible in the near-term, significant further theoretical development for electron-molecule collisions, particularly in respect to discrete excitation processes, is still required.

  12. Positron total scattering cross-sections for alkali atoms

    Science.gov (United States)

    Sinha, Nidhi; Singh, Suvam; Antony, Bobby

    2018-01-01

    Positron-impact total scattering cross-sections for Li, Na, K, Rb, Cs and Fr atoms are calculated in the energy range from 5-5000 eV employing modified spherical complex optical potential formalism. The main aim of this work is to apply this formalism to the less studied positron-target collision systems. The results are compared with previous theoretical and experimental data, wherever available. In general, the present data show overall agreement and consistency with other results. Furthermore, we have done a comparative study of the results to investigate the effect of atomic size on the cross-sections as we descend through the group in the periodic table. We have also plotted a correlation graph of the present total cross-sections with polarizability and number of target electrons. The two correlation plots confirm the credibility and consistency of the present results. Besides, this is the first theoretical attempt to report positron-impact total cross-sections of alkali atoms over such a wide energy range.

  13. Atlas cross section for scattering of muonic hydrogen atoms on hydrogen isotope molecules

    International Nuclear Information System (INIS)

    Adamczak, A.; Faifman, M.P.; Ponomarev, L.I.

    1996-01-01

    The total cross sections of the elastic, spin-flip, and charge-exchange processes for the scattering of muonic hydrogen isotope atoms (pμ, dμ, tμ) in the ground state on the hydrogen isotope molecules (H 2 , D 2 , T 2 , HD, HT, DT) are calculated. The scattering cross sections of muonic hydrogen isotope atoms on hydrogen isotope nuclei obtained earlier in the multichannel adiabatic approach are used in the calculations. Molecular effects (electron screening, rotational and vibrational excitations of target molecules, etc.) are taken into account. The spin effects of the target molecules and of the incident muonic atoms are included. the cross sections are averaged over the Boltzmann distribution of the molecule rotational states and the Maxwellian distribution of the target molecule kinetic energies for temperatures 30, 100, 300, and 1000 K. The cross sections are given for kinetic energies of the incident muonic atoms ranging from 0.001 to 100 eV in the laboratory frame. 45 refs., 6 tabs

  14. Protein dynamics and stability: The distribution of atomic fluctuations in thermophilic and mesophilic dihydrofolate reductase derived using elastic incoherent neutron scattering

    International Nuclear Information System (INIS)

    Meinhold, Lars; Clement, David; Tehei, M.; Daniel, R.M.; Finney, J.L.; Smith, Jeremy C.

    2008-01-01

    The temperature dependence of the dynamics of mesophilic and thermophilic dihydrofolate reductase is examined using elastic incoherent neutron scattering. It is demonstrated that the distribution of atomic displacement amplitudes can be derived from the elastic scattering data by assuming a (Weibull) functional form that resembles distributions seen in molecular dynamics simulations. The thermophilic enzyme has a significantly broader distribution than its mesophilic counterpart. Furthermore, although the rate of increase with temperature of the atomic mean-square displacements extracted from the dynamic structure factor is found to be comparable for both enzymes, the amplitudes are found to be slightly larger for the thermophilic enzyme. Therefore, these results imply that the thermophilic enzyme is the more flexible of the two

  15. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    Science.gov (United States)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-02-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  16. Path-integral theory of the scattering of 4He atoms at the surface of liquid 4He

    International Nuclear Information System (INIS)

    Swanson, D.R.; Edwards, D.O.

    1988-01-01

    The path-integral theory of the scattering of a 4 He atom near the free surface of liquid 4 He, which was originally formulated by Echenique and Pendry, has been recalculated with use of a physically realistic static potential and atom-ripplon interaction outside the liquid. The static potential and atom-ripplon interaction are based on the variational calculation of Edwards and Fatouros. An important assumption in the path-integral theory is the ''impulse approximation'': that the motion of the scattered atom is very fast compared with the motion of the surface due to ripplons. This is found to be true only for ripplons with wave vectors smaller than q/sub m/∼0.2 A/sup -1/. If ripplons above q/sub m/ made an important contribution to the scattering of the atom there would be a substantial dependence of the elastic reflection coefficient on the angle of incidence of the atom. Since this is not observed experimentally, it is argued that ripplons above q/sub m/ give a negligible effect and should be excluded from the calculation. With this modification the theory gives a good fit to the experimental reflection coefficient as a function of the momentum and angle of incidence of the atom. The new version of the theory indicates that there is a substantial probability that an atom may reach the surface of the liquid without exciting any ripplons. The theory is not valid when the atom enters the liquid but analysis of the experiments shows that, once inside the liquid, the atom has a negligible chance of being scattered out again

  17. Phonon lineshapes in atom-surface scattering

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Casado, R [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, E-28006 Madrid (Spain)

    2010-08-04

    Phonon lineshapes in atom-surface scattering are obtained from a simple stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this single-bath model, the excited phonon resulting from a creation or annihilation event is coupled to a thermal bath consisting of an infinite number of harmonic oscillators, namely the bath phonons. The diagonalization of the corresponding Hamiltonian leads to a renormalization of the phonon frequencies in terms of the phonon friction or damping coefficient. Moreover, when there are adsorbates on the surface, this single-bath model can be extended to a two-bath model accounting for the effect induced by the adsorbates on the phonon lineshapes as well as their corresponding lineshapes.

  18. Differential cross sections for elastic scattering of electrons by atoms and solids

    International Nuclear Information System (INIS)

    Jablonski, A.; Salvat, F.; Powell, C.J.

    2004-01-01

    Differential cross sections (DCSs) for elastic scattering of electrons by neutral atoms are extensively used in studies of electron transport in solids and liquids. A new NIST database has recently been released with DCSs calculated from a relativistic Dirac partial-wave analysis in which the potentials were obtained from Dirac-Hartree-Fock electron densities computed self-consistently for free atoms. We have compared calculated DCSs with measured DCSs for argon for electron energies between 50 eV and 3 keV, and found good agreement for electron energies above about 1 keV but with increasing deviations as the energy is reduced. These deviations are due to the neglect of absorption and polarizability effects in the calculations. Nevertheless, DCSs for neutral atoms have been successfully used in simulations of elastic backscattering of electrons by solid surfaces with energies down to 300 eV as well as for many other applications. It is suggested that this success might be due at least partially to the smaller absorption correction for the DCSs in solids on account of the smaller total inelastic scattering cross sections than for the corresponding free atoms

  19. Convergent close-coupling calculations of low-energy positron-atomic-hydrogen scattering

    International Nuclear Information System (INIS)

    Bray, I.; Stelbovics, A.T.

    1993-07-01

    The convergent close coupling approach developed by the authors is applied to positron scattering from atomic hydrogen below the first excitation threshold. In this approach the multi-channel expansion one-electron states are obtained by diagonalizing the target Hamiltonian in a large Laguerre basis. It is demonstrated that this expansion of the scattering wave function is sufficient to reproduce the very accurate low-energy variational results, provided target states with l≤ 15 are included in the expansions. 10 refs., 1 tab

  20. Output factors and scatter ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, P N; Summers, R E; Samulski, T V; Baird, L C [Allegheny General Hospital, Pittsburgh, PA (USA); Ahuja, A S; Dubuque, G L; Hendee, W R; Chhabra, A S

    1979-07-01

    Reference is made to a previous publication on output factors and scatter ratios for radiotherapy units in which it was suggested that the output factor should be included in the definitions of scatter-air ratio and tissue-maximum ratio. In the present correspondence from other authors and from the authors of the previous publication, the original definitions and the proposed changes are discussed. Radiation scatter from source and collimator degradation of beam energy and calculation of dose in tissue are considered in relation to the objective of accurate dosimetry.

  1. Positron scattering by atomic hydrogen including positronium formation

    International Nuclear Information System (INIS)

    Higgins, K.; Burke, P.G.

    1993-01-01

    Positron scattering by atomic hydrogen including positronium formation has been formulated using the R-matrix method and a general computer code written. Partial wave elastic and ground state positronium formation cross sections have been calculated for L ≤ 6 using a six-state approximation which includes the ground state and the 2s and 2p pseudostates of both hydrogen and positronium. The elastic scattering results obtained are in good agreement with those derived from a highly accurate calculation based upon the intermediate energy R-matrix approach. As in a previous coupled-channel static calculation, resonance effects are observed at intermediate energies in the S-wave positronium formation cross section. However, in the present results, the dominant resonance arises in the P-wave cross sections at an energy of 2.73 Ryd and with a width of 0.19 Ryd. (author)

  2. Interatomic potentials from rainbow scattering of keV noble gas atoms under axial surface channeling

    International Nuclear Information System (INIS)

    Schueller, A.; Wethekam, S.; Mertens, A.; Maass, K.; Winter, H.; Gaertner, K.

    2005-01-01

    For grazing scattering of keV Ne and Ar atoms from a Ag(1 1 1) and a Cu(1 1 1) surface under axial surface channeling conditions we observe well defined peaks in the angular distributions for scattered projectiles. These peaks can be attributed to 'rainbow-scattering' and are closely related to the geometry of potential energy surfaces which can be approximated by the superposition of continuum potentials along strings of atoms in the surface plane. The dependence of rainbow angles on the scattering geometry provides stringent tests on the scattering potentials. From classical trajectory calculations based on universal (ZBL), adjusted Moliere (O'Connor and Biersack), and individual interatomic potentials we obtain corresponding rainbow angles for comparison with the experimental data. We find good overall agreement with the experiments for a description of trajectories based on adjusted Moliere and individual potentials, whereas the agreement is poorer for potentials with ZBL screening

  3. Supercomputers and the future of computational atomic scattering physics

    International Nuclear Information System (INIS)

    Younger, S.M.

    1989-01-01

    The advent of the supercomputer has opened new vistas for the computational atomic physicist. Problems of hitherto unparalleled complexity are now being examined using these new machines, and important connections with other fields of physics are being established. This talk briefly reviews some of the most important trends in computational scattering physics and suggests some exciting possibilities for the future. 7 refs., 2 figs

  4. Enhanced creation of dispersive monolayer phonons in Xe/Pt(111) by inelastic helium atom scattering at low energies

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2007-01-01

    Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 meV. ...

  5. Large-angle adjustable coherent atomic beam splitter by Bragg scattering

    NARCIS (Netherlands)

    Koolen, A.E.A.; Jansen, G.T.; Domen, K.F.E.M.; Beijerinck, H.C.W.; Leeuwen, van K.A.H.

    2002-01-01

    Using a "monochromatic" (single-axial-velocity) and slow (250 m/s) beam of metastable helium atoms, we realize up to eighth-order Bragg scattering and obtain a splitting angle of 6 mrad at low laser power (3 mW). This corresponds to a truly macroscopic separation of 12 mm on the detector. For

  6. Charge-state distribution of MeV He ions scattered from the surface atoms

    International Nuclear Information System (INIS)

    Kimura, Kenji; Ohtsuka, Hisashi; Mannami, Michihiko

    1993-01-01

    The charge-state distribution of 500-keV He ions scattered from a SnTe (001) surface has been investigated using a new technique of high-resolution high-energy ion scattering spectroscopy. The observed charge-state distribution of ions scattered from the topmost atomic layer coincides with that of ions scattered from the subsurface region and does not depend on the incident charge state but depends on the exit angle. The observed exit-angle dependence is explained by a model which includes the charge-exchange process with the valence electrons in the tail of the electron distribution at the surface. (author)

  7. Observations of resonance-like structures for positron-atom elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Dou, L.; Kauppila, W.E.; Kwan, C.K.; Stein, T.S.

    1993-01-01

    We have measured absolute values of elastic differential cross sections (DCS's) for positron (e + ) scattering by argon (8.7-300 eV), krypton (6.7-400 eV), and also neon (13.6-400 eV) using a crossed-beam experimental setup. When the DCS's are plotted at fixed scattering angles of 30 degrees, 60 degrees, 90 degrees, and 120 degrees versus energy it has been found that well-defined resonance-like structures were found at an energy of 55-60 eV for argon and at 25 and 200 eV for krypton, with a broader structure found between 100-200 eV for neon. These observed resonance-like structures are unusual because they occur at energies well above the known inelastic thresholds for these atoms. They may represent examples of open-quotes coupled channel shape resonancesclose quotes, first predicted by Higgins and Burke for e + -H scattering in the vicinity of 36 eV (width ∼ 4 eV), which occurs only when both the elastic and positronium formation scattering channels are considered together. A more recent e + -H calculation by Hewitt et al. supports the Higgins and Burke prediction. These predictions and the present observations suggest the existence of a new type of atomic scattering resonance

  8. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    International Nuclear Information System (INIS)

    Mohammadi, S.M.; Tavakoli-Anbaran, H.; Zeinali, H.Z.

    2017-01-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (k e ) and photon scattering correction factor (k sc ) are needed. k e factor corrects the charge loss from the collecting volume and k sc factor corrects the scattering of photons into collecting volume. In this work k e and k sc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the k e and k sc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  9. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    Safron, S.A.; Skofronick, J.G.

    1994-01-01

    This progress report describes work carried out in the study of surface structure and dynamics of ionic insulators, the microscopic interactions controlling epitaxial growth and the formation of overlayers, and energy exchange in multiphonon surface scattering. The approach used is to employ high resolution helium atom scattering to study the geometry and structural features of the surfaces. Experiments have been carried out on the surface dynamics of RbCl and preliminary studies done on CoO and NiO. Epitaxial growth and overlayer dynamics experiments on the systems NaCl/NaCl(001), KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been performed. They have collaborated with two theoretical groups to explore models of overlayer dynamics with which to compare and to interpret their experimental results. They have carried out extensive experiments on the multiphonon scattering of helium atoms from NaCl and, particularly, LiF. Work has begun on self-assembling organic films on gold and silver surfaces (alkyl thiols/Au(111) and Ag(111))

  10. Low-energy electron scattering by C, N, and O atoms

    Energy Technology Data Exchange (ETDEWEB)

    Nesbet, R K [International Business Machines Corp., San Jose, Calif. (USA). Research Lab.

    1977-07-01

    Recent theoretical studies of low-energy electron scattering by C, N, and O atoms are reviewed and results are compared with available experimental data. A critical comparison is made of the two principal methods used in this work-polarized pseudostate expansion with R-matrix computations or direct integration, and Bethe-Goldstone expansion with matrix variational computations. 31 references.

  11. Analysis of an atom laser based on the spatial control of the scattering length

    International Nuclear Information System (INIS)

    Carpentier, Alicia V.; Michinel, Humberto; Rodas-Verde, Maria I.; Perez-Garcia, Victor M.

    2006-01-01

    In this paper we analyze atom lasers based on the spatial modulation of the scattering length of a Bose-Einstein condensate. We demonstrate, through numerical simulations and approximate analytical methods, the controllable emission of matter-wave bursts and study the dependence of the process on the spatial shape of the scattering length along the axis of emission. We also study the role of an additional modulation of the scattering length in time

  12. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    International Nuclear Information System (INIS)

    Mosher, D.; Cooperstein, G.; Rose, D.V.; Swanekamp, S.B.

    1996-01-01

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs

  13. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, D; Cooperstein, G [Naval Research Laboratory, Washington, DC (United States); Rose, D V; Swanekamp, S B [JAYCOR, Vienna, VA (United States)

    1997-12-31

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs.

  14. Systematics of atom-atom collision strengths at high speeds

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Inokuti, M.

    1980-01-01

    The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms with Z< or =18. The calculations are based on atomic form factors and incoherent scattering functions found in the literature. The relative contribution of each class of collision processes to the total collision cross section is examined in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements of atom-atom and ion-atom collision cross sections

  15. The joint probability distribution of structure factors incorporating anomalous-scattering and isomorphous-replacement data

    International Nuclear Information System (INIS)

    Peschar, R.; Schenk, H.

    1991-01-01

    A method to derive joint probability distributions of structure factors is presented which incorporates anomalous-scattering and isomorphous-replacement data in a unified procedure. The structure factors F H and F -H , whose magnitudes are different due to anomalous scattering, are shown to be isomorphously related. This leads to a definition of isomorphism by means of which isomorphous-replacement and anomalous-scattering data can be handled simultaneously. The definition and calculation of the general term of the joint probability distribution for isomorphous structure factors turns out to be crucial. Its analytical form leads to an algorithm by means of which any particular joint probability distribution of structure factors can be constructed. The calculation of the general term is discussed for the case of four isomorphous structure factors in P1, assuming the atoms to be independently and uniformly distributed. A main result is the construction of the probability distribution of the 64 triplet phase sums present in space group P1 amongst four isomorphous structure factors F H , four isomorphous F K and four isomorphous F -H-K . The procedure is readily generalized in the case where an arbitrary number of isomorphous structure factors are available for F H , F K and F -H-K . (orig.)

  16. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  17. Second order classical perturbation theory for atom surface scattering: analysis of asymmetry in the angular distribution.

    Science.gov (United States)

    Zhou, Yun; Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to "soft" corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  18. Quantitative study of two- and three-dimensional strong localization of matter waves by atomic scatterers

    International Nuclear Information System (INIS)

    Antezza, Mauro; Castin, Yvan; Hutchinson, David A. W.

    2010-01-01

    We study the strong localization of atomic matter waves in a disordered potential created by atoms pinned at the nodes of a lattice, for both three-dimensional (3D) and two-dimensional (2D) systems. The localization length of the matter wave, the density of localized states, and the occurrence of energy mobility edges (for the 3D system), are numerically investigated as a function of the effective scattering length between the atomic matter wave and the pinned atoms. Both positive and negative matter wave energies are explored. Interesting features of the density of states are discovered at negative energies, where maxima in the density of bound states for the system can be interpreted in terms of bound states of a matter wave atom with a few pinned atomic scatterers. In 3D we found evidence of up to three mobility edges, one at positive energies, and two at negative energies, the latter corresponding to transitions between extended and localized bound states. In 2D, no mobility edge is found, and a rapid exponential-like increase of the localization length is observed at high energy.

  19. On the proton exchange contribution to electron-hydrogen atom elastic scattering

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Tort, A.C.

    1979-05-01

    It is shown that the exchange contribution to the electron-proton potential Born term in elastic electron-hydrogen atom scattering arises as the non relativistic limit from the exchange of a proton between the two participant electrons - calculated from quantum electrodynamics including properly bound states (as solution of Bethe - Salpeter equation). (Author) [pt

  20. On measurement of cross sections for scattering of pμ - and d μ -atoms in hydrogen and deuterium

    International Nuclear Information System (INIS)

    Bystritskij, V.M.

    1993-01-01

    The paper is a brief review of all experiments on measurement of cross sections for scattering of pμ - atoms in hydrogen and dμ - atoms in hydrogen and deuterium. The experimental results are analysed and compared both with one another and with calculated results. A program for further investigation of scattering of muonic atoms of hydrogen isotopes is proposed in order to clarify the nature of discrepancies between some experimental results and to get more precise information about the above processes. (author.). 24 refs.; 4 figs.; 3 tabs

  1. The growth of sodium rough films on mica (0001) as determined by Helium Atom Scattering

    DEFF Research Database (Denmark)

    Gerlach, Rolf; Balzer, Frank; Rubahn, Horst-Günter

    2001-01-01

    , which is addressed to Na atoms that fill cleavage-induced holes in the mica surface. It provides a convenient means of calibrating the coverage of the surface. With increasing surface coverage Na clusters are formed on the mica surface. A broad angular distribution of the scattered Helium intensity......Elastic helium atom scattering (HAS) and linear optical extinction measurements are used to investigate the growth of sodium (Na) films on mica substrates in the surface temperature range between 90 and 300 K. At half a monolayer (ML) surface coverage we observe a maximum of scattered He intensity...... is observed with a coverage-independent angular width above eight monolayers coverage. From simultaneous optical extinction measurements we deduce that the clusters are oblate with a ratio of semiaxes perpendicular and parallel to the surface plane between 0.23 and 0.165....

  2. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films

    International Nuclear Information System (INIS)

    Blauth, David

    2010-01-01

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO 2 /Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  3. The bremsstrahlung induced by 0.3-2 keV electron scattering by Ar atoms

    International Nuclear Information System (INIS)

    Gnatchenko, E.V.; Tkachenko, A.A.; Verkhovtseva, E.T.

    2002-01-01

    The differential spectra of a bremsstrahlung resulting from a 0.3-2 keV electron scattering by Ar atoms are studied. Photon energies within the ultrasoft X-ray band from 124 to 190.8 eV, which is characterized by the low dynamic polarizability of the Ar atom, are considered. For the entire spectrum of photon energies (124-190.8 eV), the intensity of the bremsstrahlung differential spectra first grows with an increase in the electron energy from 0.3 to 0.7 keV and then decreases as the electron energy increases from 0.7 to 2 keV. The increase in intensity is directly proportional, and the decrease is inversely proportional to the square root of the energy of the scattered electrons. Within the context of a 'low-energy' approximation, the increase in the number of photons with the electron energy is due to the contribution of the atomic excitation and ionization channels being available during the bremsstrahlung process

  4. Determination of ππ scattering lengths from measurement of π+π- atom lifetime

    International Nuclear Information System (INIS)

    Adeva, B.; Afanasyev, L.; Benayoun, M.; Benelli, A.; Berka, Z.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Chliapnikov, P.V.; Ciocarlan, C.; Constantinescu, S.; Costantini, S.; Curceanu, C.; Doskarova, P.; Dreossi, D.; Drijard, D.; Dudarev, A.; Ferro-Luzzi, M.; Fungueirino Pazos, J.L.

    2011-01-01

    The DIRAC experiment at CERN has achieved a sizeable production of π + π - atoms and has significantly improved the precision on its lifetime determination. From a sample of 21 227 atomic pairs, a 4% measurement of the S-wave ππ scattering length difference |a 0 -a 2 |=(0.2533 -0.0078 +0.0080 | stat +0.0078 -0.0073 | syst )M π + -1 has been attained, providing an important test of Chiral Perturbation Theory.

  5. Inversion of the total cross sections for electron-molecule and electron-atom scattering

    International Nuclear Information System (INIS)

    Lun, D.R.; Amos, K.; Allen, L.J.

    1994-01-01

    Inverse scattering theory has been applied to construct the interaction potentials from total cross sections as a function of energy for electrons scattered off of atoms and molecules. The underlying potentials are assumed to be real and energy independent and are evaluated using the Eikonal approximation and with real phase shifts determined from the total cross sections. The inversion potentials have been determined using either a high energy limit approximation or by using a fixed energy inversion method at select energies. These procedures have been used to analyse e - - CH 4 , e - - SiH 4 , e - -Kr and e - -Xe scattering data in particular. 14 refs., 1 tabs., 3 figs

  6. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    Science.gov (United States)

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-02

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The scattering of low energy helium ions and atoms from a copper single crystal, ch. 2

    International Nuclear Information System (INIS)

    Verheij, L.K.; Poelsema, B.; Boers, A.L.

    1976-01-01

    The scattering of 4-10 keV helium ions from a copper surface cannot be completely described with elastic, single collisions. The general behaviour of the measured energy and width of the surface peak can be explained by differences in inelastic energy losses for scattering from an ideal surface and from surface structures (damage). Multiple scattering effects have a minor influence. Additional information about the inelastic processes is obtained from scattering experiments with a primary atom beam. For large angles of incidence, the energy of the reflected ions is reduced about 20 eV if the primary beam consists of atoms instead of ions. An explanation of this effect and an explanation of the different behaviour of small angles is given. In the investigated energy range, the electronic stopping power might depend on the charge state of the primary particles. The experimental results are rather well explained by the Lindhard, Scharff, Schioett theory

  8. Time-Dependent Close-Coupling Methods for Electron-Atom/Molecule Scattering

    International Nuclear Information System (INIS)

    Colgan, James

    2014-01-01

    The time-dependent close-coupling (TDCC) method centers on an accurate representation of the interaction between two outgoing electrons moving in the presence of a Coulomb field. It has been extensively applied to many problems of electrons, photons, and ions scattering from light atomic targets. Theoretical Description: The TDCC method centers on a solution of the time-dependent Schrödinger equation for two interacting electrons. The advantages of a time-dependent approach are two-fold; one treats the electron-electron interaction essentially in an exact manner (within numerical accuracy) and a time-dependent approach avoids the difficult boundary condition encountered when two free electrons move in a Coulomb field (the classic three-body Coulomb problem). The TDCC method has been applied to many fundamental atomic collision processes, including photon-, electron- and ion-impact ionization of light atoms. For application to electron-impact ionization of atomic systems, one decomposes the two-electron wavefunction in a partial wave expansion and represents the subsequent two-electron radial wavefunctions on a numerical lattice. The number of partial waves required to converge the ionization process depends on the energy of the incoming electron wavepacket and on the ionization threshold of the target atom or ion.

  9. Pseudoscalar form factors in tau-neutrino nucleon scattering

    International Nuclear Information System (INIS)

    Hagiwara, K.; Mawatari, K.; Yokoya, H.

    2004-01-01

    We investigate the pseudoscalar transition form factors of nucleon for quasi-elastic scattering and Δ resonance production in tau-neutrino nucleon scattering via the charged current interactions. Although the pseudoscalar form factors play an important role for the τ production in neutrino-nucleon scattering, these are not known well. In this Letter, we examine their effects in quasi-elastic scattering and Δ resonance production and find that the cross section, Q 2 distribution, and spin polarization of the produced τ ± leptons are quite sensitive to the pseudoscalar form factors

  10. Uncertainty Assessment for Theoretical Atomic and Molecular Scattering Data. Summary Report of a Joint IAEA-ITAMP Technical Meeting

    International Nuclear Information System (INIS)

    Chung, Hyun-Kyung; Bartschat, Klaus; Tennyson, Jonathan; Schultz, David R.

    2014-10-01

    This report summarizes the proceedings of the Joint IAEA-ITAMP Technical Meeting on “Uncertainty Assessment for Theoretical Atomic and Molecular Scattering Data” on 7-9 July 2014. Twenty-five participants from ten Member States and one from the IAEA attended the three-day meeting held at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, USA and hosted by the Institute of Theoretical Atomic, Molecular and Optical Physics (ITAMP). The report includes discussions on the issues of uncertainty estimates for theoretical atomic and molecular scattering data. The abstracts of presentations presented in the meeting are attached in the Appendix. (author)

  11. Anomalous scattering factors for synchrotron radiation users, calculated using Cromer and Liberman's method

    International Nuclear Information System (INIS)

    Sasaki, Satoshi.

    1984-01-01

    Anomalous scattering factors f' and f'' have been calculated for the atoms Li through Bi, plus U, using the relativistic treatment described by Cromer and Liberman (1970, 1981). The tables presented in this paper include values (i) in the wavelength range from 0.1 to 2.89 A in 0.01 A intervals and (ii) in the neighborhood of the K,L 1 ,L 2 , and L 3 absorption edges in 0.0001 A intervals. (author)

  12. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd

    2013-01-01

    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated......(1 × 1) commensurate monolayer solid of H2/KCl(001). For the latter, there are cases where part of the incident beam is trapped in the interlayer region for times exceeding 50 ps, depending on the spacing between the monolayer and the substrate and on the angle of incidence. The feedback effect...

  13. Electron-atom scattering

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1991-07-01

    The coupled-channels-optical method has been implemented using two different approximations to the optical potential. The half-on-shell optical potential involves drastic approximations for numerical feasibility but still gives a good semiquantitative description of the effect of uncoupled channels on electron scattering from hydrogen, helium and sodium. The distorted-wave optical potential makes no approximations other than the weak coupling approximation for uncoupled channels. In applications to hydrogen and sodium it shows promise of describing scattering phenomena excellently at all energies. 27 refs., 5 figs

  14. Fixed energy inversion of 5 eV e-Xe atom scattering

    International Nuclear Information System (INIS)

    Lovell, A.; Amos, K.

    2000-01-01

    Fixed energy inverse scattering theory has been used to define central and spin-orbit Schroedinger potentials for the scattering of 5 eV polarized electrons from Xe atoms. The results are typical for a range of such data; including energies above threshold when the potentials become complex. The phase shifts obtained from an analysis of the measured differential cross section and analyzing power has been used as input data. Both semi-classical (WKB) and fully quantal inversion methods have been used to extract central and spin-orbit interactions. The analysis shows that information additional to the set of input phase shifts extracted from this (and similar) data may be needed to ascertain physical potentials

  15. Predicting scattering properties of ultracold atoms : Adiabatic accumulated phase method and mass scaling

    NARCIS (Netherlands)

    Verhaar, B.J.; Kempen, van E.G.M.; Kokkelmans, S.J.J.M.F.

    2009-01-01

    Ultracold atoms are increasingly used for high-precision experiments that can be utilized to extract accurate scattering properties. This results in a stronger need to improve on the accuracy of interatomic potentials, and in particular the usually rather inaccurate inner-range potentials. A

  16. Diffraction and angular momentum effects in semiclassical atomic scattering theory

    International Nuclear Information System (INIS)

    Russek, A.

    1979-01-01

    The semiclassical scattering theory of Mott and Massey and Ford and Wheeler is here extended to multichannel scattering as occurs at a crossing or pseudocrossing of the transient molecule formed by the colliding atoms. The generalized theory incorporates both interference and diffraction phenomena, but the emphasis in this work is on diffraction. For small-angle scattering, diffraction effects become broader, not narrower, as the collision energy increases: ΔbΔtau > or = h[E/sub inc//(2m)]/sup 1/2/ relates the uncertainties in impact parameter b and reduced scattering angle tau = E/sub inc/theta, and determines the range in b required to resolve a structure in the deflection function of height Δtau. In the kilovolt range of collision energies, the effects of local maxima and minima in the deflection function are washed out, and the Airy-function approximation of Ford and Wheeler is inappropriate to describe the differential cross section. More generally, it is shown that at keV collision energies the stationary-phase approximation, heretofore essential in the reduction to the semiclassical limit, breaks down in the vicinity of a level crossing. An approximate theorem is proposed which remains valid in this region and elsewhere reduces to the standard stationary-phase approximation. Several illustrative examples are considered. A separate development treats the effect on the differential scattering cross section of a change in electronic angular momentum when electronic excitation occurs

  17. [Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high T c superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect

  18. SPH Simulation of Liquid Scattering from the Edge of a Rotary Atomizer

    Science.gov (United States)

    Izawa, Seiichiro; Ito, Takuya; Shigeta, Masaya; Fukunishi, Yu

    2013-11-01

    Three-dimensional incompressible SPH method is used to simulate the behavior of liquid scattering from the edge of a rotary atomizer. Rotary atomizers have been widely used for spraying, painting and coating, for instance, in the automobile industry. However, how the spray droplets are formed after leaving the edge of the rotary atomizer is not well understood, because the scale of the phenomenon is very small and the speed of rotation is very fast. The present computational result shows that while the liquid forms a film on the surface of the rotating disk of the atomizer, it quickly deforms into many thin columns after leaving the disk edge, and these columns soon break up into fine droplets which spread out in the radial direction. The size of droplets tends to become smaller with the increase in the disk rotating speed. The results show good agreement with the experimental observations.

  19. Towards weighing individual atoms by high-angle scattering of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Argentero, G.; Mangler, C.; Kotakoski, J.; Eder, F.R.; Meyer, J.C., E-mail: Jannik.Meyer@univie.ac.at

    2015-04-15

    We consider theoretically the energy loss of electrons scattered to high angles when assuming that the primary beam can be limited to a single atom. We discuss the possibility of identifying the isotopes of light elements and of extracting information about phonons in this signal. The energy loss is related to the mass of the much heavier nucleus, and is spread out due to atomic vibrations. Importantly, while the width of the broadening is much larger than the energy separation of isotopes, only the shift in the peak positions must be detected if the beam is limited to a single atom. We conclude that the experimental case will be challenging but is not excluded by the physical principles as far as considered here. Moreover, the initial experiments demonstrate that the separation of gold and carbon based on a signal that is related to their mass, rather than their atomic number. - Highlights: • We explore how energy loss spectroscopy could be used to obtain information about the mass, rather than the charge, of atoms. • The dose and precision that would be needed to distinguish between the two isotopes of carbon, C12 and C13, is estimated. • Signal broadening due to phonons is included in the calculation. • Initial experiments show the separation between gold and carbon based on their mass rather than charge.

  20. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    1992-01-01

    Investigations in this laboratory have focused on the surface structure and dynamics of ionic insulators and on epitaxial growth onto alkali halide crystals. In the later the homoepitaxial growth of NaCl/NaCl(001) and the heteroepitaxial growth of KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been studied by monitoring the specular He scattering as a function of the coverage and by measuring the angular and energy distributions of the scattered He atoms. These data provide information on the surface structure, defect densities, island sizes and surface strain during the layer-by-layer growth. The temperature dependence of these measurements also provides information on the mobilities of the admolecules. He atom scattering is unique among surface probes because the low-energy, inert atoms are sensitive only to the electronic structure of the topmost surface layer and are equally applicable to all crystalline materials. It is proposed for the next year to exploit further the variety of combinations possible with the alkali halides in order to carry out a definitive study of epitaxial growth in the ionic insulators. The work completed so far, including measurements of the Bragg diffraction and surface dispersion at various stages of growth, appears to be exceptionally rich in detail, which is particularly promising for theoretical modeling. In addition, because epitaxial growth conditions over a wide range of lattice mismatches is possible with these materials, size effects in growth processes can be explored in great depth. Further, as some of the alkali halides have the CsCl structure instead of the NaCl structure, we can investigate the effects of the heteroepitaxy with materials having different lattice preferences. Finally, by using co-deposition of different alkali halides, one can investigate the formation and stability of alloys and even alkali halide superlattices

  1. Scattering of hyperthermal argon atoms from clean and D-covered Ru surfaces

    NARCIS (Netherlands)

    Ueta, H.; Gleeson, M.A.; Kleyn, A.W.

    2011-01-01

    Hyperthermal Ar atoms were scattered from a Ru(0001) surface held at temperatures of 180, 400 and 600 K, and from a Ru(0001)-(1×1)D surface held at 114 and 180 K. The resultant angular intensity and energy distributions are complex. The in-plane angular distributions have narrow (FWHM ≤ 10°)

  2. Electron scattering by an atom in the field of resonant laser radiation

    International Nuclear Information System (INIS)

    Agre, M.; Rapoport, L.

    1982-01-01

    The collision of an electron with an atom in the field of intense electromagnetic radiation that is at resonance with two atomic multiplets is investigated theoretically. Expressions are obtained for the amplitudes of the elastic and inelastic scattering with emission (absorption) of photons. The case of a ground state at resonance with a doublet is considered in detail. It is shown that photon absorption takes place predominantly in the case of resonance in inelastic transitions from a state of the lower multiplet, and photon emission takes place in transitions from a state of the upper multiplet

  3. Gauss Sum Factorization with Cold Atoms

    International Nuclear Information System (INIS)

    Gilowski, M.; Wendrich, T.; Mueller, T.; Ertmer, W.; Rasel, E. M.; Jentsch, Ch.; Schleich, W. P.

    2008-01-01

    We report the first implementation of a Gauss sum factorization algorithm by an internal state Ramsey interferometer using cold atoms. A sequence of appropriately designed light pulses interacts with an ensemble of cold rubidium atoms. The final population in the involved atomic levels determines a Gauss sum. With this technique we factor the number N=263193

  4. Alignment creation in atomic ensembles by elastic electron scattering; the case of 138Ba(...6s6p 1P1) atoms

    International Nuclear Information System (INIS)

    Trajmar, S.; Kanik, I.; LeClair, L.R.; Khakoo, M.A.; Bray, I.; Fursa, D.; Csanak, G.

    1998-01-01

    We describe some of our results from a joint experimental and theoretical program concerning elastic electron scattering by 138 Ba(...6s6p 1 P 1 ) atoms. From the experimental results, we derived various scattering parameters and magnetic sublevel specific differential elastic scattering cross sections at impact energy (E 0 ) of 20.0 eV and at scattering angles (θ) of 10deg, 15deg, and 20deg. The same parameters and cross sections were calculated by the convergent close coupling (CCC) approximation and compared to the experimental results. An excellent agreement, found for the two sets of data, gave us confidence in the CCC method and allowed us to extend the angular and energy ranges for the purpose of generating integral elastic scattering cross sections needed for the deduction of the alignment creation cross sections. (J.P.N.)

  5. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    OpenAIRE

    Poludniowski, G; Evans, PM; Webb, S

    2009-01-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'inte...

  6. Many-body theory of charge transfer in hyperthermal atomic scattering

    International Nuclear Information System (INIS)

    Marston, J.B.; Andersson, D.R.; Behringer, E.R.; Cooper, B.H.; DiRubio, C.A.; Kimmel, G.A.; Richardson, C.

    1993-01-01

    We use the Newns-Anderson Hamiltonian to describe many-body electronic processes that occur when hyperthermal alkali atoms scatter off metallic surfaces. Following Brako and Newns, we expand the electronic many-body wave function in the number of particle-hole pairs (we keep terms up to and including a single particle-hole pair). We extend their earlier work by including level crossings, excited neutrals, and negative ions. The full set of equations of motion is integrated numerically, without further approximations, to obtain the many-body amplitudes as a function of time. The velocity and work-function dependence of final-state quantities such as the distribution of ion charges and excited atomic occupancies are compared with experiment. In particular, experiments that scatter alkali ions off clean Cu(001) surfaces in the energy range 5--1600 eV constrain the theory quantitatively. The neutralization probability of Na + ions shows a minimum at intermediate velocity in agreement with the theory. This behavior contrasts with that of K + , which shows virtually no neutralization, and with Li + , which exhibits a monotonically increasing neutral fraction with decreasing velocity. Particle-hole excitations are left behind in the metal during a fraction of the collision events; this dissipated energy is predicted to be quite small (on the order of tenths of an electron volt). Indeed, classical trajectory simulations of the surface dynamics account well for the observed energy loss, and thus provide some justification for our truncation of the equations of motion at the single particle-hole pair level. Li + scattering experiments off low work-function surfaces provide qualitative information on the importance of many-body effects. At sufficiently low work function, the negative ions predicted to occur are in fact observed

  7. He/Ar-atom scattering from molecular monolayers: C{sub 60}/Pt(111) and graphene/Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y; Sugawara, C; Satake, Y; Yokoyama, Y; Okada, R; Nakayama, T; Sasaki, M [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki (Japan); Kondo, T; Oh, J; Nakamura, J [Institute of Material Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki (Japan); Hayes, W W [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States)

    2010-08-04

    Supersonic He and Ar atomic beam scattering from C{sub 60} and graphene monolayers adsorbed on a Pt(111) surface are demonstrated in order to obtain detailed insight into a gas-molecule collision that has not been studied in detail so far. The effective masses and phonon spectral densities of the monolayers seen by different projectiles are discussed based on classical models such as the hard cube model and the recently developed smooth surface model. Large effective masses are deduced for both the monolayers, suggesting collective effects of surface atoms in the single collision event. The effective Debye temperature of graphene was found to be similar to that reported in highly oriented pyrolytic graphite (HOPG), indicating that the graphene is decoupled well from the Pt substrate. A much smaller Debye-Waller factor was found for the C{sub 60} layer, probably reflecting the strong C{sub 60}-Pt(111) interaction.

  8. He-atom surface scattering apparatus for studies of crystalline surface dynamics. Progress report, May 1, 1985-April 30, 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The primary goal of this grant is the construction of a state-of-the-art He atom-crystal surface scattering apparatus which will be capable of measuring both elastic and inelastic scattering of He atoms from crystal surfaces of metals, semiconductors and insulators. First, the apparatus will be constructed and characterized, after which a program of studies on the surface dynamics of a variety of crystal surfaces will be started. 6 refs., 2 figs

  9. Scattering from Artificial Piezoelectriclike Meta-Atoms and Molecules

    Science.gov (United States)

    Goltcman, Leonid; Hadad, Yakir

    2018-01-01

    Inspired by natural piezoelectricity, we introduce hybrid-wave electromechanical meta-atoms and metamolecules that consist of coupled electrical and mechanical oscillators with similar resonance frequencies. We explore the linearized electromechanical scattering process and demonstrate that by exploiting the hybrid-wave interaction one may enable functionalities that are forbidden otherwise. For example, we study a dimer metamolecule that is highly directional for electromagnetic waves, although it is electrically deep subwavelength. This unique behavior is a consequence of the fact that, while the metamolecule is electrically small, it is acoustically large. This idea opens vistas for a plethora of exciting dynamics and phenomena in electromagnetics and acoustics, with implications for miniaturized sensors, superresolution imaging, compact nonreciprocal antennas, and more.

  10. Calculation of atom ranges in solids for quasi-small-angle scattering

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2004-01-01

    A formula for quasi-small-angle scattering of atomic particle and power law interaction potential have been used for the calculation of the differential cross-section, elastic stopping cross-section and a mean projected range in a solid. It is found that the limit energy transfer in the collisions depends on the screening of the power law interaction potentials. The calculated mean ranges in matter are compared with experimental data [ru

  11. Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions of quantum mechanics.

    Science.gov (United States)

    Dapor, Maurizio

    2018-03-29

    Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.

  12. Correlation in atomic scattering

    International Nuclear Information System (INIS)

    McGuire, J.H.

    1987-01-01

    Correlation due to the Coulomb interactions between electrons in many-electron targets colliding with charged particles is formulated, and various approximate probability amplitudes are evaluated. In the limit that the electron-electron, 1/r/sub i//sub j/, correlation interactions are ignored or approximated by central potentials, the independent-electron approximation is obtained. Two types of correlations, or corrections to the independent-electron approximation due to 1/r/sub i//sub j/ terms, are identified: namely, static and scattering correlation. Static correlation is that contained in the asymptotic, e.g., bound-state, wave functions. Scattering correlation, arising from correlation in the scattering operator, is new and is considered in some detail. Expressions for a scattering correlation amplitude, static correlation or rearrangement amplitude, and independent-electron or direct amplitude are derived at high collision velocity and compared. At high velocities the direct and rearrangement amplitudes dominate. At very high velocities, ν, the rearrangement amplitude falls off less rapidly with ν than the direct amplitude which, however, is dominant as electron-electron correlation tends to zero. Comparisons with experimental observations are discussed

  13. A non-destructive technique for assigning effective atomic number to scientific samples by scattering of 59.54 keV gamma photons

    International Nuclear Information System (INIS)

    Singh, M.P.; Sharma, Amandeep; Singh, Bhajan; Sandhu, B.S.

    2010-01-01

    The objective of present experiment, employing a scattering of 59.54 keV gamma photons, is to assign effective atomic number (Z eff ) to scientific samples (rare earths) of known composition. An HPGe semiconductor detector, placed at 90 o to the incident beam, detects gamma photons scattered from the sample under investigation. The experiment is performed on various elements with atomic number satisfying, 6≤Z≤82, for 59.54 keV incident photons. The intensity ratio of Rayleigh to Compton scattered peaks, corrected for photo-peak efficiency of gamma detector and absorption of photons in the sample and air, is plotted as a function of atomic number and constituted a best fit-curve. From this fit-curve, the respective effective atomic numbers to samples of rare earths are determined. The agreement of measured values of Z eff with theoretical calculations is quite satisfactory.

  14. Molecular beam scattering experiments on the abstraction and exchange reactions of deuterium atoms with the hydrogen halides HCl, HBr, and HI

    International Nuclear Information System (INIS)

    Bauer, W.; Rusin, L.Y.; Toennies, J.P.

    1978-01-01

    Molecular beam scattering experiments have been carried out on the abstraction and exchange reactions of deuterium atoms (T=2600 K) with the hydrogen halides HX(T=300 K) in the range of scattering angles: 0 0 0 (theta/sub cm/=0 0 is the direction of the incident D-atom beam). The apparatus employed a very sensitive electron bombardment detector with a sufficiently low H 2 background to make possible the measurement of differential cross sections of about 0.1 A 2 /sr for reactively scattered HD and H and nonreactively scattered D-atoms. The measured HD signal can be largely attributed to various background sources and only serves to establish a rough upper limit on the abstraction cross section in the angular range investigated. The H-atom signal was more intense. The observed angular distribution was forward peaked, and is attributed to the exchange reaction. The nonreactively scattered D-atom signal was used in conjunction with a recently reported effective spherically symmetric potential to provide an absolute calibration of the detector sensitivity. The measured integral cross sections for the exchange reactions are 2.3 A 2 (D+HCl), 1.3 A 2 (D+HBr) and 1.6 A 2 (D+HI) with an estimated error of about +- 30%. The absolute cross sections and the H-atom angular distributions are consistent with the DX distributions measured by McDonald and Herschbach. Both experimental angular distributions are considerably narrower than those predicted by the recent classical trajectory calculations of Raff, Suzukawa, and Thompson. The implications of the new data for the activation energies for the exchange reactions are discussed

  15. DetOx: a program for determining anomalous scattering factors of mixed-oxidation-state species.

    Science.gov (United States)

    Sutton, Karim J; Barnett, Sarah A; Christensen, Kirsten E; Nowell, Harriott; Thompson, Amber L; Allan, David R; Cooper, Richard I

    2013-01-01

    Overlapping absorption edges will occur when an element is present in multiple oxidation states within a material. DetOx is a program for partitioning overlapping X-ray absorption spectra into contributions from individual atomic species and computing the dependence of the anomalous scattering factors on X-ray energy. It is demonstrated how these results can be used in combination with X-ray diffraction data to determine the oxidation state of ions at specific sites in a mixed-valance material, GaCl(2).

  16. The justification for the use of table of equivalent squares with respect to reference depth total scatter factor, and phantom scatter factor, for cobalt-60 teletherapy

    International Nuclear Information System (INIS)

    Afari, F.

    2011-01-01

    The use of equivalent squares is of great value and importance when determining output and depth dose data for rectangular fields. The variation with field shape of collimator scatter factors (S c ), phantom scatter factors (S c,p ) were studied using measurements on GWGP 80 cobalt - 60 teletherapy machine at the National Centre of Radiotherapy and Nuclear Medicine in the Korle-Bu Teaching Hospital. Measurements of the collimator scatter factors (S c ), phantom scatter factors (S p ) and total scatter factors (S c, p) were made at the depth of 5 cm, 10 cm, 15 cm and 20 cm in full scatter water phantom for square field side and rectangular fields of varying dimensions. The measurements were done using the source - axis distance (Sad) technique. The values of total scatter factor (S c,p ), phantom scatter factor and collimator scatter factor (S c ) obtained were used to estimate equivalent squares for the rectangular fields at the various depths. The equivalent squares were computed using the method of interpolation which is based on the scatter analysis of these scatter factors and these estimated equivalent squares were then compared with equivalent squares were then compared with equivalent square fields from BJR (supplement 21) tables of equivalent squares. The research revealed that there were average deviation of 1.5% for smaller rectangular field sizes and 8.8% for elongated rectangular field sizes between the estimated square field sizes and the equivalent square field from BJR (supplement 21) Table of equivalent square fields. The 8.8% for the elongated rectangular fields is not accepted, though such fields are rarely used in our Hospitals. It was found that the values of the equivalent square at the various depth were very consistent and do not vary with reference depth. These findings confirm that the clinical use of the BJR (supplement 21) Table of equivalent squares for total scatter factors and phantom scatter related quantities of rectangular fields is

  17. Disadvantage factor for anisotropic scattering

    International Nuclear Information System (INIS)

    Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.

    1990-01-01

    The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters

  18. Measurements of scattering processes in negative ion: Atom collisions. Technical progress report, 1 September 1991--31 December 1994

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1994-01-01

    This report describes the progress made on the research objectives during the past three years of the grant. This research project is designed to study various scattering processes which occur in H - collisions with atomic (specifically, noble gas and atomic hydrogen) targets in the intermediate energy region. These processes include: elastic scattering, single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H - is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements will provide total cross sections (TCS) initially, and once the angular positioning apparatus is installed, will provide angular differential cross sections (ADCS)

  19. First observation of $\\pi^{-}K^+$ and $\\pi^{+}K^-$ atoms, their lifetime measurement and $\\pi K$ scattering lengths evaluation

    CERN Document Server

    Afanasyev, Leonid

    2016-01-01

    The Low Energy QCD allows to calculate the ππ and π K scattering lengths with high precision. There are accurate relations between these scattering lengths and π + π − , π − K + , π + K − atoms lifetimes. The experiment on the first observation of π − K + and π + K − atoms is described. The atoms were generated in Nickel and Platinum targets hit by the PS CERN proton beam with momentum of 24 GeV/ c . Moving in the target, part of atoms break up producing characteristic π K pairs (atomic pairs) with small relative momentum Q in their c.m.s. In the experiment, we detected n A = 349 ± 62 (5.6 standard deviations) π − K + and π + K − atomic pairs. The main part of π K pairs are produced in free state. The majority of such particles are generated directly or from short-lived sources as ρ , ω and similar resonances. The electromagnetic interactions in the final state create Coulomb pairs with a known sharp dependence on Q . This effect allows to evaluate the number of these Coulomb pai...

  20. Determination of {pi}{pi} scattering lengths from measurement of {pi}{sup +{pi}-} atom lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B. [Santiago de Compostela University (Spain); Afanasyev, L. [JINR Dubna (Russian Federation); Benayoun, M. [LPNHE des Universites Paris VI/VII, IN2P3-CNRS (France); Benelli, A. [Zurich University (Switzerland); Berka, Z. [Czech Technical University in Prague, Prague (Czech Republic); Brekhovskikh, V. [IHEP Protvino (Russian Federation); Caragheorgheopol, G. [IFIN-HH, National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cechak, T. [Czech Technical University in Prague, Prague (Czech Republic); Chiba, M. [Tokyo Metropolitan University (Japan); Chliapnikov, P.V. [IHEP Protvino (Russian Federation); Ciocarlan, C.; Constantinescu, S. [IFIN-HH, National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Costantini, S. [Basel University (Switzerland); Curceanu, C. [IFIN-HH, National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Doskarova, P. [Czech Technical University in Prague, Prague (Czech Republic); Dreossi, D. [INFN, Sezione di Trieste and Trieste University, Trieste (Italy); Drijard, D., E-mail: Daniel.Drijard@cern.ch [CERN, Geneva (Switzerland); Dudarev, A. [JINR Dubna (Russian Federation); Ferro-Luzzi, M. [CERN, Geneva (Switzerland); Fungueirino Pazos, J.L. [Santiago de Compostela University (Spain)

    2011-10-05

    The DIRAC experiment at CERN has achieved a sizeable production of {pi}{sup +{pi}-} atoms and has significantly improved the precision on its lifetime determination. From a sample of 21 227 atomic pairs, a 4% measurement of the S-wave {pi}{pi} scattering length difference |a{sub 0}-a{sub 2}|=(0.2533{sub -0.0078}{sup +0.0080}|{sub stat}{sup +0.0078}{sub -0.0073}|{sub syst})M{sub {pi}}{sup +-1} has been attained, providing an important test of Chiral Perturbation Theory.

  1. PHYSICS OF POLARIZED SCATTERING AT MULTI-LEVEL ATOMIC SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Stenflo, J. O., E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich, SwitzerlandAND (Switzerland); Istituto Ricerche Solari Locarno, Via Patocchi, CH-6605 Locarno-Monti (Switzerland)

    2015-03-01

    The symmetric peak observed in linear polarization in the core of the solar sodium D{sub 1} line at 5896 Å has remained enigmatic since its discovery nearly two decades ago. One reason is that the theory of polarized scattering has not been experimentally tested for multi-level atomic systems in the relevant parameter domains, although the theory is continually being used for the interpretation of astrophysical observations. A laboratory experiment that was set up a decade ago to find out whether the D{sub 1} enigma is a problem of solar physics or quantum physics revealed that the D{sub 1} system has a rich polarization structure in situations where standard scattering theory predicts zero polarization, even when optical pumping of the m state populations of the hyperfine-split ground state is accounted for. Here we show that the laboratory results can be modeled in great quantitative detail if the theory is extended to include the coherences in both the initial and final states of the scattering process. Radiative couplings between the allowed dipole transitions generate coherences in the initial state. Corresponding coherences in the final state are then demanded by a phase closure selection rule. The experimental results for the well understood D{sub 2} line are used to constrain the two free parameters of the experiment, collision rate and optical depth, to suppress the need for free parameters when fitting the D{sub 1} results.

  2. Spin entanglement in elastic electron scattering from quasi-one electron atoms

    Science.gov (United States)

    Fonseca Dos Santos, Samantha; Bartschat, Klaus

    2017-04-01

    We have extended our work on e-Li collisions to investigate low-energy elastic electron collisions with atomic hydrogen and other alkali targets (Na,K,Rb). These systems have been suggested for the possibility of continuously varying the degree of entanglement between the elastically scattered projectile and the valence electron. In order to estimate how well such a scheme may work in practice, we carried out overview calculations for energies between 0 and 10 eV and the full range of scattering angles 0° -180° . In addition to the relative exchange asymmetry parameter that characterizes the entanglement, we present the differential cross section in order to estimate whether the count rates in the most interesting energy-angle regimes are sufficient to make such experiments feasible in practice. Work supported by the NSF under PHY-1403245.

  3. Low energy atom-atom collisions

    International Nuclear Information System (INIS)

    Child, M.S.

    1980-01-01

    The semiclassical theory of atom-atom potential scattering and of low energy inelastic atom-atom scattering is reviewed. Particular attention is given to the origin and interpretation of rainbow structure, diffraction oscillations and exchange oscillations in the potential scattering differential cross-section, and to the glory structure and symmetry oscillations in the integral cross-section. Available methods for direct inversion of the cross-section data to recover the potential are reviewed in some detail. The theory of non-adiabatic transitions is introduced by a short discussion of interaction mechanisms and of diabetic and adiabatic representations. Analytical S matrix elements are presented for two state curve-crossing (Landau-Zener-Stuckelberg), Demkov and Nikitin models. The relation between Stuckelberg oscillations in the S matrix and in the differential cross-section is discussed in terms of interference between trajectories belonging to two different classical deflection functions. The energy dependences of the inelastic integral cross-section for curve-crossing and Demkov type transitions are also discussed. Finally the theory is reviewed in relation to a recent close-coupled study of fine structure transitions in F( 2 P) + Xe( 2 S) scattering

  4. Debye-Waller Factor in Neutron Scattering by Ferromagnetic Metals

    Science.gov (United States)

    Paradezhenko, G. V.; Melnikov, N. B.; Reser, B. I.

    2018-04-01

    We obtain an expression for the neutron scattering cross section in the case of an arbitrary interaction of the neutron with the crystal. We give a concise, simple derivation of the Debye-Waller factor as a function of the scattering vector and the temperature. For ferromagnetic metals above the Curie temperature, we estimate the Debye-Waller factor in the range of scattering vectors characteristic of polarized magnetic neutron scattering experiments. In the example of iron, we compare the results of harmonic and anharmonic approximations.

  5. Quantum theory of atom-surface scattering: exact solutions and evaluation of approximations

    International Nuclear Information System (INIS)

    Chiroli, C.; Levi, A.C.

    1976-01-01

    In a recent article a hard corrugated surface was proposed as a simple model for atom-surface scattering. The problem was not solved exactly, however, but several alternative approximations were considered. Since these three similar, but inequivalent, approximations were proposed, the problem arose to evaluate these approximations in order to choose between them. In the present letter some exact calculations are presented which make this choice rationally possible. (Auth.)

  6. Unified description of H-atom-induced chemicurrents and inelastic scattering.

    Science.gov (United States)

    Kandratsenka, Alexander; Jiang, Hongyan; Dorenkamp, Yvonne; Janke, Svenja M; Kammler, Marvin; Wodtke, Alec M; Bünermann, Oliver

    2018-01-23

    The Born-Oppenheimer approximation (BOA) provides the foundation for virtually all computational studies of chemical binding and reactivity, and it is the justification for the widely used "balls and springs" picture of molecules. The BOA assumes that nuclei effectively stand still on the timescale of electronic motion, due to their large masses relative to electrons. This implies electrons never change their energy quantum state. When molecules react, atoms must move, meaning that electrons may become excited in violation of the BOA. Such electronic excitation is clearly seen for: ( i ) Schottky diodes where H adsorption at Ag surfaces produces electrical "chemicurrent;" ( ii ) Au-based metal-insulator-metal (MIM) devices, where chemicurrents arise from H-H surface recombination; and ( iii ) Inelastic energy transfer, where H collisions with Au surfaces show H-atom translation excites the metal's electrons. As part of this work, we report isotopically selective hydrogen/deuterium (H/D) translational inelasticity measurements in collisions with Ag and Au. Together, these experiments provide an opportunity to test new theories that simultaneously describe both nuclear and electronic motion, a standing challenge to the field. Here, we show results of a recently developed first-principles theory that quantitatively explains both inelastic scattering experiments that probe nuclear motion and chemicurrent experiments that probe electronic excitation. The theory explains the magnitude of chemicurrents on Ag Schottky diodes and resolves an apparent paradox--chemicurrents exhibit a much larger isotope effect than does H/D inelastic scattering. It also explains why, unlike Ag-based Schottky diodes, Au-based MIM devices are insensitive to H adsorption.

  7. Quantum trajectories in elastic atom-surface scattering: threshold and selective adsorption resonances.

    Science.gov (United States)

    Sanz, A S; Miret-Artés, S

    2005-01-01

    The elastic resonant scattering of He atoms off the Cu(117) surface is fully described with the formalism of quantum trajectories provided by Bohmian mechanics. Within this theory of quantum motion, the concept of trapping is widely studied and discussed. Classically, atoms undergo impulsive collisions with the surface, and then the trapped motion takes place covering at least two consecutive unit cells. However, from a Bohmian viewpoint, atom trajectories can smoothly adjust to the equipotential energy surface profile in a sort of sliding motion; thus the trapping process could eventually occur within one single unit cell. In particular, both threshold and selective adsorption resonances are explained by means of this quantum trapping considering different space and time scales. Furthermore, a mapping between each region of the (initial) incoming plane wave and the different parts of the diffraction and resonance patterns can be easily established, an important issue only provided by a quantum trajectory formalism. (c) 2005 American Institute of Physics.

  8. Ejection of fast recoil atoms from solids under ion bombardment (medium-energy ion scattering by solid surfaces: Pt. 3)

    International Nuclear Information System (INIS)

    Dodonoy, A.I.; Mashkova, E.S.; Molchanov, V.A.

    1989-01-01

    This paper is the third part of our review surface scattering. Part I, which was devoted to the scattering of ions by the surfaces of disordered solids, was published in 1972; Part II, concerning scattering by crystal surfaces, was published in 1974. Since the publication of these reviews the material contained in them has become obsolete in many respects. A more recent account of the status of the problem has been given in a number of studies, including the book by E.S. Mashkova and V.A. Molchanov, Medium-Energy Ion Scattering by Solid Surfaces (Atomizdat, Moscow, 1980), than extended version of which was published by North-Holland in 1985. We note, however, that at the time these reviews were written the study of fast recoil atoms had not been carried out systematically; the problem was studied only as a by-product of surface scattering and sputtering. For this reason, in the above-mentioned works and in other reviews the data relating to recoil atoms were considered only occasionally. In recent years there have appeared a number of works - theoretical, experimental and computer -specially devoted to the study of the ejection of recoil atoms under ion bombardment. A number of interesting effects, which are due to the crystal structure of the target, have been discovered. It therefore, appeared desirable to us to systematize the available material and to present it as Part III of our continuing review. (author)

  9. Microscopic modeling of gas-surface scattering: II. Application to argon atom adsorption on a platinum (111) surface

    Science.gov (United States)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A new combination of first principle molecular dynamics (MD) simulations with a rate equation model presented in the preceding paper (paper I) is applied to analyze in detail the scattering of argon atoms from a platinum (111) surface. The combined model is based on a classification of all atom trajectories according to their energies into trapped, quasi-trapped and scattering states. The number of particles in each of the three classes obeys coupled rate equations. The coefficients in the rate equations are the transition probabilities between these states which are obtained from MD simulations. While these rates are generally time-dependent, after a characteristic time scale t E of several tens of picoseconds they become stationary allowing for a rather simple analysis. Here, we investigate this time scale by analyzing in detail the temporal evolution of the energy distribution functions of the adsorbate atoms. We separately study the energy loss distribution function of the atoms and the distribution function of in-plane and perpendicular energy components. Further, we compute the sticking probability of argon atoms as a function of incident energy, angle and lattice temperature. Our model is important for plasma-surface modeling as it allows to extend accurate simulations to longer time scales.

  10. Studies on eletron scattering by hydrogen atoms through of a correlationed wave function

    International Nuclear Information System (INIS)

    Jacchieri, S.G.

    1982-01-01

    A correlationed wave function dependent of two adjustable parameters ( α e β), aiming describe a system formed by an electron and a hydrogen atom is studied. Some elastic differential cross-sections for several values of α and β parameters, scattering angle of 2 0 to 140 0 and energies of 50 eV and 680 eV are presented. (M.J.C.) [pt

  11. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films; Streifende Streuung schneller Atome an Oberflaechen von Metalloxid-Kristallen und ultraduennen Filmen

    Energy Technology Data Exchange (ETDEWEB)

    Blauth, David

    2010-03-11

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO{sub 2}/Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  12. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies.

    Science.gov (United States)

    Hawelek, L; Brodka, A; Dore, J C; Honkimaki, V; Burian, A

    2013-11-13

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp(3) defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered.

  13. Differences in the neutralization of 2.4--10 keV Ne+ scattered from the Cu and Au atoms of an alloy surface

    International Nuclear Information System (INIS)

    Buck, T.M.; Wallace, W.E.; Baragiola, R.A.; Wheatley, G.H.; Rothman, J.B.; Gorte, R.J.; Tittensor, J.G.

    1993-01-01

    The neutralization behavior of low-energy Ne + ions scattered from a compositionally ordered Cu 3 Au(100) surface has been studied over a range of incident energy E 0 from 2.4 to 10 keV. Ion fractions of Ne scattered from Cu atoms in the first, or first two, atom layers exhibited a sharp increase setting in at an E 0 of 4--5 keV, reaching 70% at 10 keV for first-layer scattering. Inelastic energy losses, up to 130 eV, and Auger electron emission from Ne scattered from Cu, were also observed at incident energies above 4 keV. Ne scattered from the Au atoms on the same Cu 3 Au(100) surface showed only the usual velocity-dependent Auger and resonance neutralization. An explanation of the Cu results is given in terms of Ne 2s vacancy creation during the close collision of Ne, which is neutralized on the inward path, followed by autoionization on the outward path after scattering into the vacuum. Conversely, Ne cannot approach Au closely enough to form an appropriate inner-shell vacancy. This is due to the higher Coulombic repulsion created by the greater charge of the Au nucleus

  14. Expansion of X-ray form factor for close shell using uncorrelated wave function

    Energy Technology Data Exchange (ETDEWEB)

    AL-Robayi, Enas M. [Babylon University , College of Science for Women, laser Physics Department, Hilla (Iraq)

    2013-12-16

    The atomic scattering factor has been studied for Be+ve, and B+2ve ions using the uncorrelated wave function (Hartree-Fock (HF)) for inter particle electronic shells. The physical importance of this factor appears in its relation to several important atomic properties as, the coherent scattering intensity, the total scattering intensity, the incoherent scattering function, the coherent scattering cross section, the total incoherent cross section, the nuclear magnetic shielding constant, the geometrical structure factor. Also there is one atomic properties the one particle radial density distribution function D(r)has been studied using the partitioning technique.

  15. Scattering of electrons from argon atoms

    International Nuclear Information System (INIS)

    Dasgupta, A.; Bhatia, A.K.

    1985-01-01

    The scattering of electrons from argon atoms is studied by the method of polarized orbitals. The 3p→d perturbed orbital calculated using the Sternheimer approximation gives the polarizability 14.29a 0 3 . The perturbation of the orbitals 1s, 2s, 2p, and 3s is taken into account by renormalizing the 3p→d orbitals to give the experimental value 11.06a 0 3 . Using only the modified orbital in the total wave function, phase shifts for various partial waves have been calculated in the exchange, exchange-adiabatic, and polarized-orbital approximations. They are compared with the results of the previous calculations. The calculated total elastic, differential, and momentum-transfer cross sections are compared with the experimental results. The elastic total cross sections obtained in the polarized-orbital approximation agree very closely with the recently measured cross sections by Jost et al. and Nickel et al. The critical point (the value of k 2 and theta at which the differential cross section is minimum) is at 0.306 eV and 80 0 , in good agreement with the measurements of Weyhreter et al

  16. Local versus non-local core potentials in electron scattering from sodium atoms

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-01-01

    We have tested the use of a local potential instead of the non-local Hartree-Fock potential to represent exchange effects between the valence or the projectile electron and the core in electron scattering from sodium atoms. For some of the most detailed observables in this collision system, the results of the two approaches are nearly identical, even though the effect of the exchange part is shown to be particularly large. (Author)

  17. The effect of thermal vibrations of lattice atoms on the scattering of low energetic ions (2-10keV)

    International Nuclear Information System (INIS)

    Poelsema, B.; Boers, A.L.

    1977-01-01

    An introduction to the study of solid state surfaces by analyzing the scattering behavior of low energetic noble gas ions is given. Attention is paid to thermal vibrations of the surface atoms. The scattering of Ar and Kr ions on a Cu monocrystal is discussed as an example

  18. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    International Nuclear Information System (INIS)

    Weninger, Clemens

    2015-10-01

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  19. The equivalent square concept for the head scatter factor based on scatter from flattening filter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Siyong; Palta, Jatinder R.; Zhu, Timothy C. [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida (United States)

    1998-06-01

    The equivalent field relationship between square and circular fields for the head scatter factor was evaluated at the source plane. The method was based on integrating the head scatter parameter for projected shaped fields in the source plane and finding a field that produced the same ratio of head scatter to primary dose on the central axis. A value of {sigma}/R{approx_equal}0.9 was obtained, where {sigma} was one-half of the side length of the equivalent square and R was the radius of the circular field. The assumptions were that the equivalent field relationship for head scatter depends primarily on the characteristics of scatter from the flattening filter, and that the differential scatter-to-primary ratio of scatter from the flattening filter decreases linearly with the radius, within the physical radius of the flattening filter. Lam and co-workers showed empirically that the area-to-perimeter ratio formula, when applied to an equivalent square formula at the flattening filter plane, gave an accurate prediction of the head scatter factor. We have analytically investigated the validity of the area-to-perimeter ratio formula. Our results support the fact that the area-to-perimeter ratio formula can also be used as the equivalent field formula for head scatter at the source plane. The equivalent field relationships for wedge and tertiary collimator scatter were also evaluated. (author)

  20. The equivalent square concept for the head scatter factor based on scatter from flattening filter

    International Nuclear Information System (INIS)

    Kim, Siyong; Palta, Jatinder R.; Zhu, Timothy C.

    1998-01-01

    The equivalent field relationship between square and circular fields for the head scatter factor was evaluated at the source plane. The method was based on integrating the head scatter parameter for projected shaped fields in the source plane and finding a field that produced the same ratio of head scatter to primary dose on the central axis. A value of σ/R≅0.9 was obtained, where σ was one-half of the side length of the equivalent square and R was the radius of the circular field. The assumptions were that the equivalent field relationship for head scatter depends primarily on the characteristics of scatter from the flattening filter, and that the differential scatter-to-primary ratio of scatter from the flattening filter decreases linearly with the radius, within the physical radius of the flattening filter. Lam and co-workers showed empirically that the area-to-perimeter ratio formula, when applied to an equivalent square formula at the flattening filter plane, gave an accurate prediction of the head scatter factor. We have analytically investigated the validity of the area-to-perimeter ratio formula. Our results support the fact that the area-to-perimeter ratio formula can also be used as the equivalent field formula for head scatter at the source plane. The equivalent field relationships for wedge and tertiary collimator scatter were also evaluated. (author)

  1. Probability of K atomic shell ionization by heavy particles impact, in functions of the scattering angle

    International Nuclear Information System (INIS)

    Oliveira, P.M.C. de.

    1976-12-01

    A method of calculation of the K atomic shell ionization probability by heavy particles impact, in the semi-classical approximation is presented. In this approximation, the projectile has a classical trajectory. The potential energy due to the projectile is taken as perturbation of the Hamiltonian of the neutral atom. We use scaled Thomas-Fermi wave function for the atomic electrons. The method is valid for intermediate atomic number elements and particle energies of some MeV. Probabilities are calculated for the case of Ag (Z = 47) and protons of 1 and 2 MeV. Results are given as function of scattering angle, and agree well known experimental data and also improve older calculations. (Author) [pt

  2. Kirchhoff approximation and closed-form expressions for atom-surface scattering

    International Nuclear Information System (INIS)

    Marvin, A.M.

    1980-01-01

    In this paper an approximate solution for atom-surface scattering is presented beyond the physical optics approximation. The potential is well represented by a hard corrugated surface but includes an attractive tail in front. The calculation is carried out analytically by two different methods, and the limit of validity of our formulas is well established in the text. In contrast with other workers, I find those expressions to be exact in both limits of small (Rayleigh region) and large momenta (classical region), with the correct behavior at the threshold. The result is attained through a particular use of the extinction theorem in writing the scattered amplitudes, hitherto not employed, and not for particular boundary values of the field. An explicit evaluation of the field on the surface shows in fact the present formulas to be simply related to the well known Kirchhoff approximation (KA) or more generally to an ''extended'' KA fit to the potential model above. A possible application of the theory to treat strong resonance-overlapping effects is suggested in the last part of the work

  3. Dimensional crossover in Bragg scattering from an optical lattice

    International Nuclear Information System (INIS)

    Slama, S.; Cube, C. von; Ludewig, A.; Kohler, M.; Zimmermann, C.; Courteille, Ph.W.

    2005-01-01

    We study Bragg scattering at one-dimensional (1D) optical lattices. Cold atoms are confined by the optical dipole force at the antinodes of a standing wave generated inside a laser-driven high-finesse cavity. The atoms arrange themselves into a chain of pancake-shaped layers located at the antinodes of the standing wave. Laser light incident on this chain is partially Bragg reflected. We observe an angular dependence of this Bragg reflection which is different from what is known from crystalline solids. In solids, the scattering layers can be taken to be infinitely spread (three-dimensional limit). This is not generally true for an optical lattice consistent of a 1D linear chain of pointlike scattering sites. By an explicit structure factor calculation, we derive a generalized Bragg condition, which is valid in the intermediate regime. This enables us to determine the aspect ratio of the atomic lattice from the angular dependance of the Bragg scattered light

  4. The Strength of Chaos: Accurate Simulation of Resonant Electron Scattering by Many-Electron Ions and Atoms in the Presence of Quantum Chaos

    Science.gov (United States)

    2017-01-20

    AFRL-AFOSR-JP-TR-2017-0012 The Strength of Chaos : accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence...of quantum chaos Igor Bray CURTIN UNIVERSITY OF TECHNOLOGY Final Report 01/20/2017 DISTRIBUTION A: Distribution approved for public release. AF...SUBTITLE The Strength of Chaos : accurate simulation of resonant electron scattering by many- electron ions and atoms in the presence of quantum chaos

  5. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    Science.gov (United States)

    Poludniowski, G.; Evans, P. M.; Webb, S.

    2009-11-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'interference function' model into a custom-written Monte Carlo code. First, we conduct simulations of scatter from isolated voxels of soft tissue, adipose, cortical bone and spongiosa. Then, we simulate scatter profiles from a cylinder of water and from phantoms of a patient's head, thorax and pelvis, constructed from diagnostic-quality CT data sets. Lastly, we reconstruct CT numbers from simulated sets of projection images and investigate the quantitative effects of the approximation. We show that the IAA can produce errors of several per cent of the total scatter, across a projection image, for typical x-ray beams and patients. The errors in reconstructed CT number, however, for the phantoms simulated, were small (typically < 10 HU). The IAA can therefore be considered sufficient for the modelling of scatter correction in CT imaging. Where accurate quantitative estimates of scatter in individual projection images are required, however, the appropriate interference functions should be included.

  6. Local vs. Non-local core potentials in electron scattering from sodium atoms

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-02-01

    We have tested the use of a local potential instead of the non-local Hartree-Fock potential to represent exchange effects between the valence or the projectile electron and the core in electron scattering from sodium atoms For some of the most detailed observables in this collision system/ the results of the two approaches are nearly identical, even though the effect of the exchange part is shown to be particularly large. (authors). 16 refs., 4 figs

  7. Atomic inner-shell physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1985-01-01

    This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions

  8. On the validity of classical description of scattering of atomic particles at mean energies

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2004-01-01

    The conditions of applicability of the classical theory of atomic particle scattering to the small angle and quasi-small angle approximations in calculations of mean-energy particle deflection angles using power interaction potential are analyzed. The applicability range is shown to be much widened for the quasi-small angle approximation, extending to the ranges of quantum theory applicability [ru

  9. Amplitudes and state parameters from ion- and atom-atom excitation processes

    International Nuclear Information System (INIS)

    Andersen, T.; Horsdal-Pedersen, E.

    1984-01-01

    This chapter examines single collisions between two atomic species, one of which is initially in a 1 S state (there is only one initial spin channel). The collisions are characterized by a definite scattering plane and a definite orientation. Topics considered include an angular correlation between scattered particles and autoionization electrons or polarized photons emitted from states excited in atomic collisions (photon emission, electron emission, selectivity excited target atoms), experimental methods for obtaining information on the alignment and orientation parameters of atoms or ions excited in specific collisions, results of experiments and numerical calculations (quasi-oneelectron systems, He + -He collisions, other collision systems), and future aspects and possible applications of the polarizedphoton, scattered-particle coincidence techniques to atomic spectroscopy

  10. Human factors in atomic power plant

    International Nuclear Information System (INIS)

    Kawano, Ryutaro

    1997-01-01

    To ensure safety should have priority over all other things in atomic power plants. In Chernobyl accident, however, various human factors including the systems for bulb check after inspection and communication, troubles in the interface between hardwares such as warning speakers and instruments, and their operators, those in education and training for operators and those in the general management of the plant have been pointed out. Therefore, the principles and the practical measures from the aspect of human factors in atomic power plants were discussed here. The word, ''human factor'' was given a definition in terms of the direct cause and the intellectual system. An explanatory model for human factors, model SHEL constructed by The Tokyo Electric Power Co., Ltd., Inc. was presented; the four letter mean software(S), hardware(H), environment(E) and liveware(L). In the plants of the company, systemic measures for human error factors are taken now in all steps not only for design, operation and repairing but also the step for safety culture. Further, the level required for the safety against atomic power is higher in the company than those in other fields. Thus, the central principle in atomic power plants is changing from the previous views that technology is paid greater importance to a view regarding human as most importance. (M.N.)

  11. Investigations of the dynamics and growth of insulator films by high resolution helium atom scattering. Final report, May 1, 1985--April 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Safron, S.A.; Skofronick, J.G.

    1997-07-01

    Over the twelve years of this grant from the U.S. Department of Energy, DE-FG05-85ER45208, the over-reaching aims of this work have been to explore and to attempt to understand the fundamental physics and chemistry of surfaces and interfaces. The instrument we have employed m in this work is high-resolution helium atom scattering (HAS) which we have become even more convinced is an exceptionally powerful and useful tool for surface science. One can follow the evolution of the development and progress of the experiments that we have carried out by the evolution of the proposal titles for each of the four three-year periods. At first, m in 1985-1988, the main objective of this grant was to construct the HAS instrument so that we could begin work on the surface vibrational dynamics of crystalline materials; the title was {open_quotes}Helium Atom-Surface Scattering Apparatus for Studies of Crystalline Surface Dynamics{close_quotes}. Then, as we became more interested m in the growth of films and interfaces the title m in 1988-1991 became {open_quotes}Helium Atom Surface Spectroscopy: Surface Lattice Dynamics of Insulators, Metal and Metal Overlayers{close_quotes}. In 1991-1994, we headed even more m in this direction, and also recognized that we should focus more on insulator materials as very few techniques other than helium atom scattering could be applied to insulators without causing surface damage. Thus, the proposal title became {open_quotes}Helium Atom-Surface Scattering: Surface Dynamics of Insulators, Overlayers and Crystal Growth{close_quotes}. M in the final period of this grant the title ended up {open_quotes}Investigations of the Dynamics and Growth of Insulator Films by High Resolution Helium Atom Scattering{close_quotes} m in 1994-1997. The list of accomplishments briefly discussed in this report are: tests of the shell model; multiphoton scattering; physisorbed monolayer films; other surface phase transitions; and surface magnetic effects.

  12. Difference in x-ray scattering between metallic and non-metallic liquids due to conduction electrons

    International Nuclear Information System (INIS)

    Chihara, Junzo

    1987-01-01

    X-ray scattered intensity from a liquid metal as an electron-ion mixture is described using the structure factors, which are exactly expressed in terms of the static and dynamic direct correlation functions. This intensity for a metal is shown to differ from the usual scattered intensity from a non-metal in two points: the atomic form factor and the incoherent (Compton) scattering factor. It is shown that the valence electron form factor, which constitutes the atomic form factor in a liquid metal, leads to a determination of the electron-electron and electron-ion structure factors by combining the ionic structure factor. It is also shown that a part of the electron structure factor, which appears as the incoherent x-ray scattering, is usually approximated as the electron structure factor of the jellium model in the case of a simple metal. As a by-product, the x-ray scattered intensity from a crystalline metal and the inelastic scattering from a liquid metal are given by taking account of the presence of conduction electrons. In this way, we clarify some confusion which appeared in the proposal by Egelstaff et al for extracting the electron-electron correlation function in a metal from x-ray and neutron scattering experiments. A procedure to extract the electron-electron and electron-ion structure factors in a liquid metal is proposed on the basis of formula for scattered intensity derived here. (author)

  13. A simple nonbinary scattering model applicable to atomic collisions is crystals at 1ow energies

    DEFF Research Database (Denmark)

    Andersen, Hans Henrik; Sigmund, Peter

    1966-01-01

    the asymptotic velocities of the ring atoms as well as the energy loss of the projectile. Furthermore, it can be decided whether the projectile is reflected by the ring. Both the feasibility of assumptions specifying the problem and the validity of different approximations made in the transformation from...... previously. Inelastic contributions to the energy loss can easily be included. The oscillator forces binding lattice atoms turn out to influence the scattering process only at very small energies. The validity of the so-called momentum approximation and a related perturbation method are also investigated....

  14. Energy-related atomic and molecular structure and scattering studies. Annual progress report, July 1, 1980-June 30, 1981

    International Nuclear Information System (INIS)

    Bederson, B.

    1981-02-01

    The basic goals of this program concern the experimental determination of properties of atoms and molecules and molecular clusters that are important in a wide range of energy-related processes, in particular, measurements of polarizabilities of highly polar molecules and their polymers, and of a number of important atomic elements distributed through the periodic table, as well as of the scattering of low-energy electrons by these same systems. The most significant scientific accomplishment of the program during the past year has been the completion of measurements of the dc electric dipole polarizabilities of a number of alkali halide dimers [(KCl) 2 , (RbCl) 2 , (CsCl) 2 , (KF) 2 , and (CsF) 2 ]. An experiment was completed to measure the total cross sections for the scattering of low-energy electrons by atomic lithium, a very significant experimental test of a relatively simple, many-body system, which is amenable to elaborate computational determination

  15. Left-cut contribution to the dispersion relation for the elastic electron - atomic-hydrogen scattering amplitude

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Kuchiev, M.Yu.

    1979-01-01

    The jump in the electron - atomic-hydrogen forward scattering amplitude at the cut extending to the left from E = -0.5 au is calculated as a function of the incident electron energy, E, by using the second Born approximation. The contribution from this singularity to the dispersion relation is determined. (Auth.)

  16. The investigation of the elastic photon scattering cross sections by copper atoms and ions

    International Nuclear Information System (INIS)

    Kuplyauskene, A.B.

    1976-01-01

    The differential cross sections of coherent scattering of photons on a copper atom and ions Cu + and Cu 2+ and also on ions Zn + and Ga 2+ in their ground states have been studied theoretically. The energy of an incident photon has varied in the range from 0.5 keV to 200 keV, and the scattering cross sections are given for angles of 30 deg, 60 deg, 90 deg, 120 deg, 150 deg. The calculations are performed in the formfactor approximation with the use of generalized hydrogen-like analytical radial orbitals. To clarify the contribution from individual shells the cross sections of photon scattering on individual electron of shells are calculated. It follows from the calculations that when the energies of the incident photon are less than 4 keV, the main contribution into the differential cross section is made by external electrons. Then, alongside with the increase of the energy, the contribution of the electrons decreases, and the inner shells begin to play a more important role. Therefore the photon cross sections for the energies greater than 50 keV practically coincide for atoms and ions of copper. The general regularities of the cross section variation accompanying the increase of the photon energy are similar for all the elements under study. The angular dependences of cross sections are such that they decrease first and after reaching the minimum at angles of 90 deg - 120 deg increase again

  17. Quasi-free scattering in the ionization and destruction of hydrogen and helium Rydberg atoms in collision with neutral targets

    International Nuclear Information System (INIS)

    Renwick, S.P.

    1992-01-01

    Hydrogen and helium Rydberg atoms (H** and He**), with principal quantum number n ranging from 10 to 20, have been used in collision experiments from 1 to 40 keV/amu. These were produced by electron capture in a charge-exchange cell and analyzed by ionization in a modulated electric field combined with phase-sensitive detection. Three experiments have been conducted. In the first, spectra of the band of H and He Rydberg states from electron capture were produced by the modulated field technique and compared. Considerable differences were found between the two. Both types of spectra were analyzed with calculations of Stark energies and field ionization rates. Attempts were made to simulate the spectra using this information and some assumptions about the state distribution produced in the electron capture. In the second experiment, destruction cross sections for H** incident on N 2 , Ar, and SF 6 were measured. This was a further test of the independent-particle model for Rydberg atom scattering; in this model, the atom is destroyed by quasi-free scattering of either the ionic core or the outer electron. Already proven valid for n = 20-35, this has been extended to n as low as 10, as measurements with n = 10 showed full compliance with the model. In the third experiment, not only destruction cross sections but also ionization cross sections for H** and He** incident on Xe, AR, and N 2 were measured. The ionization measurement is a more sensitive test of the quasi-free scattering of the Rydberg electron. This was especially important for the Xe and Ar targets, which exhibits a Ramsauer-Townsend minimum in their free-electron scattering cross sections. The quasi-free Rydberg electron should reproduce these data. Unmistakable deviations from the quasi-free prediction were seen in Xe and N 2 but not in Ar. This represents the first measurement of a breakdown of the Independent Particle Model for fast Rydberg atom scattering

  18. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    The following were studied: New semiclassical method for scattering calculations, He atom scattering from defective Pt surfaces, He atom scattering from Xe overlayers, thermal dissociation of H 2 on Cu(110), spin flip scattering of atoms from surfaces, and Car-Parrinello simulations of surface processes

  19. Verification of a table of phantom scatter factors for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Arts, J.K.; Bailey, M.J.; Hill, R.

    2004-01-01

    Full text: Many commercially available treatment planning systems require the medical physicist to measure and enter significant quantities of data for the verification of physics based algorithms. The CMS XiO (St. Louis, USA) treatment planning system requires a table of phantom scatter factors amongst other data. In a previous paper by Storchi et al, a table of phantom scatter factors is described. This table gives the phantom scatter factor as a function of field size and quality index determined from a collection of measured data for the total scatter factor and the collimator scatter factor from 25 different beam qualities ranging from 4MV up to 25MV. These factors have been determined at a fixed reference depth of 10cm for square fields of various sizes. This work investigates the claim that this table can be used as an alternative to calculated phantom scatter curve from measured data of a particular treatment unit. According to definition, it is difficult to directly measure the phantom scatter correction factor (Sp). This problem can be solved using the relation; S cp (A) = S c (A)S p (A) where S cp (A)) is the measured total scatter factor for a field size of square side dimension, A and S c (A) is the measured collimator scatter factor for a field size of square side dimension, A (Khan et al 1980, van Gasteren et al 1991). The total scatter correction factor (Sc,p) was measured in a full phantom, and the collimator scatter factor (Sc) measured using an ESTRO mini-phantom. These factors were measured on three Siemens linear accelerators (Concord, USA) with energies 6MV and 18MV and square field sizes ranging from 4x4cm to 40x40cm. The Primus and KD Mevatron produced 6 and 18MV X-rays and the MXE Mevatron produced 6Mv X-rays only. The values for Sp were calculated by rearranging equation (1). Phantom scatter factors were calculated from the data provided by Storchi et al using the quality index of each beam. For comparison, a set of Sp values was

  20. MACS, Lattice Vibrations Structure Factors for Thermal Neutron Scattering in Moderators

    International Nuclear Information System (INIS)

    McMurry, H.L.; Suitt, W.J.; Worlton, T.G.; Martin, R.M.

    1974-01-01

    1 - Description of problem or function: This package of seven related codes is basically aimed at giving maximum capability for calculating slow-neutron scattering by moderators. MACS-C computes crystal vibrations when the potential energy is a sum of parts arising from short-range forces and long-range Coulomb interactions. It also obtains Jacobian matrices for determining adjustments in force constants and ionic charge which can lead to improved agreement with data. Structure factors for neutron inelastic scattering can also be calculated. MACS-J computes the dynamical matrix for the harmonic oscillations of a crystal, its eigenvalues and eigenvectors, the corresponding structure factors for coherent single-phonon scattering of neutrons, and Jacobian matrices for use in adjusting force constants to fit calculated to observed dispersion curves. REVISED-D calculates valance coordinates in terms of mass adjusted atom displacements, together with coordinates which define rigid group rotations. REVISED-MVFC constructs force constant matrices for use in valance force potential functions which are used in other programs dealing with molecular and crystal vibrations. ADJUSTER is a force adjuster program to obtain a least squares fit to observed frequencies of molecules and crystals. DIPOLE-SUM calculates dipole sums for an arbitrary crystal. MODEL-PI calculates crystal vibrations when the potential energy is a sum of short-range and long- or intermediate-range terms in the dipole coordinate approximation. It also obtains Jacobian matrices for use in adjusting input parameters. 2 - Method of solution: In MACS-C, ADJUSTER, and REVISED-D, matrix manipulations are applied to matrices which describe physical conditions. In MACS-J, first-order difference equations are substituted for partial differential equations for Jacobian elements. In MVFC the user employs a set of criteria for defining different types of interactions to prepare by hand the input to the program. For

  1. Reply to the comment by U. Leonhardt on “Aharonov-Bohm scattering of neutral atoms with induced electric dipole moments”

    Science.gov (United States)

    Audretsch, Jürgen; Skarzhinsky, Vladimir D.

    1999-03-01

    We reply to the comment of Leonhardt [Phys. Lett. A 253 (1999) 370] on our paper [Phys. Lett. A 241 (1998) 7]. The partial-wave approach can be adjusted to the Aharanov-Bohm scattering. For the scattering of neutral atoms, it enables the treatment of total absorption in a consistent way.

  2. Relativistic electron-atom scattering in an extremely powerful laser field: Relevance of spin effects

    International Nuclear Information System (INIS)

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2002-01-01

    We reconsider the relativistic scattering of electrons by an atom, being approximated by a static potential, in an extremely powerful electromagnetic plane wave of frequency ω and linear polarization ε. Since to a first order of approximation spin effects can be neglected, we first describe the scattered electron by the Gordon solution of the Klein-Gordon equation. Then we investigate the same scattering process by including the spin effects, using for the electron the Volkov solution of the Dirac equation. For sufficiently energetic electrons, the first-order Born approximation can be employed to represent the corresponding scattering matrix element. We compare the results of the differential cross sections of induced and inverse bremsstrahlung, evaluated from both approximations, for various parameter values and angular configurations and we find that in most cases the spin effects are marginal, even at very high laser power. On the other hand, we recover the various asymmetries in the angular distributions of the scattered electrons and their respective energies due to the laser-induced drift motion of the electrons in the direction of propagation of the radiation field, thus confirming the findings of our previous work [Phys. Rev. A 59, 2105 (1999); Laser Physics 10, 163 (2000)

  3. Peculiar atomic dynamics in liquid GeTe with asymmetrical bonding: Observation by inelastic x-ray scattering

    Science.gov (United States)

    Inui, M.; Koura, A.; Kajihara, Y.; Hosokawa, S.; Chiba, A.; Kimura, K.; Shimojo, F.; Tsutsui, S.; Baron, A. Q. R.

    2018-05-01

    Collective dynamics in liquid GeTe was investigated by inelastic x-ray scattering at 2 ≤Q ≤31 nm-1 . The dynamic structure factor shows clear inelastic excitations. The excitation energies at low Q disperse with increasing Q , consistent with the behavior of a longitudinal-acoustic excitation. The dispersion curve has a flat-topped region around the pseudo-Brillouin-zone boundary, similar to what is observed in liquid Bi [Inui et al., Phys. Rev. B 92, 054206 (2015), 10.1103/PhysRevB.92.054206]. The dynamic structure factor shows a low-frequency excitation, and its coupling with the longitudinal-acoustic mode plays an important role for a flat-topped dispersion. From these results, it is inferred that atomic dynamics in liquid GeTe is strongly affected by a Peierls distortion similar to liquid Bi. By comparing the momentum transfer dependence of the excitation energy and quasielastic linewidth to partial structure factors obtained by our own ab initio molecular dynamics simulation for liquid GeTe, the quasielastic and inelastic components were found to be correlated with Te-Te and Ge-(Ge,Te) partial structure factors, respectively.

  4. Effect of inelastic energy losses on development of atom-atom collision cascades

    International Nuclear Information System (INIS)

    Marinyuk, V.V.; Remizovich, V.S.

    2001-01-01

    The problem of influence of inelastic energy losses (ionization braking) of particles on the development of atom-atom collision cascades in infinite medium was studied theoretically. Main attention was paid to study of angular and energy distributions of primary ions and cascade atoms in the presence of braking. Analytical calculations were made in the assumption that single scattering of particles occurs by solid balls law, while the value of electron braking ability of a medium is determined by the Lindhard formula. It is shown that account of braking (directly when solving the Boltzmann transport equation) changes in principle the previously obtained angular and energy spectra of ions and cascade atoms. Moreover, it is the braking that is the determining factor responsible for anisotropy of angular distributions of low-energy primary ions and cascade atoms [ru

  5. Direct comparison of Fe-Cr unmixing characterization by atom probe tomography and small angle scattering

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Laurent, E-mail: laurent.couturier55@hotmail.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); De Geuser, Frédéric; Deschamps, Alexis [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France)

    2016-11-15

    The fine microstructure obtained by unmixing of a solid solution either by classical precipitation or spinodal decomposition is often characterized either by small angle scattering or atom probe tomography. This article shows that a common data analysis framework can be used to analyze data obtained from these two techniques. An example of the application of this common analysis is given for characterization of the unmixing of the Fe-Cr matrix of a 15-5 PH stainless steel during long-term ageing at 350 °C and 400 °C. A direct comparison of the Cr composition fluctuations amplitudes and characteristic lengths obtained with both techniques is made showing a quantitative agreement for the fluctuation amplitudes. The origin of the discrepancy remaining for the characteristic lengths is discussed. - Highlights: •Common analysis framework for atom probe tomography and small angle scattering •Comparison of same microstructural characteristics obtained using both techniques •Good correlation of Cr composition fluctuations amplitudes from both techniques •Good correlation of Cr composition fluctuations amplitudes with classic V parameter.

  6. Semiclassical multi-phonon theory for atom-surface scattering: Application to the Cu(111) system.

    Science.gov (United States)

    Daon, Shauli; Pollak, Eli

    2015-05-07

    The semiclassical perturbation theory of Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984)] is further developed to include the full multi-phonon transitions in atom-surface scattering. A practically applicable expression is developed for the angular scattering distribution by utilising a discretized bath of oscillators, instead of the continuum limit. At sufficiently low surface temperature good agreement is found between the present multi-phonon theory and the previous one-, and two-phonon theory derived in the continuum limit in our previous study [Daon, Pollak, and Miret-Artés, J. Chem. Phys. 137, 201103 (2012)]. The theory is applied to the measured angular distributions of Ne, Ar, and Kr scattered from a Cu(111) surface. We find that the present multi-phonon theory substantially improves the agreement between experiment and theory, especially at the higher surface temperatures. This provides evidence for the importance of multi-phonon transitions in determining the angular distribution as the surface temperature is increased.

  7. A S-matrix-like approximation in the charged particle scattering by the hydrogen atom

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Tort, A.C.

    1979-01-01

    The Born approximation for charged particle scattering by the hydrogen atom is unfit at low energies. From a S-matrix-like consideration on the dominance of the neighbour singularities, the calculation of other contributions is suggested. The inclusion of bound states is made, following Eden's and his colaborators' ideas, which are described by their interest and likeness with procedures in the intermediate energy physics. (Author) [pt

  8. Use of analytical Born amplitude representation in studies of dispersion potentials and electron-atom scattering

    International Nuclear Information System (INIS)

    Carvalho, I.L. de.

    1985-01-01

    Two distinct problems have been studied using simplifield Born's Amplitude Analitical Expressions. The first problem deals with the dispersion energy between the constituent members of the systems He - Ne, - He and H 2 - H 2 . In the second problem second order Born Aproximation has been used for the Electron - Atom Inelastic Scattering for the transitions 1 1 S → 2 1 S and 1 1 S → 2 1 P of helium atom and 1 S → 1 s 2 ([3s' {1/2} sup(o) 1; M sub(j)>) of neon atom (in the case of neon we have used the coupling scheme proposed by Cowan and Andrew). The results obtained by us have been compared with the theoretical and experimental results available in the literature. (author) [pt

  9. The multi-scattering-Xα method for analysis of the electronic structure of atomic clusters

    International Nuclear Information System (INIS)

    Bahurmuz, A.A.; Woo, C.H.

    1984-12-01

    A computer program, MSXALPHA, has been developed to carry out a quantum-mechanical analysis of the electronic structure of molecules and atomic clusters using the Multi-Scattering-Xα (MSXα) method. The MSXALPHA program is based on a code obtained from the University of Alberta; several improvements and new features were incorporated to increase generality and efficiency. The major ones are: (1) minimization of core memory usage, (2) reduction of execution time, (3) introduction of a dynamic core allocation scheme for a large number of arrays, (4) incorporation of an atomic program to generate numerical orbitals used to construct the initial molecular potential, and (5) inclusion of a routine to evaluate total energy. This report is divided into three parts. The first discusses the theory of the MSXα method. The second gives a detailed description of the program, MSXALPHA. The third discusses the results of calculations carried out for the methane molecule (CH 4 ) and a four-atom zirconium cluster (Zr 4 )

  10. Possible role of double scattering in electron-atom scattering in a laser field

    International Nuclear Information System (INIS)

    Rabadan, I.; Mendez, L.; Dickinson, A.S.

    1996-01-01

    By considering observations of double-scattering effects in the excitation of the 2 1 P level of He, gas density values estimated for the laser-assisted elastic scattering experiments of Wallbank and Holmes (1993, 1994a,b) for which the Kroll-Watson approximation appears to fail. Using comparable densities for He and lower densities for Ar, and assuming the Kroll-Watson approximation for single-scattering events, differential cross sections are calculated including double scattering for laser-assisted scattering for a range of energies and scattering angles. Comparison with the observed values shows that double-scattering effects can give a semi-quantitative explanation of the apparent breakdown of the Kroll-Watson approximation in both He and Ar. (author)

  11. Algorithms for solving atomic structures of nanodimensional clusters in single crystals based on X-ray and neutron diffuse scattering data

    International Nuclear Information System (INIS)

    Andrushevskii, N.M.; Shchedrin, B.M.; Simonov, V.I.

    2004-01-01

    New algorithms for solving the atomic structure of equivalent nanodimensional clusters of the same orientations randomly distributed over the initial single crystal (crystal matrix) have been suggested. A cluster is a compact group of substitutional, interstitial or other atoms displaced from their positions in the crystal matrix. The structure is solved based on X-ray or neutron diffuse scattering data obtained from such objects. The use of the mathematical apparatus of Fourier transformations of finite functions showed that the appropriate sampling of the intensities of continuous diffuse scattering allows one to synthesize multiperiodic difference Patterson functions that reveal the systems of the interatomic vectors of an individual cluster. The suggested algorithms are tested on a model one-dimensional structure

  12. Shadow-free multimers as extreme-performance meta-atoms

    Science.gov (United States)

    Safari, M.; Albooyeh, M.; Simovski, C. R.; Tretyakov, S. A.

    2018-02-01

    We generalize the concept of parity-time symmetric structures with the goal to create meta-atoms exhibiting extraordinary abilities to overcome the presumed limitations in the scattering of overall lossless particles, such as nonzero forward scattering and the equality of scattering and extinction powers for all lossless particles. Although the forward scattering amplitude and the extinction cross section of our proposed meta-atoms vanish, they scatter incident energy into other directions, with controllable directionality. These meta-atoms possess extreme electromagnetic properties not achievable for passive scatterers. As an example, we study meta-atoms consisting of two or three small dipole scatterers. We consider possible microwave realizations in the form of short dipole antennas loaded by lumped elements. The proposed meta-atom empowers extraordinary response of a shadow-free scatterer and theoretically enables most unusual material properties when used as a building block of an artificial medium.

  13. Semiclassical series solution of the generalized phase shift atom--diatom scattering equations

    International Nuclear Information System (INIS)

    Squire, K.R.; Curtiss, C.F.

    1980-01-01

    A semiclassical series solution of the previously developed operator form of the generalized phase shift equations describing atom--diatom scattering is presented. This development is based on earlier work which led to a double series in powers of Planck's constant and a scaling parameter of the anisotropic portion of the intermolecular potential. The present solution is similar in that it is a double power series in Planck's constant and in the difference between the spherical radial momentum and a first order approximation. The present series solution avoids difficulties of the previous series associated with the classical turning point

  14. Diffuse scattering of neutrons

    International Nuclear Information System (INIS)

    Novion, C.H. de.

    1981-02-01

    The use of neutron scattering to study atomic disorder in metals and alloys is described. The diffuse elastic scattering of neutrons by a perfect crystal lattice leads to a diffraction spectrum with only Bragg spreads. the existence of disorder in the crystal results in intensity and position modifications to these spreads, and above all, to the appearance of a low intensity scatter between Bragg peaks. The elastic scattering of neutrons is treated in this text, i.e. by measuring the number of scattered neutrons having the same energy as the incident neutrons. Such measurements yield information on the static disorder in the crystal and time average fluctuations in composition and atomic displacements [fr

  15. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    International Nuclear Information System (INIS)

    Antoniassi, M.; Conceicao, A.L.C.; Poletti, M.E.

    2011-01-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90 o (x=0.99 A -1 ). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z eff ) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z eff of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  16. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Science.gov (United States)

    Antoniassi, M.; Conceição, A. L. C.; Poletti, M. E.

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90° ( x=0.99 Å -1). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number ( Zeff) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Zeff of breast tissues, which are mainly related to the elemental composition of carbon ( Z=6) and oxygen ( Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  17. Wave-packet continuum-discretization approach to ion-atom collisions including rearrangement: Application to differential ionization in proton-hydrogen scattering

    Science.gov (United States)

    Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.

    2018-03-01

    In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.

  18. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    International Nuclear Information System (INIS)

    Lohmann, Bernd; Grum-Grzhimailo, Alexei N.; Kleinpoppen, Hans

    2013-01-01

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is, until today, hardly to perform

  19. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Bernd [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Grum-Grzhimailo, Alexei N. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Kleinpoppen, Hans

    2013-07-01

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is

  20. Determination of X-ray anomalous scattering in silicon

    International Nuclear Information System (INIS)

    Cusatis, C.

    1987-01-01

    The linear attenuation coeficient for X-ray in silicon was measured with approximately 0,1% accuracy, for 6 diferent wavelenghts of caracteristic radiation. From these result the imaginary parts of the atomic scattering factors, for silicon and for those wavelenghts, were obtained with the same accuracy. The results are compared with the most recent published values. The proposed method to avoid Rayleigh scattering can be used for any type of ''perfect'' crystal. (author) [pt

  1. Scattering of atoms by solid surfaces: A CCGM theory of diffraction by a one-dimensional stationary periodic wall

    International Nuclear Information System (INIS)

    Goodman, F.O.; Scribani, L.

    1981-01-01

    The CCGM theory of elastic atom--surface scattering, proposed by Cabrera, Celli, Goodman, and Manson [Surf. Sci. 19, 67 (1970)], is applied to the now-popular corrugated wall model of the scattering. Instead of the original ''hard'' wall, a ''softer'' wall, with finite potential step height, is used. The CCGM soft-wall results are compared with corresponding exact hard-wall results, for corrugations of the sinusoidal type and of other types, for example those with nondifferentiable corrugation functions. It is concluded that the CCGM soft-wall results agree well with the exact hard-wall results provided that neither the dimensionless corrugation amplitude nor the dimensionless atom wave number is too large, although no explanation of the reason for this agreement is given. The results are important because a typical exact calculation may be far more time consuming than is a typical CCGM calculation, particularly for the ''nastier'' corrugation functions

  2. Determination of pi pi scattering lengths from measurement of pi(+)pi(-) atom lifetime

    Czech Academy of Sciences Publication Activity Database

    Adeva, B.; Afanasyev, L.; Benayoun, M.; Hons, Zdeněk

    2011-01-01

    Roč. 704, 1-2 (2011), s. 24-29 ISSN 0370-2693 R&D Projects: GA ČR GAP203/10/0310 Institutional research plan: CEZ:AV0Z10480505 Keywords : DIRAC experiment * Elementary atom * Pionium atom Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.955, year: 2011

  3. Theoretical atomic physics for fusion. 1995 annual report

    International Nuclear Information System (INIS)

    Pindzola, M.S.

    1995-01-01

    The understanding of electron-ion collision processes in plasmas remains a key factor in the ultimate development of nuclear fusion as a viable energy source for the nation. The 1993--1995 research proposal delineated several areas of research in electron-ion scattering theory. In this report the author summarizes his efforts in 1995. The main areas of research are: (1) electron-impact excitation of atomic ions; (2) electron-impact ionization of atomic ions; and (3) electron-impact recombination of atomic ions

  4. Material classification by fast neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Buffler, A. E-mail: abuffler@physci.uct.ac.za; Brooks, F.D. E-mail: brooks@physci.uct.ac.za; Allie, M.S.; Bharuth-Ram, K.; Nchodu, M.R

    2001-02-01

    The scattering of a beam of fast monoenergetic neutrons is used to determine elemental compositions of bulk samples (0.2-0.8 kg) of materials composed from one or more of the elements H, C, N, O, Al, S, Fe and Pb. Scattered neutrons are detected by liquid scintillators placed at forward and at backward angles. Different elements are identified by their characteristic scattering signatures derived either from a combination of time-of-flight and pulse height measurements, or from pulse height measurements alone. Scattering signatures measured for multi-element samples are analysed to determine atom fractions for H, C, N, O and other elements in the sample. Atom fractions determined from scattering signatures are insensitive to neutron interactions in material surrounding the scattering sample, provided the amount of material is not excessive. The atom fraction data are used to classify scattering material into categories including 'explosives', 'illicit drugs' and 'other materials' for the purpose of contraband detection.

  5. Applications of inverse and algebraic scattering theories

    Energy Technology Data Exchange (ETDEWEB)

    Amos, K. [Qinghua Univ., Beijing, BJ (China). Dept. of Physics

    1997-06-01

    Inverse scattering theories, algebraic scattering theory and exactly solvable scattering potentials are diverse ways by which scattering potentials can be defined from S-functions specified by fits to fixed energy, quantal scattering data. Applications have been made in nuclear (heavy ion and nucleon-nucleus scattering), atomic and molecular (electron scattering from simple molecules) systems. Three inverse scattering approaches are considered in detail; the semiclassical WKB and fully quantal Lipperheide-Fiedeldey method, than algebraic scattering theory is applied to heavy ion scattering and finally the exactly solvable Ginocchio potentials. Some nuclear results are ambiguous but the atomic and molecular inversion potentials are in good agreement with postulated forms. 21 refs., 12 figs.

  6. Enhanced spin polarization of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend and low-lying shape resonance regions

    International Nuclear Information System (INIS)

    Yuan, J.; Zhang, Z.

    1993-01-01

    Spin polarizations (SP's) of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend (RT) and low-lying shape resonance (SR) regions are calculated using a relativistic method. The detailed SP distributions both with scattering angle and with electron energy are presented via the energy- and angle-dependent surfaces of SP parameters. It is shown that the SP effects of the collisions of electrons with Ca, Sr, and Ba atoms in the RT region are significant in a considerable area on the energy-angle plane and that the spin-orbit interaction is well increased around the low-lying p-wave SR states of Be and Mg and the d-wave SR states of Ca, Sr, and Ba

  7. Anomalous and resonance small-angle scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Thiyagarajan, P.

    1988-01-01

    Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)

  8. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90{sup o} (x=0.99 A{sup -1}). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z{sub eff} of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  9. Heavy particle scattering by atomic and nuclear systems; Etude de la diffusion de particules lourdes sur des systemes atomiques et nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Lazauskas, R

    2003-10-01

    In this thesis quantum mechanical non-relativistic few-body problem is discussed. Basing on fundamentals ideas from Faddeev and Yakubovski three and four body equations are formulated and solved for fermionic atomic and nuclear systems. Former equations are modified to include long range interactions. Original results for nuclear and molecular physics were obtained: -) positively charged particle scattering on hydrogen atoms was considered; predictions for {pi}{sup +} {yields} H, {mu}{sup +} {yields} H and p{sup +} {yields} H scattering lengths were given. Existence of an unknown, very weakly bound H{sup +}{sub 2} bound state was predicted. -) Motivated by the possible observation of bound four neutron structure at GANIL we have studied compatibility of such an existence within the current nuclear interaction models. -) 4 nucleon scattering at low energies was investigated. Results for n {yields} {sup 3}H, p {yields} {sup 3}H and p {yields} {sup 3}He systems were compared with the experimental data. Validity of realistic nucleon-nucleon interaction models is questioned. (author)

  10. Rayleigh scattering of x-ray and {gamma}-ray by 1s and 2s electrons in ions and neutral atoms

    Energy Technology Data Exchange (ETDEWEB)

    Costescu, A; Karim, K; Stoica, C [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 077125 (Romania); Moldovan, M [Department of Physics, UMF Targu Mures, Targu Mures 540142 (Romania); Spanulescu, S, E-mail: severspa2004@yahoo.com [Department of Physics, Hyperion University of Bucharest, Bucharest 030629 (Romania)

    2011-02-28

    Using the Coulomb-Green function method and considering the nonrelativistic limit for the two-photon S-matrix element, the right nonrelativistic 2s Rayleigh scattering amplitudes are obtained. Our result takes into account all multipoles, retardation and relativistic kinematics contributions, and the old dipole approximation result of Costescu is retrieved as a limit case. The total photoeffect cross-section which is related to the imaginary part of the Rayleigh forward scattering amplitude through the optical theorem is also obtained. Our Coulombian formulae are used in the more realistic case of elastic scattering of photons by bound 1s and 2s electrons in ions and neutral atoms. Screening effects are considered in the independent particle approximation through the Hartree-Fock method. The effective charge Z{sub eff} is obtained by fitting the Hartree-Fock charge distribution by a Coulombian one. Good agreement (within 10%) is found when comparing the numerical predictions given by our nonrelativistic formulae with the full relativistic numerical results of Kissel in the case of elastic scattering of photons by 1s and 2s electrons and Scofield [3] in the case of K-shell and 2s subshell photoionization for neutral atoms with 18 {<=} Z {<=} 92 and photon energies {omega} {<=} {alpha}Zm.

  11. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    Energy Technology Data Exchange (ETDEWEB)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the “stopping power” of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  12. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    Science.gov (United States)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  13. Elastic differential cross sections for small-angle scattering of 25-, 40-, and 60-keV protons by atomic hydrogen

    International Nuclear Information System (INIS)

    Rille, E.; Peacher, J.L.; Redd, E.; Kvale, T.J.; Seely, D.G.; Blankenship, D.M.; Olson, R.E.; Park, J.T.

    1984-01-01

    Elastic angular differential cross sections for small-angle scattering of protons by atomic hydrogen have been measured. The technique utilized unambigously distinguishes the elastically and inelastically scattered ions. The cross sections fall monotonically by 3 orders of magnitude in the angular range from 0.5 to 3.0 mrad, in the center-of-mass system. The experimental data obtained are in very good agreement with a multistate calculation and in fair agreement with both our Glauber-approximation and classical-trajectory Monte Carlo results

  14. Anomalous X-ray scattering studies on semiconducting and metallic glasses

    International Nuclear Information System (INIS)

    Hosokawa, S.; Pilgrim, W.C.; Berar, J.F.; Kohara, S.

    2012-01-01

    In order to explore local- and intermediate-range atomic structures of several semiconducting and metallic glasses, anomalous X-ray scattering (AXS) experiments were performed using an improved detecting system suitable for third-generation synchrotron radiation facilities, and the obtained data were analyzed using reverse Monte Carlo (RMC) modelling to obtain partial structure factors and to construct three-dimensional atomic configurations of these glasses. Examples of GeSe 2 semiconducting and Pd 40 Ni 40 P 20 metallic glasses are demonstrated to exhibit the feasibility of the combination of AXS and RMC techniques. Importance of an additional combination with neutron scattering is also described for alloys containing light elements. (authors)

  15. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He + and Ar + ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H 2 on Cu(110) are being studied. (R.W.R.) 64 refs

  16. Optical constants and scattering factors from reflectivity measurements: 50 eV to 5 keV

    International Nuclear Information System (INIS)

    Blake, R.L.; Davis, J.C.; Graessle, D.E.; Burbine, T.H.; Gullikson, E.M.

    1992-01-01

    An improved reflection technique has been introduced to permit more accurate measurements of material optical constants δ and β, the density ρ, and from these the atomic scattering factors f ' and f double-prime. Regions of normal and anomolous dispersion can be measured with resolving power 1000 or larger using a portable reflectometer that is moved to any of three beamlines at NSLS or two at CHESS. Herein the reflectometer and measurement techniques are described together with sample characteristics and preliminary results for the Ni LIII edge and the M edges of Au, Pt, and Ir. The primary accuracy limiting factors are density determination, accumulation of surface oxides or carbonaceous deposits, and synchrotron orbit stability. Each sample must be prepared for the specific energy range to be measured so that model fitting routines have the minimum possible number of free variables

  17. Verification of High Temperature Free Atom Thermal Scattering in MERCURY Compared to TART

    International Nuclear Information System (INIS)

    Cullen, D E; McKinley, S; Hagmann, C

    2006-01-01

    This is part of a series of reports verifying the accuracy of the relatively new MERCURY [1] Monte Carlo particle transport code by comparing its results to those of the older TART [2] Monte Carlo particle transport code. In the future we hope to extend these comparisons to include deterministic (Sn) codes [3]. Here we verify the accuracy of the free atom thermal scattering model [4] by using it over a very large temperature range. We would like to be able to use these Monte Carlo codes for astrophysical applications, where the temperature of the medium can be extremely high compared to the temperatures we normally encounter in our terrestrial applications [5]. The temperature is so high that is it often defined in eV rather than Kelvin. For a correspondence between the two scale 293.6 Kelvin (room temperature) corresponds to 0.0253 eV ∼ 1/40 eV. So that 1 eV temperature is about 12,000 Kelvin, and 1 keV temperature is about 12 million Kelvin. Here we use a relatively small system measured in cm, but by using ρR scaling [6] our results are equally applicable to systems measured in Km or thousands of Km or any size that we need for astrophysical applications. The emphasis here is not on modeling any given real system, but rather in verifying the accuracy of the free atom model to represent theoretical results over a large temperature range. There are two primary objectives of this report: (1) Verify agreement between MERCURY and TART results, both using continuous energy cross sections. In particular we want to verify the free atom scattering treatment in MERCURY as used over an extended temperature range; by comparison to many other codes for TART this has already been verified over many years [4, 7]. (2) Demonstrate that this agreement depends on using continuous energy cross sections. To demonstrate this we also present TART using the Multi-Band method [8, 9], which accounts for resonance self-shielding, and Multi-Group method, without self-shielding [9

  18. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  19. Positronium collisions with atoms and molecules

    Science.gov (United States)

    Fabrikant, I. I.; Gribakin, G. F.; Wilde, R. S.

    2017-11-01

    We review recent theoretical efforts to explain observed similarities between electron-atom and positronium(Ps)-atom scattering which also extends to molecular targets. In the range of the projectile velocities above the threshold for Ps ionization (break-up) this similarity can be explained in terms of quasi-free electron scattering and impulse approximation. However, for lower Ps velocities more sophisticated methods should be developed. Our calculations of Ps scattering by heavy noble-gas atoms agree well with experiments at Ps velocities above the Ps ionization threshold. However, in contrast to electron scattering cross sections, at lower velocities they exhibit maxima whereas the experimental cross sections tend to decrease toward lower velocities indicating the same similarity with electron scattering cross section observed above the threshold. Our preliminary results for Ps-N2 scattering confirm experimental observation of a resonance similar to the ∏ g resonance in electron-N2 scattering.

  20. Measurements of scattering processes in negative ion-atom collisions: Progress report, 1 September 1988--31 August 1989

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1989-01-01

    The main emphasis of this research effort is the simultaneous study of several of the scattering processes that occur in negative ion-atom collisions. These include: elastic scattering, target excitation/ionization, single electron detachment, and double electron detachment. The measurements will provide absolute total and differential cross sections for the aforementioned processes. These are extremely valuable in providing stringent tests of the approximations used in the various theoretical calculations. This period covers the first year of the grant and the vast majority of the activity was directed toward construction of the apparatus needed to carry out the proposed measurements. Progress toward these goals are summarized. 2 refs., 1 fig

  1. Atomic force microscopy and light scattering study of onion-type micelles formed by polystyrene-block-poly(2-vinylpyridine) and poly(2-vinylpyridine)-block-poly(ethylene oxide) copolymers in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Štěpánek, M.; Uchman, M.; Procházka, K.; Špírková, Milena

    2006-01-01

    Roč. 71, č. 5 (2006), s. 723-738 ISSN 0010-0765 R&D Projects: GA ČR GA203/04/0490; GA AV ČR IAA400500505 Grant - others:Marie Curie Research and Training Network(XE) 505 027 POLYAMPHI Institutional research plan: CEZ:AV0Z40500505 Keywords : atomic force microscopy * light scattering * polymer micelles Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.881, year: 2006

  2. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  3. Potentials and scattering cross sections for collisions of He atoms with adsorbed CO

    International Nuclear Information System (INIS)

    Liu, W.K.; Gumhalter, B.

    1986-05-01

    Ab initio calculations of the total scattering cross section for the collision system He → CO/Pt(111) within the renormalized distorted wave Born approximation are reported. The interaction potential for this atom-adsorbate system consists of the usual two-body gas phase-like potential as well as two additional substrate mediated van de Waals contributions, all with similar long range behaviour. Comparison of the calculated cross sections for various incident velocities and angles with available experimental data is made without using any adjustable parameters to fit the data, and the importance of including the substrate-mediated forces is emphasized. (author)

  4. Contributions to atomic microdynamics study in some liquid metals by means of soft neutrons scattering

    International Nuclear Information System (INIS)

    Rotarescu, G.

    1981-01-01

    Measurements of inelastic scattering of soft neutrons on Bi and liquid Pb, applying all the necessary corrections in view of obtaining the dYnamic structure factor S(Q,ω) were performed. The F(Q,t) function of intermediate scattering was obtained by means of the Fourier transformation of S(Q,ω). Special attention was devoted to one multiple scattering correction, especially at small scattering angles, taking into account its influence on the results. A comparison of the experimental results with three recent theoretical models has shown a good agreement in the range of intermediate and high Q values. Measurements of neutron inelastic scattering on liquid sodium at a temperature of 233 Cdeg within a momentum transfer range of 1 A -1 -1 were performed. The scattering law S(α,β) that was compared to a series of theoretical models has been determined from the experimental data. The validity of the theoretical models for different ranges of energy and momenta was thoroughly checked. S(α,β) was calculated for each type of scattering since sodium proves a mixed, coherent and incoherent scattering agent. A study on the influence of the even interaction potential upon the S(Q,ω) dynamic structure factor, the fourth order momentum ω 4 (Q) and uoon the spectral function C(Q,ω) of longitudinal current correlations was performed. For this purpose, four potentials with oscillations at great distances and a Lennard-Jones type potential were used. (author)

  5. Determination of frequencies of atomic oscillations along the fourth order symmetry axis in indium arsenide according to thermal diffusion scattering of X-rays

    International Nuclear Information System (INIS)

    Orlova, N.S.

    1978-01-01

    Intensity of diffusion scattering of X-rays from the plane of a monocrystal of indium arsenide has been measured on the monochromatized CuKsub(α)-radiation. The samples are made of Cl indium arsenide monocrystal of the n-type with the 1x10 18 cm -3 concentration of carriers in the form of a plate with the polished parallel cut-off with the +-5' accuracy. The investigations have been carried out on the URS-5 IM X-ray diffractometer at room temperature in vacuum. Intensities of thermal diffusion scattering of the second order have been calculated by the two-atomic chain model with different mass and four interaction paramaters. Based upon the analysis of intensity of single-phonon diffusion scattering the curves of frequencies of atomic oscillations along the direction [100] have been determined. The values of frequencies obtained experimentally on the thermal diffusion scattering of X-rays are in a satisfactory agreement with the calculated data. The frequencies obtained are compared with the results of calculation and the analysis of multiphonon spectra of IR-absorption made elsewhere

  6. Single Crystal Diffuse Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  7. An investigation of accelerator head scatter and output factor in air

    International Nuclear Information System (INIS)

    Ding, George X.

    2004-01-01

    Our purpose in this study was to investigate whether the Monte Carlo simulation can accurately predict output factors in air. Secondary goals were to study the head scatter components and investigate the collimator exchange effect. The Monte Carlo code, BEAMnrc, was used in the study. Photon beams of 6 and 18 MV were from a Varian Clinac 2100EX accelerator and the measurements were performed using an ionization chamber in a mini-phantom. The Monte Carlo calculated in air output factors was within 1% of measured values. The simulation provided information of the origin and the magnitude of the collimator exchange effect. It was shown that the collimator backscatter to the beam monitor chamber played a significant role in the beam output factors. However the magnitude of the scattered dose contributions from the collimator at the isocenter is negligible. The maximum scattered dose contribution from the collimators was about 0.15% and 0.4% of the total dose at the isocenter for a 6 and 18 MV beam, respectively. The scattered dose contributions from the flattening filter at the isocenter were about 0.9-3% and 0.2-6% of the total dose for field sizes of 4x4 cm 2 -40x40 cm 2 for the 6 and 18 MV beam, respectively. The study suggests that measurements of head scatter factors be done at large depth well beyond the depth of electron contamination. The insight information may have some implications for developing generalized empirical models to calculate the head scatter

  8. Neutron scattering by anharmonic crystals and the effect of sublattice displacements

    International Nuclear Information System (INIS)

    Viswanathan, K.S.; Phillip, Jacob

    1979-01-01

    A theory has been described for the scattering of neutrons by anharmonic crystals, for which terms of the type Vsup(3) (k 1 j 1 ;-k 1 j 1 ;aj) which contribute to the sublattice displacements are not neglected. It is shown that the sublattice displacements will modify the phase factor arising from the scattering by any atom in the unit cell, and the Debye-Waller factor also gets altered both by the sublattice displacements as well as by higher order terms arising from anharmonicity. (author)

  9. Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts

    Science.gov (United States)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.

    2017-08-01

    We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.

  10. Temperature- and density-dependent x-ray scattering in a low-Z plasma

    International Nuclear Information System (INIS)

    Brown, R.T.

    1976-06-01

    A computer program is described which calculates temperature- and density-dependent differential and total coherent and incoherent x-ray scattering cross sections for a low-Z scattering medium. Temperature and density are arbitrary within the limitations of the validity of local thermodynamic equilbrium, since ionic populations are calculated under this assumption. Scattering cross sections are calculated in the form factor approximation. The scattering medium may consist of any mixure of elements with Z less than or equal to 8, with this limitation imposed by the availability of atomic data

  11. High-resolution inelastic X-ray scattering to study the high-frequency atomic dynamics of disordered systems

    International Nuclear Information System (INIS)

    Monaco, G.

    2008-01-01

    The use of momentum-resolved inelastic X-ray scattering with meV energy resolution to study the high-frequency atomic dynamics in disordered systems is here reviewed. The typical realization of this experiment is described together with some common models used to interpret the measured spectra and to extract parameters of interest for the investigation of disordered systems. With the help of some selected examples, the present status of the field is discussed. Particular attention is given to those results which are still open for discussion or controversial, and which will require further development of the technique to be fully solved. Such an instrumental development seems nowadays possible at the light of recently proposed schemes for advanced inelastic X-ray scattering spectrometers. (author)

  12. Thomson scattering using an atomic notch filter

    NARCIS (Netherlands)

    Bakker, L.P.; Freriks, J.M.; Hoog, de F.J.; Kroesen, G.M.W.

    2000-01-01

    One of the biggest problems in performing Thomson scattering experiments in low-density plasmas is the very high stray light intensity in comparison with the Thomson scattering intensity. This problem is especially present in fluorescent lamps because of the proximity of the glass tube. We propose

  13. Inelastic neutron scattering from clusters

    International Nuclear Information System (INIS)

    Gudel, H.U.

    1985-01-01

    Magnetic excitations in clusters of paramagnetic ions have non-vanishing cross-sections for inelastic neutron scattering (INS). Exchange splittings can be determined, the temperature dependence of exchange can be studied, intra- and intercluster effects can be separated and magnetic form factors determined. INS provides a more direct access to the molecular properties than bulk techniques. Its application is restricted to complexes with no or few (< 10%) hydrogen atoms

  14. Light scattering studies of solids and atomic vapors

    International Nuclear Information System (INIS)

    Chiang, T.C.

    1978-09-01

    The general technique of light scattering and luminescence was used to study the properties of a number of material systems. First, multi-phonon resonant Raman scattering up to four phonons in GaSe and one- and two-phonon resonant Raman scattering in the mixed GaS/sub x/Se/sub 1-x/ crystals with x 2 is reported. The result is used to determine the position of the direct gap of HfS 2 . Third, the first observation of the π-polarized one-magnon luminescence sideband of the 4 T/sub lg/ ( 4 G) → 6 A/sub lg/( 6 S) excitonic transition in antiferromagnetic MnF 2 is presented. An effective temperature of the crystal is deduced from the simultaneously observed anti-Stokes sideband emission. Multi-magnon ( 2 , KMnF 2 , and RbMnF 3 using pulsed excitation and detection. A simple model based on two-ion local exchange is proposed to explain the results qualitatively. Fourth, the first observation of two-magnon resonant Raman scattering in MnF 2 around the magnon sidebands is reported. A simple theoretical description explains the experimental observations. Fifth, a detailed theory of exciton-exciton interaction in MnF 2 is developed to explain and to predict the experimental results on two-exciton absorption, high level excitation, and exciton--exciton scattering. Sixth, Brillouin scattering was used to obtain the five independent elastic constants of the layered compound GaSe. The results show clear elastic anisotropy of the crystal. Resonant Brillouin scattering near the absorption edge was also studied, but no resonant enhancement was found. Seventh, two-photon parametric scattering in sodium vapor was studied. Phase matching angles and scattering cross sections are calculated for a given set of experimental conditions

  15. Anomalous x-ray scattering

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references

  16. He atom surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    1992-01-01

    Investigations have focused primarily on surface structure and dynamics of ionic insulators, epitaxial growth onto alkali halide crystals and multiphoton studies. The surface dynamics of RbCl has been re-examined. We have developed a simple force constant model which provides insight into the dynamics of KBr overlayers on NaCl(001), a system with a large lattice mismatch. The KBr/NaCl(001) results are compared to Na/Cu(001) and NaCl/Ge(001). We have completed epitaxial growth experiments for KBr onto RbCl(001). Slab dynamics calculations using a shell model for this system with very small lattice mismatch are being carried out in collaboration with Professor Manson of Clemson University and with Professor Schroeder in Regensburg, Germany. Extensive experiments on multiphoton scattering of helium atoms onto NaCl and, particularly, LiF have been carried out and the theory has been developed to a rather advanced stage by Professor Manson. This work will permit the extraction of more information from time-of-flight spectra. It is shown that the theoretical model provides a very good description of the multiphoton scattering from organic films. Work has started on self-assembling organic films on gold (alkyl thiols/Au(111)). We have begun to prepare and characterize the gold crystal; one of the group members has spent two weeks at the Oak Ridge National Laboratory learning the proper Au(111) preparation techniques. One of our students has carried out neutron scattering experiments on NiO, measuring both bulk phonon and magnon dispersion curves

  17. Structure factor of dimyristoylphosphatidylcholine unilamellar vesicles: small-angle x-ray scattering study

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Aksenov, V.L.; Lombardo, D.; Kisselev, A.M.; Lesieur, P.

    2003-01-01

    Small-angle X-ray scattering (SAXS) experiments have been performed on dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles in 40% aqueous sucrose solution. Model of separated form factors was applied for the evaluation of SAXS curves from large unilamellar vesicles. For the first time vesicle structure factor, polydispersity, average radius and membrane thickness were calculated simultaneously from the SAXS curves at T=30 deg C for DMPC concentrations in the range from 15 to 75 mM (1-5% w/w). Structure factor correction to the scattering curve was shown to be negligibly small for the lipid concentration of 15 mM (1% w/w). It was proved to be necessary to introduce structure factor correction to the scattering curves for lipid concentrations ≥ 30 mM (2% w/w)

  18. Structure Factor of Dimyristoylphosphatidylcholine Unilamellar Vesicles Small-Angle X-Ray Scattering Study

    CERN Document Server

    Kiselev, M A; Kisselev, A M; Lesieur, P; Aksenov, V L

    2003-01-01

    Small-angle X-ray scattering (SAXS) experiments have been performed on dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles in 40 % aqueous sucrose solution. Model of separated form factors was applied for the evaluation of SAXS curves from large unilamellar vesicles. For the first time vesicle structure factor, polydispersity, average radius and membrane thickness were calculated simultaneously from the SAXS curves at T=306{\\circ}C for DMPC concentrations in the range from 15 to 75 mM (1-5 % w/w). Structure factor correction to the scattering curve was shown to be negligibly small for the lipid concentration of 15 mM (1 % w/w). It was proved to be necessary to introduce structure factor correction to the scattering curves for lipid concentrations {\\ge}30 mM (2 % w/w).

  19. Simulations of the azimuthal distribution of low-energy H atoms scattered off Ag(1 1 0) at grazing incidence: DFT many-body versus model pair potentials

    CERN Document Server

    Cafarelli, P; Benazeth, C; Nieuwjaer, N; Lorente, N

    2003-01-01

    We compare the azimuthal distribution of H atoms after scattering off Ag(1 1 0) obtained by molecular dynamics with different H-Ag(1 1 0) potential energy surfaces (PES) and experimental results. We use grazing incident H atoms and low energies (up to 4 keV). Density functional theory (DFT) calculations are performed for the static case of an H atom in front of an Ag(1 1 0) surface. The surface is represented by an 8-atom slab, and the H atoms form 1x1 and 2x2 supercells. The generalized gradient approximation is used. Classical trajectories are evaluated on the obtained PES, and the azimuthal distribution of the scattered atoms is calculated. Good agreement with experiment is obtained which gives us some confidence in the correct description of the system at low energies by the static DFT calculations. These results are also compared with pair-potential calculations. The accuracy of trajectories may be important for the correct evaluation of charge transfer, energy loss and straggling during ion-surface coll...

  20. On the Scattering of the Electron off the Hydrogen Atom and the Helium Ion Below and Above the Ionization Threshold: Temkin–Poet Model

    International Nuclear Information System (INIS)

    Yarevsky, E.; Yakovlev, S. L.; Volkov, M. V.; Elander, N.

    2014-01-01

    We generalize here the splitting approach to the long range (Coulomb) interaction for the three body scattering problem. With this approach, the exterior complex rotation technique can be applied for systems with asymptotic Coulomb interaction. We illustrate the method with calculations of the electron scattering on the hydrogen atom and positive helium ion in the frame of the Temkin–Poet model. (author)

  1. On the Scattering of the Electron off the Hydrogen Atom and the Helium Ion Below and Above the Ionization Threshold: Temkin-Poet Model

    Science.gov (United States)

    Yarevsky, E.; Yakovlev, S. L.; Elander, N.; Volkov, M. V.

    2014-08-01

    We generalize here the splitting approach to the long range (Coulomb) interaction for the three body scattering problem. With this approach, the exterior complex rotation technique can be applied for systems with asymptotic Coulomb interaction. We illustrate the method with calculations of the electron scattering on the hydrogen atom and positive helium ion in the frame of the Temkin-Poet model.

  2. Pressure shifts and electron scattering in atomic and molecular gases

    International Nuclear Information System (INIS)

    Rupnik, K.; McGlynn, S.P.; Asaf, U.

    1994-01-01

    In this work, the authors focus on one aspect of Rydberg electron scattering, namely number density effects in molecular gases. The recent study of Rydberg states of CH 3 I and C 6 H 6 perturbed by H 2 is the first attempt to investigate number density effects of a molecular perturber on Rydberg electrons. Highly excited Rydberg states, because of their ''large orbital'' nature, are very sensitive to the surrounding medium. Photoabsorption or photoionization spectra of CH 3 I have also been measured as a function of perturber pressure in 11 different binary gas mixtures consisting of CH 3 I and each one of eleven different gaseous perturbers. Five of the perturbers were rare gases (He, Ne, Ar, Kr, Xe) and six were non-dipolar molecules (H 2 , CH 4 , N 2 , C 2 H 6 , C 3 H 8 ). The goal of this work is to underline similarities and differences between atomic and molecular perturbers. The authors first list some results of the molecular study

  3. Forbidden Raman scattering processes. I. General considerations and E1--M1 scattering

    International Nuclear Information System (INIS)

    Harney, R.C.

    1979-01-01

    The generalized theory of forbidden Raman scattering processes is developed in terms of the multipole expansion of the electromagnetic interaction Hamiltonian. Using the general expressions, the theory of electric dipole--magnetic dipole (E1--M1) Raman scattering is derived in detail. The 1 S 0 → 3 P 1 E1--M1 Raman scattering cross section in atomic magnesium is calculated for two applicable laser wavelengths using published f-value data. Since resonantly enhanced cross sections larger than 10 -29 cm 2 /sr are predicted it should be possible to experimentally observe this scattering phenomenon. In addition, by measuring the frequency dependence of the cross section near resonance, it may be possible to directly determine the relative magnitudes of the Axp and AxA contributions to the scattering cross section. Finally, possible applications of the effect in atomic and molecular physics are discussed

  4. Macroscopic folded form factors for 12C + 12C inelastic scattering

    International Nuclear Information System (INIS)

    Rickertsen, L.D.; Satchler, G.R.; Stokstad, R.G.; Wieland, R.M.

    1976-01-01

    The angular distributions for the scattering of carbon-12 from carbon-12 at 117.1 MeV are shown as is also the result of coupled-channel calculations for the elastic and inelastic scattering using these folded form factors

  5. Improved scatter correction with factor analysis for planar and SPECT imaging

    Science.gov (United States)

    Knoll, Peter; Rahmim, Arman; Gültekin, Selma; Šámal, Martin; Ljungberg, Michael; Mirzaei, Siroos; Segars, Paul; Szczupak, Boguslaw

    2017-09-01

    Quantitative nuclear medicine imaging is an increasingly important frontier. In order to achieve quantitative imaging, various interactions of photons with matter have to be modeled and compensated. Although correction for photon attenuation has been addressed by including x-ray CT scans (accurate), correction for Compton scatter remains an open issue. The inclusion of scattered photons within the energy window used for planar or SPECT data acquisition decreases the contrast of the image. While a number of methods for scatter correction have been proposed in the past, in this work, we propose and assess a novel, user-independent framework applying factor analysis (FA). Extensive Monte Carlo simulations for planar and tomographic imaging were performed using the SIMIND software. Furthermore, planar acquisition of two Petri dishes filled with 99mTc solutions and a Jaszczak phantom study (Data Spectrum Corporation, Durham, NC, USA) using a dual head gamma camera were performed. In order to use FA for scatter correction, we subdivided the applied energy window into a number of sub-windows, serving as input data. FA results in two factor images (photo-peak, scatter) and two corresponding factor curves (energy spectra). Planar and tomographic Jaszczak phantom gamma camera measurements were recorded. The tomographic data (simulations and measurements) were processed for each angular position resulting in a photo-peak and a scatter data set. The reconstructed transaxial slices of the Jaszczak phantom were quantified using an ImageJ plugin. The data obtained by FA showed good agreement with the energy spectra, photo-peak, and scatter images obtained in all Monte Carlo simulated data sets. For comparison, the standard dual-energy window (DEW) approach was additionally applied for scatter correction. FA in comparison with the DEW method results in significant improvements in image accuracy for both planar and tomographic data sets. FA can be used as a user

  6. A versatile atomic number correction for electron-probe microanalysis

    International Nuclear Information System (INIS)

    Love, G.; Cox, M.G.; Scott, V.D.

    1978-01-01

    A new atomic number correction is proposed for quantitative electron-probe microanalysis. Analytical expressions for the stopping power S and back-scatter R factors are derived which take into account atomic number of the target, incident electron energy and overvoltage; the latter expression is established using Monte Carlo calculations. The correct procedures for evaluating S and R for multi-element specimens are described. The new method, which overcomes some limitations inherent in earlier atomic number corrections, may readily be used where specimens are inclined to the electron beam. (author)

  7. Consequences of the factorization hypothesis in nucleon-nucleon, $\\gamma p and \\gamma \\gamma$ scattering

    CERN Document Server

    Block, Martin M

    2002-01-01

    Using an eikonal structure for the scattering amplitude, factorization theorems for nucleon-nucleon, gamma p and gamma gamma scattering at high energies have been derived, using only some very general assumptions. Using a QCD-inspired eikonal analysis of nucleon-nucleon scattering, we present here experimental confirmation for factorization of cross sections, nuclear slope parameters B and rho -values (ratio of real to imaginary portion of forward scattering amplitudes), showing that: 1) the three factorization theorems of Block and Kaidalov [2000] hold, 2) the additive quark model holds to approximately=1%, and 3) vector dominance holds to better than approximately=4%. Predictions for the total cross section, elastic cross section and other forward scattering parameters at the LHC (14 TeV) are given. (12 refs).

  8. Measurement of the pi K atom lifetime and the pi K scattering length

    Czech Academy of Sciences Publication Activity Database

    Adeva, B.; Afanasyev, L.; Allkofer, Y.; Amsler, C.; Anania, A.; Aogaki, S.; Benelli, A.; Brekhovskikh, V.; Čechák, T.; Federičová, P.; Hons, Zdeněk; Klusoň, J.; Lednický, Richard; Martinčík, J.; Průša, P.; Smolík, J.; Trojek, T.; Urban, T.; Vrba, T.

    2017-01-01

    Roč. 96, č. 5 (2017), č. článku 052002. ISSN 2470-0010 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : DIRAC collaboration * atom lifetime * cross sections Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BE - Theoretical Physics (FZU-D) OBOR OECD: Nuclear physics; Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) (FZU-D) Impact factor: 4.568, year: 2016

  9. On the exchange of orbital angular momentum between twisted photons and atomic electrons

    International Nuclear Information System (INIS)

    Davis, Basil S; Kaplan, L; McGuire, J H

    2013-01-01

    We obtain an expression for the matrix element for scattering of a twisted (Laguerre–Gaussian profile) photon from a hydrogen atom. We consider photons incoming with an orbital angular momentum (OAM) of ℓħ, carried by a factor of e iℓϕ not present in a plane-wave or pure Gaussian profile beam. The nature of the transfer of +2ℓ units of OAM from the photon to the azimuthal atomic quantum number of the atom is investigated. We obtain simple formulas for these OAM flip transitions for elastic forward scattering of twisted photons when the photon wavelength λ is large compared with the atomic target size a, and small compared with the Rayleigh range z R , which characterizes the collimation length of the twisted photon beam. (paper)

  10. Atomic substitution effects on the structural and vibrational properties of Ni{sub x}Pb{sub 1-x}TiO{sub 3}: X-ray diffraction and Raman scattering investigations

    Energy Technology Data Exchange (ETDEWEB)

    Costa, R. C. da [Universidade Federal de São Carlos, Departamento de Física, São Carlos-SP, 13565-905 (Brazil); Universidade Federal de Campina Grande, Pombal-PB, 58840-000 (Brazil); Toledo, T. A. de; Pizani, P. S., E-mail: pizani@df.ufscar.br [Universidade Federal de São Carlos, Departamento de Física, São Carlos-SP, 13565-905 (Brazil); Espinosa, J. W. M. [Universidade Federal de Goiás, Engenharia de Produção, Catalão-GO, 75704-020 (Brazil)

    2015-07-15

    The effects of the atomic substitution of Pb by Ni in the PbTiO{sub 3} ferroelectric perovskite on the vibrational and structural properties was studied using x-ray diffraction and Raman scattering. It was observed that for Ni concentrations between 0.0 and 0.4, there is the formation of a solid solution with reduction of the Raman wavenumber of the E(TO1) soft mode and the tetragonallity factor, which influence directly the temperature of the tetragonal ferroelectric to cubic paraelectric phase transition, the Curie temperature. For concentrations greater than 0.4, it is observed the formation of a PbTiO{sub 3} and NiTiO{sub 3} composite, denounced by the recovering of the both, tetragonallity factor and the E(TO1) soft mode wavenumber. The values of the Curie temperatures were estimated by the Raman scattering measurements for temperatures ranging from 300 to 950 K.

  11. Coherence factors in a high-tc cuprate probed by quasi-particle scattering off vortices.

    Science.gov (United States)

    Hanaguri, T; Kohsaka, Y; Ono, M; Maltseva, M; Coleman, P; Yamada, I; Azuma, M; Takano, M; Ohishi, K; Takagi, H

    2009-02-13

    When electrons pair in a superconductor, quasi-particles develop an acute sensitivity to different types of scattering potential that is described by the appearance of coherence factors in the scattering amplitudes. Although the effects of coherence factors are well established in isotropic superconductors, they are much harder to detect in their anisotropic counterparts, such as high-superconducting-transition-temperature cuprates. We demonstrate an approach that highlights the momentum-dependent coherence factors in Ca2-xNaxCuO2Cl2. We used Fourier-transform scanning tunneling spectroscopy to reveal a magnetic-field dependence in quasi-particle scattering interference patterns that is sensitive to the sign of the anisotropic gap. This result is associated with the d-wave coherence factors and quasi-particle scattering off vortices. Our technique thus provides insights into the nature of electron pairing as well as quasi-particle scattering processes in unconventional superconductors.

  12. ENDF/B-6 Photon Atomic Interaction Data Library

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1990-09-01

    The ENDF/B-6 version of the Photo-Atomic Interaction Data Library of the Livermore Evaluated Photon Data Library (EPDL) contains pair and triplet cross-sections, photoelectric cross-sections, atom form factors, coherent scattering cross-sections and some other data for all the elements from Z=1 to 100. The data library is available on magnetic tape costfree from the IAEA Nuclear Data Section. The library supersedes the earlier photo-atomic data library by the US Radiation Shielding Information Center RSIC that was included in the data libraries ENDF/B-5 and JEF-1. (author). Refs, figs and tabs

  13. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  14. Atom loss resonances in a Bose-Einstein condensate.

    Science.gov (United States)

    Langmack, Christian; Smith, D Hudson; Braaten, Eric

    2013-07-12

    Atom loss resonances in ultracold trapped atoms have been observed at scattering lengths near atom-dimer resonances, at which Efimov trimers cross the atom-dimer threshold, and near two-dimer resonances, at which universal tetramers cross the dimer-dimer threshold. We propose a new mechanism for these loss resonances in a Bose-Einstein condensate of atoms. As the scattering length is ramped to the large final value at which the atom loss rate is measured, the time-dependent scattering length generates a small condensate of shallow dimers coherently from the atom condensate. The coexisting atom and dimer condensates can be described by a low-energy effective field theory with universal coefficients that are determined by matching exact results from few-body physics. The classical field equations for the atom and dimer condensates predict narrow enhancements in the atom loss rate near atom-dimer resonances and near two-dimer resonances due to inelastic dimer collisions.

  15. Theory of the particle matrix elements for Helium atom scattering in surfaces

    International Nuclear Information System (INIS)

    Khater, A.; Toennies, J.P.

    2000-01-01

    Full text.A brief review is presented for the recent development of the theory of the particle transition matrix elements, basic to the cross section for Helium and inert particle scattering at thermal energies in solid surfaces. the Jackson and Mott matrix elements are presented and discussed for surface scattering processes, habitually classified as elastic and inelastic. Modified transition matrix elements, introduced originally to account for the cut-off effects, are presented in a direct and simple manner. the Debye-Waller factor is introduced and discussed. A recent calculation for the particle transition matrix elements is presented for the specular and inelastic transition matrix elements and the corresponding inelastic scattering cross section is compared in detail to experimental data. the specular and inelastic transition matrix elements are found to be intrinsically similar owing to the intermediate role of a proposed virtual particle squeezed state near the surface

  16. Energy-related atomic and molecular structure and scattering studies. Annual report, June 1, 1985-May 31, 1986

    International Nuclear Information System (INIS)

    Bederson, B.

    1986-01-01

    This is the Annual Report for the period June 1, 1985 to May 31, 1986 for ''Energy-Related Atomic and Molecular Structure and Scattering Studies''. During the past year our efforts were concentrated on two specific experiments. These were (1) an attempt to measure the polarizability of the optically pumped excited state of thallium 6s6p 2 P/sub 3/2/, including its tensor components, and (2) a study of the differential scattering at small angles of electrons at low energies by several alkali halide molecules. In the thallium experiment we have performed some preliminary measurements, although we have temporarily discontinued these in order to update the beams machine upon which this experiment is being performed. 13 refs., 16 figs

  17. Matter-wave localization in disordered cold atom lattices.

    Science.gov (United States)

    Gavish, Uri; Castin, Yvan

    2005-07-08

    We propose to observe Anderson localization of ultracold atoms in the presence of a random potential made of atoms of another species or spin state and trapped at the nodes of an optical lattice, with a filling factor less than unity. Such systems enable a nearly perfect experimental control of the disorder, while the possibility of modeling the scattering potentials by a set of pointlike ones allows an exact theoretical analysis. This is illustrated by a detailed analysis of the one-dimensional case.

  18. Universality of soft and collinear factors in hard-scattering factorization

    International Nuclear Information System (INIS)

    Collins, John C.; Metz, Andreas

    2004-01-01

    Universality in QCD factorization of parton densities, fragmentation functions, and soft factors is endangered by the process dependence of the directions of Wilson lines in their definitions. We find a choice of directions that is consistent with factorization and that gives universality between e + e - annihilation, semi-inclusive deep-inelastic scattering, and the Drell-Yan process. Universality is only modified by a time-reversal transformation of the soft function and parton densities between Drell-Yan and the other processes, whose only effect is the known reversal of sign for T-odd parton densities such as the Sivers function. The modifications of the definitions needed to remove rapidity divergences with lightlike Wilson lines do not affect the results

  19. Rayleigh scattering in the atmospheres of hot stars

    Czech Academy of Sciences Publication Activity Database

    Fišák, J.; Krtička, J.; Munzar, D.; Kubát, Jiří

    2016-01-01

    Roč. 590, June (2016), A95/1-A95/6 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-02385S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:67985815 Keywords : atomic processes * scattering * stars: chemically peculiar Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  20. Scattering theory

    CERN Document Server

    Friedrich, Harald

    2016-01-01

    This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...

  1. Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential

    International Nuclear Information System (INIS)

    Liang, Z.X.; Zhang, Z.D.; Liu, W.M.

    2005-01-01

    We present a family of exact solutions of the one-dimensional nonlinear Schroedinger equation which describes the dynamics of a bright soliton in Bose-Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic potential. Our results show that, under a safe range of parameters, the bright soliton can be compressed into very high local matter densities by increasing the absolute value of the atomic scattering length, which can provide an experimental tool for investigating the range of validity of the one-dimensional Gross-Pitaevskii equation. We also find that the number of atoms in the bright soliton keeps dynamic stability: a time-periodic atomic exchange is formed between the bright soliton and the background

  2. The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Christopher Matthew [Univ. of Virginia, Charlottesville, VA (United States)

    2001-05-01

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (15NH3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH3. The asymmetry, Ap, has been used to determine the proton elastic form factor GEp. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.

  3. Convergent Close-Coupling Calculations for Electron-Atom and Electron-Molecule Scattering

    International Nuclear Information System (INIS)

    Fursa, Dmitry; Zammit, M.C.; Bostock, C.J.; Bray, I.

    2014-01-01

    The Convergent Close-Coupling (CCC) method developed in our group has been applied extensively to study electron-atom/ion collisions and recently has been extended to electron collisions with diatomic molecules. This approach relies on the ability to represent the infinite number of target bound states and its continuum via a finite number of states obtained by a diagonalization of the target in a square-integrable (Sturmian) one-electron basis. We normally use a Laguerre basis though other choices are possible, for example a boxed-based basis or a B-spline basis. The choice of the basis is governed by the physical problem under consideration. As the size of a Sturmian basis increases the calculated negative energy states (relative to the corresponding ionization stage of the target) converge to the target true bound states and the positive energy states provide an increasingly dense representation of the target continuum. We then perform a multichannel expansion of the total (projectile plus target electrons) wave function and formulate a set of close-coupling equations. These equations are transformed into momentum space where they take the form of the Lippmann-Schwinger equations for the T-matrix. A solution of the T-matrix equations is obtained at each total energy E by converting them into a set of linear equations that are solved by standard techniques. We perform a partial-wave expansion of the projectile wave function and take into account the symmetry of the scattering system (e.g, total spin, parity, etc.) in order to reduce the size of the coupled equations and make calculations feasible. As soon as the T-matrix is obtained we can evaluate scattering amplitudes and cross sections for the transitions of interest. For the case of molecular targets the formulation is done within the fixed-nuclei approximation. We adopt a single-centre approach in CCC calculations. This allows us to utilize a great deal of computational development thoroughly tested for

  4. Bag-model analyses of proton-antiproton scattering and atomic bound states

    International Nuclear Information System (INIS)

    Alberg, M.A.; Freedman, R.A.; Henley, E.M.; Hwang, W.P.; Seckel, D.; Wilets, L.

    1983-01-01

    We study proton-antiproton (pp-bar ) scattering using the static real potential of Bryan and Phillips outside a cutoff radius rsub0 and two different shapes for the imaginary potential inside a radius R*. These forms, motivated by bag models, are a one-gluon-annihilation potential and a simple geometric-overlap form. In both cases there are three adjustable parameters: the effective bag radius R*, the effective strong coupling constant αsubssup*, and rsub0. There is also a choice for the form of the real potential inside the cutoff radius rsub0. Analysis of the pp-bar scattering data in the laboratory-momentum region 0.4--0.7 GeV/c yields an effective nucleon bag radius R* in the range 0.6--1.1 fm, with the best fit obtained for R* = 0.86 fm. Arguments are presented that the deduced value of R* is likely to be an upper bound on the isolated nucleon bag radius. The present results are consistent with the range of bag radii in current bag models. We have also used the resultant optical potential to calculate the shifts and widths of the sup3Ssub1 and sup1Ssub0 atomic bound states of the pp-bar system. For both states we find upward (repulsive) shifts and widths of about 1 keV. We find no evidence for narrow, strongly bound pp-bar states in our potential model

  5. Absorptive form factors for high-energy electron diffraction

    International Nuclear Information System (INIS)

    Bird, D.M.; King, Q.A.

    1990-01-01

    The thermal diffuse scattering contribution to the absorptive potential in high-energy electron diffraction is calculated in the form of an absorptive contribution to the atomic form factor. To do this, the Einstein model of lattice vibrations is used, with isotropic Debye-Waller factors. The absorptive form factors are calculated as a function of scattering vector s and temperature factor M on a grid which enables polynomial interpolation of the results to be accurate to better than 2% for much of the ranges 0≤Ms 2 ≤6 and 0≤M≤2 A 2 . The computed values, together with an interpolation routine, have been incorporated into a Fortran subroutine which calculates both the real and absorptive form factors for 54 atomic species. (orig.)

  6. Numerical computations of the Lennard-Jones resonances and ''relative displacements'' of the scattered atomic beams from the system He/LiF(001)

    International Nuclear Information System (INIS)

    Garcia, N.

    1976-01-01

    This paper considers the effect of the attractive part of the interaction potential on the scattering of He atoms from a LiF(001) surface. We calculate, in particular, the Lennard-Jones resonances on the intensities and the phases of the scattered amplitudes, using a square well in the front of a hard corrugated surface model. We show that the amplitudes for incident energies smaller than the depth of the well are dominated by the resonances

  7. Applications of ion scattering in surface analysis

    International Nuclear Information System (INIS)

    Armour, D.G.

    1981-01-01

    The study of ion scattering from surfaces has made an increasingly important contribution both to the development of highly surface specific analysis techniques and to the understanding of the atomic collision processes associated with ion bombardment of solid surfaces. From an analysis point of view, by appropriate choice of parameters such as ion energy and species, scattering geometry and target temperature, it is possible to study not only the composition of the surface layer but also the detailed atomic arrangement. The ion scattering technique is thus particularly useful for the study of surface compositional and structural changes caused by adsorption, thermal annealing or ion bombardment treatments of simple or composite materials. Ion bombardment induced desorption, damage or atomic mixing can also be effectively studied using scattering techniques. By reviewing the application of the technique to a variety of these technologically important surface investigations, it is possible to illustrate the way in which ion scattering has developed as the understanding of the underlying physics has improved. (author)

  8. Scattering of highly excited atoms

    International Nuclear Information System (INIS)

    Raith, W.

    1980-01-01

    Experimental methods to excite atomic beams into Rydberg states and the first results of collision experiments with such beams are reported. For further information see hints under relevant topics. (orig.) [de

  9. A phenomenological π-p scattering length from pionic hydrogen

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Wycech, S.

    2004-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length a h extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order α 2 logα using an extended charge distribution. A hadronic πN scattering length a h π - p =0.0870(5)m π -1 is deduced leading to a πNN coupling constant from the GMO relation g c 2 /(4π)=14.04(17)

  10. Potential-splitting approach applied to the Temkin-Poet model for electron scattering off the hydrogen atom and the helium ion

    Science.gov (United States)

    Yarevsky, E.; Yakovlev, S. L.; Larson, Å; Elander, N.

    2015-06-01

    The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three-body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrödinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.

  11. Unified analysis of pionic atoms and low-energy pion-nuclear scattering: hybrid analysis

    International Nuclear Information System (INIS)

    Seki, R.; Masutani, K.; Yazaki, K.

    1983-01-01

    Using the method of effective nuclear density, we apply a simple, π-nucleus optical potential (without rho 2 terms and the Lorentz-Lorenz effect) to π - atoms and low-energy π-nucleus elastic scatterings. Data of both phenomena are analyzed in a unified, hybrid (phenomenological and theoretical) manner: The π - -atom data are analyzed first to determine phenomenologically the potential parameters at threshold. The parameters are then extrapolated successfully up to 50 MeV incident pion laboratory energy by a microscopic calculation in which the energy-dependence correction is made after including the Fermi-averaging and Pauli-blocking effects. In contrast to other work, our potential includes the minimum number of the parameters that describe the full information content of the data. We can thus conclude that these effects are the important microscopic corrections for the extrapolation, but neither the Lorentz-Lorenz effect nor some highly nonlocal effects are crucial ones. The potential we have used has angular transformation terms which are also found to be crucial in the unified treatment. During the course of this work we have found an interesting behavior of the terms. A short account of its discussion is also presented

  12. Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/c

    Czech Academy of Sciences Publication Activity Database

    Adolph, C.; Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Austregisilio, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.V.; Elia, C.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Heinsius, F.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.; Kolosov, V.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V.; Kotzinian, A.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Morreale, A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Nový, J.; Nowak, W. D.; Nunes, A.S.; Olshevsky, A.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pretz, J.; Quaresma, M.; Quintans, C.; Rajotte, J.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V. K.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlütter, T.; Schmidt, A.; Schmidt, K.; Schmiden, H.; Schmitt, L.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.

    2013-01-01

    Roč. 73, č. 8 (2013), 2531:1-15 ISSN 1434-6044 Institutional support: RVO:68081731 Keywords : hadron * inelastic scattering Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.436, year: 2013

  13. Physics of atoms and molecules

    International Nuclear Information System (INIS)

    Bransden, B.H.; Joachain, C.J.

    1983-01-01

    This book presents a unified account of the physics of atoms and molecules at a level suitable for second- and third-year undergraduate students of physics and physical chemistry. Following a brief historical introduction to the subject the authors outline the ideas and approximation methods of quantum mechanics to be used later in the book. Six chapters look at the structure of atoms and the interactions between atoms and electromagnetic radiation. The authors then move on to describe the structure of molecules and molecular spectra. Three chapters deal with atomic collisions, the scattering of electrons by atoms and the scattering of atoms by atoms. The concluding chapter considers a few of the many important applications of atomic physics within astrophysics, laser technology, and nuclear fusion. Problems are given at the end of each chapter, with hints at the solutions in an appendix. Other appendices include various special topics and derivations together with useful tables of units. (author)

  14. Phonon scattering by isotopic impurities

    International Nuclear Information System (INIS)

    Dacol, D.K.

    1974-06-01

    The effects upon vibrations of a perfect crystal lattice due to the replacement of some of its atoms by isotopes of these atoms are studied. The approach consists in considering the isotopic impurities as scattering centres for the quanta of the elastic waves the objective is to obtain the scattering amplitudes. These amplitudes are obtained through a canonical transformation method which was introduced by Chevalier and Rideau in the study of the Wentzel's model in quantum field theory

  15. Electron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kingston, A.E.; Walters, H.R.J.

    1982-01-01

    The problems of intermediate energy scattering are approached from the low and high energy ends. At low intermediate energies difficulties associated with the use of pseudostates and correlation terms are discussed, special consideration being given to nonphysical pseudoresonances. Perturbation methods appropriate to high intermediate energies are described and attempts to extend these high energy approximations down to low intermediate energies are studied. It is shown how the importance of electron exchange effects develops with decreasing energy. The problem of assessing the 'effective completeness' of pseudostate sets at intermediate energies is mentioned and an instructive analysis of a 2p pseudostate approximation to elastic e - -H scattering is given. It is suggested that at low energies the Pauli Exclusion Principle can act to hide short range defects in pseudostate approximations. (author)

  16. Azimuthal asymmetries of charged hadrons produced by high-energy muons scattered off longitudinally polarised deuterons

    Czech Academy of Sciences Publication Activity Database

    Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Austregisilio, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.; Chaberny, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; Denisov, O.; Dhara, L.; Diaz, V.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Efremov, A.V.; El Alaoui, A.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Friedrich, J.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heinsius, F.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Jouravlev, N. I.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Kondo, K.; Königsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.; Korzenev, A.; Kotzinian, A.; Kouznetsov, O.; Kowalik, K.; Krämer, M.; Kral, A.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Moinester, M.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Nunes, A.S.; Olshevsky, A.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Santos, H.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlütter, T.; Schmitt, L.; Schopferer, S.; Schröder, W.; Shevchenko, O.; Siebert, H.; Silva, L.; Sinha, L.; Sissakian, A.; Slunecka, M.; Smirnov, G.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.; Uhl, S.; Uman, I.; Virius, M.; Vlassov, N.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2010-01-01

    Roč. 70, 1-2 (2010), s. 39-49 ISSN 1434-6044 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : deep-inelastic-scattering * dependent structure-function * single-spin asymmetries * semiinclusive electroproduction * proton-scattering * distributions * leptoproduction * target * dis * nucleons Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.248, year: 2010

  17. Continuum-Coupling in Electron-Atom scattering

    International Nuclear Information System (INIS)

    Ballance, C.P.; Griffin, D.C.; Badnell, N.R.; Loch, S.D.; Pindzola, M.S.

    2004-01-01

    High quality fundamental atomic data provide the foundation of accurate collisional-radiative models of laboratory and astrophysical plasmas. In the SciDAC (Scientific Discovery through Advanced Computing) project entitled 'Terascale Computational Atomic Physics for the Edge Region in Controlled Fusion Plasmas', we employ an integrated approach from the calculation of basic atomic data to the modeling necessary for the interpretation of controlled nuclear fusion experiments. For example, helium electron-impact excitation results support helium puff experiments on the MAST (Mega Ampere Spherical Tokamak) at Culham to diagnose the radial variation in plasma density and temperature. Similarly, electron-impact excitation/ionization work for isonuclear beryllium will prove vital if beryllium is adopted as a surface material for the plasma-facing walls for ITER. Here we will discuss some examples of electron-impact excitation and ionization, where the effects of coupling to and between the target continuum states are large, and advanced close-coupling methods are required in order to generate data of sufficient accuracy

  18. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  19. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  20. Modified Moliere's screening parameter and its impact on multiple coulomb scattering

    International Nuclear Information System (INIS)

    Striganov, Sergei

    2015-01-01

    The Moliere approximation of elastic Coulomb scattering cross-sections plays an important role in accurate description of multiple scattering, non-ionisation energy, DPA radiation damage etc. The cross-section depends only on a single parameter that describes the atomic screening. Moliere calculated the screening angle for the Tomas-Fermi distribution of electrons in atoms. In this paper, the screening parameter was recalculated using a more accurate atomic form-factor obtained from the self-consistent Dirac-Hartree-Fock-Slater computations. For relativistic particles, the new screening angle can differ from the Moliere approximation by up to 50%. At the same time, it is rather close to other independent calculations. At low energies, the new screening angle is different for positrons and electrons. The positron screening parameter is much larger than the electron one for heavy nuclei at energies of ∼Z keV. The impact of the screening angle on particle transport and calculated quantities is discussed. (authors)

  1. Reactive scattering of electronically excited alkali atoms with molecules

    International Nuclear Information System (INIS)

    Mestdagh, J.M.; Balko, B.A.; Covinsky, M.H.; Weiss, P.S.; Vernon, M.F.; Schmidt, H.; Lee, Y.T.

    1987-06-01

    Representative families of excited alkali atom reactions have been studied using a crossed beam apparatus. For those alkali-molecule systems in which reactions are also known for ground state alkali and involve an early electron transfer step, no large differences are observed in the reactivity as Na is excited. More interesting are the reactions with hydrogen halides (HCl): it was found that adding electronic energy into Na changes the reaction mechanism. Early electron transfer is responsible of Na(5S, 4D) reactions, but not of Na(3P) reactions. Moreover, the NaCl product scattering is dominated by the HCl - repulsion in Na(5S, 4D) reactions, and by the NaCl-H repulsion in the case of Na(3P). The reaction of Na with O 2 is of particular interest since it was found to be state specific. Only Na(4D) reacts, and the reaction requires restrictive constraints on the impact parameter and the reactants' relative orientation. The reaction with NO 2 is even more complex since Na(4D) leads to the formation of NaO by two different pathways. It must be mentioned however, that the identification of NaO as product in these reactions has yet to be confirmed

  2. Antiproton-hydrogen scattering at low-eV energies

    International Nuclear Information System (INIS)

    Morgan Jr., D.L.

    1993-01-01

    In the scattering of negative particles other than the electron by atoms at lab-frame energies around 10 eV, an elastic process termed 'brickwall scattering' might lead to a high probability for scattering angles around 180deg. For an antiproton slowing in hydrogen, this backward scattering would result in the loss of nearly all of its energy in a single collision, since it and a hydrogen atom have nearly the same mass. Such energy loss would have a significant effect on the energy distribution of antiprotons at energies where capture by the protons of hydrogen is possible and might, thereby, affect the capture rate and the distribution of capture states. In the semiclassical treatment of the problem with an adiabatic potential energy, brickwall scattering is indeed present, and with a substantial cross section. However, this model appears to underestimate inelastic processes. Based on calculations for negative muons on hydrogen atoms, these processes appear to occur for about the same impact parameters as brickwall scattering and thus substantially reduce its effect. (orig.)

  3. The optical model in atomic physics

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1978-01-01

    The optical model for electron scattering on atoms has quite a short history in comparison with nuclear physics. The main reason for this is that there were insufficient data. Angular distribution for elastic and some inelastic scattering have now been measured for the atoms which exist in gaseous form at reasonable temperatures, inert gases, hydrogen, alkalies and mercury being the main ones out in. The author shows that the optical model makes sense in atomic physics by considering its theory and recent history. (orig./AH) [de

  4. Evidence for $\\pi K$ -atoms with DIRAC-II

    CERN Document Server

    Allkofer, Yves

    2008-01-01

    DIRAC-II is a fixed-target experiment at the CERN Proton Synchroton (PS) which has been designed to search for piK atoms, a bound state of a pi±K± pair, and measure their lifetime. These atoms are observed through an excess of low energetic piK pairs over the background, detected in the two spectrometer arms. This excess comes from the ionization of piK atoms in the target and can be related to their mean life. The piK S-wave scattering length combination |a1/2 - a3/2| (for isospin 1/2 and 3/2) can be related to the latter. The aim of the upgraded DIRAC-II experiment is a measurement of the scattering length combination |a1/2 - a3/2| with a precision of 5%. piK atoms have not been observed so far. The original DIRAC experiment was designed to measure the scattering lengths of pipi atoms. So far, close to 15 000 atoms have been detected, leading to a precision on |a0 - a2| which is better than 10%. In chiral perturbation theories (ChPT) the pipi scattering lengths have been calculated with 2% precision a...

  5. A phenomenological $\\pi^{-}p$ scattering length from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2004-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length a/sup h/ extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order alpha /sup 2/ log alpha using an extended charge distribution. A hadronic pi N scattering length a/sub pi -p//sup h/ = 0.0870(5)m/sub pi //sup -1/ is deduced leading to a pi NN coupling constant from the GMO relation g/sub c //sup 2//(4 pi ) = 14.04(17). (28 refs).

  6. Multichannel analysis of He*(21S)+Ne elastic and inelastic scattering in crossed atomic beams

    International Nuclear Information System (INIS)

    Martin, D.W.; Fukuyama, T.; Siska, P.E.

    1990-01-01

    State-to-state elastic and inelastic angular distribution and time-of-flight measurements are reported for the scattering of He*(2 1 S) by Ne in crossed supersonic atom beams at four collision energies in the range 0.6--2.8 kcal/mol. The inelastic collision products He+Ne*(nl), where nl=3d', 4p, 4p', 5s, 5s', and 4d, are scattered predominantly forward with respect to the direction of incidence, except for endothermic states near threshold. The data are analyzed with a numerically exact multichannel curve-crossing model that yields good agreement with experimental cross section branching fractions and total quenching and state-to-state rate constants as well as the angular measurements. The model suggests the importance of intermediate ''chaperone'' states, in which the excited electron is temporarily trapped in a d or f Rydberg Ne orbital, in channeling flux into the 4s' and 5s' upper laser states of Ne by energy transfer from He*(2s 1,3 S)

  7. Cooperative scattering of scalar waves by optimized configurations of point scatterers

    Science.gov (United States)

    Schäfer, Frank; Eckert, Felix; Wellens, Thomas

    2017-12-01

    We investigate multiple scattering of scalar waves by an ensemble of N resonant point scatterers in three dimensions. For up to N = 21 scatterers, we numerically optimize the positions of the individual scatterers, to maximize the total scattering cross section for an incoming plane wave, on the one hand, and to minimize the decay rate associated to a long-lived scattering resonance, on the other. In both cases, the optimum is achieved by configurations where all scatterers are placed on a line parallel to the direction of the incoming plane wave. The associated maximal scattering cross section increases quadratically with the number of scatterers for large N, whereas the minimal decay rate—which is realized by configurations that are not the same as those that maximize the scattering cross section—decreases exponentially as a function of N. Finally, we also analyze the stability of our optimized configurations with respect to small random displacements of the scatterers. These results demonstrate that optimized configurations of scatterers bear a considerable potential for applications such as quantum memories or mirrors consisting of only a few atoms.

  8. First pi K atom lifetime and pi K scattering length measurements

    Czech Academy of Sciences Publication Activity Database

    Adeva, B.; Afanasyev, L.; Allkofer, Y.; Amsler, C.; Anania, A.; Aogaki, S.; Benelli, A.; Brekhovskikh, V.; Čechák, T.; Chiba, M.; Doškářová, P.; Hons, Zdeněk; Klusoň, J.; Lednický, Richard; Průša, P.; Smolík, J.; Trojek, T.; Urban, T.; Vrba, T.; Zrelov, P.

    2014-01-01

    Roč. 735, JUL (2014), s. 288-294 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) LG13031; GA MŠk LG14004 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : DIRAC * QCD Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BE - Theoretical Physics (FZU-D) Impact factor: 6.131, year: 2014

  9. Effective temperatures and scattering cross sections in water mixtures determined by Deep Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Dawidowski, J.; Rodríguez Palomino, L.A.; Márquez Damián, J.I.; Blostein, J.J.; Cuello, G.J.

    2016-01-01

    Highlights: • Effective temperatures of atoms can be determined by the DINS technique. • This is the first time that such application of this experimental technique is made. • This technique is able to measure the known cross sections of the atoms. • No anomalous cross section was found, at variance with Dreissmann’s et al. claims. - Abstract: The present work shows a series of results of Deep Inelastic Neutron Scattering (DINS) experiments on light and heavy water mixtures performed at the spectrometer VESUVIO (Rutherford Appleton Laboratory, UK) employing an analysis method based on the information provided by individual detectors in forward and backward scattering positions. We investigated the effective temperatures of the different atoms composing the samples, a magnitude of considerable interest for Nuclear Engineering. The peak intensities and their relation with the bound-atom cross sections is analyzed, showing a good agreement with tabulated values which supports the use of this technique as non-destructive mass spectrometry. Previous results in the determination of scattering cross sections by this technique (known in the literature) that were at variance with the present findings are commented.

  10. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-11-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  11. Electrons and atoms in intense laser fields

    International Nuclear Information System (INIS)

    Davidovich, L.

    1982-01-01

    Several non-linear effects that show up when electrons and atoms interact with strong laser fields are considered. Thomson scattering, electron potential scattering in the presence of a laser beam, atomic ionization by strong laser fields, the refraction of electrons by laser beams and the Kapitza-Dirac effect are discussed. (Author) [pt

  12. Two atoms scattering at low and cold energies

    Indian Academy of Sciences (India)

    A modified static-exchange model is developed to study the collision of an atom with another atom. It includes the effect of long-range dipole–dipole van der Waals interaction between two atoms in addition to the exact effect of short-range force due to Coulomb exchange between two system electrons. Both these ...

  13. Quantum theory of scattering

    CERN Document Server

    Wu Ta You

    1962-01-01

    This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examinati

  14. Scope and limitations of high energy electron scattering in obtaining relevant structural information about atoms and molecules

    International Nuclear Information System (INIS)

    Ketkar, S.N.

    1984-01-01

    During the course of this work experiments were undertaken to measure the scattering cross-sections for high energy electrons scattering from various target systems. The experiments can be broadly classified into two categories, one dealing with rather small systems and the other dealing with large systems (at least in the view of physicists). Although the experimental aspects, in so much as the experimental measurement of the intensities of the scattered electron is concerned, is the same for both the cases the motivation for performing the experiment is totally different. In the first case, simple atomic and molecular target systems, namely He, H 2 and D 2 , are used. For such systems, good theoretical framework is available and critical comparisons of experimental cross sections are made with theoretical predictions. Attention is focussed mainly at small momentum transfer (up to 10A -1 ), and correlation and binding effects are studied. In the second case, somewhat larger molecular systems, namely naphthalene, anthraquinone, anthracene and dichromium tetraacetate are used. For such systems attention is focused at large momentum transfer (from 10 to 25 A -1 ) to obtain structural information about the molecules

  15. Absorption factor for cylindrical samples

    International Nuclear Information System (INIS)

    Sears, V.F.

    1984-01-01

    The absorption factor for the scattering of X-rays or neutrons in cylindrical samples is calculated by numerical integration for the case in which the absorption coefficients of the incident and scattered beams are not equal. An extensive table of values having an absolute accuracy of 10 -4 is given in a companion report [Sears (1983). Atomic Energy of Canada Limited, Report No. AECL-8176]. In the present paper an asymptotic expression is derived for the absorption factor which can be used with an error of less than 10 -3 for most cases of interest in both neutron inelastic scattering and neutron diffraction in crystals. (Auth.)

  16. Neutron scattering on partially deuterated polybutadiene

    CERN Document Server

    Kahle, S; Monkenbusch, M; Richter, D; Arbe, A; Colmenero, J; Frick, B

    2002-01-01

    The molecular nature of the secondary relaxation (Johari-Goldstein relaxation) and its relationship with the alpha relaxation is in most cases still unknown. In order to access these processes on a molecular level, it is necessary to obtain spatial information of the relaxation. Through the momentum-transfer dependence of the dynamic structure factor S(Q,t), this information can be provided by quasielastic neutron scattering techniques. The large difference in scattering lengths between hydrogen and deuterium allows us to accentuate specific correlations between atoms in a polymer melt. Here, we report on recent results on a polybutadiene melt, where the double bond was hydrogeneous, while the methylene groups carried deuterons (d4h2-PB). In this way the correlations between the double bonds are emphasised. We will show that the double bond/double bond correlation function, generated in this way, shows the same temperature dependence as the viscosity at higher temperatures at the structure factor peak maximum...

  17. Some applications of the Faddeev-Yakubovsky equations to the cold-atom physics

    International Nuclear Information System (INIS)

    Carbonell, J.; Deltuva, A.; Lazauskas, R.

    2011-01-01

    We present some recent applications of the Faddeev-Yakubovsky equations in describing atomic bound and scattering problems. We consider the scattering of a charged particle X by atomic hydrogen with special interest in X = p,e ± , systems of cold bosonic molecules and the bound and scattering properties of N=3 and N=4 atomic 4 He multimers. (authors)

  18. Optimized coplanar waveguide resonators for a superconductor–atom interface

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M. A., E-mail: mabeck2@wisc.edu; Isaacs, J. A.; Booth, D.; Pritchard, J. D.; Saffman, M.; McDermott, R. [Department of Physics, University Of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-08-29

    We describe the design and characterization of superconducting coplanar waveguide cavities tailored to facilitate strong coupling between superconducting quantum circuits and single trapped Rydberg atoms. For initial superconductor–atom experiments at 4.2 K, we show that resonator quality factors above 10{sup 4} can be readily achieved. Furthermore, we demonstrate that the incorporation of thick-film copper electrodes at a voltage antinode of the resonator provides a route to enhance the zero-point electric fields of the resonator in a trapping region that is 40 μm above the chip surface, thereby minimizing chip heating from scattered trap light. The combination of high resonator quality factor and strong electric dipole coupling between the resonator and the atom should make it possible to achieve the strong coupling limit of cavity quantum electrodynamics with this system.

  19. Molecular-beam scattering

    International Nuclear Information System (INIS)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N 2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl → NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2 2 P/sub 3/2/) and Na(3 2 P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included

  20. A study of energy and effective atomic number dependence of the exposure build-up factors in biological samples

    International Nuclear Information System (INIS)

    Sidhu, G.S.; Singh, P.S.; Mudahar, G.S.

    2000-01-01

    A theoretical method is presented to determine the gamma-radiation build-up factors in various biological materials. The gamma energy range is 0.015-15.0 MeV, with penetration depths up to 40 mean free paths considered. The dependence of the exposure build-up factor on incident photon energy and the effective atomic number (Z eff ) has also been assessed. In a practical analysis of dose burden to gamma-irradiated biological materials, the sophistication of Monte Carlo computer techniques would be applied, with associated detailed modelling. However, a feature of the theoretical method presented is its ability to make the consequences of the physics of the scattering process in biological materials more transparent. In addition, it can be quickly employed to give a first-pass dose estimate prior to a more detailed computer study. (author)

  1. Distance factor on reducing scattered radiation risk during interventional fluoroscopy

    International Nuclear Information System (INIS)

    Husaini Salleh; Mohd Khalid Matori; Muhammad Jamal Mat Isa; Zainal Jamaluddin; Mohd Firdaus Abdul Rahman; Mohd Khairusalih Mohd Zin

    2012-01-01

    Interventional Radiology (IR) is subspecialty of diagnostic radiology where minimally invasive procedures are performed using an x-ray as a guidance. This procedure can deliver high radiation doses to patient and medical staff compared with other radiological method due to long screening time. The use of proper shielding, shorten the exposure time and keep the distance are the practices to reduce scattered radiation risks to staff involve in this procedure. This project is to study the distance factor on reducing the scattered radiation effect to the medical staff. It also may provide the useful information which can be use to establish the scattered radiation profile during the IR for the sake of radiation protection and safety to the medical staff involved. (author)

  2. Measurement of the pion form factor

    International Nuclear Information System (INIS)

    Dally, E.; Hauptman, J.; May, C.

    1977-01-01

    The pion form factor has been measured in the momentum transfer range of 0.03( 2 by scattering pions from atomic electrons in a liquid hydrogen target. The pion form factor is defined to be the elastic scattering cross section divided by that predicted for a point pion. The experiment has been performed in a 100 GeV/c negative pion beam incident on a 50 cm liquid hydrogen target at Fermi laboratory. The corrected form factor equals 0.33+-0.06 f 2 . Vector dominance predicts 0.40 f 2

  3. Electron scattering by molecular oxygen

    International Nuclear Information System (INIS)

    Duddy, P.E.

    1999-03-01

    Collisions of electrons with molecules is one of the fundamental processes which occur both in atomic and molecular physics and also in chemistry. These collisions are vital in determining the energy balance and transport properties of electrons in gases and plasmas at low temperatures. There are many important applications for the basic understanding of these collision processes. For example, the study of planetary atmospheres and the interstellar medium involves electron collisions with both molecules and molecular ions. In particular, two of the major cooling mechanisms of electrons in the Earth's ionosphere are (i) the fine structure changing transitions of oxygen atoms by electron impact and (ii) the resonant electron-impact vibrational excitation of N 2 . Other applications include magnetohydrodynamic power generation and laser physics. A molecule, by definition, will contain more than one nucleus and consequently the effect of nuclear motion in the molecule leads to many extra processes in electron scattering by molecules which cannot occur in electron-atom scattering. As for atoms, both elastic and inelastic scattering occur, but in the case of inelastic electron scattering by molecules, the target molecule is excited to a different state by the process. The excitation may be one, or some combination, of rotational, vibrational and electronic transitions. Other reactions which may occur include dissociation of the molecule into its constituent atoms or ionisation. Another difficulty arises when considering the interactions between the electron and the molecule, This interaction, which considerably complicates the calculation, is non-spherical and various methods have been developed over the years to represent this interaction. This thesis considers electron scattering by molecular oxygen in the low energy range i.e. 0-15eV. These collisions are of considerable interest in atmospheric physics and chemistry where the electron impact excitation of O 2 has

  4. Correlated kinetic energy density functional of ground states of harmonically confined two-electron atoms for arbitrary interparticle interaction

    International Nuclear Information System (INIS)

    Amovilli, C; March, N H

    2012-01-01

    Utilizing the earlier work of Holas et al (2003 Phys. Lett. A 310 451) and the more recent contribution of Akbari et al (2009 Phys. Rev. A 80 032509), we construct an integral equation for the relative motion (RM) contribution t RM (r) to the correlated kinetic energy density for modelling two-electron atoms with harmonic confinement but arbitrary interparticle interaction. It is stressed that t RM = t RM [f(G)], where f(G) is the atomic scattering factor: the Fourier transform of the density ρ(r). As a simple illustrative example of this functional relation for the correlated kinetic energy density, the harmonic Moshinsky case is investigated, the scattering factor then having a Gaussian form. (paper)

  5. Collision-produced atomic states

    International Nuclear Information System (INIS)

    Andersen, N.; Copenhagen Univ.

    1988-01-01

    The last 10-15 years have witnessed the development of a new, powerful class of experimental techniques for atomic collision studies, allowing partial or complete determination of the state of the atoms after a collision event, i.e. the full set of quantum-mechanical scattering amplitudes or - more generally - the density matrix describing the system. Evidently, such studies, involving determination of alignment and orientation parameters, provide much more severe tests of state-of-the-art scattering theories than do total or differential cross section measurements which depend on diagonal elements of the density matrix. The off-diagonal elements give us detailed information about the shape and dynamics of the atomic states. Therefore, close studies of collision-produced atomic states are currently leading to deeper insights into the fundamental physical mechanisms governing the dynamics of atomic collision events. The first part of the lectures deals with the language used to describe atomic states, while the second part presents a selection of recent results for model systems which display fundamental aspects of the collision physics in particularly instructive ways. I shall here restrict myself to atom-atom collisions. The discussion will be focused on states decaying by photon emission though most of the ideas can be easily modified to include electron emission as well. (orig./AH)

  6. Angular scattering of 1–50 keV ions through graphene and thin carbon foils: Potential applications for space plasma instrumentation

    International Nuclear Information System (INIS)

    Ebert, Robert W.; Allegrini, Frédéric; Fuselier, Stephen A.; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J.

    2014-01-01

    We present experimental results for the angular scattering of ∼1–50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ∼0.5 μg cm −2 carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm −2 carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ 1/2 , for ∼3–5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm −2 (∼20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ∼50 keV

  7. Hanle effect at forward scattering in excited media

    International Nuclear Information System (INIS)

    Veklenko, B.A.

    2001-01-01

    One introduces a new method to calculate matrix of density of quantized electromagnetic field interacting with environment with kinetic processes in the medium. This method alongside with the accurate account of photon-photon quantum correlators has a number of symmetry features essentially facilitating summing up of appearing Feynman diagrams. Forward scattering of resonance radiation by gas two-level atoms within magnetic field was studied as a supplement. It is shown that inadequacy of semiclassical description of this coherent process in the excited media using unique tensor factor of refraction follows from quantum electrodynamics. One more function depending on frequency of irradiation and on concentration of excited atoms should be introduced [ru

  8. Positron scattering from vinyl acetate

    International Nuclear Information System (INIS)

    Chiari, L; Brunger, M J; Zecca, A; Blanco, F; García, G

    2014-01-01

    Using a Beer–Lambert attenuation approach, we report measured total cross sections (TCSs) for positron scattering from vinyl acetate (C 4 H 6 O 2 ) in the incident positron energy range 0.15–50 eV. In addition, we also report an independent atom model with screening corrected additivity rule computation results for the TCSs, differential and integral elastic cross sections, the positronium formation cross section and inelastic integral cross sections. The energy range of these calculations is 1–1000 eV. While there is a reasonable qualitative correspondence between measurement and calculation for the TCSs, in terms of the energy dependence of those cross sections, the theory was found to be a factor of ∼2 larger in magnitude at the lower energies, even after the measured data were corrected for the forward angle scattering effect. (paper)

  9. Magnetic diffuse scattering

    International Nuclear Information System (INIS)

    Cable, J.W.

    1987-01-01

    The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recent neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs

  10. Hanle-Zeeman Scattering Matrix for Magnetic Dipole Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Megha, A.; Sampoorna, M.; Nagendra, K. N.; Sankarasubramanian, K., E-mail: megha@iiap.res.in, E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: sankar@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India)

    2017-06-01

    The polarization of the light that is scattered by the coronal ions is influenced by the anisotropic illumination from the photosphere and the magnetic field structuring in the solar corona. The properties of the coronal magnetic fields can be well studied by understanding the polarization properties of coronal forbidden emission lines that arise from magnetic dipole ( M 1) transitions in the highly ionized atoms that are present in the corona. We present the classical scattering theory of the forbidden lines for a more general case of arbitrary-strength magnetic fields. We derive the scattering matrix for M 1 transitions using the classical magnetic dipole model of Casini and Lin and applying the scattering matrix approach of Stenflo. We consider a two-level atom model and neglect collisional effects. The scattering matrix so derived is used to study the Stokes profiles formed in coronal conditions in those regions where the radiative excitations dominate collisional excitations. To this end, we take into account the integration over a cone of an unpolarized radiation from the solar disk incident on the scattering atoms. Furthermore, we also integrate along the line of sight to calculate the emerging polarized line profiles. We consider radial and dipole magnetic field configurations and spherically symmetric density distributions. For our studies we adopt the atomic parameters corresponding to the [Fe xiii] 10747 Å coronal forbidden line. We also discuss the nature of the scattering matrix for M 1 transitions and compare it with that for the electric dipole ( E 1) transitions.

  11. Gaussian basis functions for highly oscillatory scattering wavefunctions

    Science.gov (United States)

    Mant, B. P.; Law, M. M.

    2018-04-01

    We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.

  12. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments

    Science.gov (United States)

    Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri

    2015-10-01

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can

  13. Coherent Radiation in Atomic Systems

    Science.gov (United States)

    Sutherland, Robert Tyler

    Over the last century, quantum mechanics has dramatically altered our understanding of light and matter. Impressively, exploring the relationship between the two continues to provide important insights into the physics of many-body systems. In this thesis, we add to this still growing field of study. Specifically, we discuss superradiant line-broadening and cooperative dipole-dipole interactions for cold atom clouds in the linear-optics regime. We then discuss how coherent radiation changes both the photon scattering properties and the excitation distribution of atomic arrays. After that, we explore the nature of superradiance in initially inverted clouds of multi-level atoms. Finally, we explore the physics of clouds with degenerate Zeeman ground states, and show that this creates quantum effects that fundamentally change the photon scattering of atomic ensembles.

  14. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    Science.gov (United States)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  15. Separating form factor and nuclear model effects in quasielastic neutrino-nucleus scattering

    Science.gov (United States)

    Wieske, Joseph

    2017-09-01

    When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. In the past, CCQE data from the MiniBooNE experiment was analyzed assuming the Relativistic Fermi Gas (RFG) nuclear model, an axial dipole form factor in, and using the the z-expansion for the axial form factor in. We present the first analysis that combines a non-RFG nuclear model, in particular the Correlated Fermi Gas nuclear model (CFG) of, and the z expansion for the axial form factor. This will allow us to separate form factor and nuclear model effects in CCQE scattering. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.

  16. A phenomenological {pi}{sup -}p scattering length from pionic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, T.E.O.; Loiseau, B.; Wycech, S

    2004-07-29

    We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length a{sup h} extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order {alpha}{sup 2}log{alpha} using an extended charge distribution. A hadronic {pi}N scattering length a{sup h}{sub {pi}{sup -}}{sub p}=0.0870(5)m{sub {pi}}{sup -1} is deduced leading to a {pi}NN coupling constant from the GMO relation g{sub c}{sup 2}/(4{pi})=14.04(17)

  17. Measurements of Atomic Rayleigh Scattering Cross-Sections: A New Approach Based on Solid Angle Approximation and Geometrical Efficiency

    Science.gov (United States)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.

  18. Inelastic scattering and deformation parameters

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1978-01-01

    In recent years there has been extensive study of nuclear shape parameters by electron scattering, μ meson atomic transitions, Coulomb excitation and direct nuclear inelastic scattering. Inelastic scattering of strongly absorbed particles, e.g., alpha-particles and heavy ions, at energies below and above the Coulomb barrier probe the charge and mass distributions within the nucleus. This paper summarizes measurements in this field performed at Oak Ridge National Laboratory

  19. Non-local coupled-channels optical calculation of electron scattering by atomic hydrogen at 54.42 eV

    International Nuclear Information System (INIS)

    Ratnavelu, K.; McCarthy, I.E.

    1990-01-01

    The present study incorporates the non-local optical potentials for the continuum within the coupled-channels optical framework to study electron scattering from atomic hydrogen at 54.42 eV. Nine-state coupled-channels calculations with non-local and local continuum optical potentials were performed. The results for differential, total and ionization cross sections as well as the 2p angular correlation parameters λ and R are comparable with other non-perturbative calculations. There are still discrepancies between theory and experiment, particularly for λ and R at larger angles. (author)

  20. Theoretical atomic physics for fusion: 1988 annual report

    International Nuclear Information System (INIS)

    Pindzola, M.S.

    1988-01-01

    This paper discusses progress in atomic physics in the following areas: Electron-impact ionization of atomic ions; electron-impact excitation of atomic ions; Dielectronic recombination of atomic ions; and relativistic effects on electron-ion scattering

  1. Quantum theory of scattering of channeled electrons and positrons in a crystal

    International Nuclear Information System (INIS)

    Bazylev, V.A.; Goloviznin, V.V.

    1982-01-01

    The quantum theory of elastic scattering of electrons and positrons on plane or axial channeling in a thin crystal is developed. The role of coherent (without phonon excitation) and incoherent scattering by atoms of the plane (chain) is investigated. It is shown that incoherent scattering which leads to dechanneling cannot be reduced to scattering by an isolated atom. Allowance for ordered arrangement of the atoms in the plane (chain) of the crystal leads to suppression of the motion levels. It is also shown that on movement of a particle along the plane in directions strongly differing from those of the principal axes, the scattering is incoherent and is determined by thermal vibrations of the nuclei. As the direction of the particle momentum approaches those of the principal axes, the role of coherent scattering without recoil by the crystal lattice nuclei increases and may become dicisive. The probability of large- angle scattering increases relatively in this case. Under certain conditions coherent scattering may become resonant [ru

  2. State-to-state inelastic and reactive molecular beam scattering from surfaces

    International Nuclear Information System (INIS)

    Lykke, K.R.; Kay, B.D.

    1990-01-01

    Resonantly enhanced multiphoton ionization (REMPI) laser spectroscopic and molecular beam-surface scattering techniques are coupled to study inelastic and reactive gas-surface scattering with state-to-state specificity. Rotational, vibrational, translational and angular distributions have been measured for the inelastic scattering of HCI and N 2 from Au(111). In both cases the scattering is direct-inelastic in nature and exhibits interesting dynamical features such as rotational rainbow scattering. In an effort to elucidate the dynamics of chemical reactions occurring on surfaces we have extended our quantum-resolved scattering studies to include the reactive scattering of a beam of gas phase H-atoms from a chlorinated metal surface M-CI. The nascent rotational and vibrational distributions of the HCI product are determined using REMPI. The thermochemistry for this reaction on Au indicates that the product formation proceeding through chemisorbed H-atoms is slightly endothermic while direct reaction of a has phase H-atom with M-CI is highly exothermic (ca. 50 kcal/mole). Details of the experimental techniques, results and implications regarding the scattering dynamics are discussed. 55 ref., 8 fig

  3. Active target with plastic scintillating fibers for hyperon-proton scattering experiments

    Czech Academy of Sciences Publication Activity Database

    Ahn, J. K.; Akikawa, H.; Arvieux, H.; Bassalleck, B.; Chung, M. S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Golovkin, SV.; Gorin, AM.; Goto, Y.; Hanabata, M.; Hayakawa, T.; Ichikawa, A.; Ieiri, M.; Imai, K.; Ishino, M.; Kanda, H.; Kim, Y. D.; Kondo, Y.; Kozarenko, E. N.; Kreslo, I. E.; Lee, J. M.; Masaike, A.; Mihara, S.; Nakai, K.; Nakazawa, K.; Ozawa, K.; Sato, A.; Sato, H. D.; Sim, K. S.; Tabaru, T.; Takeutchi, F.; Tlustý, Pavel; Torii, H.; Yamamoto, K.; Yokkaichi, S.; Yoshida, M.

    2002-01-01

    Roč. 49, č. 2 (2002), s. 592-596 ISSN 0018-9499 R&D Projects: GA AV ČR IAA1048304; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1048901 Keywords : active target * hyperon-proton scattering * scintillating fibers Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.431, year: 2002

  4. Classical theory for the in-plane scattering of atoms from corrugated surfaces: application to the Ar-Ag(111) system.

    Science.gov (United States)

    Pollak, Eli; Miret-Artés, Salvador

    2009-05-21

    A classical Wigner in-plane atom surface scattering perturbation theory within the generalized Langevin equation formalism is proposed and discussed with applications to the Ar-Ag(111) system. The theory generalizes the well-known formula of Brako as well as the "washboard model." Explicit expressions are derived for the joint angular and final momentum distributions, joint final energy, and angular distributions as well as average energy losses to the surface. The theory provides insight into the intertwining between the energy loss and angular dependence of the scattering. At low energies the energy loss in the horizontal direction is expected to be large, leading to a shift of the maximum of the angular distribution to subspecular angles, while at high energies the energy loss in the vertical direction dominates, leading to a superspecular maximum in the angular distribution. The same effect underlies the negative slope of the average final (relative) energy versus scattering angle at low energies which becomes positive at high energies. The theory also predicts that the full width at half maximum of the angular distribution varies as the square root of the temperature. We show how the theory provides insight into the experimental results for scattering of Ar from the Ag(111) surface.

  5. Modelling of cation displacements in SrTiO.sub.3./sub. by means of multi-energy anomalous X-ray diffuse scattering

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Fábry, Jan; Kub, Jiří

    2016-01-01

    Roč. 49, Jun (2016), 1016-1020 ISSN 1600-5767 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : X-ray diffuse scattering * atomic displacements * anomalous X-ray scattering * SrTiO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.495, year: 2016

  6. Photons emission processes in electron scattering

    International Nuclear Information System (INIS)

    Soto Vargas, C.W.

    1996-01-01

    The investigations involving the scattering sections arising in virtual an real photon emission processes of electron and positron scattering by an atomic nucleus, have the need for thorough and complete calculations of the virtual photon spectrum and then introduce the distorted wave formulation, which is mathematically involved an numerically elaborated, but accessible to its use in experimental electron scattering facilities. (author) [es

  7. Morphology, surface roughness, electron inelastic and quasi-elastic scattering in elastic peak electron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Lesiak, B.; Kosinski, A.; Nowakowski, R.; Koever, L.; Toth, J.; Varga, D.; Cserny, I.; Sulyok, A.; Gergely, G.

    2006-01-01

    Complete text of publication follows. Elastic peak electron spectroscopy (EPES) deals with the interaction of electrons with atoms of a solid surface, studying the distribution of electrons backscattered elastically. The nearest vicinity of the elastic peak, (low kinetic energy region) reflects both, electron inelastic and quasi-elastic processes. The incident electrons produce surface excitations, inducing surface plasmons with the corresponding loss peaks separated by 1 - 20 eV energy from the elastic peak. Quasi-elastic losses result from the recoil of scattering atoms of different atomic number, Z. The respective energy shift and Doppler broadening of the elastic peak depend on Z, the primary electron energy, E, and the measurement geometry. Quantitative surface analytical application of EPES, such as determination of parameters describing electron transport, requires a comparison of experimental data with corresponding data derived from Monte Carlo (MC) simulation. Several problems occur in EPES studies of polymers. The intensity of elastic peak, considered in quantitative surface analysis, is influenced by both, the inelastic and quasi-elastic scattering processes (especially for hydrogen scattering atoms and primary electron energy above 1000 eV). An additional factor affecting the elastic peak intensity is the surface morphology and roughness. The present work compares the effect of these factors on the elastic peak intensity for selected polymers (polyethylene, polyaniline and polythiophenes). X-ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for deriving the surface atomic composition and the bulk density, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) for determining surface morphology and roughness. According to presented results, the influence of surface morphology and roughness is larger than those of surface excitations or recoil of hydrogen atoms. The component due to recoil of hydrogen atoms can be

  8. Determination of the negatively charged pion-proton scattering length from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2003-01-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to the hadronic scattering length extracted from a hydrogenic atom with an extended charge and in the limit of a short ranged hadronic interaction to terms of order ((alpha)**2)(log(alpha)) in the limit of a non-relativistic approach. A hadronic negatively charged pion-proton scattering length of 0.0870(5), in units of inverse charged pion-mass, is deduced, leading to a pion-nucleon coupling constant from the GMO relation equals to 14.00(19).

  9. Rayleigh scattering in an emitter-nanofiber-coupling system

    Science.gov (United States)

    Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng

    2017-04-01

    Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.

  10. Parity-Violating Electron Deuteron Scattering and the Proton's Neutral Axial Vector Form Factor

    International Nuclear Information System (INIS)

    Ito, T.

    2003-01-01

    The authors report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at the backward angles at electron beam energy of 125 MeV [Q 2 =0.038 (GeV/c) 2 ]. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon. In addition to the tree level amplitude associated with Z-exchange, the neutral weak axial vector form factor as measured in electron scattering can potentially receive large electroweak corrections, including the anapole moment, that are absent in neutrino scattering. The measured asymmetry A -3.51 ± 0.57 (stat) ± 0.58 (sys) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at 200 MeV [Q 2 = 0.091 (GeV/c) 2 ] on a deuterium target. The updated results are also consistent with theoretical predictions on the neutral weal axial vector form factor

  11. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Science.gov (United States)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  12. Trajectory-dependent energy loss for swift He atoms axially scattered off a silver surface

    Energy Technology Data Exchange (ETDEWEB)

    Ríos Rubiano, C.A. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina); Bocan, G.A. [Centro Atómico Bariloche, Comisión Nacional de Energía Ató mica, and Consejo Nacional de Investigaciones Científicas y Técnicas, S.C. de Bariloche, Río Negro (Argentina); Juaristi, J.I. [Departamento de Física de Materiales, Facultad de Químicas, UPV/EHU, 20018 San Sebastián (Spain); Donostia International Physics Center (DIPC) and Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 San Sebastián (Spain); Gravielle, M.S., E-mail: msilvia@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina)

    2014-12-01

    Angle- and energy-loss-resolved distributions of helium atoms grazingly scattered from a Ag(110) surface along low indexed crystallographic directions are investigated considering impact energies in the few keV range. Final projectile distributions are evaluated within a semi-classical formalism that includes dissipative effects due to electron–hole excitations through a friction force. For mono-energetic beams impinging along the [11{sup ¯}0],[11{sup ¯}2] and [001] directions, the model predicts the presence of multiple peak structures in energy-loss spectra. Such structures provide detailed information about the trajectory-dependent energy loss. However, when the experimental dispersion of the incident beam is taken into account, these energy-loss peaks are completely washed out, giving rise to a smooth energy-loss distribution, in fairly good agreement with available experimental data.

  13. Universal Four-Boson System: Dimer-Atom-Atom Efimov Effect and Recombination Reactions

    International Nuclear Information System (INIS)

    Deltuva, A.

    2013-01-01

    Recent theoretical developments in the four-boson system with resonant interactions are described. Momentum-space scattering equations for the four-particle transition operators are used. The properties of unstable tetramers with approximate dimer-atom-atom structure are determined. In addition, the three- and four-cluster recombination processes in the four-boson system are studied. (author)

  14. Factorized distorted wave approximation for the (e,2e) reaction on atoms : noncoplanar symmetric

    International Nuclear Information System (INIS)

    Dixon, A.J.; McCarthy, I.E.; Noble, C.J.; Weigold, E.

    1977-02-01

    Angular and energy correlations for electrons produced in the ionization of neon and xenon by electrons with energies between 400eV and 2.5 keV have been measured using symmetric noncoplanar kinematics. The reaction yields information about the atomic orbitals and their correlations when analysed with the distorted-wave off-shell impulse approximation. In the past either plane waves or various eikonal approximations have been used for the distorted waves, and in the cases where the eikonal parameters are approximately related to the elastic scattering the spectroscopic sum rule has been approximately verified. In the present work calculations have also been carried out using partial-wave-expanded optical model wave functions which describe the elastic scattering in detail. (Author)

  15. A microscopic description of the S-wave πN-scattering lengths and the (pπ-)-atom lifetime in the quark confinement model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.; Rusetskij, A.G.

    1989-01-01

    The S-wave πN-scattering lengths and the (pπ - )-atom lifetime are in the quark confinement model. Nucleon is treated as a quark-diquark system. The fulfillment of the Weinberg-Tomozawa relations is checked. The agreement is achieved with the experiment and with the results obtained within other approaches. 32 refs.; 5 figs.; 2 tabs

  16. Atomic and molecular science with synchrotron radiation

    International Nuclear Information System (INIS)

    1989-01-01

    This paper discusses the following topics: electron correlation in atoms; atomic innershell excitation and decay mechanisms; timing experiments; x-ray scattering; properties of ionized species; electronic properties of actinide atoms; total photon-interaction cross sections; and molecular physics. 66 refs

  17. Semiclassical calculation of ionisation rate for Rydberg helium atoms in an electric field

    International Nuclear Information System (INIS)

    Wang De-Hua

    2011-01-01

    The ionisation of Rydberg helium atoms in an electric field above the classical ionisation threshold has been examined using the semiclassical method, with particular emphasis on discussing the influence of the core scattering on the escape dynamics of electrons. The results show that the Rydberg helium atoms ionise by emitting a train of electron pulses. Unlike the case of the ionisation of Rydberg hydrogen atom in parallel electric and magnetic fields, where the pulses of the electron are caused by the external magnetic field, the pulse trains for Rydberg helium atoms are created through core scattering. Each peak in the ionisation rate corresponds to the contribution of one core-scattered combination trajectory. This fact further illustrates that the ionic core scattering leads to the chaotic property of the Rydberg helium atom in external fields. Our studies provide a simple explanation for the escape dynamics in the ionisation of nonhydrogenic atoms in external fields. (atomic and molecular physics)

  18. Coherence effects in atomic impact processes

    International Nuclear Information System (INIS)

    Blum, K.

    1980-01-01

    The author considers excitation of target atoms by projectile particles and the coincident detection of the scattered projectiles and the photons emitted in the subsequent decay by the target atoms. The observation is restricted to radiation emitted by those atoms only which 'scattered' the projectiles with a given energy in a given direction defined by the particle detector. Thus, a certain subensemble of atoms is selected in the experiment. The author reviews the theoretical scheme used for the description of the excited subensemble with the emphasis on the coherence properties. The author reviews developments of the Fano-Macek theory concerning the description of coherently excited states with different angular momenta and parities. A comprehensive expression for the angular distribution of the emitted radiation, including all possible interference terms is given. (Auth.)

  19. Rayleigh scattering from ions near threshold

    International Nuclear Information System (INIS)

    Roy, S.C.; Gupta, S.K.S.; Kissel, L.; Pratt, R.H.

    1988-01-01

    Theoretical studies of Rayleigh scattering of photons from neon atoms with different degrees of ionization, for energies both below and above the K-edges of the ions, are presented. Some unexpected structures both in Rayleigh scattering and in photoionization from neutral and weakly ionized atoms, very close to threshold, have been reported. It has recently been realized that some of the predicted structures may have a nonphysical origin and are due to the limitation of the independent-particle model and also to the use of a Coulombic Latter tail. Use of a K-shell vacancy potential - in which an electron is assumed to be removed from the K-shell - in calculating K-shell Rayleigh scattering amplitudes removes some of the structure effects near threshold. We present in this work a discussion of scattering angular distributions and total cross sections, obtained utilizing vacancy potentials, and compare these predictions with those previously obtained in other potential model. (author) [pt

  20. Atomic holography with electrons and x-rays: Theoretical and experimental studies

    International Nuclear Information System (INIS)

    Len, P.M.

    1997-06-01

    Gabor first proposed holography in 1948 as a means to experimentally record the amplitude and phase of scattered wavefronts, relative to a direct unscattered wave, and to use such a open-quotes hologramclose quotes to directly image atomic structure. But imaging at atomic resolution has not yet been possible in the way he proposed. Much more recently, Szoeke in 1986 noted that photoexcited atoms can emit photoelectron of fluorescent x-ray wavefronts that are scattered by neighboring atoms, thus yielding the direct and scattered wavefronts as detected in the far field that can then be interpreted as holographic in nature. By now, several algorithms for directly reconstructing three-dimensional atomic images from electron holograms have been proposed (e.g. by Barton) and successfully tested against experiment and theory. Very recently, Tegze and Faigel, and Grog et al. have recorded experimental x-ray fluorescence holograms, and these are found to yield atomic images that are more free of the kinds of aberrations caused by the non-ideal emission or scattering of electrons. The basic principles of these holographic atomic imaging methods are reviewed, including illustrative applications of the reconstruction algorithms to both theoretical and experimental electron and x-ray holograms. The author also discusses the prospects and limitations of these newly emerging atomic structural probes

  1. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  2. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions

    International Nuclear Information System (INIS)

    Hoo, Christopher M.; Starostin, Natasha; West, Paul; Mecartney, Martha L.

    2008-01-01

    This paper compares the accuracy of conventional dynamic light scattering (DLS) and atomic force microscopy (AFM) for characterizing size distributions of polystyrene nanoparticles in the size range of 20-100 nm. Average DLS values for monosize dispersed particles are slightly higher than the nominal values whereas AFM values were slightly lower than nominal values. Bimodal distributions were easily identified with AFM, but DLS results were skewed toward larger particles. AFM characterization of nanoparticles using automated analysis software provides an accurate and rapid analysis for nanoparticle characterization and has advantages over DLS for non-monodispersed solutions.

  3. Digital technique for the study of narrow structure in electron-atom and electron-molecule scattering

    International Nuclear Information System (INIS)

    Paske, W.C.; Shadfar, S.; Lorentz, S.R.; Steph, N.C.; Golden, D.E.

    1981-01-01

    A digital technique has been developed which allows the study of narrow structure in total electron-atom and electron-molecule scattering cross sections without requiring a highly monoenergetic electron beam, modulation of the electron gun, or phase sensitive detection. The electron current transmitted through a gas cell is digitized as the electron energy is stepped by ΔE through the energy range of interest. A transmitted electron difference signal is then obtained using a computer. As examples of this technique, the difference spectra are presented for He near 19.35 eV and for N 2 for the energy range from 10.3 to 15.0 eV. In the present case an instrumental resolution of 30 meV FWHM has been obtained

  4. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  5. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  6. Soft factors for double parton scattering at NNLO

    Energy Technology Data Exchange (ETDEWEB)

    Vladimirov, Alexey [Institut für Theoretische Physik, Universität Regensburg,D-93040 Regensburg (Germany)

    2016-12-13

    We show at NNLO that the soft factors for double parton scattering (DPS) for both integrated and unintegrated kinematics, can be presented entirely in the terms of the soft factor for single Drell-Yan process, i.e. the transverse momentum dependent (TMD) soft factor. Using the linearity of the logarithm of TMD soft factor in rapidity divergences, we decompose the DPS soft factor matrices into a product of matrices with rapidity divergences in given sectors, and thus, define individual double parton distributions at NNLO. The rapidity anomalous dimension matrices for double parton distributions are presented in the terms of TMD rapidity anomalous dimension. The analysis is done using the generating function approach to web diagrams. Significant part of the result is obtained from the symmetry properties of web diagrams without referring to explicit expressions or a particular rapidity regularization scheme. Additionally, we present NNLO expression for the web diagram generating function for Wilson lines with two light-like directions.

  7. ‘Which-way’ collective atomic spin excitation among atomic ensembles by photon indistinguishability

    International Nuclear Information System (INIS)

    Zhang Guowan; Bian Chenglin; Chen, L Q; Ou, Z Y; Zhang Weiping

    2012-01-01

    In spontaneous Raman scattering in an atomic ensemble, a collective atomic spin wave is created in correlation with the Stokes field. When the Stokes photons from two or more such atomic ensembles are made indistinguishable, a ‘which-way’ collective atomic spin excitation is generated among the independent atomic ensembles. We demonstrate this phenomenon experimentally by reading out the atomic spin excitations and observing interference between the read-out beams. When a single-photon projective measurement is made on the indistinguishable Stokes photons, this simple scheme can be used to entangle independent atomic ensembles. Compared to other currently used methods, this scheme can be easily scaled up and has greater efficiency. (paper)

  8. Parity nonconservation in polarized electron scattering at high energies

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1979-10-01

    Recent observations of parity violation in inelastic scattering of electrons at high energy is discussed with reference to the process e(polarized) + D(unpolarized) → e + X. The kinetics of this process, the idealized case of scattering from free quark targets, experimental techniques and results, and relations to atomic physics of parity violation in bismuth and thallium atoms with a model independent analysis. 17 references

  9. A new theoretical model for scattering of electrons by molecules. 1

    International Nuclear Information System (INIS)

    Peixoto, E.M.A.; Mu-tao, L.; Nogueira, J.C.

    1975-01-01

    A new theoretical model for electron-molecule scattering is suggested. The e-H 2 scattering is studied and the superiority of the new model over the commonly used Independent Atom Model (IAM) is demonstrated. Comparing theoretical and experimental data for 40keV electrons scattered by H 2 utilizing the new model, its validity is proved, while Partial Wave and First Born calculations, employing the Independent Atom Model, strongly deviated from the experiment [pt

  10. Determination of effective atomic number of breast tissues using scattered radiation; Determinacao do numero atomico efetivo de tecidos mamarios usando a radiacao espalhada

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C.; Poletti, M.E. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-07-01

    The scattered radiation has been used in several industrial and clinical applications since it permits to characterize the scattering material. Several types of information can be extracted from the spectrum of scattered radiation which can be used to characterization of biological tissues such as breast tissues. In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose), benign (fibroadenoma) and malignant (carcinoma) neoplastic breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90 deg C (x = 0.99 angstrom-1). A practical method using the area of elastic and inelastic scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated comparing the experimental obtained values of Z{sub eff} of several standard materials with calculated values using traditional method based on total cross-section of compounds. The obtained results show that exist differences in the distributions of Z{sub eff} of breast tissues, which are related to the content of carbon (Z=6) and oxygen (Z=8) in each tissue type. The results suggest that is possible to use this parameter for characterizing breast tissues, pointing the possibility of its use as a complementary tool for the diagnosis of the breast cancer. (author)

  11. Depth of origin and angular spectrum of sputtered atoms

    International Nuclear Information System (INIS)

    Vicanek, M.; Jimenez Rodriguez, J.J.; Sigmund, P.

    1989-01-01

    A theoretical analysis is presented of the depth of origin of atoms sputtered from a random target. The physical model aims at high energy sputtering under linear cascade conditions and assumes a dilute source of recoil atoms. The initial distribution of the recoils is assumed isotropic, and their energy distribution is E -2 like without an upper or lower cutoff. The scattering medium is either infinite or bounded by a plane surface. Atoms scatter according to the m=0 power cross section. Electronic stopping is ignored. The sputtered flux, differential in depth of origin, ejection energy and ejection angle has been evaluated by Monte Carlo simulation and by five distinct methods of solution of the linear Boltzmann equation reaching from continuous slowing down neglecting angular scattering to the P 3 approximation and a Gram-Charlier expansion going over spatial moments. The continuous slowing down approximation used in previous work leads to results that are identical to those found from a scheme that only ignores angular scattering but allows for energy loss straggling. Moreover, these predictions match more closely with the Monte Carlo results than any of the approximate analytical schemes that take account of angular scattering. The results confirm the common assertion that the depth of origin of sputtered atoms is determined mainly by the stopping of low energy recoil atoms. The effect of angular scattering turns out to be astonishingly small. The distributions in depth of origin, energy, and angle do not depend significantly on whether the scattering medium is a halfspace or an infinite medium with a reference plane. The angular spectrum comes out only very slightly over cosine from the model as it stands, in agreement with previous experience, but comments are made on essential features that are not incorporated in the physical model but might influence the angular spectrum. (orig./WL)

  12. Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse

    Directory of Open Access Journals (Sweden)

    L. Galli

    2015-07-01

    Full Text Available Current hard X-ray free-electron laser (XFEL sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed.

  13. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    Directory of Open Access Journals (Sweden)

    Stovgaard Kasper

    2010-08-01

    Full Text Available Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference. Results We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for

  14. RESONANCES IN THE ISOVECTOR P WAVE OF pi pi SCATTERING

    Czech Academy of Sciences Publication Activity Database

    Bydžovský, Petr; Surovtsev, Yu .S.; Kaminski, R.; Nagy, M.

    2011-01-01

    Roč. 26, 3-4 (2011), s. 634-635 ISSN 0217-751X. [11th International Workshop on Meson Production , Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/08/0984 Institutional research plan: CEZ:AV0Z10480505 Keywords : Pion-pion scattering * mesonic resonances * multichannel analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  15. Helium Atom Scattering from C2H6, F2HCCH3, F3CCH2F and C2F6 in Crossed Molecular Beams

    Science.gov (United States)

    Hammer, Markus; Seidel, Wolfhart

    1997-10-01

    Rotationally unresolved differential cross sections were measured in crossed molecular beam experiments by scattering Helium atoms from Ethane, 1,1-Difluoroethane, 1,1,1,2-Tetrafluoroethane and Hexafluoroethane. The damping of observed diffraction oscillations was used to extract anisotropic interaction potentials for these scattering systems applying the infinite order sudden approximation (IOSA). Binary macroscopic parameters such as second heterogeneous virial coefficients and the coefficients of diffusion and viscosity were computed from these potentials and compared to results from macroscopic experiments.

  16. Measurement of exposure buildup factors: The influence of scattered photons on gamma-ray attenuation coefficients

    Science.gov (United States)

    Mann, Kulwinder Singh

    2018-01-01

    Scattered photon's influence on measured values of attenuation coefficients (μm, cm2g-1) for six low-Z (effective atomic number) building materials, at three photon energies has been estimated. Narrow-beam transmission geometry has been used for the measurements. Samples of commonly used engineering materials (Cements, Clay, Lime-Stone, Plaster of Paris) have been selected for the present study. Standard radioactive sources Cs137 and Co60 have been used for obtaining γ-ray energies 661.66, 1173.24 and 1332.50 keV. The optical thickness (OT) of 0.5 mfp (mean free path) has been found the optimum optical thickness (OOT) for μm-measurement in the selected energy range (661.66-1332.50 keV). The aim of this investigation is to provide neglected information regarding subsistence of scattered photons in narrow beam geometry measurements for low-Z materials. The measurements have been performed for a wide range of sample-thickness (2-26 cm) such that their OT varies between 0.2-3.5 mfp in selected energy range. A computer program (GRIC2-toolkit) has been used for various theoretical computations required in this investigation. It has been concluded that in selected energy-range, good accuracy in μm-measurement of low-Z materials can be achieved by keeping their sample's OT below 0.5 mfp. The exposure buildup factors have been measured with the help of mathematical-model developed in this investigation.

  17. Adiabatic translation factors in slow ion-atom collisions

    International Nuclear Information System (INIS)

    Vaaben, J.; Taulbjerg, K.

    1981-01-01

    The general properties of translation factors in slow atomic collisions are discussed. It is emphasised that an acceptable form of translation factors must be conceptually consistent with the basic underlying assumption of the molecular model; i.e. translation factors must relax adiabatically at intermediate and small internuclear separations. A simple physical argument is applied to derive a general parameter-free expression for the translation factor pertinent to an electron in a two-centre Coulomb field. Within the present approach the adiabatic translation factor is considered to be a property of the two-centre field independently of the molecular state under consideration. The generalisation to many-electron systems is therefore readily made. (author)

  18. Inelastic magnetic electron scattering form factors of the 26 Mg nucleus

    Indian Academy of Sciences (India)

    Magnetic electron scattering (3) form factors with core polarization effects, ... to 3+ states of the 26Mg nucleus have been studied using shell model calculations. ... The wave functions of the radial single-particle matrix elements have been ...

  19. Elastic pp scattering in the Coulomb-nuclear interference region and low energy behaviour of p-barp scattering partial amplitudes

    International Nuclear Information System (INIS)

    Kudryavtsev, A.E.; Markushin, V.E.

    1985-01-01

    The experimental data on the low energy elastic p-barp scattering in the Coulomb-nuclear interference region and on the shift and width of the 1s level of p-barp-atom are analysed. The partial wave amplitudes for l=0.1 are extracted. The p-wave amplitude is in fair agreement with the atomic data for the 2p state and exhibits some energy structure. It is shown that the real-to-imaginary ratio of the p-barp forward elastic-scattering amplitude becomes negative in an energy interval just near p-barp-threshold

  20. Extracting the σ-term from low-energy pion-nucleon scattering

    Science.gov (United States)

    Ruiz de Elvira, Jacobo; Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G.

    2018-02-01

    We present an extraction of the pion-nucleon (π N) scattering lengths from low-energy π N scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scattering-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large π N σ-term, {σ }π N=58(5) {{MeV}}, in agreement with, albeit less precise than, the determination from pionic atoms.

  1. Elastic scattering of positronium: Application of the confined variational method

    KAUST Repository

    Zhang, Junyi

    2012-08-01

    We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.

  2. Elastic scattering of positronium: Application of the confined variational method

    KAUST Repository

    Zhang, Junyi; Yan, Zong-Chao; Schwingenschlö gl, Udo

    2012-01-01

    We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.

  3. Inexpensive Mie scattering experiment for the classroom manufactured by 3D printing

    International Nuclear Information System (INIS)

    Scholz, Christian; Sack, Achim; Heckel, Michael; Pöschel, Thorsten

    2016-01-01

    Scattering experiments are fundamental for structure analysis of matter on molecular, atomic and sub-atomic length scales. In contrast, it is not standard to demonstrate optical scattering experiments on the undergraduate level beyond simple diffraction gratings. We present an inexpensive Mie scattering setup manufactured with 3D printing and open hardware. The experiment can be used to determine the particle size in dilute monodisperse colloidal suspensions with surprisingly high accuracy and is, thus, suitable to demonstrate relations between scattering measurements and microscopic properties of particles within undergraduate lab course projects. (paper)

  4. X-ray and neutron scattering from amorphous diamondlike carbon and hydrocarbon films

    International Nuclear Information System (INIS)

    Findeisen, E.

    1994-10-01

    In this report amorphous, diamondlike, carbon and hydrocarbon films are investigated by two different methods, namely, X-ray scattering and a combination of X-ray and neutron reflectivity. As specular reflectivity probes the scattering length density profile of a sample perpendicular to its surface, the combination of X-ray and neutron reflectivity reveals the nuclei density of both carbon and hydrogen separately. This allows to calculate the concentration of hydrogen in the films, which varies in the presented experiments between 0 and 36 atomic %. This method is a new and nondestructive technique to determine the concentration of hydrogen within an error of about ±1 at. % in samples with sharp interfaces. It is well suited for thin diamondlike carbon films. X-ray scattering is used to obtain structural information on the atomic scale, especially the average carbon-carbon distance and the average coordination number of the carbon atoms. As grazing incidence diffraction experiments were not successful, free-standing films are used for the scattering experiments with synchrotron light. However, the scattered intensity for large scattering vectors is, in spite of the intense primary beam, very weak, and therefore the accuracy of the obtained structural parameter is not sufficient to prove the diamondlike properties also on the atomic scale. (au) (10 tabs., 76 ills., 102 refs.)

  5. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  6. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    International Nuclear Information System (INIS)

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H 2 /minus/> DH + H and the substitution reaction D + C 2 H 2 /minus/> C 2 HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs

  7. Description of the atomic disorder (local order) in crystals by the mixed-symmetry method

    Science.gov (United States)

    Dudka, A. P.; Novikova, N. E.

    2017-11-01

    An approach to the description of local atomic disorder (short-range order) in single crystals by the mixed-symmetry method based on Bragg scattering data is proposed, and the corresponding software is developed. In defect-containing crystals, each atom in the unit cell can be described by its own symmetry space group. The expression for the calculated structural factor includes summation over different sets of symmetry operations for different atoms. To facilitate the search for new symmetry elements, an "atomic disorder expert" was developed, which estimates the significance of tested models. It is shown that the symmetry lowering for some atoms correlates with the existence of phase transitions (in langasite family crystals) and the anisotropy of physical properties (in rare-earth dodecaborides RB12).

  8. Quark helicity distributions from longitudinal spin asymmetries in muon-proton and muon-deuteron scattering

    Czech Academy of Sciences Publication Activity Database

    Alekseev, M.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Austregisilio, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.; Chaberny, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; Denisov, O.; Dhara, L.; Diaz, V.; Donskov, S.; Doshita, N.; Duic, V.; Dünnweber, W.; Efremov, A.V.; El Alaoui, A.; Eversheim, P.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Friedrich, J.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heinsius, F.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.; Khokhlov, Y.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.; Kolosov, V.; Kondo, K.; Königsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.; Korzenev, A.; Kotzinian, A.; Kouznetsov, O.; Kowalik, K.; Krämer, M.; Kral, A.; Kroumchtein, Z.; Kuhn, R.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.; Lednev, A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Makke, N.; Mallot, G.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Meyer, W.; Michigami, T.; Mikhailov, Y.; Moinester, M.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.; Nunes, A.S.; Olshevsky, A.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.; Samoylenko, V.; Sandacz, A.; Santos, H.; Sapozhnikov, M.; Sarkar, S.; Savin, I.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlütter, T.; Schmitt, L.; Schopferer, S.; Schröder, W.; Shevchenko, O.; Siebert, H.; Silva, L.; Sinha, L.; Sissakian, A.; Slunecka, M.; Smirnov, G.; Sosio, S.; Sozzi, F.; Srnka, Aleš; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.; Uhl, S.; Uman, I.; Virius, M.; Vlassov, N.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2010-01-01

    Roč. 693, č. 3 (2010), s. 227-235 ISSN 0370-2693 R&D Projects: GA MŠk ME 492 Institutional research plan: CEZ:AV0Z20650511 Keywords : semi-inclusive deep inelastic scattering * structure function * parton distribution functions Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.255, year: 2010

  9. Atomic mean-square displacements and the critical-voltage effect in cubic solid solutions

    International Nuclear Information System (INIS)

    Shirley, C.G.; Fisher, R.M.

    1979-01-01

    The critical-voltage phenomena observed in high-voltage electron microscope images of bend contours as well as in corresponding Kikuchi or convergent-beam diffraction patterns provide sensitive methods of determining submicroscopic alloy parameters such as Debye temperatures, short-range order, and atomic scattering factors. Only a very limited number of critical voltages can be observed in metal crystals in the voltage range usually available, 100 to 1200 kV, so that quantitative interpretation of the data must be based on a few-parameter model which incorporates all the pertinent factors. A satisfactory two-parameter model has been developed which can be used to interpret or compute the critical voltages of substitutional solid solutions as functions of composition, temperature and short-range order. In the alloy systems Fe-Cr, Ni-Au, Cu-Au and Cu-Al, sufficient critical voltage data are available to derive the model parameters which pertain to atomic bonding in the lattice. In addition to atomic scattering amplitudes, the critical voltage depends strongly on the atomic mean-square displacements. The static contribution to the mean-square displacements is large in alloys with large atomic-radius disparity, and is especially sensitive to short-range order in f.c.c. solid solutions. Well-defined best estimates for the model parameters are used to predict the critical voltage and its sensitivity to composition, temperature and short-range order for a large number of solid solutions. Systems for which critical-voltage studies may be of considerable interest are indicated. (author)

  10. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  11. The factorization method for inverse acoustic scattering in a layered medium

    International Nuclear Information System (INIS)

    Bondarenko, Oleksandr; Kirsch, Andreas; Liu, Xiaodong

    2013-01-01

    In this paper, we consider a problem of inverse acoustic scattering by an impenetrable obstacle embedded in a layered medium. We will show that the factorization method can be applied to recover the embedded obstacle; that is, the equation F-tilde g =φ z is solvable if and only if the sampling point z is in the interior of the unknown obstacle. Here, F-tilde is a self-adjoint operator related to the far field operator and ϕ z is the far field pattern of the Green function with respect to the problem of scattering by the background medium for point z. The validity of the factorization method is proven with the help of a mixed reciprocity principle and an application of the scattering operator. Due to the established mixed reciprocity principle, knowledge of the Green function for the background medium is no longer required, which makes the method attractive from the computational point of view. The paper is only concerned with sound-soft obstacles, but the analysis can be easily extended for sound-hard obstacles, or obstacles with separated sound-soft and sound-hard parts. Finally, we provide an explicit example for a radially symmetric case and present some numerical examples. (paper)

  12. Spin entanglement in elastic electron scattering from lithium atoms

    Science.gov (United States)

    Bartschat, K.; Santos, S. Fonseca dos

    2017-04-01

    In two recent papers [Blum and Lohmann, Phys. Rev. Lett. 116, 033201 (2016), 10.1103/PhysRevLett.116.033201; Lohmann et al., Phys. Rev. A 94, 032331 (2016), 10.1103/PhysRevA.94.032331], the possibility of continuously varying the degree of entanglement between an elastically scattered electron and the valence electron of an alkali-metal target was discussed. To estimate how well such a scheme may work in practice, we present results for elastic electron scattering from lithium in the energy regime of 1 -5 eV and the full range of scattering angles 0∘-180∘ . The most promising regime for Bell correlations in this particular collision system are energies between about 1.5 and 3.0 eV, in an angular range around 110∘±10∘ . In addition to the relative exchange asymmetry parameter, we present the differential cross section that is important when estimating the count rate and hence the feasibility of experiments using this system.

  13. Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms.

    Science.gov (United States)

    Karlovets, Dmitry V; Serbo, Valeriy G

    2017-10-27

    Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.

  14. Joint application of neutron and X-ray scattering for determination of atomic and electronic structures of molecules and crystals

    International Nuclear Information System (INIS)

    Ozerov, R.P.; Tsirel'son, V.G.

    1978-01-01

    The paper deals with the main principles of methods based on the joint neutron and x-ray diffraction studies. The methods allow one to obtain the information on the charge distribution in molecules in detail. Neutron scattering makes it possible to locate very closely the nucleus of atom or, more precisely, the gravity center of the ellipsoid of nuclear thermal oscillations. X-ray diffraction gives the distribution of electronic density at some distance from the shell gravity center. The joint diffraction method holds the promise and importance for solving physical-chemical problems

  15. Calculation of the thermal utilization factor in a heterogeneous slab cell scattering neutrons anisotropically

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, A M; Elsherbiny, E M; Sobhy, M [Reactor departement, nuclear research centre, Inshaas, (Egypt)

    1995-10-01

    The P{sub n}-spatial expansion method has been used for calculating the one speed transport utilization factor in heterogenous slab cells in which neutrons may scatter anisotropically; by considering the P{sup 1-} approximation with a two-term scattering kernel in both the fuel and moderator regions, an analytical expression for the disadvantage factor has been derived. The numerical results obtained have been shown to be much better than those calculated by the usual P{sup 1-} and P{sup 3-} approximations and comparable with those obtained by some exact methods. 3 tabs.

  16. Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor

    International Nuclear Information System (INIS)

    Spayde, D. T.; Averett, T.; Barkhuff, D.; Beck, D. H.; Beise, E. J.; Benson, C.; Breuer, H.; Carr, R.; Covrig, S.; DelCorso, J.

    2000-01-01

    We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92±0.61±0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections. (c) 2000 The American Physical Society

  17. A new miniaturized negative-index meta-atom for tri-band applications

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad Jakir

    2017-07-01

    Full Text Available In this paper, a miniature negative index meta-atom was designed; simulated, fabricated and measured based on parallel incidence of electromagnetic wave that can maintain a tri-band applications in microwave spectra. Compare to the other multi-band conventional metamaterial, the proposed meta-atom structure allows miniaturization factor and follows better effective medium ratio (EMR. Finite-integration technique (FIT based computer simulation technology (CST electromagnetic simulator was adopted to examine the design of the meta-atom. It exhibits tri-band response in conjunction with backward wave property over a certain frequency band in the microwave regime. Furthermore, the effective medium ratio is considerably improved compared to previously reported metamaterial. Moreover, few parametric analyses were done with the meta-atom. The size, scattering parameters and effective medium parameters of the proposed negative index miniaturized meta-atom is appropriate for tri-band applications.

  18. Electronic Conduction through Atomic Chains, Quantum Well and Quantum Wire

    International Nuclear Information System (INIS)

    Sharma, A. C.

    2011-01-01

    Charge transport is dynamically and strongly linked with atomic structure, in nanostructures. We report our ab-initio calculations on electronic transport through atomic chains and the model calculations on electron-electron and electron-phonon scattering rates in presence of random impurity potential in a quantum well and in a quantum wire. We computed synthesis and ballistic transport through; (a) C and Si based atomic chains attached to metallic electrodes, (b) armchair (AC), zigzag (ZZ), mixed, rotated-AC and rotated-ZZ geometries of small molecules made of 2S, 6C and 4H atoms attaching to metallic electrodes, and (c) carbon atomic chain attached to graphene electrodes. Computed results show that synthesis of various atomic chains are practically possible and their transmission coefficients are nonzero for a wide energy range. The ab-initio calculations on electronic transport have been performed with the use of Landauer-type scattering formalism formulated in terms of Grben's functions in combination with ground-state DFT. The electron-electron and electron-phonon scattering rates have been calculated as function of excitation energy both at zero and finite temperatures for disordered 2D and 1D systems. Our model calculations suggest that electron scattering rates in a disordered system are mainly governed by effective dimensionality of a system, carrier concentration and dynamical screening effects.

  19. Correlation expansion: a powerful alternative multiple scattering calculation method

    International Nuclear Information System (INIS)

    Zhao Haifeng; Wu Ziyu; Sebilleau, Didier

    2008-01-01

    We introduce a powerful alternative expansion method to perform multiple scattering calculations. In contrast to standard MS series expansion, where the scattering contributions are grouped in terms of scattering order and may diverge in the low energy region, this expansion, called correlation expansion, partitions the scattering process into contributions from different small atom groups and converges at all energies. It converges faster than MS series expansion when the latter is convergent. Furthermore, it takes less memory than the full MS method so it can be used in the near edge region without any divergence problem, even for large clusters. The correlation expansion framework we derive here is very general and can serve to calculate all the elements of the scattering path operator matrix. Photoelectron diffraction calculations in a cluster containing 23 atoms are presented to test the method and compare it to full MS and standard MS series expansion

  20. Determination and applications of enhancement factors for positron and ortho-positronium annihilations

    International Nuclear Information System (INIS)

    Mitroy, J.

    2005-01-01

    Electron-positron annihilation rates calculated directly from the electron and positron densities are known to underestimate the true annihilation rate. A correction factor, known as the enhancement factor, allows for the local increase of the electron density around the positron caused by the attractive electron-positron interaction. Enhancement factors are given for positrons annihilating with the 1s electron in H, He + , He, Li 2+ , and Li + . The enhancement factor for a free positron annihilating with He + and He is found to be close to that of ortho-positronium (i.e., Ps in its triplet state) annihilating with these atoms. The enhancement factor for Ps-He scattering is used in conjunction with the known annihilation rate for pickoff annihilation to derive a scattering length of 1.47a 0 for Ps-He scattering. Further, enhancement factors for e + -Ne and e + -Ar annihilation are used in conjunction with the pickoff annihilation rate to estimate scattering lengths of 1.46a 0 for Ps-Ne scattering and 1.75a 0 for Ps-Ar scattering

  1. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    International Nuclear Information System (INIS)

    Bartels, J.; Motyka, L.; Jagellonian Univ., Krakow

    2007-11-01

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in γ * scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in γ * scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the γ * -initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2→4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3→4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  2. Baryon scattering at high energies. Wave function, impact factor, and gluon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Motyka, L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Jagellonian Univ., Krakow (Poland). Inst. of Physics

    2007-11-15

    The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in {gamma}{sup *} scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in {gamma}{sup *} scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the {gamma}{sup *}-initiated quark-antiquark dipole, and, in particular, it contains the BFKL evolution followed by the 2{yields}4 transition vertex (triple Pomeron vertex). The odderon-term is described by the standard BKP evolution, and the baryon couples to both known odderon solutions, the Janik-Wosiek solution and the BLV solution. Finally, the t-channel evolution of the third term starts with a three reggeized gluon state which then, via a new 3{yields}4 transition vertex, couples to the four gluon (two-Pomeron) state. We briefly discuss a few consequences of these findings, in particular the pattern of unitarization of high energy baryon scattering amplitudes. (orig.)

  3. Measurements of differential cross sections with electrons of intermediate energy (300-1000 eV) scattered by atom and molecule

    International Nuclear Information System (INIS)

    Barbieri, R.S.

    1985-01-01

    Differential Elastic Cross Sections for electrons scattered by osub(2) and Ar in the angular range 5 sup(0)- 140 sup(0) were measured in the energy range between 300 and 1000 eV. The Relative Flow Technique proposed by SRIVASTAVA et alii (1975) was used. Absolute Differential Elastic Cross Section data from DuBOIS and RUDD (1976) for Nsub(2) were stablished as a secondary standard. Our obtained results for Ar at 400, 800 and 1000 eV were compared against experimental and theoretical results available in the literature. For molecular Oxygen at 300, 400, 800 and 1000 eV our experimental data were compared with values from other authors and also theoretical values from Independent Atom Model including Multiple Intramolecular Scattering. Results for Ar at 1000 eV in the angular range between 60 sup(0) and 140 sup(0) and for osub(2) at 800 and 100 eV, between 5 sup(0) and 120 sup(0), were reported for the first time. (author)

  4. Atomic-resolution neutron holography

    International Nuclear Information System (INIS)

    Cser, L.; Toeroek, Gy.; Krexner, G.

    2001-01-01

    Atomic-resolution neutron holography can be realised by two different schemes. In the frame of the first approach a point-like source of slow neutrons is produced inside the investigated crystal. Due to the extremely large value of the incoherent-scattering cross-section of the proton, hydrogen atoms imbedded in a metal single-crystal lattice may serve as point-like sources when the sample is irradiated by a monochromatic beam of slow neutrons. The second approach utilizes the registration of the interference between the incident and scattered waves by means of a point-like detector inserted in the lattice of the crystal under investigation. In addition, neutron-induced electron holography is considered. The feasibility of these ideas is discussed. (orig.)

  5. Probing fine magnetic particles with neutron scattering

    International Nuclear Information System (INIS)

    Pynn, R.

    1991-01-01

    Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid

  6. Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms

    International Nuclear Information System (INIS)

    Kharchenko, V.F.

    2015-01-01

    The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determine the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities

  7. Low-energy scattering of excited helium atoms by rare gases

    International Nuclear Information System (INIS)

    Peach, G.

    1978-01-01

    The construction of semi-empirical model potentials for systems composed of helium in an excited state (Hestar) and a rare-gas atom (He or Ne) is described. The model of the atom-atom pair which has been adopted is one in which the excited electron is included explicitly, but the residual He + ion and the rare-gas atom are treated simply as cores which may be polarised. The results obtained are in satisfactory agreement with other calculations where they are available. (author)

  8. Toward electron exit wave tomography of amorphous materials at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Borisenko, Konstantin B., E-mail: konstantin.borisenko@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Kirkland, Angus I., E-mail: angus.kirkland@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Van Dyck, Dirk [Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Tang, Hsin-Yu; Chen, Fu-Rong [Department of Engineering and System Science, National Tsing Hua University, Kuang-Fu Road, 300 Hsinchu, Taiwan (China)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer We suggest a novel electron exit wave tomography approach to obtain three dimensional atomic structures of amorphous materials. Black-Right-Pointing-Pointer Theoretical tests using a model of amorphous Si doped with Au show that it is feasible to reconstruct both Si and Au atoms positions. Black-Right-Pointing-Pointer Reconstructions of the strongly scattering Au atoms positions appear to be insensitive to typical experimental errors. - Abstract: We suggest to use electron exit wave phase for tomographic reconstruction of structure of Au-doped amorphous Si with atomic resolution. In the present theoretical investigation into the approach it is found that the number of projections and the accuracy of defocus in the focal series restoration are the main factors that contribute to the final resolution. Although resolution is ultimately limited by these factors, phase shifts in the exit wave are sufficient to identify the position of Au atoms in an amorphous Si needle model, even when only 19 projections with defocus error of 4 nm are used. Electron beam damage will probably further limit the resolution of such tomographic reconstructions, however beam damage can be mitigated using lower accelerating voltages.

  9. Heavy particle dynamics in liquid Se. Inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Inui, Masanori; Hosokawa, Shinya; Matsuda, Kazuhiro; Tsutsui, Satoshi; Baron, A. Q. R.

    2007-01-01

    The dynamic structure factor of liquid Se was measured at 523 K using high-resolution inelastic X-ray scattering. Anomalous narrowing of the spectrum was observed at 15 nm -1 , where the static structure factor S(Q) exhibits a weak shoulder, but the elastic part of the dynamic structure factor S(Q, E=0) exhibited a strong maximum. The second frequency moment, which is estimated from only the quasielastic peak, is consistent with the motion of rigid six-atom clusters, while a formal agreement with the first-moment sum rule is preserved by the appearance of a weak intramolecular mode at 30 meV. (author)

  10. Scattering theory. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2016-07-01

    This corrected and updated second edition of ''Scattering Theory'' presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.

  11. Fine scale microstructure in cast and aged duplex stainless steels investigated by small angle neutron scattering

    International Nuclear Information System (INIS)

    Epperson, J.E.; Lin, J.S.; Spooner, S.

    1986-02-01

    Small angle neutron scattering (SANS) allows clustering phenomena to be studied in systems for which the constituent atoms do not differ greatly in atomic number. This investigation used SANS to characterize the fine scale microstructure in two cast and aged duplex stainless steels; aging times extended up to eight years. The steels differed in ferrite content by about a factor of two. The scattering at lowest q was dominated by magnetic scattering effects associated with the ferrite phase. In the range 0.025 less than or equal to q less than or equal to 0.2A -1 , additional scattering due to a precipitating phase rich in Ni and Si was observed. This scattering was rather intense and revealed a volume fraction of precipitate, in the ferrite, estimated to be 12 to 18% after long time aging. After about 70,000 hours at 400 0 C, there were about 10 18 precipitate particles per cm 3 some 50A in mean diameter, and they were distributed in a nonrandom manner, i.e., spatially, short-range-ordered. This investigation suggests that after aging some 70,000 hours at 400 0 C, the precipitate in the ferrite phase is undergoing Ostwald ripening. The present data are insufficient to indicate at what time this ripening process began

  12. Theoretical evaluation of self-shielding factors due to scattering resonances in foils

    International Nuclear Information System (INIS)

    Selander, W.N.

    1960-06-01

    A semi-analytical method is given for evaluating self-shielding factors for activation measurements which use thin foils having neutron scattering resonances. The energy loss by scattering in the foil is taken into account. The energy-dependent neutron angular distribution is expanded as a double series, the coefficients of which are (energy dependent) solutions of an infinite set of coupled integral equations. These are truncated in some suitable manner and solved numerically. The leading term of the series is proportional to the average, or effective flux in the activation sample. The product of this terra and the neutron capture cross-section is integrated numerically over the resonance to give the resonance self-shielding correction. Figure 4 shows resonance self-shielding factors derived in this mariner for the 132ev resonance in Co-59 and figure 5 shows similar results for the two Mn-55 resonances at 337ev and 1080ev. Self-shielding factors for 1/v capture are not significantly different from unity. (author)

  13. Neutron scattering on liquid He4 at high momentum transfers

    International Nuclear Information System (INIS)

    Parlinski, K.

    1975-01-01

    Using the Sears method of expansion of the dynamic structure factor into a series over the inverse powers of the wave vector and five moments of the velocity correlation function, the distribution of neutrons scattered on liquid helium at T=0 K and at the momentum transfer k=14.33 A -1 is calculated. The calculated distribution takes into account the interaction among helium atoms. The distributions are compared with the experimental data. The results show that proper information of the occupation fraction of the zero-momentum state - the condensate - can be obtained by the neutron scatterng method at high-momentum transfers only when the interaction among helium atoms is taken into account. (author)

  14. Set of thermal neutron-scattering experiments for the Weapons Neutron Research Facility

    International Nuclear Information System (INIS)

    Brugger, R.M.

    1975-12-01

    Six classes of experiments form the base of a program of thermal neutron scattering at the Weapons Neutron Research (WNR) Facility. Three classes are to determine the average microscopic positions of atoms in materials and three are to determine the microscopic vibrations of these atoms. The first three classes concern (a) powder sample neutron diffraction, (b) small angle scattering, and (c) single crystal Laue diffraction. The second three concern (d) small kappa inelastic scattering, (e) scattering surface phonon measurements, and (f) line widths. An instrument to couple with the WNR pulsed source is briefly outlined for each experiment

  15. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  16. Ideal gas scattering kernel for energy dependent cross-sections

    International Nuclear Information System (INIS)

    Rothenstein, W.; Dagan, R.

    1998-01-01

    A third, and final, paper on the calculation of the joint kernel for neutron scattering by an ideal gas in thermal agitation is presented, when the scattering cross-section is energy dependent. The kernel is a function of the neutron energy after scattering, and of the cosine of the scattering angle, as in the case of the ideal gas kernel for a constant bound atom scattering cross-section. The final expression is suitable for numerical calculations

  17. New method for solving multidimensional scattering problem

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1991-01-01

    A new method is developed for solving the quantum mechanical problem of scattering of a particle with internal structure. The multichannel scattering problem is formulated as a system of nonlinear functional equations for the wave function and reaction matrix. The method is successfully tested for the scattering from a nonspherical potential well and a long-range nonspherical scatterer. The method is also applicable to solving the multidimensional Schroedinger equation with a discrete spectrum. As an example the known problem of a hydrogen atom in a homogeneous magnetic field is analyzed

  18. Continuum multiple-scattering approach to electron-molecule scattering and molecular photoionization

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dill, D.

    1979-01-01

    The multiple-scattering approach to the electronic continuum of molecules is described. The continuum multiple-scattering model (CMSM) was developed as a survey tool and, as such was required to satisfy two requirements. First, it had to have a very broad scope, which means (i) molecules of arbitrary geometry and complexity containing any atom in the periodic system, (ii) continuum electron energies from 0-1000 eV, and (iii) capability to treat a large range of processes involving both photoionization and electron scattering. Second, the structure of the theory was required to lend itself to transparent, physical interpretation of major spectral features such as shape resonances. A comprehensive theoretical framework for the continuum multiple scattering method is presented, as well as its applications to electron-molecule scattering and molecular photoionization. Highlights of recent applications in these two areas are reviewed. The major impact of the resulting studies over the last few years has been to establish the importance of shape resonances in electron collisions and photoionization of practically all (non-hydride) molecules

  19. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    Science.gov (United States)

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  20. Application of laser resonance scattering to the study of high-temperature plasma-wall interaction

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Muraoka, Katsunori; Hamamoto, Makoto; Akazaki, Masanori; Miyazoe, Yasushi

    1981-01-01

    Studies on laser resonance scattering and its application to the study of high-temperature plasma-wall interaction are reviewed. The application of dye laser beam to resonant scattering method has been developed. This method is able to detect low density atoms. The fluorescent photon counts can be estimated for a two-level system and a three-level system. The S/N ratio, Which is in close connection with the detection limit, has been estimated. The doppler effect due to the thermal motion of atoms is taken into consideration. The calibration of the absolute number of atoms is necessary. Tunable coherent light is used as the light source for resonance scattering method. This is able to excite atoms strongly and to increase the detection efficiency. As dye lasers, a N 2 laser, a YAG laser, and a KrF excimer laser have been studied. In VUV region, rare gas or rare gas halide lasers can be used. The strong output power can be expected when the resonance lines of atoms meet the synchronizing region of the excimer laser. The resonance scattering method is applied to the detection of impurity metal atoms in plasma. The studies of laser systems for the detection of hydrogen atoms are also in progress. (Kato, T.)

  1. Incoherent imaging using dynamically scattered coherent electrons

    International Nuclear Information System (INIS)

    Nellist, P.D.; Pennycook, S.J.

    1999-01-01

    We use a Bloch wave approach to show that, even for coherent dynamical scattering from a stationary lattice with no absorption, annular dark-field imaging in a scanning transmission electron microscope gives a direct incoherent structure image of the atomic-column positions of a zone-axis-aligned crystal. Although many Bloch waves may be excited by the probe, the detector provides a filtering effect so that the 1s-type bound states are found to dominate the image contrast for typical experimental conditions. We also find that the column intensity is related to the transverse kinetic energy of the 1s states, which gives atomic number, Z, contrast. The additional effects of phonon scattering are discussed, in particular the reasons why phonon scattering is not a prerequisite for transverse incoherence. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. X-Ray-Scattering Measurements Of Strain In PEEK

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn E.; Chung, Shirley Y.; Yavrouian, Andre H.; Gupta, Amitava

    1988-01-01

    Internal stress relieved by heating above glass-transition temperature. Report describes wide-angle x-ray scattering and differential scanning calorimetry of specimens of poly(etheretherketone) having undergone various thermal treatments. Wide-angle x-ray scattering particularly useful in determining distances between atoms, crystallinity, and related microstructurally generated phenomena, as thermal expansion and strain. Calorimetric measurements aid interpretation of scattering measurements by enabling correlation with thermal effects.

  3. Cross section measurements of the elastic electron - deuteron scattering at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, Yvonne [Universitaet Mainz, Institut fuer Kernphysik (Germany); Collaboration: A1-Collaboration

    2015-07-01

    The electromagnetic form factors of light nuclei provide a sensitive test of our understanding of nuclei. Because the deuteron has spin one, three form factors are needed to fully describe the electromagnetic structure of the deuteron. Especially the deuteron charge radius is a favourite observable to compare experiment and calculation. Recently, an extensive measurement campaign has been performed at MAMI (Mainzer Microtron) to determine the deuteron charge radius using elastic electron scattering - with the aim to halve the error compared to previous such experiments. The experiment took place at the 3-spectrometer facility of the A1-collaboration. Cross section measurements of the elastic electron-deuteron scattering have been performed for 180 different kinematic settings in the low momentum transfer region. From these, the charge form factor can precisely be determined. Fitting the form factor with an appropiate fit function, the radius can then be determined from the slope at zero momentum transfer. The determined radius could then be used as a counterweight to the value obtained from the advanced atomic Lamb shift measurements, thus providing additional insight to the proton radius puzzle.

  4. Theory of collisional excitation transition between Rydberg states of atoms. Non-inertial mechanism

    International Nuclear Information System (INIS)

    Kaulakys, B.P.

    1982-01-01

    The transitions between highly states of an atom due to the collision of its core with another atom are considered. The cross sections of the change of highly excited electron angular momentum, in the case of the transitions when the main quantum number is constant, are expressed in terms of transport cross sections of the perturbing atom scattering on the ion of Rydberg atom. It is shown that the cross sections of the momentum mixing at thermal rapidities are lower than the cross sections of the atom-ion elastic scattering

  5. Atomic structure and phason modes of the Sc–Zn icosahedral quasicrystal

    Directory of Open Access Journals (Sweden)

    Tsunetomo Yamada

    2016-07-01

    Full Text Available The detailed atomic structure of the binary icosahedral (i ScZn7.33 quasicrystal has been investigated by means of high-resolution synchrotron single-crystal X-ray diffraction and absolute scale measurements of diffuse scattering. The average atomic structure has been solved using the measured Bragg intensity data based on a six-dimensional model that is isostructural to the i-YbCd5.7 one. The structure is described with a quasiperiodic packing of large Tsai-type rhombic triacontahedron clusters and double Friauf polyhedra (DFP, both resulting from a close-packing of a large (Sc and a small (Zn atom. The difference in chemical composition between i-ScZn7.33 and i-YbCd5.7 was found to lie in the icosahedron shell and the DFP where in i-ScZn7.33 chemical disorder occurs on the large atom sites, which induces a significant distortion to the structure units. The intensity in reciprocal space displays a substantial amount of diffuse scattering with anisotropic distribution, located around the strong Bragg peaks, that can be fully interpreted as resulting from phason fluctuations, with a ratio of the phason elastic constants K2/K1 = −0.53, i.e. close to a threefold instability limit. This induces a relatively large perpendicular (or phason Debye–Waller factor, which explains the vanishing of `high-Qperp' reflections.

  6. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  7. Analytical formulae for total cross sections for electron scattering by atoms (N, O, F, Ne, P, S, Cl, Ar, As, Se, Br, Kr) between 0.5-10 keV

    International Nuclear Information System (INIS)

    Williart, A.

    2001-01-01

    Analytical formulae for total cross sections for electron scattering by atoms which are close to the noble gases (Ne, Ar and Kr), for electron energies ranging from 0.5 to 10 keV, have been obtained in this study. We have shown, previously, that molecular total cross sections, at these energies, depend on target polarizability and the number of target electrons. A similar behaviour has been supposed for total cross sections of some atoms (N, O, F, P, S, Cl, As, Se and Br). The obtained expression depends on atomic parameters and it is based in some correlation derived from noble gases. The applicability of the formula has been checked by comparison with available data for atomic oxygen. (orig.)

  8. Analytical formulae for total cross sections for electron scattering by atoms (N, O, F, Ne, P, S, Cl, Ar, As, Se, Br, Kr) between 0.5-10 keV

    Energy Technology Data Exchange (ETDEWEB)

    Williart, A. [Univ. Nacional de Educacion a Distancia, Madrid (Spain). Dept. de Fisica de los Materiales; Garcia, G. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain)

    2001-10-01

    Analytical formulae for total cross sections for electron scattering by atoms which are close to the noble gases (Ne, Ar and Kr), for electron energies ranging from 0.5 to 10 keV, have been obtained in this study. We have shown, previously, that molecular total cross sections, at these energies, depend on target polarizability and the number of target electrons. A similar behaviour has been supposed for total cross sections of some atoms (N, O, F, P, S, Cl, As, Se and Br). The obtained expression depends on atomic parameters and it is based in some correlation derived from noble gases. The applicability of the formula has been checked by comparison with available data for atomic oxygen. (orig.)

  9. Scattering of atoms by a stationary sinusoidal hard wall: Rigorous treatment in (n+1) dimensions and comparison with the Rayleigh method

    International Nuclear Information System (INIS)

    Goodman, F.O.

    1977-01-01

    A rigorous treatment of the scattering of atoms by a stationary sinusoidal hard wall in (n+1) dimensions is presented, a previous treatment by Masel, Merrill, and Miller for n=1 being contained as a special case. Numerical comparisons are made with the GR method of Garcia, which incorporates the Rayleigh hypothesis. Advantages and disadvantages of both methods are discussed, and it is concluded that the Rayleigh GR method, if handled properly, will probably work satisfactorily in physically realistic cases

  10. Low-energy positron interactions with atoms and molecules

    International Nuclear Information System (INIS)

    Surko, C M; Gribakin, G F; Buckman, S J

    2005-01-01

    This paper is a review of low-energy positron interactions with atoms and molecules. Processes of interest include elastic scattering, electronic and vibrational excitation, ionization, positronium formation and annihilation. An overview is presented of the currently available theoretical and experimental techniques to study these phenomena, including the use of trap-based positron beam sources to study collision processes with improved energy resolution. State-resolved measurements of electronic and vibrational excitation cross sections and measurement of annihilation rates in atoms and molecules as a function of incident positron energy are discussed. Where data are available, comparisons are made with analogous electron scattering cross sections. Resonance phenomena, common in electron scattering, appear to be less common in positron scattering. Possible exceptions include the sharp onsets of positron-impact electronic and vibrational excitation of selected molecules. Recent energy-resolved studies of positron annihilation in hydrocarbons containing more than a few carbon atoms provide direct evidence that vibrational Feshbach resonances underpin the anomalously large annihilation rates observed for many polyatomic species. We discuss open questions regarding this process in larger molecules, as well as positron annihilation in smaller molecules where the theoretical picture is less clear. (topical review)

  11. Energy dependence of the ionization of highly excited atoms by collisions with excited atoms

    International Nuclear Information System (INIS)

    Shirai, T.; Nakai, Y.; Nakamura, H.

    1979-01-01

    Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies

  12. Association of atoms into universal dimers using an oscillating magnetic field.

    Science.gov (United States)

    Langmack, Christian; Smith, D Hudson; Braaten, Eric

    2015-03-13

    In a system of ultracold atoms near a Feshbach resonance, pairs of atoms can be associated into universal dimers by an oscillating magnetic field with a frequency near that determined by the dimer binding energy. We present a simple expression for the transition rate that takes into account many-body effects through a transition matrix element of the contact. In a thermal gas, the width of the peak in the transition rate as a function of the frequency is determined by the temperature. In a dilute Bose-Einstein condensate of atoms, the width is determined by the inelastic scattering rates of a dimer with zero-energy atoms. Near an atom-dimer resonance, there is a dramatic increase in the width from inelastic atom-dimer scattering and from atom-atom-dimer recombination. The recombination contribution provides a signature for universal tetramers that are Efimov states consisting of two atoms and a dimer.

  13. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  14. Resonantly scattering crystals and surfaces

    International Nuclear Information System (INIS)

    Gunn, J.M.F.; Mahon, P.J.

    1990-12-01

    We examine coherence effects from forming a crystal of resonant scatterers by generalising the Fano model for autoionising resonances in electron scattering from atoms to a lattice of such scatterers. (We have in mind the case of neutron scattering from nuclei.) We solve this problem to yield two branches to the dispersion relation for the neutron in general and three when the resonance coincides with a Brillouin Zone boundary. The 'width' of the resonance is enhanced over the isolated nucleus, the best candidate for observation being the 2eV 185 Re resonance near the Bragg condition. We use these results to calculate the reflection coefficient from a surface, revealing total external reflection near resonance. We discuss experimental feasibility in both the neutron and electron cases. (author)

  15. Interactions of circular Rydberg atoms with charged particles

    International Nuclear Information System (INIS)

    Wang, J.

    1994-01-01

    Recent progress in experimental cross-field techniques has made it possible to produce oriented Rydberg atoms of any angular momentum l within a given n manifold. The largest angular momentum state l max = n - 1 of a given n manifold is of particular interest because of its semiclassical properties for n much-gt 1. The corresponding classical Kepler orbit is circular with highly localized phase space distribution. The circular Rydberg atoms afford the opportunity to study various interactions in the semiclassical regime. The authors report electron capture from circular Rydberg atoms by protons and positrons at speeds comparable to the electron orbital speed. They find orientation dependent, novel peak structures for both protons and positrons in the angular scattering of the particles. The structures may be understood in terms of quasi Thomas double scattering mechanism for capture. Other related aspects including final state population and orientation indulged scattering asymmetry will also be discussed

  16. Off-critical statistical models: factorized scattering theories and bootstrap program

    International Nuclear Information System (INIS)

    Mussardo, G.

    1992-01-01

    We analyze those integrable statistical systems which originate from some relevant perturbations of the minimal models of conformal field theories. When only massive excitations are present, the systems can be efficiently characterized in terms of the relativistic scattering data. We review the general properties of the factorizable S-matrix in two dimensions with particular emphasis on the bootstrap principle. The classification program of the allowed spins of conserved currents and of the non-degenerate S-matrices is discussed and illustrated by means of some significant examples. The scattering theories of several massive perturbations of the minimal models are fully discussed. Among them are the Ising model, the tricritical Ising model, the Potts models, the series of the non-unitary minimal models M 2,2n+3 , the non-unitary model M 3,5 and the scaling limit of the polymer system. The ultraviolet limit of these massive integrable theories can be exploited by the thermodynamics Bethe ansatz, in particular the central charge of the original conformal theories can be recovered from the scattering data. We also consider the numerical method based on the so-called conformal space truncated approach which confirms the theoretical results and allows a direct measurement of the scattering data, i.e. the masses and the S-matrix of the particles in bootstrap interaction. The problem of computing the off-critical correlation functions is discussed in terms of the form-factor approach

  17. Comparison of Head Scatter Factor for 6MV and 10MV flattened (FB) and Unflattened (FFF) Photon Beam using indigenously Designed Columnar Mini Phantom.

    Science.gov (United States)

    Ashokkumar, Sigamani; Nambi Raj, N Arunai; Sinha, Sujit Nath; Yadav, Girigesh; Thiyagarajan, Rajesh; Raman, Kothanda; Mishra, Manindra Bhushan

    2014-07-01

    To measure and compare the head scatter factor for flattened (FB) and unflattened (FFF) of 6MV and 10MV photon beam using indigenously designed mini phantom. A columnar mini phantom was designed as recommended by AAPM Task Group 74 with low and high atomic number materials at 10 cm (mini phantom) and at approximately twice the depth of maximum dose water equivalent thickness (brass build-up cap). Scatter in the accelerator (Sc) values of 6MV-FFF photon beams are lesser than that of the 6MV-FB photon beams (0.66-2.8%; Clinac iX, 2300CD) and (0.47-1.74%; True beam) for field sizes ranging from 10 × 10 cm(2) to 40 × 40 cm(2). Sc values of 10MV-FFF photon beams are lesser (0.61-2.19%; True beam) than that of the 10MV-FB photons beams for field sizes ranging from 10 × 10 cm(2) to 40 × 40 cm(2). The SSD had no influence on head scatter for both flattened and unflattened beams and irrespective of head design of the different linear accelerators. The presence of field shaping device influences the Sc values. The collimator exchange effect reveals that the opening of the upper jaw increases Sc irrespective of FB or FFF photon beams and different linear accelerators, and it is less significant in FFF beams. Sc values of 6MV-FB square field were in good agreement with that of AAPM, TG-74 published data for Varian (Clinac iX, 2300CD) accelerator. Our results confirm that the removal of flattening filter decreases in the head scatter factor compared to flattened beam. This could reduce the out-of-field dose in advanced treatment delivery techniques.

  18. Strong paramagnon scattering in single atom Pd contacts

    DEFF Research Database (Denmark)

    Schendel, V.; Barreteau, Cyrille; Brandbyge, Mads

    2017-01-01

    Pd contacts shows a reduction with increasing bias, which gives rise to a peculiar Lambda-shaped spectrum. Supported by theoretical calculations, we correlate this finding with the lifetime of hot quasiparticles in Pd, which is strongly influenced by paramagnon scattering. In contrast to this, Co...

  19. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Crasemann, B.; Wuilleumier, F.

    1985-01-01

    This chapter discusses applications of synchrotron light in atomic and molecular physics. Use of the radiation from storage rings has expanded and lent access to new areas of absorption and photoemission spectroscopy and scattering experiments. Techniques applied in connection with synchrotron radiation are discussed including absorption spectroscopy, photoelectron spectroscopy, fluorescence spectroscopy and X-ray scattering. Problem areas that are being studied by the techniques mentioned above are discussed. Synchrotron radiation has provided the means for measuring the threshold-excitation and interference effects that signal the breakdown of the two-step model of atomic excitation/deexcitation. Synchrotron radiation provides more means of excited-state photoionization measurements

  20. A local dynamic correlation function from inelastic neutron scattering

    International Nuclear Information System (INIS)

    McQueeney, R.J.

    1997-01-01

    Information about local and dynamic atomic correlations can be obtained from inelastic neutron scattering measurements by Fourier transform of the Q-dependent intensity oscillations at a particular frequency. A local dynamic structure function, S(r,ω), is defined from the dynamic scattering function, S(Q,ω), such that the elastic and frequency-integrated limits correspond to the average and instantaneous pair-distribution functions, respectively. As an example, S(r,ω) is calculated for polycrystalline aluminum in a model where atomic motions are entirely due to harmonic phonons

  1. Coherent scattering of electromagnetic radiation by a polarized particle system

    International Nuclear Information System (INIS)

    Agre, M.Ya.; Rapoport, L.P.

    1996-01-01

    The paper deals with the development of the theory of coherent scattering of electromagnetic waves by a polarized atom or molecular system. Peculiarities of the angular distribution and polarization peculiarities of scattered radiation are discussed

  2. Interaction of complex atoms with radiation

    International Nuclear Information System (INIS)

    Amus'ya, M.Ya.

    1984-01-01

    Different manifestations of multielectron atomic structure under photoionization are discussed. Collectivization of external electron shells essential both in production cross section and in angular distribution as well as in photoelectron polarization are noted. In a wide range of quantum energies (of the order of ionization potential) an incident electron scattering on the atom irradiates quite differently than on the potential. It polarizes atoms mainly dipolarly, and virtually excited atom emits ''bremsstrahlung'' quantum. With energy growth of the incident electron at small momentum transferred to it by the atom the role of the second mechanism turns to be determinant

  3. Compton profiles by inelastic ion-electron scattering

    International Nuclear Information System (INIS)

    Boeckl, H.; Bell, F.

    1983-01-01

    It is shown that Compton profiles (CP) can be measured by inelastic ion-electron scattering. Within the impulse approximation the binary-encounter peak (BEP) reflects the CP of the target atom whereas the electron-loss peak (ELP) is given by projectile CP's. Evaluation of experimental data reveals that inelastic ion-electron scattering might be a promising method to supply inelastic electron or photon scattering for the determination of target CP's. The measurement of projectile CP's is unique to ion scattering since one gains knowledge about wave-function effects because of the high excitation degree of fast heavy-ion projectiles

  4. Evaluation of a scattered radiation field in a cluster relevant for multiple-energy X-ray holography

    International Nuclear Information System (INIS)

    Fonda, L.

    1996-09-01

    We analyze theoretically a recent proposal of utilizing synchrotron radiation to generate an electromagnetic scattering field at a specific target atom inside a material sample. The direct wave coming from a wiggler interferes there with the waves scattered by the surrounding atoms. The suggestion is relevant for obtaining atomic holographic images. (author). 23 refs, 2 figs

  5. Neutron scattering on molten transition metals and on Fe-C melts

    International Nuclear Information System (INIS)

    Weber, M.

    1978-01-01

    In order to find out whether short-range order phenomena can be detected in iron-carbon melts, neutron scattering experiments were carried out in molten iron-carbon alloys. The method of isotope substitution, where the natural alloying iron was substituted by a 57 Fe-enriched isotope mixture, helped to increase the ratio between the scattering length of the carbon atoms and that of the iron atoms. The mean coherent scattering length for the isotope mixture which is required for further evaluation of the measurements, was determined in an experiment by measuring the limiting angle for total reflection of neutrons on evaporated films. From this determination of the scattering length, a value for the so far unknown scattering length of the 58 Fe isotope was obtained. The small angle scattering in corrected intensity curves of molten Fe-C alloys was investigated in detail. Scattering experiments in unalloyed Fe, Co, and Ni in the range of small scattering vectors proved that this small-angle scattering effect, which was observed here for the first time, is of magnetic origin. It is caused by short-range spin correlations fluctuating with space and time. [de

  6. New elastic electron scattering factors for the elements for incident energies of 10, 40, 60, and 90 keV

    International Nuclear Information System (INIS)

    Ross, A.W.; Fink, M.

    1986-01-01

    An improved set of scattering factors for all neutral elements has bee completed for inclusion in the new edition of the International Tables of X-ray Crystallography . These calculations are compared with the former electron scattering factors and the deviations between the two are discussed

  7. Shot noise as a probe of spin-correlated transport through single atoms

    Science.gov (United States)

    Pradhan, S.; Fransson, J.

    2018-03-01

    We address the shot noise in the tunneling current through a local spin, pertaining to recent experiments on magnetic adatoms and single molecular magnets. We show that both uncorrelated and spin-correlated scattering processes contribute vitally to the noise spectrum. The spin-correlated scattering processes provide an additional contribution to the Landauer-Büttiker shot noise expression, accounting for correlations between the tunneling electrons and the localized spin moment. By calculating the Fano factor, we show that both super- and sub-Poissonian shot noise can be described within our approach. Our theory provides transparent insights into noise spectroscopy, consistent with recent experiments using local probing techniques on magnetic atoms.

  8. Ion fractions in the scattering of hydrogen on silicon surfaces

    International Nuclear Information System (INIS)

    Garcia, Evelina A.; Gonzalez Pascual, C.; Bolcatto, P.G.; Passeggi, M.C.G.; Goldberg, E.C.

    2005-01-01

    We present a theoretical calculation of the resonant charge-exchange process occurring in H 0 scattering by Si(100)2 x 1 surfaces. In the atom-surface interacting system the core states of the surface atoms are included and the parameters of the Hamiltonian are calculated in an ab initio basis taking into account the extended features of the surface and the localized atom-atom interactions within a mean-field approximation. The density of states of the surface and sub-surface atoms are obtained from a molecular dynamic-density functional theory in the local density approximation. An elastic binary collision is assumed to fix the projectile trajectory, while the inelastic processes are determined by the interaction of the projectile atom with all the surface atoms 'seen' along its trajectory. The ion fractions are calculated by using the Green-Keldysh formalism to solve the time dependent process. The results, obtained as an average over different possibilities for the scattering center, reproduce the general trends of the experiment. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Three dimensional classical theory of rainbow scattering of atoms from surfaces

    International Nuclear Information System (INIS)

    Pollak, Eli; Miret-Artes, Salvador

    2010-01-01

    Graphical abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously. - Abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously.

  10. Atomic scattering in the diffraction limit: electron transfer in keV Li+-Na(3s, 3p) collisions

    International Nuclear Information System (INIS)

    Poel, M van der; Nielsen, C V; Rybaltover, M; Nielsen, S E; Machholm, M; Andersen, N

    2002-01-01

    We measure angle differential cross sections (DCS) in Li + + Na → Li + Na + electron transfer collisions in the 2.7-24 keV energy range. We do this with a newly constructed apparatus which combines the experimental technique of cold target recoil ion momentum spectroscopy with a laser-cooled target. This setup yields a momentum resolution of 0.12 au, an order of magnitude better angular resolution than previous measurements on this system. This enables us to clearly resolve Fraunhofer-type diffraction patterns in the angle DCS. In particular, the angular width of the ring structure is given by the ratio of the de Broglie wavelength λ dB = 150 fm at a velocity v = 0.20 au and the effective atomic diameter for electron capture 2R = 20 au. Parallel AO and MO semiclassical coupled-channel calculations of the Na(3s, 3p) → Li(2s, 2p) state-to-state collision amplitudes have been performed, and quantum scattering amplitudes are derived by the eikonal method. The resulting angle-differential electron transfer cross sections and their diffraction patterns agree with the experimental level-to-level results over most scattering angles in the energy range

  11. On the additivity of scattering phases in collisions of electrons on endohedrals

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V

    2015-01-01

    It is demonstrated that an inner atom, either Ne or Ar, qualitatively affects the electron scattering phases upon an endohedral, in spite of the fact that the fullerene consists of 60 carbon atoms, while the atom staffed inside is only one. Calculations are performed in the one-electron Hartree-Fock (HF) and random phase approximation with exchange (RPAE) for the inner atom while the fullerenes shell is substituted by static potential without and with the polarization potential. The total endohedral scattering phase is a sum of atomic, Ne or Ar, and fullerenes C 60 phases, contrary to the intuitive assumption that the total phases on C 60 and Ne@C 60 or Ar@C 60 has to be the same. (paper)

  12. Neutron scattering facilities at China Institute of Atomic Energy. Present and future situations

    International Nuclear Information System (INIS)

    Ye, C.T.; Gou, C.; Yang, T.H.

    2001-01-01

    The 15 MW Heavy Water Research Reactor (HWRR) at CIAE in Beijing is the only neutron source available for neutron scattering experiments in China at present. So far totally 5 neutron scattering spectrometers are installed at 4 beam tubes. A 60 MW new research reactor, China Advanced Research Reactor (CARR), now is being built at CIAE to meet the increasing demand of neutron scattering research in China. A brief description of HWRR, the presently existing neutron scattering equipments at HWRP, CARR, and the neutron scattering facilities to be installed at CARR are presented. (J.P.N.)

  13. Further study of a new dispersion relation for electron-atom scattering

    International Nuclear Information System (INIS)

    Bhatia, A.K.; Temkin, A.

    1988-01-01

    A new recently proposed dispersion relation (DR) [Temkin, Bhatia, and Kim, J. Phys. B 19, L707 (1986)] is tested for e-He scattering; the results show that the new DR is not satisfied. Therefore we start to investigate the analytic structure of the difference amplitude, previously assumed to be nonsingular, on the negative scattering energy axis. Even under severe approximations we find that the difference amplitude contains both poles and branch points. This suggests, however, a useful approximation of these contributions to the DR which gives very satisfactory agreement in both e-H and e-He scattering. We conclude with some brief general remarks on this problem

  14. Analyticity and unitarity as constraints to obtain scattering phase shifts and applications to e-He scattering

    International Nuclear Information System (INIS)

    Huber, H.; Lun, D.R.; Allen, L.J.; Amos, K.

    1997-01-01

    The requirements that the scattering functions for quantal scattering at energies below the first inelastic threshold be unitary and analytic have been used to establish a process that gives the complex scattering amplitudes from differential cross sections. From those amplitudes scattering phase shifts have been deduced by Legendre integration. The effects of the natural ambiguity of the phase of the scattering phase shifts have been deduced by Legendre integration. The effects of the natural ambiguity of the phase of the scattering amplitude, under conditions for which uniqueness and (numerical) stability of solutions are not assured, also have been developed to specify the scattering phase shifts can give stable nonspurious results. The scattering of electrons from He atoms for incident energies ranging from 1.5 to 19 eV are considered as an example of the procedure. Phase shift analyses of that data have been made with a variety of other techniques to allow a comparative study of these results and of sets with which are associated fits to cross sections that are statistically significant. 18 refs., 2 tabs., 8 figs

  15. Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments

    CERN Document Server

    Marliere, C; Etienne, P; Woignier, T; Dieudonné, P; Phalippou, J

    2001-01-01

    During the last few years the bulk structure of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light). It has been shown that small silica particles aggregate to constitute a fractal network. Its spatial extension and fractal dimension are strongly dependent on the synthesis conditions (e.g., pH of gelifying solutions). These typical lengths range from 1 to 10 nm. Ultra-small angle X-ray scattering (USAXS) and atomic force microscopy (AFM) experiments have been carried out on aerogels at different steps of densification. The results presented in this paper reveal the existence of a spatial arrangement of the solid part at a very large length scale. The evolution of this very large-scale structure during the densification process has been studied and reveals a contraction of this macro-structure made of aggregates of clusters. (16 refs).

  16. The role of symmetry in the theory of inelastic high-energy electron scattering and its application to atomic-resolution core-loss imaging.

    Science.gov (United States)

    Dwyer, C

    2015-04-01

    The inelastic scattering of a high-energy electron in a solid constitutes a bipartite quantum system with an intrinsically large number of excitations, posing a considerable challenge for theorists. It is demonstrated how and why the utilization of symmetries, or approximate symmetries, can lead to significant improvements in both the description of the scattering physics and the efficiency of numerical computations. These ideas are explored thoroughly for the case of core-loss excitations, where it is shown that the coupled angular momentum basis leads to dramatic improvements over the bases employed in previous work. The resulting gains in efficiency are demonstrated explicitly for K-, L- and M-shell excitations, including such excitations in the context of atomic-resolution imaging in the scanning transmission electron microscope. The utilization of other symmetries is also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Mixed quantum/classical theory for inelastic scattering of asymmetric-top-rotor + atom in the body-fixed reference frame and application to the H₂O + He system.

    Science.gov (United States)

    Semenov, Alexander; Dubernet, Marie-Lise; Babikov, Dmitri

    2014-09-21

    The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H2O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm(-1) the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm(-1) the errors are consistently in the range of 1%-2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n(2), where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n(3). Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.

  18. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  19. Molecular beam photoionization and gas-surface scattering

    International Nuclear Information System (INIS)

    Ceyer, S.T.

    1979-09-01

    The energetics of the ethylene ion-molecule reactions was investigated in more detail than previously possible in two body collision experiments by photoionization of the neutral van der Waals ethylene dimer. The stability of the (C 2 H 4 ) + C 2 H 4 ion-molecule collision complex has been determined to be 18.2 +- 0.5 kcal. The highest potential barriers along the reaction coordinate for decomposition of this collision complex into C 4 H 7 + + H and C 3 H 5 + + CH 3 have been determined to be 0 +- 1.5 and 8.7 +- 1.5 kcal. In a similar manner, the energetics of the solvated ethylene dimer ion was investigated by the photoionization of the ethylene trimer. The absolute proton affinity of NH 3 (203.6 +- 1.3 kcal/mole) and the proton solvation energies by more than one NH 3 have been determined by molecular beam photoionization. In addition, the NH 3 + -NH 3 interaction energy (0.79 +- 0.05 eV) was measured by photoionization of the neutral van der Waals dimer. These experiments have shown that photoionization of van der Waals clusters is a very powerful method of determining the energetics of gas phase proton solvation. The scattering of helium atomic beams from a high Miller index platinum surface that exhibits ordered, periodic steps on the atomic scale to probe the effect of atomic steps on the scattering distribution is explored. Rainbow scattering is observed when the step edges are perpendicular to the incident helium atoms. The design, construction and operation of a beam-surface scattering apparatus are described. The first data obtained in this apparatus are presented and the interesting dynamical aspects of the oxidation of D, D 2 and CO are discussed. 75 references

  20. Light scattering in glass-ceramics

    International Nuclear Information System (INIS)

    Hendy, S.C.

    2002-01-01

    Full text: Glass-ceramic materials with microstructures comprised of dispersed nanocrystallites in a residual glass matrix show promise for many new technological applications. In particular, transparent glass-ceramics offer low thermal expansion and stability, in addition to the prospect of novel non-linear optical properties that can arise from the nanocrystallites. Good transparency requires low optical scattering and low atomic absorption. Light scattering in the glass-ceramic arises primarily from the glass-crystallite interface. The attenuation due to scattering (turbidity) will depend upon the difference in refractive index of the two phases and the size and distribution of nanocrystallites in the glass. Here we consider models of glass-ceramic structure formation and look at scattering in these model structures to increase our understanding of the transparency of glass-ceramics