WorldWideScience

Sample records for atomic recoil spectra

  1. Primary reactions of recoiling germanium atoms

    International Nuclear Information System (INIS)

    75Ge recoils are made using the (n,2n) reaction. By analogy with Si recoils, two divalent species are suggested as intermediates in the recoil-germane reaction, one formed by H abstraction and the other formed by insertion only. A series of moderator and competition experiments were conducted. Of the noble gases, Kr is the most efficient moderator at removing kinetic energy from the recoils. Xe has a special effect due to its low ionization potential. A reaction scheme is proposed with two routes to digermane, one from a hot neutral atom and the other from a positive ion. 8 figures

  2. QED theory of the nuclear recoil effect in atoms

    CERN Document Server

    Shabaev, V M

    1998-01-01

    The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \\alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.

  3. QED theory of the nuclear recoil effect in atoms

    OpenAIRE

    Shabaev, V. M.

    1997-01-01

    The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \\alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.

  4. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  5. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  6. Observation of Lasing Mediated by Collective Atomic Recoil

    CERN Document Server

    Kruse, D; Zimmermann, C; Courteille, P W; Courteille, Ph.W.

    2003-01-01

    We observe the buildup of a frequency-shifted reverse light field in a unidirectionally pumped high-Q optical ring cavity serving as a dipole trap for cold atoms. This effect is enhanced and a steady state is reached, if via an optical molasses an additional friction force is applied to the atoms. We observe the displacement of the atoms accelerated by momentum transfer in the backscattering process and interpret our observations in terms of the collective atomic recoil laser. Numerical simulations are in good agreement with the experimental results.

  7. Some Reactions of Recoil Atoms in Solid Inorganic Phosphorus Compounds

    International Nuclear Information System (INIS)

    In connection with our interest in the recoil chemistry of radiophosphorus it was considered worthwhile to investigate systems in which tritium recoils can be produced and subsequently react with inorganic anions of phosphorus. One purpose of this investigation was to evaluate the possibility for tritium recoils to replace (''displace'') either an oxygen or a hydrogen atom bound to phosphorus. For instance, oxygen replacement in an orthophosphate ion (PO4)-3 could lead to a (TPO3)-2 ion (phosphite), hydrogen replacement in hypophosphite could lead to (HTPO2). A number of lithium salts of orthophosphoric, phosphorous and hypophosphorous acid were irradiated with neutrons, the nuclear reaction Li6 (n, α)H3 serving as the source for the energetic tritium atoms. Through a step-wise oxidation procedure tritium bound to phosphorus was converted into HTO and radio-assayed by means of liquid scintillation counting. The results indicate that replacement of oxygen by tritium in orthophosphates is highly unlikely. When phosphites and hypophosphites are the target material, an appreciable percentage of the tritium recoils end up bound to phosphorus. The second purpose of this investigation was to determine to what extent the labelling of the tripolyphosphate - P32 anion, formed by recoiling P32 particles in a number of crystalline phosphates, deviates from a uniform distribution. A number of phosphates were irradiated with neutrons. The tripolyphosphate - P32 formed was separated by precipitation as the tris (ethylenediamine) cobalt (III) salt. By means of a step-wise degradation into orthophosphate the distribution of the P32 among the two possible positions in the anion was measured. One result of this study is that when anhydrous orthophosphates are the target material, there is as predicted, a strong preference for the tripolyphosphate - P32 formed to be labelled at the centre. These and other results are discussed in the light of current concepts of ''hot

  8. Model-independent evaluation of recoils channeling impact on visible energy spectra in dark matter particles crystalline detectors

    International Nuclear Information System (INIS)

    Proposed is a direct method of Dark Matter crystalline scintillation detectors calibration by means of an atomistic molecular dynamics modeling of their responses to ∼10 keV recoil atoms. Simulations show that the recoils channeling exists in NaI lattice with probabilities of ∼5 - 15 %. It does not affect the mean values of quenching factors but gives rise to high visible energy spectral tails absent in disordered detectors. As a result, the lattice ordering manifests the ∼100 % effect on NaI(Tl) visible energy spectra at 2-6 keV window

  9. Collective Atomic Recoil Lasing Including Friction and Diffusion Effects

    CERN Document Server

    Robb, G R M; Ferraro, A; Bonifacio, R; Courteille, P W; Zimmermann, C; Courteille, Ph.W.

    2003-01-01

    We extend the Collective Atomic Recoil Lasing (CARL) model including the effects of friction and diffusion forces acting on the atoms due to the presence of optical molasses fields. The results from this model are consistent with those from a recent experiment by Kruse et al. [Phys. Rev. Lett. 91, 183601 (2003)]. In particular, we obtain a threshold condition above which collective backscattering occurs. Using a nonlinear analysis we show that the backscattered field and the bunching evolve to a steady-state, in contrast to the non-stationary behaviour of the standard CARL model. For a proper choice of the parameters, this steady-state can be superfluorescent.

  10. Proceedings of the symposium on measurements of neutron energy spectra using recoil proton proportional counters

    International Nuclear Information System (INIS)

    This is a report of the symposium on measurements of neutron energy spectra using recoil proton proportional counters held at the Research Reactor Institute of Kyoto University on January 27 in 1986. An energy resolution, wall effects of response functions, n · γ discrimination methods and other fundamental properties of recoil proton counters are discussed for a new development of an application of this counter. (author)

  11. Chemical fate of a recoil atom as a function of the lattice conditions

    International Nuclear Information System (INIS)

    The author considers the fate of a recoil atom receiving a recoil as a result of a nuclear reaction, completely rupturing the bonds between the atom and its ligands, in the case of KMnO4- and KBrO3-crystal lattices. (Auth.)

  12. Search for the admixture of heavy neutrinos in the recoil spectra of 37Ar decay

    International Nuclear Information System (INIS)

    Neutrino-induced recoil spectra of 37Cl ions produced in the electron capture (EC) decay of 37Ar were measured and searched for the presence of massive neutrinos admixed to the dominant electron neutrino. Fractions of a monolayer of 37Ar were physisorbed on Au and on several underlayers of 40Ar adsorbed on both Au and graphite substrates cooled to ≤20 K under ultrahigh vacuum conditions. Time-of-flight spectra of the recoiling ions were recorded in coincidence with x rays and Auger electrons emitted following the EC decay. By searching these spectra for peaks with energies between 7.6 eV and 3.6 eV upper limits were placed on the mixing probability of the electron neutrino with heavy neutrinos in the 370 - 640 keV mass range. These limits vary from 1 to 4%, at the 90% confidence level. copyright 1998 The American Physical Society

  13. Primary recoil spectra and subcascade effects in ion bombardment experiments

    International Nuclear Information System (INIS)

    The motivation of this work is to compare atomic damage configurations associated with neutron and fast-ion damage. The question we set out to answer was: Which choice of ion mass and kinetic energy provides the best simulation of fast neutron damage. The answer which emerges is that the primary damage state, i.e. the statistical distribution of free defects, and subcascade regions before annealing, is remarkably independent of the ion species and its PKA spectrum. This conclusion is sufficiently surprising to warrant careful examination, and is presented together with a variety of qualifications. (author)

  14. NIST Databases on Atomic Spectra

    Science.gov (United States)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new

  15. Recoil spectra produced by 14.1 MeV neutrons

    International Nuclear Information System (INIS)

    Recoil spectra produced by 14,1 MeV neutrons on the following, substances have been studied: carbon, nitrogen, oxygen, aluminium, iron and lead. The detection is effected at 90 degrees to the incident neutron direction using a Ge (Li) detector. Values of the differential cross-sections at 90 degrees for the most important gamma rays are given expressed in mb/sr. (author)

  16. Scattering of low-energy electrons by excited sodium atoms using a photon and electron atomic beam recoil technique

    International Nuclear Information System (INIS)

    A new method for measuring cross sections for the scattering of electrons by laser-excited atoms is described. It is a generalization of the atomic-beam recoil technique, taking advantage of the recoil of atoms during resonant photon interactions to spatially separate excited from nonexcited atoms. A preliminary value for the total cross section for the scattering of electrons by the 32P3/2(m/sub F/=3) state of sodium at 4.4 eV is presented

  17. A recoil ion momentum spectrometer for molecular and atomic fragmentation studies

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Arnab; Tribedi, Lokesh C.; Misra, Deepankar, E-mail: dmisra@tifr.res.in [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2015-04-15

    We report the development and performance studies of a newly built recoil ion momentum spectrometer for the study of atomic and molecular fragmentation dynamics in gas phase upon the impact of charged particles and photons. The present design is a two-stage Wiley-McLaren type spectrometer which satisfies both time and velocity focusing conditions and is capable of measuring singly charged ionic fragments up-to 13 eV in all directions. An electrostatic lens has been introduced in order to achieve velocity imaging. Effects of the lens on time-of-flight as well as on the position have been investigated in detail, both, by simulation and in experiment. We have used 120 keV proton beam on molecular nitrogen gas target. Complete momentum distributions and kinetic energy release distributions have been derived from the measured position and time-of-flight spectra. Along with this, the kinetic energy release spectra of fragmentation of doubly ionized nitrogen molecule upon various projectile impacts are presented.

  18. Search for the admixture of heavy neutrinos in the recoil spectra of {sup 37}Ar decay

    Energy Technology Data Exchange (ETDEWEB)

    Hindi, M.M.; Kozub, R.L.; Miocinovic, P. [Department of Physics, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Avci, R.; Zhu, L. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Hussein, A.H. [Physics Program, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 (CANADA)

    1998-10-01

    Neutrino-induced recoil spectra of {sup 37}Cl ions produced in the electron capture (EC) decay of {sup 37}Ar were measured and searched for the presence of massive neutrinos admixed to the dominant electron neutrino. Fractions of a monolayer of {sup 37}Ar were physisorbed on Au and on several underlayers of {sup 40}Ar adsorbed on both Au and graphite substrates cooled to {le}20 K under ultrahigh vacuum conditions. Time-of-flight spectra of the recoiling ions were recorded in coincidence with x rays and Auger electrons emitted following the EC decay. By searching these spectra for peaks with energies between 7.6 eV and 3.6 eV upper limits were placed on the mixing probability of the electron neutrino with heavy neutrinos in the 370{endash}640 keV mass range. These limits vary from 1 to 4{percent}, at the 90{percent} confidence level. {copyright} {ital 1998} {ital The American Physical Society}

  19. Evaluation of proton-recoil-spectra including inverse filtering in the Fourier domain

    International Nuclear Information System (INIS)

    The evaluation of proton recoil spectra having large statistical fluctuations can be improved by the following operations in Fourier domain: smoothing, using a Gaussian function as low pass frequency filter and inverse filtering with the measured response function before multiplying by -2πiν as differentiation. This results in pure Gaussian shapes for the neutron lines. The line intensities are then no longer influenced by correlated ripples outside the lines and the errors in determining the line intensities are reduced by widening by lines. (orig.)

  20. Self-organization effects and light amplification of collective atomic recoil motion in a harmonic trap

    OpenAIRE

    Zhang, L.; Yang, G. J.; Xia, L. X.

    2005-01-01

    Self-organization effects related to light amplification in the collective atomic recoil laser system with the driven atoms confined in a harmonic trap are investigated further. In the dispersive parametric region, our study reveals that the spontaneously formed structures in the phase space contributes an important role to the light amplification of the probe field under the atomic motion being modified by the trap.

  1. Observation of nonlinear laser spectra of cold atoms in diffuse light

    CERN Document Server

    Zhang, Wen-zhuo; Liu, Liang; Wang, Yu-zhu

    2009-01-01

    The recoil-induced resonances (RIR) and electromagnetic-induced absorption (EIA) are observed in an experiment of diffuse cooling of $^{87}$Rb atomic vapor in an integrating sphere. We measured the nonlinear spectra varying with detuning of the diffuse laser light, and study their mechanism in the diffuse-light pumped and laser-beam probed configuration. Their differences from nonlinear spectra of cold atoms in one-dimensional optical molasses and magneto-optical trap (MOT) are also discussed.

  2. An electrostatic plunger device and the analysis of recoil-distance spectra

    International Nuclear Information System (INIS)

    In the electrostatic plunger apparatus, a large stopper foil is drawn towards the target electrostatically. The attracting field is controlled in a feedback loop by the capacity, so that the distance is stabilized during the measurement. Formulae for line-shape analysis of γ-ray spectra from recoil-distance lifetime measurements (RDM) are given. A measurement of the life-time of the 1759 keV level in 26Al is reported yielding (3.4+-0.6)ps, in agreement with results from Doppler-shift attenuation, but in disagreement with other RDM results. In addition, accurate stopping-power measurements are reported for 2-9MeV alpha particles in Al, Ni, Cu, Au and Mylar. (Auth.)

  3. Recoil spectrometer for the detection of single atoms

    International Nuclear Information System (INIS)

    A much improved version of our gas-filled spectrometer for heavy-ion-induced fusion reactions is described. This instrument (SASSY II) is of the type D-Q-D wherein the dipoles are made with strong vertically-focussing gradients. The problems associated with experiments with cross sections in the picobarn range are discussed. In such experiments, it is necessary to identify single atoms with a high degree of confidence

  4. Recoil techniques in the study of transactinide elements. Discovery of new elements and hot atom chemistry

    International Nuclear Information System (INIS)

    Hot atom chemistry has been of vital importance in the separation and discovery of the heaviest elements. Recoil techniques have been used in the discovery of all the heavy elements from mendelevium (101) through element 109, the heaviest currently known. In this 'recoil' method a relatively thin target is deposited on an appropriate backing and the projectile beam from the accelerator first passes through the backing and then into the target. The recoiling products can subsequently be collected or transported in a variety of ways. In our studies of the nuclear and chemical properties of the transactinides, gas transport systems incorporating helium gas and aerosols (KCl, NaCl, MoO3) have been used. This method is rapid (fractions of a second) and highly efficient and has been used in both our aqueous and gaseous phase studies of heavy actinides and transactinides as well as to deposit recoiling activities directly on thin foils held on a rotating wheel for spontaneous fission and alpha measurements. A few examples of our studies on the chemical and nuclear properties of elements 104 and 105 will be discussed. (author)

  5. Recoil techniques in the study of transactinide elements. Discovery of new elements and hot atom chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.C. [Lawrence Berkeley Lab., CA (United States)

    1993-12-01

    Hot atom chemistry has been of vital importance in the separation and discovery of the heaviest elements. Recoil techniques have been used in the discovery of all the heavy elements from mendelevium (101) through element 109, the heaviest currently known. In this `recoil` method a relatively thin target is deposited on an appropriate backing and the projectile beam from the accelerator first passes through the backing and then into the target. The recoiling products can subsequently be collected or transported in a variety of ways. In our studies of the nuclear and chemical properties of the transactinides, gas transport systems incorporating helium gas and aerosols (KCl, NaCl, MoO{sub 3}) have been used. This method is rapid (fractions of a second) and highly efficient and has been used in both our aqueous and gaseous phase studies of heavy actinides and transactinides as well as to deposit recoiling activities directly on thin foils held on a rotating wheel for spontaneous fission and alpha measurements. A few examples of our studies on the chemical and nuclear properties of elements 104 and 105 will be discussed. (author).

  6. Neutron spectrum measurements using proton recoil proportional counters: results of measurements of leakage spectra for the Little Boy assembly

    International Nuclear Information System (INIS)

    Measurements of degraded fission-neutron spectra using recoil proportional counters are done routinely for studies involving fast reactor mockups. The same techniques are applicable to measurements of neutron spectra required for personnel dosimetry in fast neutron environments. A brief discussion of current applications of these methods together with the results of a measurement made on the LITTLE BOY assembly at Los Alamos are here described

  7. Atomic spectra in a helium bubble

    OpenAIRE

    Nakatsukasa, Takashi; Yabana, Kazuhiro; Bertsch, George F.

    2002-01-01

    Density functional theory (DFT) is applied to atomic spectra under perturbations of superfluid liquid helium. The atomic DFT of helium is used to obtain the distribution of helium atoms around the impurity atom, and the electronic DFT is applied to the excitations of the atom, averaging over the ensemble of helium configurations. The shift and broadening of the D1 and D2 absorption lines are quite well reproduced by theory, suggesting that the DFT may be useful for describing spectral perturb...

  8. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    87Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na+ projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  9. A new approach to the differential unfolding of neutron spectra from proton-recoil data

    International Nuclear Information System (INIS)

    A new approach (Iterative Differentiation Unfolding) to the differentiation unfolding of neutron spectra from proton-recoil pulse height distributions has been developed. It now allows the differentiation method to correct for any distortions that can be measured or calculated and used to construct neutron response functions for a given detector. Iterative Differentiation Unfolding utilizes a response matrix to calculate corrections for the proton energy distribution based on an estimated neutron spectrum. The neutron spectrum is then calculated using a simple differentiation method. The newly calculated neutron spectrum is used to calculate a more accurate correction and this process continues until a converged spectrum is obtained. Since the new method utilizes the response functions only to calculate corrections, it should be less sensitive to differences in response between similar detector systems than the response matrix inversion methods that use the response matrix to directly unfold the spectrum. A code utilizing the new method provided results comparable to those of the state of the art least squares response matrix inversion code while using about half as much computer time. (orig.)

  10. On the chemistry of 11C recoil atoms in alkyl halogenides and hydrogen halides

    International Nuclear Information System (INIS)

    The gas phase reactions of 11C recoil atoms which were produced by the nuclear reaction 14N(p,α)11C, were investigated in this present work in mixtures of N2 with CH3Cl, CH3Br and CH3I as well as with HCl, HBr and HI. The radiochemical yields of the gaseous reaction products were determined by radiogaschromatography. By using different columns, the carrier-free compounds produced could be clearly identified. Higher boiling products which occured in the present systems as wall activities were detected in some cases by means of high-pressure liquid chromotography. The formation of the products is discussed in the light of known recoil chemical reactions (abstraction, insertion) where attention is paid to the influence of O2 inhibitors and radiation dose effects. The quite considerable radiochemical yield of 11C-labelled methyl iodide in the N2/HI system enables the development of an on-line system for the recoil synthesis of larger amounts of activity of this important methylating agent for fast 11C labelling. A system was thus developed consisting of a gas dosing unit, target, gas purification system, and collector apparatus which enables the optimization of the product conditions by varying different parameters (proton energy, beam intensity, gas composition) and which enables the production of 11CH3-I activity quantities upto 90 mCi within a radiation and collecting time of 40 minutes at beam intensities of 20 μa and a proton input energy of 16 to 20 MeV. Specific activities of approx. 300 mCi/μmol are achieved. (orig.)

  11. Measurement of the (211)Pb half-life using recoil atoms from (219)Rn decay.

    Science.gov (United States)

    Aitken-Smith, P M; Collins, S M

    2016-04-01

    The radioactive half-life of (211)Pb was measured, by α-particle counting of samples of radiochemically pure (211)Pb in equilibrium with its α-emitting progeny, (211)Bi and (211)Po. The samples were prepared by the collection of (215)Po recoil atoms from the decay of the (219)Rn decay progeny produced from a (223)Ra sample onto stainless steel discs. The radioactive decay of the (211)Pb was measured utilising a 2π proportional counter operating on the α plateau. A half-life of 36.164 (13)min was determined, which is in agreement with currently available literature. A full uncertainty budget is presented. A recommended half-life of T1/2((211)Pb)=36.161 (17)min has been evaluated from the current literature values. PMID:26773817

  12. Particle unstable excited states in 9Be: Influence of beta recoil and width on delayed particle spectra

    International Nuclear Information System (INIS)

    The light nucleus 9Be has been studied through the emission of beta-delayed neutrons and alpha particles from 9Li. The activity was produced at the ISOLDE facility in fragmentation reactions induced either by 600 MeV proton or 910 MeV 3He beams from the CERN Synchro-cyclotron. After mass separation, neutron spectra were recorded using 3He-filled proportional counters, while surface barriere detectors were used for the spectroscopy of alpha particles. Effects on the spectrum shape induced by recoil and polarization phenomena as well as large widths of the intermediate states are discussed. (orig.)

  13. Genuine Tripartite Entanglement and Nonlocality in Bose-Einstein Condensates by Collective Atomic Recoil

    Directory of Open Access Journals (Sweden)

    Gerardo Adesso

    2013-05-01

    Full Text Available We study a system represented by a Bose-Einstein condensate interacting with a cavity field in presence of a strong off-resonant pumping laser. This system can be described by a three-mode Gaussian state, where two are the atomic modes corresponding to atoms populating upper and lower momentum sidebands and the third mode describes the scattered cavity field light. We show that, as a consequence of the collective atomic recoil instability, these modes possess a genuine tripartite entanglement that increases unboundedly with the evolution time and is larger than the bipartite entanglement in any reduced two-mode bipartition. We further show that the state of the system exhibits genuine tripartite nonlocality, which can be revealed by a robust violation of the Svetlichny inequality when performing displaced parity measurements. Our exact results are obtained by exploiting the powerful machinery of phase-space informational measures for Gaussian states, which we briefly review in the opening sections of the paper.

  14. Atomic and Molecular Aspects of Astronomical Spectra

    CERN Document Server

    Sochi, Taha

    2012-01-01

    In the first section we present the atomic part where a C2+ atomic target was prepared and used to generate theoretical data to investigate recombination lines arising from electron-ion collisions in thin plasma. R-matrix method was used to describe the C2+ plus electron system. Theoretical data concerning bound and autoionizing states were generated in the intermediate-coupling approximation. The data were used to generate dielectronic recombination data for C+ which include transition lines, oscillator strengths, radiative transition probabilities, emissivities and dielectronic recombination coefficients. The data were cast in a line list containing 6187 optically-allowed transitions which include many C II lines observed in astronomical spectra. This line list was used to analyze the spectra from a number of astronomical objects, mainly planetary nebulae, and identify their electron temperature. The electron temperature investigation was also extended to include free electron energy analysis to investigate...

  15. A method for elemental analysis of bones by recoiling atoms in heavy ion beams

    International Nuclear Information System (INIS)

    This contribution is the first attempt to analyse the elemental composition of bones by the recoil atoms in heavy ion beams. The aim of this study was to observe differences in light elements depth gradients, concentrations and ratios (P/Ca, Mg/Ca, N/Ca, Li/Ca) of different human femoral bone compartment: cortical bone (C sample) and trabecular (T sample) bone. The differences could be linked to the function of these areas. An interesting feature concerning lithium has to be pointed out. Lithium continues to be a substance of interest as a potential therapeutic agent in a number of blood disorders as well as a very effective experimental agent to understand the basic biochemical and pharmacological properties that regulate cellular proliferation and differentiation. The first method of analysing and profiling of light elements by recoil atoms in heavy ion beams by using an ionization ΔE, E ionization chamber, was described in a previous paper. In this paper a 32 S beam accelerated at the Van de Graaff Tandem Accelerator was used. Further developing of this method has been presented. It was shown that the monitoring problem can be solved by using beams of ion substantially heavier than the sample to be analysed. For the analysis of bones an 127 I beam has been used. The ΔE,E ionization chamber has been built according to a recent patent. By introducing a getter in the compartment 7 of the chamber one could work in conditions of high purity of the gas inside the chamber. The entrance window of the chamber was made of mylar 2 μm thick. Very good stability of the chamber has been obtained over long runs, ∼ 5 hours, in conditions of closed circuit of the gas. Results are presented. In conclusion: 1) A large difference between the normal sample N and the osteoporotic samples T and C for the Mg/Ca ratio has been found; 2) A very high concentration of Li was observed in the T sample. (authors)

  16. The Formation of Polymeric Products in Reactions of Polyvalent Recoil Atoms

    International Nuclear Information System (INIS)

    One of the features of the hot-atom reactions obtained as a result of nuclear transformations is that labelled polymeric products can be formed. This tendency is very marked in the case of polyvalent recoil atoms, where the polymer yield can, in certain cases, reach an amount of about 90% of the total activity. The aim of the present research is a study of the behaviour of recoil atoms of sulphur-35 and carbon-14, obtained in the nuclear reactions Cl35(n, p)S35 and N14(n, p) C14 in gas and liquid phases. It can be assumed that in the stabilization process hot carbon atoms form methylene biradicals, whose behaviour, by reason of their reaction capacity, greatly resembles that of atomic sulphur. The investigations were conducted like those for paraffins (CH4, C2H6 ), and for cyclic hydrocarbons (cyclohexane, cyclohexene, benzene). The binary systems comprising hydrocarbons on the one hand and S35 and C14 hot-atom donors on the other were subjected to irradiation. Compounds of CCI4, HCl and ammonia were used as the donors. Irradiation was carried out on a reactor of type IRT-1000 with a thermal neutron flux of 1011-1012 n/cm2. s. It is shown that for various compounds in the liquid phase, up to 60-90% of the sulphur-35 becomes stabilized in the form of a polymer, the yield of which is highly dependent on the composition, passing through the maximum at a nearly equimolecular ratio of components. In the gas phase the polymer yield amounts to 30-40% of the total activity. By means of paper radiochromatography it was established that labelled polymer products have a complex structure and are, at the least, a mixture of compounds of two qualitatively different types whose yield changes in various ways depending upon the ratio of the components. An increase in irradiation time leads to an increase in the labelled polymer yield. In the case of the liquid phase system C6H12-CCl4, the molecular weight of the polymer was determined by capillary diffusion and found to be 5000

  17. Calculation of Gamma Displacement Cross Sections: Generation of Recoil Spectra from ENDF/B-VII

    International Nuclear Information System (INIS)

    Radiation damage in materials is caused by the transfer of energy from an incident particle to the target atoms, which results in the redistribution of target atoms. During the nuclear reactor operation, various kinds of radiation are produced, including fast neutron, gamma, beta, high-energy ions etc. These radiations may affect the properties of reactor structural materials in a direct and/or indirect way. It is well known that fast neutrons have an effect on the degradation of materials. Whereas the impact of fast neutrons (En > 1 MeV) on material property changes is clearly recognized, the impact of gamma ray damage to materials is usually not significant. However, there has been some interest in gamma ray damage in metals in promoting accelerated embrittlement of reactor pressure vessel steels in the HFIR (High Flux Isotopes Reactor). In situations where there is a large water gap between pressure vessel and fuel assembly, gamma damage can become comparable to that produced by neutrons, on the basis of displacements per atom (dpa) parameter. A recent analysis of gamma ray displacement damage in the RPV of the General Electric Advanced Boiling Water Reactor (ABWR) indicated that the ratio of calculated gamma- to neutron-induced displacement damage rates is over 100% at the RPV inner diameter. Under a high gamma dose environment, embrittlement can be accelerated by radiation-enhanced mass transport mechanism. Because gamma rays are much more efficient than neutrons at producing freely-migrating defects, any radiation enhanced or induced processes that depend on the magnitude of defect fluxes to sinks, can be disproportionately affected by gamma. The direct evaluation of the contribution of gamma ray to damage in materials, quantified as a parameter of dpa, is made possible once the displacement damage cross section due to gamma rays are known. In this work, we present calculations for gamma ray displacement cross sections in various materials in the energy range

  18. The n,γ discrimination in recoil-proton proportional counters. Application to the measurement of fast neutron spectra

    International Nuclear Information System (INIS)

    A description is given of a spectrometry chain working in the energy range of a few keV to 1 MeV, and designed for measurement of fast neutron spectra. It consists of detectors, recoil proton proportional counters built especially for this work by R. COMTE (DEG/SER) and which make it possible to cover the energy range and also associated electronic equipment. A brief description is first given of the physical processes involved: (n,p) collisions in the gas, influence of γ radiation; the method of discrimination is then presented. It is based on the difference in the rise-times of the pulses. In the experiments described here the use of a bi-parametric system made it possible to employ the most simple discrimination device, based on the fact that the high frequency gamma pulse components are, at a given energy, weaker than those of the neutron pulses. Results are given of measurements carried out on the Van der Graaff (mono-energetic neutrons for testing the linearity of the chain and the resolving power of the counters), and of those made in a sub-critical system Hug at Cadarache. (author)

  19. Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometer

    International Nuclear Information System (INIS)

    For the first time high areal-density (ρR) cryogenic deuterium-tritium (DT) implosions have been probed using downscattered neutron spectra measured with the magnetic recoil spectrometer (MRS) [J. A. Frenje et al., Rev. Sci. Instrum. 79, 10E502 (2008)], recently installed and commissioned on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The ρR data obtained with the MRS have been essential for understanding how the fuel is assembled and for guiding the cryogenic program at the Laboratory for Laser Energetics (LLE) to ρR values up to ∼300 mg/cm2. The ρR data obtained from well-established charged particle spectrometry techniques [C. K. Li et al., Phys. Plasmas 8, 4902 (2001)] were used to authenticate the MRS data for low-ρR plastic capsule implosions, and the ρR values inferred from these techniques are in excellent agreement, indicating that the MRS technique provides high-fidelity data. Recent OMEGA-MRS data and Monte Carlo simulations have shown that the MRS on the NIF [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will meet most of the absolute and relative requirements for determining ρR, ion temperature (Ti) and neutron yield (Yn) in both low-yield, tritium-rich, deuterium-lean, hydrogen-doped implosions and high-yield DT implosions.

  20. Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometera)

    Science.gov (United States)

    Frenje, J. A.; Casey, D. T.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Radha, P. B.; Sangster, T. C.; Meyerhofer, D. D.; Hatchett, S. P.; Haan, S. W.; Cerjan, C. J.; Landen, O. L.; Fletcher, K. A.; Leeper, R. J.

    2010-05-01

    For the first time high areal-density (ρR) cryogenic deuterium-tritium (DT) implosions have been probed using downscattered neutron spectra measured with the magnetic recoil spectrometer (MRS) [J. A. Frenje et al., Rev. Sci. Instrum. 79, 10E502 (2008)], recently installed and commissioned on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The ρR data obtained with the MRS have been essential for understanding how the fuel is assembled and for guiding the cryogenic program at the Laboratory for Laser Energetics (LLE) to ρR values up to ˜300 mg/cm2. The ρR data obtained from well-established charged particle spectrometry techniques [C. K. Li et al., Phys. Plasmas 8, 4902 (2001)] were used to authenticate the MRS data for low-ρR plastic capsule implosions, and the ρR values inferred from these techniques are in excellent agreement, indicating that the MRS technique provides high-fidelity data. Recent OMEGA-MRS data and Monte Carlo simulations have shown that the MRS on the NIF [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will meet most of the absolute and relative requirements for determining ρR, ion temperature (Ti) and neutron yield (Yn) in both low-yield, tritium-rich, deuterium-lean, hydrogen-doped implosions and high-yield DT implosions.

  1. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution

    International Nuclear Information System (INIS)

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during

  2. Thermal annealing and recoil reactions of 128I atoms in thermal neutron activated iodate-nitrate mixed crystals

    International Nuclear Information System (INIS)

    Recoil reaction of 128I atoms in neutron irradiated mixed crystals (iodate-nitrate) have been studied by thermal annealing methods. The retention of 128I (i.e. radioactivity of 128I retained in the parent chemi cal form) decreases sharply in the beginning and then attains saturation value with the increase in concentration of nitrate. The annealing followed the usual characteristic pattern, viz., a steep rise in retention within the first few minutes and then a saturation value thereafter but these saturation values in case of mixed crystals are lower in comparison to those of pure iodate targets. The process obeys simple first order kinetics and the activation energy obtained are of lower order than those obtained in case of pure targets. The results are discussed in the light of present ideas and the role of nitrate ion and its radiolytic products have also been invoked. (author)

  3. Ionic recoil energies in the Coulomb explosion of metal clusters

    Science.gov (United States)

    Teuber, S.; Döppner, T.; Fennel, T.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    The photoionization of metal clusters in intense femtosecond laser fields has been studied. In contrast to an experiment on atoms, the interaction in this case leads to a very efficient and high charging of the particle where tens of electrons per atom are ejected from the cluster. The recoil energy distribution of the atomic fragment ions was measured which in the case of lead clusters exceeds 180 keV. Enhanced charging efficiency which we observed earlier for specific pulse conditions is not reflected in the recoil energy spectra. Both the average and the maximum energies decrease with increasing laser pulse width. This is in good agreement with molecular dynamics calculations.

  4. Atomic and Molecular Aspects of Astronomical Spectra

    OpenAIRE

    Sochi, T.

    2012-01-01

    In the first section of this thesis, we present the atomic part of our investigation. A C2+ atomic target was prepared and used to generate theoretical data required in the investigation of recombination lines that arise from collisions between electrons and ions in thin plasma found in planetary nebulae and other astrophysical objects. The R-matrix method of electron scattering theory was used to describe the C2+ plus electron system. Theoretical data concerning bound and autoionizing states...

  5. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  6. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    International Nuclear Information System (INIS)

    Reflection electron energy loss spectra from some insulating materials (CaCO3, Li2CO3, and SiO2) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO2, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − Egap)1.5. For CaCO3, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li2CO3 (7.5 eV) is the first experimental estimate

  7. Emission Spectra of a Moving Atom in an Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Tao; FENG Xun-Li; XU Zhi-Zhan

    2000-01-01

    The emission spectra of a two-level atom moving in an electromafneric fiekd are studied We find that there that there is a shift in the peak position and that each peak splits into double peaks The shit is duble peaks The shift is duc to the detuning indced by the atomic mition and the splitting is casused by the atomic energy change due of photons

  8. Relativistic nuclear recoil corrections to the energy levels of hydrogen-like and high Z lithium like atoms in all orders in $\\alpha$Z

    CERN Document Server

    Artemiev, A N; Yerokhin, V A

    1995-01-01

    The relativistic nuclear recoil corrections to the energy levels of low-laying states of hydrogen-like and high Z lithium-like atoms in all orders in \\alpha Z are calculated. The calculations are carried out using the B-spline method for the Dirac equation. For low Z the results of the calculation are in good agreement with the \\alpha Z -expansion results. It is found that the nuclear recoil contribution, additional to the Salpeter's one, to the Lamb shift (n=2) of hydrogen is -1.32(6)\\,kHz. The total nuclear recoil correction to the energy of the (1s)^{2}2p_{\\frac{1}{2}}-(1s)^{2}2s transition in lithium-like uranium constitutes -0.07\\,eV and is largely made up of QED contributions.

  9. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature.

    Science.gov (United States)

    Mukaiyama, Takashi; Katori, Hidetoshi; Ido, Tetsuya; Li, Ying; Kuwata-Gonokami, Makoto

    2003-03-21

    A dynamic magneto-optical trap, which relies on the rapid randomization of population in Zeeman substates, has been demonstrated for fermionic strontium atoms on the 1S0-3P1 intercombination transition. The obtained sample, 1x10(6) atoms at a temperature of 2 microK in the trap, was further Doppler cooled and polarized in a far-off resonant optical lattice to achieve 2 times the Fermi temperature. PMID:12688925

  10. PREFACE: Atomic Spectra and Oscillator Strengths (ASOS9) Atomic Spectra and Oscillator Strengths (ASOS9)

    Science.gov (United States)

    Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter

    2009-05-01

    For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy by Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and Physics Department of Lund University, 7-10 August 2007, and was attended by 99 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume of Physica Scripta contains contributions from the invited presentations of the conference. For the first time, papers from the ASOS9 poster presentations have been made feely available online in a complementary volume of Journal of Physics: Conference Series. With these two volumes the character of ASOS9 is more evident, and together they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy, where both the providers and the users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, which includes fusion energy and lighting research. The oral presentations, all but one of which are presented in this volume, provided an extensive synopsis of techniques currently in use and those that are being planned. New to ASOS9 was the extent to which techniques such as cold, trapped atoms and molecules and frequency combs are

  11. Monte Carlo simulation of prompt gamma-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    CERN Document Server

    Qin, Jianguo; Liu, Rong; Zhu, Tonghua; Zhang, Xinwei; Ye, Bangjiao

    2015-01-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt gamma-rays in detectors for depleted uranium spherical shells under D-T neutrons irradiation. In the first step, the gamma-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the gamma-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4-3 MeV for the prompt gamma-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated.

  12. Monte Carlo simulation of prompt gamma-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    OpenAIRE

    Qin, Jianguo; Lai, Caifeng; Liu, Rong; Zhu, Tonghua; Zhang, Xinwei; Ye, Bangjiao

    2015-01-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt gamma-rays in detectors for depleted uranium spherical shells under D-T neutrons irradiation. In the first step, the gamma-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the g...

  13. Monte Carlo simulation of prompt γ-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    Science.gov (United States)

    Jian-Guo, Qin; Cai-Feng, Lai; Rong, Liu; Tong-Hua, Zhu; Xin-Wei, Zhang; Bang-Jiao, Ye

    2016-03-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt γ-rays in detectors for depleted uranium spherical shells under D-T neutron irradiation. In the first step, the γ-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the γ-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4-3 MeV for the prompt γ-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated. Supported by the National Natural Science Foundation of China (91226104) and National Special Magnetic Confinement Fusion Energy Research, China (2015GB108001)

  14. Random-matrix theory and complex atomic spectra

    CERN Document Server

    Pain, Jean-Christophe

    2012-01-01

    Around 1950, Wigner introduced the idea of modelling physical reality with an ensemble of random matrices while studying the energy levels of heavy atomic nuclei. Since then, the field of random-matrix theory has grown tremendously, with applications ranging from fluctuations on the economic markets to complex atomic spectra. The purpose of this short article is to review several attempts to apply the basic concepts of random-matrix theory to the structure and radiative transitions of atoms and ions, using the random matrices originally introduced by Wigner in the framework of the gaussian orthogonal ensemble. Some intrinsic properties of complex-atom physics, which could be enlightened by random-matrix theory, are presented.

  15. Electron spectra in the ionization of atoms by neutrinos

    International Nuclear Information System (INIS)

    For neutrinos of O(10 keV) energies, their oscillation lengths are less than a few hundred meters, thereby suggesting the fascinating idea of oscillation experiments of small geometrical size. To help in evaluating this idea, a formalism is developed for calculating the neutrino ionization cross sections for H as well as the noble atoms. This formalism is based on the use of spin-independent atomic wave functions and should very accurately describe the ionization spectra for H, He, Ne, and Ar. The accuracy is considerably reduced for the Xe case though, where the spin dependence in the wave functions is non-negligible. Nevertheless, even for Xe the results remain qualitatively correct. In all cases, the atomic ionizations cross section per electron is found to be smaller than the neutrino cross section off free electrons, approaching it from below as the energy increases to the 100 keV region. At the 10-20 keV range though, the atomic binding effects in the cross sections and the spectra are very important and increasing with the atomic number. They are canceling out though, when total ionization cross section ratios, like νμ/νe or νμ/νe, are considered

  16. Spectra and decays of pi pi and pi K atoms

    OpenAIRE

    J. Schweizer

    2004-01-01

    We describe the spectra and decays of pi pi and pi K atoms within a non-relativistic effective field theory. The evaluations of the energy shifts and widths are performed at next-to-leading order in isospin symmetry breaking. We provide general formulae for all S-states, and discuss the states with angular momentum one in some detail. The prediction for the lifetime of the pi K atom in its ground-state yields tau = (3.7 \\pm 0.4) * 10^{-15} sec.

  17. Bremsstrahlung spectra from atoms and ions at low relativistic energies

    International Nuclear Information System (INIS)

    Analytic expressions for bremsstrahlung spectra from neutral atoms and ions, including the polarizational bremsstrahlung contribution in a stripped atom approximation, are developed for electron scattering at energies of 10-2000 keV. A modified Elwert factor and a simple higher Born correction are used for the Coulomb spectrum, with ordinary bremsstrahlung screening effects in ions and atoms adequately characterized in the non-relativistic Born approximation. In parallel with the development of this analytic description, new numerical results are obtained for ordinary bremsstrahlung from ions and from bare nuclei, appreciably extending the available data set which can be used to study dependences on element, ionicity, energy and the fraction of incident energy radiated. The accuracy of predictions with the analytic expressions is then determined by comparison with the full numerical relativistic partial-wave results for ordinary bremsstrahlung and with non-relativistic numerical results in the Born approximation or in partial waves for the polarizational amplitude. (author)

  18. Atomic transition probabilities of Ce I from Fourier transform spectra

    International Nuclear Information System (INIS)

    Atomic transition probabilities for 2874 lines of the first spectrum of cerium (Ce I) are reported. These data are from new branching fraction measurements on Fourier transform spectra normalized with previously reported radiative lifetimes from time-resolved laser-induced-fluorescence measurements (Den Hartog et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085006). The wavelength range of the data set is from 360 to 1500 nm. Comparisons are made to previous investigations which are less extensive. Accurate Ce i transition probabilities are needed for lighting research and development on metal halide high-intensity discharge lamps.

  19. Atomic transition probabilities of Ce I from Fourier transform spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, J E; Wood, M P; Den Hartog, E A [Department of Physics, University of Wisconsin, 1150 University Ave., Madison, WI 53706 (United States); Chisholm, J [Department of Physics, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467 (United States); Nitz, D E [Department of Physics, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057 (United States); Sobeck, J, E-mail: jelawler@wisc.ed, E-mail: chishojd@bc.ed, E-mail: nitz@stolaf.ed, E-mail: mpwood@wisc.ed, E-mail: jsobeck@uchicago.ed, E-mail: eadenhar@wisc.ed [Department of Astronomy and Astrophysics, University of Chicago, 5640 Ellis Ave., Chicago, IL 60637 (United States)

    2010-04-28

    Atomic transition probabilities for 2874 lines of the first spectrum of cerium (Ce I) are reported. These data are from new branching fraction measurements on Fourier transform spectra normalized with previously reported radiative lifetimes from time-resolved laser-induced-fluorescence measurements (Den Hartog et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085006). The wavelength range of the data set is from 360 to 1500 nm. Comparisons are made to previous investigations which are less extensive. Accurate Ce i transition probabilities are needed for lighting research and development on metal halide high-intensity discharge lamps.

  20. Formation spectra of pionic atoms in the Green's function method

    Science.gov (United States)

    Ikeno, Natsumi; Yamagata-Sekihara, Junko; Nagahiro, Hideko; Hirenzaki, Satoru

    2015-03-01

    We study the formation spectra of deeply bound pionic atoms in the (d, ^3He) reactions using the Green's function method, stimulated by recent developments in experimental techniques. The Green's function method is considered to be a better theoretical formalism than the effective number approach to evaluate the formation rate of unstable systems. We compare the calculated results by the Green's function method with those by the effective number approach in various cases. We find that the differences between the results obtained by both methods are reasonably small and we can reaffirm that the effective number approach is a good theoretical method for the analyses of the previous experimental data with typical binding-energy errors of Δ B.E. ≳ 20keV for the deeply bound pionic atoms. On the other hand, we think that theoretical results using the Green's function method will be necessary in the near future to deduce precise information on the pion properties in nuclei from analyses of the pionic atom data with better accuracy than before.

  1. Lyapunov spectra and conjugate-pairing rule for confined atomic fluids

    DEFF Research Database (Denmark)

    Bernadi, Stefano; Todd, B.D.; Hansen, Jesper Schmidt;

    2010-01-01

    In this work we present nonequilibrium molecular dynamics simulation results for the Lyapunov spectra of atomic fluids confined in narrow channels of the order of a few atomic diameters. We show the effect that realistic walls have on the Lyapunov spectra. All the degrees of freedom of the confined...

  2. SCORPION: a system for coincidences between recoil and projectile ions at NSC, New Delhi

    International Nuclear Information System (INIS)

    An on-line facility to measure coincidences between the recoil ions and the scattered projectiles (SCORPION) has been designed, fabricated and commissioned at Nuclear Science Centre (NSC), New Delhi. The facility consists of a four jaw slit assembly, a time of flight (TOF) spectrometer, a parallel plate electrostatic charge analyser and a one dimensional position sensitive parallel plate avalanche counter (PPAC). Details of the design and working principles of various components and the test results obtained for the Siq+ -Ar collision system are presented to highlight the performance of the system. A multiple loss of up to four electrons has been observed for 60 MeV Si4+ ions colliding with argon atoms in a single collision condition. Spectra of recoil ions detected in coincidence with a particular charge state of the scattered projectile show a bell shaped distribution as a function of the recoil charge state (r) for the electron loss events. However, the yield of recoil ions drops as r increases for the direct ionization channel. Also for electron loss, the peak of the recoil ion distribution is seen to shift to a higher recoil charge state as the number of lost electrons from the projectile increases. (author)

  3. Hyperfine Magnetic Anomaly in the Atomic Spectra of the Rare-Earth Elements

    CERN Document Server

    Gangrsky, Yu P; Karaivanov, D V; Kolesnikov, N N; Marinova, K P; Markov, B N; Rostovsky, V S

    2001-01-01

    The constants of the hyperfine splitting in the atomic optical spectra of the rare-earth elements - Nd, Eu, Gd and Lu - were measured. The method of laser resonance fluorescence in the parallel atomic beam was used. The values of the hyperfine magnetic anomaly were determined from the comparison of magnetic dipole constant ratios of the neighbouring odd Z or N isotopes for the different atomic levels. The connection of these values and the parameters of atomic and nuclear structure is discussed.

  4. Ionization and scintillation of nuclear recoils in gaseous xenon

    International Nuclear Information System (INIS)

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments

  5. Ionization and scintillation of nuclear recoils in gaseous xenon

    CERN Document Server

    Renner, J; Goldschmidt, A; Matis, H S; Miller, T; Nakajima, Y; Nygren, D; Oliveira, C A B; Shuman, D; Álvarez, V; Borges, F I G; Cárcel, S; Castel, J; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gil, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Iguaz, F J; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez, A; Moiseenko, A; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot-Guinot, M; Palma, R; Pérez, J; Aparicio, J L Pérez; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R C; White, J; Yahlali, N

    2014-01-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $\\alpha$-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  6. Exceptional points in atomic spectra and Bose-Einstein condensates

    OpenAIRE

    Cartarius, Holger

    2008-01-01

    Exceptional points are a special type of degeneracy which can appear for the resonances of parameter-dependent quantum spectra described by non-Hermitian Hamiltonians. They represent positions in the parameter space at which two or even more resonances pass through a branch point singularity. At the critical parameter values, the energies, the widths, and the wave functions describing the resonances are identical. The branching eigenstates show a geometric phase for a parameter space loop aro...

  7. Atomic carbon in comet atmospheres. Origin and emission spectra

    International Nuclear Information System (INIS)

    A detailed study of neutral carbon emissions is made, to precise the excitation mechanism nature, to determine the production mechanisms and examine wether information on CO and CO2 molecule abundance could be deduced, or wether another source must be looked for. After an exhaustive study of excitation rates necessary for theoretical intensity calculation, a new effect has been discovered, and which acts on the atom excitation rates, via their distribution on the fundamental hyperfine levels. On the other hand, the strong dependency of the excitation rate ratio with heliocentric velocity and with the hypothesis which is made on the atom population initial distribution has been revealed. The carbon abundance in all the comets of the initial sample has been calculated, then compared to the water one revealing two groups of comets. Then an abundance criterium to remove the CO and CO2 molecules from the carbon potential-parents in the Bradfield comet has been used while CO is the best candicate for C(3P) and C(1D) atom production in the West, Kohoutek and Bennet comets (but to certain conditions). The important conclusion is that, while the relative abundance (C2/OH, CN/OH,...) of the minor carbon compounds were constant, the CO relative abundance varies from an object to the other, probably an effect due to repeated passage of some comets near the sun

  8. Photoabsorption spectra in the continuum of molecules and atomic clusters

    CERN Document Server

    Nakatsukasa, T; Nakatsukasa, Takashi; Yabana, Kazuhiro

    2001-01-01

    We present linear response theories in the continuum capable of describing photoionization spectra and dynamic polarizabilities of finite systems with no spatial symmetry. Our formulations are based on the time-dependent local density approximation with uniform grid representation in the three-dimensional Cartesian coordinate. Effects of the continuum are taken into account either with a Green's function method or with a complex absorbing potential in a real-time method. The two methods are applied to a negatively charged cluster in the spherical jellium model and to some small molecules (silane, acetylene and ethylene).

  9. Nuclear recoil corrections to the 2p$_{3/2}$ state energy of hydrogen-like and high Z lithium-like atoms in all orders in $\\alpha$Z

    CERN Document Server

    Artemiev, A N; Yerokhin, V A

    1995-01-01

    The relativistic nuclear recoil corrections to the energy of the 2p_{\\frac{3}{2}} state of hydrogen-like and the (1s)^{2}2p_{\\frac{3}{2 }} state of high Z lithium-like atoms in all orders in \\alpha Z are calculated. The calculations are carried out using the B-spline method for the Dirac equation. For low Z the results of the calculation are in good agreement with the \\alpha Z -expansion results. It is found that the total nuclear recoil contribution to the energy of the (1s)^{2}2p_{\\frac{3}{2}}- (1s)^{2}2s transition in lithium-like uranium constitutes -0.09\\,eV.

  10. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; LINSheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic fied below ionization threshoM. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  11. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; LIN Sheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic field below ionization threshold. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  12. The generalized sturmian method for calculating spectra of atoms and ions

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2003-01-01

    The properties of generalized Sturmian basis sets are reviewed, and functions of this type are used to perform direct configuration interaction calculations on the spectra of atoms and ions. Singlet excited states calculated in this way show good agreement with experimentally measured spectra. When...... Slater–Condon rules must be used. This aspect of the problem is discussed in detail. Finally spectra are calculated in the presence of a strong external electric field. In addition to the expected Stark effect, the calculated spectra exhibit anomalous states. These are shown to be states where one of the...

  13. The HERMES Recoil Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weilin [II. Physikalisches Institut, JLU Giessen, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)

    2008-07-01

    The HERMES Collaboration at HERA constructed and installed a new Recoil Detector to upgrade the existed spectrometer. This detector is designed to measure recoil protons in hard exclusive processes which provide access to the orbital angular momentum of quarks. The Recoil Detector consists of a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fiber tracker and a photon detector. All three detectors are located inside a solenoidal magnet which provides a 1 T longitudinal magnetic field. The Recoil Detector was installed in January 2006 and data taking lasted until the end of HERA operation in June 2007. Results on the detector performance will be presented here.

  14. Energy Spectra of the Confined Atoms Obtained by Using B-Splines

    Institute of Scientific and Technical Information of China (English)

    SHI Ting-Yun; BAO Cheng-Guang; LI Bai-Wen

    2001-01-01

    We have calculated the energy spectra of one- and two-electron atoms (ions) centered in an impenetrable spherical box by variational method with B-splines as basis functions. Accurate results are obtained for both large and small radii of confinement. The critical box radius of confined hydrogen atom is also calculated to show the usefulness of our method. A partial energy degeneracy in confined hydrogen atom is found when the radius of spherical box is equal to the distance at which a node of single-node wavefunctions of free hydrogen atom is located.

  15. Semiclassical Calculation of Recurrence Spectra of Li Rydberg Atom in Crossed Electric and Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; DING Shi-Liang

    2003-01-01

    Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. Using the closed-orbit theory and classical perturbation theory, we calculate the scaled recurrence spectra of Lithium atom in magnetic field plus a weak perpendicular electric field. The results show when the crossed electric field is added, the recurrence spectra are weakened greatly. As the scaled electric field f increases, the peaks of the recurrence spectra lose strength. Some recurrences are very sensitive and fall off rapidly as f increases; others persist till much higher f . As the electric field is stronger, some of the peaks revive. This phenomenon, caused by the interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.

  16. Semiclassical Calculation of Recurrence Spectra of Li Rydberg Atom in Crossed Electric and Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; DINGShi-Liang

    2003-01-01

    Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. Using the dosed-orblt theory and classical perturbation theory, we calculate the scaled recurrence spectra of Lithium atom in magnetic field plus a weak perpendicular electric field. The results show when the crossed electric field is added, the recurrence spectra are weakened greatly. As the scaled electric field f increases, the peaks of the recurrence spectra lose strength. Some recurrences are very sensitive and fall off rapidly as f increases, others persist till much higher f. As the electric field is stronger, some of the peaks revive. This phenomenon, caused by the interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.

  17. Dynamic interpretation of atomic and molecular spectra in the chaotic regime

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, H.S.; Zakrzewski, J.

    1988-10-01

    A quantum partitioning theory is given for extracting dynamic information from the high-resolution spectra of highly excited atoms and molecules that is relatively simple to apply. The presented approach is applicable whenever the classical counterpart of the system studied is chaotic. The theory allows a picture of the underlying non-statistically-describable part of the dynamics to be obtained from the spectra. The theory presented effectively uses and unifies many aspects of classical trajectory approaches, Feshbach resonant-scattering partitioning theory, semiclassical periodic-orbit theory, ''scars'' theory, bright- and dark-state concepts, and Fourier transforms of the spectra. The power of the theory is demonstrated quantitatively by interpreting the dynamics underlying the absorption spectra of the hydrogen atom in a strong uniform magnetic field.

  18. Dynamics of thermoluminescence spectra of impurity-helium condensates containing stabilized nitrogen and oxygen atoms

    International Nuclear Information System (INIS)

    The results of investigations of thermoluminescence dynamics during destruction of neon-helium and krypton-helium condensates containing stabilized nitrogen and oxygen atoms are presented. Spectra of the thermoluminescence of a krypton-helium condensate contained bands of N and O atoms and NO molecules. The intensities of the bands in these spectra were found to increase simultaneously during destruction processes in the temperature range 1.5-15 K. Observation of the NO molecules provides clear evidence for chemical reactions in the nanoclusters comprising the sample at low temperatures. Destruction of neon-helium samples occurred in two stages. During the first stage the α-group of N atoms surrounded by Ne and N2 molecules dominated the spectra. During the second stage, the spectra contained intense bands of N and O atoms stabilized in a molecular nitrogen matrix. The unusual characteristics of the thermoluminescence spectra were observed, and their changes were explained in terms of the shell structure of impurity nanoclusters which comprised the impurity-helium condensates.

  19. Fourier transform infrared emission spectra of atomic rubidium: g- and h-states

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Ferus, Martin; Kubelík, Petr; Chernov, Vladislav E.; Zanozina, Ekaterina M.

    2012-01-01

    Roč. 45, č. 17 (2012), s. 175002. ISSN 0953-4075 R&D Projects: GA AV ČR IAAX00100903 Institutional support: RVO:61388955 Keywords : Fourier transform infrared emission spectra * atomic rubidium * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.031, year: 2012

  20. Recoil and related effects in molecular photoemission

    International Nuclear Information System (INIS)

    Highlights: ► We present a overview of recoil-related effects for general audience of experimentalists working in the field of photoelectron spectroscopy. ► Photoelectron recoil is shown to alter vibrational structure. ► Photoelectron rotational recoil is shown to induce line shifts and broadenings. ► Interference and scattering of the outgoing photoelectron wave(s) are shown to introduce oscillations of branching ratios in molecular photoelectron spectra. -- Abstract: Photoemission from free molecules in the gas phase results in a complex spectral structure of electronic, vibrational and rotational transitions. In this review, the effects that can alter this structure and particularly the branching ratios in photoelectron spectra at the kinetic energies well above the ionization thresholds are considered. Simplified models that have nevertheless been found to describe the observations well are presented for photoelectron vibrational and rotational recoil, rotational Doppler broadening, photoelectron scattering and Cohen–Fano type interference phenomena. Experimental examples are shown together with the models. Some future developments and applications of the recoil-related phenomena are briefly considered.

  1. Recoil and related effects in molecular photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Kukk, E., E-mail: edwin.kukk@utu.fi [Dept. of Physics and Astronomy, University of Turku, FIN-20014 Turku (Finland); Ueda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Miron, C. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We present a overview of recoil-related effects for general audience of experimentalists working in the field of photoelectron spectroscopy. Black-Right-Pointing-Pointer Photoelectron recoil is shown to alter vibrational structure. Black-Right-Pointing-Pointer Photoelectron rotational recoil is shown to induce line shifts and broadenings. Black-Right-Pointing-Pointer Interference and scattering of the outgoing photoelectron wave(s) are shown to introduce oscillations of branching ratios in molecular photoelectron spectra. -- Abstract: Photoemission from free molecules in the gas phase results in a complex spectral structure of electronic, vibrational and rotational transitions. In this review, the effects that can alter this structure and particularly the branching ratios in photoelectron spectra at the kinetic energies well above the ionization thresholds are considered. Simplified models that have nevertheless been found to describe the observations well are presented for photoelectron vibrational and rotational recoil, rotational Doppler broadening, photoelectron scattering and Cohen-Fano type interference phenomena. Experimental examples are shown together with the models. Some future developments and applications of the recoil-related phenomena are briefly considered.

  2. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution; Elastische Rueckstossatomspektrometrie leichter Elemente mit Subnanometer-Tiefenaufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kosmata, Marcel

    2011-06-30

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during

  3. Problems of theoretical interpretation of the spectra of highly ionized atoms

    International Nuclear Information System (INIS)

    The methods of theoretical and semiempirical investigation of energy spectra and electronic transitions in atoms and ions (non-relativistic approximation, taking into consideration relativistic effects as corrections in the framework of the Breit approximation as well as starting with relativistic wavefunctions) are surveyed. The problem of the identification and classification of the experimentally obtained energy spectra with the help of the optimal coupling scheme is considered. General relativistic and non-relativistic expressions for the operators of electric and magnetic multipole transitions, having unspecified values of the gauge condition of the electromagnetic field potential, are presented. The dependence of the oscillator strengths on this gauge condition is studied. Pecularities of the spectra and the structure of highly ionized atoms are discussed. (orig.)

  4. A cold target recoil-ion momentum spectroscopy for the investigation on the dynamics of atomic and molecular reactions in Shanghai

    International Nuclear Information System (INIS)

    A cold target recoil-ion momentum spectroscopy to study the fragmentation of molecules impact by electrons has been described, which mainly comprises a pulsed electron gun, a supersonic gas jet, a time-of-flight (TOF) spectrometer, a multi-hit position sensitive detector and a data acquisition system. According to the measured TOF data and corresponding positions information on the detector, the recoil-ions’ trajectories can be reconstructed and their initial 3D momentum vectors can be calculated. The energy spread of the electron gun, about 8.5 eV, and the resolution of momentum component parallel and perpendicular to the TOF direction for recoil-ions, about 0.23 and 0.35 a.u., respectively, are obtained by using helium as the gas target. To test the performance of the setup, the fragmentation of nitrogen induced by 100 eV electrons impact is investigated and some reaction channels with different kinetic energy distributions, like dissociative ionization and Coulomb explosion, are analyzed. Good agreement is achieved with previous studies

  5. Absorption Spectra of a Three-Level Atom Embedded in a PBG Reservoir

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; ZHANG Han-Zhuang

    2007-01-01

    We introduce the 'decay rate' terms into the density matrix equations of an atom embedded in a photonic band gap (PSG)reservoir successfully.By utilizing the master equations,the probe absorption spectra and the refractivity properties of a three-level atom in the PBG reservoir are obtained.The interaction between the atom and the PBG reservoir as well as the effects of the quantum interference on the absorption of the atom has also been taken into account.It is interesting that two different types of the anomalous dispersion relations of refractivity are exhibited in one dispersion line.The methodology used here can be applied to theoretical investigation of quantum interference effects of other atomic models embedded in a PBG reservoir.

  6. [Study of emission spectra of N atom generated in multi-needle-to-plate corona discharge].

    Science.gov (United States)

    Ge, Hui; Yu, Ran; Zhang, Lu; Mi, Dong; Zhu, Yi-Min

    2012-06-01

    The emission spectra of nitrogen (N) atom produced by multi-needle-to-plate negative corona discharge in air were detected successfully at one atmosphere, and the excited transition spectral line at 674.5 nm with maximum value of relative intensity was selected to investigate the influences of air and electrical parameters on N atom relative density. The results indicate that N atom relative density in ionization region increases with the increase in power; decreases with increasing discharge gap and relative humidity; and with the increase in N2 content, the relative density of N active atom firstly increases and then decreases. Under present experimental conditions, the maximum value of N atom relative density appears at the axial distance from needle point r = 1 mm. PMID:22870624

  7. Stark spectra of Rydberg states in atomic cesium in the vicinity of n=18

    Institute of Scientific and Technical Information of China (English)

    Dong Hui-Jie; Wang Ting; Li Chang-Yong; Zhao Jian-Ming; Zhang Lin-Jie

    2013-01-01

    The Stark structures in a cesium atom around n =18 are numerically calculated.The results show that the components of 20D states with a small azimuthal quantum number |m| shift upward a lot,and those with a large |m| shift downward a little within 1100 V/cm.All components of P states shift downward.Experimental work has been performed in ultracold atomic cesium.Atoms initially in 6P3/2 state are excited to high-n Rydberg states by a polarization light perpendicular to the field,and Stark spectra with 丨m丨=1/2,3/2,5/2 are simultaneously observed with a large linewidth for the first time.The observed spectra are analyzed in detail.The relative transition probability is calculated.The experimental results are in good agreement with our numerical computation.

  8. Valter Ritz as a theoretical physicist and his research on atomic spectra theory

    International Nuclear Information System (INIS)

    The article presents a historic-methodological analysis of the scientific heritage of an outstanding Swiss physicist Walter Ritz (1878-1909); the analysis is based on the study of a complete collection of his works published in 1911. In addition to a general description of Ritz's works which comprise publications in spectroscopy, variational method and electrodynamics, the article deals in detail with this fundamental research into atomic spectra theory. Elastic and magnetic model of the atom proposed by Ritz for explaining atomic spectra within the framework of the classical approach are discussed. It is shown that the generalized formulas of Balmer and Rydbery, as well as the combination principle which served later as a basis for formalting Bohr's condition of frequencies, were derived by Ritz as regions corollaries of this models and were out of semiempiric nature, as was assumed. 124 refs

  9. The HERMES Recoil Detector

    OpenAIRE

    Airapetian, A.; Aschenauer, E.C.; S. Belostotski(St. Petersburg, INP); Borissov, A; Borisenko, A.; Bowles, J; Brodski, I.; Bryzgalov, V.; Burns, J; Capitani, G.P.; V. Carassiti; Ciullo, G.; Clarkson, A.; Contalbrigo, M; R.Leo

    2013-01-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct ...

  10. Identification of spectra of highly ionized Mo, Nb, Zr and Y atoms

    International Nuclear Information System (INIS)

    In the present work, the spectra of 3d9 - 3d84f transition in Y 13 through Mo 16 were studied. Thirty-three lines and 27 levels were identified in Mo 16 spectra. The identification was carried out with the aid of the theoretical calculation employing the Slater-Condon theory of atomic structure. The spectra of highly ionized molybdenum, niobium, zirconium and yttrium from low inductance vacuum sparks have been recorded by the use of a 10.7 m grazing incidence spectrograph. The theoretical spectrum for Mo 16 generated by plotting gf-values as a function of wavelength was compared with the observed spectra. Close agreement between them in general feature was seen. (Kato, T.)

  11. Neutron spectra, recoil momenta and PI0 production cross sections for reactions induced by 10-100 MeV/nucleon heavy ions

    International Nuclear Information System (INIS)

    The Boltzmann master equation model has been applied to the question of precompound nucleon de-excitation of reactions induced by 10 to 100 MeV/nucleon (c.m.) heavy ions. Test systems of 16O + 60Ni and 27Al + 86Kr were selected. Experimental neutron spectra in coincidence with evaporation residue and fission fragments from the 20Ne + 165Ho system (due to Holub, et al.) were reproduced quite well by the master equation with exciton numbers between 20 and 23. Results show major fractions of the excitation and up to 35 nucleons removed during the coalescence-equilibration period. The linear momentum transfer predicted by the master equation is shown to be in good agreement with a broad range of data. Extension of the master equation to predict sub-threshold PI0 production cross sections is shown to give satisfactory agreement with a large number of experimental results. 48 refs., 8 figs., 7 tabs

  12. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    Science.gov (United States)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; McComas, D. J.; Moebius, E.; Moore, T. E.; Petrinec, S. M.; Quinn, M.; Reisenfeld, D.; Saul, L. A.; Scheer, J. A.; Schwardron, N.; Trattner, K. J.; Vanderspek, R.; Wurz, P.

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  13. Investigation of Linear Tetra-Atomic Negative Ion by Photodetached-Electron Spectra

    Institute of Scientific and Technical Information of China (English)

    A.Rahman; Iftikhar Ahmad; A.Afaq; M.Haneef; H.J.Zhao

    2011-01-01

    @@ Photodetachment spectra from a linear tetra-atomic negative ion is investigated by treating the detached-electron wave function quantum mechanically.A plane polarized laser light, perpendicular to the axis of the ion, is used to detach the electron from the ion.Analytical expressions for the electron flux and total photodetachment cross section are derived.The electron flux on screen shows strong-energy-dependent oscillations with different frequencies.The total cross section of the tetra-atomic negative ion reduces the cross section of mono-atomic,diatomic and triatomic negative ions for high energy photons, while for low energy photons it becomes four times the cross section of mono-atomic negative ions.

  14. Fluorescence spectra of atomic ensembles in a magneto-optical trap as an optical lattice

    CERN Document Server

    Yoon, Seokchan; Kang, Sungsam; Kim, Wook-Rae; Kim, Jung-Ryul; An, Kyungwon

    2015-01-01

    We present a study on characteristics of a magneto-optical trap (MOT) as an optical lattice. Fluorescence spectra of atoms trapped in a MOT with a passively phase-stabilized beam configuration have been measured by means of the photon-counting heterodyne spectroscopy. We observe a narrow Rayleigh peak and well-resolved Raman sidebands in the fluorescence spectra which clearly show that the MOT itself behaves as a three-dimensional optical lattice. Optical-lattice-like properties of the phase-stabilized MOT such as vibrational frequencies and lineshapes of Rayleigh peak and Raman sidebands are investigated systematically for various trap conditions.

  15. ENERGETIC ABOVE-THRESHOLD IONIZATION SPECTRA OF H-ATOM IN INTENSE LASER FIELDS

    Institute of Scientific and Technical Information of China (English)

    CHEN BAO-ZHEN

    2000-01-01

    The above-threshold ionization (ATI) spectra of H-atom in intense laser fields (laser intensity I is up to 1018W/cm2)are calculated. It is found that the kinetic energy of the ejected electron at the location of the peak of the ATI spectra is about equal to the corresponding ponderomotive potential of the applied laser fields. This result is consistent with that obtained by Wilks et al. and fits the experimental results of the super thermal electron. A possible new mechanism of the super thermal electron generation is proposed.

  16. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Cohen, D.D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P.; Walker, S. [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H.; Hult, M. [Lund Univ. (Sweden); Oestling, M.; Zaring, C. [Royal Inst. of Tech., Stockholm (Sweden)

    1993-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  17. Recoil-ion momentum spectroscopy

    International Nuclear Information System (INIS)

    High-resolution recoil-ion momentum spectroscopy (RIMS) is a novel technique to determine the charge state and the complete final momentum vector PR of a recoiling target ion emerging from an ionising collision of an atom with any kind of radiation. It offers a unique combination of superior momentum resolution in all three spatial directions of ΔPR = 0.07 a.u. with a large detection solid angle of ΔΩR/4π≥ 98%. Recently, low-energy electron analysers based on rigorously new concepts and reaching similar specifications were successfully integrated into RIM spectrometers yielding so-called ''reaction microscopes''. Exploiting these techniques, a large variety of atomic reactions for ion, electron, photon and antiproton impact have been explored in unprecedented detail and completeness. Among them first kinematically complete experiments on electron capture, single and double ionisation in ion-atom collisions at projectile energies between 5 keV and 1.4 GeV. Double photoionisation of He has been investigated at energies Eγ close to the threshold (Eγ = 80 eV) up to Eγ = 58 keV. At Eγ>8 keV the contributions to double ionisation after photoabsorption and Compton scattering were kinematically separated for the first time. These and many other results will be reviewed in this article. In addition, the experimental technique is described in some detail and emphasis is given to envisage the rich future potential of the method in various fields of atomic collision physics with atoms, molecules and clusters. (orig.)

  18. Strong field atomic ionization: Origin of high-energy structures in photoelectron spectra

    International Nuclear Information System (INIS)

    Two distinct interpretations have been proposed to account for conspicuous enhancements of the ionization peaks in the high energy part of above-threshold ionization spectra. One of them ascribes the enhancement to a multiphoton resonance involving an excited state, while other analysis performed for zero-range model potential link it to 'channel closings', i.e., to the change in the number of photons needed to ionize the atom when the laser intensity increases. We report the results of model calculations that confirm the existence of a resonant process in atoms and shed light on why short-range potential models can mimic the experimental observations

  19. Atomic calculations and search for variation of the fine-structure constant in quasar absorption spectra

    Science.gov (United States)

    Dzuba, V. A.; Flambaum, V. V.

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  20. Atomic calculations and search for variation of the fine structure constant in quasar absorption spectra

    CERN Document Server

    Dzuba, V A

    2008-01-01

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  1. Cavity cooling below the recoil limit.

    Science.gov (United States)

    Wolke, Matthias; Klinner, Julian; Keßler, Hans; Hemmerich, Andreas

    2012-07-01

    Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling. PMID:22767925

  2. Photoionization spectra of even-parity states of Sm atom with multistep excitation

    International Nuclear Information System (INIS)

    Two-color stepwise excitation and photoionization schemes are adopted to study the spectra of bound even-parity high-lying states of the Sm atom with three different excitation paths via the 4f66s6p 7DJ (J=1, 2 and 3) intermediate states. In order to obtain the information of these high-lying states, the Sm atom in these high-lying states is photoionized with an extra photon. Among 231 states detected in the energy region between 35,545 and 44,225 cm-1, 108 states are newly discovered, while the rest can be identified as the same with the literature. In most cases, comparisons of the spectra corresponding to the three different excitation paths may partially determine the total angular momentum of the observed peaks with the selection rules. In addition, the relative intensities of all related transition lines are given.

  3. The HERMES recoil detector

    Science.gov (United States)

    Airapetian, A.; Aschenauer, E. C.; Belostotski, S.; Borisenko, A.; Bowles, J.; Brodski, I.; Bryzgalov, V.; Burns, J.; Capitani, G. P.; Carassiti, V.; Ciullo, G.; Clarkson, A.; Contalbrigo, M.; De Leo, R.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Guler, H.; Gregor, I. M.; Hartig, M.; Hill, G.; Hoek, M.; Holler, Y.; Hristova, I.; Jo, H. S.; Kaiser, R.; Keri, T.; Kisselev, A.; Krause, B.; Krauss, B.; Lagamba, L.; Lehmann, I.; Lenisa, P.; Lu, S.; Lu, X.-G.; Lumsden, S.; Mahon, D.; Martinez de la Ossa, A.; Murray, M.; Mussgiller, A.; Nowak, W.-D.; Naryshkin, Y.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Petrov, A.; Pickert, N.; Prahl, V.; Protopopescu, D.; Reinecke, M.; Riedl, C.; Rith, K.; Rosner, G.; Rubacek, L.; Ryckbosch, D.; Salomatin, Y.; Schnell, G.; Seitz, B.; Shearer, C.; Shutov, V.; Statera, M.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Varanda, M.; Veretennikov, D.; Vilardi, I.; Vikhrov, V.; Vogel, C.; Yaschenko, S.; Ye, Z.; Yu, W.; Zeiler, D.; Zihlmann, B.

    2013-05-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with a field strength of 1T. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  4. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  5. The HERMES recoil detector

    International Nuclear Information System (INIS)

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  6. Electron-momentum distributions and photoelectron spectra of atoms driven by an intense spatially inhomogeneous field

    OpenAIRE

    Ciappina, M.F.; Pérez-Hernández, J.A.; Shaaran, T.; Roso, L.; Lewenstein, M.

    2013-01-01

    We use three dimensional time-dependent Schr\\"odinger equation (3D--TDSE) to calculate angular electron momentum distributions and photoelectron spectra of atoms driven by spatially inhomogeneous fields. An example for such inhomogeneous fields is the locally enhanced field induced by resonant plasmons, appearing at surfaces of metallic nanoparticles, nanotips and gold bow-tie shape nanostructures. Our studies show that the inhomogeneity of the laser electric field plays an important role in ...

  7. Excess-photon ionization spectra and atomic structure in intense laser fields

    International Nuclear Information System (INIS)

    Floquet states represent intrinsic modes of ionization of an atom in a monochromatic field of constant intensity. To describe atomic wave packets evolving in realistic laser pulses, linear superpositions of Floquet states are required ('multistate Floquet theory'). This gives the possibility of following the evolution of wave packets in terms of the Floquet states that are populated during the pulse. We study here the way in which the Floquet states present in the representation of the wave packet manifest themselves in the excess-photon ionization spectra (EPI/ATI). For the purpose of illustration we choose a 1D atomic model with a soft-core Coulomb potential. We calculate the totality of the Floquet states, at all intensities needed, and generate the corresponding 'Floquet map'. We then calculate the EPI spectra for wave packets evolving from the ground state under different types of pulses. By analyzing the location of the lines in the spectrum, and their shapes, we show that they can be associated, in a clear cut and predictable way, to Floquet states responsible for the emission. The understanding of the underlying physics can lead to tailoring laser pulses, such as to obtain EPI signals in a controlled way. Whereas our analysis is applied to theoretical spectra, it would apply, just as well, to experimental ones

  8. The HERMES Recoil Detector

    Science.gov (United States)

    Kaiser, R.

    2006-07-01

    The HERMES Collaboration is installing a new Recoil Detector to upgrade the spectrometer for measurements of hard exclusive electron/positron scattering reactions, in particular deeply virtual Compton scattering. These measurements will provide access to generalised parton distributions and hence to the localisation of quarks inside hadrons and to their orbital angular momentum. The HERMES Recoil Detector consists of three active components: a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fibre tracker and a photon detector consisting of three layers of tungsten/scintillator. All three detectors are located inside a solenoidal magnetic field of 1 Tesla. The Recoil Detector was extensively tested with cosmic muons over the summer of 2005 and is being installed in the winter of 2005/6 for data taking until summer 2007.

  9. The HERMES Recoil Detector

    International Nuclear Information System (INIS)

    The HERMES Collaboration is installing a new Recoil Detector to upgrade the spectrometer for measurements of hard exclusive electron/positron scattering reactions, in particular deeply virtual Compton scattering. These measurements will provide access to generalised parton distributions and hence to the localisation of quarks inside hadrons and to their orbital angular momentum. The HERMES Recoil Detector consists of three active components: a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fibre tracker and a photon detector consisting of three layers of tungsten/scintillator. All three detectors are located inside a solenoidal magnetic field of 1 Tesla. The Recoil Detector was extensively tested with cosmic muons over the summer of 2005 and is being installed in the winter of 2005/6 for data taking until summer 2007

  10. High acceptance recoil polarimeter

    International Nuclear Information System (INIS)

    In order to detect neutrons and protons in the 50 to 600 MeV energy range and measure their polarization, an efficient, low-noise, self-calibrating device is being designed. This detector, known as the High Acceptance Recoil Polarimeter (HARP), is based on the recoil principle of proton detection from np→n'p' or pp→p'p' scattering (detected particles are underlined) which intrinsically yields polarization information on the incoming particle. HARP will be commissioned to carry out experiments in 1994

  11. Investigation of autoionization spectra of Sm atoms using an isolated-core excitation method

    Institute of Scientific and Technical Information of China (English)

    Qin Wen-Jie; Dai Chang-Jian; Xiao Ying; Zhao Hong-Ying

    2009-01-01

    Using the isolated-core-excitation scheme and three-step laser resonance ionization spectroscopy approach, this paper, for the first time, has systematically investigated the autoionization spectra of atomic Sm, belonging to the 4f66pn/ and 4f55d6snl (l=0, 2) configurations. In the experiment, the first two tunable dye lasers are employed to excite the Srn atom from its initial state to the differcnt 4f66snl bound Rydberg states, then the third dye laser is scanned to drive the atom to the doubly-excited autoionizing states. With the above excitation scheme, the measured transition profiles of the autoionizing states are nearly symmetric, from which the level energies and widths can be easily obtained.

  12. Investigation of autoionization spectra of Sm atoms using an isolated-core excitation method

    Science.gov (United States)

    Qin, Wen-Jie; Dai, Chang-Jian; Xiao, Ying; Zhao, Hong-Ying

    2009-05-01

    Using the isolated-core-excitation scheme and three-step laser resonance ionization spectroscopy approach, this paper, for the first time, has systematically investigated the autoionization spectra of atomic Sm, belonging to the 4f66pnl and 4f55d6snl (l = 0,2) configurations. In the experiment, the first two tunable dye lasers are employed to excite the Sm atom from its initial state to the different 4f66snl bound Rydberg states, then the third dye laser is scanned to drive the atom to the doubly-excited autoionizing states. With the above excitation scheme, the measured transition profiles of the autoionizing states are nearly symmetric, from which the level energies and widths can be easily obtained.

  13. Semiclassical Calculation of Recurrence Spectra of Rydberg Hydrogen Atom Near a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua

    2009-01-01

    Using closed orbit theory, we give a clear physical picture description of the Rydberg hydrogen atom near a metal surface and calculate the Fourier transformed recurrence spectra of this system at different scaled energies below ionization threshold.The results show that with the increase of the scaled energy, the number of the closed orbit increases greatly.Some of the orbits are created by the bifurcation of the perpendicular orbit.This case is quite similar to the Rydberg atom in an electric field.When the scaled energy increases furthermore, chaotic orbits appear.This study provides a different perspective on the dynamical behavior of the Rydberg atom near a metal surface.

  14. Resonance fluorescence spectra of three-level atoms in a squeezed vacuum

    International Nuclear Information System (INIS)

    The fluorescence field from one of the two allowed transitions in a three-level atom can sense squeezed fluctuations of a vacuum field coupled to the other transition. We examine the fluorescence spectra of strongly driven three-level atoms in Λ, V, and cascade configurations in which one of the two one-photon transitions is coupled to a finite-bandwidth squeezed vacuum field, when the bandwidth is much smaller than the difference in the atomic transition frequencies, though much larger than atomic decay rates and Rabi frequencies of the driving fields. The driving fields are on one-photon resonance, and the squeezed vacuum field is generated by a degenerate parameter oscillator. Details are only given for the Λ configuration. The extension to the V and cascade configurations is straightforward. We find that in all configurations the fluorescence spectra of the transition not coupled to the squeezed vacuum field are composed of five lines, one central and two pairs of sidebands, with intensities and widths strongly influenced by the squeezed vacuum field. However, only the central component and the outer sidebands exhibit a dependence on the squeezing phase. We also examine the fluorescence spectrum for the cascade configuration with a squeezed vacuum field on resonance with the two-photon transition between the ground and the most excited states and now generated by a nondegenerate parametric oscillator. In this case, where the squeezed vacuum field can be made coupled to both transitions, all spectral lines depend on the squeezing phase. The spectral features are explained in terms of the dressed-atom model of the system. We show that the coherent mixing of the atomic states by the strong driving fields modifies transition rates between the dressed states, which results in the selective phase dependence of the spectral features. copyright 1996 The American Physical Society

  15. The HERMES Recoil Detector

    CERN Document Server

    Airapetian, A; Belostotski, S; Borissov, A; Borisenko, A; Bowles, J; Brodski, I; Bryzgalov, V; Burns, J; Capitani, G P; Carassiti, V; Ciullo, G; Clarkson, A; Contalbrigo, M; De Leo, R; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Ehrenfried, M; Guler, H; Gregor, I M; Hartig, M; Hill, G; Hoek, M; Holler, Y; Hristova, I; Jo, H S; Kaiser, R; Keri, T; Kisselev, A; Krause, B; Krauss, B; Lagamba, L; Lehmann, I; Lenisa, P; Lu, S; Lu, X -G; Lumsden, S; Mahon, D; de la Ossa, A Martinez; Murray, M; Mussgiller, A; Nowak, W -D; Naryshkin, Y; Osborne, A; Pappalardo, L L; Perez-Benito, R; Petrov, A; Pickert, N; Prahl, V; Protopopescu, D; Reinecke, M; Riedl, C; Rith, K; Rosner, G; Rubacek, L; Ryckbosch, D; Salomatin, Y; Schnell, G; Seitz, B; Shearer, C; Shutov, V; Statera, M; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van Haarlem, Y; Van Hulse, C; Varanda, M; Veretennikov, D; Vilardi, I; Vikhrov, V; Vogel, C; Yaschenko, S; Ye, Z; Yu, W; Zeiler, D; Zihlmann, B

    2013-01-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1 Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end...

  16. Atomic and molecular spectra emitted by normal liquid 4He excited by corona discharge

    International Nuclear Information System (INIS)

    The liquid 4He at fixed temperature 4.2 K and different pressures up to 8 MPa was excited by corona discharge of both negative and positive polarity. Emission of He I atomic lines and He2 molecular bands are observed. In negative corona the lines spectra show a distinct blue-shift and line-broadening, which becomes stronger with the pressure increasing. The rotational structure of molecular bands is resolved at pressures (0.1-0.2) MPa. The blue shift of the Q-branch maximum at different pressures was observed. Rotational temperature of 900 K has been estimated for the d3sumu+ - b3Πg molecular band. A positive corona was realized on a point anode for fewer radii of the electrode and larger voltage than in the negative corona. Electric currents in both negative and positive corona differ weakly. Spectral analysis of the radiation from the positive corona shows qualitative differences of spectral features of these discharges. The spectra observed in the positive corona have marked nonsymmetric shape. The asymmetric atomic and molecular spectra show an increased intensity of their long-length (red) wings.

  17. Theory of two-atom coherence in gases. II. Continuous-wave spectra

    Science.gov (United States)

    Ben-Reuven, Abraham

    1980-12-01

    General expressions are derived for the spectral line shapes of resonance absorption and scattering of coherent radiation in collision-broadened gases, taking into account effects of coherent excitation of two or more atoms (or molecules), as steady-state solutions of a hierarchy of master equations described in a previous publication (paper I). Coupling between the coherent motions of the atoms, provided by a Bethe-Salpeter-type effective interaction, in the binary-collision approximation, forms the essential mechanism for introducing cooperative coherent effects into the steady-state spectra. Explicit expressions are given for the effects of two-atom coherence in the binary-collision approximation, in which the Bloch-type dressed-atom self-energy superoperator is modified by the presence of collisions in which both atoms retain memory of their coherent propagation before the collision. The self-energies include the effects of resonance exchange symmetrization in self-broadening, and are renormalized by the coincidence of radiative transitions during the collisions. The impact (near-resonance) and the quasistatic (line-wing) limits of the applied-frequency detunings are discussed. In the quasistatic limit, coherent many-atom excitations become irrelevant; however, interactions of both collision partners with the radiation during the collision accounts for such phenomena as collision-induced absorption or radiative collisions. In the impact limit, the inclusion of the Bethe-Salpeter interactions allows for the appearance of two-atom resonances. Magnitude estimates of these effects are discussed. Effects of higher-rank (many-body) coherences are formally discussed with the help of a diagrammatic method, leading into implicit bootstrap equations that can be solved by iterative or other procedures.

  18. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ricca, Alessandra, E-mail: Charles.W.Bauschlicher@nasa.gov, E-mail: Alessandra.Ricca-1@nasa.gov [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States)

    2013-10-20

    The loss of one hydrogen from C{sub 96}H{sub 24} does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare.

  19. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    International Nuclear Information System (INIS)

    The loss of one hydrogen from C96H24 does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare

  20. Electron momentum distributions and photoelectron spectra of atoms driven by intense spatially inhomogeneous field

    CERN Document Server

    Ciappina, M F; Shaaran, T; Roso, L; Lewenstein, M

    2013-01-01

    We use three dimensional time-dependent Schr\\"odinger equation (3D--TDSE) to calculate angular electron momentum distributions and photoelectron spectra of atoms driven by spatially inhomogeneous fields. An example for such inhomogeneous fields is the locally enhanced field induced by resonant plasmons, appearing at surfaces of metallic nanoparticles, nanotips and gold bow-tie shape nanostructures. Our studies show that the inhomogeneity of the laser electric field plays an important role in the above threshold ionization process in the tunneling regime, causing significant modifications to the electron momentum distributions and photoelectron spectra, while its effects in the multiphoton regime appear to be negligible. Indeed, through tunneling ATI process, one can obtain higher energy electrons as well as high degree of asymmetry in the momentum space map. In this study we consider near infrared laser fields with intensities in the mid-$10^{14}$ W/cm$^{2}$ range and we use linear approximation to describe t...

  1. Rotational spectra of N$_2^+$: An advanced undergraduate laboratory in atomic and molecular spectroscopy

    CERN Document Server

    Bayram, S B; Arndt, P T

    2015-01-01

    We describe an inexpensive instructional experiment that demonstrates the rotational energy levels of diatomic nitrogen, using the emission band spectrum of molecular nitrogen ionized by various processes in a commercial AC capillary discharge tube. The simple setup and analytical procedure is introduced as part of a sequence of educational experiments employed by a course of advanced atomic and molecular spectroscopy, where the study of rotational spectra is combined with the analysis of vibrational characteristics for a multifaceted picture of the quantum states of diatomic molecules.

  2. Semiclassical Calculations of Recurrence Spectra for Lithium Atoms in Parallel Electric and Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    林圣路; 张秋菊; 赵珂; 宋晓红; 张延惠

    2002-01-01

    By using the region-splitting consistent and iterative method, we calculate the recurrence spectra of lithium atoms in parallel strong external electric and magnetic fields, and obtain the novel resonance structure in the photoabsorption spectrum above the ionization threshold with a constant scaled electric field at F = 0.036, and a scaled energy at e = 0.58 and e = 0.006, respectively. The results are compared with those of hydrogen obtained by using standard closed orbit theory. It is demonstrated that the core-scattered effects exhibited in combination recurrence play a great role.

  3. Zel'dovich effect and evolution of atomic Rydberg spectra along the periodic table

    International Nuclear Information System (INIS)

    In 1959, Zel'dovich predicted that the bound-state spectrum of the nonrelativistic Coulomb problem distorted at small distances by a short-range potential undergoes a peculiar reconstruction whenever this potential alone supports a low-energy scattering resonance. However, documented experimental evidence of this effect has been lacking. Previous theoretical studies of this phenomenon were confined to the regime where the range of the short-ranged potential is much smaller than Bohr's radius of the Coulomb field. We go beyond this limitation by restricting ourselves to highly excited s states. This allows us to demonstrate that along the periodic table of elements, the Zel'dovich effect manifests itself as systematic periodic variation of the Rydberg spectra with a period proportional to the cubic root of the atomic number. This dependence, which is supported by an analysis of experimental and numerical data, has its origin in the binding properties of the ionic core of the atom

  4. Multiple and double scattering contributions to depth resolution and low energy background in hydrogen elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.

  5. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  6. Effect of the (n, α) Nuclear Reaction of B10 and Li6 on the Retention of Nuclear Recoil Atoms in Solids

    International Nuclear Information System (INIS)

    The increase of initial retention in reactor-irradiated solid cobaltic complexes, chromates and dichromates can be achieved by mixing the compounds with highly powdered boron compounds (α - annealing). The thermal neutron ''fission'' products of B10 and particularly the a-particles can penetrate the crystal lattice of the material under examination and by introducing defects into it help to recombine the recoil interstitials with their parent vacancies. Potassium chromate seems to increase the Cr51 retention up to 12% when it is bombarded by neutrons in mixtures with powdered boric acid. Ammonium chromate and potassium dichromate did not show any increase. Trisethylenediamine cobalt (III) nitrate in mixtures with ammonium hydrogen tetraborate showed an increase of retention about 15% for a dose given from the n,a reaction of 20 Mrad. Lithium carbonate was also used in mixtures with potassium chromate, dichromate and ammonium chromate. An increase of about 9% in retention was achieved in potassium chromate. Ammonium chromate in mixtures with lithium carbonate showed an increase of 3.5% due to the n,a reaction while potassium dichromate showed an increase of 2%. The introduction of defects by the products of the n, α reaction of B10 and Li6 affects the isothermal annealing, increasing the irregularities as the dose due to the ''fission'' products increases. The dose was calculated from the Q of the nuclear reaction, and it was assumed that all of it was absorbed by the lattice. By microscopic examinations the size of microcrystals of boron and lithium compounds was found to be about a few microns, which allowed the ''fission'' products to cross the parent lattice and come into the examined material. (author)

  7. Correlated ion analysis and the interpretation of atom probe mass spectra

    International Nuclear Information System (INIS)

    Several techniques are presented for extracting information from atom probe mass spectra by investigating correlations within multiple-ion detector events. Analyses of this kind can provide insights into the origins of noise, the shape of mass peaks, or unexpected anomalies within the spectrum. Data can often be recovered from within the spectrum noise by considering the time-of-flight differences between ions within a multiple event. Correlated ion detection, particularly when associated with shifts in ion energies, may be used to probe the phenomenon of molecular ion dissociation, including the questions of data loss due to ion pile-up or the generation of neutrals in the dissociation process. -- Research Highlights: → Multiple-ion detection events may contain information not seen in the mass spectrum. → Analysis of multiple events can yield information on molecular ion dissociation. → Neutral species may be generated by dissociation subsequent to field evaporation.

  8. Electron-momentum distributions and photoelectron spectra of atoms driven by an intense spatially inhomogeneous field

    Science.gov (United States)

    Ciappina, M. F.; Pérez-Hernández, J. A.; Shaaran, T.; Roso, L.; Lewenstein, M.

    2013-06-01

    We use the three-dimensional time-dependent Schrödinger equation (3 D-TDSE) to calculate angular electron momentum distributions and photoelectron spectra of atoms driven by spatially inhomogeneous fields. An example for such inhomogeneous fields is the locally enhanced field induced by resonant plasmons, appearing at surfaces of metallic nanoparticles, nanotips, and gold bow-tie shaped nanostructures. Our studies show that the inhomogeneity of the laser electric field plays an important role on the above-threshold ionization process in the tunneling regime, causing significant modifications on the electron momentum distributions and photoelectron spectra, while its effects in the multiphoton regime appear to be negligible. Indeed, through the tunneling above-threshold ionization (ATI) process, one can obtain higher energy electrons as well as a high degree of asymmetry in the momentum space map. In this study we consider near infrared laser fields with intensities in the mid- 1014 W/cm2 range and we use a linear approximation to describe their spatial dependence. We show that in this case it is possible to drive electrons with energies in the near-keV regime. Furthermore, we study how the carrier envelope phase influences the emission of ATI photoelectrons for few-cycle pulses. Our quantum mechanical calculations are fully supported by their classical counterparts.

  9. Isotope Effects on Delayed Annihilation Time Spectra of Antiprotonic Helium Atoms in Low-Temperature Gas

    CERN Document Server

    Ketzer, B; Daniel, H; Von Egidy, T; Niestroj, A; Schmid, S; Schmid, W; Yamazaki, T; Sugai, I; Nakayoshi, K; Hayano, R S; Maas, F E; Torii, H A; Ishikawa, T; Tamura, H; Morita, N; Horváth, D; Eades, John; Widmann, E

    1996-01-01

    The delayed annihilation time spectra (DATS) of antiprotonic helium atoms have been studied in isotopically pure low temperature ^3He and ^4He gas at various densities. The DATS taken at 5.8~K and 400~mbar are very similar in shape except for i) a small difference in the time scale and ii) the presence of a distinct fast decay component in the case of ^3He. The ratio of overall trapping times (mean lifetimes against annihilation), R = T_{\\mathrm{trap}}(\\mbox{^{4}He})/T_{\\mathrm{trap}}(\\mbox{^{3}He}), has been determined to be 1.144 \\pm 0.009, which is in good agreement with a theoretical estimate yielding R = [(M^*(\\mbox{\\overline{\\mathrm{p}}}\\mbox{^{4}He})/ M^*(\\mbox{\\overline{ \\mathrm{p}}}\\mbox{^{3}He})]^2=1.14, where M^* denotes the reduced mass of the \\mbox{\\overline{\\mathrm{p}}}\\mbox{He^{++}}\\ system. The presence of a short-lived component with a lifetime of (0.154\\pm 0.007)\\ \\mbox{\\mus} in the case of \\mbox{^{3}He}\\ suggests that the \\mbox{\\overline{\\mathrm{p}}}\\mbox{^{3}He^{+}}\\ atom has a state of in...

  10. A Modern Approach to L-S Coupling in the Theory of Atomic Spectra

    Science.gov (United States)

    Doggett, Graham; Sutcliffe, Brian

    1998-01-01

    In a recent article on the theory of atomic spectroscopy (1), Haigh remarks that "Many introductory textbooks on spectroscopy give satisfactory accounts of Russell-Saunders (LS) coupling, but their treatment of jj coupling is generally very brief." Although we do not wish to dissent from his sentiments on j-j coupling, we wonder whether the treatment of L-S coupling usually offered in introductory texts for term enumeration is not too old-fashioned to still be considered entirely satisfactory. In this article we present an approach to the construction of L-S terms that makes contact with modern group theoretical and tensorial approaches to the theory of atomic spectra and is as easy to present and to comprehend as is the old microstates approach (2, 3). We believe that it is at least as easy to use as the approach of Guofan and Elizey (4) presented in this Journal some ten years ago: in fact, we have been teaching the enumeration of L-S terms for the past ten years using the methods presented in Section 2.

  11. Elastic recoil detection using heavy ion beams

    International Nuclear Information System (INIS)

    Elastic Recoil Detection using heavy ion projectile beams allows compositional depth-profiling of materials to a depth of about 2.5 μm. The technique is sensitive to all chemical elements including hydrogen. It is particularly suited for the analysis of thin film materials. Large solid-angle position-sensitive gas ionization detectors have been developed for the efficient detection of the recoil ions. With the set-up at the Australian National University, measurement and analysis are greatly simplified by using a new detector design. A grid electrode allows a direct determination of the ion energy, while a divided anode enables the simultaneous detection of ions with largely different atomic numbers and also provides linear position information. A diverse spectrum of materials has been analyzed including photosensitive doped silica, high-Tc superconductors and dielectric films

  12. Atomic data and theoretical X-ray spectra of Ge-like through V-like W ions

    International Nuclear Information System (INIS)

    The atomic structure and spectra of ten tungsten ions have been calculated using the Flexible Atomic Code. The calculations yield energy levels, radiative lifetimes, spectral line positions, transition probability rates, and oscillator strengths for the tungsten ions isoelectronic to germanium, W42+, through vanadium, W51+. Collisional–radiative models for high-temperature, low-density plasmas have been implemented to produce line emissivities for X-ray transitions in the 1–4 keV (3–12 Å) spectral interval. The Ge-like through V-like W ions are important in nuclear fusion research where their spectra may provide diagnostic information on magnetically confined plasmas

  13. Atomic data and theoretical X-ray spectra of Ge-like through V-like W ions

    Science.gov (United States)

    Clementson, J.; Beiersdorfer, P.; Brage, T.; Gu, M. F.

    2014-03-01

    The atomic structure and spectra of ten tungsten ions have been calculated using the Flexible Atomic Code. The calculations yield energy levels, radiative lifetimes, spectral line positions, transition probability rates, and oscillator strengths for the tungsten ions isoelectronic to germanium, W42, through vanadium, W51. Collisional-radiative models for high-temperature, low-density plasmas have been implemented to produce line emissivities for X-ray transitions in the 1-4 keV (3-12 Å) spectral interval. The Ge-like through V-like W ions are important in nuclear fusion research where their spectra may provide diagnostic information on magnetically confined plasmas.

  14. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  15. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Van Hulse, Charlotte, E-mail: charlotte@inwfsun1.UGent.b [Gent University Department of Subatomic and Radiation Physics, Proeftuinstraat 86, 9000 Gent (Belgium)

    2010-11-01

    In order to allow for the detection of low momentum particles, originating from the scattering of a 27.6 GeV lepton beam off a fixed gaseous target at the HERMES experiment at DESY in Hamburg (Germany), a dedicated recoil detector was installed. It consists of a silicon strip detector, located inside the beam vacuum, a scintillating fiber tracker and a photon detector, around a 150 mm long target cell made out of a 75{mu}m thick aluminum tube. The full detector assembly is mounted inside a 1 T super-conducting solenoid and is able to detect protons and pions with momenta up to 1.40 GeV/c and photons in the region surrounding the target cell. The detector has been operational from February 2006 until June 2007. The commissioning and performance of the detector are presented in this paper.

  16. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W.B.; Johnston, P.N.; Walker, S.R.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J.F. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  17. Recoil-distance lifetime measurements in some sd-shell nuclei

    International Nuclear Information System (INIS)

    The investigation reported in this thesis consisted of three parts: the design and development of a recoil-distance apparatus, the development and application of computer programs for the analysis of recoil-distance γ-ray spectra, and the measurement of the lifetimes of one or more excited states in 24Na, 26Al, and 28Al. (G.T.H.)

  18. Recoil 18F-chemistry in fluoroalkanes

    International Nuclear Information System (INIS)

    This thesis describes the study of the chemical reactions of recoil 18F-atoms in gaseous fluoromethanes and fluoroethanes. A brief survey of the organic hot atom chemistry is given in Chapter I. Chapter II deals with the experimental procedures used in this investigation. The irradiation facilities, the vapour phase radio-chromatography and the identification, including the synthesis of some fluorocarbons, are described in detail. Chapter III consists of a study on the applicability of perfluoropropene, C3F6, as scavenger for thermal 18F-atoms and radicals. Chapters IV, V, VI and VII deal with 18F-recoil chemistry in gaseous fluoroethanes, using H2S as scavenger. Chapter VIII is a short discussion on the hot 18F-atom based production of 18F-labeled organic compounds via decay of the intermediate 18Ne. A target system is proposed for production of this isotope in high energy and ultra high flux particle beams, which possibly would become available in fast breeders and fusion reactors. (Auth.)

  19. Autler-Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms

    Institute of Scientific and Technical Information of China (English)

    Liang Qiang-Bing; Yang Bao-Dong; Yang Jian-Feng; Zhang Tian-Cai; Wang Jun-Min

    2010-01-01

    Autler-Townes splitting in absorption spectra of the excited states 6 2P3/2 - 82S1/2 of cold cesium atoms confined in a magneto-optical trap has been observed.Experimental data of the Autler-Townes splitting fit well to the dressedatom theory,by which the fact of the cold atoms dressed by cooling/trapping laser beams is revealed.The results of the theoretical fitting with experiment not only told us the effective Rabi frequency cold atoms experienced,but also could be used for measuring the probability amplitudes of the dressed states.

  20. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  1. Neutrino-recoil induced desorption

    International Nuclear Information System (INIS)

    Nuclear decay induced 37Cl ion desorption from the electron capture decay 37Ar→37Cl+ν is reported for the first time. A mixture of one part 36Ar and ∼5x10-5 parts 37Ar (36/37Ar) is physisorbed on a gold-plated Si wafer kept at 16 K under ultrahigh vacuum conditions. The time of flight (TOF) of recoiled 37Cl ions is measured using coincidence techniques. The observed kinetic energy distribution of the 37Cl ions is approximately Gaussian in shape, with a maximum at ∼9.0 eV and a full width at half-maximum of ∼3 eV. Considering the binding energy of physisorbed 37Ar is ∼80 meV, the 9-eV peak energy compares well with that of the gas-phase value, where conservation of the energy and momentum fixes the kinetic energy of 37Cl ions at 9.54 eV. Using a combination of TOF and retarding field energy analysis, the charge states of detected ions for 1 ML (monolayer) of 36/37Ar are determined as 53%+1e, 21%+2e, and 26%+ne, where n≥3. The fraction of decaying 37Ar atoms which emerge from the surface as positive 37Cl ions is found to be 10%. Finally, a strong charge exchange reaction between a 37Cl ion and near-neighbor atoms causes a Coulomb explosion within the multilayers, increasing the kinetic energy of desorbing ions by as much as ∼7 eV

  2. Energy spectra of uranium atoms sputtered from uranium metal and uranium dioxide targets

    International Nuclear Information System (INIS)

    The energy spectra of 235U atoms sputtered from a 93% enriched 235U metal foil and a hot pressed 235UO pellet by an 80 kev 40Ar+ beam were measured in the range 1 eV to 1 keV. The measurements were made using a mechanical time-of-flight spectrometer in conjunction with the fission track technique for detecting 235U. The design and construction of this spectrometer are discussed in detail, and its operation is mathematically analyzed. The results of the experiment are discussed in the context of the random collision cascade model of sputtering. The spectrum obtained by the sputtering of the 235U metal target was found to be well described by the functional form E(E+E/sub b/)-277, where E/sub b/ = 5.4 eV. The 235UO2 target produced a spectrum that peaked at a lower energy (approx. 2 eV) and decreased somewhat more rapidly for E approx. > 100 eV

  3. Parametric study of recoil proton spectrometer with permanent magnets

    International Nuclear Information System (INIS)

    The role played by the main physical and geometrical parameters on the characteristics of a recoil proton spectrometer has been analysed. The optimization has been done in the case of a permanent magnet magnetic sector. Some examples of optimized geometries in the case of neutron spectra (by using n, p reaction) around 14 MeV are given

  4. Compton cross-section calculations in terms of recoil-ion momentum observables

    Energy Technology Data Exchange (ETDEWEB)

    Kaliman, Z. E-mail: kaliman@pefri.hr; Pisk, K

    2004-11-01

    We present a theoretical framework for the calculations of Compton scattering on bound electrons, based on recoil-ion observables. We show the results for Compton cross sections on He-atom, with respect to the recoil-ion momentum. The validity and the utility of this approach are discussed particularly in connection with the electron momentum density determination.

  5. Synchrotron-radiation experiments with recoil ions

    Energy Technology Data Exchange (ETDEWEB)

    Levin, J.C.

    1989-01-01

    Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab.

  6. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  7. Tritium recoil reactions in inorganic solid compounds. Chapter 22

    International Nuclear Information System (INIS)

    The behavior of recoil tritium produced in inorganic solid compounds is an esoteric chapter of the already esoteric field of Hot Atom Chemistry. A very small group of investigators have devoted their attention to this problem. The author summarizes the results of their studies. (Auth.)

  8. All-atom Molecular Dynamic Simulations and NMR Spectra Study on Intermolecular Interactions of N,N-dimethylacetamide-Water System

    Institute of Scientific and Technical Information of China (English)

    Rong Zhang; Zai-you Tan; San-lai Luo

    2008-01-01

    N,N-dimethylacetamide (DMA) has been investigated extensively in studying models of peptide bonds. An all-atom MD simulation and the NMR spectra were performed to investigate the interactions in the DMA- water system. The radial distribution functions (RDFs) and the hydrogen-bonding network were used in MD simulations. There are strong hydrogen bonds and weak C-H…O contacts in the mixtures, as shown by the analysis of the RDFs. The insight structures in the DMA-water mixtures can be classified into different regions by the analysis of the hydrogen-bonding network. Chemical shifts of the hydrogen atom of water molecule with concentration and temperatures are adopted to study the interactions in the mixtures. The results of NMR spectra show good agreement with the statistical results of hydrogen bonds in MD simulations.

  9. Atomic data and theoretical X-ray spectra of Ge-like through V-like W ions

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, J., E-mail: joel.clementson@ipp.mpg.de [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Department of Physics, Lund University, SE-221 00 Lund (Sweden); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Brage, T. [Department of Physics, Lund University, SE-221 00 Lund (Sweden); Gu, M.F. [University of California at Berkeley, Berkeley, CA 94720 (United States)

    2014-03-15

    The atomic structure and spectra of ten tungsten ions have been calculated using the Flexible Atomic Code. The calculations yield energy levels, radiative lifetimes, spectral line positions, transition probability rates, and oscillator strengths for the tungsten ions isoelectronic to germanium, W{sup 42+}, through vanadium, W{sup 51+}. Collisional–radiative models for high-temperature, low-density plasmas have been implemented to produce line emissivities for X-ray transitions in the 1–4 keV (3–12 Å) spectral interval. The Ge-like through V-like W ions are important in nuclear fusion research where their spectra may provide diagnostic information on magnetically confined plasmas.

  10. Short-ranged potential effects on the recurrence spectra of lithium M = 1 atoms in parallel electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Wang Wen-Peng; Li Hong-Yun; Wang Shu-Bao; Lin Sheng-Lu

    2008-01-01

    This paper presents recurrence spectra of highly excited lithium atoms with M = 1 state in parallel electric and magnetic fields at a fixed scaled energy ε = -0.03. Short-ranged potentials including ionic core potential and centrifugal barrier are taken into account. Their effects on the states and photo-absorption spectrum are analysed in detail. This demonstrates that the geometric features of classical orbits are of special importance for modulations of the spectral pattern. Thus the weak polarization as well as the reduction of correlation of electrons induced by short-ranged potentials give rise to the recurrence spectra of lithium M = 1 atoms more compact than that of the M = 0 one, which is in good agreement with the experimental prediction.

  11. The Journey from Classical to Quantum Thinking: An Analysis of Student Understanding Through the Lens of Atomic Spectra

    OpenAIRE

    Rao, Sandhya Kolla

    2012-01-01

    This dissertation aims to explore how students think about atomic absorption and emission of light in the area of introductory quantum chemistry. In particular, the impact of classical ideas of electron position and energy on student understanding of spectra is studied. The analysis was undertaken to discover how student learning can be characterized along different dimensions of competence, and to determine the strength of the correlations between these dimensions. The research in this dis...

  12. Non-LTE Balmer line formation in late-type spectra: Effects of atomic processes involving hydrogen atoms

    CERN Document Server

    Barklem, P S

    2007-01-01

    (*** abridged ***) Context: The wings of Balmer lines are often used as effective temperature diagnostics for late-type stars under the assumption they form in local thermodynamic equilibrium. Aims: Our goal is to investigate the non-LTE formation of Balmer lines in late-type stellar atmospheres, to establish if the assumption of LTE is justified. Furthermore, we aim to determine which collision processes are important for the problem; in particular, the role of collision processes with hydrogen atoms is investigated. Method: A model hydrogen atom for non-LTE calculations has been constructed accounting for various collision processes using the best available data from the literature. The processes included are inelastic collisions with electrons and hydrogen atoms, mutual neutralisation and Penning ionisation. Non-LTE calculations are performed, and the relative importance of the collision processes is investigated. Results: Our calculations show electron collisions alone are not sufficient to establish LTE ...

  13. Effect of positron-atom interactions on the annihilation gamma spectra of molecules

    CERN Document Server

    Green, D G; Wang, F; Gribakin, G F; Surko, C M

    2012-01-01

    Calculations of gamma spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation gamma spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the gamma spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation gamma spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective "narrowing" of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of smal...

  14. Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids.

    Science.gov (United States)

    Horikawa, Yuka; Tokushima, Takashi; Takahashi, Osamu; Hoke, Hiroshi; Takamuku, Toshiyuki

    2016-08-01

    Soft X-ray absorption spectroscopy (XAS) has been performed on the N K-edge of two imidazolium-based ionic liquids (ILs), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][TFSA]) and 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]), to clarify the electronic structures of the ILs. Soft X-ray emission spectroscopy (XES) has also been applied to the ILs by excitation at various X-ray energies according to the XAS spectra. It was possible to fully associate the XAS peaks with the XES peaks. Additionally, both XAS and XES spectra of the ILs were well reproduced by the theoretical spectra for a single-molecule model on [C2mim](+) and [TFSA](-) using density functional theory. The assignments for the XAS and XES peaks of the ILs were accomplished from both experimental and theoretical approaches. The theoretical XAS and XES spectra of [C2mim](+) and [TFSA](-) did not significantly depend on the conformations of the ions. The reproducibility of the theoretical spectra for the single-molecule model suggested that the interactions between the cations and anions are very weak in the ILs, thus scarcely influencing the electronic structures of the nitrogen atoms. PMID:27388151

  15. Recoiling DNA Molecule Simulation & Experiment

    CERN Document Server

    Neto, J C; Mesquita, O N; Neto, Jose Coelho; Dickman, Ronald

    2002-01-01

    Many recent experiments with single DNA molecules are based on force versus extension measurements and involve tethering a microsphere to one of its extremities and the other to a microscope coverglass. In this work we show that similar results can also be obtained by studying the recoil dynamics of the tethered microspheres. Computer simulations of the corresponding Langevin equation indicate which assumptions are required for a reliable analysis of the experimental recoil curves. We have measured the persistence length A of single naked DNA molecules and DNA-Ethidium Bromide complexes using this approach.

  16. Production and analysis of some atomic emission spectra in the vacuum ultraviolet

    International Nuclear Information System (INIS)

    The development of technical facilities for spectra analysis are described including the design, construction and adjustment of a grazing incidence spectrograph for the extreme ultraviolet and the improvements in light sources. The investigations of the fifth and fourth spectra of tantalum, the analysis of the sixth spectrum of tungsten, the extension of the analysis of the fourth spectrum of hafnium and a start of the analysis of the seventh spectrum of rhenium are presented. (C.F.)

  17. Measurement of thermal neutron spectra using LINAC in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    The exact grasp of thermal neutron spectra in a core region is very important for obtaining accurate thermal neutron group constants in the calculation for the nuclear design of a reactor core. For the accurate grasp of thermal neutron spectra, the capability of thermal neutron spectra to describe the moderator cross-sections for thermal neutron scattering is a key factor. Accordingly, 0 deg angular thermal neutron spectra were measured by the time of flight (TOF) method using the JAERI LINAC as a pulsed neutron source, for light water system added with Cd and In, high temperature graphite system added with boron, and light water-natural uranium heterogeneous multiplication system among the reactor moderators of light water or graphite systems. First, the equations to give the time of flight and neutron flux by TOF method were analyzed, and several corrections were investigated, such as those for detector efficiency, background, the transmission coefficient of air and the Al window of a flight tube, mean emission time of neutrons, and the distortion effect of re-entrant hole on thermal neutron spectra. Then, the experimental system, results and calculation were reported for the experiments on the above three moderator systems. Finally, the measurement of fast neutron spectra in natural uranium system and that of the efficiency of a 6Li glass scintillator detector are described. (Wakatsuki, Y.)

  18. Regularity and Chaos in the Hydrogen Atom Highly Excited with a Strong Magnetic Field

    Directory of Open Access Journals (Sweden)

    M. Amdouni

    2014-01-01

    Full Text Available The effects of the relativistic corrections on the energy spectra are analyzed. Effective simulations based on manipulations of operators in the Sturmian basis are developed. Discrete and continuous energy spectra of a hydrogen atom with realistic nucleus mass in a strong magnetic field are computed. The transition from regularity to chaos in diamagnetic problem with the effect of the nucleus recoil energy is explored. Anticrossing of energy levels is observed for strong magnetic field.

  19. Electromagnetic separators for recoiling reaction products

    International Nuclear Information System (INIS)

    This chapter describes the use of magnetic spectrometers and spectrographs, recoil mass spectrometers, and velocity filters as standard tools in many heavy-ion investigations. Topics considered include ion optics, examples of recoil selectors with static fields (the SHIP, the MIT-BNL energy-mass spectrometer, the MIT-BNL recoil-mass selector, the recoil-mass spectrometer at Michigan State University, the recoil-mass spectrometer at the University of Rochester, the Daresbury recoil separator, the MIT-ORNL recoil-mass selector), examples of recoil selectors with RF fields (the Munich RF separator, an RF separator proposed for GSI), magnetic spectrometers combined with time of flight (the GSI spectrometer, mirror-symmetric magnetic spectrometers), spectrometers for spallation products (the BEVALAC spectrometers, a proposed time-of-flight spectrometer for LAMPF), and technical aspects of electromagnetic separators (electric-field limitations, beam scattering)

  20. The International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    Science.gov (United States)

    Sugar, J.; Leckrone, D.

    1993-01-01

    This was the fourth in a series of colloquia begun at the University of Lund, Sweden in 1983 and subsequently held in Toledo, Ohio and Amsterdam, The Netherlands. The purpose of these meetings is to provide an international forum for communication between major users of atomic spectroscopic data and the providers of these data. These data include atomic wavelengths, line shapes, energy levels, lifetimes, and oscillator strengths. Speakers were selected from a wide variety of disciplines including astrophysics, laboratory plasma research, spectrochemistry, and theoretical and experimental atomic physics.

  1. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles

    International Nuclear Information System (INIS)

    Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of 221Fr and 213Bi when encapsulating 225Ac. - Highlights: • First reported loading of 213Bi and 225Ac in polymer vesicles (i.e. polymersomes). • Encapsulating 225Ac in polymersomes results in up to 69 % recoil retention of 221Fr. • Encapsulating 225Ac in polymersomes results in up to 53 % recoil retention of 213Bi

  2. Electron recombination in low-energy nuclear recoils tracks in liquid argon

    International Nuclear Information System (INIS)

    This paper presents an analysis of electron-ion recombination processes in ionization tracks of recoiled atoms in liquid argon (LAr) detectors. The analysis is based on the results of computer simulations which use realistic models of electron transport and reactions. The calculations reproduce the recent experimental results of the ionization yield from 6.7 keV nuclear recoils in LAr. The statistical distribution of the number of electrons that escape recombination is found to deviate from the binomial distribution, and estimates of recombination fluctuations for nuclear recoils tracks are obtained. A study of the recombination kinetics shows that a significant part of electrons undergo very fast static recombination, an effect that may be responsible for the weak drift-field dependence of the ionization yield from nuclear recoils in some noble liquids. The obtained results can be useful in the search for hypothetical dark matter particles and in other studies that involve detection of recoiled nuclei

  3. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    Science.gov (United States)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  4. Astronomical spectroscopy an introduction to the atomic and molecular physics of astronomical spectra

    CERN Document Server

    Tennyson, Jonathan

    2005-01-01

    Nearly all the information we know about the Universe comes from thestudy of light as it reaches us. The understanding of this informationcontained in light requires both telescopes capable of resolving lightinto its different component colors, as well as detailed knowledge ofthe quantum mechanical behavior of atoms and molecules. This uniquebook, which is based on a third-year undergraduate course given by theauthor at University College London, presents the basic atomic andmolecular physics necessary to understand and interpret astronomicalspectra. It explains what information can be extract

  5. Fluorescence excitation spectra of jet-cooled complexes of carbazole and mono-atomic alcohols

    International Nuclear Information System (INIS)

    Fluorescence excitation spectra of jet-cooled complexes of carbazole and one molecule of methyl, deuterated methyl, ethyl and propyl (propanol-1 and propanol-2) alcohols are analyzed. Shifts of the fluorescence excitation spectra of complexes relative to the frequency of a pure electron transition of unbound carbazole are determined. They are formed owing to the hydrogen bonds of the N-H groups of carbazole with the OH-group of alcohols. The frequencies of stretching vibrations of hydrogen groups with various alcohols vary within the range 150-157 cm-1, whereas for the deformation ones the frequencies fall in the interval 21-22.9 cm-1. The belonging of complexes to rotational conformers is determined through the shape of the rotational contours of bands of their pure electronic and electron-vibration transitions. Equilibrium configurations of complexes in the ground state are calculated (authors)

  6. Recoiling DNA Molecule: Simulation & Experiment

    OpenAIRE

    Neto, Jose Coelho; Dickman, Ronald; Mesquita, O. N.

    2002-01-01

    Single molecule DNA experiments often generate data from force versus extension measurements involving the tethering of a microsphere to one end of a single DNA molecule while the other is attached to a substrate. We show that the persistence length of single DNA molecules can also be measured based on the recoil dynamics of these DNA-microsphere complexes if appropriate corrections are made to the friction coefficient of the microsphere in the vicinity of the substrate. Comparison between co...

  7. Treatment of the emission and absorption spectra of a general formalism Λ-type three-level atom driven by a two-mode field with nonlinearities

    International Nuclear Information System (INIS)

    An analytical expression of the emission and absorption spectra, for a Λ-type three-level cavity-bound atom interacting with a two-mode cavity field, is given using the dressed states of the system. We take explicitly into account the existence of forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. The characteristics of the emission and absorption spectra for binomial and squeezed coherent states of the modes are exhibited. The effects of the mean number of photons, detuning and the nonlinearity forms on the spectra are analysed

  8. EXPLORING THE TIME DISPERSION OF THE IBEX-HI ENERGETIC NEUTRAL ATOM SPECTRA AT THE ECLIPTIC POLES

    International Nuclear Information System (INIS)

    The Interstellar Boundary Explorer (IBEX) has observed energetic neutral atom (ENA) hydrogen emissions from the edge of the solar system for more than three years. The observations span energies from 0.01 to 6 keV FWHM. At energies greater than 0.5-6 keV, and for a travel distance of ∼100 AU, the travel time difference between the slowest and the fastest ENA is more than a year. Therefore, we construct spectra including the effect that slower ENAs left the source at an earlier time than faster ones. If the source produces a steady rate of ENAs and the extinction does not vary, then we expect that the spectral shape would be time independent. However, while the extinction of ENAs has been fairly constant during the first two and a half years, the source appears to have changed, and thus the spectra at a single time may not represent the conditions at the source. IBEX's viewing allows continuous sampling of the ecliptic poles where fluxes can be continuously monitored. For a given source distance we construct spectra assuming that the measured ENAs left the source at roughly the same time. To accomplish this construction, we apply time lag corrections to the signal at different ENA energies that take into account the travel time difference. We show that the spectral shape at the poles exhibits a statistically significant change with time.

  9. Fine-structure constant variability surprises for laboratory atomic spectroscopy and cosmological evolution of quasar spectra

    CERN Document Server

    Bekenstein, J D

    2003-01-01

    Calculation of the Dirac hydrogen atom spectrum in the framework of dynamical fine structure constant (alpha) variability discloses a small departure in the laboratory from Sommerfeld's formula for the fine structure shifts, possibly measurable today. And for a distant object in the universe, the wavelength shift of a spectral line specifically ascribable to cosmological alpha variation is found to depend differently on the quantum numbers than in the conventional view. This last result clashes with the conventional wisdom that an atom's spectrum can change with cosmological time only through evolution of the alpha parameter in the energy eigenvalue formula, and thus impacts on the Webb group's analysis of fine structure intervals in quasar absorption lines (which has been claimed to disclose cosmological alpha evolution). In particular, analyzing together a mix of quasar absorption lines from different fine structure multiplets can bias estimates of cosmological alpha variability.

  10. Application of some Hartree-Fock model calculations to the analysis of atomic and free-ion optical spectra

    International Nuclear Information System (INIS)

    Techniques for applying ab-initio calculations to the analysis of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multi-configuration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e., wavefunctions with radial correlations between electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to screen the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the K I sequence from K0+ through Fe7+, fitting to experimental levels for V4+, and Cr5+; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: energy levels of the uranium hexahalide complexes, (UX6)2- for X = F, Cl, Br, and I, are fit to an effective Hamiltonian (the f2 configuration in O/sub h/ symmetry) with corrections proposed by Brian Judd

  11. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles.

    Science.gov (United States)

    Wang, G; de Kruijff, R M; Rol, A; Thijssen, L; Mendes, E; Morgenstern, A; Bruchertseifer, F; Stuart, M C A; Wolterbeek, H T; Denkova, A G

    2014-02-01

    Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of (221)Fr and (213)Bi when encapsulating (225)Ac. PMID:24374072

  12. Atom interferometry

    International Nuclear Information System (INIS)

    We will first present a development of the fundamental principles of atom interferometers. Next we will discuss a few of the various methods now available to split and recombine atomic De Broglie waves, with special emphasis on atom interferometers based on optical pulses. We will also be particularly concerned with high precision interferometers with long measurement times such those made with atomic fountains. The application of atom interferometry to the measurement of the acceleration due to gravity will be detailed. We will also develop the atom interferometry based on adiabatic transfer and we will apply it to the measurement of the photon recoil in the case of the Doppler shift of an atomic resonance caused by the momentum recoil from an absorbed photon. Finally the outlook of future developments will be given. (A.C.)

  13. Research as a guide for curriculum development: An example from introductory spectroscopy. I. Identifying student difficulties with atomic emission spectra

    Science.gov (United States)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-01-01

    This is the first of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. This article (Paper I) describes how several serious conceptual and reasoning difficulties were identified among students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. Paper II illustrates how findings from this research informed the development of a tutorial that led to significant improvement in student understanding of atomic emission spectra.

  14. Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra

    Science.gov (United States)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-02-01

    This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.

  15. Fingerprints of exceptional points in the survival probability of resonances in atomic spectra

    International Nuclear Information System (INIS)

    The unique time signature of the survival probability exactly at the exceptional point parameters is studied here for the hydrogen atom in strong static magnetic and electric fields. We show that indeed the survival probability S(t)=||2 decays exactly as |1-at|2e-ΓEPt/(ℎ/2π), where ΓEP is associated with the decay rate at the exceptional point and a is a complex constant depending solely on the initial wave packet that populates exclusively the two almost degenerate states of the non-Hermitian Hamiltonian. This may open the possibility for a first experimental detection of exceptional points in a quantum system.

  16. Fingerprints of exceptional points in the survival probability of resonances in atomic spectra

    CERN Document Server

    Cartarius, Holger

    2011-01-01

    The unique time signature of the survival probability exactly at the exceptional point parameters is studied here for the hydrogen atom in strong static magnetic and electric fields. We show that indeed the survival probability S(t)=||^2 decays exactly as |1-a*t|^2 e^(-Gamma_EP*t/hbar) where Gamma_EP is associated with the decay rate at the exceptional point and a is a complex constant depending solely on the initial wave packet that populates exclusively the two almost degenerate states of the non-Hermitian Hamiltonian. This may open the possibility for a first experimental detection of exceptional points in a quantum system.

  17. Universal Two-Body Spectra of Ultracold Harmonically Trapped Atoms in Two and Three Dimensions

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas

    2012-01-01

    We consider the spectrum of two ultracold harmonically trapped atoms interacting via short-range interactions. The Green's function approach is used to unify the two and three dimensional cases. We derive criteria for the universality of the spectrum, i.e. its independence of the details of the...... short-range interaction. The results in three dimensions are examplified for narrow s-wave Feshbach resonances and we show how effective range corrections can modify the rearrangement of the level structure. However, this requires extremely narrow resonances or very tight traps that are not currently...... experimentally available. In the two-dimensional case we discuss the p-wave channel in detail and demonstrate how the non-universality of the spectrum arises within the Green's function approach. We then show that the spectrum is not particularly sensitive to the short-distance details in the case when the two...

  18. FOREWORD: The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    Science.gov (United States)

    Tchang-Brillet, Wad Lydia; Wyart, Jean-François; Zeippen, Claude

    1996-01-01

    The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas was held in Meudon, France, from August 28 to 31 1995. It was the fifth in a series started by the Atomic Spectroscopic Group at the University of Lund, Sweden, in 1983. Then followed the meetings in Toledo, USA, Amsterdam, The Nether- lands and Gaithersburg, USA, with a three year period. The original title of the series ended with "... for Astrophysics and Fusion Research" and became more general with the 4th colloquium in Gaithersburg. The purpose of the present meeting was, in line with tradition, to bring together "producers" and "users" of atomic data so as to ensure optimal coordination. Atomic physicists who study the structure of atoms and their radiative and collisional properties were invited to explain the development of their work, emphasizing the possibilities of producing precise transition wavelengths and relative line intensities. Astrophysicists and laboratory plasma physicists were invited to review their present research interests and the context in which atomic data are needed. The number of participants was about 70 for the first three meetings, then exploded to 170 at Gaithersburg. About 140 participants, coming from 13 countries, attended the colloquium in Meudon. This large gathering was partly due to a number of participants from Eastern Europe larger than in the past, and it certainly showed a steady interest for interdisciplinary exchanges between different communities of scientists. This volume includes all the invited papers given at the conference and, in the appendix, practical information on access to some databases. All invited speakers presented their talks aiming at good communication between scientists from different backgrounds. A separate bound volume containing extended abstracts of the poster papers has been published by the Publications de l'Observatoire de Paris, (Meudon 1996), under the responsibility of

  19. NLTE analysis of Sr lines in spectra of late-type stars with new R-matrix atomic data

    CERN Document Server

    Bergemann, M; Bautista, M; Ruchti, G

    2012-01-01

    We investigate statistical equilibrium of neutral and singly-ionized strontium in late-type stellar atmospheres. Particular attention is given to the completeness of the model atom, which includes new energy levels, transition probabilities, photoionization and electron-impact excitation cross-sections computed with the R-matrix method. The NLTE model is applied to the analysis of Sr I and Sr II lines in the spectra of the Sun, Procyon, Arcturus, and HD 122563, showing a significant improvement in the ionization balance compared to LTE line formation calculations, which predict abundance discrepancies of up to 0.5 dex. The solar Sr abundance is log A = 2.93 \\pm 0.04 dex, in agreement with the meteorites. A grid of NLTE abundance corrections for Sr I and Sr II lines covering a large range of stellar parameters is presented.

  20. Interpreting Recoil Motion for Undergraduate Students

    CERN Document Server

    Mokhiemer, Tarek Ahmed

    2007-01-01

    In this paper, I outline some problems in the students' understanding of the reason of recoil motion when introduced to them in the context of Newton's third law. I propose to explain the origin of recoil and the fundamental mechanism which produces this motion when presenting recoil to students to give them more insight into the physical processes involved. This mechanism differs from one system to another. Several examples that can be easily implemented in the classroom environment are given in this paper. Such a deep understanding of recoil may reflect on the level of understanding of other physical phenomena sought by students.

  1. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    Science.gov (United States)

    Goings, Joshua J.; Li, Xiaosong

    2016-06-01

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  2. Small molecule photoelectron spectroscopy: Recoil effects, stoichiometric surprises, and double-core-hole ionization

    International Nuclear Information System (INIS)

    Highlights: ► The effects of recoil momentum on a photoelectron spectrum are illustrated. ► Rotational motion within a molecule leads to Doppler broadening in the XPS spectrum. ► Intensities in an XPS spectrum may not quantitatively reflect molecule composition. ► Measurement of double-core-hole-ionization energies may lead to new insights. -- Abstract: Three features of small-molecule photoelectron spectroscopy are considered (1) the atom from which a photoelectron is emitted must have a recoil momentum equal to that of the emitted electron. This is shared among the various modes of motion of the ion, leading to rotational and vibrational excitation. Furthermore, any initial velocity of the atom (due to either translational, rotational, or vibrational motion) will lead to Doppler broadening. These effects are observable and can, in general, be accounted for by simple models. In some cases, however, the simple models fail and a deeper insight is necessary. (2) Inner-shell photoionization is essentially an atomic process, and it is expected that the intensity for emission of a photoelectron from the core of an atom in a molecule will be independent of its chemical environment. Recent measurements on the carbon 1s photoelectron spectra of three chloroethanes show that this is not the case. At energies not far above the ionization threshold there are strong oscillations of the intensity ratio (CCl/CH) with increasing photon energy. These are similar to those seen in EXAFS and can be accounted for by considering backscattering of the photoelectrons from the chlorine atoms. Moreover, even at high energies the cross section for ionization has been found to depend on the chemical environment of the atom. These results have important consequences for the use of inner-shell electron spectroscopy for quantitative analysis. (3) Single-core-hole ionization energies have long been used as a tool for investigating chemical phenomena. Double-core-hole ionization energies

  3. Isotope effects on delayed annihilation time spectra of antiprotonic helium atoms in a low-temperature gas

    International Nuclear Information System (INIS)

    The delayed annihilation time spectra (DATS) of antiprotonic helium atoms have been studied in isotopically pure low-temperature 3He and 4He gas at various densities. The DATS taken at 5.8 K and 400 mbar are very similar in shape except for (i) a small difference in the time scale and (ii) the presence of a distinct fast decay component in the case of 3He. The ratio of overall trapping times (mean lifetimes against annihilation), R=Ttrap(4He)/Ttrap(3He), has been determined to be 1.144 ± 0.009, which is in good agreement with a theoretical estimate yielding R=[M*(bar p4He)/ M*(bar p3He)]2=1.14, where M* denotes the reduced mass of the bar pHe2+system. The presence of a short-lived component with a lifetime of 0.154±0.007μs in the case of 3He suggests that the bar p3He+atom has a state of intermediate lifetime on the border between a metastable zone and an Auger-dominated short-lived zone. The fraction of antiprotons trapped in metastable states at 5.8 K and 400 mbar is lower by 22.2(4)% for 3Hethan for 4He. All the data can be fitted fairly well with simple three-level and four-level cascade models. copyright 1996 The American Physical Society

  4. Isotope effects on delayed annihilation time spectra of antiprotonic helium atoms in a low-temperature gas

    Science.gov (United States)

    Ketzer, B.; Hartmann, F. J.; Daniel, H.; von Egidy, T.; Niestroj, A.; Schmid, S.; Schmid, W.; Yamazaki, T.; Sugai, I.; Nakayoshi, K.; Hayano, R. S.; Maas, F. E.; Torii, H. A.; Ishikawa, T.; Tamura, H.; Morita, N.; Horváth, D.; Eades, J.; Widmann, E.

    1996-04-01

    The delayed annihilation time spectra (DATS) of antiprotonic helium atoms have been studied in isotopically pure low-temperature 3He and 4He gas at various densities. The DATS taken at 5.8 K and 400 mbar are very similar in shape except for (i) a small difference in the time scale and (ii) the presence of a distinct fast decay component in the case of 3He. The ratio of overall trapping times (mean lifetimes against annihilation), R=Ttrap(4He)/Ttrap(3He), has been determined to be 1.144 +/- 0.009, which is in good agreement with a theoretical estimate yielding R=[M*(p¯ 4He)/ M*(p¯ 3He)]2=1.14, where M* denotes the reduced mass of the p¯He2+system. The presence of a short-lived component with a lifetime of 0.154+/-0.007 μs in the case of 3He suggests that the p¯ 3He+atom has a state of intermediate lifetime on the border between a metastable zone and an Auger-dominated short-lived zone. The fraction of antiprotons trapped in metastable states at 5.8 K and 400 mbar is lower by 22.2(4)% for 3than for 4He. All the data can be fitted fairly well with simple three-level and four-level cascade models.

  5. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    International Nuclear Information System (INIS)

    We present the data and our analysis of mid-infrared atomic fine-structure emission lines detected in Spitzer/Infrared Spectrograph high-resolution spectra of 202 local Luminous Infrared Galaxies (LIRGs) observed as part of the Great Observatories All-sky LIRG Survey (GOALS). We readily detect emission lines of [S IV], [Ne II], [Ne V], [Ne III], [S III]18.7μm, [O IV], [Fe II], [S III]33.5μm, and [Si II]. More than 75% of these galaxies are classified as starburst-dominated sources in the mid-infrared, based on the [Ne V]/[Ne II] line flux ratios and equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature. We compare ratios of the emission-line fluxes to those predicted from stellar photo-ionization and shock-ionization models to constrain the physical and chemical properties of the gas in the starburst LIRG nuclei. Comparing the [S IV]/[Ne II] and [Ne III]/[Ne II] line ratios to the Starburst99-Mappings III models with an instantaneous burst history, the emission-line ratios suggest that the nuclear starbursts in our LIRGs have ages of 1-4.5 Myr, metallicities of 1-2 Z☉, and ionization parameters of 2-8 × 107 cm s–1. Based on the [S III]33.5μm/[S III]18.7μm ratios, the electron density in LIRG nuclei is typically one to a few hundred cm–3, with a median electron density of ∼300 cm–3, for those sources above the low density limit for these lines. We also find that strong shocks are likely present in 10 starburst-dominated sources of our sample. A significant fraction of the GOALS sources (80) have resolved neon emission-line profiles (FWHM ≥600 km s–1) and five show clear differences in the velocities of the [Ne III] or [Ne V] emission lines, relative to [Ne II], of more than 200 km s–1. Furthermore, six starburst and five active galactic nucleus dominated LIRGs show a clear trend of increasing line width with ionization potential, suggesting the possibility of a compact energy source and stratified interstellar medium in their

  6. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.; Alonso, J. A.

    2010-01-01

    The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number of...... layers, including infinite chains, are considered. The lowest excitation energy peaks in the spectra are characteristic of the robust bonding in these complexes. The excitation energies vary in a systematic way with the metal atoms and with the cluster size, and so these materials could be used to tune...

  7. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  8. Direct alpha-recoil as a process to generate U-234/U-238 disequilibrium in groundwater

    International Nuclear Information System (INIS)

    We discuss quantitatively the capability of direct α-recoil to create observable radioactive disequilibrium (U-234/U-238 activity ratio > 1) in flowing groundwater. Coupled equations for radioactive decay chain are formulated for the solid U source and for the corresponding groundwater receiving the recoiling U-234 atoms. U-rich fracture coating material and the water flowing in the fracture are discussed in detail. The novel modelling approach worked well and provides a useful tool for more detailed site-specific studies with more detailed input data. The approach appears feasible because the equations are based on straightforward mass balance considerations. α-recoil -induced enrichment of U-234 in groundwater is a slow process: the increase of U-234/U-238 activity ration to notable values above unity will take hundreds to thousands of years. Strong groundwater flow prevents any local recoil-induced U-234 enrichment in the water. (author)

  9. Measurement and simulations of hollow atom X-ray spectra of solid-density relativistic plasma created by high-contrast PW optical laser pulses

    Science.gov (United States)

    Pikuz, S. A.; Faenov, A. Ya.; Colgan, J.; Dance, R. J.; Abdallah, J.; Wagenaars, E.; Booth, N.; Culfa, O.; Evans, R. G.; Gray, R. J.; Kaempfer, T.; Lancaster, K. L.; McKenna, P.; Rossall, A. L.; Skobelev, I. Yu.; Schulze, K. S.; Uschmann, I.; Zhidkov, A. G.; Woolsey, N. C.

    2013-09-01

    K-shell spectra of solid Al excited by petawatt picosecond laser pulses have been investigated at the Vulcan PW facility. Laser pulses of ultrahigh contrast with an energy of 160 J on the target allow studies of interactions between the laser field and solid state matter at 1020 W/cm2. Intense X-ray emission of KK hollow atoms (atoms without n = 1 electrons) from thin aluminum foils is observed from optical laser plasma for the first time. Specifically for 1.5 μm thin foil targets the hollow atom yield dominates the resonance line emission. It is suggested that the hollow atoms are predominantly excited by the impact of X-ray photons generated by radiation friction to fast electron currents in solid-density plasma due to Thomson scattering and bremsstrahlung in the transverse plasma fields. Numerical simulations of Al hollow atom spectra using the ATOMIC code confirm that the impact of keV photons dominates the atom ionization. Our estimates demonstrate that solid-density plasma generated by relativistic optical laser pulses provide the source of a polychromatic keV range X-ray field of 1018 W/cm2 intensity, and allows the study of excited matter in the radiation-dominated regime. High-resolution X-ray spectroscopy of hollow atom radiation is found to be a powerful tool to study the properties of high-energy density plasma created by intense X-ray radiation.

  10. High resolution elastic recoil detection

    International Nuclear Information System (INIS)

    The quantitative analysis of light elements in ultra thin films being thinner than 10 nm is still a nontrivial task. This paper will summarise the prospects of high resolution elastic recoil detection (ERD) using a Q3D magnetic spectrograph. It has been shown that subnanometer resolution can be achieved in ultra thin films and even monolayer resolution is possible close to the surface. ERD has best quantification possibilities compared to any other method. Sensitivity is sufficient to analyse main elements and impurities as e.g. being necessary for the characterisation of microelectronic materials. In addition, high resolution channeling ERD can be performed in order to get information on lattice location of light elements in crystalline ultra thin layers. The potential of high resolution ERD will be demonstrated by several applications where it is the most valuable tool for elemental profiling

  11. Analysis of the near-resonant fluorescence spectra of a single rubidium atom localized in a three-dimensional optical lattice

    CERN Document Server

    Kim, Wookrae; Kim, Jung-Ryul; Lee, Yea-Lee; Ihm, Jisoon; An, Kyungwon

    2010-01-01

    Supplementary information is presented on the recent work by W. Kim et al. on the matter-wave-tunneling-induced broadening in the near-resonant spectra of a single rubidium atom localized in a three-dimensional optical lattice in a strong Lamb-Dicke regime.

  12. Multiple scattering problems in heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    A number of groups use Heavy Ion Elastic Recoil Detection Analysis (HIERDA) to study materials science problems. Nevertheless, there is no standard methodology for the analysis of HIERDA spectra. To overcome this deficiency we have been establishing codes for 2-dimensional data analysis. A major problem involves the effects of multiple and plural scattering which are very significant, even for quite thin (∼100 nm) layers of the very heavy elements. To examine the effects of multiple scattering we have made comparisons between the small-angle model of Sigmund et al. and TRIM calculations. (authors)

  13. Analysis of hydrogen adsorption and surface binding configuration on tungsten using direct recoil spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kolasinski, R.D., E-mail: rkolasi@sandia.gov [Sandia National Laboratories, Hydrogen and Metallurgical Science Department, Livermore, CA 94551 (United States); Hammond, K.D. [University of Tennessee, Department of Nuclear Engineering, Knoxville, TN 37996 (United States); Whaley, J.A.; Buchenauer, D.A. [Sandia National Laboratories, Hydrogen and Metallurgical Science Department, Livermore, CA 94551 (United States); Wirth, B.D. [University of Tennessee, Department of Nuclear Engineering, Knoxville, TN 37996 (United States)

    2015-08-15

    In this work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne{sup +} ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. The H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here, we find that surface sites remain populated with H until the surface temperature reaches 200 °C. After this point, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.

  14. Measurements of the ballistic-phonon component resulting from nuclear and electron recoils in crystalline silicon

    International Nuclear Information System (INIS)

    We present measurements of the ballistic-phonon component resulting from nuclear and electron recoils in silicon at ∼380 mK. The detectors used for these experiments consist of a 300-μm-thick monocrystal of silicon instrumented with superconducting titanium transition-edge sensors. These sensors detect the initial wavefront of athermal phonons and give a pulse height that is sensitive to changes in surface-energy density resulting from the focusing of ballistic phonons. Nuclear recoils were generated by neutron bombardment of the detector. A Van de Graaff proton accelerator and a thick 7Li target were used. Pulse-height spectra were compared for neutron, x-ray, and γ-ray events. A previous analysis of this data set found evidence for an increase in the ballistic-phonon component for nuclear recoils compared to electron recoils at a 95% confidence level. An improved understanding of the detector response has led to a change in the result. In the present analysis, the data are consistent with no increase at the 68% confidence level. This change stems from an increase in the uncertainty of the result rather than a significant change in the central value. The increase in ballistic phonon energy for nuclear recoils compared to electron recoils as a fraction of the total phonon energy (for equal total phonon energy events) was found to be 0.024+0.041-0.055 (68% confidence level). This result sets a limit of 11.6% (95% confidence level) on the ballistic phonon enhancement for nuclear recoils predicted by open-quote open-quote hot spot close-quote close-quote and electron-hole droplet models, which is the most stringent to date. To measure the ballistic-phonon component resulting from electron recoils, the pulse height as a function of event depth was compared to that of phonon simulations. (Abstract Truncated)

  15. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  16. Gas powered fluid gun with recoil mitigation

    Science.gov (United States)

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  17. Gas powered fluid gun with recoil mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  18. An Expansion Method to Unfold Proton Recoil Spectra

    International Nuclear Information System (INIS)

    A method is given to obtain a good estimate of the input neutron spectrum from a pulse-height distribution measured with proportional counters filled with a hydrogenous gas. The method consists of expanding the sought estimate as a product of two functions where one is obtained by differentiating the pulse-height distribution and the other is a power series of the neutron energy. The coefficients of this series are determined by a least-squares fit of the calculated pulse-height distribution to the measured one. The method has been tested on pulse-height distributions obtained by calculations from a realistic neutron spectrum and response functions for a spherical counter 3. 94 cm in diameter and filled with 7 atm. of methane and 1 atm. of hydrogen, respectively. In the former case it is possible with the method described, to unfold pulse-height distributions up to a neutron energy of about 3 MeV to within 10 % of the input spectrum. The differentiating procedure included in the method ensures that all spectral details not smoothed out by the finite resolution of the counter, are kept in the spectrum estimate. A realistic estimate of the statistical uncertainty of each neutron spectrum value is given. Some of the possible systematical errors caused by uncertainties in input data have been investigated

  19. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia)

    1993-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  20. Silicon shallow doping by erbium and oxygen recoils implantation

    Science.gov (United States)

    Feklistov, K. V.; Cherkov, A. G.; Popov, V. P.

    2016-09-01

    In order to get shallow high doping of Si with optically active complexes ErOn, Er followed by O recoils implantation was realized by means of subsequent Ar+ 250-290 keV implantation with doses 2×1015-1×1016 cm-2 through 50-nm deposited films of Er and then SiO2, accordingly. High Er concentration up to 5×1020 cm-3 to the depth of 10 nm was obtained after implantation. However, about a half of the Er implanted atoms become part of surface SiO2 during post-implantation annealing at 950 °C for 1 h in the N2 ambient under a SiO2 cap. The mechanism of Er segregation into the cap oxide following the moving amorphous-crystalline interface during recrystallization was rejected by the transmission electron microscopy (TEM) analysis. Instead, the other mechanism of immobile Er atoms and redistribution of recoil-implanted O atoms toward cap oxide was proposed. It explains the observed formation of two Er containing phases: Er-Si-O phase with a high O content adjacent to the cap oxide and deeper O depleted Er-Si phase. The correction of heat treatments is proposed in order to avoid the above-mentioned problems.

  1. Atoms

    International Nuclear Information System (INIS)

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  2. Analysis of x-ray spectra emitted from highly ionized atoms in the vacuum spark and laser-produced high power plasma sources

    International Nuclear Information System (INIS)

    The interest in atomic spectroscopy has greatly been reinforced in the last ten years. This gain of interest is directly related to the developments in different fields of research where hot plasmas are created. These fields include in particular controlled thermonuclear fusion research by means of inertial or magnetic confinement approaches and also the most recent efforts to achieve lasers in the XUV region. The present work is based on the specific contribution of the atomic spectroscopy group at the Hebrew University. The recent development of both theoretical and experimental tools allowed us to progress in the understanding of the highly ionized states of heavy elements. In this work the low-inductance vacuum-spark developed at the Hebrew University was used as the hot plasma source. The spectra were recorded in the 7-300 A range by means of a high-resolution extreme-grazing-incidence spectrometer developed at the Racah Institute by Profs. J.L. Schwob and B.S. Fraenkel. To the extend the spectroscopic studies to higher-Z atoms, the laser-produced plasma facility at Soreq Nuclear Center was used. In this work the spectra of the sixth row elements were recorded in the x-rays by means of a crystal spectrometer. All these experimental systems are briefly described in chapter one. Chapter two deals with the theoretical methods used in the present work for the atomic calculations. Chapter three deals with the spectra of elements of the fifth row emitted from the vacuum-spark in the 30-150 A range. These spectra as experimental data were used in order to test ab-initio computations along the NiI sequence 3d-nl transitions. The results of this work are presented in chapter four. Chapter five is devoted to the measurement and analysis of spectra emitted from the vacuum-spark by rare-earth elements. (author)

  3. Monte Carlo calculation of ion, electron, and photon spectra of xenon atoms in x-ray free-electron laser pulses

    CERN Document Server

    Son, Sang-Kil; 10.1103/PhysRevA.85.063415

    2013-01-01

    When atoms and molecules are irradiated by an x-ray free-electron laser (XFEL), they are highly ionized via a sequence of one-photon ionization and relaxation processes. To describe the ionization dynamics during XFEL pulses, a rate equation model has been employed. Even though this model is straightforward for the case of light atoms, it generates a huge number of coupled rate equations for heavy atoms like xenon, which are not trivial to solve directly. Here, we employ the Monte Carlo method to address this problem and we investigate ionization dynamics of xenon atoms induced by XFEL pulses at a photon energy of 4500 eV. Charge state distributions, photo-/Auger electron spectra, and fluorescence spectra are presented for x-ray fluences of up to $10^{13}$ photons/$\\mu$m$^2$. With the photon energy of 4500 eV, xenon atoms can be ionized up to +44 through multiphoton absorption characterized by sequential one-photon single-electron interactions.

  4. Relative yields, mass distributions and energy spectra of cluster ions sputtered from niobium under keV atomic and polyatomic gold ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Belykh, S.F. E-mail: serbel@ariel.tashkent.su; Habets, B.; Rasulev, U.Kh.; Samartsev, A.V.; Stroev, L.V.; Veryovkin, I.V

    2000-04-01

    In the present work, the comparative studies of relative yields, mass distributions and kinetic energy spectra of secondary Nb{sub n}{sup +} ions (n=1-16) sputtered from niobium target by atomic and polyatomic Au{sub m}{sup -} projectiles (m=1-3) with the energy E{sub 0}=6-18 keV/atom have been carried out. The strong effect of anomalously high non-additivity of metal sputtering as positive large cluster ions under polyatomic ion bombardment was found. The comparison and discussion of the results obtained for Nb and for Ta are presented.

  5. Determination of time spectra of neutrons and energy spectra of muonic atoms in μCF by Monte-Carlo method

    Directory of Open Access Journals (Sweden)

    S. Z. Kalantari

    2005-06-01

    Full Text Available  In this paper the cycle of muon catalyzed fusion processes has been simulated using Monte-Carlo methods. This simulation starts when muon enters the D/T mixture and follows the actual trajectories of the muonic atoms among the proceeding collisions, by using their cross sections. For this purpose a computer code has been written by Fortran language. The time dependence of the processes is take into account and the time spectrum of the events in the μCF cycle has been obtained. The time spectrum of neutrons created in fusion and energy spectrum of muonic atoms have been calculated. One can obtain more detailed information such as fusion yield per muon (χ, cycling rate (λc and total sticking coefficient W, for various hydrogen isotopic concentrations, by expending the Monte-Carlo simulation. Results has been compared with some experimental data and the other calculation methods.

  6. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    CERN Multimedia

    2002-01-01

    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  7. Heavy ion recoil spectrometry of Si{sub x}Ge{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S.R.; Johnston, P.N.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Hult, M.; Whitlow, H.J. [Lund Institute of Technology, Solvegatan (Sweden). Department of Nuclear Physics; Zaring, C.; Oestling, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics

    1993-12-31

    Mass and energy dispersive recoil spectrometry employing 77 MeV {sup 127}I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si{sub x}Ge{sub 1-x} grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si{sub x}Ge{sub 1-x} layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs.

  8. Molecular structure, natural bond analysis, vibrational and electronic spectra, surface enhanced Raman scattering and Mulliken atomic charges of the normal modes of [Mn(DDTC)2] complex.

    Science.gov (United States)

    Téllez S, Claudio A; Costa, Anilton C; Mondragón, M A; Ferreira, Glaucio B; Versiane, O; Rangel, J L; Lima, G Müller; Martin, A A

    2016-12-01

    Theoretical and experimental bands have been assigned for the Fourier Transform Infrared and Raman spectra of the bis(diethyldithiocarbamate)Mn(II) complex, [Mn(DDTC)2]. The calculations have been based on the DFT/B3LYP method, second derivative spectra and band deconvolution analysis. The UV-vis experimental spectra were measured in acetonitrile solution, and the calculated electronic spectrum was obtained using the TD/B3LYP method with 6-311G(d, p) basis set for all atoms. Charge transfer bands and those d-d spin forbidden were assigned in the UV-vis spectrum. The natural bond orbital analysis was carried out using the DFT/B3LYP method and the Mn(II) hybridization leading to the planar geometry of the framework was discussed. Surface enhanced Raman scattering (SERS) was also performed. Mulliken charges of the normal modes were obtained and related to the SERS enhanced bands. PMID:27344520

  9. New results from the HERMES Recoil Detector

    Energy Technology Data Exchange (ETDEWEB)

    Mussgiller, Andreas [DESY, 22603 Hamburg (Germany)

    2009-07-01

    Hard exclusive processes provide access to generalized parton distributions (GPDs), which extend our description of the nucleon structure beyond the standard parton distributions. The Deeply Virtual Compton Scattering (DVCS) process provides the theoretically cleanest access to the GPDs. For the final two years of data taking, a Recoil Detector had been installed at the HERMES experiment at HERA with the purpose of improving the ability to measure hard-exclusive processes. In addition the Recoil Detector allows to measure the individual background contributions which can be used to refine previously published results on DVCS. The Recoil Detector consisted of three sub-detectors inside a 1 T solenoidal magnetic field. A silicon detector operated inside the HERA vacuum, a scintillating fiber tracker, and a photon detector. The progress of the ongoing data analysis is presented.

  10. Mid-Infrared Atomic Fine-Structure Emission Line Spectra of Luminous Infrared Galaxies: Spitzer/IRS Spectra of the GOALS Sample

    CERN Document Server

    Inami, H; Charmandaris, V; Groves, B; Kewley, L; Petric, A; Stierwalt, S; Díaz-Santos, T; Surace, J; Rich, J; Haan, S; Howell, J; Evans, A; Mazzarella, J; Marshall, J; Appleton, P; Lord, S; Spoon, H; Frayer, D; Matsuhara, H; Veilleux, S

    2013-01-01

    We present the data and our analysis of MIR fine-structure emission lines detected in Spitzer/IRS high-res spectra of 202 local LIRGs observed as part of the GOALS project. We detect emission lines of [SIV], [NeII], [NeV], [NeIII], [SIII]18.7, [OIV], [FeII], [SIII]33.5, and [SiII]. Over 75% of our galaxies are classified as starburst (SB) sources in the MIR. We compare ratios of the emission line fluxes to stellar photo- and shock-ionization models to constrain the gas properties in the SB nuclei. Comparing the [SIV]/[NeII] and [NeIII]/[NeII] ratios to the Starburst99-Mappings III models with an instantaneous burst history, the line ratios suggest that the SB in our LIRGs have ages of 1-4.5Myr, metallicities of 1-2Z_sun, and ionization parameters of 2-8e7cm/s. Based on the [SIII]/[SIII] ratios, the electron density in LIRG nuclei has a median electron density of ~300cm-3 for sources above the low density limit. We also find that strong shocks are likely present in 10 SB sources. A significant fraction of the ...

  11. Szilard-Chalmers Recoil Reactions in Metalloporphines. Part I

    International Nuclear Information System (INIS)

    The chemical consequences of neutron capture in Co, Ni, Cu, Zn, Pd and Pt α, β, γ, δ -tetraphenylporphine complexes were investigated. The complexes were prepared in extremely pure form by new methods. Two types of retention values were determined: (a) retention in the parent molecules (Rc) obtained by chromatographing the irradiated porphines, and (b) retention in a mixture of parent molecules and the various complexing fragments produced from the parent molecules as a result of recoil and radiation damage. These retention values (R01N, R8N) were determined by extracting the irradiated and dissolved porphines with 0.1N and 8 N HCl. Large retention differences were observed between the isotopes in each of the three isotope pairs investigated. The isotope retention ratios observed in the parent molecules were Zn69m/Zn65 2.1, Pd109/Pd103 1.4, and Pt191/Pt197 2.2. The differences, R01N Rc and R8N-Rc, reflected the general order of divalent metal chelate stability constants, i.e. Pt > Pd > Cu> Ni > Co> Zn. The Co, Ni and Pd isotopes did not respond to isothermal annealing. The Zn65, Pt191 and Pt197 isotopes responded slightly, and the Zn69 and Cu64 exhibited a more pronounced effect. The results are discussed and interpreted on the basis of differences in the recoil energy spectrum and internal conversions effects. Parental retention is attributed in part to exchange reactions resulting from collision complex formation and in part to diffusion back to the point of origin of the recoil atom. (author)

  12. A Measurement of the Recoil Polarization of Electroproduced {Lambda}(1116)

    Energy Technology Data Exchange (ETDEWEB)

    Simeon McAleer

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p {yields} e{prime} + K{sup +} + {Lambda}(1116) for events where {Lambda}(1116) subsequently decayed via the channel {Lambda}(1116) {yields} p + {pi}{sup -}. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q{sup 2} range from 0.5 to 2.8 GeV{sup 2} and nearly the entire range in the center of mass angles. The proton angular distribution in the {Lambda}(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos {theta}{sub cm}{sup K+} dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the {Lambda}(1116) as a function of both cos {theta}{sub cm}{sup K+} and W.

  13. Dependence of spectral shape of bremsstrahlung spectra on atomic number of target materials in the photon energy range of 5-30 keV

    International Nuclear Information System (INIS)

    Dependence of spectral shape of total bremsstrahlung spectra i.e. the sum of ordinary bremsstrahlung (OB) and polarization bremsstrahlung (PB), on the atomic number (Z) of target materials (Al, Ti, Sn and Pb), produced by continuous beta particles of 90Sr and 204Tl, has been investigated in the photon energy region of 5-30 keV. It has been found that the spectral shape of total bremsstrahlung spectra, in terms of S (k, Z) i.e. the number of photons of energy k per moc2 per beta disintegration, is not linearly dependent on the atomic number (Z) of the target material and rather it is proportional to Zn. At lower photon energies, the index values ‘n’ of Z-dependence are much higher than unity, which is due to the larger contribution of PB into OB. The decrease in ‘n’ values with increase of photon energy is due to the decrease in contribution of PB into OB. It is clear that the index ‘n’ values obtained from the modified Elwert factor (relativistic) Bethe-Heitler theory, which include the contribution PB into OB, are in agreement with the experimentally measured results using X-PIPS Si(Li) detector. Hence the contribution of PB into the formation of a spectral shape of total bremsstrahlung spectra plays a vital role.

  14. Asymptotics-based CI models for atoms:Properties, exact solution of a minimal model for Li to Ne, and application to atomic spectra

    OpenAIRE

    Friesecke, G.; Goddard, B.D.

    2009-01-01

    Configuration-interaction (CI) models are approximations to the electronic Schrödinger equation which are widely used for numerical electronic structure calculations in quantum chemistry. Based on our recent closed-form asymptotic results for the full atomic Schrödinger equation in the limit of fixed electron number and large nuclear charge [SIAM J. Math. Anal., 41 (2009), pp. 631-664], we introduce a class of CI models for atoms which reproduce, at fixed finite model dimension, the correct S...

  15. First results from the HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Yaschenko, Sergey [Physikalisches Institut II, Universitaet Erlangen-Nuernberg (Germany)

    2008-07-01

    For the last one and a half years of operation of HERA, a Recoil Detector was installed at the HERMES experiment to improve measurements of hard exclusive electron/positron scattering reactions in particular deeply virtual Compton scattering. These measurements can provide important constraints on models for generalized parton distributions and hence can lead to the determination of the angular momentum of quarks inside the nucleon. The HERMES Recoil Detector was designed to improve the selection of exclusive events by a direct measurement of the momentum and track direction of recoiling particles and allow the rejection of non-exclusive background events. The detector consisted of three main components: a silicon strip detector (SSD) placed inside the HERA vacuum, a scintillation fiber tracker (SFT), and a photon detector consisting of three layers of tungsten-scintillator sandwich. All the detectors were located in a solenoidal magnetic field of 1 Tesla. The detector was installed in the HERMES experiment in December 2005. The commissioning of the SFT was finished in February 2006 and the SSD commissioning could only be finished in September 2006 due to beam induced noise. The fully commissioned Recoil detector was working stable from September 2006 to the end of HERA operation on June 30 of 2007. Results on the detector performance are presented.

  16. Average charge of superheavy recoil ion in helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, D.; Morita, K.; Morimoto, K.; Haba, H. [RIKEN, Wako, Saitama (Japan). Nishina Center for Accelerator Based Science; Kudo, H. [Niigata Univ. (Japan). Dept. of Chemistry

    2011-07-01

    The average equilibrium charges q{sub ave} of heavy recoil ions moving in helium gas were measured by a gasfilled recoil ion separator (GARIS). A new empirical formula to calculate q{sub ave} for superheavy recoil ions with a low velocity was derived. This formula was applicable to the search for a superheavy nuclide of {sup 266}Bh. (orig.)

  17. Average charge of superheavy recoil ion in helium gas

    International Nuclear Information System (INIS)

    The average equilibrium charges qave of heavy recoil ions moving in helium gas were measured by a gasfilled recoil ion separator (GARIS). A new empirical formula to calculate qave for superheavy recoil ions with a low velocity was derived. This formula was applicable to the search for a superheavy nuclide of 266Bh. (orig.)

  18. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    International Nuclear Information System (INIS)

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5–50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. The technique is applied to tantalum oxide memristors but can be extended to a wide range of materials systems

  19. Phase-modulated electronic wave-packet interferometry reveals high resolution vibronic spectra of free Rb atoms and Rb*He molecules

    CERN Document Server

    Bruder, Lukas; Stienkemeier, Frank

    2015-01-01

    Phase-modulated wave-packet interferometry is combined with mass-resolved photoion detection to investigate rubidium atoms attached to helium nanodroplets in a molecular beam experiment. The spectra of atomic Rb electronic states show a vastly enhanced sensitivity and spectral resolution when compared to conventional pump-probe wave-packet interferometry. Furthermore, the formation of Rb*He exciplex molecules is probed and for the first time a fully resolved vibrational spectrum for transitions between the lowest excited $5\\Pi_{3/2}$ and the high-lying electronic states $2^2\\Pi$, $4^2\\Delta$, $6^2\\Sigma$ is obtained and compared to theory. The feasibility of applying coherent multidimensional spectroscopy to dilute cold gas phase samples is demonstrated in these experiments.

  20. Simultaneous Elastic Recoil Detection Analysis of H and Other Elements in Foils

    Institute of Scientific and Technical Information of China (English)

    LU Xiu-Qin; ZHOU Ping; GUO Ji-Yu; ZHANG Xin; ZHAO Kui; NI Mei-Nan; SUI Li; MEI Jun-Ping; LIU Jian-Cheng

    2005-01-01

    @@ Hydrogen and other elements in SixNyHz foils have been simultaneously measured by using a single E(gas)- E(PSD) telescope and heavy 127I ion beam in elastic recoil detection analysis (ERDA). Hydrogen is measuredin the non-coincidence spectrum of E(PSD), and other elements from the △E - E coincidence spectrum. Thecomposition and depth profiling of the foils are obtained from the simulated spectra.

  1. Calibration of a compact magnetic proton recoil neutron spectrometer

    Science.gov (United States)

    Zhang, Jianfu; Ouyang, Xiaoping; Zhang, Xianpeng; Ruan, Jinlu; Zhang, Guoguang; Zhang, Xiaodong; Qiu, Suizheng; Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua

    2016-04-01

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium-tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  2. Mechanisms of chemical reaction initiated by recoil implantation

    International Nuclear Information System (INIS)

    Mechanisms of chemical reactions initiated by recoil implantation were studied in the systems 51Cr+M(acac)3 yields 51Cr(acac)3 where M is a trivalent metal. The yield of 51Cr(acac)3 increased linearly with an increase of inverse of the force constant of metal-oxygen bonding K(M-O). This indicates that there is competition between the implanted 51Cr atom and M. However, exception for this trend was the case of Co(acac)3 catcher, for which the yield of 51Cr(acac)3 was much higher than that expected for a competition reaction. Complex features of the replacement reaction caused by implantation are discussed

  3. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra

    International Nuclear Information System (INIS)

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He–Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D7 is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements

  4. The phonon spectra and elastic constants of Pd(x)Fe(1-x): an understanding from inter-atomic interactions.

    Science.gov (United States)

    Dutta, Biswanath; Ghosh, Subhradip

    2009-03-01

    Understanding the role of the inter-atomic force constants in lattice dynamics of random binary alloys is a challenging problem. Addressing these inter-atomic interactions accurately is a necessity to obtain an accurate phonon spectrum and to calculate properties from them. Using a combination of ab initio density functional perturbation theory (DFPT) and the itinerant coherent potential approximation (ICPA), an analytic, self-consistent method for performing configuration averaging in random alloys, we model the inter-atomic force constants for Pd(0.96)Fe(0.04) and Pd(0.9)Fe(0.1) alloys based upon the ab initio results and intuitive arguments. The calculated phonon dispersion curves and elastic constants agree very well with the experimental results. Comparison of our results with those obtained in a model potential scheme is also done. The modeling of inter-atomic interactions in random alloys and their roles regarding the phonon-related properties are also discussed in light of these results. PMID:21817397

  5. Independent-electron analysis of the x-ray spectra from single-electron capture in Ne10 + collisions with He, Ne, and Ar atoms

    Science.gov (United States)

    Leung, Anthony C. K.; Kirchner, Tom

    2015-09-01

    We present a theoretical study on the x-ray spectra from single-electron capture in 4.54 keV/amu Ne10 +-He, -Ne, and -Ar collisions. Single-particle capture probabilities were calculated using the two-center basis generator method within the independent electron model. In this framework we investigated the effects of a time-dependent screening potential that models target response on capture cross sections and x-ray spectra. Excellent agreement is shown with the previously measured relative cross sections and x-ray spectra and calculations based on the classical trajectory Monte Carlo method using the no-response single-particle electron capture probabilities in a multinomial single-electron capture analysis. Our results demonstrate the importance of using this consistent statistical analysis of single-electron capture within the independent electron model; a requirement that a previous calculation for the same collision problem using the two-center atomic-orbital close-coupling method may not have considered.

  6. Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra

    CERN Document Server

    Berengut, J C; Flambaum, V V; King, J A; Kozlov, M G; Murphy, M T; Webb, J K

    2010-01-01

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are...

  7. Mechanism of recoil implantation reactions of technetium and ruthenium in metal acetylacetonates

    International Nuclear Information System (INIS)

    Recoil implantation of Tc and Ru in metal acetylacetonates were performed using ruthenium metal as a source and MIII(acac)3 and MII(acac)2 complexes as catchers. The recoil atoms were obtained by 100Ru(γ,p)99mTc and 98Ru(γ,n)97Ru reactions. The yields of Tc(acac)3 and Ru(acac)3 were clearly dependent on the force constant of the bond between the central metal atom and oxygen in acetylacetone K(M-O). A plot of the yield vs. 1/K(M-O) showed a linear relationship. However, the yield of Tc(acac)2 implanted in M(acac)2 did not show such a dependence on the force constant. The difference of the mechanism of complex formation between Tc(acac)3 and Tc(acac)2 was discussed. (author)

  8. Molecular geometry, vibrational spectra, atomic charges, frontier molecular orbital and Fukui function analysis of antiviral drug zidovudine

    Science.gov (United States)

    Ramkumaar, G. R.; Srinivasan, S.; Bhoopathy, T. J.; Gunasekaran, S.

    2012-12-01

    The solid phase FT-IR and FT-Raman spectra of zidovudine (AZT) were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of zidovudine were obtained by the Restricted Hartree-Fock (RHF) density functional theory (DFT) with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The harmonic vibrational frequencies for zidovudine were calculated and the scaled values have been compared with experimental values of FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The harmonic vibrational wave numbers and intensities of vibrational bands of zidovudine with its cation and anion were calculated and compared with the neutral AZT. The DFT calculated HOMO and LUMO energies shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in AZT.

  9. Auger Spectra and Different Ionic Charges Following 3s, 3p and 3d Sub-Shells Photoionization of Kr Atoms

    Directory of Open Access Journals (Sweden)

    Yehia A. Lotfy

    2006-01-01

    Full Text Available The decay of inner-shell vacancy in an atom through radiative and non-radiative transitions leads to final charged ions. The de-excitation decay of 3s, 3p and 3d vacancies in Kr atoms are calculated using Monte-Carlo simulation method. The vacancy cascade pathway resulted from the de-excitation decay of deep core hole in 3s subshell in Kr atoms is discussed. The generation of spectator vacancies during the vacancy cascade development gives rise to Auger satellite spectra. The last transitions of the de-excitation decay of 3s, 3p and 3d holes lead to specific charged ions. Dirac-Fock-Slater wave functions are adapted to calculate radiative and non-radiative transition probabilities. The intensity of Kr^{4+} ions are high for 3s hole state, whereas Kr^{3+} and Kr^{2+} ions have highest intensities for 3p and 3d hole states, respectively. The present results of ion charge state distributions agree well with the experimental data.

  10. Atomic Transition Frequencies, Isotope Shifts, and Sensitivity to Variation of the Fine Structure Constant for Studies of Quasar Absorption Spectra

    Science.gov (United States)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, α = {e}2/hslash c , could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.

  11. Response of a proportional counter to 37Ar and 71Ge: Measured spectra versus Geant4 simulation

    Science.gov (United States)

    Abdurashitov, D. N.; Malyshkin, Yu. M.; Matushko, V. L.; Suerfu, B.

    2016-04-01

    The energy deposition spectra of 37Ar and 71Ge in a miniature proportional counter are measured and compared in detail to the model response simulated with Geant4. A certain modification of the Geant4 code, making it possible to trace the deexcitation of atomic shells properly, is suggested. Modified Geant4 is able to reproduce a response of particle detectors in detail in the keV energy range. This feature is very important for the laboratory experiments that search for massive sterile neutrinos as well as for dark matter searches that employ direct detection of recoil nuclei. This work demonstrates the reliability of Geant4 simulation at low energies.

  12. Analysis of primary damage in silicon carbide under fusion and fission neutron spectra

    Science.gov (United States)

    Guo, Daxi; Zang, Hang; Zhang, Peng; Xi, Jianqi; Li, Tao; Ma, Li; He, Chaohui

    2014-12-01

    Irradiation parameters on primary damage states of SiC are evaluated and compared for the first wall of ITER under deuterium-deuterium (DD) and deuterium-tritium (DT) operation, the high temperature gas-cooled reactor (HTGR) and high flux isotope reactor (HFIR). With the same neutron fluence, the studied fusion spectra produce more damage and much higher gas production than the fission spectra. Due to comparable gas production and similar weighted primary recoil spectra, HFIR is considered suitable to simulate the neutron irradiation in an HTGR. In contrast to the significant differences between the weighted primary recoil spectra of the fission and the fusion spectra, the weighted secondary recoil spectra of HFIR and HTGR match those of DD and DT, indicating that displacement cascades by the fission and the fusion irradiation are similar when the damage distribution among damaged regions by secondary recoils is taken into account.

  13. Analysis of primary damage in silicon carbide under fusion and fission neutron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Daxi; Zang, Hang; Zhang, Peng; Xi, Jianqi; Li, Tao; Ma, Li; He, Chaohui, E-mail: hechaohui@mail.xjtu.edu.cn

    2014-12-15

    Irradiation parameters on primary damage states of SiC are evaluated and compared for the first wall of ITER under deuterium–deuterium (DD) and deuterium–tritium (DT) operation, the high temperature gas-cooled reactor (HTGR) and high flux isotope reactor (HFIR). With the same neutron fluence, the studied fusion spectra produce more damage and much higher gas production than the fission spectra. Due to comparable gas production and similar weighted primary recoil spectra, HFIR is considered suitable to simulate the neutron irradiation in an HTGR. In contrast to the significant differences between the weighted primary recoil spectra of the fission and the fusion spectra, the weighted secondary recoil spectra of HFIR and HTGR match those of DD and DT, indicating that displacement cascades by the fission and the fusion irradiation are similar when the damage distribution among damaged regions by secondary recoils is taken into account.

  14. Newly appreciated roles for electrons in ion-atom collisions

    International Nuclear Information System (INIS)

    Since the previous Debrecen workshop on High-Energy Ion-Atom Collisions there have been numerous experiments and substantial theoretical developments in the fields of fast ion-atom and ion- solid collisions concerned with explicating the previously largely underappreciated role of electrons as ionizing and exciting agents in such collisions. Examples to be discussed include the double electron ionization problem in He; transfer ionization by protons in He; double excitation in He; backward scattering of electrons in He; the role of electron-electron interaction in determining beta parameters for ELC; projectile K ionization by target electrons; electron spin exchange in transfer excitation; electron impact ionization in crystal channels; resonant coherent excitation in crystal channels; excitation and dielectronic recombination in crystal channels; resonant transfer and excitation; the similarity of recoil ion spectra observed in coincidence with electron capture vs. electron loss; and new research on ion-atom collisions at relativistic energies

  15. Search for the effect of massive bodies on atomic spectra and constraints on Yukawa-type interactions of scalar particles

    CERN Document Server

    Leefer, N; Budker, D; Flambaum, V V; Stadnik, Y V

    2016-01-01

    We propose a new method to search for hypothetical scalar particles that have feeble interactions with Standard-Model particles. In the presence of massive bodies, these interactions produce a non-zero Yukawa-type scalar-field magnitude. Using radio-frequency spectroscopy data of atomic dysprosium, as well as atomic clock spectroscopy data, we constrain the Yukawa-type interactions of a scalar field with the photon, electron, and nucleons for a range of scalar-particle masses corresponding to length scales $ > 10$ cm. In the limit as the scalar-particle mass $m_\\phi \\to 0$, our derived limits on the Yukawa-type interaction parameters are: $\\Lambda_\\gamma \\gtrsim 8 \\times 10^{19}$ GeV, $\\Lambda_e \\gtrsim 1.3 \\times 10^{19}$ GeV, and $\\Lambda_N \\gtrsim 6 \\times 10^{20}$ GeV. Our measurements also constrain combinations of interaction parameters, which cannot otherwise be probed with traditional anomalous-force measurements. We suggest further measurements to improve on the current level of sensitivity.

  16. Transport-theory approach to ion-beam mixing and recoil implantation

    International Nuclear Information System (INIS)

    Ion bombardment of an amorphous target in slab geometry is considered, and ion-beam mixing and recoil implantation evaluated in the binary-collision approximation. A fundamental equation for target-atom redistribution during ion bombardment is formulated, which relates the redistribution flux to the source function for the creation of energetic atomic recoils and their range distribution; for the analysis, this equation plays the role of the Boltzmann transport equation. Expanding the target-atom density in a power series and truncating at the second term yields a flux equation and closed expressions for coefficients of recoil implantation and of ion-beam mixing. The flux equation plays a role analogous to that of Fick's law in diffusion. Lattice relaxations are taken into account by introducing flux transformations between laboratory and marker coordinate frames. The closed expressions for the coefficients are calculated and compared with experiment. The binary-collision contribution to ion-beam mixing turns out to be larger than heretofore thought. A new mechanism for ion-beam mixing emerges, which turns out to make a very significant contribution. There are even cases where the new mechanism far outweighs the cascade-mixing mechanism, thought to be the major contributor to binary-collision ion-beam mixing

  17. Discrimination between Nuclear Recoils and Electron Recoils by Simultaneous Detection of Phonons and Scintillation Light

    CERN Document Server

    Meunier, P; Bruckmayer, M; Giordano, S; Loidl, M; Meier, O; Pröbst, F; Seidel, W; Sisti, M; Stodolsky, L; Uchaikin, S V; Zerle, L

    1999-01-01

    We have developed a detector, consisting of a cryogenic calorimeter with a scintillating crystal as absorber, and a second calorimeter for the detection of the scintillation light, both operated at 12 mK. Using a CaWO4 crystal with a mass of 6g as scintillating absorber, we have achieved a discrimination of nuclear recoils against electron recoils with a suppression factor of 99.7% at energies above 15 keV. This novel method will be applied for background rejection in the CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) experiment looking for dark matter Weakly Interacting Massive Particles (WIMPs).

  18. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    Science.gov (United States)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  19. Application of neutron spectrometry by proton recoil proportional counters to radioprotection

    International Nuclear Information System (INIS)

    In current spectrometry, an NE213 liquid scintillator is used to analyse neutrons in 1.5 MeV - 20 MeV range and the proton recoil proportional counters are employed to explore the 20 keV to 1.5 MeV zone. We have studied two types of proton recoil counters having differents geometries. Preliminary studies of these detectors with monoenergetic neutrons are required in order to determine the experimental characteristics (efficiency, energy resolution, isotopic qualitie). In order to determine neutrons spectra from the pulse distributions recorded by the spectrometer, a computer code based on matrix analysis method has been written. A spectrometry measurement unit was also tested with an Am-Li (n,α) source so as to compare our results with those already published in the literature

  20. Wavelengths, f-Values, and Cross Sections in the UV Spectra of Astrophysical, Atoms, Ions, and Molecules

    Science.gov (United States)

    Raymond, John C.

    2005-01-01

    Data analysis for Fe III was completed in 2004. The new spectra give wavelengths and some energy levels for Fe III that are at least an order of magnitude more accurate than values in the literature. However, the data set is missing - because they are outside the wavelength range that we can study at Imperial College or with ancillary FT spectroscopy measurements at NIST - important transitions that would allow all energy levels to be determined with improved accuracy. We are assessing collaborations at other labs. We have made test runs with a number of cathodes (pure metals and alloys) in the Penning discharge source and selected four iron group (3d) elements, Cr, Mn, Co, and Ni, for further measurements. Cathodes of pure Cr and Co and an alloy of Ni were found to be best. Mn has not nm stably yet, and other cathode geometries or alloys may need to be assessed. Optimum Penning discharge (PD) lamp conditions (buffer gas, gas pressure, and current/voltage) were established for Co, and investigations are underway for Cr and Ni. Definitive measurements for Co await purchase of new mirrors and photomultiplier tubes that will improve signal to noise ratio. Our plan for the next year is to continue evaluating cathodes and operating conditions through March 05, and then to begin definitive measurements. The UV wavelength measurements made at Imperial College with the unique UV FT spectrometer will be complemented by visible and near IR range measurements at NIST in June and/or July. Approximately one year from now, we intend to visit Lund University to collaborate on lifetime measurements that will allow our branching ration data to be used to determine f-values.

  1. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Bernstein, A.; Joshi, T.; Kazkaz, K.; Mozin, Vladimir V.; Pereverzev, S. V.; Sangiorgio, Samuele; Sorensen, Peter F.

    2015-09-01

    Coherent neutrino-nucleus scattering (CNNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. CNNS is a flavor-blind interaction, which offers potential benefits for its use in nonproliferation (nuclear reactor monitoring) and astrophysics (supernova and solar neutrinos) applications. One challenge with detecting CNNS is the low energy deposition associated with a typical CNNS nuclear recoil. In addition, nuclear recoils are predicted to result in lower ionization yields than those produced by electron recoils of the same energy. This ratio of nuclear- and electron-induced ionization, known as the nuclear quenching factor, is unknown at energies typical for CNNS interactions in liquid xenon (LXe) and liquid argon (LAr), detector media being considered for CNNS detection. While there have been recent measurements [1] of the ionization yield from nuclear recoils in LAr, there is no universal model for nuclear quenching and ionization yield. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The local ionization yield of a recoiling atom in the medium is calculated first. The ejected electrons are subsequently tracked in the electric field resulting from both the local electric charges and the externally applied drift field. The dependence of the ionization yield on the drift electric field is obtained by combining the calculated ionization yield for the initial collision cascade with the electron escape probability. An updated estimate of the CNNS signal expected in a LAr detector operated near a nuclear power reactor is presented.

  2. Molecular sieves analysis by elastic recoil detection

    International Nuclear Information System (INIS)

    The opportunity of water determination in zeolites via hydrogen detection using the elastic recoil detection analysis (ERDA) was investigated. The radiation effect upon the desorption rate of hydrogen in miscellaneous types of zeolites, e.g. Y-Faujasite, ZSM-5, SK, etc. and in a natural clay, e.g. an Algerian bentonite was discussed. Quantitative measurements were carried out in order to determine the amount and distribution shape of hydrogen in each material. Various explanations dealing with hydration and constitution water in such a crystalline framework were proposed. The experimental results are in a good agreement with the corresponding theoretical values

  3. Neutron electric form factor via recoil polarimetry

    International Nuclear Information System (INIS)

    The ratio of the electric to the magnetic form factor of the neutron, GEn/GMn, was measured via recoil polarimetry from the quasielastic d((pol-e),e(prime)(pol-n)p) reaction at three values of Q2 [viz., 0.45, 1.15 and 1.47 (GeV/c)2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that GEn follows the Galster parameterization up to Q2 = 1.15 (GeV/c)2 and appears to rise above the Galster parameterization at Q2 = 1.47 (GeV/c)2

  4. Neutron electric form factor via recoil polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Madey, Richard; Semenov, Andrei; Taylor, Simon; Aghalaryan, Aram; Crouse, Erick; MacLachlan, Glen; Plaster, Bradley; Tajima, Shigeyuki; Tireman, William; Yan, Chenyu; Ahmidouch, Abdellah; Anderson, Brian; Asaturyan, Razmik; Baker, O; Baldwin, Alan; Breuer, Herbert; Carlini, Roger; Christy, Michael; Churchwell, Steve; Cole, Leon; Danagoulian, Samuel; Day, Donal; Elaasar, Mostafa; Ent, Rolf; Farkhondeh, Manouchehr; Fenker, Howard; Finn, John; Gan, Liping; Garrow, Kenneth; Gueye, Paul; Howell, Calvin; Hu, Bitao; Jones, Mark; Kelly, James; Keppel, Cynthia; Khandaker, Mahbubul; Kim, Wooyoung; Kowalski, Stanley; Lung, Allison; Mack, David; Manley, D; Markowitz, Pete; Mitchell, Joseph; Mkrtchyan, Hamlet; Opper, Allena; Perdrisat, Charles; Punjabi, Vina; Raue, Brian; Reichelt, Tilmann; Reinhold, Joerg; Roche, Julie; Sato, Yoshinori; Seo, Wonick; Simicevic, Neven; Smith, Gregory; Stepanyan, Samuel; Tadevosyan, Vardan; Tang, Liguang; Ulmer, Paul; Vulcan, William; Watson, John; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yan, Chen; Yang, Seunghoon; Yuan, Lulin; Zhang, Wei-Ming; Zhu, Hong Guo; Zhu, Xiaofeng

    2003-05-01

    The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.

  5. Triple focussing recoil separator CARP at RCNP

    International Nuclear Information System (INIS)

    A reaction product mass separator (CARP) which is now being constructed for use with the AVF cyclotron at RCNP is described. This device is intended to separate unslowed recoiling products in nuclear reactions from the primary beam and to analyze them according to their charge-to-mass ratio. The use as a mass-spectrograph or as a mass-separator is available according to the experimental requirements. The solid angle and the energy range of acceptance will be 10 msr and 20%, respectively. (orig.)

  6. Thermal recoil force, telemetry, and the Pioneer anomaly

    International Nuclear Information System (INIS)

    Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.

  7. Recoil-decay tagging spectroscopy of 162 74 W 88

    OpenAIRE

    Li, H. J.; Cederwall, B.; Bäck, T.; Qi, C.; Doncel, M.; Jakobsson, Ulrika; Auranen, Kalle; Bönig, S; Drummond, M. C.; Grahn, Tuomas; Greenlees, Paul; Herzan, Andrej; Julin, Rauno; Juutinen, Sakari; Konki, Joonas

    2015-01-01

    Excited states in the highly neutron-deficient nucleus 162W have been investigated via the 92Mo(78Kr, 2α) 162W reaction. Prompt γ rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. γ rays from 162W were identified uniquel...

  8. Nuclear recoil corrections to the Lamb shift of hydrogen and light hydrogen-like ions

    CERN Document Server

    Yerokhin, V A

    2016-01-01

    Accurate calculations of the nuclear recoil effect to the Lamb shift of hydrogen-like atoms are presented. Numerical results are reported for the $ns$ states with $n \\leq 5$ and for the $2p_{1/2}$ and $2p_{3/2}$ states. The calculations are performed to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter $Z\\alpha$ (where $Z$ is the nuclear charge number and $\\alpha$ is the fine structure constant). The obtained results provide accurate predictions for the higher-order remainder beyond the known $Z\\alpha$-expansion terms. In the case of hydrogen, the remainder was found to be much larger than anticipated. This result resolves the previously reported disagreement between the numerical all-order and the analytical $Z\\alpha$-expansion approaches for the nuclear recoil effect in the hydrogen Lamb shift.

  9. Recent advances in the field of recoil chemistry

    International Nuclear Information System (INIS)

    Recent advances in the field of recoil chemistry are summarized and discussed. As important aids to furthering our knowledge of complex systems, the role is emphasized of new techniques such as vapour-phase chromatography, ion exchange and paper electrophoresis. An attempt is made to relate current work in recoil chemistry to other fields of investigation. (author)

  10. Mass attenuation coefficient (μ/ρ), effective atomic number (Zeff) and measurement of x-ray energy spectra using based calcium phosphate biomaterials: a comparative study

    International Nuclear Information System (INIS)

    In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Zeff of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Zeff using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)

  11. Importance of vacancy cascades in argon recoil-ion charge-state distributions accompanied by coincident projectile-electron capture and loss

    International Nuclear Information System (INIS)

    Argon recoil-ion charge-state distributions produced by beams of 0.7-MeV/u Cl/sup 5+,8+,10+/ have been measured by time-of-flight (TOF) techniques in coincidence with single- and double-charge-changed projectiles. In an essential improvement to the usual multinomial description of ionization in the independent-electron-ejection model, we find that inclusion of one (two) Auger vacancy cascades significantly alters the description of the recoil-ion spectra corresponding to single (double) capture. The single- and double-projectile-electron loss and capture spectra strongly resemble each other, suggesting that loss of one or two projectile electrons is closely associated with loss of one or two target L electrons, respectively. These conclusions are consistent with impact parameters inferred from determinations of mean recoil energy

  12. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  13. Dynamics and mechanisms of hot chemistry stimulated by recoil methods. Progress report, March 1, 1978--February 28, 1979

    International Nuclear Information System (INIS)

    The nuclear recoil chemical activation process in cyclobutane-t and subsequent inter- and intra-molecular energy transfer in recoil tritium and recoil chlorine hot reaction systems are analyzed. A stepladder model for intermolecular energy transfer from cyclobutane-t on collision shows average quanta of energy transferred range from 0.5 to 10 kcal/collision in He, N2, CO2 and cyclobutane bath gases. The recoil energy spectrum of hot chlorine atoms generated via the 37Cl(n,γ)38Cl reaction is also reported. The average recoil energy is found to be 294 eV and the maximum is 528 eV. Average reaction energy is calculated to be relatively independent of composition over the range from 0 to 99% moderation with noble gases in well scavenged systems of moderate reactivity. Geometrical isomerization accompanying the gas phase chlorine atom replacement reaction in 2,3 dichlorohexafluoro-2-butene as a function of moderation has been further investigated. A thermal or near thermal reaction path having a trans/cis product ratio of 1.3 and a high energy process which preferentially forms trans product from both cis and trans reactant are found. Dynamical features associated with the observed high energy inverse isotope effect in the reaction of chlorine atoms with H2 and D2 have been investigated through a non-Boltzmann rate constant analysis. The origin of this kinetic isotope effect is attributed to the secondary reactive process of collisional dissociation of translationally, vibrationally, and rotationally excited hydrogen chloride product molecules. Investigation of the kinetics and mechanisms of photochemical reactions between sulfur dioxide and aliphatic hydrocarbons has been initiated

  14. Warm target recoil ion momentum spectroscopy for fragmentation of molecular hydrogen by ultrashort laser pulses.

    Science.gov (United States)

    Liu, Jia; Wu, Jian; Czasch, Achim; Zeng, Heping

    2009-07-20

    We demonstrate warm target recoil ion momentum spectroscopy for the fragmentation dynamics of the warm hydrogen molecules at room temperature. The thermal movement effect of the warm molecule is removed by using a correction algorithm in the momentum space. Based on the reconstructed three-dimensional momentum vectors as well as the kinetic energy release spectra, different vibrational states of the H(2)(+) ground state are clearly visible and the internuclear separation for charge resonance enhanced ionization of the second electron is identified. The results show adequate accordance with the former experiments using other techniques. PMID:19654636

  15. Spectra of atoms and molecules

    CERN Document Server

    Bernath, Peter F

    2005-01-01

    1. Introduction. 1.1. Waves, Particles, and Units. 1.2. The Electromagnetic Spectrum. 1.3. Interaction of Radiation with Matter. 1.3a. Blackbody Radiation. 1.3b. Einstein A and B Coefficients. 1.3c. Absorption and Emission of Radiation. 1.3d. Beer''s Law. 1.3e. Lineshape Functions. 1.3f. Natural Lifetime Broadening. 1.3g. Pressure Broadening. 1.3h. Doppler Broadening. 1.3i. Transit-Time Broadening. 1.3j. Power Broadening. 2. Molecular Symmetry. 2.1. Symmetry Operations. 2.1a. Operator Algebra. 2.1b. Symmetry Operator Algebra. 2.2. Groups. 2.2a. Point Groups. 2.2b. Classes. 2.2c. Subgroups. 2.3. Notation for Point Groups. 3. Matrix Representation of Groups. 3.1. Vectors and Matrices. 3.1a. Matrix Eigenvalue Problem. 3.1b. Similarity Transformations. 3.2. Symmetry Operations and Position Vectors. 3.2a. Reflection. 3.2b. Rotation. 3.2c. Rotation-Reflection. 3.2d. Inversion. 3.2e. Identity. 3.3. Symmetry Operators and Basic Vectors. 3.4. Symmetry Operators and Basic Functions. 3.4a. Function Spaces. 3.4b. Gram-Sc...

  16. Alpha recoil phenomena used for radiolabelling of surface layers of solids

    International Nuclear Information System (INIS)

    In the natural radioactive series various radionuclides are produced by sequential alpha decays during which daughter nuclei are borne with recoil energy of about 100 keV. This phenomenon can conveniently be exploited for injection of the daughter nuclei into the surface layers of solids which thus become 'surface labelled'. Two simple procedures can be used to realize the surface labelling. The first consist in bombardment of the surface to be labelled with a radioactive recoil nuclei in vacuum from a very thin source of parent nuclides (such as 226Ra or 228RdTh). The second possibility is a two stage procedure during which first the positively charged 'A' products from the air (where they have been produced by alpha decay of 222Rn or 220Tn) are electrostatically collected on the surface to be labelled. There they are allowed to decay so that the atoms of the 'B' products are recoil injected into the surface layer up to a depth of several tens of μg/cm2. Experimental arrangements used for realizing such a surface labelling are described and typical yields and depth distributions are indicated and examples of practical applications discussed. (author)

  17. Plasma-assisted Recoil Implantation for Shallow Boron Doping in Silicon

    Science.gov (United States)

    Liu, H. L.; Gearhart, S. S.; Booske, J. H.; Wang, W.

    1997-10-01

    An ion beam mixing technique is used to fabricate ultra-shallow p+/n junctions for the application of sub-micron CMOS source/drain formation. In this method, a thin boron layer is first sputtered onto the Si wafer. Then -3kV argon Plasma Source Ion Implantation (PSII) drives the boron atoms into the Si substrate by means of ion beam mixing. This process avoids the hazardous toxic gases, undesirable F co-implantation and F etching effects. Sub-100nm deep p+/n junctions have been formed with this method. Numerical simulations were performed to predict the recoiled boron profiles, which are in agreement with the experimental data. The boron sputter deposition process has been optimized. Auger electron spectroscopy (AES) confirms high purity of the deposited boron films. Numerical Simulations show that the B films with thickness ranging from 5nm to 10nm result in very similar recoiled B profiles. The thickness of 7.5nm is chosen for the deposited B layer to make the entire process more reproducible. Moreover, a part of the implantation damage will be contained in the B layer, which will be removed prior to the annealing step. This should help to alleviate the transient enhanced B diffusion. The research for the recoil implantation of 7.5nm thick B layer is currently underway.

  18. A gun recoil system employing a magnetorheological fluid damper

    International Nuclear Information System (INIS)

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment. (paper)

  19. Fabrication and testing of recoil mass spectrometer at Mumbai Pelletron

    International Nuclear Information System (INIS)

    The main motivation for the recoil mass separator, which has been designed and constructed at the Mumbai Pelletron, has been to study the exotic nuclei far off from the line of β-stability, produced through fusion-evaporation reactions. These have very low cross sections, of the order of a few microbarns and the reaction products recoil in the forward direction along with the beam particles. The recoil mass separator enables one to study these reaction products by separating them from the main beam and from each other

  20. Recoil and conversion electron considerations of the {sup 166}Dy/{sup 166}Ho in vivo generator

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, J.R. [North-West Univ., Mmabatho (South Africa). CARST; Szuecs, Z. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry; Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Takacs, S.; Jarvis, N. [Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Jansen, D. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry

    2012-07-01

    The use of radionuclides as potential therapeutic radiopharmaceuticals is increasingly investigated. An important aspect is the delivery of the radionuclide to the target, i.e. the radionuclide is not lost from the chelating agent. For in vivo generators, it is not only the log K of complexation between the metal ion and the chelator that is important, but also whether the daughter radionuclide stays inside the chelator after decay of the parent radionuclide. In our previous work, we showed that the classical recoil effect is only applicable for decays with a Q value higher than 0.6 MeV (in the atomic mass range around 100). However, Zhernosekov et al. published a result for {sup 140}Nd/{sup 140}Pr (Q = 0.222 MeV) which indicated that > 95% of the daughter ({sup 140}Pr) was lost by a DOTA chelator upon decay of {sup 140}Nd. The authors ascribed this to the ''post-effect''. Their experiment was repeated with the {sup 166}Dy/{sup 166}Ho generator to ascertain whether our calculations were correct. It was found that 72% of the daughter ({sup 166}Ho) was liberated from the DOTA chelator, indicating that the 'post effect' does exist in contrast to our recoil calculations. Upon further investigation, we determined that one should not only consider recoil energy levels but also the mode of decay which was able to explain the partial recoil found for {sup 166}Dy/{sup 166}Ho. It is concluded for the {sup 166}Dy/{sup 166}Ho system that the low recoil energy of the daughter nucleus {sup 166}Ho is not a sufficient reason to rule out release of the nuclide from chelators. On the other hand, we found that the ratio of the {sup 166}Ho that gets released corresponds to the ratio of relaxation of Ho atoms via the Auger process. (orig.)

  1. Recoil distance lifetime measurements in 118Xe

    International Nuclear Information System (INIS)

    Lifetimes of the excited states of the ground state band in 118Xe are newly measured using the recoil-distance Doppler-shift technique. The reaction 93Nb(29Si,p3n)118Xe at a beam energy of 135 MeV was used for this experiment. The lifetimes of the 2+, 4+, 6+, 8+, and 10+ states of the ground state band were extracted using the computer code LIFETIME which includes the corrections due to the side feeding and the nuclear deorientation effects. The present B(E2) values are in good agreement with the extracted B(E2) values from the Hartee-Fock-Bogoliubov calculations. The measured B(E2) values are also compared with the standard algebraic and the geometrical models. The B(E2) values for the 2+ state for this nucleus and the other Xe nuclei as a function of the neutron number are well reproduced in the framework of the algebraic model IBA-1 with O(6) symmetry and the geometrical finite range droplet model

  2. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    CERN Document Server

    Jain, Vijay; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-01-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency $\\Omega_0$, this measurement back-action adds quanta $\\hbar\\Omega_0$ to the oscillator's energy at a rate $\\Gamma_{\\rm recoil}$, a process called photon recoil heating, and sets bounds to quantum coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure $\\Gamma_{\\rm recoil}$. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to micro-Kelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for th...

  3. Recoil effects in the electroproduction of the delta

    International Nuclear Information System (INIS)

    Two quark-meson soliton models - the Linear Sigma Model and the Chromodielectric Model - are used to describe the nucleon and delta excitation. Treating the delta as a bound state, we obtain its electroproduction amplitudes corrected for recoil effects. (author)

  4. A Novel Source of Tagged Low-Energy Nuclear Recoils

    OpenAIRE

    Joshi, Tenzing H. Y.

    2011-01-01

    For sufficiently wide resonances, nuclear resonance fluorescence behaves like elastic photo-nuclear scattering while retaining the large cross-section characteristic of resonant photo-nuclear absorption. We show that NRF may be used to characterize the signals produced by low-energy nuclear recoils by serving as a novel source of tagged low-energy nuclear recoils. Understanding these signals is important in determining the sensitivity of direct WIMP dark-matter and coherent neutrino-nucleus s...

  5. Dynamic Simulation of the Tank Gun Recoil Response

    Institute of Scientific and Technical Information of China (English)

    XING Jun-wen; WANG Liang-xi; SHI Yan; CHEN Chun-liang

    2005-01-01

    By using the ATV module of MSC. ADAMS, the dynamic simulation of recoil response of tank gun is analyzed.How the recoil force affects the bodywork and the suspension during gun firing, as well as the changing status of the gun muzzle's velocity are gained. All results and analyzing methods are offered for the designing basis of optimizing tank vehicle-gun match. The constructive exploration is beneficial to improving the general capability of tank.

  6. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    OpenAIRE

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-01-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency $\\Omega_0$, this measurement back-action adds quanta $\\hbar\\Omega_0$ to the oscillator's energy at a rate $\\Gamma_{\\rm recoil}$, a process called photon recoil heating, and sets bounds to quantum coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to d...

  7. Improvements in differentiation unfolding of radiation spectra

    International Nuclear Information System (INIS)

    Differentiation unfolding is widely used for measurements of neutron spectra in reactors using proton-recoil proportional counters and for measurements of neutron and gamma-ray spectra using scintillators. Current differentiation unfolding codes use various least-squares fits of polynomials to estimate the derivative of numerical data. Simple examples are used to illustrate the errors in unfolded energy spectra that result from the use of least-squares differentiation. An alternative method of numerical differentiation is presented; this method is shown to be free of the errors that result from least-squares differentiation

  8. MULTIPLE IONIZATION PROCESS STUDIED WITH COINCIDENCE TECHNIQUE BETWEEN SLOW RECOIL ION AND PROJECTILE ION IN 42 MeV Arq+—Ar COLLISIONS

    Institute of Scientific and Technical Information of China (English)

    T.Tonuma; T.Matsuo; 等

    1990-01-01

    Slow Ar recoil ion Production cross sections by 42 MeV Ar1+(q=4-14) projectiles were measured using a projectile ion-recoilion coincidence technique in order to provide information on mechanisms of multiple ionization of target atome through pure ionization as well as of that accompaied simultaneously with multiple electron loss or capture of projectiles.The present results suggest that inner-shell electron processes caused through electron transfer into projectiles and also electron ionization by projectiles play a key role in the production of multiply charged recoil ions.

  9. Dynamics and mechanisms of hot chemistry stimulated by recoil methods. Progress report, March 1, 1976--February 28, 1977

    International Nuclear Information System (INIS)

    The results obtained from the nuclear recoil chemical activation of cyclobutane-t reported earlier in this laboratory have indicated that vibration to translation energy transfer is the most important collisional process for all but the most efficient energy transfer agents. Classical and semi-classical dynamical collisional models suggest that the most effective energy transfer interactions are delocalized in nature involving at least one half of the excited cyclobutane molecule. The formalism used to explore the energy transfer process also provides data which in conjunction with energy shadowing analysis is used to interpret the energetics and mechanism of the primary hot tritium reaction with cyclobutane. The hot atom reaction between nuclear recoil produced chlorine atoms and hydrogen is characterized. The steady-state non-Boltzmann theory formalism is applied to the H2 and D2 reaction mixtures to further explore the high energy inverse isotope effect first reported in this laboratory. A detailed study of reactions of recoil chlorine with the scavenger ethylene used in the hydrogen studies is also reported

  10. Powerful flares from recoiling black holes in quasars

    CERN Document Server

    Shields, G A

    2008-01-01

    Mergers of spinning black holes can give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole in an AGN retains the inner part of its accretion disk. Marginally bound material rejoining the disk around the moving black hole releases a large amount of energy in shocks in a short time, leading to a flare in thermal soft X-rays with a luminosity approaching the Eddington limit. Reprocessing of the X-rays by the infalling material gives strong optical and ultraviolet emission lines with a distinctive spectrum. Despite the short lifetime of the flare (~10^4 yr), as many as 100 flares may be in play at the present time in QSOs at redshifts ~ 1 to 3. These flares provide a means to identify high velocity recoils.

  11. Rupture and recoil of bent-core liquid crystal filaments.

    Science.gov (United States)

    Salili, S M; Ostapenko, T; Kress, O; Bailey, C; Weissflog, W; Harth, K; Eremin, A; Stannarius, R; Jákli, A

    2016-05-25

    The recoil process of free-standing liquid crystal filaments is investigated experimentally and theoretically. We focus on two aspects, the contraction speed of the filament and a spontaneously formed undulation instability. At the moment of rupture, the filaments buckle similarly to the classical Euler buckling of elastic rods. The tip velocity decays with decreasing filament length. The wavelength of buckling affinely decreases with the retracting filament tip. The energy gain related to the decrease of the total length and surface area of the filaments is mainly dissipated by layer rearrangements during thickening of the fibre. A flow back into the meniscus is relevant only in the final stage of the recoil process. We introduce a model for the quantitative description of the filament retraction speed. The dynamics of this recoil behaviour may find relevance as a model for biology-related filaments. PMID:27140824

  12. Anatomy of the binary black hole recoil: A multipolar analysis

    CERN Document Server

    Schnittman, Jeremy D; van Meter, James R; Baker, John G; Boggs, William D; Centrella, Joan; Kelly, Bernard J; McWilliams, Sean T

    2007-01-01

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole (BH) coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within ~2%) and that only a few dominant modes contribute significantly to it (within ~5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical results can be reproduced by an ``effective Newtonian'' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulae with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes (QNMs). Analytic formulae, obtained by expressin...

  13. Recoil release of fission products from nuclear fuel

    Science.gov (United States)

    Wise, C.

    1985-10-01

    An analytical approximation is developed for calculating recoil release from nuclear fuel into gas filled interspaces. This expression is evaluated for a number of interspace geometries and shown to be generally accurate to within about 10% by comparison with numerical calculations. The results are applied to situations of physical interest and it is demonstrated that recoil can be important when modelling fission product release from low temperature CAGR pin failures. Furthermore, recoil can contribute significantly in experiments on low temperature fission product release, particularly where oxidation enhancement of this release is measured by exposing the fuel to CO 2. The calculations presented here are one way of allowing for this, other methods are suggested.

  14. First detection of tracks of radon progeny recoils by MIMAC

    CERN Document Server

    Riffard, Q; Bosson, G; Bourrion, O; Descombes, T; Fourel, C; Guillaudin, O; Muraz, J -F; Colas, P; Ferrer-Ribas, E; Giomataris, I; Busto, J; Fouchez, D; Tao, C; Lebreton, L; Maire, D

    2015-01-01

    The MIMAC experiment is a $\\mu$-TPC matrix project for directional dark matter search. Directional detection is a strategy based on the measurement of the WIMP flux anisotropy due to the solar system motion with respect to the dark matter halo. The main purpose of MIMAC project is the measurement of the energy and the direction of nuclear recoils in 3D produced by elastic scattering of WIMPs. Since June 2012 a bi-chamber prototype is operating at the Modane underground laboratory. In this paper, we report the first ionization energy and 3D track observations of nuclear recoils produced by the radon progeny. This measurement shows the capability of the MIMAC detector and opens the possibility to explore the low energy recoil directionality signature.

  15. A new approach to neutron spectra unfolding by differentiation

    International Nuclear Information System (INIS)

    Neutron spectra are unfolded by means of differentiating recoil-proton distributions registered in NE213 and stilbene scintillators. Numerically-stable derivatives are computed on the basis of global orthonormal-polynomial fits supported by suitable functional transforms. special attention is paid to the accurate reproduction of the spectrometer transfer function. Sample processing results are presents

  16. A new approach to neutron spectra unfolding by differentiation

    International Nuclear Information System (INIS)

    Neutron spectra are unfolded by means of differentiating recoil-proton distributions registered in NE213 and stilbene scintillators. Numerically-stable derivatives are computed on the basis of global orthonormal-polynomial fits supported by suitable functional transforms. Special attention is paid to the accurate reproduction of the spectrometer transfer function. Sample processing results are presented. (author)

  17. Secondary charged particle spectra arising from 14 MeV neutrons

    International Nuclear Information System (INIS)

    This report presents the energy spectra of the charged secondaries arising in a few media under 14 MeV neutron irradiation. Six media are considered. They are C, N, O, CO2, air and soft tissue. The alpha particles and recoiling nuclei due to (n, alpha) events and the recoils produced in elastic and inelastic scattering events are considered in detail. The different excitation levels in which the recoiling nuclei may be left and also their anisotropic angular distributions are taken into account. A total of 43 individual reactions in C, N, and O are considered and five additional reactions could not be included for want of adequate data. Dose- and fluence-average LET's and average energy of these recoils are obtained from the calculated spectra. (author)

  18. Ionization Efficiency Study for Low Energy Nuclear Recoils in Germanium

    CERN Document Server

    Barker, D; Mei, D -M; Zhang, C

    2013-01-01

    We used the internal conversion ($E_0$ transition) of germanium-72 to indirectly measure the low energy nuclear recoils of germanium. Together with a reliable Monte Carlo package, in which we implement the internal conversion process, the data was compared to the Lindhard ($k$=0.159) and Barker-Mei models. A shape analysis indicates that both models agree well with data in the region of interest within 4%. The most probable value (MPV) of the nuclear recoils obtained from the shape analysis is 17.5 keV with an average path-length of 0.014 $\\mu$m.

  19. Nuclear recoil measurements in Superheated Superconducting Granule detectors

    OpenAIRE

    Schmiemann, K.

    1993-01-01

    The response of Superheated Superconducting Granule (SSG) devices to nuclear recoils has been explored by irradiating SSG detectors with a 70Me$\\!$V neutron beam. In the past we have tested Al SSG and more recently, measurements have been performed with Sn and Zn detectors. The aim of the experiments was to test the sensitivity of SSG detectors to recoil energies down to a few ke$\\!$V. In this paper, the preliminary results of the neutron irradiation of a SSG detector made of Sn granules 15-2...

  20. Massive Black Hole Recoil in High Resolution Hosts

    OpenAIRE

    Guedes, Javiera; Diemand, Jürg; Zemp, Marcel; Kuhlen, Michael; Madau, Piero; Mayer, Lucio; Stadel, Joachim

    2008-01-01

    The final inspiral and coalescence of a black hole binary can produce highly beamed gravitational wave radiation. To conserve linear momentum, the black hole remnant can recoil with "kick" velocity as high as 4000 km/s. We present two sets of full N-body simulations of recoiling massive black holes (MBH) in high-resolution, non-axisymmetric potentials. The host to the first set of simulations is the main halo of the Via Lactea I simulation (Diemand et al. 2007). The nature of the resulting or...

  1. The fast neutron spectrum unfolding from measured proton recoil spectrum

    International Nuclear Information System (INIS)

    This paper presents the method of fast neutron spectrum unfolding from measured pulse-height data produced by recoil protons in a scintillation detector. Computer code PULNE which is described use the algorithm with approximate corrections for effects of second scattering of neutrons by hydrogen and the loss of recoil protons through the detector surface. In that way the most important physical effect influenced the final results are taken in consideration, and the computer code is made to be easily adapted for use on a small computer. Results of analysis of pulse height data from measuring the spectrum of americium-berylium source are presented. (author)

  2. Consistent empirical physical formula construction for recoil energy distribution in HPGe detectors using artificial neural networks

    CERN Document Server

    Akkoyun, Serkan

    2012-01-01

    The gamma-ray tracking technique is one of the highly efficient detection method in experimental nuclear structure physics. On the basis of this method, two gamma-ray tracking arrays, AGATA in Europe and GRETA in the USA, are currently being developed. The interactions of neutrons in these detectors lead to an unwanted background in the gamma-ray spectra. Thus, the interaction points of neutrons in these detectors have to be determined in the gamma-ray tracking process in order to improve photo-peak efficiencies and peak-to-total ratios of the gamma-ray peaks. Therefore, the recoil energy distributions of germanium nuclei due to inelastic scatterings of 1-5 MeV neutrons were obtained both experimentally and using artificial neural networks. Also, for highly nonlinear detector response for recoiling germanium nuclei, we have constructed consistent empirical physical formulas (EPFs) by appropriate layered feed-forward neural networks (LFNNs). These LFNN-EPFs can be used to derive further physical functions whic...

  3. Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243

    CERN Document Server

    Forsberg, U; Andersson, L -L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Golubev, P; Gregorich, K E; Gross, C J; Herzberg, R -D; Hessberger, F P; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Sarmiento, L G; Schädel, M; Yakushev, A; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Dobaczewski, J; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nazarewicz, W; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Shi, Y; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2015-01-01

    Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum f\\"ur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.

  4. Cooperative scattering of light and atoms in ultracold atomic gases

    Science.gov (United States)

    Uys, H.; Meystre, P.

    2008-07-01

    Superradiance and coherent atomic recoil lasing are two closely related phenomena, both resulting from the cooperative scattering of light by atoms. In ultracold atomic gases below the critical temperature for Bose-Einstein condensation these processes take place with the simultaneous amplification of the atomic matter waves. We explore these phenomena by surveying some of the experimental and theoretical developments that have emerged in this field of study since the first observation of superradiant scattering from a Bose-Einstein condensate in 1999 [1].

  5. Cooperative scattering of light and atoms in ultracold atomic gases

    International Nuclear Information System (INIS)

    Superradiance and coherent atomic recoil lasing are two closely related phenomena, both resulting from the cooperative scattering of light by atoms. In ultracold atomic gases below the critical temperature for Bose-Einstein condensation these processes take place with the simultaneous amplification of the atomic matter waves. We explore these phenomena by surveying some of the experimental and theoretical developments that have emerged in this field of study since the first observation of superradiant scattering from a Bose-Einstein condensate in 1999 [1

  6. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H(sub n)-PAHs) and their Relation to the 3.4 and 6.9 Micrometer PAH Emission Features

    Science.gov (United States)

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-01-01

    A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  7. Molecular modeling of the effects of 40Ar recoil in illite particles on their K-Ar isotope dating

    Science.gov (United States)

    Szczerba, Marek; Derkowski, Arkadiusz; Kalinichev, Andrey G.; Środoń, Jan

    2015-06-01

    The radioactive decay of 40K to 40Ar is the basis of isotope age determination of micaceous clay minerals formed during diagenesis. The difference in K-Ar ages between fine and coarse grained illite particles has been interpreted using detrital-authigenic components system, its crystallization history or post-crystallization diffusion. Yet another mechanism should also be considered: natural 40Ar recoil. Whether this recoil mechanism can result in a significant enough loss of 40Ar to provide observable decrease of K-Ar age of the finest illite crystallites at diagenetic temperatures - is the primary objective of this study which is based on molecular dynamics (MD) computer simulations. All the simulations were performed for the same kinetic energy (initial velocity) of the 40Ar atom, but for varying recoil angles that cover the entire range of their possible values. The results show that 40Ar recoil can lead to various deformations of the illite structure, often accompanied by the displacement of OH groups or breaking of the Si-O bonds. Depending on the recoil angle, there are four possible final positions of the 40Ar atom with respect to the 2:1 layer at the end of the simulation: it can remain in the interlayer space or end up in the closest tetrahedral, octahedral or the opposite tetrahedral sheet. No simulation angles were found for which the 40Ar atom after recoil passes completely through the 2:1 layer. The energy barrier for 40Ar passing through the hexagonal cavity from the tetrahedral sheet into the interlayer was calculated to be 17 kcal/mol. This reaction is strongly exothermic, therefore there is almost no possibility for 40Ar to remain in the tetrahedral sheet of the 2:1 layer over geological time periods. It will either leave the crystal, if close enough to the edge, or return to the interlayer space. On the other hand, if 40Ar ends up in the octahedral sheet after recoil, a substantially higher energy barrier of 55 kcal/mol prevents it from leaving

  8. Scattering and recoiling imaging spectrometry (SARIS) study of chlorine chemisorption on Ni(1 1 0)

    International Nuclear Information System (INIS)

    The clean and chlorine chemisorbed Ni(1 1 0) surface has been investigated by scattering and recoiling imaging spectrometry (SARIS). Rare gas ion beams at 4 keV were scattered at different incident (α) and exit (β) angles along different azimuthal directions of the surface. The LEED pattern changed from a sharp (1x1) to a weak (3x1) after exposure to Cl2. The He+ images from the Cl/Ni surface exhibited very little differences compared to those of the clean surface. This is due to the high penetration depth of the He+ ions, which results in low surface sensitivity. The images obtained from the Cl/Ni surface with the heavier ions exhibited obvious changes due to their low penetration depths, which facilitates high surface sensitivity. Scattering and Recoiling Imaging Code (SARIC) simulations were carried out in order to interpret the perturbations induced by the chlorine adatoms. Different chemisorption sites for chlorine were tested. The results of the experiments and simulations agree that Cl atoms are chemisorbed in the short-bridge sites above the [1 1-bar 0] rows

  9. Hydrogen analysis for granite using proton-proton elastic recoil coincidence spectrometry.

    Science.gov (United States)

    Komatsubara, T; Sasa, K; Ohshima, H; Kimura, H; Tajima, Y; Takahashi, T; Ishii, S; Yamato, Y; Kurosawa, M

    2008-07-01

    In an effort to develop DS02, a new radiation dosimetry system for the atomic bomb survivors of Hiroshima and Nagasaki, measurements of neutron-induced activities have provided valuable information to reconstruct the radiation situation at the time of the bombings. In Hiroshima, the depth profile of (152)Eu activity measured in a granite pillar of the Motoyasu Bridge (128 m from the hypocenter) was compared with that calculated using the DS02 methodology. For calculation of the (152)Eu production due to the thermal-neutron activation reaction, (151)Eu(n,gamma)(152)Eu, information on the hydrogen content in granite is important because the transport and slowing-down process of neutrons penetrating into the pillar is strongly affected by collisions with the protons of hydrogen. In this study, proton-proton elastic recoil coincidence spectrometry has been used to deduce the proton density in the Motoyasu pillar granite. Slices of granite samples were irradiated by a 20 MeV proton beam, and the energies of scattered and recoil protons were measured with a coincidence method. The water concentration in the pillar granite was evaluated to be 0.30 +/- 0.07%wt. This result is consistent with earlier data on adsorptive water (II) and bound water obtained by the Karl Fisher method. PMID:18509666

  10. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    Science.gov (United States)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  11. Scintillation response of liquid xenon to low energy nuclear recoils

    International Nuclear Information System (INIS)

    Liquid Xenon (LXe) is expected to be an excellent target and detection medium to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs). We have measured the scintillation efficiency of nuclear recoils with kinetic energy between 10.4 and 56.5 keV relative to that of 122 keV gamma rays from 57Co. The scintillation yield of 56.5 keV recoils was also measured as a function of applied electric field, and compared to that of gamma rays and alpha particles. The Xe recoils were produced by elastic scattering of 2.4 MeV neutrons in liquid xenon at a variety of scattering angles. The relative scintillation efficiency is 0.130±0.024 and 0.227±0.016 for the lowest and highest energy recoils, respectively. This is about 15% less than the value predicted by Lindhard, based on nuclear quenching. Our results are in good agreement with more recent theoretical predictions that consider the additional reduction of scintillation yield due to biexcitonic collisions in LXe

  12. Gravitational recoil from spinning binary black hole mergers

    CERN Document Server

    Herrmann, F; Laguna, P; Matzner, R A; Shoemaker, D; Herrmann, Frank; Hinder, Ian; Laguna, Pablo; Matzner, Richard A.; Shoemaker, Deirdre

    2007-01-01

    The inspiral and merger of binary black holes will likely involve black holes with both unequal masses and arbitrary spins. The gravitational radiation emitted by these binaries will carry angular as well as linear momentum. A net flux of emitted linear momentum implies that the black hole produced by the merger will experience a recoil or kick. Previous studies have focused on the recoil velocity from unequal mass, non-spinning binaries. We present results from simulations of equal mass but spinning black hole binaries and show how a significant gravitational recoil can also be obtained in these situations. We consider the case of black holes with opposite spins aligned with the orbital angular momentum. For the initial setups under consideration, we find a recoil velocity of $V = 475 \\KMS |a| $, with $a$ the dimensionless spin parameters of the individual holes. Supermassive black hole mergers producing kicks of this magnitude could result in the ejection from the cores of dwarf galaxies of the final hole p...

  13. Direct Measurement of Photon Recoil from a Levitated Nanoparticle.

    Science.gov (United States)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-17

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω_{0}, this measurement backaction adds quanta ℏΩ_{0} to the oscillator's energy at a rate Γ_{recoil}, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γ_{recoil}. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces. PMID:27367388

  14. Gravitational recoil: signatures on the massive black hole population

    CERN Document Server

    Volonteri, M

    2007-01-01

    In the last stages of a black hole merger, the binary can experience a recoil due to asymmetric emission of gravitational radiation. Recent numerical relativity simulations suggest that the recoil velocity can be as high as a few thousands kilometers per second for particular configurations. We consider here the effect of this worst case scenario on the hierarchical evolution of the massive black hole (MBH) population, where sensible values for binaries mass ratios and spins are assumed. The orbital configuration is chosen to be the one yielding the highest possible kick. We explore two routes for MBH formation which lead to different ejection histories: either that MBHs are the remnants of the first generation of stars, or that MBHs form by direct collapse. We show that the gravitational recoil does not pose a threat to the evolution of the MBH population that we observe locally in either case. The gravitational recoil is instead a real hazard for (i) MBHs in biased halos at high-redshift, where mergers are ...

  15. Adsorption of Hydrogen and Potassium on GaAs(110) Studied by Time-of-Flight Scattering and Recoiling Spectrometry

    International Nuclear Information System (INIS)

    We study the adsorption of H and K on a GaAs(ll0) surface by Time-of-Flight Ion-Scattering (ISS) and Direct Recoiling (DRS) Spectrometry. The method for cleaning and preparation of the surface consists on cycles of grazing bombardment with 20 keV Ar+ combined with annealing. Since this is the first time that this method is applied to a semiconductor surface, the crystallographic structure of the grazing ion bombarded surface is first characterized by ISS and DRS. The variations of the projectile scattered intensity as a function of the incident and azimuthal angles are interpreted in terms of calculated shadowing and focusing effects. The crystallographic structure of the GaAs(ll0) surface prepared by this method presents the surface relaxation observed for cleaved surfaces. The adsorption of H on GaAs(ll0) is studied as a function of the H2 exposure and the surface temperature.The behavior of the intensity of projectiles scattered from the first two As and Ga layers is consistent with a process of unrelaxation towards the ideal surface termination upon H adsorption. We have determined that for exposures of 1000 L and 2000 L the AsI-GaI splitting corresponding to the unrelaxed surface is reduced to ΔZ = (0.0 n 0.08) A, as it should be expected for the bulk terminated surface. In addition, the fraction of the surface remaining relaxed as in the clean surface decreases strongly with the H2 exposure. The H atoms adsorbed on the surface can be detected as recoils produced in quasi-single collisions allowing the study of the adsorption kinetics. The variations of the H recoil intensity with the exposure show that the sticking coefficient changes strongly with the H coverage since the beginning the adsorption. Above ∼ 500 L, the adsorption kinetics deviates from the initial behavior and the sticking coefficient becomes almost constant and small. The simultaneous measurements of the H coverage (with DRS) and the changes in the atomic structure (with ISS) as a function

  16. Modeling gravitational recoil from black-hole binaries using numerical relativity

    International Nuclear Information System (INIS)

    We review the developments in modeling gravitational recoil from merging black-hole binaries and introduce a new set of 20 simulations to test our previously proposed empirical formula for the recoil. The configurations are chosen to represent generic binaries with unequal masses and precessing spins. Results of these simulations indicate that the recoil formula is accurate to within a few km s-1 in the similar mass-ratio regime for the out-of-plane recoil.

  17. Exclusive ρ0 production measured with the HERMES recoil detector

    International Nuclear Information System (INIS)

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  18. The recoil transfer chamber-An interface to connect the physical preseparator TASCA with chemistry and counting setups

    International Nuclear Information System (INIS)

    Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one-atom-at-a-time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes (t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA-an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ∼1 mbar atmosphere in TASCA from the RTC kept at ∼1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA-an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.

  19. The recoil transfer chamber-An interface to connect the physical preseparator TASCA with chemistry and counting setups

    Energy Technology Data Exchange (ETDEWEB)

    Even, J., E-mail: evenj@uni-mainz.d [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Ballof, J. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Bruechle, W. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Buda, R.A. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Duellmann, Ch.E. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55099 Mainz (Germany); Eberhardt, K. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Gorshkov, A. [Technische Universitaet Muenchen, 85748 Garching (Germany); Gromm, E.; Hild, D. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Jaeger, E.; Khuyagbaatar, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Kratz, J.V. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Krier, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Liebe, D.; Mendel, M. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Nayak, D. [Saha Institute of Nuclear Physics, Kolkata 700 064 (India); Opel, K.; Omtvedt, J.P. [University of Oslo, N0315 Oslo (Norway); Reichert, P.; Runke, J. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany)

    2011-05-11

    Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one-atom-at-a-time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes (t{sub 1/2{>=}}0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA-an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the {approx}1 mbar atmosphere in TASCA from the RTC kept at {approx}1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA-an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.

  20. Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit

    CERN Document Server

    Curtis, E A; Hollberg, L

    2001-01-01

    We present a cooling method that should be generally applicable to atoms with narrow optical transitions. This technique uses velocity-selective pulses to drive atoms towards a zero-velocity dark state and then quenches the excited state to increase the cooling rate. We demonstrate this technique of quenched narrow-line cooling by reducing the 1-D temperature of a sample of neutral 40Ca atoms. We velocity select and cool with the 1S0(4s2) to 3P1(4s4p) 657 nm intercombination line and quench with the 3P1(4s4p) to 1S0(4s5s) intercombination line at 553 nm, which increases the cooling rate eight-fold. Limited only by available quenching laser power, we have transferred 18 % of the atoms from our initial 2 mK velocity distribution and achieved temperatures as low as 4 microK, corresponding to a vrms of 2.8 cm/s or 2 recoils at 657 nm. This cooling technique, which is closely related to Raman cooling, can be extended to three dimensions.

  1. Response of a proportional counter to $^{37}$Ar and $^{71}$Ge: real spectra versus GEANT4 simulation

    CERN Document Server

    Abdurashitov, D; Matushko, V; Suerfu, B

    2015-01-01

    The energy deposition spectra of $^{37}$Ar and $^{71}$Ge in a miniature proportional counter are measured and compared in detail to the model response simulated with Geant4. The spectrum of $^{71}$Ge is measured with total statistics of 1.7$\\cdot$10$^8$ events and is presented for the first time. A certain modification of the Geant4 code, making it possible to trace the deexcitation of atomic shells properly, is suggested. After the modification Geant4 is able to reproduce a response of particle detectors in detail in a keV energy range. This feature is very important in the laboratory experiments that search for massive sterile neutrinos as well as for dark matter directly by detection of recoil nuclei. We expect this work to convince physicists to trust Geant4 simulations at low energies.

  2. Elastic recoil detection method using DT neutrons for hydrogen isotope analysis in fusion materials

    International Nuclear Information System (INIS)

    The Fusion Neutronics Source of Japan Atomic Energy Research Institute has started the study on the hydrogen isotope analysis for fusion components since 2002 on the basis of the techniques such as nuclear activation method, ion beam method and imaging plate method. In this study, we propose the elastic recoil detection analysis (NERDA) method using 14.1 MeV neutron beam to extend the analyzable depth of hydrogen isotopes analysis up to several hundreds micrometers. An experimental setup for NERDA was constructed and a proof-of-principle experiment was then made using a standard sample of deuterated polyethylene film containing a known concentration of deuterium with thickness of 100 μm. The depth resolution of the present condition was estimated to be 158 μm for the sample. (author)

  3. Young's double-slit experiment using two-center core-level photoemission: Photoelectron recoil effects

    International Nuclear Information System (INIS)

    Core-level photoemission from N2 can be considered an analogue of Young's double-slit experiment (YDSE) in which the double-slit is replaced by a pair of N 1s orbitals. The measured ratio between the 1σg and 1σu photoionization cross-sections oscillates as a function of photoelectron momentum, due to two-center YDSE interference, exhibiting a remarkable dependence on the vibrational sub-levels of the core ionized state. We theoretically demonstrate that the recoil of the photoelectron given to the ionized N atom strongly influences this interference pattern. The reason for this is that the momentum transfer affects the phases of the photoionization amplitudes

  4. Shallow Sb-doped Si surface layers formed by recoil implantation

    International Nuclear Information System (INIS)

    Recoil implantation was used to form shallow n+ layers on p-Si by implanting 150 keV Ar+ ions through evaporated Sb layers. By varying the Sb layer thickness, different dopant profiles were achieved. Based on the sheet resistance measurements, it was found that the dopant profiles deviated from theory when the Sb layer thickness was small. Damage effects related to energy deposition by the primary ions were used to explain the differences. It was suggested that these effects could significantly affect the dopant activity and the redistribution of the atoms during heat treatment. These effects were less important for those samples with thick Sb layers. For shallow p-n junction formation, it was essential to keep the damage effects to a low level. (author)

  5. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    International Nuclear Information System (INIS)

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5–7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5

  6. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    Science.gov (United States)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  7. The synthesis of tritium-labelled cyclic hydrocarbons by using tritium recoil nuclei

    International Nuclear Information System (INIS)

    The authors discuss the results of investigating the interaction of tritium recoil atoms produced by the reaction Li6 (n, α)T with cyclohexane, cyclohexene, cyclohexadiene, methyl cyclohexane, cyclohexanol, cyclohexylammine and benzene. Mixtures of these compounds with lithium carbonate were neutron-irradiated. From 1 g of lithium, 4 mc/h of tritium was obtained with a 4 x 1012 n/cm2 s neutron flux. The total yield of the products depends on the amount of tritium yielded by the crystals, and, so, on the irradiation conditions. The yield from the separate components is determined by analysis. The irradiation products were analysed by vacuum distillation, using carriers and gas-liquid chromatography. The results obtained show that 20-40% of the tritium yielded by the lithium carbonate crystals is embedded in the parent molecule of the irradiated compound. When, for instance, cyclohexene is irradiated together with 22% of the labelled parent-compound, 16% cyclohexane, 4% methyl cyclopentane and small amounts of other products are obtained. The specific activity of cyclohexane and methyl cyclopentane separated on a chromatographic column may be high, and the only dilution is with products of radiolysis. When other compounds are irradiated, there is a good yield only from the irradiated parent-compound, and a small yield from other products. For purposes of preparation, cyclohexane and methyl cyclopentane are best obtained by irradiating cyclohexane; other cyclic hydrocarbons can be obtained by irradiating the compounds directly with lithium salts. The paper describes a preparation column for separating tritium-labelled cyclohexane, cyclohexene and methyl cyclopentane from irradiated cyclohexene and for separating the products yielded by the reaction of tritium recoil atoms with other cyclic hydrocarbons. (author)

  8. Limits on the temporal variation of the fine structure constant, quark masses and strong interaction from quasar absorption spectra and atomic clock experiments

    CERN Document Server

    Flambaum, V V; Thomas, A W; Young, R D

    2004-01-01

    We perform calculations of the dependence of nuclear magnetic moments on quark masses and obtain limits on the variation of $(m_q/\\Lambda_{QCD})$ from recent measurements of hydrogen hyperfine (21 cm) and molecular rotational transitions in quasar absorption systems, atomic clock experiments with hyperfine transitions in H, Rb, Cs, Yb$^+$, Hg$^+$ and optical transition in Hg$^+$. Experiments with Cd$^+$, deuterium/hydrogen, molecular SF$_6$ and Zeeman transitions in $^3$He/Xe are also discussed.

  9. α decay and recoil decay tagging studies of 183Tl

    International Nuclear Information System (INIS)

    High-spin states in the nucleus 183Tl have been studied using the recoil decay tagging and recoil tagging techniques. The data have enabled new structures to be identified which are believed to be based on prolate f7/2, h9/2, and oblate h9/2 configurations. In addition, the prolate i3/2 structure has also been extended. The systematics of the newly identified structures will be discussed. The α decay of 183Tl has also been investigated. Examination of both delayed and prompt γ rays in coincidence with the prominent 6333-keV α decay, together with an investigation of the effects of the summing of L electrons, allow assignment of transitions and the construction of tentative low-spin decay schemes for 179Au and 175Ir

  10. Velocity distribution in recoil-distance Doppler-shift experiments

    International Nuclear Information System (INIS)

    The Recoil-Distance Doppler-Shift (RDDS) technique is a well established method to measure lifetimes of excited nuclear states in the pico-second range. In standard RDDS experiments at non-relativistc beam-energies, the velocities of the emerging recoils are usually distributed narrowly around a mean velocity v = left angle v right angle v. Under these circumstances, the effect of the velocity distribution is neglectable and the assumption that all nuclei move with the average velocity is justified. In this poster we investigate the influence of broader velocity distributions on lifetimes determined using the standard lifetime analysis-method DDCM. This can be observed, e.g., in experiments with thick targets. In particular, it is shown that the effect of the velocity distribution on the deduced lifetime is minimised at the maximum amplitude of the derivative of the decay function.

  11. Time-dependent isotope effect in recoil implantation Pt. 2

    International Nuclear Information System (INIS)

    A typical case of time-dependent isotope effect was found in recoil implantation of technetium in tetraphenylporphyrin. When a mixture of metallic molybdenum and tetraphenylporphyrin (free base) was bombarded with 15 MeV deuterons, the difference of chemical distribution between sup(99m)Tc and 95Tc (or 96Tc) was pronounced in the sample which was stored one day after irradiation, whereas no difference was observed just after the irradiation. This effect was ascribed to decay-induced decomposition, by observing behaviours of the purified system of 99Mo-sup(99m)Tc-TPP. The decomposition was not derived directly from the β-decay recoil but from internal excitation associated with the decay. (author)

  12. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T.R.H.; Whitlow, H.J. [Lund Univ. (Sweden); Bubb, I.F.; Short, R.; Johnston, P.N. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1996-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  13. Gravitational wave recoil in Robinson-Trautman spacetimes

    International Nuclear Information System (INIS)

    We consider the gravitational recoil due to nonreflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the nonlinear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the nonaxisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.

  14. Radiation pressure in SFA theory: retardation and recoil corrections

    CERN Document Server

    Krajewska, K

    2015-01-01

    Radiation pressure effects in ionization by short linearly-polarized laser pulses are investigated in the framework of strong-field approximation, in both nonrelativistic and relativistic formulations. Differences between both approaches are discussed, and retardation and recoil corrections are defined. It is demonstrated how these corrections can be incorporated into the nonrelativistic approach, leading to the so-called quasi-relativistic formulation. These three approaches are further applied to the analysis of signatures of radiation pressure in energy-angular distributions of photoelectrons. It is demonstrated that, for Ti:Sapphire laser pulses of intensities up to $10^{16}\\mathrm{W/cm}^2$, predictions of the quasi-relativistic formulation agree well with those of the full relativistic one, and that the recoil corrections contribute predominantly to the radiation pressure effects.

  15. Modernization of the detector system at the recoil separator VASSILISSA

    International Nuclear Information System (INIS)

    Within the past ten years, the recoil separator VASSILISSA has been used for the investigations of evaporation residues produced in heavy ion induced complete fusion reactions. In the course of experimental work in the region of the elements with 92≤Z≤94, fourteen new isotopes have been identified by the parent-daughter correlations. For further experiments aimed at the synthesis of the superheavy element isotopes (Z≥110) with intensive 48Ca extracted beams, improvements in the focal plane detector system have been made. As a result, energy and position resolutions of the detectors have been significantly improved, the detection efficiency for the α-particles, emitted from the implanted into the focal plane detector recoil nuclei, has been increased to 85%. The decay properties of the new isotope of element 112 and the isotope of the new element 114 with mass 287 have been measured in two-nuclei decay

  16. Recoil Correction to Hydrogen Energy Levels A Revision

    CERN Document Server

    Yelkhovsky, A S

    1997-01-01

    Recent calculations of the order (Z\\alpha)^4(m/M)Ry pure recoil correction to hydrogen energy levels are critically revised. The origins of errors made in the previous works are elucidated. In the framework of a successive approach, we obtain the new result for the correction to S levels. It amounts to -16.4 kHz in the ground state and -1.9 kHz in the 2S state.

  17. B -> K(*) l+ l- @ Low Recoil and Physics Implications

    OpenAIRE

    Hiller, Gudrun

    2013-01-01

    This talk covers recent theoretical progress in exclusive semileptonic rare B-decays at low hadronic recoil. The efficient parametric suppression of the 1/mb corrections in this region provides opportunities to probe the Standard Model and beyond at precision level. Notably, angular analysis allows to simultaneously access electroweak flavor physics and hadronic matrix elements, the latter of which constitute the leading source of theoretical uncertainty. Ratios of B ->K* form factors can alr...

  18. Recoil corrected bag model calculations for semileptonic weak decays

    International Nuclear Information System (INIS)

    Recoil corrections to various model results for strangeness changing weak decay amplitudes have been developed. It is shown that the spurious reference frame dependence of earlier calculations is reduced. The second class currents are generally less important than obtained by calculations in the static approximation. Theoretical results are compared to observations. The agreement is quite good, although the values for the Cabibbo angle obtained by fits to the decay rates are somewhat to large

  19. Discrimination of nuclear recoils from alpha particles with superheated liquids

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, F; Auger, M; Genest, M-H; Giroux, G; Gornea, R; Faust, R; Leroy, C; Lessard, L; Martin, J-P; Morlat, T; Piro, M-C; Starinski, N; Zacek, V [Departement de Physique, Universite de Montreal, Montreal, H3C 3J7 (Canada); Beltran, B; Krauss, C B [Department of Physics, University of Alberta, Edmonton, T6G 2G7 (Canada); Behnke, E; Levine, I; Shepherd, T [Department of Physics and Astronomy, Indiana University South Bend, South Bend, IN 46634 (United States); Nadeau, P; Wichoski, U [Department of Physics, Laurentian University, Sudbury, P3E 2C6 (Canada)], E-mail: zacekv@lps.umontreal.ca (and others)

    2008-10-15

    The PICASSO collaboration observed for the first time a significant difference between the acoustic signals induced by neutrons and alpha particles in a detector based on superheated liquids. This new discovery offers the possibility of improved background suppression and could be especially useful for dark matter experiments. This new effect may be attributed to the formation of multiple bubbles on alpha tracks, compared to single nucleations created by neutron-induced recoils.

  20. Spallation recoil and age of presolar grains in meteorites

    Science.gov (United States)

    Ott, U.; Begemann, F.

    2000-01-01

    We have determined the recoil losses from silicon carbide grain size fractions of spallation neon produced by irradiation with 1.6 GeV protons. During the irradiation the SiC grains were dispersed in paraffin wax in order to avoid re-implantation into neighboring grains. Analysis for spallogenic 21Ne of grain size separates in the size range 0.3 μm to 6 μm and comparison with the 22Na activity of the SiC+paraffin mixture indicates an effective recoil range of 2-3 μm with no apparent effect from acid treatments such as routinely used in the isolation of meteoritic SiC grains. Our results indicate that the majority of presolar SiC grains in primitive meteorites, which are ~μm-sized, will have lost essentially all spallogenic Ne produced by cosmic ray interaction in the interstellar medium. This argues against the validity of previously published presolar ages of Murchison SiC (~10 to ~130 Ma; increasing with grain size; Lewis et al., 1994), where recoil losses had been based on calculated recoil energies. It is argued that the observed variations in meteoritic SiC grain size fractions of 21Ne/22Ne ratios are more likely due to the effects of nucleosynthesis in the He burning shell of the parent AGB stars which imposes new boundary conditions on nuclear parameters and stellar models. It is suggested that spallation-Xe produced on the abundant Ba and REE in presolar SiC, rather than spallogenic Ne, may be a promising approach to the presolar age problem. There is a hint in the currently available Xe data (Lewis et al., 1994) that the large (>1 μm) grains may be younger than the smaller (<1 μm) ones.

  1. Recoiled Proton Tagged Knockout Reaction for 8He

    Institute of Scientific and Technical Information of China (English)

    曹中鑫; 叶沿林; 江栋兴; 郑涛; 李智焕; 华辉; 葛榆成; 李湘庆; 楼建玲; 肖军; 李奇特; 吕林辉; 李阔昂; 王赫; 乔锐; 游海波; 陈瑞九

    2012-01-01

    An experiment for knockout reaction induced by SHe beam at 82.5 MeV/nucleon on CH2 and C targets was carried out. The 6He and 4He core fragments at forward angles and the recoiled protons at large angles were detected coincidently. From this exclusive measurement the valence nucleon knockout mechanism and the core knockout mechanism are separated, which can be applied to the exclusive spectroscopic study on the structure of exotic nuclei.

  2. Revealing Compressed Stops Using High-Momentum Recoils

    CERN Document Server

    Macaluso, Sebastian; Shih, David; Tweedie, Brock

    2015-01-01

    Searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP / neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ~ 1 and significances often well beyond 5 sigma. The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a MET signature, but also leads to a distinctive anti-correlation between the MET and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in ...

  3. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    Science.gov (United States)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  4. Recoiling Black Holes: Electromagnetic Signatures, Candidates, and Astrophysical Implications

    Directory of Open Access Journals (Sweden)

    S. Komossa

    2012-01-01

    Full Text Available Supermassive black holes (SMBHs may not always reside right at the centers of their host galaxies. This is a prediction of numerical relativity simulations, which imply that the newly formed single SMBH, after binary coalescence in a galaxy merger, can receive kick velocities up to several 1000 km/s due to anisotropic emission of gravitational waves. Long-lived oscillations of the SMBHs in galaxy cores, and in rare cases even SMBH ejections from their host galaxies, are the consequence. Observationally, accreting recoiling SMBHs would appear as quasars spatially and/or kinematically offset from their host galaxies. The presence of the “kicks” has a wide range of astrophysical implications which only now are beginning to be explored, including consequences for black hole and galaxy assembly at the epoch of structure formation, black hole feeding, and unified models of active galactic nuclei (AGN. Here, we review the observational signatures of recoiling SMBHs and the properties of the first candidates which have emerged, including follow-up studies of the candidate recoiling SMBH of SDSSJ092712.65+294344.0.

  5. The recoil proton polarization in πp elastic scattering

    International Nuclear Information System (INIS)

    The polarization of the recoil proton for π+p and π-p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P3 East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 107 π-'s/sec and from 3.0 to 10.0 x 107 π+'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs

  6. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  7. Lattice vibration modes in type-II superlattice InAs/GaSb with no-common-atom interface and overlapping vibration spectra

    Science.gov (United States)

    Liu, Henan; Yue, Naili; Zhang, Yong; Qiao, Pengfei; Zuo, Daniel; Kesler, Ben; Chuang, Shun Lien; Ryou, Jae-Hyun; Justice, James D.; Dupuis, Russell

    2015-06-01

    Heterostructures like InAs /GaSb superlattices (SLs) are distinctly different from well-studied ones like GaAs /AlAs SLs in terms of band alignment, common interface atom, and phonon spectrum overlapping of the constituents, which manifests as stark differences in their electronic and vibrational properties. This paper reports a comprehensive examination of all four types of phonon modes (confined, quasiconfined, extended, and interface) that have long been predicted for the InAs /GaSb SL, with the observation and interpretation of a set of phonon modes by performing cleaved edge μ -Raman study with polarization analysis. Furthermore, we show a signature of symmetry reduction from D2 d for GaAs /AlAs SL to C2 v for InAs/GaSb SL revealed as a phonon-polariton effect.

  8. An Evaluation of Magneto Rheological Dampers for Controlling Gun Recoil Dynamics

    Directory of Open Access Journals (Sweden)

    Mehdi Ahmadian

    2001-01-01

    Full Text Available The application of magneto rheological dampers for controlling recoil dynamics is examined, using a recoil demonstrator that includes a single-shot 50 caliber BMG rifle action and a MR damper. The demonstrator is selected such that it can adequately represent the velocities that commonly occur in weapons with a recoil system, and can be used for collecting data for analyzing the effects of MR dampers on recoil dynamics. The MR damper is designed so that it can work effectively at the large velocities commonly occurring in gun recoil, and also be easily adjusted to reasonably optimize the damper performance for the recoil demonstrator. The test results show that it is indeed possible to design and use MR dampers for recoil applications, which subject the damper to relative velocities far larger than the applications that such dampers have commonly been used for (i.e., vehicle applications. Further, the results indicate that the recoil force increases and the recoil stroke decreases nonlinearly with an increase in the damping force. Also of significance is the fact that the adjustability of MR dampers can be used in a closed-loop system such that the large recoil forces that commonly occur upon firing the gun are avoided and, simultaneously, the recoil stroke is reduced. This study points to the need for several areas of research including establishing the performance capabilities for MR dampers for gun recoil applications in an exact manner, and the potential use of such dampers for a fire out of battery recoil system.

  9. Spectra Statistics for the Odd-Odd Nucleus 86Nb

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ren-Rong; ZHU Shun-Quan; CHENG Nan-Pu

    2001-01-01

    The energy levels of the odd-odd nucleus 86 Nb at low spins are calculated by using quasi-particles plus a rotor model. The distribution of the nearest-neighbour spacing and the spectral rigidity are studied. We find that the chaotic degree of the energy spectra increases with the increasing spin and reaches a maximum at I = 10; then it decreases gradually for spins above I = 10. The recoil term in the model Haniltonian makes the energy spectra slightly regular. The Coriolis force, however, makes the spectra chaotic and plays a major role in the spectral statistics of the odd-odd nucleus 86Nb.

  10. Large-momentum-transfer Bragg interferometer with strontium atoms

    CERN Document Server

    Mazzoni, T; Del Aguila, R; Salvi, L; Poli, N; Tino, G M

    2015-01-01

    We report on the first atom interferometer based on Bragg diffraction in a fountain of alkaline-earth atoms, namely $^{88}$Sr. We demonstrate large momentum transfer to the atoms up to eight photon recoils and the use of the interferometer as a gravimeter with a sensitivity $\\delta g/g=4\\times 10^{-8}$. Thanks to the special characteristics of strontium atoms for precision measurements, this result opens a new way for experiments in fundamental and applied physics.

  11. Influence of inelastic collisions with hydrogen atoms on the formation of AlI and SiI lines in stellar spectra

    Science.gov (United States)

    Mashonkina, L. I.; Belyaev, A. K.; Shi, J.-R.

    2016-06-01

    We have performed calculations by abandoning the assumption of local thermodynamic equilibrium (within the so-called non-LTE approach) for Al I and Si I with model atmospheres corresponding to stars of spectral types F-G-Kwith differentmetal abundances. To take into account inelastic collisions with hydrogen atoms, for the first time we have applied the cross sections calculated by Belyaev et al. using model approaches within the formalism of the Born-Oppenheimer quantum theory. We show that for Al I non-LTE leads to higher ionization (overionization) than in LTE in the spectral line formation region and to a weakening of spectral lines, which is consistent with earlier non-LTE studies. However, our results, especially for the subordinate lines, differ quantitatively from the results of predecessors. Owing to their large cross sections, the ion-pair production and mutual neutralization processes Al I( nl) + HI(1 s) ↔ Al II(3 s 2) + H- provide a close coupling of highly excited Al I levels with the Al II ground state, which causes the deviations from the equilibrium level population to decrease compared to the calculations where the collisions only with electrons are taken into account. For three moderately metal-deficient dwarf stars, the aluminum abundance has been determined from seven Al I lines in different models of their formation. Under the assumption of LTE and in non-LTE calculations including the collisions only with electrons, the Al I 3961 ˚A resonance line gives a systematically lower abundance than the mean abundance from the subordinate lines, by 0.25-0.45 dex. The difference for each star is removed by taking into account the collisions with hydrogen atoms, and the rms error of the abundance derived from all seven Al I lines decreases by a factor of 1.5-3 compared to the LTE analysis. We have calculated the non- LTE corrections to the abundance for six subordinate Al I lines as a function of the effective temperature (4500 K ≤ T eff ≤ 6500 K

  12. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  13. Nuclear recoil detection in liquid argon using a two-phase CRAD and DD neutron generator

    International Nuclear Information System (INIS)

    The detection of nuclear recoils in noble liquids using neutron elastic scattering off nuclei is relevant in the field of calibration of rare-event detectors for dark matter search and coherent neutrino-nucleus scattering experiments. We present here the first results on nuclear recoil detection in liquid Ar, using a two-phase Cryogenic Avalanche Detector (CRAD) and DD neutron generator. The technique to select the nuclear recoils for backward neutron scattering has been demonstrated

  14. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  15. Recoil ion charge state distribution following the beta(sup +) decay of 21Na

    International Nuclear Information System (INIS)

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions

  16. Atmospheric chemistry of (CF3)2C=CH2: OH radicals, Cl atoms and O3 rate coefficients, oxidation end-products and IR spectra.

    Science.gov (United States)

    Papadimitriou, Vassileios C; Spitieri, Christina S; Papagiannakopoulos, Panos; Cazaunau, Mathieu; Lendar, Maria; Daële, Véronique; Mellouki, Abdelwahid

    2015-10-14

    The rate coefficients for the gas phase reactions of OH radicals, k1, Cl atoms, k2, and O3, k3, with 3,3,3-trifluoro-2(trifluoromethyl)-1-propene ((CF3)2C=CH2, hexafluoroisobutylene, HFIB) were determined at room temperature and atmospheric pressure employing the relative rate method and using two atmospheric simulation chambers and a static photochemical reactor. OH and Cl rate coefficients obtained by both techniques were indistinguishable, within experimental precision, and the average values were k1 = (7.82 ± 0.55) × 10(-13) cm(3) molecule(-1) s(-1) and k2 = (3.45 ± 0.24) × 10(-11) cm(3) molecule(-1) s(-1), respectively. The quoted uncertainties are at 95% level of confidence and include the estimated systematic uncertainties. An upper limit for the O3 rate coefficient was determined to be k3 global warming potential (GWP) calculations, radiative efficiency (RE) was determined from the measured IR absorption cross-sections and treating HFIB both as long (LLC) and short (SLC) lived compounds, including estimated lifetime dependent factors in the SLC case. The HFIB lifetime was estimated from kinetic measurements considering merely the OH reaction, τOH = 14.8 days and including both OH and Cl chemistry, τeff = 10.3 days. Therefore, GWP(HFIB,OH) and GWP(HFIB,eff) were estimated to be 4.1 (LLC) and 0.6 (SLC), as well as 2.8 (LLC) and 0.3 (SLC) for a hundred year time horizon. Moreover, the estimated photochemical ozone creation potential (ε(POCP)) of HFIB was calculated to be 4.60. Finally, HCHO and (CF3)2C(O) were identified as final oxidation products in both OH- and Cl-initiated oxidation, while HC(O)Cl was additionally observed in the Cl-initiated oxidation. PMID:26372403

  17. Low energy recoil detection with a spherical proportional counter

    OpenAIRE

    I. Savvidis; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.

    2016-01-01

    We present low energy recoil detection results in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An ${}^{241}Am-{}^{9}{Be}$ fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the $keV$ energy region was resolved by observing the $5.9\\ keV$ line of a ${}^{55}Fe$ X-ray source, with energy resolution of $9\\%$ ($\\sigma$). The toolkit GEANT...

  18. Is CHF triggered by the vapor recoil effect?

    CERN Document Server

    Nikolayev, Vadim S; Chatain, D

    2007-01-01

    This paper deals with the triggering mechanism of the boiling crisis, a transition from nucleate to film boiling. We observe the boiling crisis in pool saturated boiling experimentally at nearly critical pressure to take advantage of the slowness of the bubble growth and of the smallness of the Critical Heat Flux (CHF) that defines the transition point. Such experiments require the reduced gravity conditions. Close to the CHF, the slow growth of the individual dry spots and their subsequent fusion on the transparent heater are observed through the latter. As discussed in the paper, these observations are consistent with numerical results obtained with the vapor recoil model of the boiling crisis.

  19. Bolometric detection of the recoil spectrum in the alpha decay of 210Po

    International Nuclear Information System (INIS)

    Bolometers at low temperature are being developed as particle spectrometers and potential detectors of dark matter particles through the measurement of recoil energies. A successful observation of the recoil spectrum from a Po electrodeposited source was made for the first time with the use of a 2 mm3 composite-composite diamond bolometer operated in a 300 mK cryostat. The measured recoil ratio is 0.98±0.06 recoil/alpha above 50 keV, with the well defined peak in the spectrum at 101±2.5 keV. ((orig.))

  20. Recoil-decay tagging spectroscopy of W-162(74)88

    OpenAIRE

    Li, Hongjie; Cederwall, Bo; Bäck, Torbjörn; Qi, Chong; Doncel, Maria; Jakobsson, Ulrika; Auranen, K; Boenig, S.; Drummond, M. C.; Grahn, T.; Greenlees, P.; Herzan, A.; Julin, R.; Juutinen, S.; Konki, J.

    2015-01-01

    Excited states in the highly neutron-deficient nucleus W-162 have been investigated via the Mo-92(Kr-78, 2 alpha) W-162 reaction. Prompt gamma rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. gamma rays from W-162 were identified uniq...

  1. Modeling of neutron elastic scattering energy deposition in proton recoil counters

    International Nuclear Information System (INIS)

    For the purpose of determining the neutron energy deposition in proton-recoil detectors, a model based on the multigroup transport theory is developed. The matrix of the averaged recoil nucleus energies represents the entire process of neutron kinetic energy transfer to the target nuclei. The averaged energy recoil nucleus receive is correspondent to the energy loss of a neutron that suffers collision within detector volume. The necessary algorithm for the matrix elements determination is developed. Computer code EESCAT is developed to calculate elastic scattering matrices and recoil nucleus energies received from elastically scattered neutrons. (author)

  2. An Evaluation of Magneto Rheological Dampers for Controlling Gun Recoil Dynamics

    OpenAIRE

    Mehdi Ahmadian; Poynor, James C.

    2001-01-01

    The application of magneto rheological dampers for controlling recoil dynamics is examined, using a recoil demonstrator that includes a single-shot 50 caliber BMG rifle action and a MR damper. The demonstrator is selected such that it can adequately represent the velocities that commonly occur in weapons with a recoil system, and can be used for collecting data for analyzing the effects of MR dampers on recoil dynamics. The MR damper is designed so that it can work effectively at the large ve...

  3. Measurements of the ballistic phonon component resulting from nuclear recoils in crystalline silicon

    International Nuclear Information System (INIS)

    We present evidence that nuclear recoils in silicon at cryogenic temperatures result in a larger ballistic component of phonons than do equal-energy electron recoils. A 300 μm thick crystal of pure silicon was instrumented on both sides with superconducting titanium transition-edge sensors, and the phonon ballistic energy fraction was determined by measuring phonon focusing effects. Comparison of the data with simulations indicates that this fraction is 1.49-0.26+0.34 times higher (at 68% confidence level) for nuclear recoils than for electron recoils

  4. Cavity atom optics and the `free atom laser'

    OpenAIRE

    Heurich, J.; Moore, M. G.; Meystre, P.

    1999-01-01

    The trap environment in which Bose-Einstein condensates are generated and/or stored strongly influences the way they interact with light. The situation is analogous to cavity QED in quantum optics, except that in the present case, one tailors the matter-wave mode density rather than the density of modes of the optical field. Just as in QED, for short times, the atoms do not sense the trap and propagate as in free space. After times long enough that recoiling atoms can probe the trap environme...

  5. The XMM-Newton spectrum of a candidate recoiling supermassive black hole: An elusive inverted P-Cygni profile

    International Nuclear Information System (INIS)

    We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ∼6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the new long XMM-Newton observation, while the overall spectral shape remains constant, the continuum 2-10 keV flux decrease of ∼20% with respect to previous observation and the absorption line is undetected. The upper limit on the intensity of the absorption line is EW < 162 eV. Extensive Monte Carlo simulations show that the nondetection of the line is solely due to variation in the properties of the inflowing material, in agreement with the transient nature of these features, and that the intensity of the line is lower than the previously measured with a probability of 98.8%. In the scenario of CID-42 as a recoiling SMBH, the absorption line can be interpreted as being due to an inflow of gas with variable density that is located in the proximity of the SMBH and recoiling with it. New monitoring observations will be requested to further characterize this line.

  6. Sub-recoil cooling up to nano-Kelvin. Direct measurement of spatial coherency length. New tests for Levy statistics; Refroidissement laser subrecul au nanokelvin. Mesure directe de la longueur de coherence spatiale. Nouveaux tests des statistiques de Levy

    Energy Technology Data Exchange (ETDEWEB)

    Saubamea, B

    1998-12-15

    This thesis presents a new method to measure the temperature of ultracold atoms from the spatial autocorrelation function of the atomic wave-packets. We thus determine the temperature of metastable helium-4 atoms cooled by velocity selective dark resonance, a method known to cool the atoms below the temperature related to the emission or the absorption of a single photon by an atom at rest, namely the recoil temperature. This cooling mechanism prepares each atom in a coherent superposition of two wave-packets with opposite mean momenta, which are initially superimposed and then drift apart. By measuring the temporal decay of their overlap, we have access to the Fourier transform of the momentum distribution of the atoms. Using this method, we can measure temperatures as low as 5 nK, 800 times as small as the recoil temperature. Moreover we study in detail the exact shape of the momentum distribution and compare the experimental results with two different theoretical approaches: a quantum Monte Carlo simulation and an analytical model based on Levy statistics. We compare the calculated line shape with the one deduced from simulations, and each theoretical model with experimental data. A very good agreement is found with each approach. We thus demonstrate the validity of the statistical model of sub-recoil cooling and give the first experimental evidence of some of its characteristics: the absence of steady-state, the self-similarity and the non Lorentzian shape of the momentum distribution of the cooled atoms. All these aspects are related to the non ergodicity of sub-recoil cooling. (author)

  7. FTIR spectra

    Czech Academy of Sciences Publication Activity Database

    Machovič, Vladimír; Novák, František; Madronová, L.; Novák, J.

    New York : Nova Science Publisher, 2011 - (Madronová, L.), s. 21-33 ISBN 978-1-61668-965-0. - ( Chemistry Research and Applications) Institutional research plan: CEZ:AV0Z30460519; CEZ:AV0Z60660521 Keywords : FTIR spectra * humic acids * soil Subject RIV: DB - Geology ; Mineralogy

  8. Spectral flux of the p-7Li(C Q-M neutron source measured by proton recoil telescope

    Directory of Open Access Journals (Sweden)

    Simakov S.P.

    2010-10-01

    Full Text Available The cyclotron-based fast neutron source at NPI produces mono-energetic neutron fields up to 35 MeV neutron energy using the p + 7Li(carbon backing reactions. To be applied for activation cross-section measurements, not only the intensity of neutron peak, but also the contribution of low-energy continuum in the spectra must be well determined. Simulations of the spectral flux from present source at a position of irradiated samples were performed using CYRIC TOF-data validated in the present work against LA150h by calculations with the transport Monte Carlo code MCNPX. Simulated spectra were tested by absolute measurements using a proton-recoil telescope technique. The recoil-proton spectrometer consisted of a shielded scattering chamber with polyethylene and carbon radiators and the ΔE1-ΔE2-E telescope of silicon-surface detectors located to the neutron beam axis at 45° in the laboratory system. Si-detectors were handled by usual data acquisition system. Dead-time – and pulse-overlap losses of events were determined from the count rate of pulse generator registered during duty cycle of accelerator operation. The proton beam charge and data were taken in the list mode for later replay and analysis. The calculations for 7Li(p,n and 12C(p,n reactions reasonably reproduce CYRIC TOF neutron source spectra. The influence of neutron source set-up (proton beam dimensions, 7Li-foil, carbon stopper, cooling medium, target support/chamber and the geometry-arrangement of irradiated sample on the spectral flux is discussed in details.

  9. Heavy-to-light baryonic form factors at large recoil

    CERN Document Server

    Mannel, Thomas

    2011-01-01

    We analyze heavy-to-light baryonic form factors at large recoil and derive the scaling behavior of these form factors in the heavy quark limit. It is shown that only one universal form factor is needed to parameterize Lambda_b to p and Lambda_b to Lambda matrix elements in the large recoil limit of light baryons, while hadronic matrix elements of Lambda_b to Sigma transition vanish in the large energy limit of Sigma baryon due to the space-time parity symmetry. The scaling law of the soft form factor eta(P^{\\prime} \\cdot v), P^{\\prime} and v being the momentum of nucleon and the velocity of Lambda_b baryon, responsible for Lambda_b to p transitions is also derived using the nucleon distribution amplitudes in leading conformal spin. In particular, we verify that this scaling behavior is in full agreement with that from light-cone sum rule approach in the heavy-quark limit. With these form factors, we further investigate the Lambda baryon polarization asymmetry alpha in Lambda_b to Lambda gamma and the forward-...

  10. Binary Black Holes: Spin Dynamics and Gravitational Recoil

    CERN Document Server

    Herrmann, Frank; Shoemaker, Deirdre M; Laguna, Pablo; Matzner, Richard A

    2007-01-01

    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are anti-aligned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with anti-aligned spins to fit the parameters in the Kidder kick formula, and verify that the recoil along the direction of the orbital angular momentum is proportional to $\\sin\\theta$ and on the orbital plane to $\\cos\\theta$, with $\\theta$ the angle between the spin directions and the orbital angular momentum.

  11. Low energy recoil detection with a spherical proportional counter

    CERN Document Server

    Savvidis, I; Eleftheriadis, C; Giomataris, I; Papaevangellou, T

    2016-01-01

    We present low energy recoil detection results in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An ${}^{241}Am-{}^{9}{Be}$ fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the $keV$ energy region was resolved by observing the $5.9\\ keV$ line of a ${}^{55}Fe$ X-ray source, with energy resolution of $9\\%$ ($\\sigma$). The toolkit GEANT4 was used to simulate the irradiation of the detector by an ${}^{241}Am-{}^{9}{Be}$ source, while SRIM was used to calculate the Ionization Quenching Factor (IQF). The GEANT4 simulated energy deposition spectrum in addition with the SRIM calculated quenching factor provide valuable insight to the experimental results. The performance of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searc...

  12. Study of the gas phase hot atom chemistry using THOR

    International Nuclear Information System (INIS)

    Reactions of recoil tritium and chlorine atoms in the gas phase have been studied using the facility at Tsing Hua Open-pool Reactor (THOR). The C2H3T yield, due to unimolecular reaction of the excited CH4THO* or C2H3T* molecules, is decreased with increasing pressure in the T + C2H5OH system. The yield of H38Cl is found in the range of 3 - 17 % based on CF3Cl/C2H4 ratio in the recoil 38Cl atom with ethylene system. (author)

  13. Calculations of Total and Differential Solid Angles for a Proton Recoil Solid State Detector

    International Nuclear Information System (INIS)

    The solid angles have been computed for a proton recoil counter consisting of a circular hydrogenous foil viewed by an isotropic neutron point source at different distances from the target foil. Tables are given for the total subtended solid angle as well as the differential energy distribution function of the proton recoil spectrum. The influence of finite foil thickness has also been studied

  14. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    Science.gov (United States)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  15. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    International Nuclear Information System (INIS)

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events. (paper)

  16. Monitoring of physics performance of ILC Software based on Higgs Recoil Mass

    Science.gov (United States)

    Volkova, E.; Voutsinas, G.

    2016-02-01

    We discuss a part of ILC software development, that allow us to make automated testing of ILC results. The testing code consists of automated everyday Higgs recoil mass analysis and compares Higgs recoil mass with one of the previous day result. This code uses the result of generation, Mokka simulation and Marlin reconstruction of ILC events.

  17. Use of nuclear recoil for separating 228Ra, 224Ra, and 233Pa from colloidal thorium

    International Nuclear Information System (INIS)

    By using α-recoil it is possible to separate by dialysis the α disintegration products (224 Ra; 228 Ra) of thorium from colloidal thorium hydroxide.The use of n, γ recoil allows the separation of 233Pa produced by the neutron irradiation of thorium, on condition that the colloidal thorium hydroxide is irradiated in the presence of a dispersing. (author)

  18. Mass attenuation coefficient (μ/ρ), effective atomic number (Z{sub eff}) and measurement of x-ray energy spectra using based calcium phosphate biomaterials: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Z, M. A.; Da Silva, T. A.; Nogueira, M. S. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Goncalves Z, E., E-mail: madelon@cdtn.br [Pontifice Catholic University of Minas Gerais, Av. Dom Jose Gaspar 500, Belo Horizonte 30535-901, Minas Gerais (Brazil)

    2015-10-15

    In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Z{sub eff} of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Z{sub eff} using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)

  19. Commissioning of the recoil silicon detector for the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pickert, N.C.

    2008-02-15

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  20. Commissioning of the recoil silicon detector for the HERMES experiment

    International Nuclear Information System (INIS)

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  1. Recoil induced room temperature stable Frenkel pairs in α-hafnium upon thermal neutron capture

    International Nuclear Information System (INIS)

    Ultrapure hafnium metal (110 ppm zirconium) was neutron activated with a thermal neutron flux of 6.6 . 1012cm-2s-1 in order to obtain 181Hf for subsequent time differential perturbed angular correlation (TDPAC) experiments using the nuclear probe 181Hf(β-)181Ta. Apart from the expected nuclear quadrupole interaction (NQI) signal for a hexagonal close-packed (hcp) metal, three further discrete NQIs were observed with a few percent fraction each. The TDPAC spectra were recorded for up to 11 half lives with extreme statistical accuracy. The fitted parameters vary slightly within the temperature range between 248 K and 373 K. The signals corresponding to the three additional sites completely disappear after 'annealing' at 453 K for one minute. Based on the symmetry of the additional NQIs and their temperature dependencies, they are tentatively attributed to Frenkel pairs produced by recoil due to the emission of a prompt 5.694 MeV γ-ray following thermal neutron capture and reported by the nuclear probe in three different positions. These Frenkel pairs are stable up to at least 373 K. (orig.)

  2. On the line-shape and lifetime determination in recoil distance Doppler-shift measurements

    CERN Document Server

    Petkov, P; Gableske, J; Dewald, A; Klemme, T; Brentano, P V

    1999-01-01

    A method for the calculation of the gamma-ray line-shapes observed in recoil distance Doppler-shift measurements of nuclear lifetimes is presented emphasising the case where a gate is set on a transition which feeds directly the level of interest. A description of such coincidence spectra is proposed for the first time. It is shown that a successful reproduction of the data requires to take into account the emission of gamma-rays during the slowing-down of the ions in the stopper if the investigated lifetime is shorter than or comparable to the slowing-down time. The corresponding formalism for lifetime determination in the framework of the differential decay-curve method is developed. The new approach is illustrated by an application to experimental data obtained in the sup 1 sup 1 sup 0 Pd( sup 2 sup 8 Si, 4n) sup 1 sup 3 sup 4 Nd reaction at a beam energy of 125 MeV. (author)

  3. Impact of Low-Energy Response to Nuclear Recoils in Dark Matter Detectors

    CERN Document Server

    Mei, D -M; Wang, L

    2015-01-01

    We report an absolute energy response function to electronic and nuclear recoils for germanium and liquid xenon detectors. As a result, we show that the detection energy threshold of nuclear recoils for a dual-phase xenon detector can be $\\sim$ 6.8 keV for a given number of detectable photoelectrons. We evaluate the average energy expended per electron-hole pair to be $\\sim$8.9 eV, which sets a detection energy threshold of $\\sim$4.5 keV for a germanium detector at 50 mini-Kelvin at 69 volts with a primary phonon frequency of 2 THz. The Fano factors of nuclear and electronic recoils that constrain the capability for discriminating nuclear recoils below 2-3 keV recoil energy for both technologies are different.

  4. Gravitational Wave Recoil Oscillations of Black Holes: Implications for Unified Models of Active Galactic Nuclei

    CERN Document Server

    Komossa, S

    2008-01-01

    We consider the consequences of gravitational wave recoil for unified models of active galactic nuclei (AGNs). Spatial oscillations of supermassive black holes (SMBHs) around the cores of galaxies following gravitational wave (GW) recoil imply that the SMBHs spend a significant fraction of time off-nucleus, at scales beyond that of the molecular obscuring torus. Assuming reasonable distributions of recoil velocities, we compute the off-core timescale of (intrinsically type-2) quasars. We find that roughly one-half of major mergers result in a SMBH being displaced beyond the torus for a time of 30 Myr or more, comparable to quasar activity timescales. Since major mergers are most strongly affected by GW recoil, our results imply a deficiency of type 2 quasars in comparison to Seyfert 2 galaxies. Other consequences of the recoil oscillations for the observable properties of AGNs are also discussed.

  5. Linear momentum transfer in complete and incomplete fusion of 16O with 175Lu: forward recoil range distribution measurements

    International Nuclear Information System (INIS)

    In the present work, forward recoil range distributions of some evaporation residues recoiled in thin Al-catcher foils, have been measured and the results are interpreted in terms on complete fusion (CF) and incomplete fusion (ICF) reactions

  6. Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector

    OpenAIRE

    Chavarria, A. E.; Collar, J. I.; Pena, J.; Privitera, P.; Robinson, A E; Scholz, B.; Sengul, C.; Zhou, J.; Estrada, J.; Izraelevitch, F.; Tiffenberg, J.; Neto, J. R. T. de Mello(Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil); Machado, D. Torres

    2016-01-01

    We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils were produced by low-energy neutrons ($

  7. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    International Nuclear Information System (INIS)

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to the stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atoms and a  <1 0 0>  split interstitial is produced in pure Ni by the recoils, while only the  <1 0 0>  split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation. (paper)

  8. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Tenzing Henry Yatish [Univ. of California, Berkeley, CA (United States)

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  9. Computer simulation of disordering and amorphization by Si and Au recoils in 3C--SiC

    International Nuclear Information System (INIS)

    Molecular dynamics has been employed to study the disordering and amorphization processes in SiC irradiated with Si and Au ions. The large disordered domains, consisting of interstitials and antisite defects, are created in the cascades produced by Au primary knock-on atoms (PKAs); whereas Si PKAs generate only small interstitial clusters, with most defects being single interstitials and vacancies distributed over a large region. No evidence of amorphization is found at the end of the cascades created by Si recoils. However, the structure analysis indicates that the large disordered domains generated by Au recoils can be defined as an amorphous cluster lacking long-range order. The driving force for amorphization in this material is due to the local accumulation of Frenkel pairs and antisite defects. These results are in good agreement with experimental evidence, i.e., the observed higher disordering rate and the residual disorder after annealing for irradiation with Au2+ are associated with a higher probability for the in-cascade amorphization or formation of a large disordered cluster

  10. Spectroscopy of 144Ho using recoil-isomer tagging

    International Nuclear Information System (INIS)

    Excited states in the proton-unbound odd-odd nucleus 144Ho have been populated using the 92Mo(54Fe,pn)144Ho reaction and studied using the recoil-isomer-tagging technique. The alignment properties and signature splitting of the rotational band above the Iπ=(8+)144mHo isomer have been analyzed and the isomer confirmed to have a πh11/2 x νh11/2 two-quasiparticle configuration. The configuration-constrained blocking method has been used to calculate the shapes of the ground and isomeric states, which are both predicted to have triaxial nuclear shapes with |γ|≅24 deg.

  11. Recoil Polarization for Delta Excitation in Pion Electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Kelly; R. E. Roche; Z. Chai; M. K. Jones; O. Gayou; A. J. Sarty; S. Frullani; K. Aniol; E. J. Beise; F. Benmokhtar; W. Bertozzi; W. U. Boeglin; T. Botto; E. J. Brash; H. Breuer; E. Brown; E. Burtin; J. R. Calarco; C. Cavata; C. C. Chang; N. S. Chant; J.-P. Chen; M. Coman; D. Crovelli; R. De Leo; S. Dieterich; S. Escoffier; K. G. Fissum; V. Garde; F. Garibaldi; S. Georgakopoulus; S. Gilad; R. Gilman; C. Glashausser; J.-O. Hansen; D. W. Higinbotham; A. Hotta; G. M. Huber; H. Ibrahim; M. Iodice; C. W. de Jager; X. Jiang; A. Klimenko; A. Kozlov; G. Kumbartzki; M. Kuss; L. Lagamba; G. Laveissiere; J. J. LeRose; R. A. Lindgren; N. Liyanage; G. J. Lolos; R. W. Lourie; D. J. Margaziotis; F. Marie; P. Markowitz; S. McAleer; D. Meekins; R. Michaels; B. D. Milbrath; J. Mitchell; J. Nappa; D. Neyret; C. F. Perdrisat; M. Potokar; V. A. Punjabi; T. Pussieux; R. D. Ransome; P. G. Roos; M. Rvachev; A. Saha; S. Sirca; R. Suleiman; S. Strauch; J. A. Templon; L. Todor; P. E. Ulmer; G. M. Urciuoli; L. B. Weinstein; K. Wijesooriya; B. Wojtsekhowski; X. Zheng; and L. Zhu

    2005-08-01

    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q{sup 2}=1.0 (GeV/c){sup 2}, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and sp truncation.

  12. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  13. B -> K(*) l+ l- @ Low Recoil and Physics Implications

    CERN Document Server

    Hiller, Gudrun

    2013-01-01

    This talk covers recent theoretical progress in exclusive semileptonic rare B-decays at low hadronic recoil. The efficient parametric suppression of the 1/mb corrections in this region provides opportunities to probe the Standard Model and beyond at precision level. Notably, angular analysis allows to simultaneously access electroweak flavor physics and hadronic matrix elements, the latter of which constitute the leading source of theoretical uncertainty. Ratios of B ->K* form factors can already be extracted from present data. A comparison with existing theoretical determinations by lattice QCD and light cone sum rules gives a consistent picture over the whole kinematic range. In the future improved analyses will advance our understanding of non-perturbative methods for QCD and of |Delta B|=1 transitions.

  14. Measurement of the neutron electric form factor via recoil polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    T. Reichelt; R. Madey; A.Yu. Semenov; S. Taylor; A. Aghalarian; E. Crouse; G. MacLachlan; B. Plaster; S. Tajima; W. Tireman; C.Y. Yan; A. Ahmidouch; B.D. Anderson; R. Asaturian; O. Baker; A.R. Baldwin; H. Breuer; R. Carlini; E. Christy; S. Churchwell; L. Cole; S. Danagulian; D. Day; M. Elaasar; R. Ent; M. Farkhondeh; H. Fenker; J.M. Finn; L. Gan; K. Garrow; P. Gueye; C. Howell; B. Hu; M.K. Jones; J.J. Kelly; C. Keppel; M. Khandaker; W.Y. Kim; S. Kowalski; A. Lung; D. Mack; D.M. Manley; P. Markowitz; J. Mitchell; H. Mkrtchian; A.K. Opper; C. Perdrisat; V. Punjabi; B. Raue; J. Reinhold; J. Roche; Y. Sato; W. Seo; N. Simicevic; G. Smith; S. Stepanian; V. Tadevosian; L. Tang; P. Ulmer; W. Vulcan; J.W. Watson; S. Wells; F. Wesselmann; S. Wood; C. Yan; S. Yang; L. Yuan; W.M. Zhang; H. Zhu; X. Zhu; H. Arenhovel

    2003-10-22

    The ratio G{sub c}{sup n}/G{sub m}{sup n} of the electric to the magnetic form factor of the neutron has been measured by analyzing the polarization of the recoiling neutron in quasi-elastic scattering of longitudinally polarized electrons from deuterium at the Q{sup 2} values of 0.45, 1.15, and 1.47 (GeV/c){sup 2}. The experiment has been performed in Hall C of the Thomas Jefferson National Accelerator Facility. With G{sub m}{sup n} being known G can be deduced. The preliminary results show that the lowest Q{sup 2} points follow the Galster parameterization and that the 1.47 (GeV/c){sup 2} point rises above this parameterization.

  15. Recoil distance lifetimes of rotational states in 236U

    International Nuclear Information System (INIS)

    Half-lives for members of the 236U ground-state rotational band have been measured by the recoil-distance method following Coulomb excitation with 40Ar8+ projectiles. The B (E2, I→I-2) values in units of e2 b2 determined from the half-lives of the 4+, 6+, 8+, 10+, and 12+ states are 3.03+-0.20, 3.28+-0.19, 3.42+-0.28, 3.11+-0.30, and 3.34+2.23/sub em-dash//sub 0//sub .9//sub 5/, respectively. Transition quadrupole moments Q20(I/subi/→I/subf/) deduced from the lifetimes are constant within experimental error and thus support the characterization of 236U as a good rotor to spin 12+

  16. On the Superposition and Elastic Recoil of Electromagnetic Waves

    CERN Document Server

    Schantz, Hans G

    2014-01-01

    Superposition demands that a linear combination of solutions to an electromagnetic problem also be a solution. This paper analyzes some very simple problems: the constructive and destructive interferences of short impulse voltage and current waves along an ideal free-space transmission line. When voltage waves constructively interfere, the superposition has twice the electrical energy of the individual waveforms because current goes to zero, converting magnetic to electrical energy. When voltage waves destructively interfere, the superposition has no electrical energy because it transforms to magnetic energy. Although the impedance of the individual waves is that of free space, a superposition of waves may exhibit arbitrary impedance. Further, interferences of identical waveforms allow no energy transfer between opposite ends of a transmission line. The waves appear to recoil elastically one from another. Although alternate interpretations are possible, these appear less likely. Similar phenomenology arises i...

  17. Investigation of fractional momentum transfer: measurement of forward recoil ranges in 16O + natTm collisions

    International Nuclear Information System (INIS)

    For better understanding of complete fusion and incomplete fusion in heavy ion reactions a programme of precise measurements of excitation functions, recoil range distribution and angular distributions of recoils has been undertaken. In the present contribution the recoil range distribution for the residues have been measured at ≅ 6 MeV/nucleon, using recoil-catcher technique followed by off-line gamma-spectroscopy

  18. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huajie [Princeton Univ., NJ (United States)

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  19. Investigation of characteristics and realization of nucleus recoil method on fast neutrons for study the hydrogen-material system

    International Nuclear Information System (INIS)

    The method of studying sorption and diffusion of hydrogen isotopes in different materials was elaborated. The method is based on the measurements of concentration distributions of hydrogen on energy spectra of recoil nuclei formed during interaction of 14 MeV neutrons with hydrogen containing in samples investigated. The experimental apparatus on the basis of neutron generator and registration system using PC computer and corresponding software were created. The movement of the front of α-β phase transition during hydrogen and deuterium diffusion in palladium membrane was observed as well as anomalous temperature behaviour of gas diffusion through membrane at inverse β-α transition. (A.A.D.). 8 refs., 6 figs

  20. Collisional and radiative processes in atomic spectra

    International Nuclear Information System (INIS)

    Pressure broadening measurements of the 6s6p3P1-6s21S0 intercombination line of the rare earth element ytterbium perturbed by the noble gases helium, neon, argon and krypton were made within the impact region using a single frequency scanning dye laser. The fluorescence was measured directly from the transition and the broadening measurements have given cross sections of 87.31 ± 0.44, 95.63 ± 0.89, 190.5 ± 2.3 and 269 ± 1.8 x 10-20m2 and C6 coefficients of 4.389 ± 0.059, 2.638 ± 0.065, 10.93 ± 0.35 and 20.34 ± 0.36 x 10-78Jm6 for each perturber respectively. These measurements are discussed in the context of published values for other 3P1-1S0 rare gas broadened transitions. The van der Waals interaction law was found to be only applicable for the argon and krypton perturbers. (author)

  1. Studies of collisional effects in atomic spectra

    International Nuclear Information System (INIS)

    The broadening and shift due to collisions with helium and argon of the neutral calcium line lambda4227A and the Ca+ resonance lines lambda3968 and 3933A (the solar H-and K-lines) has been measured together with the broadening due to collisions with helium and argon of the associated lines lambda8542 and 8662A. The very nearly equal broadenings of the H-and K-Lines and the corresponding infrared lines indicate that the broadening in both multiplets is essentially determined by the common upper configuration. (author)

  2. Corrosion resistance enhancement of SAE 1020 steel after Chromium implantation by nitrogen ion recoil

    Directory of Open Access Journals (Sweden)

    Geraldo Francisco Gomes

    2005-12-01

    Full Text Available SAE 1020 construction steel is widely used as mortar reinforcement and small machine parts, but aside good surface properties as high ductility, hardness and wear resistance, its surface is prone to severe corrosion. As it is known, Chromium in amount over 12%-13% in the Fe alloys renders them resistance to several corrosive attacks. SAE 1020 samples were recovered with Chromium film and then bombarded either by nitrogen Ion Beam (IB or Plasma Immersion Ion Implantation (PIII to recoil implant Cr atoms in the Fe matrix. Samples treated by 100 keV N+ IB showed irregular, thin Cr profile, remaining a part of the film on the surface, to about 10 nm. Samples treated by 40 kV N PIII presented Cr layer of about 18% at., ranging to around 90 nm. Cr of the film was implanted in the Fe matrix in an almost flat profile. Results of corrosion test showed good performance of the PIII treated sample. The IB treated sample showed some enhancement over the non-treated reference and the only Cr film deposited sample showed no modification on the corrosion behavior as compared to the non-treated reference sample.

  3. Scavenger effects on recoil-tritium reactions with 5, 10, 15, 20-tetraphenylporphyrin

    International Nuclear Information System (INIS)

    The chemical reaction of recoil tritium atoms produced in the gaseous phase by 3He(n,p)3H reaction have been studied in the system of powdered CuTPP and H2TPP with and without the addition of O2 scavenger or He moderator. The yields of CH bond decrease in the sequence of CuTPP, H2TPP with O2, while the yield of labile tritium increases. These results indicate that O2 works as a scavenger even in the heterogeneous gas-solid-phase. Since the yields of the benzene ring in the CH bond increase and those of the pyrrole ring decrease with an increase in O2 concentration, the energy range of reaction of tritium with the benzene ring is expected to be higher than that with the pyrrole ring. In the system with a He moderator, the yield of the total CH bond and that of the benzene ring scarcely vary even if He pressure changes remarkably. (orig.)

  4. A high density target of ultracold atoms and momentum resolved measurements of ion-atom collisions

    OpenAIRE

    Götz, Simone Andrea

    2012-01-01

    In this thesis an ultracold high density target with high loading flux in combination with a recoil ion momentum spectrometer (RIMS) is presented. Trapped rubidium atoms serve as a high density target (up to 10¹¹ atoms/cm³) at a temperature of only 200 µK. The target is loaded from a two-dimensional magneto-optical trap (2D MOT), which delivers an atom beam with a brilliance of 8 x 10¹² atoms/(s*rad) and a longitudinal momentum spread of 0.25 a.u.. The great advantage of this source is that t...

  5. Multiphoton ionization of atoms

    International Nuclear Information System (INIS)

    The paper is devoted to the analysis of high intensity effects which result from multiphoton ionization of atoms in a high laser intensity, ranging from 1010 to 1015 W cm-2. Resonant multiphoton ionization of atoms, the production of multiply charged ions, and electron energy spectra, are all discussed. (U.K.)

  6. A Novel method for modeling the recoil in W boson events at hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Abolins, Maris A.; /Michigan State U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Aguilo, Ernest; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, Mahsana; /Kansas State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    We present a new method for modeling the hadronic recoil in W {yields} {ell}{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z {yields} {ell}{ell} data events and overlaid on a simulated W {yields} {ell}{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

  7. Observation of atomic collisions in crystalline solids

    CERN Document Server

    Nelson, R S; Gevers, R

    2013-01-01

    The Observation of Atomic Collisions in Crystalline Solids presents a critical account of the more important experiments which have provided the basis for a better understanding of atomic collision phenomena in crystalline solids. Collisions have been divided into two artificial regimes; primary collisions which deal with the interaction of the incident particles with the solid, and secondary collisions which deal with those events which occur as a result of lattice atoms recoiling from primary encounters. Although the book is intended principally for the experimentalist some simple theoretica

  8. Nuclear recoil correction to the g factor of boron-like argon

    International Nuclear Information System (INIS)

    The nuclear recoil effect to the g factor of boron-like ions is investigated. The one-photon-exchange correction to the nuclear recoil effect is calculated in the nonrelativistic approximation for the nuclear recoil operator and in the Breit approximation for the interelectronic-interaction operator. The screening potential is employed to estimate the higher-order contributions. The updated g-factor values are presented for the ground 2P1/2 and first excited 2P3/2 states of B-like argon 40Ar13+, which are presently being measured by the ARTEMIS group at GSI

  9. Nuclear recoil correction to the g factor of boron-like argon

    CERN Document Server

    Shchepetnov, Arseniy A; Volotka, Andrey V; Shabaev, Vladimir M; Tupitsyn, Ilya I; Plunien, Guenter

    2014-01-01

    The nuclear recoil effect to the g factor of boron-like ions is investigated. The one-photon-exchange correction to the nuclear recoil effect is calculated in the non-relativistic approximation for the nuclear recoil operator and in the Breit approximation for the interelectronic-interaction operator. The screening potential is employed to estimate the higher-order contributions. The updated g-factor values are presented for the ground 2P_1/2 and first excited 2P_3/2 states of B-like argon 40^Ar^13+, which are presently being measured by the ARTEMIS group at GSI.

  10. Use of thin collodion films to prevent recoil-ion contamination of alpha-spectrometry detectors

    International Nuclear Information System (INIS)

    Recoil ions from alpha-particle emission can contaminate surface-barrier detection systems. This contamination results in increased measurement uncertainty, and may require the replacement of expensive detectors. Disposable thin Collodion films are easily prepared and effectively retard the recoil ions when either directly applied to the surface of alpha-sources or as catcher foils between the source and the detector. The thin films are particularly effective for relatively low-level sources, but can sustain structural damage when exposed to high levels of recoil ions (tens of thousands per second) over extended periods of time. (author)

  11. Improved measurement of the 'head-tail' effect in nuclear recoils

    Energy Technology Data Exchange (ETDEWEB)

    Dujmic, D; Fisher, P; Henderson, S; Kaboth, A; Kohse, G; Lanza, R; Monroe, J; Sciolla, G; Vanderspek, R; Yamamoto, R [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ahlen, S; Lewandowska, M; Roccaro, A; Tomita, H [Boston University, Boston, MA 02215 (United States); Skvorodnev, N; Wellenstein, H [Brandeis University, Waltham, MA 02454 (United States)], E-mail: ddujmic@mit.edu

    2008-07-15

    We present new results with a prototype detector that is being developed by the DMTPC collaboration for the measurement of the direction tag ('head-tail') of dark matter wind. We use neutrons from a {sup 252}Cf source to create low-momentum nuclear recoils in elastic scattering with the residual gas nuclei. The recoil track is imaged in low-pressure time-projection chamber with optical readout. We measure the ionization rate along the recoil trajectory, which allows us to determine the direction tag of the incoming neutrons.

  12. Developments for a measurement of the beta -- nu correlation and determination of the recoil charge-state distribution in 6He beta decay

    Science.gov (United States)

    Hong, Ran

    The beta-nu of a pure Gamow-Teller beta decay such as the 6He decay is sensitive to tensor-type weak currents predicted by theories beyond the Standard Model. An experiment is developed at University of Washington aiming at measuring the coefficient a_{beta-nu} of 6He decays to the 0.1% level and looking for its deviation from the Standard-Model prediction -1/3 using laser-trapped 6He atoms. The beta particle is detected by a scintillator and a multi-wire proportional chamber, and the recoil ion is detected by a microchannel plate with delay-line anodes for position readouts. a_{beta-nu} is extracted by fitting the measured time-of-flight spectrum of the recoil ions to templates generated by Monte Carlo simulations. This dissertation describes the developments of this experiment for the intermediate goal of a 1% level a_{beta-nu} measurement, such as the detector design, Monte Carlo simulation software, and data analysis frame work. Particularly, detector calibrations are described in detail. The analysis of a 2% level proof-of-principle run in October 2015 is presented as well. Shake-off probabilities for decays of trapped 6He atoms matter for the high-precision a_{beta-nu} measurement. The charge state distribution of recoil ions is obtained by analyzing their time-of-flight distribution using the same experimental setups for the a_{beta-nu} measurement. An analysis approach that is independent of the beta-nu correlation is developed. The measured upper limit of the double shake-off probability is 2x10. {-4} at 90% confidence level. This result is 100 times lower than the most recent calculation by Schulhoff and Drake. This disagreement is significant for the a_{beta-nu} measurement and needs to be addressed by improved atomic theory calculations.

  13. Double-slit experiment with a polyatomic molecule: vibrationally resolved C 1s photoelectron spectra of acetylene

    International Nuclear Information System (INIS)

    We report the first evidence for double-slit interferences in a polyatomic molecule, which we have observed in the experimental carbon 1s photoelectron spectra of acetylene (or ethyne). The spectra have been measured over the photon energy range of 310-930 eV and show prominent oscillations in the intensity ratios σg(υ)/σu(υ) for the vibrational quantum numbers υ = 0,1 and for the ratios σs(υ 1)/σs(υ = 0) for the symmetry s = g,u. The experimental findings are in very good agreement with ab initio density functional theory (DFT) calculations and are compatible with the Cohen-Fano mechanism of coherent emission from two equivalent atomic centers. This interpretation is supported by the qualitative predictions of a simple model in which the effect of nuclear recoil is taken into account to the lowest order. Our results confirm the delocalized character of the core hole created in the primary photoionization event and demonstrate that intramolecular core-hole coherence can survive the decoherent influence associated with the asymmetric nuclear degrees of freedom which are characteristic of polyatomic molecules. (paper)

  14. Behaviour of the recoil atom in anionic, cationic and double Co-complexes

    International Nuclear Information System (INIS)

    Thermal annealing of damages caused by the (n, γ) reaction in solid phase cobalt complexes has been studied. This study is based on the annealing of cationic and anionic sites for cis-[Co(en)2(NO2)2] [CoEDTA] 3H2O, in comparison with the behaviour of simple complexes like cis-[Co(en)2(NO2)2] Cl and [CoEDTA]2 Ba.4H2O (en: etilendiamin). Competition between the annealing and chemical descomposition processes is analyzed for different crystalline systems. The separation of the different chemical species was carried out by paper electrophoresis. Using isothermal annealing analysis data, speed constants for each reaction are obtained. (author)

  15. Comparison between measured and calculated neutron spectra in FCA assemblies

    International Nuclear Information System (INIS)

    The neutron spectra measured in FCA Assembly VI-2, VI-1 and V-2 are discussed, and are compared with the results by calculation. The data were obtained by measurements of proton-recoil counter and double scintillator methods. Calculations were made with cell-program SP-2000 and fine-group cross section library AGRI/2, and the spectra with 1950 groups and broadened 64 and 26 group were derived. The measured spectra in the energy range of 5 keV to 6 MeV were effectively compared with the calculational results, by using C/E values. There are large differences between the measured and the calculated spectra near the 430 keV oxygen and 29 keV iron resonances. The experimental and the calculated central fission rate ratios were also compared. (author)

  16. In vitro measurements of the release of 232U and its daughters from UO2 particles by dissolution, alpha-recoil and inert gas diffusion

    International Nuclear Information System (INIS)

    Three mechanisms that are potentially important in the release of 232U and its decay products from UO2 particles in the lungs were studied in vitro. Particles of UO2 uniformly labeled with 1% 232U were aerosolized and separated by aerodynamic size in a Lovelace Aerosol Particle Separator. Monodisperse size fractions ranging from 0.7 to 2.5 μm activity median aerodynamic diameter were used to study release of radionuclides by particle dissolution, recoil of atoms after alpha-decay and diffusion of the inert gas, 220Rn

  17. Annealing and dehydration studies following (n,γ) recoil in Pr(BrO3)3.6H2O

    International Nuclear Information System (INIS)

    Initial retention values determined with respect to 80Br, 80mBr and 82Br isotopes in case of neutron activated Pr(BrO3)3.6H2O are 23, 23 and 30 (±2%). Isothermal dehydration and annealing are carried out over the temperature range 80 - 140 degC. Maximum observed weight loss of 12% is assigned to dehydration. Maximum recovery of the parent compound is reached to 60% value following the first order rate law. Results are discussed in the light of hydration energy and oxidation state of the recoil Pr atom. (author). 6 refs., 2 figs

  18. Electron scattering from Xe: the relation between the differential elastic cross section and shape and intensity of the energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.a [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia)

    2010-11-14

    The measurement of the energy loss spectra of energetic electrons scattered from Xe over large angles is reported. The incoming energy was chosen between 600 eV and 1550 eV. The calculated Xe elastic scattering cross section has a sharp minimum for 750 eV electrons near 135{sup 0}. This minimum is confirmed by studying a Xe-H{sub 2} mixture and separating their elastic peak based on the recoil effect. The energy loss part of the Xe spectra is rich in structure. Surprisingly the shape and intensity (relative to the elastic peak) changes dramatically if one approaches the scattering conditions for which the elastic cross section has a minimum. These observations are rationalized by describing the inelastic intensity semi-classically, as a consequence of a two-step process occurring at the same atom involving scattering from the nucleus and an electronic excitation. The change in shape of the loss spectra is attributed to a large increase in relative intensity of the dipole-forbidden transitions near sharp minima in the elastic cross section.

  19. Knockout reactions in atomic and nuclear physics

    International Nuclear Information System (INIS)

    In a knockout experiment the momenta of a projectile before and after the collision and of a knocked-out particle are all measured, so that the recoil momentum of the residual system is known by subtraction. The atomic (e,2e) experiments are very much more accurate and detailed than present nuclear experiments. The (e,2e) reaction on argon is used to illustrate the principles involved. Other experiments involve the (p,2p) and (e,e'p) reactions

  20. Automation of experiments at Dubna Gas-Filled Recoil Separator

    Science.gov (United States)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  1. First Measurement of Beam-Recoil Observables Cx and Cz

    Energy Technology Data Exchange (ETDEWEB)

    R. Bradford; R.A. Schumacher; G. Adams; M.J. Amaryan; P. Ambrozewicz; E. Anciant; M. Anghinolfi; B. Asavapibhop; G. Asryan; G. Audit; H. Avakian; H. Bagdasaryan; N. Baillie; J.P. Ball; N.A. Baltzell; S. Barrow; V. Batourine; M. Battaglieri; K. Beard; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; B.L. Berman; N. Bianchi; A.S. Biselli; B.E. Bonner; S. Bouchigny; S. Boiarinov; D. Branford; W.J. Briscoe; W.K. Brooks; S. B¨ultmann; V.D. Burkert; C. Butuceanu; J.R. Calarco; S.L. Careccia; D.S. Carman; B. Carnahan; S. Chen; P.L. Cole; A. Coleman; P. Collins; P. Coltharp; D. Cords; † P. Corvisiero; D. Crabb; H. Crannell; V. Crede; J.P. Cummings; R. De Masi; E. De Sanctis; R. De Vita; P.V. Degtyarenko; H. Denizli; L. Dennis; A. Deur; K.V. Dharmawardane; R. Dickson; C. Djalali; G.E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O.P. Dzyubak; H. Egiyan; ; K.S. Egiyan; L. El Fassi; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; G. Feldman; R.J. Feuerbach; T.A. Forest; H. Funsten; M. Garcon; G. Gavalian; ; G.P. Gilfoyle; K.L. Giovanetti; F.X. Girod; J.T. Goetz; A. Gonenc; R.W. Gothe; K.A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; K. Hafidi; H. Hakobyan; R.S. Hakobyan; J. Hardie; D. Heddle; F.W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C.E. Hyde-Wright; Y. Ilieva; D.G. Ireland; B.S. Ishkhanov; E.L. Isupov; M.M. Ito; D. Jenkins; H.S. Jo; K. Joo; H.G. Juengst; N. Kalantarians; J.D. Kellie; M. Khandaker; K.Y. Kim; K. Kim; W. Kim; A. Klein; F.J. Klein; M. Klusman; M. Kossov; L.H. Kramer; V. Kubarovsky; J. Kuhn; S.E. Kuhn; S.V. Kuleshov; J. Lachniet; J.M. Laget; J. Langheinrich; D. Lawrence; A.C.S. Lima; K. Livingston; H.Y. Lu; K. Lukashin; M. MacCormick; J.J. Manak; C. Marchand; N. Markov; S. McAleer; B. McKinnon; J.W.C. McNabb; B.A. Mecking; M.D. Mestayer; C.A. Meyer; T. Mibe; K. Mikhailov; M. Mirazita; R. Miskimen; V. Mokeev; K. Moriya; S.A. Morrow; M. Moteabbed; V. Muccifora; J. Mueller; G.S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; N. Natasha; S. Niccolai; G. Niculescu; I. Niculescu; B.B. Niczyporuk; M.R. Niroula; R.A. Niyazov; M. Nozar; G.V. O’Rielly; M. Osipenko; A.I. Ostrovidov; K. Park; E. Pasyuk; C. Paterson; S.A. Philips; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; I. Popa; S. Pozdniakov; B.M. Preedom; J.W. Price; Y. Prok; D. Protopopescu; L.M. Qin; B.P. Quinn; B.A. Raue; G. Riccardi; G. Ricco; M. Ripani; B.G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P.D. Rubin; F. Sabatie; J. Salamanca; C. Salgado; J.P. Santoro; ; V. Sapunenko; V.S. Serov; A. Shafi; Y.G. Sharabian; J. Shaw; N.V. Shvedunov; S. Simionatto; A.V. Skabelin; E.S. Smith; L.C. Smith; D.I. Sober; D. Sokhan; M. Spraker; A. Stavinsky; S.S. Stepanyan; S. Stepanyan; B.E. Stokes; P. Stoler; I.I. Strakovsky; S. Strauch; M. Taiuti; S. Taylor; D.J. Tedeschi; U. Thoma; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M.F. Vineyard; A.V. Vlassov; K. Wang; D.P. Watts; L.B. Weinstein; H. Weller; D.P. Weygand; M. Williams; E. Wolin; M.H. Wood; A. Yegneswaran; J. Yun; L. Zana; J. Zhang; B. Zhao; and Z.W. Zhao

    2007-03-01

    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\\vec\\gamma + p \\to K^+ + \\vec\\Lambda$ and $\\vec\\gamma + p \\to K^+ + \\vec\\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\\cos\\theta_{K^+}^{c.m.}< +0.95$. For the $\\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\\it total} $\\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

  2. Superconducting Nuclear Recoil Sensor for Directional Dark Matter Detection

    Science.gov (United States)

    Junghans, Ann; Baldwin, Kevin; Hehlen, Markus; Lafler, Randy; Loomba, Dinesh; Phan, Nguyen; Weisse-Bernstein, Nina

    The Universe consists of 72% dark energy, 23% dark matter and only 5% of ordinary matter. One of the greatest challenges of the scientific community is to understand the nature of dark matter. Current models suggest that dark matter is made up of slowly moving, weakly interacting massive particles (WIMPs). But detecting WIMPs is challenging, as their expected signals are small and rare compared to the large background that can mimic the signal. The largest and most robust unique signature that sets them apart from other particles is the day-night variation of the directionality of dark matter on Earth. This modulation could be observed with a direction-sensitive detector and hence, would provide an unambiguous signature for the galactic origin of WIMPs. There are many studies underway to attempt to detect WIMPs both directly and indirectly, but solid-state WIMP detectors are widely unexplored although they would present many advantages to prevalent detectors that use large volumes of low pressure gas. We present first results of a novel multi-layered architecture, in which WIMPs would interact primarily with solid layers to produce nuclear recoils that then induce measureable voltage pulses in adjacent superconductor layers. This work was supported by the U.S. Department of Energy through the LANL Laboratory Directed Research and Development Program.

  3. Single spontaneous photon as a coherent beamsplitter for an atomic matter-wave

    Energy Technology Data Exchange (ETDEWEB)

    Tomkovič, Jiří; Welte, Joachim; Oberthaler, Markus K. [Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg (Germany); Schreiber, Michael [Ludwig-Maximilians-Universität, München (Germany); Kiffner, Martin [Physik Department I, Technische Universität München, Garching (Germany); Schmiedmayer, Jörg [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Vienna (Austria)

    2014-12-04

    In free space the spontaneous emission of a single photon destroys motional coherence. Close to a mirror surface the reflection erases the which-path information and the single emitted photon can be regarded as a coherent beam splitter for an atomic matter-wavewhich can be verified by atom interferometry. Our experiment is a realization of the recoiling slit Gedanken experiment by Einstein.

  4. About the importance of the nuclear recoil in \\alpha emission near the DNA

    CERN Document Server

    Rizzini, E Lodi; Corradini, M; Leali, M; Mascagna, V; Venturelli, L; Zurlo, N

    2011-01-01

    The effect of the energy deposition inside the human body made by radioactive substances is discussed. For the first time, we stress the importance of the recoiling nucleus in such reactions, particularly concerning the damage caused on the DNA structure.

  5. Further insights into the proton spin with the new HERMES Recoil Detector

    International Nuclear Information System (INIS)

    The HERMES experiment, installed in the 27.5 GeV HERA lepton ring at DESY/Hamburg, is used to study the spin structure of the nucleon. To get information about the orbital angular momentum Lq of quarks, exclusive DIS reactions are investigated. The HERMES Collaboration installed a new Recoil Detector to upgrade the existing spectrometer to improve the study of hard exclusive processes, detecting recoil protons with low momentum. Deeply Virtual Compton Scattering is the main process to be studied. The HERMES Recoil Detector consists of three subcomponents inside a superconducting magnet that provides a longitudinal superconducting magnetic field of 1 Tesla. The Recoil Detector was installed in January 2006 and commissioning started in February. First results from the detector will be presented

  6. Further insights into the proton spin with the new HERMES Recoil Detector

    Science.gov (United States)

    Vilardi, I.

    2007-11-01

    The HERMES experiment, installed in the 27.5 GeV HERA lepton ring at DESY/Hamburg, is used to study the spin structure of the nucleon. To get information about the orbital angular momentum Lq of quarks, exclusive DIS reactions are investigated. The HERMES Collaboration installed a new Recoil Detector to upgrade the existing spectrometer to improve the study of hard exclusive processes, detecting recoil protons with low momentum. Deeply Virtual Compton Scattering is the main process to be studied. The HERMES Recoil Detector consists of three subcomponents inside a superconducting magnet that provides a longitudinal superconducting magnetic field of 1 Tesla. The Recoil Detector was installed in January 2006 and commissioning started in February. First results from the detector will be presented.

  7. MIMAC low energy electron-recoil discrimination measured with fast neutrons

    CERN Document Server

    Riffard, Q; Guillaudin, O; Bosson, G; Bourrion, O; Bouvier, J; Descombes, T; Muraz, J -F; Lebreton, L; Maire, D; Colas, P; Giomataris, I; Busto, J; Fouchez, D; Brunner, J; Tao, C

    2016-01-01

    MIMAC (MIcro-TPC MAtrix of Chambers) is a directional WIMP Dark Matter detector project. Direct dark matter experiments need a high level of electron/recoil discrimination to search for nuclear recoils produced by WIMP-nucleus elastic scattering. In this paper, we proposed an original method for electron event rejection based on a multivariate analysis applied to experimental data acquired using monochromatic neutron fields. This analysis shows that a $10^{5}$ rejection power is reachable for electron/recoil discrimination. Moreover, the efficiency was estimated by a Monte-Carlo simulation showing that a $10^{5}$ electron rejection power is reached with a 85.1\\% nuclear recoil efficiency using the same detector gain that on the detectors running at Modane.

  8. Karakteristike trzanja elektromagnetskog topa / Recoil characteristics of an electromagnetic rail gun

    Directory of Open Access Journals (Sweden)

    Zoran B. Ristić

    2009-10-01

    Full Text Available U radu je razmatrano trzanje elektromagnetskog šinskog topa i upoređeno sa trzanjem konvencionalnog topa sa barutnim punjenjem. Zaključuje se da je kod elektromagnetskog topa trzanje manje nego kod topa sa barutnim punjenjem. Takođe, pokazano je da pri istim uslovima lansiranja upotreba gasne kočnice topa sa barutnim punjenjem može izmeniti karakteristike trzanja i više ih približiti ponašanju elektromagnetskog topa. / In this paper the electromagnetic rail gun recoil is discussed and compared with the recoil of a conventional, propellant gas driven gun. It is shown that, under similar launch conditions, the recoil of an electromagnetic gun is weaker than that of the powder-driven gun. The use of a muzzle brake on a powder-driven gun can alter its recoil characteristics and make its behavior closer to that of the electromagnetic rail gun.

  9. Scintillation-only Based Pulse Shape Discrimination for Nuclear and Electron Recoils in Liquid Xenon

    OpenAIRE

    Ueshima, K.; Abe, K; Hiraide, K.; Hirano, S; Kishimoto, Y.; Kobayashi, K.; Koshio, Y.; Liu, J; Martens, K.; Moriyama, S.; Nakahata, M.; Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A.

    2011-01-01

    In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the...

  10. First analysis of hard exclusive data using the HERMES recoil scintillating fiber tracker

    Energy Technology Data Exchange (ETDEWEB)

    Keri, Tibor; Dueren, Michael; Perez-Benito, Roberto Francisco; Yu, Weilin [II.Physikalisches Institut, Justus-Liebig-Universitaet, Giessen (Germany)

    2008-07-01

    The HERMES experiment was upgraded by a recoil detector that contains a scintillating fiber tracker in order to measure recoiling protons and pions with low momentum and at large polar angle. The upgrade improves the event selections of hard-exclusive processes and helps to access Generalized Parton Distributions. Preliminary studies to extract single spin asymmetries of DVCS processes were carried out and first results are presented.

  11. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Bouanani, M.E.; Persson, L.; Hult, M.; Jonsson, P.; Johnston, P.N. [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M. [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M.; Zaring, C. [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P.N.; Bubb, I.F.; Walker, B.R.; Stannard, W.B. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  12. Quenching and Channeling of Nuclear Recoils in NaI[Tl]: Implications for Dark Matter Searches

    OpenAIRE

    Collar, J. I.

    2013-01-01

    A new experimental evaluation of the quenching factor for nuclear recoils in NaI[Tl] is described. Systematics affecting previous measurements are addressed by careful characterization of the emission spectrum of the neutron source, use of a small scintillator coupled to an ultra-bialkali high quantum efficiency photomultiplier, and evaluation of non-linearities in the electron recoil response via Compton scattering. A trend towards a rapidly diminishing quenching factor with decreasing sodiu...

  13. New measurement of the relative scintillation efficiency of xenon nuclear recoils below 10 keV

    OpenAIRE

    Aprile, E.; Baudis, L.; Choi, B.; Giboni, K L; Lim, K. E.; Manalaysay, A.; Monzani, M E; Plante, G.; Santorelli, R.; Yamashita, M

    2009-01-01

    Liquid xenon is an important detection medium in direct dark matter experiments, which search for low-energy nuclear recoils produced by the elastic scattering of WIMPs with quarks. The two existing measurements of the relative scintillation efficiency of nuclear recoils below 20 keV lead to inconsistent extrapolations at lower energies. This results in a different energy scale and thus sensitivity reach of liquid xenon dark matter detectors. We report a new measurement of the relative scinti...

  14. As-Al recoil implantation through Si 3N 4 barrier layer

    Science.gov (United States)

    Godignon, P.; Morvan, E.; Montserrat, J.; Jordà, X.; Flores, D.; Rebollo, J.

    1999-01-01

    Al recoil implantation have been shown to be a possible alternative to direct Al ion implantation to avoid usual problems linked with Al sources. Poor efficiency of the recoil + annealing process is observed if no barrier or an oxyde screen layers are used. This problem can be solved using a Si 3N 4 screen layer. Then, P-N and N +/P/N structures can be obtained with deep low doped P-well with reduced thermal budget.

  15. As-Al recoil implantation through Si3N4 barrier layer

    International Nuclear Information System (INIS)

    Al recoil implantation have been shown to be a possible alternative to direct Al ion implantation to avoid usual problems linked with Al sources. Poor efficiency of the recoil + annealing process is observed if no barrier or an oxyde screen layers are used. This problem can be solved using a Si3N4 screen layer. Then, P-N and N+/P/N structures can be obtained with deep low doped P-well with reduced thermal budget

  16. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    International Nuclear Information System (INIS)

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs

  17. Einstein–Bohr recoiling double-slit gedanken experiment performed at the molecular level

    OpenAIRE

    Liu, X-J; Miao, Q.; Gel'mukhanov, F.; Patanen, M.; Travnikova, O; C. Nicolas; Ågren, H; Ueda, K.; Miron, C.

    2015-01-01

    Double-slit experiments illustrate proof for wave–particle complementarity. The essence of Einstein–Bohr's debate about wave–particle duality was whether the momentum transfer between a particle and a recoiling slit could mark the path, thus destroying the interference. We realized this recoiling double-slit gedanken experiment by resonant X-ray photoemission from molecular oxygen for geometries near equilibrium (coupled slits) and in a dissociative state far away from equilibrium (decoupled ...

  18. High-purity germanium detector ionization pulse shapes of nuclear recoils, gamma interactions and microphonism

    OpenAIRE

    Baudis, L.; Hellmig, J.; Klapdor-Kleingrothaus, H. V.; Ramachers, Y.; Hammer, J. W.; Mayer, A.

    1999-01-01

    Nuclear recoil measurements with high-purity Germanium detectors are very promising to directly detect dark matter candidates. The main background sources in such experiments are natural radioactivity and microphonic noise. Digital pulse shape analysis is an encouraging approach to reduce the background originating from the latter. To study the pulse shapes of nuclear recoil events we performed a neutron scattering experiment, which covered the ionization energy range from 20 to 80 keV. We ha...

  19. Acute stent recoil in the left main coronary artery treated with additional stenting.

    Science.gov (United States)

    Battikh, Kais; Rihani, Riadh; Lemahieu, Jean Michel

    2003-01-01

    We report a case of acute stent recoil occurring after the stenting of an ostial left main coronary artery lesion. The marked recoil after high-pressure balloon inflation confirmed that the radial force of the first stent was unable to ensure vessel patency. The addition of a second stent provided the necessary support to achieve a good final result. This case illustrates a possible complication of aorto-ostial angioplasty that could be treated with double stenting. PMID:12499528

  20. Attractive interaction between an atom and a surface

    International Nuclear Information System (INIS)

    Using a general self-energy formalism we examine the interaction between an atom and a surface. Considered in detail are deviations from the Van der Waals force due to recoil and finite velocity of the particle. Calculations for positronium near a metal surface show that for such systems recoil and velocity effects are significant even at very low energies. We also examine the mechanisms for energy exchange with the surface and calculations show that single quantum events do not always dominate the exchange rates. 8 references, 2 figures

  1. Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes

    CERN Document Server

    Blecha, Laura

    2008-01-01

    Simulations of binary black hole mergers indicate that asymmetrical gravitational wave (GW) emission can cause black holes to recoil at speeds up to thousands of km/s. These GW recoil events can dramatically affect the coevolution of recoiling supermassive black holes (SMBHs) and their host galaxies. However, theoretical studies of SMBH-galaxy evolution almost always assume a stationary central black hole. In light of the numerical results on GW recoil velocities, we relax that assumption here and consider the consequences of recoil for SMBH evolution. We follow the trajectories of SMBHs ejected in a smooth background potential that includes both a stellar bulge and a multi-component gaseous disk. In addition, we calculate the accretion rate onto the SMBH as a function of time using a hybrid prescription of viscous (alpha-disk) and Bondi accretion. We find that recoil kicks between 100 km/s and the escape speed cause SMBHs to wander though the galaxy and halo for about 1 Myr - 1 Gyr before settling back to th...

  2. Recoil-free gamma resonant absorption in 57 Fe nuclei in the presence of strong microwave field

    International Nuclear Information System (INIS)

    The growing interest paid to the multiphoton nuclear transitions in the last twenty years is due in part to the promising applications of these phenomena in the nuclear spectroscopy. The exciting possibility to compensate the nuclear recoil by the intense beams of photons of corresponding frequency was noted since 1975 and the absorption cross section of the multiphoton process was evaluated in some particular cases. In this paper a test of the multiphoton model is performed in an experiment of recoil-free 14.14 keV γ-ray resonant absorption in a thin absorber of potassium trioxalatoferrate exposed to a pulsed 1 Mw microwave field with the frequency of 3 GHz, the pulse width of 1 μs and the pulse train frequency of 222 Hz. The single line absorber, enriched in 57 Fe, in powder form, was uniformly pasted by silicon grease on a teflon support making an angle of 45 angle toward the reciprocally perpendicular direction of the γ beam and guided field propagation. The absorption spectra were recorded by a 1 μs linear gate, using a conventional constant acceleration Moessbauer transmission spectrometer and a moving 57 Co (Cu) γ source. Two velocity scales of 30 cm/s and of 10 mm/s were used to looking for the first order sidebands corresponding to the 3 GHz and to examine the microwave perturbation of the parent resonance. A careful computer analysis has shown a clear decrease of the area ratio for the un-shifted line without a sensitive change in the Γ value of the half linewidth. Any acoustic or strange rf effects were avoided by the proper choice of the absorber. Also, any possible thermal effect was eliminated by supplementary temperature dependence measurements on the sample. Thus, a multiphoton nature can be attributed to the observed microwave perturbation. (authors)

  3. Control of atomic transition rates via laser light shaping

    OpenAIRE

    Jauregui, R.

    2015-01-01

    A modular systematic analysis of the feasibility of modifying atomic transition rates by tailoring the electromagnetic field of an external coherent light source is presented. The formalism considers both the center of mass and internal degrees of freedom of the atom, and all properties of the field: frequency, angular spectrum, and polarization. General features of recoil effects for internal forbidden transitions are discussed. A comparative analysis of different structured light sources is...

  4. Detection of exclusive reactions in the Hermes Recoil Fiber Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Keri, Tibor

    2008-08-15

    the RD (Recoil Detector) with an unpolarized target at this position. This detector consists of the Silicon Strip Detector, the SFT (Scintillating Fiber Tracker), the Photon Detector and is surrounded by a 1T superconducting magnet. It provides several space points for tracking and thus momentum reconstruction. The energy deposition in the various detectors is used to achieve particle identification. The main part of the thesis work was the implementation of the SFT and the RD readout system. Before the installation of the RD a series of test runs were carried out to proof the concept of the detector, to measure the internal alignment and to prepare the installation. These test runs for the SFT are described and major results are shown. Furthermore a preliminary analysis of the latest data 06d/06d0 was carried out to show the performance of the installed Recoil Detector in combination with the HERMES forward spectrometer. (orig.)

  5. Detection of exclusive reactions in the Hermes Recoil Fiber Tracker

    International Nuclear Information System (INIS)

    (Recoil Detector) with an unpolarized target at this position. This detector consists of the Silicon Strip Detector, the SFT (Scintillating Fiber Tracker), the Photon Detector and is surrounded by a 1T superconducting magnet. It provides several space points for tracking and thus momentum reconstruction. The energy deposition in the various detectors is used to achieve particle identification. The main part of the thesis work was the implementation of the SFT and the RD readout system. Before the installation of the RD a series of test runs were carried out to proof the concept of the detector, to measure the internal alignment and to prepare the installation. These test runs for the SFT are described and major results are shown. Furthermore a preliminary analysis of the latest data 06d/06d0 was carried out to show the performance of the installed Recoil Detector in combination with the HERMES forward spectrometer. (orig.)

  6. Reactions of charged and neutral recoil particles following nuclear transformations

    International Nuclear Information System (INIS)

    The status of the following programs is reported: study of the stereochemistry of halogen atom or ion reactions produced via (eta,γ) or (IT) nuclear reactions with diastereomeric molecules; study of nuclear decay induced reactions of halogen species with organic compounds in the gas phase; decay-induced labelling of compounds of biochemical interest; energetics and mechanisms involved in the reactions of highly energetic carbon-11 atoms with simple organic molecules; and chemistry of the positronium. (LK)

  7. Nuclear effects in atomic transitions

    CERN Document Server

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.

  8. Phonon spectra in quantum wires

    OpenAIRE

    Ilić Dušan; Raković Dejan; Šetrajčić Jovan

    2007-01-01

    Green's function method, adjusted to bound crystalline structures, was applied to obtain the phonon dispersion law in quantum wires. The condition of the existence of small mechanical atom movements defining phonon spectra can be found by solving the secular equation. This problem was presented graphically for different boundary parameters. The presence of boundaries, as well as the change of boundary parameters, leads to the appearance of new properties of the layered structure. The most imp...

  9. Atom slowing via dispersive optical interactions

    Science.gov (United States)

    Hamamda, M.; Boustimi, M.; Correia, F.; Baudon, J.; Taillandier-Loize, T.; Dutier, G.; Perales, F.; Ducloy, M.

    2012-02-01

    A promising technique of atom slowing is proposed. It is based upon the dispersive interaction of atoms with optical potential pulses generated by a far-off-resonance standing wave modulated in time. Each pulse reduces the velocity by a small amount. By repeating the process thousands of times, the velocity can be lowered from several hundreds of meters per second down to almost zero, over a path as short as 20cm. In the absence of any random recoil process, the initial characteristics of the beam are preserved.

  10. Measurements of LET spectra and comparison to models.

    Science.gov (United States)

    Wiegel, B; Heinrich, W; Benton, E V; Frank, A

    1992-01-01

    We present measurements of LET spectra for near earth orbits with various inclinations and altitudes. A comparison with calculated LET spectra shows that the contribution from direct ionizing galactic cosmic rays is well described by the models. An additional contribution to the spectra originates from stopping protons and from nuclear interactions of particles with material. In the case of an interaction a large amount of energy is deposited in a small volume by target recoils or target fragments. These events will be called short range (SR) events. For a low inclination orbit radiation belt protons are the main source of these events while galactic protons become more important when increasing the inclination to near polar orbits. We show that the contribution of SR events for orbits with low altitude (324 km) and 57 degrees inclination is comparable to that for an orbit with 28 degrees inclination at a high altitude (510 km). PMID:11537028

  11. Atomic Data: Division B / Commission 14 / Working Group Atomic Data

    CERN Document Server

    Nave, Gillian; Zhao, Gang

    2015-01-01

    This report summarizes laboratory measurements of atomic wavelengths, energy levels, hyperfine and isotope structure, energy level lifetimes, and oscillator strengths. Theoretical calculations of lifetimes and oscillator strengths are also included. The bibliography is limited to species of astrophysical interest. Compilations of atomic data and internet databases are also included. Papers are listed in the bibliography in alphabetical order, with a reference number in the text. Comprehensive lists of references for atomic spectra can be found in the NIST Atomic Spectra Bibliographic Databases http://physics.nist.gov/asbib.

  12. Atomic Bremsstrahlung in ion-atom collisions (stripping)

    International Nuclear Information System (INIS)

    Atomic Bremsstrahlung produced in high energy (non relativistic) ion-atom collisions including retardation effects is studied. Mechanical states of the system are described by the symmetrical eikonal approximation and Hartree-Fock electronic wave functions for the calculation of the shape factor of each atom. Photon energy spectra are presented for collisions of protons against noble gases, Ne, Ar, Kr and Xe. The contribution of each atomic shell to these spectra is studied, where lowest shell (1s) corresponds to the hard X-ray region and the higher shells correspond to lower photon energies. (Author)

  13. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90

    International Nuclear Information System (INIS)

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to 90 circle are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment. (orig.)

  14. A statistical method to search for recoiling supermassive black holes in active galactic nuclei

    Science.gov (United States)

    Raffai, P.; Haiman, Z.; Frei, Z.

    2016-01-01

    We propose an observational test for gravitationally recoiling supermassive black holes (BHs) in active galactic nuclei, based on a correlation between the velocities of BHs relative to their host galaxies, |Δv|, and their obscuring dust column densities, Σdust (both measured along the line of sight). We use toy models for the distribution of recoil velocities, BH trajectories, and the geometry of obscuring dust tori in galactic centres, to simulate 2.5 × 105 random observations of recoiling quasars. BHs with recoil velocities comparable to the escape velocity from the galactic centre remain bound to the nucleus, and do not fully settle back to the centre of the torus due to dynamical friction in a typical quasar lifetime. We find that |Δv| and Σdust for these BHs are positively correlated. For obscured (Σdust > 0) and for partially obscured (0 103 km s-1) ≲ 0.4. This predicted trend can be compared to the observed fraction of type II quasars, and can further test combinations of recoil, trajectory, and dust torus models.

  15. Recoiling Black Holes in Merging Galaxies: Relationship to AGN Lifetimes and Merger Remnant Properties

    CERN Document Server

    Blecha, Laura; Loeb, Abraham; Hernquist, Lars

    2011-01-01

    Central supermassive black holes (SMBHs) are a ubiquitous feature of locally-observed galaxies, and ample evidence suggests that the growth of SMBHs and their host galaxies is closely linked. However, in the event of a merger, gravitational-wave (GW) recoil may displace a SMBH from its galactic center, or eject it entirely. To explore the consequences of this phenomenon, we use hydrodynamic simulations of gaseous galaxy mergers that include a range of BH recoil velocities. We have generated a suite of over 200 simulations with more than 60 merger models, enabling us to identify systematic trends in the behavior of recoiling BHs -- specifically (i) their dynamics, (ii) their observable signatures, and (iii) their effects on BH/galaxy co-evolution. (i) Recoiling BH trajectories depend heavily on the gas content of the host galaxy; maximal BH displacements from the center may vary by up to an order of magnitude between gas-rich and gas-poor mergers. In some cases, recoil trajectories also depend on the timing of...

  16. On the M\\"ossbauer effect and the rigid recoil question

    CERN Document Server

    Davidson, Mark

    2016-01-01

    Various theories for the M\\"ossbauer rigid-recoil effect, which enables a crystal to absorb momentum but not appreciable energy, are compared. These suggest that the recoil may not be instantaneous, and that the recoil time could be used to distinguish between them. An experiment is proposed to measure this time. The idea is to use a small sphere whose outer surface is coated with an electrically charged M\\"ossbauer-active element, and then to measure the amount of energy lost due to Bremmsstrahlung during the recoil of this sphere when a M\\"ossbauer event occurs. As the energy radiated is proportional to the square of the acceleration from Larmor's formula, the amount of energy so radiated varies inversely proportional to the recoil time, and proportional to the charge squared. Although this energy is quite small, it can in principle be measured with the extreme sensitivity available in M\\"ossbauer experiments. It is found that the most information would be gained with more long-lived isomers such as Rhodium...

  17. On the analysis of H in thin layers of Pt electroless contacts using elastic recoil detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Roumie, M., E-mail: mroumie@cnrs.edu.lb [Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRSL, Beirut (Lebanon); Lmai, F. [INESS (PHASE)-CNRS, 67037 Strasbourg, Cedex 2 (France); Zahraman, K.; Nsouli, B. [Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRSL, Beirut (Lebanon); Zaiour, A. [Department of Physics, Faculty of Sciences I, Lebanese University, Hadath (Lebanon); Hage-Ali, M. [INESS (PHASE)-CNRS, 67037 Strasbourg, Cedex 2 (France)

    2014-12-15

    Cadmium telluride CdTe is a II–VI binary semiconductor, which has multiple applications, especially in nuclear, X-ray and gamma ray detection. In such applications, the material can be made more resistive by compensation with halogen elements like Cl. However, this compensation has a side-effect on the detectors, the “polarization effect”, which decreases the detector efficiency. One way to reduce this effect is the use of quasi-ohmic contacts deposited by a spontaneous electro-chemical deposition method, so-called “electroless deposition”, of metals such as Pt. Indeed, the use of this electroless deposition method will induce a great amount of hydrogen in the solution and, consequently, part of it will be present in the new formed layers. Since hydrogen content will affect the electrical and optical properties of semiconductors, the aim of this paper is to investigate the concentration profile of H in the contact layers, using Elastic Recoil Detection Analysis technique ERDA, where samples are analyzed as a function of the dilution and pH value of the deposition solution. The preliminary results show that a H atomic concentration as high as 2 × 10{sup 20} atoms/cm{sup 3} is found in the interfacial layer. Correlations with detection properties and a new polarization healing model are proposed.

  18. An experiment on multibubble sonoluminescence spectra in sodium chloride solution

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhan; XU JunFeng; HUANG Wei; CHEN WeiZhong; MIAO GuoQing

    2008-01-01

    We investigated experimentally the spectra of MBSL in sodium chloride water solution with krypton as dissolved gas. We observed and compared the spectra of hydroxyl ion at 310 nm and that of sodium atom at 589 nm. It has been found that under the same experimental condition, the intensity of sodium atom spectra is obviously higher than that of the hydroxyl ion spectra, and is more sensitive to the experimental condition. The krypton content, the concentration of sodium chloride solution, and the driving sound pressure obviously affect the spectra intensity in certain range.

  19. Hamiltonian chaos with a cold atom in an optical lattice

    CERN Document Server

    Prants, S V

    2012-01-01

    We consider a basic model of the lossless interaction between a moving two-level atom and a standing-wave single-mode laser field. Classical treatment of the translational atomic motion provides the semiclassical Hamilton-Schrodinger equations which are a 5D nonlinear dynamical system with two integrals of motion. The atomic dynamics can be regular or chaotic in dependence on values of the control parameters, the atom-field detuning and recoil frequency. We develop a semiclassical theory of the chaotic atomic transport in terms of a random walk of the atomic electric dipole moment $u$. Based on a jump-like behavior of this variable for atoms crossing nodes of the standing wave, we construct a stochastic map that specifies the center-of-mass motion. We find the relations between the detuning, recoil frequency and the atomic energy, under which atoms may move in a optical lattice in a chaotic way. We obtain the analytical conditions under which deterministic atomic transport has fractal properties and explain a...

  20. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions

    International Nuclear Information System (INIS)

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m(π-) = (139.571042 ± 0.000210 ± 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV

  1. Absolute total cross sections for the scattering of 2--18-eV electrons by cesium atoms

    International Nuclear Information System (INIS)

    Absolute total cross sections for the scattering of electrons by cesium atoms between 2 and 18 eV have been measured using the atomic-recoil technique in the scattering-out mode. Our results are somewhat lower than those of Visconti, Slevin, and Rubin [Phys. Rev. A 3, 1310 (1971)] above 2 eV

  2. Absolute total cross sections for the scattering of 2--18-eV electrons by cesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Jaduszliwer, B.; Chan, Y.C. (Electronics Technology Center, The Aerospace Corporation, P. O. Box 92957, Los Angeles, California 90009 (United States))

    1992-01-01

    Absolute total cross sections for the scattering of electrons by cesium atoms between 2 and 18 eV have been measured using the atomic-recoil technique in the scattering-out mode. Our results are somewhat lower than those of Visconti, Slevin, and Rubin (Phys. Rev. A 3, 1310 (1971)) above 2 eV.

  3. Bloch oscillations of ultracold atoms and measurement of the fine structure constant; Oscillations de Bloch d'atomes ultrafroids et mesure de la constante de structure fine

    Energy Technology Data Exchange (ETDEWEB)

    Clade, P

    2005-10-15

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10{sup -9}, in conjunction with a careful study of systematic effects (5 10{sup -9}), has led us to a determination of alpha with an uncertainty of 6.7 10{sup -9}: {alpha}{sup -1}(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  4. First measurement of nuclear recoil head-tail sense in a fiducialised WIMP dark matter detector

    CERN Document Server

    Battat, J B R; Ezeribe, A C; Gauvreau, J -L; Harton, J L; Lafler, R; Lee, E R; Loomba, D; Lumnah, A; Miller, E H; Mouton, F; Murphy, A StJ; Paling, S M; Phan, N S; Robinson, M; Sadler, S W; Scarff, A; Schuckman, F G; Snowden-Ifft, D P; Spooner, N J C

    2016-01-01

    Recent computational results suggest that directional dark matter detectors have potential to probe for WIMP dark matter particles below the neutrino floor. The DRIFT-IId detector used in this work is a leading directional WIMP search time projection chamber detector. We report the first measurements of the detection of the directional nuclear recoils in a fully fiducialised low-pressure time projection chamber. In this new operational mode, the distance between each event vertex and the readout plane is determined by the measurement of minority carriers produced by adding a small amount of oxygen to the nominal CS$_{2}$ + CF$_{4}$ target gas mixture. The CS$_2$ + CF$_4$ + O$_2$ mixture has been shown to enable background-free operation at current sensitivities. Sulfur, fluorine, and carbon recoils were generated using neutrons emitted from a $^{252}$Cf source positioned at different locations around the detector. Measurement of the relative energy loss along the recoil tracks allowed the track vector sense, ...

  5. The HERMES recoil detector. Particle identification and determination of detector efficiency of the scintillating fiber tracker

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xianguo

    2009-11-15

    HERMES is a fixed target experiment using the HERA 27.6 GeV polarized electron/positron beams. With the polarized beams and its gas targets, which can be highly polarized, HERMES is dedicated to study the nucleon spin structure. One of its current physics programs is to measure deeply virtual Compton scattering (DVCS). In order to detect the recoiling proton the Recoil Detector was installed in the target region in the winter of 2005, taking data until the HERA-shutdown in the summer of 2007. The Recoil Detector measured energy loss of the traversing particles with its sub-detectors, including the silicon strip detector and the scintillating fiber tracker. This enables particle identification for protons and pions. In this work a systematic particle identification procedure is developed, whose performance is quantified. Another aspect of this work is the determination of the detector efficiency of the scintillating fiber tracker. (orig.)

  6. High-purity germanium detector ionization pulse shapes of nuclear recoils, gamma interactions and microphonism

    CERN Document Server

    Baudis, L; Klapdor-Kleingrothaus, H V; Ramachers, Y; Hammer, J W; Mayer, A

    1998-01-01

    Nuclear recoil measurements with high-purity Germanium detectors are very promising to directly detect dark matter candidates. The main background sources in such experiments are natural radioactivity and microphonic noise. Digital pulse shape analysis is an encouraging approach to reduce the background originating from the latter. To study the pulse shapes of nuclear recoil events we performed a neutron scattering experiment, which covered the ionization energy range from 20 to 80 keV. We have measured ionization efficiencies as well and found an excellent agreement with the theory of Lindhard. In a further experiment we measured pulse shapes of a radioactive gamma-source and found no difference to nuclear recoil pulse shapes. Pulse shapes originating from microphonics of a HPGe-detector are presented for the first time. A microphonic noise suppression method, crucial for dark matter direct detection experiments, can therefore be calibrated with pulse shapes from gamma-sources.

  7. Searching for universal behaviour in superheated droplet detector with effective recoil nuclei

    Indian Academy of Sciences (India)

    Mala Das; Susnata Seth

    2013-06-01

    Energy calibration of superheated droplet detector is discussed in terms of the effective recoil nucleus threshold energy and the reduced superheat. This provides a universal energy calibration curve valid for different liquids used in this type of detector. Two widely used liquids, R114 and C4F10, one for neutron detection and the other for weakly interacting massive particles (WIMPs) dark matter search experiment, have been compared. Liquid having recoil nuclei with larger values of linear energy transfer (LET) provides better neutron- discrimination. Gamma () response of C4F10 has also been studied and the results are discussed. Behaviour of nucleation parameter with the effective recoil nucleus threshold energy and the reduced superheat have been explored.

  8. Experimental Concept for a Precision Measurement of Nuclear Recoil Ionization Yields for Low Mass WIMP Searches

    Science.gov (United States)

    Saab, T.; Figueroa-Feliciano, E.

    2016-07-01

    Understanding the response of dark matter detectors at the lowest recoil energies is important for correctly interpreting data from current experiments or predicting the sensitivity of future experiments to low mass weakly interacting massive particles. In particular, the ionization yield is essential for determining the correct recoil energy of candidate nuclear recoil events; however, few measurements in cryogenic crystals exist below 1 keV. Using the voltage-assisted calorimetric ionization detection technique with a mono-energetic neutron source, we show that it is possible to determine the ionization yield in cryogenic crystals down to an energy to 100 eV. This measurement will also determine the statistics of ionization production at these low energies.

  9. Atomic physics with highly charged ions. Progress report, 15 February 1985-14 February 1986

    International Nuclear Information System (INIS)

    The experimental program has three directions: the study of collisions of very low velocity, highly-charged secondary recoil ions with stationary gas atoms, the study of collisions of high velocity, highly-charged ions with stationary targets, and the study of the theoretical descriptions of atomic collisions and atomic structure properties of highly-charged ions. Brief reports of the progress in these areas are given

  10. Recoiling black holes: prospects for detection and implications of spin alignment

    Science.gov (United States)

    Blecha, Laura; Sijacki, Debora; Kelley, Luke Zoltan; Torrey, Paul; Vogelsberger, Mark; Nelson, Dylan; Springel, Volker; Snyder, Gregory; Hernquist, Lars

    2016-02-01

    Supermassive black hole (BH) mergers produce powerful gravitational wave emission. Asymmetry in this emission imparts a recoil kick to the merged BH, which can eject the BH from its host galaxy altogether. Recoiling BHs could be observed as offset active galactic nuclei (AGN). Several candidates have been identified, but systematic searches have been hampered by large uncertainties regarding their observability. By extracting merging BHs and host galaxy properties from the Illustris cosmological simulations, we have developed a comprehensive model for recoiling AGN. Here, for the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas richness of host galaxies. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve offset AGN, making them promising targets for all-sky surveys. For randomly oriented spins, ≲ 10 spatially offset AGN may be detectable in Hubble Space Telescope-Cosmological Evolution Survey, and >103 could be found with the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS), the Large Synoptic Survey Telescope (LSST), Euclid, and the Wide-Field Infrared Survey Telescope (WFIRST). Nearly a thousand velocity offset AGN are predicted within the Sloan Digital Sky Survey (SDSS) footprint; the rarity of large broad-line offsets among SDSS quasars is likely due in part to selection effects but suggests that spin alignment plays a role in suppressing recoils. None the less, in our most physically motivated model where alignment occurs only in gas-rich mergers, hundreds of offset AGN should be found in all-sky surveys. Our findings strongly motivate a dedicated search for recoiling AGN.

  11. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    OpenAIRE

    Lee, H. S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. O.; Kim, K. W.; Kim, N. Y.; Kim, S K; Kim, Y.D.(Center for Underground Physics, Institute for Basic Science (IBS), Daejon, 305-811, Korea)

    2015-01-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton scattered 662 keV $\\gamma$-rays from a $^{137}$Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate ...

  12. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    CERN Document Server

    Wei, W -Z; Mei, D -M

    2016-01-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  13. Deeply-virtual Compton scattering measured with the recoil detector at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Brodski, Irina [II. Physikalisches Institut, JLU, Giessen (Germany); Collaboration: HERMES-Collaboration

    2011-07-01

    The HERMES experiment at DESY was originally designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. By adding a recoil detector, Hermes is able to measure recoiling protons and backward pions and thus is able to measure the complete kinematics of certain exclusive reactions. One of the most interesting exclusive reactions is Deeply-virtual Compton scattering, as it gives a direct access to certain Generalized Parton Distributions (GPDs) of the nucleon. This talk reports on recent measurements of spin and charge asymmetries of DVCS processes at HERMES.

  14. As-Al recoil implantation through Si{sub 3}N{sub 4} barrier layer

    Energy Technology Data Exchange (ETDEWEB)

    Godignon, P. E-mail: philippe@cnm.es; Morvan, E.; Montserrat, J.; Jorda, X.; Flores, D.; Rebollo, J

    1999-01-01

    Al recoil implantation have been shown to be a possible alternative to direct Al ion implantation to avoid usual problems linked with Al sources. Poor efficiency of the recoil + annealing process is observed if no barrier or an oxyde screen layers are used. This problem can be solved using a Si{sub 3}N{sub 4} screen layer. Then, P-N and N{sup +}/P/N structures can be obtained with deep low doped P-well with reduced thermal budget.

  15. Finite nuclear size corrections to the recoil effect in hydrogenlike ions

    OpenAIRE

    I.A. Aleksandrov; Shchepetnov, A. A.; Glazov, D. A.; Shabaev, V. M.

    2014-01-01

    The finite nuclear size corrections to the relativistic recoil effect in H-like ions are calculated within the Breit approximation. The calculations are performed for the $1s$, $2s$, and $2p_{1/2}$ states in the range $Z =$ 1-110. The obtained results are compared with previous evaluations of this effect. It is found that for heavy ions the previously neglected corrections amount to about 20% of the total nuclear size contribution to the recoil effect calculated within the Breit approximation.

  16. Excitation of atoms and molecules in collisions with fast, highly charged ions

    International Nuclear Information System (INIS)

    This paper discusses the following topics: charge distributions for Ar recoil-ions produced in one- and two-electron capture collisions by Oq+ projectiles; charge distributions of He, Ne, and Ar recoil-ions produced in collisions with 10 to 30 MeV/u N7+ ions; studies of recoil ions produced in collisions of 40 MeV Ar13+ with atomic and molecular targets; two-fragment coincidence studies of molecular dissociation induced by heavy ion collisions; resonant electron transfer to double K-vacancy states in oxygen compounds; quenching of metastable states in fast Mg projectiles; and design and construction of an atomic physics beamline for the ECR ion source

  17. Tip induced doping effects in local tunnel spectra of graphene

    OpenAIRE

    Choudhury, Shyam K.; Gupta, Anjan K.

    2010-01-01

    We report on tip induced doping in local tunnel spectra of single layer graphene (SLG) with tunable back-gate using room temperature scanning tunneling microscopy and spectroscopy (STM/S). The SLG samples, prepared on silicon dioxide surface by exfoliation method and verified by Raman spectra, show atomically resolved honeycomb lattice. Local tunnel spectra show two minima with a clear evolution in the position of both with doping by the back gate. A similar variation in spectra is also obser...

  18. Optical molasses: The coldest atoms ever

    International Nuclear Information System (INIS)

    Optical molasses is a three-dimensional (3-D) configuration of laser beams used to laser-cool and to viscously confine neutral atoms. Atoms laser cooled in optical molasses reach temperatures much lower than the limit given by the original theories of laser cooling based on the Doppler effect. This cooling below the Doppler-cooling limit is now seen as being due to new laser cooling mechanisms not considered in the original theories. The dependence of the atomic temperature on parameters such as laser intensity and detuning shows good agreement between calculations performed in 1-D and experiments performed in 3-D. For cooling of Na and Cs atoms, the lowest observed temperatures correspond to rms velocities between three and four times the single photon recoil velocity. For Cs the temperature is 2.5±0.6 μK and is the lowest temperature ever measured for 3-D cooling. (orig.)

  19. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  20. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  1. Bloch oscillations of ultracold atoms and measurement of the fine structure constant

    International Nuclear Information System (INIS)

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10-9, in conjunction with a careful study of systematic effects (5 10-9), has led us to a determination of alpha with an uncertainty of 6.7 10-9: α-1(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  2. Crisis behaviour of the reactive recoil of a water jets under conditions of explosive boiling

    International Nuclear Information System (INIS)

    One presents the measurement results of the reactive force of boiling up water jet flowing through short channel into the atmosphere depending on superheating degree and at various evaporation mechanisms. The intensive fluctuation evaporation of water (explosive boiling) and presence of a plane perpendicular to the channel axis are shown to result in abrupt reduction of the reactive recoil value

  3. Automation of the experiments at the Dubna gas-filled recoil separator

    International Nuclear Information System (INIS)

    Schematics, codes and Builder C++ applications aimed at the synthesis of superheavy elements at the Dubna gas-filled recoil separator (DGFRS) of FLNR (JINR) are presented. Examples of applications in the heavy-ion-induced nuclear reactions with 48Ca projectiles are presented.

  4. Detection of low momentum protons with the new HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Vilardi, Ignazio

    2008-10-15

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the {delta}{sup +} background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  5. An algorithm for unfolding neutron dose and dose equivalent from digitized recoil-particle tracks

    International Nuclear Information System (INIS)

    Previous work conducted at the Oak Ridge National Laboratory (ORNL) has demonstrated the feasibility of a digital approach to neutron dosimetry. In contrast to current analog methods, the digital approach specifically refers to methods of collection and processing of ionization products created by recoil particles within detector volumes. A dosimeter utilizing the digital approach would consist of both a detector and a computer algorithm. The detector would measure the integral number of subexcitation electrons produced by recoil particles within various subvolumes of its sensitive volume. The computer algorithm would unfold the quantities absorbed dose, linear energy transfer, and dose equivalent given that digital track-structure information. ORNL researchers have completed a Monte Carlo simulation code of one detector design utilizing the operating principles of time-projection chambers. This thesis presents and verifies one version of the dosimeter's computer algorithm. This algorithm processes the output of the ORNL simulation code, but is applicable to all detectors capable of digitizing recoil-particle tracks. Key features include direct measurement of track lengths and identification of particle type for each registered event. The resulting dosimeter should allow more accurate determinations of neutron dose and dose equivalent compared with conventional dosimeters, which cannot measure these quantities directly. Verification of the algorithm was accomplished by running a variety of recoil particles through the simulated detector volume and comparing the resulting absorbed dose and dose equivalent to those unfolded by the algorithm

  6. Ballistic phonon emission from electron-hole droplets: Application to the nuclear recoil problem

    International Nuclear Information System (INIS)

    The production of phonons after photoexcitation of Si is greatly influenced by electron-hole droplets. At moderate excitation densities droplets are formed and the process of quasidiffusion is bypassed by emission of ballistic phonons from droplets. The authors review these ideas and discuss the possibility of droplet formation in the course of plasma cooling which follows the ionization process of a nuclear recoil

  7. Response of the XENON100 dark matter detector to nuclear recoils

    NARCIS (Netherlands)

    E. Aprile; M. Alfonsi; . et al; A.P. Colijn; M.P. Decowski

    2013-01-01

    Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso, Italy are presented. Data from measurements with an external AmBe241 neutron source are compared with a detailed Monte Carlo simulation which is used to

  8. Kinematically Identified Recoiling Supermassive Black Hole Candidates in SDSS QSOs with z $<$ 0.25

    CERN Document Server

    Kim, D -C; Stierwalt, S; Privon, G C

    2016-01-01

    We have performed a spectral decomposition to search for recoiling supermassive black holes (rSMBH) in the SDSS QSOs with $z<0.25$. Out of 1271 QSOs, we have identified 26 rSMBH candidates that are recoiling toward us. The projected recoil velocities range from $-76\\ \\kms$ to $-307\\ \\kms$ with a mean of $-149\\pm58\\ \\kms$. Most of the rSMBH candidates are hosted by gas-rich LIRGs/ULIRGs, but only 23\\% of them shows signs of tidal features suggesting majority of them are advanced mergers. We find that the black hole masses $M_{BH}$ of the rSMBH candidates are on average $\\sim$5 times smaller than that of their stationary counterparts and cause a scatter in $M_{BH}-\\sigma_*$ relation. The Eddington ratios of all of the rSMBH candidates are larger than 0.1, with mean of 0.52$\\pm$0.27, suggesting they are actively accreting mass. Velocity shifts in high-excitation coronal lines suggest that the rSMBH candidates are recoiling with an average velocity of about $-265\\ \\kms$. Electron density in the narrow line reg...

  9. Research on heavy elements using the JYFL gas-filled recoil separator RITU

    International Nuclear Information System (INIS)

    A gas-filled recoil separator for studies of heavy elements produced in heavy-ion-induced fission reaction has been constructed. New neutron-deficient isotopes with Z=85-90 have been identified through their alpha decay. (author). 40 refs, 3 figs, 2 tabs

  10. Gep/Gmp for Bound Protons: First Results for 16O with the Recoil Polarization Technique

    International Nuclear Information System (INIS)

    The first (e, eprimep) polarization transfer measurements on a heavy nucleus have been made at TJNAF. The reaction 16O(e, e'p) was used to study the transfer of polarization to the recoil proton in quasielastic kinematics. The preliminary data are in good agreement with standard calculations which assume no modification of the nucleon form factors in the nuclear medium

  11. A Statistical Method to Search for Recoiling Supermassive Black Holes in Active Galactic Nuclei

    CERN Document Server

    Raffai, Peter; Frei, Zsolt

    2015-01-01

    We propose an observational test for gravitationally recoiling supermassive black holes (BHs) in active galactic nuclei, based on a correlation between the velocities of BHs relative to their host galaxies, |\\Delta v|, and their obscuring dust column densities, \\Sigma_{dust} (both measured along the line of sight). Proxies for both quantities can be derived from spectral features of individual quasars. We use toy models for the distribution of recoil velocities, BH trajectories, and the geometry of obscuring dust tori in galactic centres, to simulate 2.5x10^5 random observations of recoiling quasars. BHs with recoil velocities comparable to the escape velocity from the galactic centre remain bound to the nucleus, and do not fully settle back to the centre of the torus due to dynamical friction in a typical quasar lifetime. We find that |\\Delta v| and \\Sigma_ {dust} for these BHs are positively correlated. For obscured (\\Sigma_{dust}>0) and for partially obscured (0=45 km/s, the sample correlation coefficient ...

  12. Detection of low momentum protons with the new HERMES recoil detector

    International Nuclear Information System (INIS)

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the Δ+ background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  13. Electrochemical etching amplification of low-let recoil particle tracks in polymers for fast neutron dosimetry

    International Nuclear Information System (INIS)

    An electrochemical etching method for the amplification of fast-neutron-induced recoil particle tracks in polymers was investigated. The technique gave superior results over those obtained by conventional etching methods especially when polycarbonate foils were used for recoil particle track amplification. Electrochemical etching systems capable of multi-foil processing were designed and constructed to demonstrate the feasibility of the techniques for large-scale neutron dosimetry. Electrochemical etching parameters were studied including the nature or type of the polymer foil used, foil thickness and its effect on etching time, the applied voltage and its frequency, the chemical composition, concentration, and temperature of the etchant, distance and angle between the electrodes, and the type of particles such as recoil particles including protons. Recoil particle track density, mean track diameter, and optical density as functions of the mentioned parameters were determined. Each parameter was found to have a distinct effect on the etching results in terms of the measured responses. Several new characteristics of this fast neutron dosimetry method were studied especially for personnel dosimetry using various radiation sources such as nuclear reactors, medical cyclotrons, and isotopic neutron sources. The dose range, neutron energy dependence, directional response, fading characteristics, neutron threshold energy, etc. were investigated

  14. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Fallows, Scott Mathew [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  15. Nuclear recoil scintillation and ionisation yields in liquid xenon from ZEPLIN-III data

    CERN Document Server

    Horn, M; Akimov, D Yu; Araújo, H M; Barnes, E J; Burenkov, A A; Chepel, V; Currie, A; Edwards, B; Ghag, C; Hollingsworth, A; Kalmus, G E; Kobyakin, A S; Kovalenko, A G; Lebedenko, V N; Lindote, A; Lopes, M I; Lüscher, R; Majewski, P; Murphy, A StJ; Neves, F; Paling, S M; da Cunha, J Pinto; Preece, R; Quenby, J J; Reichhart, L; Scovell, P R; Silva, C; Solovov, V N; Smith, N J T; Smith, P F; Stekhanov, V N; Sumner, T J; Thorne, C; de Viveiros, L; Walker, R J

    2011-01-01

    Scintillation and ionisation yields for nuclear recoils in liquid xenon above 10 keVnr (nuclear recoil energy) are deduced from data acquired using broadband Am-Be neutron sources. The nuclear recoil data from several exposures to two sources were compared to detailed simulations. Energy-dependent scintillation and ionisation yields giving acceptable fits to the data were derived. Efficiency and resolution effects are treated using a light collection Monte Carlo, measured photomultiplier response profiles and hardware trigger studies. A gradual fall in scintillation yield below ~40 keVnr is found, together with a rising ionisation yield; both are in good agreement with the latest independent measurements. The analysis method is applied to both the most recent ZEPLIN-III data, acquired with a significantly upgraded detector and a precision-calibrated Am-Be source, as well as to the earlier data from the first run in 2008. A new method for deriving the recoil scintillation yield, which includes sub-threshold S1...

  16. Exclusive {rho}{sup 0} production measured with the HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Perez Benito, Roberto Francisco

    2010-12-15

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  17. Se-atom incorporation in fullerene and the MD simulation

    International Nuclear Information System (INIS)

    The formation of Se atom-incorporated fullerenes has been investigated by using radionuclides produced by nuclear reactions. From the trace of radioactivities of 75Se after High Performance Liquid Chromatography (HPLC), it was found that the formation of endohedral fullerenes or hetrofullerenes is possible by a recoil process following the nuclear reaction. To confirm the produced materials, ab initio molecular-dynamics simulations based on an all-electron mixed-basis approach were carried out. We found that the insertion of Se atom into C60 cage is much easier than that of As and Ge atoms. (author)

  18. Phonon spectra in quantum wires

    Directory of Open Access Journals (Sweden)

    Ilić Dušan

    2007-01-01

    Full Text Available Green's function method, adjusted to bound crystalline structures, was applied to obtain the phonon dispersion law in quantum wires. The condition of the existence of small mechanical atom movements defining phonon spectra can be found by solving the secular equation. This problem was presented graphically for different boundary parameters. The presence of boundaries, as well as the change of boundary parameters, leads to the appearance of new properties of the layered structure. The most important feature is that, beside the allowed energy zones (which are continuous as in the bulk structure, zones of forbidden states appear. Different values of the boundary parameters lead to the appearance of lower and upper energy gaps, or dispersion branches spreading out of the bulk energy zone. The spectra of phonons in corresponding unbound structures were correlated to those in bound structures.

  19. Observation and analysis of X-ray spectra of highly-ionized atoms produced by laser irradiation in the wavelength range 0.60 nm to 0.95 nm

    International Nuclear Information System (INIS)

    The spectra of highly-charged ions produced by laser irradiation on flat targets at about 5 x 1014 Wcm-2 are recorded in the range from 0.60 nm to 0.95 nm (6 A to 9.5 A) by means of two spectrographs (a flat ADP crystal and a Johann SiO2 crystal spectrograph). The identification of the lines is supported by calculations of energies and transition probabilities in the relativistic parametric potential model. New identifications in several spectra of iron (Fe XXIII to Fe XXI), sodium-like strontium, Sr XXVIII, magnesium-like indium. In XXXVIII, and cobalt-like samarium, Sm XXXVI, are given. In the case of Fe XXIII, relativistic and non-relativistic (Cowan) ab initio calculations are compared. (orig.)

  20. Nuclear effects in atomic transitions

    OpenAIRE

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects ...

  1. Stiff Stability of the Hydrogen atom in dissipative Fokker electrodynamics

    CERN Document Server

    De Luca, J

    2005-01-01

    We introduce an ad-hoc electrodynamics with advanced and retarded Lienard-Wiechert interactions plus the dissipative Lorentz-Dirac self-interaction force. We study the covariant dynamical system of the electromagnetic two-body problem, i.e., the hydrogen atom. We perform the linear stability analysis of circular orbits for oscillations perpendicular to the orbital plane. In particular we study the normal modes of the linearized dynamics that have an arbitrarily large imaginary eigenvalue. These large eigenvalues are fast frequencies that introduce a fast (stiff) timescale into the dynamics. As an application, we study the phenomenon of resonant dissipation, i.e., a motion where both particles recoil together in a drifting circular orbit (a bound state), while the atom dissipates center-of-mass energy only. This balancing of the stiff dynamics is established by the existence of a quartic resonant constant that locks the dynamics to the neighborhood of the recoiling circular orbit. The resonance condition quant...

  2. Satellite spectra of heliumlike nickel

    International Nuclear Information System (INIS)

    Spectra of heliumlike nickel, NiXXVII, have been observed from Tokamak Fusion Test Reactor (TFTR) plasmas with a high resolution crystal spectrometer. The experimental arrangement permits simultaneous observation of the heliumlike resonance line, the intercombination and forbidden lines, and all the associated satellites due to transitions 1s2nl - 1s2l'nl'' with N ≥ 2. Relative wavelengths and line intensities can thus be determined very accurately. The observed spectral data are in good agreement with results from the present Hartree-Fock-Slater atomic model calculations and predictions from the Z-expansion method

  3. D-D neutron energy-spectra measurements in Alcator C

    International Nuclear Information System (INIS)

    Measurements of energy spectra of neutrons produced during high density (anti n/sub e/ > 2 x 1014 cm-3) deuterium discharges have been performed using a proton-recoil (NE 213) spectrometer. A two foot section of light pipe (coupling the scintillator and photomultiplier) was used to extend the scintillator into a diagnostic viewing port to maximize the neutron detection efficiency while not imposing excessive magnetic shielding requirements. A derivative unfolding technique was used to deduce the energy spectra. The results showed a well defined peak at 2.5 MeV which was consistent with earlier neutron flux measurements on Alcator C that indicated the neutrons were of thermonuclear origin

  4. TRIDYN - binary collision simulation of atomic collisions dynamic composition changes in solids

    International Nuclear Information System (INIS)

    The report deals with the computerized simulation of the following problem: a beam of fast ions entering a solid substance is slowed down and scattered due to electronic interaction and nuclear collisions. Together with created recoil atoms local compositional changes are produced. For large fluences collisional mixing is caused in layered substances. (BHO)

  5. High-order inertial phase shifts for time-domain atom interferometers

    OpenAIRE

    Bongs, Kai; Launay, Romain; Kasevich, Mark A.

    2002-01-01

    High-order inertial phase shifts are calculated for time-domain atom interferometers. We obtain closed-form analytic expressions for these shifts in accelerometer, gyroscope, optical clock and photon recoil measurement configurations. Our analysis includes Coriolis, centrifugal, gravitational, and gravity gradient-induced forces. We identify new shifts which arise at levels relevant to current and planned experiments.

  6. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions; Tests d'electrodynamique quantique et etalons de rayons-X a l'aide des atomes pioniques et des ions multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Trassinelli

    2005-12-15

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m({pi}{sup -}) = (139.571042 {+-} 0.000210 {+-} 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV.

  7. Spontaneous emission of a photon: wave packet structures and atom-photon entanglement

    OpenAIRE

    Fedorov, M. V.; Efremov, M. A.; Kazakov, A. E.; Chan, K W; Law, C. K.; Eberly, J. H.

    2004-01-01

    Spontaneous emission of a photon by an atom is described theoretically in three dimensions with the initial wave function of a finite-mass atom taken in the form of a finite-size wave packet. Recoil and wave-packet spreading are taken into account. The total atom-photon wave function is found in the momentum and coordinate representations as the solution of an initial-value problem. The atom-photon entanglement arising in such a process is shown to be closely related to the structure of atom ...

  8. A priori calculations of hyperfine interactions in highly ionized atoms: g-factor measurements on aligned pico-second states populated in nuclear reactions

    International Nuclear Information System (INIS)

    Calculations of hyperfine interaction strength and life-times of states in highly ionized atoms, using the GRASP atomic structure package, are reported. The calculations aim at providing calibration for Recoil-in-Vacuum nuclear excited state g-factor measurements. The method is outlined and results compared with experiment. Inclusion of decay of higher electronic states is discussed.

  9. Heavy ion elastic recoil detection analysis of AlxOy/Pt/AlxOy multilayer selective solar absorber

    International Nuclear Information System (INIS)

    Highlights: • AlxOy/Pt/AlxOy solar absorber was thermally stable in air up to 500 °C for 2 h. • AlxOy/Pt/AlxOy solar absorber was investigated using HI-ERDA. • The cause of degradation of the coatings above 500 °C was identified. • An outward diffusion of Cu substrate towards the coating was observed at 600 °C. • At 700 °C, formation of CuO and Cu2O phases were confirmed. - Abstract: An AlxOy/Pt/AlxOy multilayer solar absorber for use in solar-thermal applications has been deposited onto copper substrate by electron beam (e-beam) vacuum evaporation at room temperature. Different samples were annealed at different temperatures in air and characterized by spectrophotometry, emissometry, heavy ion elastic recoil detection analysis (HI-ERDA), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The AlxOy/Pt/AlxOy multilayer solar absorbers heated up to 500 °C were found to exhibit good spectral selectivity (α/ε) of 0.951/0.08. However, beyond 500 °C the spectral selectivity decreased to 0.846/0.11, possibly due to thermally activated atomic interdiffusion profiles. HI-ERDA has been used to study depth-dependent atomic concentration profiles. These measurements revealed outward diffusion of the copper substrate towards the surface and therefore, the decrease in the constituents of the coating. The decrease in the intensity of Pt grains and formation of CuO and Cu2O phases at 700 °C were confirmed by XRD and EDS

  10. Recoil ions from molecular targets: sequential Coulomb explosions

    International Nuclear Information System (INIS)

    Fast ion collision processes appear to be ideal for producing multiply charged molecular ions. The advantage of this technique has not been appreciated so far and very little work has been carried out so far. We have initiated a programme to study the formation of multiply charged molecular ions and their dissociation dynamics using fast ion beam from the pelletron. Measurements have been carried out on several molecules including N2, CO, CO2, CS2, CH4 and CH3I. Measurements of the kinetic energy distributions of the fragment ions provided novel results on the fragmentation of CS2 and CO2 ions. As expected the positive ions of S and O possessed very large kinetic energies resulting from the Coulomb explosion of highly charged molecular ions. The surprising result was that the positive ions (C+ and C2+) from the central carbon atom of the linear symmetric molecules possessed much larger energies that what is expected from the conventional physical picture of Coulomb explosion. It is concluded that the observed high kinetic energy C+ and C2+ ions are formed by sequential fragmentation of CO2n+ ions through an intermediate K-shell excited CO+* ions. (author). 4 refs., 1 fig

  11. Neutron energy spectra produced by α-bombardment of light elements in thick targets

    International Nuclear Information System (INIS)

    The aim of the work, presented in this thesis, is to determine energy spectra of neutrons produced by α-particle bombardment of thick targets containing light elements. These spectra are required for nuclear waste management. The set-up of the neutron spectrometer is described, and its calibration discussed. Absolute efficiencies were determined at various neutron energies, using monoenergetic neutrons produced with the Van de Graaff accelerator in pulsed mode. The additional calibration of the neutron spectrometer as proton-recoil spectrometer was carried out primarily for future applications in measurements where no pulsed neutron source is available or the neutron flux density is too low. The basis for an accurate uncertainty analysis is made by the determination of the covariance matrix for the uncertainties in the efficiencies. The determination of the neutron energy spectra from time-of-flight and from proton-recoil measurements is described. A comparison of the results obtained from the two different types of measurements is made. The experimentally determined spectra were compared with spectra calculated from stopping powers and theoretically determined cross sections. These cross sections were calculated from optical model parameters and level parameters using the Hauser-Feshbach formalism. Measurements were carried out on thick targets of silicon, aluminium, magnesium, carbon, boron nitride, calcium fluoride, aluminium oxide, silicon oxide and uranium oxide at four different α-particle energies. (Auth.)

  12. Long-Term Evolution of and X-ray Emission from a Recoiling Supermassive Black Hole in a Disk Galaxy

    OpenAIRE

    Fujita, Yutaka

    2008-01-01

    Recent numerical relativity simulations have shown that the emission of gravitational waves at the merger of two black holes gives a recoil kick to the final black hole. We follow the orbits of a recoiling supermassive black hole (SMBH) in a fixed background potential of a disk galaxy including the effect of dynamical friction. If the recoil velocity of the SMBH is smaller than the escape velocity of the galaxy, the SMBH moves around in the potential along a complex trajectory before it spira...

  13. Modeling and Measurement of 39Ar Recoil Loss From Biotite as a Function of Grain Dimensions

    Science.gov (United States)

    Paine, J. H.; Nomade, S.; Renne, P. R.

    2004-12-01

    The call for age measurements with less than 1 per mil error puts a demand upon geochronologists to be aware of and quantify a number of problems which were previously negligible. One such factor is 39Ar recoil loss during sample irradiation, a phenomenon which is widely assumed to affect only unusually small crystals having exceptionally high surface/volume ratios. This phenomenon has important implications for thermochronologic studies seeking to exploit a range of closure temperatures arising from variable diffusion radii. Our study focuses on biotite, in which spatial isotope distributions cannot be reliably recovered by stepwise heating and which therefore lack recoil-diagnostic age spectrum behavior. Previous work by Renne et al. [Application of a deuteron-deuteron (D-D) neutron generator to 40Ar/39Ar geochronology, Applied Radiation and Isotopes, in press] used the SRIM code to calculate a ˜20% 39Ar recoil loss from the outermost 0.25 μ m of an infinite slab of phyllosillicate. This result is applied to measured grains of the biotite standard GA1550, a hypabyssal granite from the Mount Dromedary Complex, Australia. We measure the thickness and surface area of 166 grains and approximate the shape of each grain as a cylinder. Grain thickness ranges from 3 to 210 μ m, with an average grain radius of 350 μ m. We predict the amount of 39Ar recoil loss from each grain, finding an expected age error >0.1 % for grains thinner than 150 μ m, a >1% error for grain less than 10 μ m thick, and up to a 3% error for grains less than 3 μ m thick. These modeling results will be tested by analysis of the measured grains after irradiation in the Oregon State University TRIGA reactor. It is important to either account for 39Ar loss in thin biotite grains, or use sufficiently thick ones so that recoil loss is negligible. Our results indicate that only biotite grains thicker than 150 μ m should be used for neutron fluence monitoring in order to avoid bias greater than the

  14. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  15. Conservation laws and laser cooling of atoms

    Science.gov (United States)

    Giuliani, Giuseppe

    2015-11-01

    The straightforward application of energy and linear momentum conservation to the absorption/emission of photons by atoms allows us to establish the essential features of laser cooling of two level atoms at low laser intensities. The lowest attainable average kinetic energy of the atoms depends on the ratio {{Γ }}/{E}{{R}} between the natural linewidth and the recoil energy and tends to ER as {{Γ }}/{E}{{R}} tends to zero (in one dimension). This treatment, like the quantum mechanical ones, is valid for any value of the ratio {{Γ }}/{E}{{R}} and contains the semiclassical theory of laser cooling as the limiting case in which {E}{{R}}\\ll {{Γ }}.

  16. Asymmetric nitrogen. Communication 50. Nature of the effect of substituents attached to the C atom on the reactivities of diaziridines; synthesis and photoelectronic spectra of functionally substituted 1,n-diazabicyclo[m.1.0]alkanes

    International Nuclear Information System (INIS)

    The energy of the highest occupied MO and, consequently, the nucleophilic reactivities of diaziridines are determined primarily by the inductive effect of the substituent attached to the C atom. The possibility of the synthesis of 5-substituted 1,6-diazabicyclo[3.1.0]hexanes by epimination of the corresponding Δ1-pyrrolines is limited by the type of substituent in the 2 position in the latter: bulky and π-donor substituents hinder the formation of a diaziridine ring, whereas the strongly electronegative CN group promotes facile rearrangement of the intermediately formed diaziridine to the corresponding hydrazone

  17. A New Theoretical Study of Quantum Atomic Energy Spectra for Lowest Excited States of Central (PIHOIQ Potential in Noncommutative Spaces and Phases Symmetries at Plan’s and Nanoscales

    Directory of Open Access Journals (Sweden)

    Abdelmadjid Maireche

    2016-06-01

    Full Text Available In this research paper, we consider full phase-space noncommutativity in the Schrödinger equation (SE, we apply Boopp’s shift method and standard perturbation theory to the modified (SE in order to obtain exactly new modified energy eigenvalues in noncommutative two dimensional real space-phase NC-2D: RSP for prolonged isotropic Harmonic oscillator plus inverse quadratic potential (PCIHOIQ potential (central singular even-power potential (CSEP potential with novel two parts and , it is observed that the new energy dependent with new atomic quantum numbers, we have also constructed the corresponding modified anisotropic Hamiltonian operator.

  18. Atom Chips

    CERN Document Server

    Folman, R; Cassettari, D; Hessmo, B; Maier, T; Schmiedmayer, J; Folman, Ron; Krüger, Peter; Cassettari, Donatella; Hessmo, Björn; Maier, Thomas

    1999-01-01

    Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems.

  19. Digital characterization of recoil charged-particle tracks for neutron measurements

    International Nuclear Information System (INIS)

    We are developing a new optical ionization detector for imaging the track of a charged neutron-recoil particle in a gas. Electrons produced in the path of the recoil particle are excited by an external, high-voltage, RF, electric field of short duration. Their oscillatory motion causes ionization and excitation of nearby gas molecules, which then emit light in subsequent de-excitation. Two digital cameras image the optical radiation across two perpendicular planes and analyze it for the numbers of electrons in various volume elements along the track. These numbers constitute the digital characterization of the track. This information can then be used to infer the energy deposited in the track and the track LET in the gas. We have now observed alpha-particle tracks in a chamber utilizing these principles. The application of such a device for neutron dosimetry and neutron spectrometry will be described. 4 refs., 3 figs

  20. Digital characterization of recoil charged-particle tracks for neutron measurements

    International Nuclear Information System (INIS)

    We are developing a new optical ionization detector for imaging the track of a charged neutron-recoil particle in a gas. Electrons produced in the path of the recoil particle are excited by an external, high-voltage, rf, electric field of short duration. Their oscillatory motion causes ionization and excitation of nearby gas molecules, which then emit light in subsequent de-excitation. Two digital cameras image the optical radiation across two perpendicular planes and analyze it for the numbers of electrons in various volume elements along the track. These numbers constitute the digital characterization of the track. This information can then be used to infer the energy deposited in the track and the track LET in the gas. We have now observed alpha-particle tracks in a chamber utilizing these principles. The application of such a device for neutron dosimetry and neuron spectrometry will be described. (orig.)