WorldWideScience

Sample records for atomic recoil spectra

  1. Primary reactions of recoiling germanium atoms

    International Nuclear Information System (INIS)

    75Ge recoils are made using the (n,2n) reaction. By analogy with Si recoils, two divalent species are suggested as intermediates in the recoil-germane reaction, one formed by H abstraction and the other formed by insertion only. A series of moderator and competition experiments were conducted. Of the noble gases, Kr is the most efficient moderator at removing kinetic energy from the recoils. Xe has a special effect due to its low ionization potential. A reaction scheme is proposed with two routes to digermane, one from a hot neutral atom and the other from a positive ion. 8 figures

  2. QED theory of the nuclear recoil effect in atoms

    OpenAIRE

    Shabaev, V. M.

    1997-01-01

    The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \\alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.

  3. QED theory of the nuclear recoil effect in atoms

    CERN Document Server

    Shabaev, V M

    1998-01-01

    The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \\alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.

  4. Two-Photon Collective Atomic Recoil Lasing

    Directory of Open Access Journals (Sweden)

    James A. McKelvie

    2015-11-01

    Full Text Available We present a theoretical study of the interaction between light and a cold gasof three-level, ladder configuration atoms close to two-photon resonance. In particular, weinvestigate the existence of collective atomic recoil lasing (CARL instabilities in differentregimes of internal atomic excitation and compare to previous studies of the CARL instabilityinvolving two-level atoms. In the case of two-level atoms, the CARL instability is quenchedat high pump rates with significant atomic excitation by saturation of the (one-photoncoherence, which produces the optical forces responsible for the instability and rapid heatingdue to high spontaneous emission rates. We show that in the two-photon CARL schemestudied here involving three-level atoms, CARL instabilities can survive at high pump rateswhen the atoms have significant excitation, due to the contributions to the optical forces frommultiple coherences and the reduction of spontaneous emission due to transitions betweenthe populated states being dipole forbidden. This two-photon CARL scheme may form thebasis of methods to increase the effective nonlinear optical response of cold atomic gases.

  5. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  6. Comparison of recoil-induced resonances and the collective atomic recoil laser

    CERN Document Server

    Berman, P R

    1999-01-01

    The theories of recoil-induced resonances (RIR) [J. Guo, P. R. Berman, B. Dubetsky and G. Grynberg, Phys. Rev. A {\\bf 46}, 1426 (1992)] and the collective atomic recoil laser (CARL) [ R. Bonafacio and L. De Salvo, Nucl. Instrum. Methods A {\\bf 341}, 360 (1994)] are compared. Both theories can be used to derive expressions for the gain experienced by a probe field interacting with an ensemble of two-level atoms that are simultaneously driven by a pump field. It is shown that the RIR and CARL formalisms are equivalent. Differences between the RIR and CARL arise because the theories are typically applied for different ranges of the parameters appearing in the theory. The RIR limit considered in this paper is $qP_{0}/M\\omega_{q}\\gg 1$, while the CARL limit is $qP_{0}/M\\omega_{q}\\lesssim 1$, where $% q $ is the magnitude of the difference of the wave vectors of the pump and probe fields, $P_{0}$ is the width of the atomic momentum distribution and $% \\omega_{q}$ is a recoil frequency. The probe gain for a probe-pu...

  7. Observation of Lasing Mediated by Collective Atomic Recoil

    CERN Document Server

    Kruse, D; Zimmermann, C; Courteille, P W; Courteille, Ph.W.

    2003-01-01

    We observe the buildup of a frequency-shifted reverse light field in a unidirectionally pumped high-Q optical ring cavity serving as a dipole trap for cold atoms. This effect is enhanced and a steady state is reached, if via an optical molasses an additional friction force is applied to the atoms. We observe the displacement of the atoms accelerated by momentum transfer in the backscattering process and interpret our observations in terms of the collective atomic recoil laser. Numerical simulations are in good agreement with the experimental results.

  8. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  9. Some Reactions of Recoil Atoms in Solid Inorganic Phosphorus Compounds

    International Nuclear Information System (INIS)

    In connection with our interest in the recoil chemistry of radiophosphorus it was considered worthwhile to investigate systems in which tritium recoils can be produced and subsequently react with inorganic anions of phosphorus. One purpose of this investigation was to evaluate the possibility for tritium recoils to replace (''displace'') either an oxygen or a hydrogen atom bound to phosphorus. For instance, oxygen replacement in an orthophosphate ion (PO4)-3 could lead to a (TPO3)-2 ion (phosphite), hydrogen replacement in hypophosphite could lead to (HTPO2). A number of lithium salts of orthophosphoric, phosphorous and hypophosphorous acid were irradiated with neutrons, the nuclear reaction Li6 (n, α)H3 serving as the source for the energetic tritium atoms. Through a step-wise oxidation procedure tritium bound to phosphorus was converted into HTO and radio-assayed by means of liquid scintillation counting. The results indicate that replacement of oxygen by tritium in orthophosphates is highly unlikely. When phosphites and hypophosphites are the target material, an appreciable percentage of the tritium recoils end up bound to phosphorus. The second purpose of this investigation was to determine to what extent the labelling of the tripolyphosphate - P32 anion, formed by recoiling P32 particles in a number of crystalline phosphates, deviates from a uniform distribution. A number of phosphates were irradiated with neutrons. The tripolyphosphate - P32 formed was separated by precipitation as the tris (ethylenediamine) cobalt (III) salt. By means of a step-wise degradation into orthophosphate the distribution of the P32 among the two possible positions in the anion was measured. One result of this study is that when anhydrous orthophosphates are the target material, there is as predicted, a strong preference for the tripolyphosphate - P32 formed to be labelled at the centre. These and other results are discussed in the light of current concepts of ''hot

  10. Collective Atomic Recoil Lasing Including Friction and Diffusion Effects

    CERN Document Server

    Robb, G R M; Ferraro, A; Bonifacio, R; Courteille, P W; Zimmermann, C; Courteille, Ph.W.

    2003-01-01

    We extend the Collective Atomic Recoil Lasing (CARL) model including the effects of friction and diffusion forces acting on the atoms due to the presence of optical molasses fields. The results from this model are consistent with those from a recent experiment by Kruse et al. [Phys. Rev. Lett. 91, 183601 (2003)]. In particular, we obtain a threshold condition above which collective backscattering occurs. Using a nonlinear analysis we show that the backscattered field and the bunching evolve to a steady-state, in contrast to the non-stationary behaviour of the standard CARL model. For a proper choice of the parameters, this steady-state can be superfluorescent.

  11. Chemical fate of a recoil atom as a function of the lattice conditions

    International Nuclear Information System (INIS)

    The author considers the fate of a recoil atom receiving a recoil as a result of a nuclear reaction, completely rupturing the bonds between the atom and its ligands, in the case of KMnO4- and KBrO3-crystal lattices. (Auth.)

  12. Fast thermometry for trapped atoms using recoil-induced resonance

    Science.gov (United States)

    Zhao, Yan-Ting; Su, Dian-Qiang; Ji, Zhong-Hua; Zhang, Hong-Shan; Xiao, Lian-Tuan; Jia, Suo-Tang

    2015-09-01

    We have employed recoil-induced resonance (RIR) with linewidth on the order of 10 kHz to demonstrate the fast thermometry for ultracold atoms. We theoretically calculate the absorption spectrum of RIR which agrees well with the experimental results. The temperature of the ultracold sample derived from the RIR spectrum is T = 84±4.5 μK, which is close to 85 μK that measured by the method of time-of-flight absorption imaging. To exhibit the fast measurement advantage in applying RIR to the ultracold atom thermometry, we study the dependence of ultracold sample temperature on the trapping beam frequency detuning. This method can be applied to determine the translational temperature of molecules in photoassociation dynamics. Project supported by the National Basic Research Development Program of China (Grant No. 2012CB921603), the National High Technology Research and Development Program of China (Grant No. 2011AA010801), the National Natural Science Foundation of China (Grant Nos. 61275209, 11304189, 61378015, and 11434007), and Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT13076).

  13. Search for the admixture of heavy neutrinos in the recoil spectra of 37Ar decay

    International Nuclear Information System (INIS)

    Neutrino-induced recoil spectra of 37Cl ions produced in the electron capture (EC) decay of 37Ar were measured and searched for the presence of massive neutrinos admixed to the dominant electron neutrino. Fractions of a monolayer of 37Ar were physisorbed on Au and on several underlayers of 40Ar adsorbed on both Au and graphite substrates cooled to ≤20 K under ultrahigh vacuum conditions. Time-of-flight spectra of the recoiling ions were recorded in coincidence with x rays and Auger electrons emitted following the EC decay. By searching these spectra for peaks with energies between 7.6 eV and 3.6 eV upper limits were placed on the mixing probability of the electron neutrino with heavy neutrinos in the 370 - 640 keV mass range. These limits vary from 1 to 4%, at the 90% confidence level. copyright 1998 The American Physical Society

  14. Study of an unfolding algorithm for D-T neutron energy spectra measurement using a recoil proton method

    Institute of Scientific and Technical Information of China (English)

    WANG Jie; LU Xiao-Long; YAN Yan; WEI Zheng; WANG Jun-Run; RAN Jian-Ling; HUANG Zhi-Wu

    2015-01-01

    A proton recoil method for measuring D-T neutron energy spectra using polyethylene film and a Si(Au)surface barrier detector is presented.An iteration algorithm for unfolding the recoil proton energy spectrum to the neutron energy spectrum is investigated.The response matrices R of the polyethylene film at angles of 0° and 45° were obtained by simulating the recoil proton energy spectra from mono-energetic neutrons using the MCNPX code.With an assumed D-T neutron spectrum,the recoil proton spectra from the polyethylene film at angles of 0°and 45° were also simulated using the MCNPX code.Based on the response matrices R and the simulated recoil proton spectra at 0° and 45°,the respective unfolded neutron spectra were obtained using the iteration algorithm,and compared with the assumed neutron spectrum.The results show that the iteration algorithm method can be applied to unfold the recoil proton energy spectrum to the neutron energy spectrum for D-T neutron energy spectra measurement using the recoil proton method.

  15. NIST Databases on Atomic Spectra

    Science.gov (United States)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new

  16. Self-organization effects and light amplification of collective atomic recoil motion in a harmonic trap

    OpenAIRE

    Zhang, L.; Yang, G. J.; Xia, L. X.

    2005-01-01

    Self-organization effects related to light amplification in the collective atomic recoil laser system with the driven atoms confined in a harmonic trap are investigated further. In the dispersive parametric region, our study reveals that the spontaneously formed structures in the phase space contributes an important role to the light amplification of the probe field under the atomic motion being modified by the trap.

  17. Search for the admixture of heavy neutrinos in the recoil spectra of {sup 37}Ar decay

    Energy Technology Data Exchange (ETDEWEB)

    Hindi, M.M.; Kozub, R.L.; Miocinovic, P. [Department of Physics, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Avci, R.; Zhu, L. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Hussein, A.H. [Physics Program, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 (CANADA)

    1998-10-01

    Neutrino-induced recoil spectra of {sup 37}Cl ions produced in the electron capture (EC) decay of {sup 37}Ar were measured and searched for the presence of massive neutrinos admixed to the dominant electron neutrino. Fractions of a monolayer of {sup 37}Ar were physisorbed on Au and on several underlayers of {sup 40}Ar adsorbed on both Au and graphite substrates cooled to {le}20 K under ultrahigh vacuum conditions. Time-of-flight spectra of the recoiling ions were recorded in coincidence with x rays and Auger electrons emitted following the EC decay. By searching these spectra for peaks with energies between 7.6 eV and 3.6 eV upper limits were placed on the mixing probability of the electron neutrino with heavy neutrinos in the 370{endash}640 keV mass range. These limits vary from 1 to 4{percent}, at the 90{percent} confidence level. {copyright} {ital 1998} {ital The American Physical Society}

  18. Evaluation of proton-recoil-spectra including inverse filtering in the Fourier domain

    International Nuclear Information System (INIS)

    The evaluation of proton recoil spectra having large statistical fluctuations can be improved by the following operations in Fourier domain: smoothing, using a Gaussian function as low pass frequency filter and inverse filtering with the measured response function before multiplying by -2πiν as differentiation. This results in pure Gaussian shapes for the neutron lines. The line intensities are then no longer influenced by correlated ripples outside the lines and the errors in determining the line intensities are reduced by widening by lines. (orig.)

  19. Complex decay patterns in atomic core photoionization disentangled by ion-recoil measurements

    Energy Technology Data Exchange (ETDEWEB)

    Guillemin, Renaud; Bomme, Cedric; Marin, Thierry; Journel, Loic; Marchenko, Tatiana; Kushawaha, Rajesh K.; Piancastelli, Maria Novella; Simon, Marc [Universite Pierre et Marie Curie, Universite Paris 06, Laboratoire de Chimie Physique Matiere et Rayonement, 11 rue Pierre et Marie Curie, FR-75231 Paris Cedex 05 (France); Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique Matiere et Rayonement (UMR7614), 11 rue Pierre et Marie Curie, FR-75231 Paris Cedex 05 (France); Trcera, Nicolas [Synchrotron SOLEIL, l' Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)

    2011-12-15

    Following core 1s ionization and resonant excitation of argon atoms, we measure the recoil energy of the ions due to momentum conservation during the emission of Auger electrons. We show that such ion momentum spectroscopy can be used to disentangle to some degree complex decay patterns, involving both radiative and nonradiative decays.

  20. Observation of nonlinear laser spectra of cold atoms in diffuse light

    CERN Document Server

    Zhang, Wen-zhuo; Liu, Liang; Wang, Yu-zhu

    2009-01-01

    The recoil-induced resonances (RIR) and electromagnetic-induced absorption (EIA) are observed in an experiment of diffuse cooling of $^{87}$Rb atomic vapor in an integrating sphere. We measured the nonlinear spectra varying with detuning of the diffuse laser light, and study their mechanism in the diffuse-light pumped and laser-beam probed configuration. Their differences from nonlinear spectra of cold atoms in one-dimensional optical molasses and magneto-optical trap (MOT) are also discussed.

  1. Recoil spectrometer for the detection of single atoms

    International Nuclear Information System (INIS)

    A much improved version of our gas-filled spectrometer for heavy-ion-induced fusion reactions is described. This instrument (SASSY II) is of the type D-Q-D wherein the dipoles are made with strong vertically-focussing gradients. The problems associated with experiments with cross sections in the picobarn range are discussed. In such experiments, it is necessary to identify single atoms with a high degree of confidence

  2. Neutron spectrum measurements using proton recoil proportional counters: results of measurements of leakage spectra for the Little Boy assembly

    International Nuclear Information System (INIS)

    Measurements of degraded fission-neutron spectra using recoil proportional counters are done routinely for studies involving fast reactor mockups. The same techniques are applicable to measurements of neutron spectra required for personnel dosimetry in fast neutron environments. A brief discussion of current applications of these methods together with the results of a measurement made on the LITTLE BOY assembly at Los Alamos are here described

  3. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    87Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na+ projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  4. Atomic spectra in a helium bubble

    OpenAIRE

    Nakatsukasa, Takashi; Yabana, Kazuhiro; Bertsch, George F.

    2002-01-01

    Density functional theory (DFT) is applied to atomic spectra under perturbations of superfluid liquid helium. The atomic DFT of helium is used to obtain the distribution of helium atoms around the impurity atom, and the electronic DFT is applied to the excitations of the atom, averaging over the ensemble of helium configurations. The shift and broadening of the D1 and D2 absorption lines are quite well reproduced by theory, suggesting that the DFT may be useful for describing spectral perturb...

  5. Higher-order recoil corrections for triplet states of the helium atom

    CERN Document Server

    Patkos, V; Pachucki, K

    2016-01-01

    Nuclear recoil corrections of order $\\alpha^6\\,m^2/M$ are calculated for the lowest-lying triplet states of the helium atom. It improves the theoretical prediction for the isotope shift of the $2^3S-2^3P$ transition energy and influences the determination of the ${}^3\\textrm{He}-{}^4\\textrm{He}$ nuclear charge radii difference. This calculation is a step forward on the way towards the direct determination of the charge radius of the helium nucleus from spectroscopic measurements.

  6. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  7. ANALYSIS OF ACCELERATOR BASED NEUTRON SPECTRA FOR BNCT USING PROTON RECOIL SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI,L.; LUDEWIG,H.; POWELL,J.R.; RAPARIA,D.; ALESSI,J.G.; LOWENSTEIN,D.I.

    1998-11-06

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  8. Measurement of the (211)Pb half-life using recoil atoms from (219)Rn decay.

    Science.gov (United States)

    Aitken-Smith, P M; Collins, S M

    2016-04-01

    The radioactive half-life of (211)Pb was measured, by α-particle counting of samples of radiochemically pure (211)Pb in equilibrium with its α-emitting progeny, (211)Bi and (211)Po. The samples were prepared by the collection of (215)Po recoil atoms from the decay of the (219)Rn decay progeny produced from a (223)Ra sample onto stainless steel discs. The radioactive decay of the (211)Pb was measured utilising a 2π proportional counter operating on the α plateau. A half-life of 36.164 (13)min was determined, which is in agreement with currently available literature. A full uncertainty budget is presented. A recommended half-life of T1/2((211)Pb)=36.161 (17)min has been evaluated from the current literature values. PMID:26773817

  9. Genuine Tripartite Entanglement and Nonlocality in Bose-Einstein Condensates by Collective Atomic Recoil

    Directory of Open Access Journals (Sweden)

    Gerardo Adesso

    2013-05-01

    Full Text Available We study a system represented by a Bose-Einstein condensate interacting with a cavity field in presence of a strong off-resonant pumping laser. This system can be described by a three-mode Gaussian state, where two are the atomic modes corresponding to atoms populating upper and lower momentum sidebands and the third mode describes the scattered cavity field light. We show that, as a consequence of the collective atomic recoil instability, these modes possess a genuine tripartite entanglement that increases unboundedly with the evolution time and is larger than the bipartite entanglement in any reduced two-mode bipartition. We further show that the state of the system exhibits genuine tripartite nonlocality, which can be revealed by a robust violation of the Svetlichny inequality when performing displaced parity measurements. Our exact results are obtained by exploiting the powerful machinery of phase-space informational measures for Gaussian states, which we briefly review in the opening sections of the paper.

  10. Students' Mental Models of Atomic Spectra

    Science.gov (United States)

    Körhasan, Nilüfer Didis; Wang, Lu

    2016-01-01

    Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…

  11. Atomic and Molecular Aspects of Astronomical Spectra

    CERN Document Server

    Sochi, Taha

    2012-01-01

    In the first section we present the atomic part where a C2+ atomic target was prepared and used to generate theoretical data to investigate recombination lines arising from electron-ion collisions in thin plasma. R-matrix method was used to describe the C2+ plus electron system. Theoretical data concerning bound and autoionizing states were generated in the intermediate-coupling approximation. The data were used to generate dielectronic recombination data for C+ which include transition lines, oscillator strengths, radiative transition probabilities, emissivities and dielectronic recombination coefficients. The data were cast in a line list containing 6187 optically-allowed transitions which include many C II lines observed in astronomical spectra. This line list was used to analyze the spectra from a number of astronomical objects, mainly planetary nebulae, and identify their electron temperature. The electron temperature investigation was also extended to include free electron energy analysis to investigate...

  12. Calculation of Gamma Displacement Cross Sections: Generation of Recoil Spectra from ENDF/B-VII

    International Nuclear Information System (INIS)

    Radiation damage in materials is caused by the transfer of energy from an incident particle to the target atoms, which results in the redistribution of target atoms. During the nuclear reactor operation, various kinds of radiation are produced, including fast neutron, gamma, beta, high-energy ions etc. These radiations may affect the properties of reactor structural materials in a direct and/or indirect way. It is well known that fast neutrons have an effect on the degradation of materials. Whereas the impact of fast neutrons (En > 1 MeV) on material property changes is clearly recognized, the impact of gamma ray damage to materials is usually not significant. However, there has been some interest in gamma ray damage in metals in promoting accelerated embrittlement of reactor pressure vessel steels in the HFIR (High Flux Isotopes Reactor). In situations where there is a large water gap between pressure vessel and fuel assembly, gamma damage can become comparable to that produced by neutrons, on the basis of displacements per atom (dpa) parameter. A recent analysis of gamma ray displacement damage in the RPV of the General Electric Advanced Boiling Water Reactor (ABWR) indicated that the ratio of calculated gamma- to neutron-induced displacement damage rates is over 100% at the RPV inner diameter. Under a high gamma dose environment, embrittlement can be accelerated by radiation-enhanced mass transport mechanism. Because gamma rays are much more efficient than neutrons at producing freely-migrating defects, any radiation enhanced or induced processes that depend on the magnitude of defect fluxes to sinks, can be disproportionately affected by gamma. The direct evaluation of the contribution of gamma ray to damage in materials, quantified as a parameter of dpa, is made possible once the displacement damage cross section due to gamma rays are known. In this work, we present calculations for gamma ray displacement cross sections in various materials in the energy range

  13. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution

    International Nuclear Information System (INIS)

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during

  14. Ionic recoil energies in the Coulomb explosion of metal clusters

    Science.gov (United States)

    Teuber, S.; Döppner, T.; Fennel, T.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    The photoionization of metal clusters in intense femtosecond laser fields has been studied. In contrast to an experiment on atoms, the interaction in this case leads to a very efficient and high charging of the particle where tens of electrons per atom are ejected from the cluster. The recoil energy distribution of the atomic fragment ions was measured which in the case of lead clusters exceeds 180 keV. Enhanced charging efficiency which we observed earlier for specific pulse conditions is not reflected in the recoil energy spectra. Both the average and the maximum energies decrease with increasing laser pulse width. This is in good agreement with molecular dynamics calculations.

  15. Chemistry of recoil atoms of bromine-82 in neutron-irradiated crystalline perbromates of the alkali metals and ammonium

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V.V.; Isupov, V.K.; Kirin, I.S.

    1975-01-01

    It was established by ion exchange chromatography that the recoil atoms of bromine-82 in perbromates with thermal neutrons are stabilized in the form of five valence forms: BrO/sub 4//sup -/, BrO/sub 3//sup -/, BrO/sub 2//sup -/, BrO/sup -/, Br/sup -/. The retention of bromine-82 of BrO/sub 4//sup -/ is 2.1 +- 0.4 percent for LiBrO/sub 4/, 2.1 +- 0.4 percent for NaBrO/sub 4/, 2.3 +- 0.4 percent for KBrO/sub 4/, 2.6 +- 0.4 percent for RbBrO/sub 4/, 2.2 +- 0.4 percent for CsBrO/sub 4/, and 1.6 +- 0.4 percent for NH/sub 4/BrO/sub 4/.

  16. Relativistic nuclear recoil corrections to the energy levels of hydrogen-like and high Z lithium like atoms in all orders in $\\alpha$Z

    CERN Document Server

    Artemiev, A N; Yerokhin, V A

    1995-01-01

    The relativistic nuclear recoil corrections to the energy levels of low-laying states of hydrogen-like and high Z lithium-like atoms in all orders in \\alpha Z are calculated. The calculations are carried out using the B-spline method for the Dirac equation. For low Z the results of the calculation are in good agreement with the \\alpha Z -expansion results. It is found that the nuclear recoil contribution, additional to the Salpeter's one, to the Lamb shift (n=2) of hydrogen is -1.32(6)\\,kHz. The total nuclear recoil correction to the energy of the (1s)^{2}2p_{\\frac{1}{2}}-(1s)^{2}2s transition in lithium-like uranium constitutes -0.07\\,eV and is largely made up of QED contributions.

  17. Atomic and Molecular Aspects of Astronomical Spectra

    OpenAIRE

    Sochi, T.

    2012-01-01

    In the first section of this thesis, we present the atomic part of our investigation. A C2+ atomic target was prepared and used to generate theoretical data required in the investigation of recombination lines that arise from collisions between electrons and ions in thin plasma found in planetary nebulae and other astrophysical objects. The R-matrix method of electron scattering theory was used to describe the C2+ plus electron system. Theoretical data concerning bound and autoionizing states...

  18. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature.

    Science.gov (United States)

    Mukaiyama, Takashi; Katori, Hidetoshi; Ido, Tetsuya; Li, Ying; Kuwata-Gonokami, Makoto

    2003-03-21

    A dynamic magneto-optical trap, which relies on the rapid randomization of population in Zeeman substates, has been demonstrated for fermionic strontium atoms on the 1S0-3P1 intercombination transition. The obtained sample, 1x10(6) atoms at a temperature of 2 microK in the trap, was further Doppler cooled and polarized in a far-off resonant optical lattice to achieve 2 times the Fermi temperature. PMID:12688925

  19. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  20. Emission Spectra of a Moving Atom in an Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Tao; FENG Xun-Li; XU Zhi-Zhan

    2000-01-01

    The emission spectra of a two-level atom moving in an electromafneric fiekd are studied We find that there that there is a shift in the peak position and that each peak splits into double peaks The shit is duble peaks The shift is duc to the detuning indced by the atomic mition and the splitting is casused by the atomic energy change due of photons

  1. The Hilbert transform: Applications to atomic spectra

    CERN Document Server

    Whittaker, K A; Hughes, I G; Adams, C S

    2014-01-01

    In many areas of physics, the Kramers-Kronig (KK) relations are used to extract information about the real part of the optical response of a medium from its imaginary counterpart. In this paper we discuss an alternative but mathematically equivalent approach based on the Hilbert transform. We apply the Hilbert transform to transmission spectra to find the group and refractive indices of a Cs vapor, and thereby demonstrate how the Hilbert transform allows indirect measurement of the refractive index, group index and group delay whilst avoiding the use of complicated experimental set ups.

  2. Monte Carlo simulation of prompt gamma-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    CERN Document Server

    Qin, Jianguo; Liu, Rong; Zhu, Tonghua; Zhang, Xinwei; Ye, Bangjiao

    2015-01-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt gamma-rays in detectors for depleted uranium spherical shells under D-T neutrons irradiation. In the first step, the gamma-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the gamma-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4-3 MeV for the prompt gamma-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated.

  3. PREFACE: Atomic Spectra and Oscillator Strengths (ASOS9) Atomic Spectra and Oscillator Strengths (ASOS9)

    Science.gov (United States)

    Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter

    2009-05-01

    For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy by Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and Physics Department of Lund University, 7-10 August 2007, and was attended by 99 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume of Physica Scripta contains contributions from the invited presentations of the conference. For the first time, papers from the ASOS9 poster presentations have been made feely available online in a complementary volume of Journal of Physics: Conference Series. With these two volumes the character of ASOS9 is more evident, and together they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy, where both the providers and the users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, which includes fusion energy and lighting research. The oral presentations, all but one of which are presented in this volume, provided an extensive synopsis of techniques currently in use and those that are being planned. New to ASOS9 was the extent to which techniques such as cold, trapped atoms and molecules and frequency combs are

  4. Recurrence spectra of Li atom in strong external fields

    Institute of Scientific and Technical Information of China (English)

    Wang De-hua; Ding Shi-liang; Wang Xiao-yan

    2004-01-01

    Based upon our previous work [Commun. Theor. Phys.. 40,702 (2003)], we developed the closed orbit theory from two degrees of freedom to three non-separable degrees of freedom and calculated the recurrence spectra of Li Rydberg atom in strong perpendicular electric and magnetic fields. The Fourier transformed spectra of Li atom has allowed direct comparison between the resonance peaks and the scaled action values of closed orbits, whereas the nonhydrogenic resonance can be explained in terms of the new orbits created by the core scattering. The semiclassical result is in good agreement with the quantum one, which suggests that our calculation is correct.

  5. Monte Carlo simulation of prompt gamma-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    OpenAIRE

    Qin, Jianguo; Lai, Caifeng; Liu, Rong; Zhu, Tonghua; Zhang, Xinwei; Ye, Bangjiao

    2015-01-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt gamma-rays in detectors for depleted uranium spherical shells under D-T neutrons irradiation. In the first step, the gamma-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the g...

  6. Monte Carlo simulation of prompt γ-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    Science.gov (United States)

    Jian-Guo, Qin; Cai-Feng, Lai; Rong, Liu; Tong-Hua, Zhu; Xin-Wei, Zhang; Bang-Jiao, Ye

    2016-03-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt γ-rays in detectors for depleted uranium spherical shells under D-T neutron irradiation. In the first step, the γ-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the γ-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4-3 MeV for the prompt γ-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated. Supported by the National Natural Science Foundation of China (91226104) and National Special Magnetic Confinement Fusion Energy Research, China (2015GB108001)

  7. Random-matrix theory and complex atomic spectra

    CERN Document Server

    Pain, Jean-Christophe

    2012-01-01

    Around 1950, Wigner introduced the idea of modelling physical reality with an ensemble of random matrices while studying the energy levels of heavy atomic nuclei. Since then, the field of random-matrix theory has grown tremendously, with applications ranging from fluctuations on the economic markets to complex atomic spectra. The purpose of this short article is to review several attempts to apply the basic concepts of random-matrix theory to the structure and radiative transitions of atoms and ions, using the random matrices originally introduced by Wigner in the framework of the gaussian orthogonal ensemble. Some intrinsic properties of complex-atom physics, which could be enlightened by random-matrix theory, are presented.

  8. Spectra and decays of pi pi and pi K atoms

    OpenAIRE

    J. Schweizer

    2004-01-01

    We describe the spectra and decays of pi pi and pi K atoms within a non-relativistic effective field theory. The evaluations of the energy shifts and widths are performed at next-to-leading order in isospin symmetry breaking. We provide general formulae for all S-states, and discuss the states with angular momentum one in some detail. The prediction for the lifetime of the pi K atom in its ground-state yields tau = (3.7 \\pm 0.4) * 10^{-15} sec.

  9. Bremsstrahlung spectra from atoms and ions at low relativistic energies

    International Nuclear Information System (INIS)

    Analytic expressions for bremsstrahlung spectra from neutral atoms and ions, including the polarizational bremsstrahlung contribution in a stripped atom approximation, are developed for electron scattering at energies of 10-2000 keV. A modified Elwert factor and a simple higher Born correction are used for the Coulomb spectrum, with ordinary bremsstrahlung screening effects in ions and atoms adequately characterized in the non-relativistic Born approximation. In parallel with the development of this analytic description, new numerical results are obtained for ordinary bremsstrahlung from ions and from bare nuclei, appreciably extending the available data set which can be used to study dependences on element, ionicity, energy and the fraction of incident energy radiated. The accuracy of predictions with the analytic expressions is then determined by comparison with the full numerical relativistic partial-wave results for ordinary bremsstrahlung and with non-relativistic numerical results in the Born approximation or in partial waves for the polarizational amplitude. (author)

  10. Characterization of anomalous Zeeman patterns in complex atomic spectra

    CERN Document Server

    Pain, Jean-Christophe

    2012-01-01

    The modeling of complex atomic spectra is a difficult task, due to the huge number of levels and lines involved. In the presence of a magnetic field, the computation becomes even more difficult. The anomalous Zeeman pattern is a superposition of many absorption or emission profiles with different Zeeman relative strengths, shifts, widths, asymmetries and sharpnesses. We propose a statistical approach to study the effect of a magnetic field on the broadening of spectral lines and transition arrays in atomic spectra. In this model, the sigma and pi profiles are described using the moments of the Zeeman components, which depend on quantum numbers and Land\\'{e} factors. A graphical calculation of these moments, together with a statistical modeling of Zeeman profiles as expansions in terms of Hermite polynomials are presented. It is shown that the procedure is more efficient, in terms of convergence and validity range, than the Taylor-series expansion in powers of the magnetic field which was suggested in the past...

  11. Transient absorption spectra of the laser-dressed hydrogen atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  12. Ionization and scintillation of nuclear recoils in gaseous xenon

    CERN Document Server

    Renner, J; Goldschmidt, A; Matis, H S; Miller, T; Nakajima, Y; Nygren, D; Oliveira, C A B; Shuman, D; Álvarez, V; Borges, F I G; Cárcel, S; Castel, J; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Dias, T H V T; Díaz, J; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gil, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Iguaz, F J; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Martínez, A; Moiseenko, A; Monrabal, F; Monserrate, M; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot-Guinot, M; Palma, R; Pérez, J; Aparicio, J L Pérez; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Seguí, L; Serra, L; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Villar, J A; Webb, R C; White, J; Yahlali, N

    2014-01-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $\\alpha$-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  13. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  14. Absorption and Recurrence Spectra of Nonhydrogenic Rydberg Atom Near a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jun; WANG De-Hua; XUE Chun-Hua; QI Yi-Hong; LOU Sen-Yue

    2008-01-01

    Multielectron atoms near a metal surface are essentially more complicated than hydrogen atom with regard to theoretical treatments. By using the semicalssical closed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the dosed-orbit theory and is of potential experimental interest.

  15. Lyapunov spectra and conjugate-pairing rule for confined atomic fluids

    DEFF Research Database (Denmark)

    Bernadi, Stefano; Todd, B.D.; Hansen, Jesper Schmidt;

    2010-01-01

    In this work we present nonequilibrium molecular dynamics simulation results for the Lyapunov spectra of atomic fluids confined in narrow channels of the order of a few atomic diameters. We show the effect that realistic walls have on the Lyapunov spectra. All the degrees of freedom of the confined...... the spectrum reflects the presence of two different dynamics in the system: one for the unthermostatted fluid atoms and the other one for the thermostatted and tethered wall atoms. In particular the Lyapunov spectrum of the whole system does not satisfy the conjugate-pairing rule. Two regions are instead...

  16. Nuclear recoil corrections to the 2p$_{3/2}$ state energy of hydrogen-like and high Z lithium-like atoms in all orders in $\\alpha$Z

    CERN Document Server

    Artemiev, A N; Yerokhin, V A

    1995-01-01

    The relativistic nuclear recoil corrections to the energy of the 2p_{\\frac{3}{2}} state of hydrogen-like and the (1s)^{2}2p_{\\frac{3}{2 }} state of high Z lithium-like atoms in all orders in \\alpha Z are calculated. The calculations are carried out using the B-spline method for the Dirac equation. For low Z the results of the calculation are in good agreement with the \\alpha Z -expansion results. It is found that the total nuclear recoil contribution to the energy of the (1s)^{2}2p_{\\frac{3}{2}}- (1s)^{2}2s transition in lithium-like uranium constitutes -0.09\\,eV.

  17. The HERMES Recoil Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weilin [II. Physikalisches Institut, JLU Giessen, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)

    2008-07-01

    The HERMES Collaboration at HERA constructed and installed a new Recoil Detector to upgrade the existed spectrometer. This detector is designed to measure recoil protons in hard exclusive processes which provide access to the orbital angular momentum of quarks. The Recoil Detector consists of a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fiber tracker and a photon detector. All three detectors are located inside a solenoidal magnet which provides a 1 T longitudinal magnetic field. The Recoil Detector was installed in January 2006 and data taking lasted until the end of HERA operation in June 2007. Results on the detector performance will be presented here.

  18. Exceptional points in atomic spectra and Bose-Einstein condensates

    OpenAIRE

    Cartarius, Holger

    2008-01-01

    Exceptional points are a special type of degeneracy which can appear for the resonances of parameter-dependent quantum spectra described by non-Hermitian Hamiltonians. They represent positions in the parameter space at which two or even more resonances pass through a branch point singularity. At the critical parameter values, the energies, the widths, and the wave functions describing the resonances are identical. The branching eigenstates show a geometric phase for a parameter space loop aro...

  19. Semiclassical calculation of the recurrence spectra of He Rydberg atom in perpendicular electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Wang De-Hua; Lin Sheng-Lu

    2004-01-01

    Closed orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. By developing the closed orbit theory from two degrees of freedom to three non-separable degrees of freedom, we calculated the recurrence spectra of He Rydberg atom in perpendicular electric and magnetic fields. The closed orbits in the corresponding classical system have also been obtained. Fourier transformed spectra of He atoms have allowed direct comparison between the resonance peaks and the scaled action values of closed orbits, whereas the nonhydrogenic resonance can be explained in terms of the new orbits created by the core scattering. The semiclassical result is in good agreement with the quantum spectra, which suggests that our method is correct.

  20. Atomic carbon in comet atmospheres. Origin and emission spectra

    International Nuclear Information System (INIS)

    A detailed study of neutral carbon emissions is made, to precise the excitation mechanism nature, to determine the production mechanisms and examine wether information on CO and CO2 molecule abundance could be deduced, or wether another source must be looked for. After an exhaustive study of excitation rates necessary for theoretical intensity calculation, a new effect has been discovered, and which acts on the atom excitation rates, via their distribution on the fundamental hyperfine levels. On the other hand, the strong dependency of the excitation rate ratio with heliocentric velocity and with the hypothesis which is made on the atom population initial distribution has been revealed. The carbon abundance in all the comets of the initial sample has been calculated, then compared to the water one revealing two groups of comets. Then an abundance criterium to remove the CO and CO2 molecules from the carbon potential-parents in the Bradfield comet has been used while CO is the best candicate for C(3P) and C(1D) atom production in the West, Kohoutek and Bennet comets (but to certain conditions). The important conclusion is that, while the relative abundance (C2/OH, CN/OH,...) of the minor carbon compounds were constant, the CO relative abundance varies from an object to the other, probably an effect due to repeated passage of some comets near the sun

  1. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; LIN Sheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic field below ionization threshold. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  2. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; LINSheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic fied below ionization threshoM. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  3. The influence of laser pulse on the photoabsorption spectra of Li atom in strong external field

    Institute of Scientific and Technical Information of China (English)

    WANG; Dehua; LIN; Shenglu

    2006-01-01

    Using the time-dependent perturbation theory and the calculation formula of the single- and double-pulse absorption spectra of the atom in strong external fields, we calculate the single- and double-pulse absorption spectra of Li atom in strong magnetic field for different pulse widths. The results show that a pulse of some width can reduce the contribution of the short period closed orbits and eliminate the contribution of the long period orbits. Compared with the single-pulse absorption spectra, we found that for some phase differences, the double-pulse laser absorption spectra are strengthened; while for others, they are reduced. Therefore, we can use the pulse laser to control the oscillation of the absorption spectra and obtain the optimization object.

  4. Energy Spectra of the Confined Atoms Obtained by Using B-Splines

    Institute of Scientific and Technical Information of China (English)

    SHI Ting-Yun; BAO Cheng-Guang; LI Bai-Wen

    2001-01-01

    We have calculated the energy spectra of one- and two-electron atoms (ions) centered in an impenetrable spherical box by variational method with B-splines as basis functions. Accurate results are obtained for both large and small radii of confinement. The critical box radius of confined hydrogen atom is also calculated to show the usefulness of our method. A partial energy degeneracy in confined hydrogen atom is found when the radius of spherical box is equal to the distance at which a node of single-node wavefunctions of free hydrogen atom is located.

  5. Recoil and related effects in molecular photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Kukk, E., E-mail: edwin.kukk@utu.fi [Dept. of Physics and Astronomy, University of Turku, FIN-20014 Turku (Finland); Ueda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Miron, C. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We present a overview of recoil-related effects for general audience of experimentalists working in the field of photoelectron spectroscopy. Black-Right-Pointing-Pointer Photoelectron recoil is shown to alter vibrational structure. Black-Right-Pointing-Pointer Photoelectron rotational recoil is shown to induce line shifts and broadenings. Black-Right-Pointing-Pointer Interference and scattering of the outgoing photoelectron wave(s) are shown to introduce oscillations of branching ratios in molecular photoelectron spectra. -- Abstract: Photoemission from free molecules in the gas phase results in a complex spectral structure of electronic, vibrational and rotational transitions. In this review, the effects that can alter this structure and particularly the branching ratios in photoelectron spectra at the kinetic energies well above the ionization thresholds are considered. Simplified models that have nevertheless been found to describe the observations well are presented for photoelectron vibrational and rotational recoil, rotational Doppler broadening, photoelectron scattering and Cohen-Fano type interference phenomena. Experimental examples are shown together with the models. Some future developments and applications of the recoil-related phenomena are briefly considered.

  6. Recoil and related effects in molecular photoemission

    International Nuclear Information System (INIS)

    Highlights: ► We present a overview of recoil-related effects for general audience of experimentalists working in the field of photoelectron spectroscopy. ► Photoelectron recoil is shown to alter vibrational structure. ► Photoelectron rotational recoil is shown to induce line shifts and broadenings. ► Interference and scattering of the outgoing photoelectron wave(s) are shown to introduce oscillations of branching ratios in molecular photoelectron spectra. -- Abstract: Photoemission from free molecules in the gas phase results in a complex spectral structure of electronic, vibrational and rotational transitions. In this review, the effects that can alter this structure and particularly the branching ratios in photoelectron spectra at the kinetic energies well above the ionization thresholds are considered. Simplified models that have nevertheless been found to describe the observations well are presented for photoelectron vibrational and rotational recoil, rotational Doppler broadening, photoelectron scattering and Cohen–Fano type interference phenomena. Experimental examples are shown together with the models. Some future developments and applications of the recoil-related phenomena are briefly considered.

  7. The closed-orbit and the photoabsorption spectra of lithium atom in varyingmagnetic fields

    Institute of Scientific and Technical Information of China (English)

    Wang De-Hua; Ding Shi-Liang

    2004-01-01

    @@ Using a simple analytic formula from closed orbit theory, we have calculated the photoabsorption spectra of Li atom in different magnetic fields. Closed orbits in the corresponding classical system have also been obtained for B=5.96T. We demonstrate schematically that the closed orbits disappear gradually with the decrease of the magnitude of the magnetic field. This gives us a good method to control the closed orbits in the corresponding system by changing the magnetic field, and thus changing the peaks in the photoabaorption spectra. By comparing the photoabsorption spectra of Li atom with those of hydrogen case, we find the core-scattered effects play an important role in multi-electron Rydberg atoms.

  8. Semiclassical Calculation of Recurrence Spectra of Li Rydberg Atom in Crossed Electric and Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; DINGShi-Liang

    2003-01-01

    Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. Using the dosed-orblt theory and classical perturbation theory, we calculate the scaled recurrence spectra of Lithium atom in magnetic field plus a weak perpendicular electric field. The results show when the crossed electric field is added, the recurrence spectra are weakened greatly. As the scaled electric field f increases, the peaks of the recurrence spectra lose strength. Some recurrences are very sensitive and fall off rapidly as f increases, others persist till much higher f. As the electric field is stronger, some of the peaks revive. This phenomenon, caused by the interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.

  9. Semiclassical Calculation of Recurrence Spectra of Li Rydberg Atom in Crossed Electric and Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; DING Shi-Liang

    2003-01-01

    Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. Using the closed-orbit theory and classical perturbation theory, we calculate the scaled recurrence spectra of Lithium atom in magnetic field plus a weak perpendicular electric field. The results show when the crossed electric field is added, the recurrence spectra are weakened greatly. As the scaled electric field f increases, the peaks of the recurrence spectra lose strength. Some recurrences are very sensitive and fall off rapidly as f increases; others persist till much higher f . As the electric field is stronger, some of the peaks revive. This phenomenon, caused by the interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.

  10. Dynamic interpretation of atomic and molecular spectra in the chaotic regime

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, H.S.; Zakrzewski, J.

    1988-10-01

    A quantum partitioning theory is given for extracting dynamic information from the high-resolution spectra of highly excited atoms and molecules that is relatively simple to apply. The presented approach is applicable whenever the classical counterpart of the system studied is chaotic. The theory allows a picture of the underlying non-statistically-describable part of the dynamics to be obtained from the spectra. The theory presented effectively uses and unifies many aspects of classical trajectory approaches, Feshbach resonant-scattering partitioning theory, semiclassical periodic-orbit theory, ''scars'' theory, bright- and dark-state concepts, and Fourier transforms of the spectra. The power of the theory is demonstrated quantitatively by interpreting the dynamics underlying the absorption spectra of the hydrogen atom in a strong uniform magnetic field.

  11. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution; Elastische Rueckstossatomspektrometrie leichter Elemente mit Subnanometer-Tiefenaufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kosmata, Marcel

    2011-06-30

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during

  12. The HERMES Recoil Detector

    OpenAIRE

    Airapetian, A.; Aschenauer, E.C.; S. Belostotski(St. Petersburg, INP); Borissov, A; Borisenko, A.; Bowles, J; Brodski, I.; Bryzgalov, V.; Burns, J; Capitani, G.P.; V. Carassiti; Ciullo, G.; Clarkson, A.; Contalbrigo, M; R.Leo

    2013-01-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct ...

  13. A cold target recoil-ion momentum spectroscopy for the investigation on the dynamics of atomic and molecular reactions in Shanghai

    International Nuclear Information System (INIS)

    A cold target recoil-ion momentum spectroscopy to study the fragmentation of molecules impact by electrons has been described, which mainly comprises a pulsed electron gun, a supersonic gas jet, a time-of-flight (TOF) spectrometer, a multi-hit position sensitive detector and a data acquisition system. According to the measured TOF data and corresponding positions information on the detector, the recoil-ions’ trajectories can be reconstructed and their initial 3D momentum vectors can be calculated. The energy spread of the electron gun, about 8.5 eV, and the resolution of momentum component parallel and perpendicular to the TOF direction for recoil-ions, about 0.23 and 0.35 a.u., respectively, are obtained by using helium as the gas target. To test the performance of the setup, the fragmentation of nitrogen induced by 100 eV electrons impact is investigated and some reaction channels with different kinetic energy distributions, like dissociative ionization and Coulomb explosion, are analyzed. Good agreement is achieved with previous studies

  14. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas

    CERN Document Server

    Moroshkin, Peter; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-01-01

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  15. Recoil proton, alpha particle, and heavy ion impacts on microdosimetry and RBE of fast neutrons: analysis of kerma spectra calculated by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pignol, J.-P. [Toronto-Sunnybrook Regional Cancer Centre, Radiotherapy Dept., Toronto, Ontario (Canada); Slabbert, J. [National Accelerator Centre, Faure (South Africa)

    2001-02-01

    Fast neutrons (FN) have a higher radio-biological effectiveness (RBE) compared with photons, however the mechanism of this increase remains a controversial issue. RBE variations are seen among various FN facilities and at the same facility when different tissue depths or thicknesses of hardening filters are used. These variations lead to uncertainties in dose reporting as well as in the comparisons of clinical results. Besides radiobiology and microdosimetry, another powerful method for the characterization of FN beams is the calculation of total proton and heavy ion kerma spectra. FLUKA and MCNP Monte Carlo code were used to simulate these kerma spectra following a set of microdosimetry measurements performed at the National Accelerator Centre. The calculated spectra confirmed major classical statements: RBE increase is linked to both slow energy protons and alpha particles yielded by (n,{alpha}) reactions on carbon and oxygen nuclei. The slow energy protons are produced by neutrons having an energy between 10 keV and 10 MeV, while the alpha particles are produced by neutrons having an energy between 10 keV and 15 MeV. Looking at the heavy ion kerma from <15 MeV and the proton kerma from neutrons <10 MeV, it is possible to anticipate y* and RBE trends. (author)

  16. Lyapunov spectra and conjugate-pairing rule for confined atomic fluids

    DEFF Research Database (Denmark)

    Bernadi, Stefano; Todd, B.D.; Hansen, Jesper Schmidt;

    2010-01-01

    In this work we present nonequilibrium molecular dynamics simulation results for the Lyapunov spectra of atomic fluids confined in narrow channels of the order of a few atomic diameters. We show the effect that realistic walls have on the Lyapunov spectra. All the degrees of freedom of the confined...... the spectrum reflects the presence of two different dynamics in the system: one for the unthermostatted fluid atoms and the other one for the thermostatted and tethered wall atoms. In particular the Lyapunov spectrum of the whole system does not satisfy the conjugate-pairing rule. Two regions are instead...... evolved Lyapunov vectors projected into a reduced dimensional phase space. We finally observe that the phase-space compression due to the thermostat remains confined into the wall region and does not significantly affect the purely Newtonian fluid region....

  17. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Cohen, D.D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P.; Walker, S. [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H.; Hult, M. [Lund Univ. (Sweden); Oestling, M.; Zaring, C. [Royal Inst. of Tech., Stockholm (Sweden)

    1993-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  18. Problems of theoretical interpretation of the spectra of highly ionized atoms

    International Nuclear Information System (INIS)

    The methods of theoretical and semiempirical investigation of energy spectra and electronic transitions in atoms and ions (non-relativistic approximation, taking into consideration relativistic effects as corrections in the framework of the Breit approximation as well as starting with relativistic wavefunctions) are surveyed. The problem of the identification and classification of the experimentally obtained energy spectra with the help of the optimal coupling scheme is considered. General relativistic and non-relativistic expressions for the operators of electric and magnetic multipole transitions, having unspecified values of the gauge condition of the electromagnetic field potential, are presented. The dependence of the oscillator strengths on this gauge condition is studied. Pecularities of the spectra and the structure of highly ionized atoms are discussed. (orig.)

  19. Absorption Spectra of a Three-Level Atom Embedded in a PBG Reservoir

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; ZHANG Han-Zhuang

    2007-01-01

    We introduce the 'decay rate' terms into the density matrix equations of an atom embedded in a photonic band gap (PSG)reservoir successfully.By utilizing the master equations,the probe absorption spectra and the refractivity properties of a three-level atom in the PBG reservoir are obtained.The interaction between the atom and the PBG reservoir as well as the effects of the quantum interference on the absorption of the atom has also been taken into account.It is interesting that two different types of the anomalous dispersion relations of refractivity are exhibited in one dispersion line.The methodology used here can be applied to theoretical investigation of quantum interference effects of other atomic models embedded in a PBG reservoir.

  20. [Study of emission spectra of N atom generated in multi-needle-to-plate corona discharge].

    Science.gov (United States)

    Ge, Hui; Yu, Ran; Zhang, Lu; Mi, Dong; Zhu, Yi-Min

    2012-06-01

    The emission spectra of nitrogen (N) atom produced by multi-needle-to-plate negative corona discharge in air were detected successfully at one atmosphere, and the excited transition spectral line at 674.5 nm with maximum value of relative intensity was selected to investigate the influences of air and electrical parameters on N atom relative density. The results indicate that N atom relative density in ionization region increases with the increase in power; decreases with increasing discharge gap and relative humidity; and with the increase in N2 content, the relative density of N active atom firstly increases and then decreases. Under present experimental conditions, the maximum value of N atom relative density appears at the axial distance from needle point r = 1 mm. PMID:22870624

  1. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  2. The HERMES recoil detector

    Science.gov (United States)

    Airapetian, A.; Aschenauer, E. C.; Belostotski, S.; Borisenko, A.; Bowles, J.; Brodski, I.; Bryzgalov, V.; Burns, J.; Capitani, G. P.; Carassiti, V.; Ciullo, G.; Clarkson, A.; Contalbrigo, M.; De Leo, R.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Guler, H.; Gregor, I. M.; Hartig, M.; Hill, G.; Hoek, M.; Holler, Y.; Hristova, I.; Jo, H. S.; Kaiser, R.; Keri, T.; Kisselev, A.; Krause, B.; Krauss, B.; Lagamba, L.; Lehmann, I.; Lenisa, P.; Lu, S.; Lu, X.-G.; Lumsden, S.; Mahon, D.; Martinez de la Ossa, A.; Murray, M.; Mussgiller, A.; Nowak, W.-D.; Naryshkin, Y.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Petrov, A.; Pickert, N.; Prahl, V.; Protopopescu, D.; Reinecke, M.; Riedl, C.; Rith, K.; Rosner, G.; Rubacek, L.; Ryckbosch, D.; Salomatin, Y.; Schnell, G.; Seitz, B.; Shearer, C.; Shutov, V.; Statera, M.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Varanda, M.; Veretennikov, D.; Vilardi, I.; Vikhrov, V.; Vogel, C.; Yaschenko, S.; Ye, Z.; Yu, W.; Zeiler, D.; Zihlmann, B.

    2013-05-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with a field strength of 1T. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  3. The HERMES recoil detector

    International Nuclear Information System (INIS)

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  4. Stark spectra of Rydberg states in atomic cesium in the vicinity of n=18

    Institute of Scientific and Technical Information of China (English)

    Dong Hui-Jie; Wang Ting; Li Chang-Yong; Zhao Jian-Ming; Zhang Lin-Jie

    2013-01-01

    The Stark structures in a cesium atom around n =18 are numerically calculated.The results show that the components of 20D states with a small azimuthal quantum number |m| shift upward a lot,and those with a large |m| shift downward a little within 1100 V/cm.All components of P states shift downward.Experimental work has been performed in ultracold atomic cesium.Atoms initially in 6P3/2 state are excited to high-n Rydberg states by a polarization light perpendicular to the field,and Stark spectra with 丨m丨=1/2,3/2,5/2 are simultaneously observed with a large linewidth for the first time.The observed spectra are analyzed in detail.The relative transition probability is calculated.The experimental results are in good agreement with our numerical computation.

  5. Identification of spectra of highly ionized Mo, Nb, Zr and Y atoms

    International Nuclear Information System (INIS)

    In the present work, the spectra of 3d9 - 3d84f transition in Y 13 through Mo 16 were studied. Thirty-three lines and 27 levels were identified in Mo 16 spectra. The identification was carried out with the aid of the theoretical calculation employing the Slater-Condon theory of atomic structure. The spectra of highly ionized molybdenum, niobium, zirconium and yttrium from low inductance vacuum sparks have been recorded by the use of a 10.7 m grazing incidence spectrograph. The theoretical spectrum for Mo 16 generated by plotting gf-values as a function of wavelength was compared with the observed spectra. Close agreement between them in general feature was seen. (Kato, T.)

  6. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    Science.gov (United States)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; McComas, D. J.; Moebius, E.; Moore, T. E.; Petrinec, S. M.; Quinn, M.; Reisenfeld, D.; Saul, L. A.; Scheer, J. A.; Schwardron, N.; Trattner, K. J.; Vanderspek, R.; Wurz, P.

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  7. Investigation of Linear Tetra-Atomic Negative Ion by Photodetached-Electron Spectra

    Institute of Scientific and Technical Information of China (English)

    A.Rahman; Iftikhar Ahmad; A.Afaq; M.Haneef; H.J.Zhao

    2011-01-01

    @@ Photodetachment spectra from a linear tetra-atomic negative ion is investigated by treating the detached-electron wave function quantum mechanically.A plane polarized laser light, perpendicular to the axis of the ion, is used to detach the electron from the ion.Analytical expressions for the electron flux and total photodetachment cross section are derived.The electron flux on screen shows strong-energy-dependent oscillations with different frequencies.The total cross section of the tetra-atomic negative ion reduces the cross section of mono-atomic,diatomic and triatomic negative ions for high energy photons, while for low energy photons it becomes four times the cross section of mono-atomic negative ions.

  8. Fluorescence spectra of atomic ensembles in a magneto-optical trap as an optical lattice

    CERN Document Server

    Yoon, Seokchan; Kang, Sungsam; Kim, Wook-Rae; Kim, Jung-Ryul; An, Kyungwon

    2015-01-01

    We present a study on characteristics of a magneto-optical trap (MOT) as an optical lattice. Fluorescence spectra of atoms trapped in a MOT with a passively phase-stabilized beam configuration have been measured by means of the photon-counting heterodyne spectroscopy. We observe a narrow Rayleigh peak and well-resolved Raman sidebands in the fluorescence spectra which clearly show that the MOT itself behaves as a three-dimensional optical lattice. Optical-lattice-like properties of the phase-stabilized MOT such as vibrational frequencies and lineshapes of Rayleigh peak and Raman sidebands are investigated systematically for various trap conditions.

  9. ENERGETIC ABOVE-THRESHOLD IONIZATION SPECTRA OF H-ATOM IN INTENSE LASER FIELDS

    Institute of Scientific and Technical Information of China (English)

    CHEN BAO-ZHEN

    2000-01-01

    The above-threshold ionization (ATI) spectra of H-atom in intense laser fields (laser intensity I is up to 1018W/cm2)are calculated. It is found that the kinetic energy of the ejected electron at the location of the peak of the ATI spectra is about equal to the corresponding ponderomotive potential of the applied laser fields. This result is consistent with that obtained by Wilks et al. and fits the experimental results of the super thermal electron. A possible new mechanism of the super thermal electron generation is proposed.

  10. The HERMES Recoil Detector

    CERN Document Server

    Airapetian, A; Belostotski, S; Borissov, A; Borisenko, A; Bowles, J; Brodski, I; Bryzgalov, V; Burns, J; Capitani, G P; Carassiti, V; Ciullo, G; Clarkson, A; Contalbrigo, M; De Leo, R; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Ehrenfried, M; Guler, H; Gregor, I M; Hartig, M; Hill, G; Hoek, M; Holler, Y; Hristova, I; Jo, H S; Kaiser, R; Keri, T; Kisselev, A; Krause, B; Krauss, B; Lagamba, L; Lehmann, I; Lenisa, P; Lu, S; Lu, X -G; Lumsden, S; Mahon, D; de la Ossa, A Martinez; Murray, M; Mussgiller, A; Nowak, W -D; Naryshkin, Y; Osborne, A; Pappalardo, L L; Perez-Benito, R; Petrov, A; Pickert, N; Prahl, V; Protopopescu, D; Reinecke, M; Riedl, C; Rith, K; Rosner, G; Rubacek, L; Ryckbosch, D; Salomatin, Y; Schnell, G; Seitz, B; Shearer, C; Shutov, V; Statera, M; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van Haarlem, Y; Van Hulse, C; Varanda, M; Veretennikov, D; Vilardi, I; Vikhrov, V; Vogel, C; Yaschenko, S; Ye, Z; Yu, W; Zeiler, D; Zihlmann, B

    2013-01-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1 Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end...

  11. Atomic calculations and search for variation of the fine-structure constant in quasar absorption spectra

    Science.gov (United States)

    Dzuba, V. A.; Flambaum, V. V.

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  12. Atomic calculations and search for variation of the fine structure constant in quasar absorption spectra

    CERN Document Server

    Dzuba, V A

    2008-01-01

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  13. Strong field atomic ionization: Origin of high-energy structures in photoelectron spectra

    International Nuclear Information System (INIS)

    Two distinct interpretations have been proposed to account for conspicuous enhancements of the ionization peaks in the high energy part of above-threshold ionization spectra. One of them ascribes the enhancement to a multiphoton resonance involving an excited state, while other analysis performed for zero-range model potential link it to 'channel closings', i.e., to the change in the number of photons needed to ionize the atom when the laser intensity increases. We report the results of model calculations that confirm the existence of a resonant process in atoms and shed light on why short-range potential models can mimic the experimental observations

  14. Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments

    Science.gov (United States)

    Johns, H. M.; Lanier, N. E.; Kline, J. L.; Fontes, C. J.; Perry, T. S.; Fryer, C. L.; Brown, C. R. D.; Morton, J. W.; Hager, J. D.; Sherrill, M. E.

    2016-11-01

    We present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi6O12 at 75 mg/cm3 density). We have determined that in the 50-200 eV Te range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for Te = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power reveals spectral sensitivity to Te changes of ˜3 eV.

  15. Excess-photon ionization spectra and atomic structure in intense laser fields

    International Nuclear Information System (INIS)

    Floquet states represent intrinsic modes of ionization of an atom in a monochromatic field of constant intensity. To describe atomic wave packets evolving in realistic laser pulses, linear superpositions of Floquet states are required ('multistate Floquet theory'). This gives the possibility of following the evolution of wave packets in terms of the Floquet states that are populated during the pulse. We study here the way in which the Floquet states present in the representation of the wave packet manifest themselves in the excess-photon ionization spectra (EPI/ATI). For the purpose of illustration we choose a 1D atomic model with a soft-core Coulomb potential. We calculate the totality of the Floquet states, at all intensities needed, and generate the corresponding 'Floquet map'. We then calculate the EPI spectra for wave packets evolving from the ground state under different types of pulses. By analyzing the location of the lines in the spectrum, and their shapes, we show that they can be associated, in a clear cut and predictable way, to Floquet states responsible for the emission. The understanding of the underlying physics can lead to tailoring laser pulses, such as to obtain EPI signals in a controlled way. Whereas our analysis is applied to theoretical spectra, it would apply, just as well, to experimental ones

  16. Semiclassical Calculation of Recurrence Spectra of Rydberg Hydrogen Atom Near a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua

    2009-01-01

    Using closed orbit theory, we give a clear physical picture description of the Rydberg hydrogen atom near a metal surface and calculate the Fourier transformed recurrence spectra of this system at different scaled energies below ionization threshold.The results show that with the increase of the scaled energy, the number of the closed orbit increases greatly.Some of the orbits are created by the bifurcation of the perpendicular orbit.This case is quite similar to the Rydberg atom in an electric field.When the scaled energy increases furthermore, chaotic orbits appear.This study provides a different perspective on the dynamical behavior of the Rydberg atom near a metal surface.

  17. Investigation of autoionization spectra of Sm atoms using an isolated-core excitation method

    Institute of Scientific and Technical Information of China (English)

    Qin Wen-Jie; Dai Chang-Jian; Xiao Ying; Zhao Hong-Ying

    2009-01-01

    Using the isolated-core-excitation scheme and three-step laser resonance ionization spectroscopy approach, this paper, for the first time, has systematically investigated the autoionization spectra of atomic Sm, belonging to the 4f66pn/ and 4f55d6snl (l=0, 2) configurations. In the experiment, the first two tunable dye lasers are employed to excite the Srn atom from its initial state to the differcnt 4f66snl bound Rydberg states, then the third dye laser is scanned to drive the atom to the doubly-excited autoionizing states. With the above excitation scheme, the measured transition profiles of the autoionizing states are nearly symmetric, from which the level energies and widths can be easily obtained.

  18. Investigation of autoionization spectra of Sm atoms using an isolated-core excitation method

    Science.gov (United States)

    Qin, Wen-Jie; Dai, Chang-Jian; Xiao, Ying; Zhao, Hong-Ying

    2009-05-01

    Using the isolated-core-excitation scheme and three-step laser resonance ionization spectroscopy approach, this paper, for the first time, has systematically investigated the autoionization spectra of atomic Sm, belonging to the 4f66pnl and 4f55d6snl (l = 0,2) configurations. In the experiment, the first two tunable dye lasers are employed to excite the Sm atom from its initial state to the different 4f66snl bound Rydberg states, then the third dye laser is scanned to drive the atom to the doubly-excited autoionizing states. With the above excitation scheme, the measured transition profiles of the autoionizing states are nearly symmetric, from which the level energies and widths can be easily obtained.

  19. Multiple and double scattering contributions to depth resolution and low energy background in hydrogen elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.

  20. Atomic and molecular spectra emitted by normal liquid 4He excited by corona discharge

    International Nuclear Information System (INIS)

    The liquid 4He at fixed temperature 4.2 K and different pressures up to 8 MPa was excited by corona discharge of both negative and positive polarity. Emission of He I atomic lines and He2 molecular bands are observed. In negative corona the lines spectra show a distinct blue-shift and line-broadening, which becomes stronger with the pressure increasing. The rotational structure of molecular bands is resolved at pressures (0.1-0.2) MPa. The blue shift of the Q-branch maximum at different pressures was observed. Rotational temperature of 900 K has been estimated for the d3sumu+ - b3Πg molecular band. A positive corona was realized on a point anode for fewer radii of the electrode and larger voltage than in the negative corona. Electric currents in both negative and positive corona differ weakly. Spectral analysis of the radiation from the positive corona shows qualitative differences of spectral features of these discharges. The spectra observed in the positive corona have marked nonsymmetric shape. The asymmetric atomic and molecular spectra show an increased intensity of their long-length (red) wings.

  1. Theory of two-atom coherence in gases. II. Continuous-wave spectra

    Science.gov (United States)

    Ben-Reuven, Abraham

    1980-12-01

    General expressions are derived for the spectral line shapes of resonance absorption and scattering of coherent radiation in collision-broadened gases, taking into account effects of coherent excitation of two or more atoms (or molecules), as steady-state solutions of a hierarchy of master equations described in a previous publication (paper I). Coupling between the coherent motions of the atoms, provided by a Bethe-Salpeter-type effective interaction, in the binary-collision approximation, forms the essential mechanism for introducing cooperative coherent effects into the steady-state spectra. Explicit expressions are given for the effects of two-atom coherence in the binary-collision approximation, in which the Bloch-type dressed-atom self-energy superoperator is modified by the presence of collisions in which both atoms retain memory of their coherent propagation before the collision. The self-energies include the effects of resonance exchange symmetrization in self-broadening, and are renormalized by the coincidence of radiative transitions during the collisions. The impact (near-resonance) and the quasistatic (line-wing) limits of the applied-frequency detunings are discussed. In the quasistatic limit, coherent many-atom excitations become irrelevant; however, interactions of both collision partners with the radiation during the collision accounts for such phenomena as collision-induced absorption or radiative collisions. In the impact limit, the inclusion of the Bethe-Salpeter interactions allows for the appearance of two-atom resonances. Magnitude estimates of these effects are discussed. Effects of higher-rank (many-body) coherences are formally discussed with the help of a diagrammatic method, leading into implicit bootstrap equations that can be solved by iterative or other procedures.

  2. Effect of the (n, α) Nuclear Reaction of B10 and Li6 on the Retention of Nuclear Recoil Atoms in Solids

    International Nuclear Information System (INIS)

    The increase of initial retention in reactor-irradiated solid cobaltic complexes, chromates and dichromates can be achieved by mixing the compounds with highly powdered boron compounds (α - annealing). The thermal neutron ''fission'' products of B10 and particularly the a-particles can penetrate the crystal lattice of the material under examination and by introducing defects into it help to recombine the recoil interstitials with their parent vacancies. Potassium chromate seems to increase the Cr51 retention up to 12% when it is bombarded by neutrons in mixtures with powdered boric acid. Ammonium chromate and potassium dichromate did not show any increase. Trisethylenediamine cobalt (III) nitrate in mixtures with ammonium hydrogen tetraborate showed an increase of retention about 15% for a dose given from the n,a reaction of 20 Mrad. Lithium carbonate was also used in mixtures with potassium chromate, dichromate and ammonium chromate. An increase of about 9% in retention was achieved in potassium chromate. Ammonium chromate in mixtures with lithium carbonate showed an increase of 3.5% due to the n,a reaction while potassium dichromate showed an increase of 2%. The introduction of defects by the products of the n, α reaction of B10 and Li6 affects the isothermal annealing, increasing the irregularities as the dose due to the ''fission'' products increases. The dose was calculated from the Q of the nuclear reaction, and it was assumed that all of it was absorbed by the lattice. By microscopic examinations the size of microcrystals of boron and lithium compounds was found to be about a few microns, which allowed the ''fission'' products to cross the parent lattice and come into the examined material. (author)

  3. Lithium recoil measurement without a subrecoil sample

    CERN Document Server

    Cassella, Kayleigh; Estey, Brian; Feng, Yanying; Lai, Chen; Müller, Holger

    2016-01-01

    We report both the first atom interferometer with a low-mass, laser-cooled atom (lithium-7) and the first simultaneous conjugate Ramsey-Bord\\'e interferometers with an atomic ensemble not cooled or selected to subrecoil speeds. Above the recoil temperature, fast thermal motion of atoms leads to overlapped interferometers whose outputs tend to cancel. We avoid such cancellation using the two-photon detuning from Raman resonance to control the relative phase between these conjugate interferometers. To prevent magnetic dephasing, we present optical pumping to the magnetically-insensitive state using the well-resolved $D_1$ line. These techniques allow the use of "warm" atoms for Ramsey-Bord\\'e interferometers, which broadens the choice of species, simplifies cooling, increases available atom number and reduces cycle time for faster integration.

  4. Contribution of forbidden orbits in the photoabsorption spectra of atoms and molecules in a magnetic field

    Science.gov (United States)

    Matzkin, A.; Dando, P. A.; Monteiro, T. S.

    2003-02-01

    In a previous work [Phys. Rev. A 66, 013410 (2002)], we noted a partial disagreement between quantum R matrix and semiclassical calculations of photoabsorption spectra of molecules in a magnetic field. We show that this disagreement is due to a nonvanishing contribution of processes, which are forbidden according to the usual semiclassical formalism. Formulas to include these processes are obtained by using a refined stationary phase approximation. The resulting higher order in ħ contributions also account for previously unexplained “recurrences without closed orbits.” Quantum and semiclassical photoabsorption spectra for Rydberg atoms and molecules in a magnetic field are calculated and compared to assess the validity of the first-order forbidden orbit contributions.

  5. Contribution of forbidden orbits in the photoabsorption spectra of atoms and molecules in a magnetic field

    CERN Document Server

    Matzkin, A; Monteiro, T S

    2003-01-01

    In a previous work [Phys. Rev. A \\textbf{66}, 0134XX (2002)] we noted a partial disagreement between quantum R-matrix and semiclassical calculations of photoabsorption spectra of molecules in a magnetic field. We show this disagreement is due to a non-vanishing contribution of processes which are forbidden according to the usual semiclassical formalism. Formulas to include these processes are obtained by using a refined stationary phase approximation. The resulting higher order in $\\hbar$ contributions also account for previously unexplained ``recurrences without closed-orbits''. Quantum and semiclassical photoabsorption spectra for Rydberg atoms and molecules in a magnetic field are calculated and compared to assess the validity of the first-order forbidden orbit contributions.

  6. Electron momentum distributions and photoelectron spectra of atoms driven by intense spatially inhomogeneous field

    CERN Document Server

    Ciappina, M F; Shaaran, T; Roso, L; Lewenstein, M

    2013-01-01

    We use three dimensional time-dependent Schr\\"odinger equation (3D--TDSE) to calculate angular electron momentum distributions and photoelectron spectra of atoms driven by spatially inhomogeneous fields. An example for such inhomogeneous fields is the locally enhanced field induced by resonant plasmons, appearing at surfaces of metallic nanoparticles, nanotips and gold bow-tie shape nanostructures. Our studies show that the inhomogeneity of the laser electric field plays an important role in the above threshold ionization process in the tunneling regime, causing significant modifications to the electron momentum distributions and photoelectron spectra, while its effects in the multiphoton regime appear to be negligible. Indeed, through tunneling ATI process, one can obtain higher energy electrons as well as high degree of asymmetry in the momentum space map. In this study we consider near infrared laser fields with intensities in the mid-$10^{14}$ W/cm$^{2}$ range and we use linear approximation to describe t...

  7. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ricca, Alessandra, E-mail: Charles.W.Bauschlicher@nasa.gov, E-mail: Alessandra.Ricca-1@nasa.gov [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States)

    2013-10-20

    The loss of one hydrogen from C{sub 96}H{sub 24} does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare.

  8. The n,{gamma} discrimination in recoil-proton proportional counters. Application to the measurement of fast neutron spectra; Discrimination n,{gamma} dans les compteurs proportionnels a protons de recul. Application a la mesure des spectres de neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Jeandidier, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A description is given of a spectrometry chain working in the energy range of a few keV to 1 MeV, and designed for measurement of fast neutron spectra. It consists of detectors, recoil proton proportional counters built especially for this work by R. COMTE (DEG/SER) and which make it possible to cover the energy range and also associated electronic equipment. A brief description is first given of the physical processes involved: (n,p) collisions in the gas, influence of {gamma} radiation; the method of discrimination is then presented. It is based on the difference in the rise-times of the pulses. In the experiments described here the use of a bi-parametric system made it possible to employ the most simple discrimination device, based on the fact that the high frequency gamma pulse components are, at a given energy, weaker than those of the neutron pulses. Results are given of measurements carried out on the Van der Graaff (mono-energetic neutrons for testing the linearity of the chain and the resolving power of the counters), and of those made in a sub-critical system Hug at Cadarache. (author) [French] On decrit une chaine de spectrometrie travaillant dans le domaine d'energie de quelques keV a 1 MeV destinee a la mesure des spectres de neutrons rapides. Elle comprend les detecteurs, compteurs proportionnels a protons de recul, realises specialement pour cette etude par M. R. COMTE (DEG/SER), permettant de couvrir la gamme d'energie et l'electronique associee. Apres un rappel des processus physiques mis en jeu: chocs (n,p) dans les gaz, influence des rayonnements {gamma}, on expose la methode de discrimination utilisee. Celle-ci est basee sur la difference des temps de montee des impulsions. Au cours des experiences rapportees ici, la mise en oeuvre d'un ensemble bi-parametrique a permis d'utiliser le dispositif de discrimination le plus simple, base sur la remarque que les composantes a haute frequence des impulsions {gamma} sont, a

  9. Rotational spectra of N$_2^+$: An advanced undergraduate laboratory in atomic and molecular spectroscopy

    CERN Document Server

    Bayram, S B; Arndt, P T

    2015-01-01

    We describe an inexpensive instructional experiment that demonstrates the rotational energy levels of diatomic nitrogen, using the emission band spectrum of molecular nitrogen ionized by various processes in a commercial AC capillary discharge tube. The simple setup and analytical procedure is introduced as part of a sequence of educational experiments employed by a course of advanced atomic and molecular spectroscopy, where the study of rotational spectra is combined with the analysis of vibrational characteristics for a multifaceted picture of the quantum states of diatomic molecules.

  10. Semiclassical Calculations of Recurrence Spectra for Lithium Atoms in Parallel Electric and Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    林圣路; 张秋菊; 赵珂; 宋晓红; 张延惠

    2002-01-01

    By using the region-splitting consistent and iterative method, we calculate the recurrence spectra of lithium atoms in parallel strong external electric and magnetic fields, and obtain the novel resonance structure in the photoabsorption spectrum above the ionization threshold with a constant scaled electric field at F = 0.036, and a scaled energy at e = 0.58 and e = 0.006, respectively. The results are compared with those of hydrogen obtained by using standard closed orbit theory. It is demonstrated that the core-scattered effects exhibited in combination recurrence play a great role.

  11. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  12. Time-resolved Absorption Spectra of the Laser-dressed Hydrogen Atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-05-01

    A theoretical study of the transient absorption spectra for the laser-dressed hydrogen atom based on the accurate numerical solution of the time-dependent Schrödinger equation is presented. The timing of absorption is controlled by the time delay between an isolated extreme ultraviolet (XUV) pulse and a dressing infrared (IR) field. We identify two different kinds of physical processes in the spectra. One is the formation of dressed states, signified by the appearance of sidebands between the XUV absorption lines separated by one IR-photon energy. We show that their population is maximized when the XUV pulse coincides with the zero-crossing of the IR field, and that their energy can be manipulated by using a chirped IR field. The other process is the dynamical AC Stark shift induced by the IR field and probed by the XUV pulse. Our calculations indicate that the accidental degeneracy of the hydrogen atom leads to the multiple splittings of each XUV absorption line whose separations change in response to a slowly-varying IR envelope. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 states using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional 3-level model that neglects the dynamical AC Stark effects.

  13. Recoiling Black Holes in Quasars

    CERN Document Server

    Bonning, E W; Salviander, S

    2007-01-01

    Recent simulations of merging black holes with spin give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole can retain the inner part of its accretion disk, providing fuel for a continuing QSO phase lasting millions of years as the hole moves away from the galactic nucleus. One possible observational manifestation of a recoiling accretion disk is in QSO emission lines shifted in velocity from the host galaxy. We have examined QSOs from the Sloan Digital Sky Survey with broad emission lines substantially shifted relative to the narrow lines. We find no convincing evidence for recoiling black holes carrying accretion disks. We place an upper limit on the incidence of recoiling black holes in QSOs of 4% for kicks greater than 500 km/s and 0.35% for kicks greater than 1000 km/s line-of-sight velocity.

  14. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Van Hulse, Charlotte, E-mail: charlotte@inwfsun1.UGent.b [Gent University Department of Subatomic and Radiation Physics, Proeftuinstraat 86, 9000 Gent (Belgium)

    2010-11-01

    In order to allow for the detection of low momentum particles, originating from the scattering of a 27.6 GeV lepton beam off a fixed gaseous target at the HERMES experiment at DESY in Hamburg (Germany), a dedicated recoil detector was installed. It consists of a silicon strip detector, located inside the beam vacuum, a scintillating fiber tracker and a photon detector, around a 150 mm long target cell made out of a 75{mu}m thick aluminum tube. The full detector assembly is mounted inside a 1 T super-conducting solenoid and is able to detect protons and pions with momenta up to 1.40 GeV/c and photons in the region surrounding the target cell. The detector has been operational from February 2006 until June 2007. The commissioning and performance of the detector are presented in this paper.

  15. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W.B.; Johnston, P.N.; Walker, S.R.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J.F. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  16. Recoil 18F-chemistry in fluoroalkanes

    International Nuclear Information System (INIS)

    This thesis describes the study of the chemical reactions of recoil 18F-atoms in gaseous fluoromethanes and fluoroethanes. A brief survey of the organic hot atom chemistry is given in Chapter I. Chapter II deals with the experimental procedures used in this investigation. The irradiation facilities, the vapour phase radio-chromatography and the identification, including the synthesis of some fluorocarbons, are described in detail. Chapter III consists of a study on the applicability of perfluoropropene, C3F6, as scavenger for thermal 18F-atoms and radicals. Chapters IV, V, VI and VII deal with 18F-recoil chemistry in gaseous fluoroethanes, using H2S as scavenger. Chapter VIII is a short discussion on the hot 18F-atom based production of 18F-labeled organic compounds via decay of the intermediate 18Ne. A target system is proposed for production of this isotope in high energy and ultra high flux particle beams, which possibly would become available in fast breeders and fusion reactors. (Auth.)

  17. Correlated ion analysis and the interpretation of atom probe mass spectra

    International Nuclear Information System (INIS)

    Several techniques are presented for extracting information from atom probe mass spectra by investigating correlations within multiple-ion detector events. Analyses of this kind can provide insights into the origins of noise, the shape of mass peaks, or unexpected anomalies within the spectrum. Data can often be recovered from within the spectrum noise by considering the time-of-flight differences between ions within a multiple event. Correlated ion detection, particularly when associated with shifts in ion energies, may be used to probe the phenomenon of molecular ion dissociation, including the questions of data loss due to ion pile-up or the generation of neutrals in the dissociation process. -- Research Highlights: → Multiple-ion detection events may contain information not seen in the mass spectrum. → Analysis of multiple events can yield information on molecular ion dissociation. → Neutral species may be generated by dissociation subsequent to field evaporation.

  18. Harmonic Inversion of Recurrence Spectra of Nonhydrogen Atom in an Electric Field

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-Sui; GAO Song; CHEN Wan-Fang; XU Xue-You; LI Hong-Yun; ZHANG Yan-Hui; LIN Sheng-Lu

    2008-01-01

    An extended harmonic inversion method is analytically continued to approach bifurcation region of the closed orbits thus to obtain highly resolved spectra of lithium atom in external field. The suitable band-limited signal is generated by a semiclassical uniform approximation. By decimating the selected signal window and solving the algebraic set of nonlinear equations the quantum eigenvalues are properly fitted, which reveal the fine resonance structure hidden in low resolution spectrum. The study is made at the scaled energy ∈= -2.7, relevant bifurcation effects and core-scattered impacts have to be taken into account. It is demonstrated that the present method is a useful technique for the semielassical quantization of system with mixed regular-chaotic classical dynamics.

  19. Atomic structure of icosahedral B4C boron carbide from a first principles analysis of NMR spectra.

    Science.gov (United States)

    Mauri, F; Vast, N; Pickard, C J

    2001-08-20

    Density functional theory is demonstrated to reproduce the 13C and 11B NMR chemical shifts of icosahedral boron carbides with sufficient accuracy to extract previously unresolved structural information from experimental NMR spectra. B4C can be viewed as an arrangement of 3-atom linear chains and 12-atom icosahedra. According to our results, all the chains have a CBC structure. Most of the icosahedra have a B11C structure with the C atom placed in a polar site, and a few percent have a B (12) structure or a B10C2 structure with the two C atoms placed in two antipodal polar sites.

  20. Neutrino-recoil induced desorption

    International Nuclear Information System (INIS)

    Nuclear decay induced 37Cl ion desorption from the electron capture decay 37Ar→37Cl+ν is reported for the first time. A mixture of one part 36Ar and ∼5x10-5 parts 37Ar (36/37Ar) is physisorbed on a gold-plated Si wafer kept at 16 K under ultrahigh vacuum conditions. The time of flight (TOF) of recoiled 37Cl ions is measured using coincidence techniques. The observed kinetic energy distribution of the 37Cl ions is approximately Gaussian in shape, with a maximum at ∼9.0 eV and a full width at half-maximum of ∼3 eV. Considering the binding energy of physisorbed 37Ar is ∼80 meV, the 9-eV peak energy compares well with that of the gas-phase value, where conservation of the energy and momentum fixes the kinetic energy of 37Cl ions at 9.54 eV. Using a combination of TOF and retarding field energy analysis, the charge states of detected ions for 1 ML (monolayer) of 36/37Ar are determined as 53%+1e, 21%+2e, and 26%+ne, where n≥3. The fraction of decaying 37Ar atoms which emerge from the surface as positive 37Cl ions is found to be 10%. Finally, a strong charge exchange reaction between a 37Cl ion and near-neighbor atoms causes a Coulomb explosion within the multilayers, increasing the kinetic energy of desorbing ions by as much as ∼7 eV

  1. Atomic data and theoretical X-ray spectra of Ge-like through V-like W ions

    International Nuclear Information System (INIS)

    The atomic structure and spectra of ten tungsten ions have been calculated using the Flexible Atomic Code. The calculations yield energy levels, radiative lifetimes, spectral line positions, transition probability rates, and oscillator strengths for the tungsten ions isoelectronic to germanium, W42+, through vanadium, W51+. Collisional–radiative models for high-temperature, low-density plasmas have been implemented to produce line emissivities for X-ray transitions in the 1–4 keV (3–12 Å) spectral interval. The Ge-like through V-like W ions are important in nuclear fusion research where their spectra may provide diagnostic information on magnetically confined plasmas

  2. Atomic data and theoretical X-ray spectra of Ge-like through V-like W ions

    Science.gov (United States)

    Clementson, J.; Beiersdorfer, P.; Brage, T.; Gu, M. F.

    2014-03-01

    The atomic structure and spectra of ten tungsten ions have been calculated using the Flexible Atomic Code. The calculations yield energy levels, radiative lifetimes, spectral line positions, transition probability rates, and oscillator strengths for the tungsten ions isoelectronic to germanium, W42, through vanadium, W51. Collisional-radiative models for high-temperature, low-density plasmas have been implemented to produce line emissivities for X-ray transitions in the 1-4 keV (3-12 Å) spectral interval. The Ge-like through V-like W ions are important in nuclear fusion research where their spectra may provide diagnostic information on magnetically confined plasmas.

  3. Compton cross-section calculations in terms of recoil-ion momentum observables

    Energy Technology Data Exchange (ETDEWEB)

    Kaliman, Z. E-mail: kaliman@pefri.hr; Pisk, K

    2004-11-01

    We present a theoretical framework for the calculations of Compton scattering on bound electrons, based on recoil-ion observables. We show the results for Compton cross sections on He-atom, with respect to the recoil-ion momentum. The validity and the utility of this approach are discussed particularly in connection with the electron momentum density determination.

  4. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  5. Displacement cross sections and PKA spectra: tables and applications. [Neutron damage energy cross sections to 20 MeV, primary knockon atom spectra to 15 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D G; Graves, N J

    1976-12-01

    Damage energy cross sections to 20 MeV are given for aluminum, vanadium, chromium, iron, nickel, copper, zirconium, niobium, molybdenum, tantalum, tungsten, lead, and 18Cr10Ni stainless steel. They are based on ENDF/B-IV nuclear data and the Lindhard energy partition model. Primary knockon atom (PKA) spectra are given for aluminum, iron, niobium, tantalum, and lead for neutron energies up to 15 MeV at approximately one-quarter lethargy intervals. The contributions of various reactions to both the displacement cross sections (taken to be proportional to the damage energy cross sections) and the PKA spectra are presented graphically. Spectral-averaged values of the displacement cross sections are given for several spectra, including approximate maps for the Experimental Breeder Reactor-II (EBR-II) and several positions in the Fast Test Reactor (FTR). Flux values are included to permit estimation of displacement rates. Graphs show integral PKA spectra for the five metals listed above for neutron spectra corresponding to locations in the EBR-II, the High Flux Isotope Reactor (HFIR), and a conceptual fusion reactor (UWMAK-I). Detailed calculations are given only for cases not previously documented. Uncertainty estimates are included.

  6. Autler-Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms

    Institute of Scientific and Technical Information of China (English)

    Liang Qiang-Bing; Yang Bao-Dong; Yang Jian-Feng; Zhang Tian-Cai; Wang Jun-Min

    2010-01-01

    Autler-Townes splitting in absorption spectra of the excited states 6 2P3/2 - 82S1/2 of cold cesium atoms confined in a magneto-optical trap has been observed.Experimental data of the Autler-Townes splitting fit well to the dressedatom theory,by which the fact of the cold atoms dressed by cooling/trapping laser beams is revealed.The results of the theoretical fitting with experiment not only told us the effective Rabi frequency cold atoms experienced,but also could be used for measuring the probability amplitudes of the dressed states.

  7. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  8. Consequences of gravitational radiation recoil

    CERN Document Server

    Merritt, D; Favata, M; Hughes, S A; Holz, D E; Merritt, David; Milosavljevic, Milos; Favata, Marc; Hughes, Scott A.; Holz, Daniel E.

    2004-01-01

    Coalescing binary black holes experience an impulsive kick due to anisotropic emission of gravitational waves. We discuss the dynamical consequences of the recoil accompanying massive black hole mergers. Recoil velocities are sufficient to eject most coalescing black holes from dwarf galaxies and globular clusters, which may explain the apparent absence of massive black holes in these systems. Ejection from giant elliptical galaxies would be rare, but coalescing black holes are displaced from the center and fall back on a time scale of order the crossing time. Displacement of the black holes transfers energy to the stars in the nucleus and can convert a steep density cusp into a core. Radiation recoil calls into question models that grow supermassive black holes from hierarchical mergers of stellar-mass precursors.

  9. Consistency of atomic data for the interpretation of beam emission spectra

    Energy Technology Data Exchange (ETDEWEB)

    Delabie, E; Von Hellermann, M G [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Brix, M; Giroud, C; Surrey, E; Zastrow, K D [EURATOM/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Jaspers, R J E [Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven (Netherlands); Marchuk, O [Forschungszentrum Juelich, Association EURATOM-FZJ, 52425, Juelich (Germany); O' Mullane, M G [Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Ralchenko, Yu, E-mail: e.delabie@fz-juelich.d [Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-12-15

    Several collisional-radiative (CR) models (Anderson et al 2000 Plasma Phys. Control. Fusion 42 781-806, Hutchinson 2002 Plasma Phys. Control. Fusion 44 71-82, Marchuk et al 2008 Rev. Sci. Instrum. 79 10F532) have been developed to calculate the attenuation and the population of excited states of hydrogen or deuterium beams injected into tokamak plasmas. The datasets generated by these CR models are needed for the modelling of beam ion deposition and (excited) beam densities in current experiments, and the reliability of these data will be crucial to obtain helium ash densities on ITER combining charge exchange and beam emission spectroscopy. Good agreement between the different CR models for the neutral beam (NB) is found, if corrections to the fundamental cross sections are taken into account. First the H{sub {alpha}} and H{sub {beta}} beam emission spectra from JET are compared with the expected intensities. Second, the line ratios within the Stark multiplet are compared with the predictions of a sublevel resolved model. The measured intensity of the full multiplet is {approx}30% lower than expected on the basis of beam attenuation codes and the updated beam emission rates, but apart from the atomic data this could also be due to the characterization of the NB path and line of sight integration and the absolute calibration of the optics. The modelled n = 3 to n = 4 population agrees very well with the ratio of the measured H{sub {alpha}} to H{sub {beta}} beam emission intensities. Good agreement is found as well between the NB power fractions measured with beam emission in plasma and on the JET Neutral Beam Test Bed. The Stark line ratios and {sigma}/{pi} intensity ratio deviate from a statistical distribution, in agreement with the CR model in parabolic states from Marchuk et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 011002).

  10. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  11. Recoiling DNA Molecule Simulation & Experiment

    CERN Document Server

    Neto, J C; Mesquita, O N; Neto, Jose Coelho; Dickman, Ronald

    2002-01-01

    Many recent experiments with single DNA molecules are based on force versus extension measurements and involve tethering a microsphere to one of its extremities and the other to a microscope coverglass. In this work we show that similar results can also be obtained by studying the recoil dynamics of the tethered microspheres. Computer simulations of the corresponding Langevin equation indicate which assumptions are required for a reliable analysis of the experimental recoil curves. We have measured the persistence length A of single naked DNA molecules and DNA-Ethidium Bromide complexes using this approach.

  12. Carbon cluster diagnostics-I: Direct Recoil Spectroscopy (DRS) of Ar+ and Kr+ bombarded graphite

    CERN Document Server

    Ahmad, Shoaib; Qayyum, A; Ahmad, B; Bahar, K; Arshed, W

    2016-01-01

    Measurements of the energy spectra of multiply charged positive and negative carbon ions recoiling from graphite surface under 100 and 150 keV argon and krypton ion bombardment are presented. With the energy spectrometer set at recoil angle of 79.5 degrees, direct recoil (DR) peaks have been observed with singly as well as multiply charged carbon ions , where n = 1 to 6. These monatomic and cluster ions have been observed recoiling with the characteristic recoil energy E(DR) . We have observed sharp DR peaks. A collimated projectile beam with small divergence is supplemented with a similar collimation before the energy analyzer to reduce the background of sputtered ions due to scattered projectiles.

  13. The closed-orbit and the photoabsorption spectra of the Rydberg hydrogen atom between two parallel metallic surfaces

    Institute of Scientific and Technical Information of China (English)

    Wang De-Hua

    2007-01-01

    Using the closed orbit theory,we study the classical motion and calculate the photoabsorption spectra of Rydberg hydrogen atom between two parallel metallic surfaces.The results show that the metallic surfaces have a significant effect on the photoabsorption process.When the distances between the hydrogen atom and the two metallic surfaces are close to a critical value dc,the number of the closed orbits is the greatest.When the distance larger or smaller than dc,the number of the closed orbits decreases and the absorption spectra are shown to exhibit a damping oscillation.This work is an interesting new application of closed-orbit theory and is of potential experimental interest.

  14. Atomic data and theoretical X-ray spectra of Ge-like through V-like W ions

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, J., E-mail: joel.clementson@ipp.mpg.de [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Department of Physics, Lund University, SE-221 00 Lund (Sweden); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Brage, T. [Department of Physics, Lund University, SE-221 00 Lund (Sweden); Gu, M.F. [University of California at Berkeley, Berkeley, CA 94720 (United States)

    2014-03-15

    The atomic structure and spectra of ten tungsten ions have been calculated using the Flexible Atomic Code. The calculations yield energy levels, radiative lifetimes, spectral line positions, transition probability rates, and oscillator strengths for the tungsten ions isoelectronic to germanium, W{sup 42+}, through vanadium, W{sup 51+}. Collisional–radiative models for high-temperature, low-density plasmas have been implemented to produce line emissivities for X-ray transitions in the 1–4 keV (3–12 Å) spectral interval. The Ge-like through V-like W ions are important in nuclear fusion research where their spectra may provide diagnostic information on magnetically confined plasmas.

  15. Short-ranged potential effects on the recurrence spectra of lithium M = 1 atoms in parallel electric and magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Wang Wen-Peng; Li Hong-Yun; Wang Shu-Bao; Lin Sheng-Lu

    2008-01-01

    This paper presents recurrence spectra of highly excited lithium atoms with M = 1 state in parallel electric and magnetic fields at a fixed scaled energy ε = -0.03. Short-ranged potentials including ionic core potential and centrifugal barrier are taken into account. Their effects on the states and photo-absorption spectrum are analysed in detail. This demonstrates that the geometric features of classical orbits are of special importance for modulations of the spectral pattern. Thus the weak polarization as well as the reduction of correlation of electrons induced by short-ranged potentials give rise to the recurrence spectra of lithium M = 1 atoms more compact than that of the M = 0 one, which is in good agreement with the experimental prediction.

  16. All-atom Molecular Dynamic Simulations and NMR Spectra Study on Intermolecular Interactions of N,N-dimethylacetamide-Water System

    Institute of Scientific and Technical Information of China (English)

    Rong Zhang; Zai-you Tan; San-lai Luo

    2008-01-01

    N,N-dimethylacetamide (DMA) has been investigated extensively in studying models of peptide bonds. An all-atom MD simulation and the NMR spectra were performed to investigate the interactions in the DMA- water system. The radial distribution functions (RDFs) and the hydrogen-bonding network were used in MD simulations. There are strong hydrogen bonds and weak C-H…O contacts in the mixtures, as shown by the analysis of the RDFs. The insight structures in the DMA-water mixtures can be classified into different regions by the analysis of the hydrogen-bonding network. Chemical shifts of the hydrogen atom of water molecule with concentration and temperatures are adopted to study the interactions in the mixtures. The results of NMR spectra show good agreement with the statistical results of hydrogen bonds in MD simulations.

  17. The Journey from Classical to Quantum Thinking: An Analysis of Student Understanding Through the Lens of Atomic Spectra

    OpenAIRE

    Rao, Sandhya Kolla

    2012-01-01

    This dissertation aims to explore how students think about atomic absorption and emission of light in the area of introductory quantum chemistry. In particular, the impact of classical ideas of electron position and energy on student understanding of spectra is studied. The analysis was undertaken to discover how student learning can be characterized along different dimensions of competence, and to determine the strength of the correlations between these dimensions. The research in this dis...

  18. Effect of positron-atom interactions on the annihilation gamma spectra of molecules

    CERN Document Server

    Green, D G; Wang, F; Gribakin, G F; Surko, C M

    2012-01-01

    Calculations of gamma spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation gamma spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the gamma spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation gamma spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective "narrowing" of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of smal...

  19. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles

    International Nuclear Information System (INIS)

    Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of 221Fr and 213Bi when encapsulating 225Ac. - Highlights: • First reported loading of 213Bi and 225Ac in polymer vesicles (i.e. polymersomes). • Encapsulating 225Ac in polymersomes results in up to 69 % recoil retention of 221Fr. • Encapsulating 225Ac in polymersomes results in up to 53 % recoil retention of 213Bi

  20. Multiplet-Splitting of the Quasi-Atomic-Like Core-Valence-Valence Auger Spectra of Zinc Metal

    Institute of Scientific and Technical Information of China (English)

    YUAN Jian-Min

    2001-01-01

    Multiplet-splitting of the quasi-atomic-like core-valence-valence (CVV) Auger spectra of zinc metal is calculated by explicitly considering the so-called hole-hole interaction in the final valence states of the Auger transition. We assume that before the Auger transition occurs, the occupied valence states relax to screen the core-hole which results in a redistribution of the valence electrons, in particular within the atom that contains a hole in the core. The supercell method is used to calculate the electronic states concerned by the Auger transition, which is accomplished by the self-consistent full-potential linearized augmented plane wave method. In each supercell, one atom is considered to have a core-hole and many others without it. Due to relaxation and screening, the valence states at the site of the Auger transition are more localized compared with those in the ground-state metal. The multiplet peaks of the quasi-atomic-like CVV Auger spectra of zinc metal are obtained by calculating the Auger transition matrix elements between the referred states.

  1. Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids.

    Science.gov (United States)

    Horikawa, Yuka; Tokushima, Takashi; Takahashi, Osamu; Hoke, Hiroshi; Takamuku, Toshiyuki

    2016-08-01

    Soft X-ray absorption spectroscopy (XAS) has been performed on the N K-edge of two imidazolium-based ionic liquids (ILs), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][TFSA]) and 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]), to clarify the electronic structures of the ILs. Soft X-ray emission spectroscopy (XES) has also been applied to the ILs by excitation at various X-ray energies according to the XAS spectra. It was possible to fully associate the XAS peaks with the XES peaks. Additionally, both XAS and XES spectra of the ILs were well reproduced by the theoretical spectra for a single-molecule model on [C2mim](+) and [TFSA](-) using density functional theory. The assignments for the XAS and XES peaks of the ILs were accomplished from both experimental and theoretical approaches. The theoretical XAS and XES spectra of [C2mim](+) and [TFSA](-) did not significantly depend on the conformations of the ions. The reproducibility of the theoretical spectra for the single-molecule model suggested that the interactions between the cations and anions are very weak in the ILs, thus scarcely influencing the electronic structures of the nitrogen atoms. PMID:27388151

  2. Measurement of thermal neutron spectra using LINAC in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    The exact grasp of thermal neutron spectra in a core region is very important for obtaining accurate thermal neutron group constants in the calculation for the nuclear design of a reactor core. For the accurate grasp of thermal neutron spectra, the capability of thermal neutron spectra to describe the moderator cross-sections for thermal neutron scattering is a key factor. Accordingly, 0 deg angular thermal neutron spectra were measured by the time of flight (TOF) method using the JAERI LINAC as a pulsed neutron source, for light water system added with Cd and In, high temperature graphite system added with boron, and light water-natural uranium heterogeneous multiplication system among the reactor moderators of light water or graphite systems. First, the equations to give the time of flight and neutron flux by TOF method were analyzed, and several corrections were investigated, such as those for detector efficiency, background, the transmission coefficient of air and the Al window of a flight tube, mean emission time of neutrons, and the distortion effect of re-entrant hole on thermal neutron spectra. Then, the experimental system, results and calculation were reported for the experiments on the above three moderator systems. Finally, the measurement of fast neutron spectra in natural uranium system and that of the efficiency of a 6Li glass scintillator detector are described. (Wakatsuki, Y.)

  3. Recoiling DNA Molecule: Simulation & Experiment

    OpenAIRE

    Neto, Jose Coelho; Dickman, Ronald; Mesquita, O. N.

    2002-01-01

    Single molecule DNA experiments often generate data from force versus extension measurements involving the tethering of a microsphere to one end of a single DNA molecule while the other is attached to a substrate. We show that the persistence length of single DNA molecules can also be measured based on the recoil dynamics of these DNA-microsphere complexes if appropriate corrections are made to the friction coefficient of the microsphere in the vicinity of the substrate. Comparison between co...

  4. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles.

    Science.gov (United States)

    Wang, G; de Kruijff, R M; Rol, A; Thijssen, L; Mendes, E; Morgenstern, A; Bruchertseifer, F; Stuart, M C A; Wolterbeek, H T; Denkova, A G

    2014-02-01

    Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of (221)Fr and (213)Bi when encapsulating (225)Ac. PMID:24374072

  5. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    Science.gov (United States)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  6. Fluorescence excitation spectra of jet-cooled complexes of carbazole and mono-atomic alcohols

    International Nuclear Information System (INIS)

    Fluorescence excitation spectra of jet-cooled complexes of carbazole and one molecule of methyl, deuterated methyl, ethyl and propyl (propanol-1 and propanol-2) alcohols are analyzed. Shifts of the fluorescence excitation spectra of complexes relative to the frequency of a pure electron transition of unbound carbazole are determined. They are formed owing to the hydrogen bonds of the N-H groups of carbazole with the OH-group of alcohols. The frequencies of stretching vibrations of hydrogen groups with various alcohols vary within the range 150-157 cm-1, whereas for the deformation ones the frequencies fall in the interval 21-22.9 cm-1. The belonging of complexes to rotational conformers is determined through the shape of the rotational contours of bands of their pure electronic and electron-vibration transitions. Equilibrium configurations of complexes in the ground state are calculated (authors)

  7. Atom interferometry

    International Nuclear Information System (INIS)

    We will first present a development of the fundamental principles of atom interferometers. Next we will discuss a few of the various methods now available to split and recombine atomic De Broglie waves, with special emphasis on atom interferometers based on optical pulses. We will also be particularly concerned with high precision interferometers with long measurement times such those made with atomic fountains. The application of atom interferometry to the measurement of the acceleration due to gravity will be detailed. We will also develop the atom interferometry based on adiabatic transfer and we will apply it to the measurement of the photon recoil in the case of the Doppler shift of an atomic resonance caused by the momentum recoil from an absorbed photon. Finally the outlook of future developments will be given. (A.C.)

  8. Corrigendum: "Extracting Closed Classical Orbits from Quantum Recurrence Spectra of a Non-Hydrogenic Atom in Parallel Electric and Magnetic Fields"

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua

    2010-01-01

    @@ In a paper published by us,[1] we studied how to extract the closed orbit of the non-hydrogenic atom in parallel electric and magnetic fields. However, there was another paper published in 1996 by Courtney,[2] which studied the initial conditions of closed classical orbits from quantum spectra of hydrogen atom in magnetic field.

  9. Treatment of the emission and absorption spectra of a general formalism Λ-type three-level atom driven by a two-mode field with nonlinearities

    International Nuclear Information System (INIS)

    An analytical expression of the emission and absorption spectra, for a Λ-type three-level cavity-bound atom interacting with a two-mode cavity field, is given using the dressed states of the system. We take explicitly into account the existence of forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. The characteristics of the emission and absorption spectra for binomial and squeezed coherent states of the modes are exhibited. The effects of the mean number of photons, detuning and the nonlinearity forms on the spectra are analysed

  10. Interpreting Recoil Motion for Undergraduate Students

    CERN Document Server

    Mokhiemer, Tarek Ahmed

    2007-01-01

    In this paper, I outline some problems in the students' understanding of the reason of recoil motion when introduced to them in the context of Newton's third law. I propose to explain the origin of recoil and the fundamental mechanism which produces this motion when presenting recoil to students to give them more insight into the physical processes involved. This mechanism differs from one system to another. Several examples that can be easily implemented in the classroom environment are given in this paper. Such a deep understanding of recoil may reflect on the level of understanding of other physical phenomena sought by students.

  11. EXPLORING THE TIME DISPERSION OF THE IBEX-HI ENERGETIC NEUTRAL ATOM SPECTRA AT THE ECLIPTIC POLES

    International Nuclear Information System (INIS)

    The Interstellar Boundary Explorer (IBEX) has observed energetic neutral atom (ENA) hydrogen emissions from the edge of the solar system for more than three years. The observations span energies from 0.01 to 6 keV FWHM. At energies greater than 0.5-6 keV, and for a travel distance of ∼100 AU, the travel time difference between the slowest and the fastest ENA is more than a year. Therefore, we construct spectra including the effect that slower ENAs left the source at an earlier time than faster ones. If the source produces a steady rate of ENAs and the extinction does not vary, then we expect that the spectral shape would be time independent. However, while the extinction of ENAs has been fairly constant during the first two and a half years, the source appears to have changed, and thus the spectra at a single time may not represent the conditions at the source. IBEX's viewing allows continuous sampling of the ecliptic poles where fluxes can be continuously monitored. For a given source distance we construct spectra assuming that the measured ENAs left the source at roughly the same time. To accomplish this construction, we apply time lag corrections to the signal at different ENA energies that take into account the travel time difference. We show that the spectral shape at the poles exhibits a statistically significant change with time.

  12. Fine-structure constant variability surprises for laboratory atomic spectroscopy and cosmological evolution of quasar spectra

    CERN Document Server

    Bekenstein, J D

    2003-01-01

    Calculation of the Dirac hydrogen atom spectrum in the framework of dynamical fine structure constant (alpha) variability discloses a small departure in the laboratory from Sommerfeld's formula for the fine structure shifts, possibly measurable today. And for a distant object in the universe, the wavelength shift of a spectral line specifically ascribable to cosmological alpha variation is found to depend differently on the quantum numbers than in the conventional view. This last result clashes with the conventional wisdom that an atom's spectrum can change with cosmological time only through evolution of the alpha parameter in the energy eigenvalue formula, and thus impacts on the Webb group's analysis of fine structure intervals in quasar absorption lines (which has been claimed to disclose cosmological alpha evolution). In particular, analyzing together a mix of quasar absorption lines from different fine structure multiplets can bias estimates of cosmological alpha variability.

  13. Research as a guide for curriculum development: An example from introductory spectroscopy. I. Identifying student difficulties with atomic emission spectra

    Science.gov (United States)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-01-01

    This is the first of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. This article (Paper I) describes how several serious conceptual and reasoning difficulties were identified among students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. Paper II illustrates how findings from this research informed the development of a tutorial that led to significant improvement in student understanding of atomic emission spectra.

  14. Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra

    Science.gov (United States)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-02-01

    This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.

  15. Fingerprints of exceptional points in the survival probability of resonances in atomic spectra

    CERN Document Server

    Cartarius, Holger

    2011-01-01

    The unique time signature of the survival probability exactly at the exceptional point parameters is studied here for the hydrogen atom in strong static magnetic and electric fields. We show that indeed the survival probability S(t)=||^2 decays exactly as |1-a*t|^2 e^(-Gamma_EP*t/hbar) where Gamma_EP is associated with the decay rate at the exceptional point and a is a complex constant depending solely on the initial wave packet that populates exclusively the two almost degenerate states of the non-Hermitian Hamiltonian. This may open the possibility for a first experimental detection of exceptional points in a quantum system.

  16. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  17. Dynamical simulations of radiation damage induced by 10 keV energetic recoils in UO 2

    Science.gov (United States)

    Tian, X. F.; Gao, T.; Long, Chongsheng; Li, JiuKai; Jiang, Gang; Xiao, Hongxing

    2011-08-01

    We have performed classical molecular dynamics simulations to simulate the primary damage state induced by 10 keV energetic recoils in UO 2. The numbers versus time and the distance distributions for the displaced uranium and oxygen atoms were investigated with the energetic recoils accelerated along four different directions. The simulations suggest that the direction of the primary knock-on atom (PKA) has no effect on the final primary damage state. In addition, it was found that atomic displacement events consisted of replacement collision sequences in addition to the production of Frenkel pairs. The spatial distribution of defects introduced by 10 keV collision cascades was also presented and the results were similar to that of energetic recoils with lower energy.

  18. High resolution elastic recoil detection

    International Nuclear Information System (INIS)

    The quantitative analysis of light elements in ultra thin films being thinner than 10 nm is still a nontrivial task. This paper will summarise the prospects of high resolution elastic recoil detection (ERD) using a Q3D magnetic spectrograph. It has been shown that subnanometer resolution can be achieved in ultra thin films and even monolayer resolution is possible close to the surface. ERD has best quantification possibilities compared to any other method. Sensitivity is sufficient to analyse main elements and impurities as e.g. being necessary for the characterisation of microelectronic materials. In addition, high resolution channeling ERD can be performed in order to get information on lattice location of light elements in crystalline ultra thin layers. The potential of high resolution ERD will be demonstrated by several applications where it is the most valuable tool for elemental profiling

  19. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    Science.gov (United States)

    Goings, Joshua J.; Li, Xiaosong

    2016-06-01

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  20. Single- and double-slit collimating effects on fast-atom diffraction spectra

    Science.gov (United States)

    Gravielle, M. S.; Miraglia, J. E.

    2016-09-01

    Diffraction patterns produced by fast He atoms grazingly impinging on a LiF(0 0 1) surface are investigated focusing on the influence of the beam collimation. Single- and double-slit collimating devices situated in front of the beam source are considered. To describe the scattering process we use the Surface Initial Value Representation (SIVR) approximation, which is a semi-quantum approach that incorporates a realistic description of the initial wave packet in terms of the collimating parameters. Our initial wave-packet model is based on the Van Cittert-Zernike theorem. For a single-slit collimation the width of the collimating aperture controls the shape of the azimuthal angle distribution, making different interference mechanisms visible, while the length of the slit affects the polar angle distribution. Additionally, we found that by means of a double-slit collimation it might be possible to obtain a wide polar angle distribution, which is associated with a large spread of the initial momentum perpendicular to the surface, derived from the uncertainty principle. It might be used as a simple way to probe the surface potential for different normal energies.

  1. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    International Nuclear Information System (INIS)

    We present the data and our analysis of mid-infrared atomic fine-structure emission lines detected in Spitzer/Infrared Spectrograph high-resolution spectra of 202 local Luminous Infrared Galaxies (LIRGs) observed as part of the Great Observatories All-sky LIRG Survey (GOALS). We readily detect emission lines of [S IV], [Ne II], [Ne V], [Ne III], [S III]18.7μm, [O IV], [Fe II], [S III]33.5μm, and [Si II]. More than 75% of these galaxies are classified as starburst-dominated sources in the mid-infrared, based on the [Ne V]/[Ne II] line flux ratios and equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature. We compare ratios of the emission-line fluxes to those predicted from stellar photo-ionization and shock-ionization models to constrain the physical and chemical properties of the gas in the starburst LIRG nuclei. Comparing the [S IV]/[Ne II] and [Ne III]/[Ne II] line ratios to the Starburst99-Mappings III models with an instantaneous burst history, the emission-line ratios suggest that the nuclear starbursts in our LIRGs have ages of 1-4.5 Myr, metallicities of 1-2 Z☉, and ionization parameters of 2-8 × 107 cm s–1. Based on the [S III]33.5μm/[S III]18.7μm ratios, the electron density in LIRG nuclei is typically one to a few hundred cm–3, with a median electron density of ∼300 cm–3, for those sources above the low density limit for these lines. We also find that strong shocks are likely present in 10 starburst-dominated sources of our sample. A significant fraction of the GOALS sources (80) have resolved neon emission-line profiles (FWHM ≥600 km s–1) and five show clear differences in the velocities of the [Ne III] or [Ne V] emission lines, relative to [Ne II], of more than 200 km s–1. Furthermore, six starburst and five active galactic nucleus dominated LIRGs show a clear trend of increasing line width with ionization potential, suggesting the possibility of a compact energy source and stratified interstellar medium in their

  2. Gas powered fluid gun with recoil mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  3. Gas powered fluid gun with recoil mitigation

    Science.gov (United States)

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  4. Bloch oscillations in atom interferometry

    CERN Document Server

    Cladé, Pierre

    2014-01-01

    In Paris, we are using an atom interferometer to precisely measure the recoil velocity of an atom that absorbs a photon. In order to reach a high sensitivity, many recoils are transferred to atoms using the Bloch oscillations technique. In this lecture, I will present in details this technique and its application to high precision measurement. I will especially describe in details how this method allows us to perform an atom recoil measurement at the level of $1.3 \\times 10^{-9}$. This measurement is used in the most precise determination of the fine structure constant that is independent of quantum electrodynamics.

  5. Measurement and simulations of hollow atom X-ray spectra of solid-density relativistic plasma created by high-contrast PW optical laser pulses

    Science.gov (United States)

    Pikuz, S. A.; Faenov, A. Ya.; Colgan, J.; Dance, R. J.; Abdallah, J.; Wagenaars, E.; Booth, N.; Culfa, O.; Evans, R. G.; Gray, R. J.; Kaempfer, T.; Lancaster, K. L.; McKenna, P.; Rossall, A. L.; Skobelev, I. Yu.; Schulze, K. S.; Uschmann, I.; Zhidkov, A. G.; Woolsey, N. C.

    2013-09-01

    K-shell spectra of solid Al excited by petawatt picosecond laser pulses have been investigated at the Vulcan PW facility. Laser pulses of ultrahigh contrast with an energy of 160 J on the target allow studies of interactions between the laser field and solid state matter at 1020 W/cm2. Intense X-ray emission of KK hollow atoms (atoms without n = 1 electrons) from thin aluminum foils is observed from optical laser plasma for the first time. Specifically for 1.5 μm thin foil targets the hollow atom yield dominates the resonance line emission. It is suggested that the hollow atoms are predominantly excited by the impact of X-ray photons generated by radiation friction to fast electron currents in solid-density plasma due to Thomson scattering and bremsstrahlung in the transverse plasma fields. Numerical simulations of Al hollow atom spectra using the ATOMIC code confirm that the impact of keV photons dominates the atom ionization. Our estimates demonstrate that solid-density plasma generated by relativistic optical laser pulses provide the source of a polychromatic keV range X-ray field of 1018 W/cm2 intensity, and allows the study of excited matter in the radiation-dominated regime. High-resolution X-ray spectroscopy of hollow atom radiation is found to be a powerful tool to study the properties of high-energy density plasma created by intense X-ray radiation.

  6. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia)

    1993-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  7. Silicon shallow doping by erbium and oxygen recoils implantation

    Science.gov (United States)

    Feklistov, K. V.; Cherkov, A. G.; Popov, V. P.

    2016-09-01

    In order to get shallow high doping of Si with optically active complexes ErOn, Er followed by O recoils implantation was realized by means of subsequent Ar+ 250-290 keV implantation with doses 2×1015-1×1016 cm-2 through 50-nm deposited films of Er and then SiO2, accordingly. High Er concentration up to 5×1020 cm-3 to the depth of 10 nm was obtained after implantation. However, about a half of the Er implanted atoms become part of surface SiO2 during post-implantation annealing at 950 °C for 1 h in the N2 ambient under a SiO2 cap. The mechanism of Er segregation into the cap oxide following the moving amorphous-crystalline interface during recrystallization was rejected by the transmission electron microscopy (TEM) analysis. Instead, the other mechanism of immobile Er atoms and redistribution of recoil-implanted O atoms toward cap oxide was proposed. It explains the observed formation of two Er containing phases: Er-Si-O phase with a high O content adjacent to the cap oxide and deeper O depleted Er-Si phase. The correction of heat treatments is proposed in order to avoid the above-mentioned problems.

  8. Analysis of the near-resonant fluorescence spectra of a single rubidium atom localized in a three-dimensional optical lattice

    CERN Document Server

    Kim, Wookrae; Kim, Jung-Ryul; Lee, Yea-Lee; Ihm, Jisoon; An, Kyungwon

    2010-01-01

    Supplementary information is presented on the recent work by W. Kim et al. on the matter-wave-tunneling-induced broadening in the near-resonant spectra of a single rubidium atom localized in a three-dimensional optical lattice in a strong Lamb-Dicke regime.

  9. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  10. Heavy ion recoil spectrometry of Si{sub x}Ge{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S.R.; Johnston, P.N.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Hult, M.; Whitlow, H.J. [Lund Institute of Technology, Solvegatan (Sweden). Department of Nuclear Physics; Zaring, C.; Oestling, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics

    1993-12-31

    Mass and energy dispersive recoil spectrometry employing 77 MeV {sup 127}I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si{sub x}Ge{sub 1-x} grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si{sub x}Ge{sub 1-x} layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs.

  11. Analysis of x-ray spectra emitted from highly ionized atoms in the vacuum spark and laser-produced high power plasma sources

    International Nuclear Information System (INIS)

    The interest in atomic spectroscopy has greatly been reinforced in the last ten years. This gain of interest is directly related to the developments in different fields of research where hot plasmas are created. These fields include in particular controlled thermonuclear fusion research by means of inertial or magnetic confinement approaches and also the most recent efforts to achieve lasers in the XUV region. The present work is based on the specific contribution of the atomic spectroscopy group at the Hebrew University. The recent development of both theoretical and experimental tools allowed us to progress in the understanding of the highly ionized states of heavy elements. In this work the low-inductance vacuum-spark developed at the Hebrew University was used as the hot plasma source. The spectra were recorded in the 7-300 A range by means of a high-resolution extreme-grazing-incidence spectrometer developed at the Racah Institute by Profs. J.L. Schwob and B.S. Fraenkel. To the extend the spectroscopic studies to higher-Z atoms, the laser-produced plasma facility at Soreq Nuclear Center was used. In this work the spectra of the sixth row elements were recorded in the x-rays by means of a crystal spectrometer. All these experimental systems are briefly described in chapter one. Chapter two deals with the theoretical methods used in the present work for the atomic calculations. Chapter three deals with the spectra of elements of the fifth row emitted from the vacuum-spark in the 30-150 A range. These spectra as experimental data were used in order to test ab-initio computations along the NiI sequence 3d-nl transitions. The results of this work are presented in chapter four. Chapter five is devoted to the measurement and analysis of spectra emitted from the vacuum-spark by rare-earth elements. (author)

  12. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.;

    2010-01-01

    The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number...... the optical properties according to specific functionality targets. The differences in the spectra could be used to identify relative abundances of isomers with different spins in experimental studies. As a salient feature, this theoretical spectroscopic analysis predicts the metallization of the infinite (Ti...

  13. New results from the HERMES Recoil Detector

    Energy Technology Data Exchange (ETDEWEB)

    Mussgiller, Andreas [DESY, 22603 Hamburg (Germany)

    2009-07-01

    Hard exclusive processes provide access to generalized parton distributions (GPDs), which extend our description of the nucleon structure beyond the standard parton distributions. The Deeply Virtual Compton Scattering (DVCS) process provides the theoretically cleanest access to the GPDs. For the final two years of data taking, a Recoil Detector had been installed at the HERMES experiment at HERA with the purpose of improving the ability to measure hard-exclusive processes. In addition the Recoil Detector allows to measure the individual background contributions which can be used to refine previously published results on DVCS. The Recoil Detector consisted of three sub-detectors inside a 1 T solenoidal magnetic field. A silicon detector operated inside the HERA vacuum, a scintillating fiber tracker, and a photon detector. The progress of the ongoing data analysis is presented.

  14. Monte Carlo calculation of ion, electron, and photon spectra of xenon atoms in x-ray free-electron laser pulses

    CERN Document Server

    Son, Sang-Kil; 10.1103/PhysRevA.85.063415

    2013-01-01

    When atoms and molecules are irradiated by an x-ray free-electron laser (XFEL), they are highly ionized via a sequence of one-photon ionization and relaxation processes. To describe the ionization dynamics during XFEL pulses, a rate equation model has been employed. Even though this model is straightforward for the case of light atoms, it generates a huge number of coupled rate equations for heavy atoms like xenon, which are not trivial to solve directly. Here, we employ the Monte Carlo method to address this problem and we investigate ionization dynamics of xenon atoms induced by XFEL pulses at a photon energy of 4500 eV. Charge state distributions, photo-/Auger electron spectra, and fluorescence spectra are presented for x-ray fluences of up to $10^{13}$ photons/$\\mu$m$^2$. With the photon energy of 4500 eV, xenon atoms can be ionized up to +44 through multiphoton absorption characterized by sequential one-photon single-electron interactions.

  15. Szilard-Chalmers Recoil Reactions in Metalloporphines. Part I

    International Nuclear Information System (INIS)

    The chemical consequences of neutron capture in Co, Ni, Cu, Zn, Pd and Pt α, β, γ, δ -tetraphenylporphine complexes were investigated. The complexes were prepared in extremely pure form by new methods. Two types of retention values were determined: (a) retention in the parent molecules (Rc) obtained by chromatographing the irradiated porphines, and (b) retention in a mixture of parent molecules and the various complexing fragments produced from the parent molecules as a result of recoil and radiation damage. These retention values (R01N, R8N) were determined by extracting the irradiated and dissolved porphines with 0.1N and 8 N HCl. Large retention differences were observed between the isotopes in each of the three isotope pairs investigated. The isotope retention ratios observed in the parent molecules were Zn69m/Zn65 2.1, Pd109/Pd103 1.4, and Pt191/Pt197 2.2. The differences, R01N Rc and R8N-Rc, reflected the general order of divalent metal chelate stability constants, i.e. Pt > Pd > Cu> Ni > Co> Zn. The Co, Ni and Pd isotopes did not respond to isothermal annealing. The Zn65, Pt191 and Pt197 isotopes responded slightly, and the Zn69 and Cu64 exhibited a more pronounced effect. The results are discussed and interpreted on the basis of differences in the recoil energy spectrum and internal conversions effects. Parental retention is attributed in part to exchange reactions resulting from collision complex formation and in part to diffusion back to the point of origin of the recoil atom. (author)

  16. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    CERN Multimedia

    2002-01-01

    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  17. A Measurement of the Recoil Polarization of Electroproduced {Lambda}(1116)

    Energy Technology Data Exchange (ETDEWEB)

    Simeon McAleer

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p {yields} e{prime} + K{sup +} + {Lambda}(1116) for events where {Lambda}(1116) subsequently decayed via the channel {Lambda}(1116) {yields} p + {pi}{sup -}. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q{sup 2} range from 0.5 to 2.8 GeV{sup 2} and nearly the entire range in the center of mass angles. The proton angular distribution in the {Lambda}(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos {theta}{sub cm}{sup K+} dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the {Lambda}(1116) as a function of both cos {theta}{sub cm}{sup K+} and W.

  18. Molecular structure, natural bond analysis, vibrational and electronic spectra, surface enhanced Raman scattering and Mulliken atomic charges of the normal modes of [Mn(DDTC)2] complex.

    Science.gov (United States)

    Téllez S, Claudio A; Costa, Anilton C; Mondragón, M A; Ferreira, Glaucio B; Versiane, O; Rangel, J L; Lima, G Müller; Martin, A A

    2016-12-01

    Theoretical and experimental bands have been assigned for the Fourier Transform Infrared and Raman spectra of the bis(diethyldithiocarbamate)Mn(II) complex, [Mn(DDTC)2]. The calculations have been based on the DFT/B3LYP method, second derivative spectra and band deconvolution analysis. The UV-vis experimental spectra were measured in acetonitrile solution, and the calculated electronic spectrum was obtained using the TD/B3LYP method with 6-311G(d, p) basis set for all atoms. Charge transfer bands and those d-d spin forbidden were assigned in the UV-vis spectrum. The natural bond orbital analysis was carried out using the DFT/B3LYP method and the Mn(II) hybridization leading to the planar geometry of the framework was discussed. Surface enhanced Raman scattering (SERS) was also performed. Mulliken charges of the normal modes were obtained and related to the SERS enhanced bands. PMID:27344520

  19. The Complex Core Level Spectra of CeO2: An Analysis in Terms of Atomic and Charge Transfer Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S; Nelin, Constance J; Ilton, Eugene S; Baron, Martin; Abbott, Heather; Primorac, Elena; Kuhlenbeck, Helmut; Shaikhutdinov, Shamil; Freund, Hans-Joachim

    2010-03-05

    We present a rigorous parameter-free theoretical treatment of the Ce 4s and 5s photoelectron spectra of CeO2. In the currently accepted model the satellite structure in the photoelectron spectra is explained in terms of a mixed valence (Ce 4f0 O 2p6, Ce 4f1 O 2p5, and Ce 4f2 O 2p4) configurations. We show that charge transfer (CT) into Ce 5d as well as configurations involving intra-atomic movement of charge must be considered in addition and compute their contributions to the spectra.

  20. Proton recoils in organic liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen [Technische Universitaet Muenchen, Physik Department E15, Garching (Germany); Collaboration: LENA Working Group

    2012-07-01

    In liquid-scintillator detectors like the LENA (Low Energy Neutrino Astronomy) project, understanding the nature of proton recoils is vital. First of all concerning the observation of the diffuse Supernova anti {nu}{sub e} background with the inverse beta decay (IBD). This signature can be mimicked by the thermalization and capture of a knockout neutron originating from inelastic NC interactions of atmospheric neutrinos on {sup 12}C. However, with the help of pulse shape discrimination between the neutron-induced proton recoils and the prompt positron signal from the IBD, this background might be reduced effectively. Furthermore, elastic {nu}-p scattering is an important channel for neutrinos from a galactic core-collapse SN. In order to reconstruct the initial neutrino energy, the energy-dependent quenching factor of proton recoils has to be known. Therefore, a neutron scattering experiment at the Maier-Leibnitz-Laboratorium in Garching has been set up in order to understand the response of proton recoils in organic liquid scintillator.

  1. D-brane recoil and logarithmic operators

    CERN Document Server

    Kogan, I I; Wheater, John F; Kogan, Ian I; Mavromatos, Nick E; Wheater, John F

    1996-01-01

    We construct the pair of logarithmic operators associated with the recoil of a D-brane. This construction establishes a connection between a translation in time and a world-sheet rescaling. The problem of measuring the centre of mass coordinate of the D-brane is considered and the relation between the string uncertainty principle and the logarithmic operators is discussed.

  2. First results from the HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Yaschenko, Sergey [Physikalisches Institut II, Universitaet Erlangen-Nuernberg (Germany)

    2008-07-01

    For the last one and a half years of operation of HERA, a Recoil Detector was installed at the HERMES experiment to improve measurements of hard exclusive electron/positron scattering reactions in particular deeply virtual Compton scattering. These measurements can provide important constraints on models for generalized parton distributions and hence can lead to the determination of the angular momentum of quarks inside the nucleon. The HERMES Recoil Detector was designed to improve the selection of exclusive events by a direct measurement of the momentum and track direction of recoiling particles and allow the rejection of non-exclusive background events. The detector consisted of three main components: a silicon strip detector (SSD) placed inside the HERA vacuum, a scintillation fiber tracker (SFT), and a photon detector consisting of three layers of tungsten-scintillator sandwich. All the detectors were located in a solenoidal magnetic field of 1 Tesla. The detector was installed in the HERMES experiment in December 2005. The commissioning of the SFT was finished in February 2006 and the SSD commissioning could only be finished in September 2006 due to beam induced noise. The fully commissioned Recoil detector was working stable from September 2006 to the end of HERA operation on June 30 of 2007. Results on the detector performance are presented.

  3. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    International Nuclear Information System (INIS)

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5–50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. The technique is applied to tantalum oxide memristors but can be extended to a wide range of materials systems

  4. Effect of the energy of recoil atoms on conductivity compensation in moderately doped n-Si and n-SiC under irradiation with MeV electrons and protons

    Science.gov (United States)

    Kozlovski, V. V.; Lebedev, A. A.; Emtsev, V. V.; Oganesyan, G. A.

    2016-10-01

    Processes of radiation defect formation and conductivity compensation in silicon and silicon carbide irradiated with 0.9 MeV electrons are considered in comparison with the electron irradiation at higher energies. The experimental values of the carrier removal rate at the electron energy of 0.9 MeV are nearly an order of magnitude smaller than the similar values of the parameter for higher energy electrons (6-9 MeV). At the same time, the formation cross-section of primary radiation defects (Frenkel pairs, FPs) is nearly energy-independent in this range. It is assumed that these differences are due to the influence exerted by the energy of primary knocked-on atoms (PKAs). As the PKA energy increases, the average distance between the genetically related FPs grows and, as a consequence, the fraction of FPs unrecombined under irradiation becomes larger. The FP recombination radius is estimated (∼1.1 nm), which makes it possible to ascertain the charge state of the recombining components. Second, the increase in the PKA energy enables formation of new, more complex secondary radiation defects. At electron energies exceeding 15 MeV, the average PKA energies are closer to the values obtained under irradiation with 1 MeV protons, compared with an electron irradiation at the same energy. As for the radiation-induced defect formation, the irradiation of silicon with MeV protons can be, in principle, regarded as a superposition of the irradiation with 1 MeV electrons and that with silicon ions having energy of ∼1 keV, with the "source" of silicon ions generating these ions uniformly across the sample thickness.

  5. Reaction studies of hot silicon, germanium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, P.P.

    1990-11-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs.

  6. Mid-Infrared Atomic Fine-Structure Emission Line Spectra of Luminous Infrared Galaxies: Spitzer/IRS Spectra of the GOALS Sample

    CERN Document Server

    Inami, H; Charmandaris, V; Groves, B; Kewley, L; Petric, A; Stierwalt, S; Díaz-Santos, T; Surace, J; Rich, J; Haan, S; Howell, J; Evans, A; Mazzarella, J; Marshall, J; Appleton, P; Lord, S; Spoon, H; Frayer, D; Matsuhara, H; Veilleux, S

    2013-01-01

    We present the data and our analysis of MIR fine-structure emission lines detected in Spitzer/IRS high-res spectra of 202 local LIRGs observed as part of the GOALS project. We detect emission lines of [SIV], [NeII], [NeV], [NeIII], [SIII]18.7, [OIV], [FeII], [SIII]33.5, and [SiII]. Over 75% of our galaxies are classified as starburst (SB) sources in the MIR. We compare ratios of the emission line fluxes to stellar photo- and shock-ionization models to constrain the gas properties in the SB nuclei. Comparing the [SIV]/[NeII] and [NeIII]/[NeII] ratios to the Starburst99-Mappings III models with an instantaneous burst history, the line ratios suggest that the SB in our LIRGs have ages of 1-4.5Myr, metallicities of 1-2Z_sun, and ionization parameters of 2-8e7cm/s. Based on the [SIII]/[SIII] ratios, the electron density in LIRG nuclei has a median electron density of ~300cm-3 for sources above the low density limit. We also find that strong shocks are likely present in 10 SB sources. A significant fraction of the ...

  7. Simultaneous Elastic Recoil Detection Analysis of H and Other Elements in Foils

    Institute of Scientific and Technical Information of China (English)

    LU Xiu-Qin; ZHOU Ping; GUO Ji-Yu; ZHANG Xin; ZHAO Kui; NI Mei-Nan; SUI Li; MEI Jun-Ping; LIU Jian-Cheng

    2005-01-01

    @@ Hydrogen and other elements in SixNyHz foils have been simultaneously measured by using a single E(gas)- E(PSD) telescope and heavy 127I ion beam in elastic recoil detection analysis (ERDA). Hydrogen is measuredin the non-coincidence spectrum of E(PSD), and other elements from the △E - E coincidence spectrum. Thecomposition and depth profiling of the foils are obtained from the simulated spectra.

  8. Asymptotics-based CI models for atoms:Properties, exact solution of a minimal model for Li to Ne, and application to atomic spectra

    OpenAIRE

    Friesecke, G.; Goddard, B.D.

    2009-01-01

    Configuration-interaction (CI) models are approximations to the electronic Schrödinger equation which are widely used for numerical electronic structure calculations in quantum chemistry. Based on our recent closed-form asymptotic results for the full atomic Schrödinger equation in the limit of fixed electron number and large nuclear charge [SIAM J. Math. Anal., 41 (2009), pp. 631-664], we introduce a class of CI models for atoms which reproduce, at fixed finite model dimension, the correct S...

  9. Experiments with recoil ions and other considerations

    Energy Technology Data Exchange (ETDEWEB)

    Cocke, C.L.

    1987-01-01

    Some opportunities in collisions physics with slow, multiply charged ions are addressed. A distinction between inner and outer shell collisions is drawn. The applicability of recoil ion sources to outer shell collision systems is discussed, with emphasis on the quality of the beam desired. An example of an inner shell collision is discussed, and the usefulness of not pushing the collision energy too low is pointed out. 13 refs., 14 figs.

  10. Phase-modulated electronic wave-packet interferometry reveals high resolution vibronic spectra of free Rb atoms and Rb*He molecules

    CERN Document Server

    Bruder, Lukas; Stienkemeier, Frank

    2015-01-01

    Phase-modulated wave-packet interferometry is combined with mass-resolved photoion detection to investigate rubidium atoms attached to helium nanodroplets in a molecular beam experiment. The spectra of atomic Rb electronic states show a vastly enhanced sensitivity and spectral resolution when compared to conventional pump-probe wave-packet interferometry. Furthermore, the formation of Rb*He exciplex molecules is probed and for the first time a fully resolved vibrational spectrum for transitions between the lowest excited $5\\Pi_{3/2}$ and the high-lying electronic states $2^2\\Pi$, $4^2\\Delta$, $6^2\\Sigma$ is obtained and compared to theory. The feasibility of applying coherent multidimensional spectroscopy to dilute cold gas phase samples is demonstrated in these experiments.

  11. Low-energy electronic recoil in xenon detectors by solar neutrinos

    CERN Document Server

    Chen, Jiunn-Wei; Liu, C -P; Wu, Chih-Pan

    2016-01-01

    Low-energy electronic recoil caused by solar neutrinos in multi-ton xenon detectors is an important subject not only because it is a source of the irreducible background for direct searches of weakly-interacting massive particles (WIMPs), but also because it provides a viable way to measure the solar $pp$ and $^{7}\\textrm{Be}$ neutrinos at the precision level of current standard solar model predictions. In this work we perform $\\textit{ab initio}$ many-body calculations for the structure, photoionization, and neutrino-ionization of xenon. It is found that the atomic binding effect yields a sizable suppression to the neutrino-electron scattering cross section at low recoil energies. Compared with the previous calculation based on the free electron picture, our calculated event rate of electronic recoil in the same detector configuration is reduced by about $25\\%$. We present in this paper the electronic recoil rate spectrum in the energy window of 100 eV - 30 keV with the standard per ton per year normalizatio...

  12. Transport-theory approach to ion-beam mixing and recoil implantation

    International Nuclear Information System (INIS)

    Ion bombardment of an amorphous target in slab geometry is considered, and ion-beam mixing and recoil implantation evaluated in the binary-collision approximation. A fundamental equation for target-atom redistribution during ion bombardment is formulated, which relates the redistribution flux to the source function for the creation of energetic atomic recoils and their range distribution; for the analysis, this equation plays the role of the Boltzmann transport equation. Expanding the target-atom density in a power series and truncating at the second term yields a flux equation and closed expressions for coefficients of recoil implantation and of ion-beam mixing. The flux equation plays a role analogous to that of Fick's law in diffusion. Lattice relaxations are taken into account by introducing flux transformations between laboratory and marker coordinate frames. The closed expressions for the coefficients are calculated and compared with experiment. The binary-collision contribution to ion-beam mixing turns out to be larger than heretofore thought. A new mechanism for ion-beam mixing emerges, which turns out to make a very significant contribution. There are even cases where the new mechanism far outweighs the cascade-mixing mechanism, thought to be the major contributor to binary-collision ion-beam mixing

  13. The phonon spectra and elastic constants of Pd(x)Fe(1-x): an understanding from inter-atomic interactions.

    Science.gov (United States)

    Dutta, Biswanath; Ghosh, Subhradip

    2009-03-01

    Understanding the role of the inter-atomic force constants in lattice dynamics of random binary alloys is a challenging problem. Addressing these inter-atomic interactions accurately is a necessity to obtain an accurate phonon spectrum and to calculate properties from them. Using a combination of ab initio density functional perturbation theory (DFPT) and the itinerant coherent potential approximation (ICPA), an analytic, self-consistent method for performing configuration averaging in random alloys, we model the inter-atomic force constants for Pd(0.96)Fe(0.04) and Pd(0.9)Fe(0.1) alloys based upon the ab initio results and intuitive arguments. The calculated phonon dispersion curves and elastic constants agree very well with the experimental results. Comparison of our results with those obtained in a model potential scheme is also done. The modeling of inter-atomic interactions in random alloys and their roles regarding the phonon-related properties are also discussed in light of these results. PMID:21817397

  14. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    Science.gov (United States)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  15. Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra

    CERN Document Server

    Berengut, J C; Flambaum, V V; King, J A; Kozlov, M G; Murphy, M T; Webb, J K

    2010-01-01

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are...

  16. The role of Rydberg and continuum levels in computing high harmonic generation spectra of the hydrogen atom using time-dependent configuration interaction.

    Science.gov (United States)

    Luppi, Eleonora; Head-Gordon, Martin

    2013-10-28

    We study the role of Rydberg bound-states and continuum levels in the field-induced electronic dynamics associated with the High-Harmonic Generation (HHG) spectroscopy of the hydrogen atom. Time-dependent configuration-interaction (TD-CI) is used with very large atomic orbital (AO) expansions (up to L = 4 with sextuple augmentation and off-center functions) to describe the bound Rydberg levels, and some continuum levels. To address the lack of ionization losses in TD-CI with finite AO basis sets, we employed a heuristic lifetime for energy levels above the ionization potential. The heuristic lifetime model is compared against the conventional atomic orbital treatment (infinite lifetimes), and a third approximation which is TD-CI using only the bound levels (continuum lifetimes go to zero). The results suggest that spectra calculated using conventional TD-CI do not converge with increasing AO basis set size, while the zero lifetime and heuristic lifetime models converge to qualitatively similar spectra, with implications for how best to apply bound state electronic structure methods to simulate HHG. The origin of HHG spectral features including the cutoff and extent of interference between peaks is uncovered by separating field-induced coupling between different types of levels (ground state, bound Rydberg levels, and continuum) in the simulated electronic dynamics. Thus the origin of deviations between the predictions of the semi-classical three step model and the full simulation can be associated with particular physical contributions, which helps to explain both the successes and the limitations of the three step model.

  17. Molecular sieves analysis by elastic recoil detection

    International Nuclear Information System (INIS)

    The opportunity of water determination in zeolites via hydrogen detection using the elastic recoil detection analysis (ERDA) was investigated. The radiation effect upon the desorption rate of hydrogen in miscellaneous types of zeolites, e.g. Y-Faujasite, ZSM-5, SK, etc. and in a natural clay, e.g. an Algerian bentonite was discussed. Quantitative measurements were carried out in order to determine the amount and distribution shape of hydrogen in each material. Various explanations dealing with hydration and constitution water in such a crystalline framework were proposed. The experimental results are in a good agreement with the corresponding theoretical values

  18. Neutron electric form factor via recoil polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Madey, Richard; Semenov, Andrei; Taylor, Simon; Aghalaryan, Aram; Crouse, Erick; MacLachlan, Glen; Plaster, Bradley; Tajima, Shigeyuki; Tireman, William; Yan, Chenyu; Ahmidouch, Abdellah; Anderson, Brian; Asaturyan, Razmik; Baker, O; Baldwin, Alan; Breuer, Herbert; Carlini, Roger; Christy, Michael; Churchwell, Steve; Cole, Leon; Danagoulian, Samuel; Day, Donal; Elaasar, Mostafa; Ent, Rolf; Farkhondeh, Manouchehr; Fenker, Howard; Finn, John; Gan, Liping; Garrow, Kenneth; Gueye, Paul; Howell, Calvin; Hu, Bitao; Jones, Mark; Kelly, James; Keppel, Cynthia; Khandaker, Mahbubul; Kim, Wooyoung; Kowalski, Stanley; Lung, Allison; Mack, David; Manley, D; Markowitz, Pete; Mitchell, Joseph; Mkrtchyan, Hamlet; Opper, Allena; Perdrisat, Charles; Punjabi, Vina; Raue, Brian; Reichelt, Tilmann; Reinhold, Joerg; Roche, Julie; Sato, Yoshinori; Seo, Wonick; Simicevic, Neven; Smith, Gregory; Stepanyan, Samuel; Tadevosyan, Vardan; Tang, Liguang; Ulmer, Paul; Vulcan, William; Watson, John; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yan, Chen; Yang, Seunghoon; Yuan, Lulin; Zhang, Wei-Ming; Zhu, Hong Guo; Zhu, Xiaofeng

    2003-05-01

    The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.

  19. Modeling ionization and recombination from low energy nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Foxe, Michael P.; Hagmann, Chris; Jovanovic, Igor; Bernstein, A.; Joshi, T.; Kazkaz, K.; Mozin, Vladimir V.; Pereverzev, S. V.; Sangiorgio, Samuele; Sorensen, Peter F.

    2015-09-01

    Coherent neutrino-nucleus scattering (CNNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. CNNS is a flavor-blind interaction, which offers potential benefits for its use in nonproliferation (nuclear reactor monitoring) and astrophysics (supernova and solar neutrinos) applications. One challenge with detecting CNNS is the low energy deposition associated with a typical CNNS nuclear recoil. In addition, nuclear recoils are predicted to result in lower ionization yields than those produced by electron recoils of the same energy. This ratio of nuclear- and electron-induced ionization, known as the nuclear quenching factor, is unknown at energies typical for CNNS interactions in liquid xenon (LXe) and liquid argon (LAr), detector media being considered for CNNS detection. While there have been recent measurements [1] of the ionization yield from nuclear recoils in LAr, there is no universal model for nuclear quenching and ionization yield. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The local ionization yield of a recoiling atom in the medium is calculated first. The ejected electrons are subsequently tracked in the electric field resulting from both the local electric charges and the externally applied drift field. The dependence of the ionization yield on the drift electric field is obtained by combining the calculated ionization yield for the initial collision cascade with the electron escape probability. An updated estimate of the CNNS signal expected in a LAr detector operated near a nuclear power reactor is presented.

  20. Recoil-decay tagging spectroscopy of 162 74 W 88

    OpenAIRE

    Li, H. J.; Cederwall, B.; Bäck, T.; Qi, C.; Doncel, M.; Jakobsson, Ulrika; Auranen, Kalle; Bönig, S; Drummond, M. C.; Grahn, Tuomas; Greenlees, Paul; Herzan, Andrej; Julin, Rauno; Juutinen, Sakari; Konki, Joonas

    2015-01-01

    Excited states in the highly neutron-deficient nucleus 162W have been investigated via the 92Mo(78Kr, 2α) 162W reaction. Prompt γ rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. γ rays from 162W were identified uniquel...

  1. Thermal recoil force, telemetry, and the Pioneer anomaly

    International Nuclear Information System (INIS)

    Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.

  2. Auger Spectra and Different Ionic Charges Following 3s, 3p and 3d Sub-Shells Photoionization of Kr Atoms

    Directory of Open Access Journals (Sweden)

    Yehia A. Lotfy

    2006-01-01

    Full Text Available The decay of inner-shell vacancy in an atom through radiative and non-radiative transitions leads to final charged ions. The de-excitation decay of 3s, 3p and 3d vacancies in Kr atoms are calculated using Monte-Carlo simulation method. The vacancy cascade pathway resulted from the de-excitation decay of deep core hole in 3s subshell in Kr atoms is discussed. The generation of spectator vacancies during the vacancy cascade development gives rise to Auger satellite spectra. The last transitions of the de-excitation decay of 3s, 3p and 3d holes lead to specific charged ions. Dirac-Fock-Slater wave functions are adapted to calculate radiative and non-radiative transition probabilities. The intensity of Kr^{4+} ions are high for 3s hole state, whereas Kr^{3+} and Kr^{2+} ions have highest intensities for 3p and 3d hole states, respectively. The present results of ion charge state distributions agree well with the experimental data.

  3. Molecular geometry, vibrational spectra, atomic charges, frontier molecular orbital and Fukui function analysis of antiviral drug zidovudine

    Science.gov (United States)

    Ramkumaar, G. R.; Srinivasan, S.; Bhoopathy, T. J.; Gunasekaran, S.

    2012-12-01

    The solid phase FT-IR and FT-Raman spectra of zidovudine (AZT) were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of zidovudine were obtained by the Restricted Hartree-Fock (RHF) density functional theory (DFT) with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The harmonic vibrational frequencies for zidovudine were calculated and the scaled values have been compared with experimental values of FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The harmonic vibrational wave numbers and intensities of vibrational bands of zidovudine with its cation and anion were calculated and compared with the neutral AZT. The DFT calculated HOMO and LUMO energies shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in AZT.

  4. Atomic Transition Frequencies, Isotope Shifts, and Sensitivity to Variation of the Fine Structure Constant for Studies of Quasar Absorption Spectra

    Science.gov (United States)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, α = {e}2/hslash c , could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.

  5. The role of localized recoil in the formation of Kikuchi patterns

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, Aimo, E-mail: winkelm@mpi-halle.mpg.de [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany); Vos, Maarten [Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia)

    2013-02-15

    In electron scattering from crystals, diffraction spots are replaced by Kikuchi patterns at high momentum transfer. Kikuchi pattern formation is based on the concept of effective incoherent electron sources (or detectors) inside a crystal. The resulting incoherence is a consequence of energy transfer connected with the momentum transfer in large-angle scattering events. We identify atomic recoil as a key incoherent process giving rise to electron Kikuchi patterns in the scope of the “channeling-in and channeling-out” model of electron backscatter diffraction (EBSD) and electron channeling patterns (ECP) in the scanning electron microscope (SEM). Using model calculations, we explore the characteristic role of the localization of the incoherent scattering event at specific places within the unit cell. In this way, we explain why sometimes inelastic losses do cause Kikuchi-type contrast, and sometimes inelastic losses result in the disappearance of this contrast in the SEM. - Highlights: ► We show the role of atomic recoil in Kikuchi pattern formation from crystals. ► The role of the localization of incoherent scattering in the unit cell is explained. ► We use dynamical diffraction simulations to reveal the mechanism of contrast loss. ► The function of recoil in the “channeling-in and channeling-out” model is clarified.

  6. Search for the effect of massive bodies on atomic spectra and constraints on Yukawa-type interactions of scalar particles

    CERN Document Server

    Leefer, N; Budker, D; Flambaum, V V; Stadnik, Y V

    2016-01-01

    We propose a new method to search for hypothetical scalar particles that have feeble interactions with Standard-Model particles. In the presence of massive bodies, these interactions produce a non-zero Yukawa-type scalar-field magnitude. Using radio-frequency spectroscopy data of atomic dysprosium, as well as atomic clock spectroscopy data, we constrain the Yukawa-type interactions of a scalar field with the photon, electron, and nucleons for a range of scalar-particle masses corresponding to length scales $ > 10$ cm. In the limit as the scalar-particle mass $m_\\phi \\to 0$, our derived limits on the Yukawa-type interaction parameters are: $\\Lambda_\\gamma \\gtrsim 8 \\times 10^{19}$ GeV, $\\Lambda_e \\gtrsim 1.3 \\times 10^{19}$ GeV, and $\\Lambda_N \\gtrsim 6 \\times 10^{20}$ GeV. Our measurements also constrain combinations of interaction parameters, which cannot otherwise be probed with traditional anomalous-force measurements. We suggest further measurements to improve on the current level of sensitivity.

  7. Nuclear recoil corrections to the Lamb shift of hydrogen and light hydrogen-like ions

    CERN Document Server

    Yerokhin, V A

    2016-01-01

    Accurate calculations of the nuclear recoil effect to the Lamb shift of hydrogen-like atoms are presented. Numerical results are reported for the $ns$ states with $n \\leq 5$ and for the $2p_{1/2}$ and $2p_{3/2}$ states. The calculations are performed to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter $Z\\alpha$ (where $Z$ is the nuclear charge number and $\\alpha$ is the fine structure constant). The obtained results provide accurate predictions for the higher-order remainder beyond the known $Z\\alpha$-expansion terms. In the case of hydrogen, the remainder was found to be much larger than anticipated. This result resolves the previously reported disagreement between the numerical all-order and the analytical $Z\\alpha$-expansion approaches for the nuclear recoil effect in the hydrogen Lamb shift.

  8. On recoil energy dependent void swelling in pure copper: Theoretical treatment

    DEFF Research Database (Denmark)

    Golubov, S.I.; Singh, Bachu Narain; Trinkaus, H.

    2000-01-01

    the effect of recoil energy on damage accumulation. Recently, dedicated irradiation experiments using 2.5 MeV electrons, 3.0 MeV protons and fission neutrons have been carried out to determine the effect of recoilenergy on the damage accumulation behaviour in pure copper and the results have been reported......V electron) has been treated in terms of the standard rate theory (SRT) model whereas the evolution of the defectmicrostructure under cascade damage conditions (e.g. 3.0 MeV protons and fission neutrons) has been calculated within the framework of the production bias model (PBM). Theoretical results......, in agreement with experimental results, show that the damageaccumulation behaviour is very sensitive to recoil energy and under cascade damage conditions can be treated only within the framework of the PBM. The intracascade clustering of self-interstitial atoms (SIAs) and the properties of SIA clusters...

  9. Explicit Hilbert-space representations of atomic and molecular photoabsorption spectra - Computational studies of Stieltjes-Tchebycheff functions

    Science.gov (United States)

    Hermann, M. R.; Langhoff, P. W.

    1983-01-01

    Computational methods are reported for construction of discrete and continuum Schroedinger states in atoms and molecules employing explicit Hilbert space procedures familiar from bound state studies. As theoretical development, the Schroedinger problem of interest is described, the Cauchy-Lanczos bases and orthonormal polynomials used in constructing L-squared Stieltjes-Tchebycheff (ST) approximations to the discrete and continuum states are defined, and certain properties of these functions are indicated. Advantages and limitations of the ST approach to spectral studies relative to more conventional calculations are discussed, and aspects of the approach in single-channel approximations to larger molecules are described. Procedures are indicated for construction of photoejection anisotropies and for performing coupled-channel calculations employing the ST formalism. Finally, explicit descriptive intercomparisons are made of the nature and diagnostic value of ST functions with more conventional scattering functions.

  10. Recent advances in the field of recoil chemistry

    International Nuclear Information System (INIS)

    Recent advances in the field of recoil chemistry are summarized and discussed. As important aids to furthering our knowledge of complex systems, the role is emphasized of new techniques such as vapour-phase chromatography, ion exchange and paper electrophoresis. An attempt is made to relate current work in recoil chemistry to other fields of investigation. (author)

  11. Comparison of the Recoil of Conventional and Electromagnetic Cannon

    Directory of Open Access Journals (Sweden)

    Edward M. Schmidt

    2001-01-01

    Full Text Available The recoil from an electromagnetic (EM railgun is discussed and compared with that from conventional, propellant gas driven cannon. It is shown that, under similar launch conditions, the recoil of the EM gun is less than that of the powder gun; however, use of a muzzle brake on a powder gun can alter this relative behavior.

  12. Evolution of energetic neutral atom spectra as measured by the Interstellar Boundary Explorer during its first seven years

    Science.gov (United States)

    Dayeh, Maher A.; Heerikhuisen, Jacob; McComas, David; Schwadron, Nathan; Desai, Mihir; Zirnstein, Eric J.

    2016-07-01

    The Interstellar Boundary Explorer (IBEX) mission continues to provide remote Energetic Neutral Atom (ENA) measurements produced by charge exchange between energetic protons and interstellar neutrals at the edge of our heliosphere. Using the first seven years of IBEX-Hi ENA measurements (January 2009 through December 2015), we examine the evolution of the spectral slopes in four different energy bands, namely, ˜0.7-1.1 keV, ˜1.1-1.7 keV, ˜1.7-2.7 keV, and ˜2.7-4.3 keV, across different regions of the sky. Results show that spectral slopes at each energy band are characterized with unique distribution properties (e.g., width, shape, and mode), which vary in time at different rates and in both directions (distribution modes increase or decrease). We attempt to explain these results in context of ENA source regions, solar wind temporal variations, and changes in the heliosheath thickness and its plasma properties. These results provide insights into ENA production mechanisms, properties of their plasma progenitors, and how they relate to changes in the solar wind.

  13. Generalized Pauli conditions on the spectra of one-electron reduced density matrices of atoms and molecules

    CERN Document Server

    Chakraborty, Romit

    2014-01-01

    The Pauli exclusion principle requires the spectrum of the occupation numbers of the one-electron reduced density matrix (1-RDM) to be bounded by one and zero. However, for a 1-RDM from a wave function, there exist additional conditions on the spectrum of occupation numbers, known as pure N-representability conditions or generalized Pauli conditions. For atoms and molecules, we measure through a Euclidean-distance metric the proximity of the 1-RDM spectrum to the facets of the convex set (polytope) generated by the generalized Pauli conditions. For the ground state of any spin symmetry, as long as time-reversal symmetry is considered in the definition of the polytope, we find that the 1-RDM's spectrum is pinned to the boundary of the polytope. In contrast, for excited states, we find that the 1-RDM spectrum is not pinned. Proximity of the 1-RDM to the boundary of the polytope provides a measurement and classification of electron correlation and entanglement within the quantum system. For comparison, this dist...

  14. Wavelengths, f-Values, and Cross Sections in the UV Spectra of Astrophysical, Atoms, Ions, and Molecules

    Science.gov (United States)

    Raymond, John C.

    2005-01-01

    Data analysis for Fe III was completed in 2004. The new spectra give wavelengths and some energy levels for Fe III that are at least an order of magnitude more accurate than values in the literature. However, the data set is missing - because they are outside the wavelength range that we can study at Imperial College or with ancillary FT spectroscopy measurements at NIST - important transitions that would allow all energy levels to be determined with improved accuracy. We are assessing collaborations at other labs. We have made test runs with a number of cathodes (pure metals and alloys) in the Penning discharge source and selected four iron group (3d) elements, Cr, Mn, Co, and Ni, for further measurements. Cathodes of pure Cr and Co and an alloy of Ni were found to be best. Mn has not nm stably yet, and other cathode geometries or alloys may need to be assessed. Optimum Penning discharge (PD) lamp conditions (buffer gas, gas pressure, and current/voltage) were established for Co, and investigations are underway for Cr and Ni. Definitive measurements for Co await purchase of new mirrors and photomultiplier tubes that will improve signal to noise ratio. Our plan for the next year is to continue evaluating cathodes and operating conditions through March 05, and then to begin definitive measurements. The UV wavelength measurements made at Imperial College with the unique UV FT spectrometer will be complemented by visible and near IR range measurements at NIST in June and/or July. Approximately one year from now, we intend to visit Lund University to collaborate on lifetime measurements that will allow our branching ration data to be used to determine f-values.

  15. Dynamics and mechanisms of hot chemistry stimulated by recoil methods. Progress report, March 1, 1978--February 28, 1979

    International Nuclear Information System (INIS)

    The nuclear recoil chemical activation process in cyclobutane-t and subsequent inter- and intra-molecular energy transfer in recoil tritium and recoil chlorine hot reaction systems are analyzed. A stepladder model for intermolecular energy transfer from cyclobutane-t on collision shows average quanta of energy transferred range from 0.5 to 10 kcal/collision in He, N2, CO2 and cyclobutane bath gases. The recoil energy spectrum of hot chlorine atoms generated via the 37Cl(n,γ)38Cl reaction is also reported. The average recoil energy is found to be 294 eV and the maximum is 528 eV. Average reaction energy is calculated to be relatively independent of composition over the range from 0 to 99% moderation with noble gases in well scavenged systems of moderate reactivity. Geometrical isomerization accompanying the gas phase chlorine atom replacement reaction in 2,3 dichlorohexafluoro-2-butene as a function of moderation has been further investigated. A thermal or near thermal reaction path having a trans/cis product ratio of 1.3 and a high energy process which preferentially forms trans product from both cis and trans reactant are found. Dynamical features associated with the observed high energy inverse isotope effect in the reaction of chlorine atoms with H2 and D2 have been investigated through a non-Boltzmann rate constant analysis. The origin of this kinetic isotope effect is attributed to the secondary reactive process of collisional dissociation of translationally, vibrationally, and rotationally excited hydrogen chloride product molecules. Investigation of the kinetics and mechanisms of photochemical reactions between sulfur dioxide and aliphatic hydrocarbons has been initiated

  16. A gun recoil system employing a magnetorheological fluid damper

    International Nuclear Information System (INIS)

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment. (paper)

  17. Mass attenuation coefficient (μ/ρ), effective atomic number (Zeff) and measurement of x-ray energy spectra using based calcium phosphate biomaterials: a comparative study

    International Nuclear Information System (INIS)

    In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Zeff of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Zeff using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)

  18. Recoil and conversion electron considerations of the {sup 166}Dy/{sup 166}Ho in vivo generator

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, J.R. [North-West Univ., Mmabatho (South Africa). CARST; Szuecs, Z. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry; Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Takacs, S.; Jarvis, N. [Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Jansen, D. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry

    2012-07-01

    The use of radionuclides as potential therapeutic radiopharmaceuticals is increasingly investigated. An important aspect is the delivery of the radionuclide to the target, i.e. the radionuclide is not lost from the chelating agent. For in vivo generators, it is not only the log K of complexation between the metal ion and the chelator that is important, but also whether the daughter radionuclide stays inside the chelator after decay of the parent radionuclide. In our previous work, we showed that the classical recoil effect is only applicable for decays with a Q value higher than 0.6 MeV (in the atomic mass range around 100). However, Zhernosekov et al. published a result for {sup 140}Nd/{sup 140}Pr (Q = 0.222 MeV) which indicated that > 95% of the daughter ({sup 140}Pr) was lost by a DOTA chelator upon decay of {sup 140}Nd. The authors ascribed this to the ''post-effect''. Their experiment was repeated with the {sup 166}Dy/{sup 166}Ho generator to ascertain whether our calculations were correct. It was found that 72% of the daughter ({sup 166}Ho) was liberated from the DOTA chelator, indicating that the 'post effect' does exist in contrast to our recoil calculations. Upon further investigation, we determined that one should not only consider recoil energy levels but also the mode of decay which was able to explain the partial recoil found for {sup 166}Dy/{sup 166}Ho. It is concluded for the {sup 166}Dy/{sup 166}Ho system that the low recoil energy of the daughter nucleus {sup 166}Ho is not a sufficient reason to rule out release of the nuclide from chelators. On the other hand, we found that the ratio of the {sup 166}Ho that gets released corresponds to the ratio of relaxation of Ho atoms via the Auger process. (orig.)

  19. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  20. The median recoil direction as a WIMP directional detection signal

    CERN Document Server

    Green, Anne M

    2010-01-01

    Direct detection experiments have reached the sensitivity required to detect dark matter WIMPs. Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge however. The direction dependence of the WIMP scattering rate provides a potential WIMP `smoking gun'. If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal detector, of order 10 WIMP events would be sufficient to reject isotropy, and rule out an isotropic background. We examine how the median recoil direction could be used to confirm the WIMP origin of an anisotropic recoil signal. Specifically we determine the number of events required to reject the null hypothesis that the median direction is random (corresponding to an isotropic Galactic recoil distribution) at 95% confidence. We find that for zero background 31 events are required, a factor of roughly 2 more than are requi...

  1. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    CERN Document Server

    Jain, Vijay; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-01-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency $\\Omega_0$, this measurement back-action adds quanta $\\hbar\\Omega_0$ to the oscillator's energy at a rate $\\Gamma_{\\rm recoil}$, a process called photon recoil heating, and sets bounds to quantum coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure $\\Gamma_{\\rm recoil}$. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to micro-Kelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for th...

  2. Recoil effects in the electroproduction of the delta

    International Nuclear Information System (INIS)

    Two quark-meson soliton models - the Linear Sigma Model and the Chromodielectric Model - are used to describe the nucleon and delta excitation. Treating the delta as a bound state, we obtain its electroproduction amplitudes corrected for recoil effects. (author)

  3. A Novel Source of Tagged Low-Energy Nuclear Recoils

    OpenAIRE

    Joshi, Tenzing H. Y.

    2011-01-01

    For sufficiently wide resonances, nuclear resonance fluorescence behaves like elastic photo-nuclear scattering while retaining the large cross-section characteristic of resonant photo-nuclear absorption. We show that NRF may be used to characterize the signals produced by low-energy nuclear recoils by serving as a novel source of tagged low-energy nuclear recoils. Understanding these signals is important in determining the sensitivity of direct WIMP dark-matter and coherent neutrino-nucleus s...

  4. Dynamic Simulation of the Tank Gun Recoil Response

    Institute of Scientific and Technical Information of China (English)

    XING Jun-wen; WANG Liang-xi; SHI Yan; CHEN Chun-liang

    2005-01-01

    By using the ATV module of MSC. ADAMS, the dynamic simulation of recoil response of tank gun is analyzed.How the recoil force affects the bodywork and the suspension during gun firing, as well as the changing status of the gun muzzle's velocity are gained. All results and analyzing methods are offered for the designing basis of optimizing tank vehicle-gun match. The constructive exploration is beneficial to improving the general capability of tank.

  5. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    OpenAIRE

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-01-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency $\\Omega_0$, this measurement back-action adds quanta $\\hbar\\Omega_0$ to the oscillator's energy at a rate $\\Gamma_{\\rm recoil}$, a process called photon recoil heating, and sets bounds to quantum coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to d...

  6. Spectra of atoms and molecules

    CERN Document Server

    Bernath, Peter F

    2005-01-01

    1. Introduction. 1.1. Waves, Particles, and Units. 1.2. The Electromagnetic Spectrum. 1.3. Interaction of Radiation with Matter. 1.3a. Blackbody Radiation. 1.3b. Einstein A and B Coefficients. 1.3c. Absorption and Emission of Radiation. 1.3d. Beer''s Law. 1.3e. Lineshape Functions. 1.3f. Natural Lifetime Broadening. 1.3g. Pressure Broadening. 1.3h. Doppler Broadening. 1.3i. Transit-Time Broadening. 1.3j. Power Broadening. 2. Molecular Symmetry. 2.1. Symmetry Operations. 2.1a. Operator Algebra. 2.1b. Symmetry Operator Algebra. 2.2. Groups. 2.2a. Point Groups. 2.2b. Classes. 2.2c. Subgroups. 2.3. Notation for Point Groups. 3. Matrix Representation of Groups. 3.1. Vectors and Matrices. 3.1a. Matrix Eigenvalue Problem. 3.1b. Similarity Transformations. 3.2. Symmetry Operations and Position Vectors. 3.2a. Reflection. 3.2b. Rotation. 3.2c. Rotation-Reflection. 3.2d. Inversion. 3.2e. Identity. 3.3. Symmetry Operators and Basic Vectors. 3.4. Symmetry Operators and Basic Functions. 3.4a. Function Spaces. 3.4b. Gram-Sc...

  7. Improvements in differentiation unfolding of radiation spectra

    International Nuclear Information System (INIS)

    Differentiation unfolding is widely used for measurements of neutron spectra in reactors using proton-recoil proportional counters and for measurements of neutron and gamma-ray spectra using scintillators. Current differentiation unfolding codes use various least-squares fits of polynomials to estimate the derivative of numerical data. Simple examples are used to illustrate the errors in unfolded energy spectra that result from the use of least-squares differentiation. An alternative method of numerical differentiation is presented; this method is shown to be free of the errors that result from least-squares differentiation

  8. MULTIPLE IONIZATION PROCESS STUDIED WITH COINCIDENCE TECHNIQUE BETWEEN SLOW RECOIL ION AND PROJECTILE ION IN 42 MeV Arq+—Ar COLLISIONS

    Institute of Scientific and Technical Information of China (English)

    T.Tonuma; T.Matsuo; 等

    1990-01-01

    Slow Ar recoil ion Production cross sections by 42 MeV Ar1+(q=4-14) projectiles were measured using a projectile ion-recoilion coincidence technique in order to provide information on mechanisms of multiple ionization of target atome through pure ionization as well as of that accompaied simultaneously with multiple electron loss or capture of projectiles.The present results suggest that inner-shell electron processes caused through electron transfer into projectiles and also electron ionization by projectiles play a key role in the production of multiply charged recoil ions.

  9. The Quasar SDSS J105041.35+345631.3: Black Hole Recoil or Extreme Double-Peaked Emitter?

    CERN Document Server

    Shields, G A; Smith, K L; Bonning, E W; Salviander, S; Singh-Kalirai, J; Strickler, R; Ramirez-Ruiz, E; Dutton, A A; Treu, T; Marshall, P J

    2009-01-01

    The quasar SDSS J105041.35+345631.3 (z = 0.272) has broad emission lines blueshifted by 3500 km/s relative to the narrow lines and the host galaxy. Such an object may be a candidate for a recoiling supermassive black hole, a binary black hole, a superposition of two objects, or an unusual geometry for the broad emission-line region (BLR). The absence of narrow lines at the broad line redshift argues against superposition. New Keck spectra of J1050+3456 place tight constraints on the binary model. The combination of large velocity shift and symmetrical H-beta profile, as well as aspects of the narrow line spectrum, make J1050+3456 an interesting candidate for black hole recoil. Other aspects of the spectrum suggest an extreme case of a double-peaked emitter. We discuss possible observational tests to determine the true nature of this exceptional object.

  10. Cold highly ionized ions: Comparison of energies of recoil ions produced by heavy ions and by synchrotron radiation x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sellin, I.A.; Levin, J.C.; O, C.S.; Cederquist, H.; Elston, S.B.; Short, R.T.; Schmidt-Boecking, H.

    1987-01-01

    The energies of highly excited, high-charge-state recoil ions produced by fast heavy-ion impact on target atoms (''hammer'' method) have been compared with the energies of similar-charge-state recoil ions produced by vacancy cascades subsequent to inner-shell photoabsorption of tuned synchrotron radiation x rays (''scalpel'' method). These comparisons show that the ''hammer'' method leads to recoil ion temperatures typically 4 orders of magnitude lower than those which occur in plasma sources in which ions of similar ionization and excitation states have comparable abundance, while the ''scalpel'' method leads to temperatures up to 6 orders of magnitude lower. Advantages and drawbacks of each method for potential precision spectroscopy of stored or trapped high charge state ions, and for production of extracted beams of low emittance for use in secondary ion-atom collision studies at eV to keV energies are discussed. 20 refs.

  11. Nuclear Recoil Calibration of DarkSide-50

    Science.gov (United States)

    Edkins, Erin; DarkSide Collaboration

    2016-03-01

    DarkSide-50 dark matter experiment is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator active neutron veto, designed for the direct detection of Weakly Interacting Massive Particles (WIMPs). The success of such an experiment is dependent upon a detailed understanding of both the expected signal and backgrounds, achieved using radioactive calibration sources of known energies. Nuclear recoils provide a measurement of both the expected signal and the most dangerous background, as nuclear recoils from neutrons cannot be distinguished from a dark matter signal on an event-by-event basis in the TPC. In this talk, I will present the DS-50 calibration system, and analysis of the results of the calibration of DarkSide-50 to nuclear recoils using radioactive neutron sources. See also the DS-50 presentations by X. Xiang and G. Koh.

  12. Anatomy of the binary black hole recoil: A multipolar analysis

    CERN Document Server

    Schnittman, Jeremy D; van Meter, James R; Baker, John G; Boggs, William D; Centrella, Joan; Kelly, Bernard J; McWilliams, Sean T

    2007-01-01

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole (BH) coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within ~2%) and that only a few dominant modes contribute significantly to it (within ~5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical results can be reproduced by an ``effective Newtonian'' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulae with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes (QNMs). Analytic formulae, obtained by expressin...

  13. Rupture and recoil of bent-core liquid crystal filaments.

    Science.gov (United States)

    Salili, S M; Ostapenko, T; Kress, O; Bailey, C; Weissflog, W; Harth, K; Eremin, A; Stannarius, R; Jákli, A

    2016-05-25

    The recoil process of free-standing liquid crystal filaments is investigated experimentally and theoretically. We focus on two aspects, the contraction speed of the filament and a spontaneously formed undulation instability. At the moment of rupture, the filaments buckle similarly to the classical Euler buckling of elastic rods. The tip velocity decays with decreasing filament length. The wavelength of buckling affinely decreases with the retracting filament tip. The energy gain related to the decrease of the total length and surface area of the filaments is mainly dissipated by layer rearrangements during thickening of the fibre. A flow back into the meniscus is relevant only in the final stage of the recoil process. We introduce a model for the quantitative description of the filament retraction speed. The dynamics of this recoil behaviour may find relevance as a model for biology-related filaments. PMID:27140824

  14. Accounting for Recoil Effects in Geochronometers: A New Model Approach

    Science.gov (United States)

    Lee, V. E.; Huber, C.

    2012-12-01

    A number of geologically important chronometers are affected by, or owe their utility to, the "recoil effect". This effect describes the physical displacement of a nuclide due to energetic nuclear processes such as radioactive alpha decay (as in the case of various parent-daughter pairs in the uranium-series decay chains, and Sm-Nd), as well as neutron irradiation (in the case of the methodology for the 40Ar/39Ar dating method). The broad range of affected geochronometers means that the recoil effect can impact a wide range of dating method applications in the geosciences, including but not limited to: Earth surface processes, paleoclimate, volcanic processes, and cosmochemistry and planetary evolution. In particular, the recoil effect can have a notable impact on the use of fine grains (silt- and clay-sized particles) for geochronometric dating purposes. This is because recoil-induced loss of a nuclide from the surfaces of a grain can create an isotopically-depleted outer rind, and for small grains, this depleted rind can be volumetrically significant. When this recoil loss is measurable and occurs in a known time-dependent fashion, it can usefully serve as the basis for chronometers (such as the U-series comminution age method); in other cases recoil loss from fine particles creates an unwanted deviation from expected isotope values (such as for the Ar-Ar method). To improve both the accuracy and precision of ages inferred from geochronometric systems that involve the recoil of a key nuclide from small domains, it is necessary to quantify the magnitude of the recoil loss of that particular nuclide. It is also necessary to quantitatively describe the effect of geological processes that can alter the outer surface of grains, and hence the isotopically-depleted rind. Here we present a new mathematical and numerical model that includes two main features that enable enhanced accuracy and precision of ages determined from geochronometers. Since the surface area of the

  15. Powerful flares from recoiling black holes in quasars

    CERN Document Server

    Shields, G A

    2008-01-01

    Mergers of spinning black holes can give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole in an AGN retains the inner part of its accretion disk. Marginally bound material rejoining the disk around the moving black hole releases a large amount of energy in shocks in a short time, leading to a flare in thermal soft X-rays with a luminosity approaching the Eddington limit. Reprocessing of the X-rays by the infalling material gives strong optical and ultraviolet emission lines with a distinctive spectrum. Despite the short lifetime of the flare (~10^4 yr), as many as 100 flares may be in play at the present time in QSOs at redshifts ~ 1 to 3. These flares provide a means to identify high velocity recoils.

  16. First detection of tracks of radon progeny recoils by MIMAC

    CERN Document Server

    Riffard, Q; Bosson, G; Bourrion, O; Descombes, T; Fourel, C; Guillaudin, O; Muraz, J -F; Colas, P; Ferrer-Ribas, E; Giomataris, I; Busto, J; Fouchez, D; Tao, C; Lebreton, L; Maire, D

    2015-01-01

    The MIMAC experiment is a $\\mu$-TPC matrix project for directional dark matter search. Directional detection is a strategy based on the measurement of the WIMP flux anisotropy due to the solar system motion with respect to the dark matter halo. The main purpose of MIMAC project is the measurement of the energy and the direction of nuclear recoils in 3D produced by elastic scattering of WIMPs. Since June 2012 a bi-chamber prototype is operating at the Modane underground laboratory. In this paper, we report the first ionization energy and 3D track observations of nuclear recoils produced by the radon progeny. This measurement shows the capability of the MIMAC detector and opens the possibility to explore the low energy recoil directionality signature.

  17. How black holes get their kicks: Radiation recoil in binary black hole mergers

    CERN Document Server

    Hughes, S A; Holz, D E; Hughes, Scott A.; Favata, Marc; Holz, Daniel E.

    2004-01-01

    Gravitational waves from the coalescence of binary black holes carry linear momentum, causing center of mass recoil. This ``radiation rocket'' has important implications for systems with escape speeds of order the recoil velocity. We describe new recoil calculations using high precision black hole perturbation theory to estimate the magnitude of the recoil for the slow ``inspiral'' coalescence phase; coupled with a cruder calculation for the final ``plunge'', we estimate the total recoil imparted to a merged black hole. We find that velocities of many tens to a few hundred km/sec can be achieved fairly easily. The recoil probably never exceeds about 500 km/sec.

  18. Nuclear recoil measurements in Superheated Superconducting Granule detectors

    OpenAIRE

    Schmiemann, K.

    1993-01-01

    The response of Superheated Superconducting Granule (SSG) devices to nuclear recoils has been explored by irradiating SSG detectors with a 70Me$\\!$V neutron beam. In the past we have tested Al SSG and more recently, measurements have been performed with Sn and Zn detectors. The aim of the experiments was to test the sensitivity of SSG detectors to recoil energies down to a few ke$\\!$V. In this paper, the preliminary results of the neutron irradiation of a SSG detector made of Sn granules 15-2...

  19. Massive Black Hole Recoil in High Resolution Hosts

    OpenAIRE

    Guedes, Javiera; Diemand, Jürg; Zemp, Marcel; Kuhlen, Michael; Madau, Piero; Mayer, Lucio; Stadel, Joachim

    2008-01-01

    The final inspiral and coalescence of a black hole binary can produce highly beamed gravitational wave radiation. To conserve linear momentum, the black hole remnant can recoil with "kick" velocity as high as 4000 km/s. We present two sets of full N-body simulations of recoiling massive black holes (MBH) in high-resolution, non-axisymmetric potentials. The host to the first set of simulations is the main halo of the Via Lactea I simulation (Diemand et al. 2007). The nature of the resulting or...

  20. Ionization Efficiency Study for Low Energy Nuclear Recoils in Germanium

    CERN Document Server

    Barker, D; Mei, D -M; Zhang, C

    2013-01-01

    We used the internal conversion ($E_0$ transition) of germanium-72 to indirectly measure the low energy nuclear recoils of germanium. Together with a reliable Monte Carlo package, in which we implement the internal conversion process, the data was compared to the Lindhard ($k$=0.159) and Barker-Mei models. A shape analysis indicates that both models agree well with data in the region of interest within 4%. The most probable value (MPV) of the nuclear recoils obtained from the shape analysis is 17.5 keV with an average path-length of 0.014 $\\mu$m.

  1. Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243

    CERN Document Server

    Forsberg, U; Andersson, L -L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Golubev, P; Gregorich, K E; Gross, C J; Herzberg, R -D; Hessberger, F P; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Sarmiento, L G; Schädel, M; Yakushev, A; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Dobaczewski, J; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nazarewicz, W; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Shi, Y; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2015-01-01

    Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum f\\"ur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.

  2. Scattering and recoiling imaging spectrometry (SARIS) study of chlorine chemisorption on Ni(1 1 0)

    International Nuclear Information System (INIS)

    The clean and chlorine chemisorbed Ni(1 1 0) surface has been investigated by scattering and recoiling imaging spectrometry (SARIS). Rare gas ion beams at 4 keV were scattered at different incident (α) and exit (β) angles along different azimuthal directions of the surface. The LEED pattern changed from a sharp (1x1) to a weak (3x1) after exposure to Cl2. The He+ images from the Cl/Ni surface exhibited very little differences compared to those of the clean surface. This is due to the high penetration depth of the He+ ions, which results in low surface sensitivity. The images obtained from the Cl/Ni surface with the heavier ions exhibited obvious changes due to their low penetration depths, which facilitates high surface sensitivity. Scattering and Recoiling Imaging Code (SARIC) simulations were carried out in order to interpret the perturbations induced by the chlorine adatoms. Different chemisorption sites for chlorine were tested. The results of the experiments and simulations agree that Cl atoms are chemisorbed in the short-bridge sites above the [1 1-bar 0] rows

  3. Recoil studies of photonuclear reactions at intermediate energies

    CERN Document Server

    Haba, H

    2002-01-01

    A review is given on the recoil studies of photonuclear reactions on complex nuclei at intermediate energies. Recoils of 167 radionuclides formed in the photonuclear reactions of sup 2 sup 7 Al, sup n sup a sup t V, sup n sup a sup t Cu, sup 9 sup 3 Nb, sup n sup a sup t Ag, sup n sup a sup t Ta, and sup 1 sup 9 sup 7 Au, induced by bremsstrahlung of end-point energies (E sub 0) from 600 to 1100 MeV, have been investigated by the thick-target thick-catcher method. The recoil velocity from the first step and the mean kinetic energy of the residual nuclei in the second step were deduced based on the two-step vector velocity model and discussed by comparing with the reported results on proton-induced reactions. Recoils of sup 2 sup 4 Na produced from sup 2 sup 7 Al, sup n sup a sup t V, sup n sup a sup t Cu, sup n sup a sup t Ag, and sup 1 sup 9 sup 7 Au are of special interest from a viewpoint of a change in the production mechanism with respect to target mass. Reaction yields of 58 and 63 radionuclides produce...

  4. Direct Measurement of Photon Recoil from a Levitated Nanoparticle.

    Science.gov (United States)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-17

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω_{0}, this measurement backaction adds quanta ℏΩ_{0} to the oscillator's energy at a rate Γ_{recoil}, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γ_{recoil}. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces. PMID:27367388

  5. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    Science.gov (United States)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  6. Gravitational recoil: signatures on the massive black hole population

    CERN Document Server

    Volonteri, M

    2007-01-01

    In the last stages of a black hole merger, the binary can experience a recoil due to asymmetric emission of gravitational radiation. Recent numerical relativity simulations suggest that the recoil velocity can be as high as a few thousands kilometers per second for particular configurations. We consider here the effect of this worst case scenario on the hierarchical evolution of the massive black hole (MBH) population, where sensible values for binaries mass ratios and spins are assumed. The orbital configuration is chosen to be the one yielding the highest possible kick. We explore two routes for MBH formation which lead to different ejection histories: either that MBHs are the remnants of the first generation of stars, or that MBHs form by direct collapse. We show that the gravitational recoil does not pose a threat to the evolution of the MBH population that we observe locally in either case. The gravitational recoil is instead a real hazard for (i) MBHs in biased halos at high-redshift, where mergers are ...

  7. Exclusive ρ0 production measured with the HERMES recoil detector

    International Nuclear Information System (INIS)

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  8. The recoil transfer chamber-An interface to connect the physical preseparator TASCA with chemistry and counting setups

    International Nuclear Information System (INIS)

    Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one-atom-at-a-time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes (t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA-an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ∼1 mbar atmosphere in TASCA from the RTC kept at ∼1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA-an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.

  9. The recoil transfer chamber-An interface to connect the physical preseparator TASCA with chemistry and counting setups

    Energy Technology Data Exchange (ETDEWEB)

    Even, J., E-mail: evenj@uni-mainz.d [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Ballof, J. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Bruechle, W. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Buda, R.A. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Duellmann, Ch.E. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55099 Mainz (Germany); Eberhardt, K. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Gorshkov, A. [Technische Universitaet Muenchen, 85748 Garching (Germany); Gromm, E.; Hild, D. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Jaeger, E.; Khuyagbaatar, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Kratz, J.V. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Krier, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Liebe, D.; Mendel, M. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany); Nayak, D. [Saha Institute of Nuclear Physics, Kolkata 700 064 (India); Opel, K.; Omtvedt, J.P. [University of Oslo, N0315 Oslo (Norway); Reichert, P.; Runke, J. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, 55099 Mainz (Germany)

    2011-05-11

    Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one-atom-at-a-time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes (t{sub 1/2{>=}}0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA-an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the {approx}1 mbar atmosphere in TASCA from the RTC kept at {approx}1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA-an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.

  10. Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit

    CERN Document Server

    Curtis, E A; Hollberg, L

    2001-01-01

    We present a cooling method that should be generally applicable to atoms with narrow optical transitions. This technique uses velocity-selective pulses to drive atoms towards a zero-velocity dark state and then quenches the excited state to increase the cooling rate. We demonstrate this technique of quenched narrow-line cooling by reducing the 1-D temperature of a sample of neutral 40Ca atoms. We velocity select and cool with the 1S0(4s2) to 3P1(4s4p) 657 nm intercombination line and quench with the 3P1(4s4p) to 1S0(4s5s) intercombination line at 553 nm, which increases the cooling rate eight-fold. Limited only by available quenching laser power, we have transferred 18 % of the atoms from our initial 2 mK velocity distribution and achieved temperatures as low as 4 microK, corresponding to a vrms of 2.8 cm/s or 2 recoils at 657 nm. This cooling technique, which is closely related to Raman cooling, can be extended to three dimensions.

  11. The role of localized recoil in the formation of Kikuchi patterns.

    Science.gov (United States)

    Winkelmann, Aimo; Vos, Maarten

    2013-02-01

    In electron scattering from crystals, diffraction spots are replaced by Kikuchi patterns at high momentum transfer. Kikuchi pattern formation is based on the concept of effective incoherent electron sources (or detectors) inside a crystal. The resulting incoherence is a consequence of energy transfer connected with the momentum transfer in large-angle scattering events. We identify atomic recoil as a key incoherent process giving rise to electron Kikuchi patterns in the scope of the "channeling-in and channeling-out" model of electron backscatter diffraction (EBSD) and electron channeling patterns (ECP) in the scanning electron microscope (SEM). Using model calculations, we explore the characteristic role of the localization of the incoherent scattering event at specific places within the unit cell. In this way, we explain why sometimes inelastic losses do cause Kikuchi-type contrast, and sometimes inelastic losses result in the disappearance of this contrast in the SEM.

  12. Hydrogen atom mass spectrum in the excited states

    Directory of Open Access Journals (Sweden)

    Arezu Jahanshir

    2013-01-01

    Full Text Available Calculation and analysis of energy spectrum in Coulomb potential of atomic systems, and hadrons in relativistic conditions due to requirements of using higher grades of relativistic corrections have attracted physics theoreticians. The ability to create mono-electron ions of heavy, semi-heavy, strange atoms and/or hadrons atoms in laboratory conditions has boomed the need of more precise and meticulous corrections. One of these factors is to determine electron mass and recoil effect of core in this system. Perturbative and variation theories, regardless of recoil effect, have been calculated in this way so far. The method presented in this paper considers recoil effect intervening and without considering that it researches energy spectrum, mass, and constituent mass in the system. To make more sense of the calculations, hydrogen atomic system has been studied to pave calculation methods for other atoms and systems including quarks, glueball, and pomeron which can be over- generalized using the intended potential.

  13. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    Science.gov (United States)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  14. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    International Nuclear Information System (INIS)

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5–7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5

  15. The synthesis of tritium-labelled cyclic hydrocarbons by using tritium recoil nuclei

    International Nuclear Information System (INIS)

    The authors discuss the results of investigating the interaction of tritium recoil atoms produced by the reaction Li6 (n, α)T with cyclohexane, cyclohexene, cyclohexadiene, methyl cyclohexane, cyclohexanol, cyclohexylammine and benzene. Mixtures of these compounds with lithium carbonate were neutron-irradiated. From 1 g of lithium, 4 mc/h of tritium was obtained with a 4 x 1012 n/cm2 s neutron flux. The total yield of the products depends on the amount of tritium yielded by the crystals, and, so, on the irradiation conditions. The yield from the separate components is determined by analysis. The irradiation products were analysed by vacuum distillation, using carriers and gas-liquid chromatography. The results obtained show that 20-40% of the tritium yielded by the lithium carbonate crystals is embedded in the parent molecule of the irradiated compound. When, for instance, cyclohexene is irradiated together with 22% of the labelled parent-compound, 16% cyclohexane, 4% methyl cyclopentane and small amounts of other products are obtained. The specific activity of cyclohexane and methyl cyclopentane separated on a chromatographic column may be high, and the only dilution is with products of radiolysis. When other compounds are irradiated, there is a good yield only from the irradiated parent-compound, and a small yield from other products. For purposes of preparation, cyclohexane and methyl cyclopentane are best obtained by irradiating cyclohexane; other cyclic hydrocarbons can be obtained by irradiating the compounds directly with lithium salts. The paper describes a preparation column for separating tritium-labelled cyclohexane, cyclohexene and methyl cyclopentane from irradiated cyclohexene and for separating the products yielded by the reaction of tritium recoil atoms with other cyclic hydrocarbons. (author)

  16. Dynamical Formation of Horizons in Recoiling D Branes

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John

    2000-01-01

    A toy calculation of string/D-particle interactions within a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induces the appearance of a microscopic event horizon, or `bubble', inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a `bounce' solution. Within such `bubbles', massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially three for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3 branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.

  17. Velocity distribution in recoil-distance Doppler-shift experiments

    International Nuclear Information System (INIS)

    The Recoil-Distance Doppler-Shift (RDDS) technique is a well established method to measure lifetimes of excited nuclear states in the pico-second range. In standard RDDS experiments at non-relativistc beam-energies, the velocities of the emerging recoils are usually distributed narrowly around a mean velocity v = left angle v right angle v. Under these circumstances, the effect of the velocity distribution is neglectable and the assumption that all nuclei move with the average velocity is justified. In this poster we investigate the influence of broader velocity distributions on lifetimes determined using the standard lifetime analysis-method DDCM. This can be observed, e.g., in experiments with thick targets. In particular, it is shown that the effect of the velocity distribution on the deduced lifetime is minimised at the maximum amplitude of the derivative of the decay function.

  18. Gravitational wave recoil in Robinson-Trautman spacetimes

    International Nuclear Information System (INIS)

    We consider the gravitational recoil due to nonreflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the nonlinear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the nonaxisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.

  19. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T.R.H.; Whitlow, H.J. [Lund Univ. (Sweden); Bubb, I.F.; Short, R.; Johnston, P.N. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1996-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  20. Theoretical Investigation on the Substituent Effect of Halogen Atoms at the C8 Position of Adenine: Relative Stability, Vibrational Frequencies, and Raman Spectra of Tautomers.

    Science.gov (United States)

    Chen, Yan-Li; Wu, De-Yin; Tian, Zhong-Qun

    2016-06-16

    We have theoretically investigated the substituent effect of adenine at the C8 position with a substituent X = H, F, Cl, and Br by using the density functional theory (DFT) at the B3LYP/6-311+G(d, p) level. The aim is to study the substituent effect of halogen atoms on the relative stability, vibrational frequencies, and solvation effect of tautomers. Our calculated results show that for substituted adenine molecules the N9H8X tautomer to be the most stable structure in gas phase at the present theoretical level. Here N9H8X denotes the hydrogen atom binds to the N9 position of imidazole ring and X denotes H, F, Cl, and Br atoms. The influence of the induced attraction of the fluorine substituent is significantly larger than chlorine and bromine ones. The halogen substituent effect has a significant influence on changes of vibrational frequencies and Raman intensities.

  1. Response of a proportional counter to $^{37}$Ar and $^{71}$Ge: real spectra versus GEANT4 simulation

    CERN Document Server

    Abdurashitov, D; Matushko, V; Suerfu, B

    2015-01-01

    The energy deposition spectra of $^{37}$Ar and $^{71}$Ge in a miniature proportional counter are measured and compared in detail to the model response simulated with Geant4. The spectrum of $^{71}$Ge is measured with total statistics of 1.7$\\cdot$10$^8$ events and is presented for the first time. A certain modification of the Geant4 code, making it possible to trace the deexcitation of atomic shells properly, is suggested. After the modification Geant4 is able to reproduce a response of particle detectors in detail in a keV energy range. This feature is very important in the laboratory experiments that search for massive sterile neutrinos as well as for dark matter directly by detection of recoil nuclei. We expect this work to convince physicists to trust Geant4 simulations at low energies.

  2. Recoil Correction to Hydrogen Energy Levels A Revision

    CERN Document Server

    Yelkhovsky, A S

    1997-01-01

    Recent calculations of the order (Z\\alpha)^4(m/M)Ry pure recoil correction to hydrogen energy levels are critically revised. The origins of errors made in the previous works are elucidated. In the framework of a successive approach, we obtain the new result for the correction to S levels. It amounts to -16.4 kHz in the ground state and -1.9 kHz in the 2S state.

  3. The median recoil direction as a WIMP directional detection signal

    OpenAIRE

    Green, Anne M; MORGAN, BEN

    2010-01-01

    Direct detection experiments have reached the sensitivity required to detect dark matter WIMPs. Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge however. The direction dependence of the WIMP scattering rate provides a potential WIMP `smoking gun'. If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal de...

  4. Recoiled Proton Tagged Knockout Reaction for 8He

    Institute of Scientific and Technical Information of China (English)

    曹中鑫; 叶沿林; 江栋兴; 郑涛; 李智焕; 华辉; 葛榆成; 李湘庆; 楼建玲; 肖军; 李奇特; 吕林辉; 李阔昂; 王赫; 乔锐; 游海波; 陈瑞九

    2012-01-01

    An experiment for knockout reaction induced by SHe beam at 82.5 MeV/nucleon on CH2 and C targets was carried out. The 6He and 4He core fragments at forward angles and the recoiled protons at large angles were detected coincidently. From this exclusive measurement the valence nucleon knockout mechanism and the core knockout mechanism are separated, which can be applied to the exclusive spectroscopic study on the structure of exotic nuclei.

  5. Three dimensional momentum distributions of recoil-ions and photoelectrons

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, J.; Schmitt, W. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Doerner, R.; Jagutzki, O.; Mergel, V.; Moshammer, R.; Schmidt-Boecking, H.; Spielberger, L.; Unverzagt, M.; Vogt, T. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik

    1996-10-01

    A novel high-resolution technique, the Multi-Electron-Recoil-Ion Momentum Spectroscopy, allows to determine in coincidence the three dimensional momentum vectors of the ion and up to three electrons created in any photo ionization event. At a solid angle of 4 {pi} the energy-resolutions for ions and electrons are {+-}2{mu} eV and {+-}10 meV, respectively. (orig.)

  6. Discrimination of nuclear recoils from alpha particles with superheated liquids

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, F; Auger, M; Genest, M-H; Giroux, G; Gornea, R; Faust, R; Leroy, C; Lessard, L; Martin, J-P; Morlat, T; Piro, M-C; Starinski, N; Zacek, V [Departement de Physique, Universite de Montreal, Montreal, H3C 3J7 (Canada); Beltran, B; Krauss, C B [Department of Physics, University of Alberta, Edmonton, T6G 2G7 (Canada); Behnke, E; Levine, I; Shepherd, T [Department of Physics and Astronomy, Indiana University South Bend, South Bend, IN 46634 (United States); Nadeau, P; Wichoski, U [Department of Physics, Laurentian University, Sudbury, P3E 2C6 (Canada)], E-mail: zacekv@lps.umontreal.ca (and others)

    2008-10-15

    The PICASSO collaboration observed for the first time a significant difference between the acoustic signals induced by neutrons and alpha particles in a detector based on superheated liquids. This new discovery offers the possibility of improved background suppression and could be especially useful for dark matter experiments. This new effect may be attributed to the formation of multiple bubbles on alpha tracks, compared to single nucleations created by neutron-induced recoils.

  7. B -> K(*) l+ l- @ Low Recoil and Physics Implications

    OpenAIRE

    Hiller, Gudrun

    2013-01-01

    This talk covers recent theoretical progress in exclusive semileptonic rare B-decays at low hadronic recoil. The efficient parametric suppression of the 1/mb corrections in this region provides opportunities to probe the Standard Model and beyond at precision level. Notably, angular analysis allows to simultaneously access electroweak flavor physics and hadronic matrix elements, the latter of which constitute the leading source of theoretical uncertainty. Ratios of B ->K* form factors can alr...

  8. Spallation recoil and age of presolar grains in meteorites

    Science.gov (United States)

    Ott, U.; Begemann, F.

    2000-01-01

    We have determined the recoil losses from silicon carbide grain size fractions of spallation neon produced by irradiation with 1.6 GeV protons. During the irradiation the SiC grains were dispersed in paraffin wax in order to avoid re-implantation into neighboring grains. Analysis for spallogenic 21Ne of grain size separates in the size range 0.3 μm to 6 μm and comparison with the 22Na activity of the SiC+paraffin mixture indicates an effective recoil range of 2-3 μm with no apparent effect from acid treatments such as routinely used in the isolation of meteoritic SiC grains. Our results indicate that the majority of presolar SiC grains in primitive meteorites, which are ~μm-sized, will have lost essentially all spallogenic Ne produced by cosmic ray interaction in the interstellar medium. This argues against the validity of previously published presolar ages of Murchison SiC (~10 to ~130 Ma; increasing with grain size; Lewis et al., 1994), where recoil losses had been based on calculated recoil energies. It is argued that the observed variations in meteoritic SiC grain size fractions of 21Ne/22Ne ratios are more likely due to the effects of nucleosynthesis in the He burning shell of the parent AGB stars which imposes new boundary conditions on nuclear parameters and stellar models. It is suggested that spallation-Xe produced on the abundant Ba and REE in presolar SiC, rather than spallogenic Ne, may be a promising approach to the presolar age problem. There is a hint in the currently available Xe data (Lewis et al., 1994) that the large (>1 μm) grains may be younger than the smaller (<1 μm) ones.

  9. The recoil proton polarization in. pi. p elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for ..pi../sup +/p and ..pi../sup -/p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P/sup 3/ East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10/sup 7/ ..pi../sup -/'s/sec and from 3.0 to 10.0 x 10/sup 7/ ..pi../sup +/'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs.

  10. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    Science.gov (United States)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  11. Recoiling Black Holes: Electromagnetic Signatures, Candidates, and Astrophysical Implications

    Directory of Open Access Journals (Sweden)

    S. Komossa

    2012-01-01

    Full Text Available Supermassive black holes (SMBHs may not always reside right at the centers of their host galaxies. This is a prediction of numerical relativity simulations, which imply that the newly formed single SMBH, after binary coalescence in a galaxy merger, can receive kick velocities up to several 1000 km/s due to anisotropic emission of gravitational waves. Long-lived oscillations of the SMBHs in galaxy cores, and in rare cases even SMBH ejections from their host galaxies, are the consequence. Observationally, accreting recoiling SMBHs would appear as quasars spatially and/or kinematically offset from their host galaxies. The presence of the “kicks” has a wide range of astrophysical implications which only now are beginning to be explored, including consequences for black hole and galaxy assembly at the epoch of structure formation, black hole feeding, and unified models of active galactic nuclei (AGN. Here, we review the observational signatures of recoiling SMBHs and the properties of the first candidates which have emerged, including follow-up studies of the candidate recoiling SMBH of SDSSJ092712.65+294344.0.

  12. The recoil proton polarization in πp elastic scattering

    International Nuclear Information System (INIS)

    The polarization of the recoil proton for π+p and π-p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P3 East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 107 π-'s/sec and from 3.0 to 10.0 x 107 π+'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs

  13. Determination of the fine structure constant based on BLOCH oscillations of ultracold atoms in a vertical optical lattice.

    Science.gov (United States)

    Cladé, Pierre; de Mirandes, Estefania; Cadoret, Malo; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François

    2006-01-27

    We report an accurate measurement of the recoil velocity of 87Rb atoms based on Bloch oscillations in a vertical accelerated optical lattice. We transfer about 900 recoil momenta with an efficiency of 99.97% per recoil. A set of 72 measurements of the recoil velocity, each one with a relative uncertainty of about 33 ppb in 20 min integration time, leads to a determination of the fine structure constant with a statistical relative uncertainty of 4.4 ppb. The detailed analysis of the different systematic errors yields to a relative uncertainty of 6.7 ppb. The deduced value of alpha-1 is 137.035 998 78(91).

  14. An Evaluation of Magneto Rheological Dampers for Controlling Gun Recoil Dynamics

    Directory of Open Access Journals (Sweden)

    Mehdi Ahmadian

    2001-01-01

    Full Text Available The application of magneto rheological dampers for controlling recoil dynamics is examined, using a recoil demonstrator that includes a single-shot 50 caliber BMG rifle action and a MR damper. The demonstrator is selected such that it can adequately represent the velocities that commonly occur in weapons with a recoil system, and can be used for collecting data for analyzing the effects of MR dampers on recoil dynamics. The MR damper is designed so that it can work effectively at the large velocities commonly occurring in gun recoil, and also be easily adjusted to reasonably optimize the damper performance for the recoil demonstrator. The test results show that it is indeed possible to design and use MR dampers for recoil applications, which subject the damper to relative velocities far larger than the applications that such dampers have commonly been used for (i.e., vehicle applications. Further, the results indicate that the recoil force increases and the recoil stroke decreases nonlinearly with an increase in the damping force. Also of significance is the fact that the adjustability of MR dampers can be used in a closed-loop system such that the large recoil forces that commonly occur upon firing the gun are avoided and, simultaneously, the recoil stroke is reduced. This study points to the need for several areas of research including establishing the performance capabilities for MR dampers for gun recoil applications in an exact manner, and the potential use of such dampers for a fire out of battery recoil system.

  15. Limits on the temporal variation of the fine structure constant, quark masses and strong interaction from quasar absorption spectra and atomic clock experiments

    CERN Document Server

    Flambaum, V V; Thomas, A W; Young, R D

    2004-01-01

    We perform calculations of the dependence of nuclear magnetic moments on quark masses and obtain limits on the variation of $(m_q/\\Lambda_{QCD})$ from recent measurements of hydrogen hyperfine (21 cm) and molecular rotational transitions in quasar absorption systems, atomic clock experiments with hyperfine transitions in H, Rb, Cs, Yb$^+$, Hg$^+$ and optical transition in Hg$^+$. Experiments with Cd$^+$, deuterium/hydrogen, molecular SF$_6$ and Zeeman transitions in $^3$He/Xe are also discussed.

  16. Nuclear recoil detection in liquid argon using a two-phase CRAD and DD neutron generator

    International Nuclear Information System (INIS)

    The detection of nuclear recoils in noble liquids using neutron elastic scattering off nuclei is relevant in the field of calibration of rare-event detectors for dark matter search and coherent neutrino-nucleus scattering experiments. We present here the first results on nuclear recoil detection in liquid Ar, using a two-phase Cryogenic Avalanche Detector (CRAD) and DD neutron generator. The technique to select the nuclear recoils for backward neutron scattering has been demonstrated

  17. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  18. Large-momentum-transfer Bragg interferometer with strontium atoms

    CERN Document Server

    Mazzoni, T; Del Aguila, R; Salvi, L; Poli, N; Tino, G M

    2015-01-01

    We report on the first atom interferometer based on Bragg diffraction in a fountain of alkaline-earth atoms, namely $^{88}$Sr. We demonstrate large momentum transfer to the atoms up to eight photon recoils and the use of the interferometer as a gravimeter with a sensitivity $\\delta g/g=4\\times 10^{-8}$. Thanks to the special characteristics of strontium atoms for precision measurements, this result opens a new way for experiments in fundamental and applied physics.

  19. B -> D* l nu at zero recoil: an update

    CERN Document Server

    Bailey, Jon A; Bernard, C; Bouchard, C M; DeTar, C; El-Khadra, A X; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Hetrick, J E; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Oktay, M B; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S

    2010-01-01

    We present an update of our calculation of the form factor for B -> D* l nu at zero recoil, with higher statistics and finer lattices. As before, we use the Fermilab action for b and c quarks, the asqtad staggered action for light valence quarks, and the MILC ensembles for gluons and light quarks (L\\"uscher-Weisz married to 2+1 rooted staggered sea quarks). In this update, we have reduced the total uncertainty on F(1) from 2.6% to 1.7%. At Lattice2010 we presented a still-blinded result, but this writeup includes the unblinded result from the September 2010 CKM workshop.

  20. Low energy recoil detection with a spherical proportional counter

    OpenAIRE

    I. Savvidis; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.

    2016-01-01

    We present low energy recoil detection results in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An ${}^{241}Am-{}^{9}{Be}$ fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the $keV$ energy region was resolved by observing the $5.9\\ keV$ line of a ${}^{55}Fe$ X-ray source, with energy resolution of $9\\%$ ($\\sigma$). The toolkit GEANT...

  1. Is CHF triggered by the vapor recoil effect?

    CERN Document Server

    Nikolayev, Vadim S; Chatain, D

    2007-01-01

    This paper deals with the triggering mechanism of the boiling crisis, a transition from nucleate to film boiling. We observe the boiling crisis in pool saturated boiling experimentally at nearly critical pressure to take advantage of the slowness of the bubble growth and of the smallness of the Critical Heat Flux (CHF) that defines the transition point. Such experiments require the reduced gravity conditions. Close to the CHF, the slow growth of the individual dry spots and their subsequent fusion on the transparent heater are observed through the latter. As discussed in the paper, these observations are consistent with numerical results obtained with the vapor recoil model of the boiling crisis.

  2. Modeling of neutron elastic scattering energy deposition in proton recoil counters

    International Nuclear Information System (INIS)

    For the purpose of determining the neutron energy deposition in proton-recoil detectors, a model based on the multigroup transport theory is developed. The matrix of the averaged recoil nucleus energies represents the entire process of neutron kinetic energy transfer to the target nuclei. The averaged energy recoil nucleus receive is correspondent to the energy loss of a neutron that suffers collision within detector volume. The necessary algorithm for the matrix elements determination is developed. Computer code EESCAT is developed to calculate elastic scattering matrices and recoil nucleus energies received from elastically scattered neutrons. (author)

  3. Recoil-decay tagging spectroscopy of W-162(74)88

    OpenAIRE

    Li, Hongjie; Cederwall, Bo; Bäck, Torbjörn; Qi, Chong; Doncel, Maria; Jakobsson, Ulrika; Auranen, K; Boenig, S.; Drummond, M. C.; Grahn, T.; Greenlees, P.; Herzan, A.; Julin, R.; Juutinen, S.; Konki, J.

    2015-01-01

    Excited states in the highly neutron-deficient nucleus W-162 have been investigated via the Mo-92(Kr-78, 2 alpha) W-162 reaction. Prompt gamma rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. gamma rays from W-162 were identified uniq...

  4. An Evaluation of Magneto Rheological Dampers for Controlling Gun Recoil Dynamics

    OpenAIRE

    Mehdi Ahmadian; Poynor, James C.

    2001-01-01

    The application of magneto rheological dampers for controlling recoil dynamics is examined, using a recoil demonstrator that includes a single-shot 50 caliber BMG rifle action and a MR damper. The demonstrator is selected such that it can adequately represent the velocities that commonly occur in weapons with a recoil system, and can be used for collecting data for analyzing the effects of MR dampers on recoil dynamics. The MR damper is designed so that it can work effectively at the large ve...

  5. Measurements of the ballistic phonon component resulting from nuclear recoils in crystalline silicon

    International Nuclear Information System (INIS)

    We present evidence that nuclear recoils in silicon at cryogenic temperatures result in a larger ballistic component of phonons than do equal-energy electron recoils. A 300 μm thick crystal of pure silicon was instrumented on both sides with superconducting titanium transition-edge sensors, and the phonon ballistic energy fraction was determined by measuring phonon focusing effects. Comparison of the data with simulations indicates that this fraction is 1.49-0.26+0.34 times higher (at 68% confidence level) for nuclear recoils than for electron recoils

  6. Spectra Statistics for the Odd-Odd Nucleus 86Nb

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ren-Rong; ZHU Shun-Quan; CHENG Nan-Pu

    2001-01-01

    The energy levels of the odd-odd nucleus 86 Nb at low spins are calculated by using quasi-particles plus a rotor model. The distribution of the nearest-neighbour spacing and the spectral rigidity are studied. We find that the chaotic degree of the energy spectra increases with the increasing spin and reaches a maximum at I = 10; then it decreases gradually for spins above I = 10. The recoil term in the model Haniltonian makes the energy spectra slightly regular. The Coriolis force, however, makes the spectra chaotic and plays a major role in the spectral statistics of the odd-odd nucleus 86Nb.

  7. Lattice vibration modes in type-II superlattice InAs/GaSb with no-common-atom interface and overlapping vibration spectra

    Science.gov (United States)

    Liu, Henan; Yue, Naili; Zhang, Yong; Qiao, Pengfei; Zuo, Daniel; Kesler, Ben; Chuang, Shun Lien; Ryou, Jae-Hyun; Justice, James D.; Dupuis, Russell

    2015-06-01

    Heterostructures like InAs /GaSb superlattices (SLs) are distinctly different from well-studied ones like GaAs /AlAs SLs in terms of band alignment, common interface atom, and phonon spectrum overlapping of the constituents, which manifests as stark differences in their electronic and vibrational properties. This paper reports a comprehensive examination of all four types of phonon modes (confined, quasiconfined, extended, and interface) that have long been predicted for the InAs /GaSb SL, with the observation and interpretation of a set of phonon modes by performing cleaved edge μ -Raman study with polarization analysis. Furthermore, we show a signature of symmetry reduction from D2 d for GaAs /AlAs SL to C2 v for InAs/GaSb SL revealed as a phonon-polariton effect.

  8. Sub-recoil cooling up to nano-Kelvin. Direct measurement of spatial coherency length. New tests for Levy statistics; Refroidissement laser subrecul au nanokelvin. Mesure directe de la longueur de coherence spatiale. Nouveaux tests des statistiques de Levy

    Energy Technology Data Exchange (ETDEWEB)

    Saubamea, B

    1998-12-15

    This thesis presents a new method to measure the temperature of ultracold atoms from the spatial autocorrelation function of the atomic wave-packets. We thus determine the temperature of metastable helium-4 atoms cooled by velocity selective dark resonance, a method known to cool the atoms below the temperature related to the emission or the absorption of a single photon by an atom at rest, namely the recoil temperature. This cooling mechanism prepares each atom in a coherent superposition of two wave-packets with opposite mean momenta, which are initially superimposed and then drift apart. By measuring the temporal decay of their overlap, we have access to the Fourier transform of the momentum distribution of the atoms. Using this method, we can measure temperatures as low as 5 nK, 800 times as small as the recoil temperature. Moreover we study in detail the exact shape of the momentum distribution and compare the experimental results with two different theoretical approaches: a quantum Monte Carlo simulation and an analytical model based on Levy statistics. We compare the calculated line shape with the one deduced from simulations, and each theoretical model with experimental data. A very good agreement is found with each approach. We thus demonstrate the validity of the statistical model of sub-recoil cooling and give the first experimental evidence of some of its characteristics: the absence of steady-state, the self-similarity and the non Lorentzian shape of the momentum distribution of the cooled atoms. All these aspects are related to the non ergodicity of sub-recoil cooling. (author)

  9. Cold highly ionized ions: Comparison of energies of recoil ions produced by heavy ions and by synchrotron radiation X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sellin, I.A.; Levin, J.C.; O, C.S.; Cederquist, H.; Elston, S.B.; Short, R.T.; Schmidt-Boecking, H.

    1988-01-01

    The energies of highly excited, high-charge-state recoil ions produced by fast heavy-ion impact on target atoms ('hammer' method) have been compared with the energies of similar-charge-state recoil ions produced by vacancy cascades subsequent to inner-shell photoabsorption of tuned synchrotron radiation X-rays ('scalpel' method). These comparisons show that the 'hammer' method leads to recoil ion temperatures typically 4 orders of magnitude lower than those which occur in plasma sources in which ions of similar ionization and excitation states have comparable abundance, while the 'scalpel' method leads to temperatures up to 6 orders of magnitude lower. Advantages and drawbacks of each method for potential precision spectroscopy of stored or trapped high charge state ions, and for production of extracted beams of low emittance for use in secondary ion-atom collison studies at eV to keV energies are discussed.

  10. Low energy recoil detection with a spherical proportional counter

    CERN Document Server

    Savvidis, I; Eleftheriadis, C; Giomataris, I; Papaevangellou, T

    2016-01-01

    We present low energy recoil detection results in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An ${}^{241}Am-{}^{9}{Be}$ fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the $keV$ energy region was resolved by observing the $5.9\\ keV$ line of a ${}^{55}Fe$ X-ray source, with energy resolution of $9\\%$ ($\\sigma$). The toolkit GEANT4 was used to simulate the irradiation of the detector by an ${}^{241}Am-{}^{9}{Be}$ source, while SRIM was used to calculate the Ionization Quenching Factor (IQF). The GEANT4 simulated energy deposition spectrum in addition with the SRIM calculated quenching factor provide valuable insight to the experimental results. The performance of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searc...

  11. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  12. Spectral flux of the p-7Li(C Q-M neutron source measured by proton recoil telescope

    Directory of Open Access Journals (Sweden)

    Simakov S.P.

    2010-10-01

    Full Text Available The cyclotron-based fast neutron source at NPI produces mono-energetic neutron fields up to 35 MeV neutron energy using the p + 7Li(carbon backing reactions. To be applied for activation cross-section measurements, not only the intensity of neutron peak, but also the contribution of low-energy continuum in the spectra must be well determined. Simulations of the spectral flux from present source at a position of irradiated samples were performed using CYRIC TOF-data validated in the present work against LA150h by calculations with the transport Monte Carlo code MCNPX. Simulated spectra were tested by absolute measurements using a proton-recoil telescope technique. The recoil-proton spectrometer consisted of a shielded scattering chamber with polyethylene and carbon radiators and the ΔE1-ΔE2-E telescope of silicon-surface detectors located to the neutron beam axis at 45° in the laboratory system. Si-detectors were handled by usual data acquisition system. Dead-time – and pulse-overlap losses of events were determined from the count rate of pulse generator registered during duty cycle of accelerator operation. The proton beam charge and data were taken in the list mode for later replay and analysis. The calculations for 7Li(p,n and 12C(p,n reactions reasonably reproduce CYRIC TOF neutron source spectra. The influence of neutron source set-up (proton beam dimensions, 7Li-foil, carbon stopper, cooling medium, target support/chamber and the geometry-arrangement of irradiated sample on the spectral flux is discussed in details.

  13. Influence of inelastic collisions with hydrogen atoms on the formation of AlI and SiI lines in stellar spectra

    Science.gov (United States)

    Mashonkina, L. I.; Belyaev, A. K.; Shi, J.-R.

    2016-06-01

    We have performed calculations by abandoning the assumption of local thermodynamic equilibrium (within the so-called non-LTE approach) for Al I and Si I with model atmospheres corresponding to stars of spectral types F-G-Kwith differentmetal abundances. To take into account inelastic collisions with hydrogen atoms, for the first time we have applied the cross sections calculated by Belyaev et al. using model approaches within the formalism of the Born-Oppenheimer quantum theory. We show that for Al I non-LTE leads to higher ionization (overionization) than in LTE in the spectral line formation region and to a weakening of spectral lines, which is consistent with earlier non-LTE studies. However, our results, especially for the subordinate lines, differ quantitatively from the results of predecessors. Owing to their large cross sections, the ion-pair production and mutual neutralization processes Al I( nl) + HI(1 s) ↔ Al II(3 s 2) + H- provide a close coupling of highly excited Al I levels with the Al II ground state, which causes the deviations from the equilibrium level population to decrease compared to the calculations where the collisions only with electrons are taken into account. For three moderately metal-deficient dwarf stars, the aluminum abundance has been determined from seven Al I lines in different models of their formation. Under the assumption of LTE and in non-LTE calculations including the collisions only with electrons, the Al I 3961 ˚A resonance line gives a systematically lower abundance than the mean abundance from the subordinate lines, by 0.25-0.45 dex. The difference for each star is removed by taking into account the collisions with hydrogen atoms, and the rms error of the abundance derived from all seven Al I lines decreases by a factor of 1.5-3 compared to the LTE analysis. We have calculated the non- LTE corrections to the abundance for six subordinate Al I lines as a function of the effective temperature (4500 K ≤ T eff ≤ 6500 K

  14. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    CERN Document Server

    Chen, Yonghao; Lei, Jiarong; An, Li; Zhang, Xiaodong; Shao, Jianxiong; Zheng, Pu; Wang, Xinhua

    2013-01-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  15. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    Science.gov (United States)

    Chen, YongHao; Chen, XiMeng; Lei, JiaRong; An, Li; Zhang, XiaoDong; Shao, JianXiong; Zheng, Pu; Wang, XinHua

    2014-10-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of 241Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of 241Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded 241Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  16. Calculations of Total and Differential Solid Angles for a Proton Recoil Solid State Detector

    International Nuclear Information System (INIS)

    The solid angles have been computed for a proton recoil counter consisting of a circular hydrogenous foil viewed by an isotropic neutron point source at different distances from the target foil. Tables are given for the total subtended solid angle as well as the differential energy distribution function of the proton recoil spectrum. The influence of finite foil thickness has also been studied

  17. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    International Nuclear Information System (INIS)

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events. (paper)

  18. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    Science.gov (United States)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  19. Atmospheric chemistry of (CF3)2C=CH2: OH radicals, Cl atoms and O3 rate coefficients, oxidation end-products and IR spectra.

    Science.gov (United States)

    Papadimitriou, Vassileios C; Spitieri, Christina S; Papagiannakopoulos, Panos; Cazaunau, Mathieu; Lendar, Maria; Daële, Véronique; Mellouki, Abdelwahid

    2015-10-14

    The rate coefficients for the gas phase reactions of OH radicals, k1, Cl atoms, k2, and O3, k3, with 3,3,3-trifluoro-2(trifluoromethyl)-1-propene ((CF3)2C=CH2, hexafluoroisobutylene, HFIB) were determined at room temperature and atmospheric pressure employing the relative rate method and using two atmospheric simulation chambers and a static photochemical reactor. OH and Cl rate coefficients obtained by both techniques were indistinguishable, within experimental precision, and the average values were k1 = (7.82 ± 0.55) × 10(-13) cm(3) molecule(-1) s(-1) and k2 = (3.45 ± 0.24) × 10(-11) cm(3) molecule(-1) s(-1), respectively. The quoted uncertainties are at 95% level of confidence and include the estimated systematic uncertainties. An upper limit for the O3 rate coefficient was determined to be k3 global warming potential (GWP) calculations, radiative efficiency (RE) was determined from the measured IR absorption cross-sections and treating HFIB both as long (LLC) and short (SLC) lived compounds, including estimated lifetime dependent factors in the SLC case. The HFIB lifetime was estimated from kinetic measurements considering merely the OH reaction, τOH = 14.8 days and including both OH and Cl chemistry, τeff = 10.3 days. Therefore, GWP(HFIB,OH) and GWP(HFIB,eff) were estimated to be 4.1 (LLC) and 0.6 (SLC), as well as 2.8 (LLC) and 0.3 (SLC) for a hundred year time horizon. Moreover, the estimated photochemical ozone creation potential (ε(POCP)) of HFIB was calculated to be 4.60. Finally, HCHO and (CF3)2C(O) were identified as final oxidation products in both OH- and Cl-initiated oxidation, while HC(O)Cl was additionally observed in the Cl-initiated oxidation. PMID:26372403

  20. Commissioning of the recoil silicon detector for the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pickert, N.C.

    2008-02-15

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  1. Commissioning of the recoil silicon detector for the HERMES experiment

    International Nuclear Information System (INIS)

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  2. First measurement of surface nuclear recoil background for argon dark matter searches

    CERN Document Server

    Xu, Jingke; Westerdale, Shawn; Calaprice, Frank; Wright, Alexander; Shi, Zhiming

    2016-01-01

    One major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. The most dangerous surface background is the $^{206}$Pb recoils produced by $^{210}$Po decays. In this letter, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103keV $^{206}$Pb recoil background will produce a signal equal to that of a ~5keV (30keV) electron recoil ($^{40}$Ar recoil). In addition, we demonstrate that this dangerous $^{210}$Po surface background can be suppressed by a factor of ~100 or higher using pulse shape discrimination methods, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. We also discuss the impact on other low background experiments.

  3. Deconvoluting nonaxial recoil in Coulomb explosion measurements of molecular axis alignment

    Science.gov (United States)

    Christensen, Lauge; Christiansen, Lars; Shepperson, Benjamin; Stapelfeldt, Henrik

    2016-08-01

    We report a quantitative study of the effect of nonaxial recoil during Coulomb explosion of laser-aligned molecules and introduce a method to remove the blurring caused by nonaxial recoil in the fragment-ion angular distributions. Simulations show that nonaxial recoil affects correlations between the emission directions of fragment ions differently from the effect caused by imperfect molecular alignment. The method, based on analysis of the correlation between the emission directions of the fragment ions from Coulomb explosion, is used to deconvolute the effect of nonaxial recoil from experimental fragment angular distributions. The deconvolution method is then applied to a number of experimental data sets to correct the degree of alignment for nonaxial recoil, to select optimal Coulomb explosion channels for probing molecular alignment, and to estimate the highest degree of alignment that can be observed from selected Coulomb explosion channels.

  4. Gravitational Wave Recoil Oscillations of Black Holes: Implications for Unified Models of Active Galactic Nuclei

    CERN Document Server

    Komossa, S

    2008-01-01

    We consider the consequences of gravitational wave recoil for unified models of active galactic nuclei (AGNs). Spatial oscillations of supermassive black holes (SMBHs) around the cores of galaxies following gravitational wave (GW) recoil imply that the SMBHs spend a significant fraction of time off-nucleus, at scales beyond that of the molecular obscuring torus. Assuming reasonable distributions of recoil velocities, we compute the off-core timescale of (intrinsically type-2) quasars. We find that roughly one-half of major mergers result in a SMBH being displaced beyond the torus for a time of 30 Myr or more, comparable to quasar activity timescales. Since major mergers are most strongly affected by GW recoil, our results imply a deficiency of type 2 quasars in comparison to Seyfert 2 galaxies. Other consequences of the recoil oscillations for the observable properties of AGNs are also discussed.

  5. Recoiling black holes: prospects for detection and implications of spin alignment

    CERN Document Server

    Blecha, Laura; Kelley, Luke Zoltan; Torrey, Paul; Vogelsberger, Mark; Nelson, Dylan; Springel, Volker; Snyder, Gregory; Hernquist, Lars

    2015-01-01

    Supermassive black hole (BH) mergers produce powerful gravitational wave (GW) emission. Asymmetry in this emission imparts a recoil kick to the merged BH, which can eject the BH from its host galaxy altogether. Recoiling BHs could be observed as offset active galactic nuclei (AGN). Several candidates have been identified, but systematic searches have been hampered by large uncertainties regarding their observability. By extracting merging BHs and host galaxy properties from the Illustris cosmological simulations, we have developed a comprehensive model for recoiling AGN. Here, for the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas-richness of host galaxies. For comparable assumptions, we find much higher rates of recoiling AGN than Volonteri & Madau (2008), indicating systematic differences between BH populations in semi-analytic models and cosmological simulations. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve off...

  6. Impact of Low-Energy Response to Nuclear Recoils in Dark Matter Detectors

    CERN Document Server

    Mei, D -M; Wang, L

    2015-01-01

    We report an absolute energy response function to electronic and nuclear recoils for germanium and liquid xenon detectors. As a result, we show that the detection energy threshold of nuclear recoils for a dual-phase xenon detector can be $\\sim$ 6.8 keV for a given number of detectable photoelectrons. We evaluate the average energy expended per electron-hole pair to be $\\sim$8.9 eV, which sets a detection energy threshold of $\\sim$4.5 keV for a germanium detector at 50 mini-Kelvin at 69 volts with a primary phonon frequency of 2 THz. The Fano factors of nuclear and electronic recoils that constrain the capability for discriminating nuclear recoils below 2-3 keV recoil energy for both technologies are different.

  7. Recoil induced room temperature stable Frenkel pairs in α-hafnium upon thermal neutron capture

    International Nuclear Information System (INIS)

    Ultrapure hafnium metal (110 ppm zirconium) was neutron activated with a thermal neutron flux of 6.6 . 1012cm-2s-1 in order to obtain 181Hf for subsequent time differential perturbed angular correlation (TDPAC) experiments using the nuclear probe 181Hf(β-)181Ta. Apart from the expected nuclear quadrupole interaction (NQI) signal for a hexagonal close-packed (hcp) metal, three further discrete NQIs were observed with a few percent fraction each. The TDPAC spectra were recorded for up to 11 half lives with extreme statistical accuracy. The fitted parameters vary slightly within the temperature range between 248 K and 373 K. The signals corresponding to the three additional sites completely disappear after 'annealing' at 453 K for one minute. Based on the symmetry of the additional NQIs and their temperature dependencies, they are tentatively attributed to Frenkel pairs produced by recoil due to the emission of a prompt 5.694 MeV γ-ray following thermal neutron capture and reported by the nuclear probe in three different positions. These Frenkel pairs are stable up to at least 373 K. (orig.)

  8. On the line-shape and lifetime determination in recoil distance Doppler-shift measurements

    CERN Document Server

    Petkov, P; Gableske, J; Dewald, A; Klemme, T; Brentano, P V

    1999-01-01

    A method for the calculation of the gamma-ray line-shapes observed in recoil distance Doppler-shift measurements of nuclear lifetimes is presented emphasising the case where a gate is set on a transition which feeds directly the level of interest. A description of such coincidence spectra is proposed for the first time. It is shown that a successful reproduction of the data requires to take into account the emission of gamma-rays during the slowing-down of the ions in the stopper if the investigated lifetime is shorter than or comparable to the slowing-down time. The corresponding formalism for lifetime determination in the framework of the differential decay-curve method is developed. The new approach is illustrated by an application to experimental data obtained in the sup 1 sup 1 sup 0 Pd( sup 2 sup 8 Si, 4n) sup 1 sup 3 sup 4 Nd reaction at a beam energy of 125 MeV. (author)

  9. Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector

    OpenAIRE

    Chavarria, A. E.; Collar, J. I.; Pena, J.; Privitera, P.; Robinson, A E; Scholz, B.; Sengul, C.; Zhou, J.; Estrada, J.; Izraelevitch, F.; Tiffenberg, J.; Neto, J. R. T. de Mello(Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil); Machado, D. Torres

    2016-01-01

    We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils were produced by low-energy neutrons ($

  10. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    International Nuclear Information System (INIS)

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to the stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atoms and a  <1 0 0>  split interstitial is produced in pure Ni by the recoils, while only the  <1 0 0>  split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation. (paper)

  11. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Tenzing Henry Yatish [Univ. of California, Berkeley, CA (United States)

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  12. On the Superposition and Elastic Recoil of Electromagnetic Waves

    CERN Document Server

    Schantz, Hans G

    2014-01-01

    Superposition demands that a linear combination of solutions to an electromagnetic problem also be a solution. This paper analyzes some very simple problems: the constructive and destructive interferences of short impulse voltage and current waves along an ideal free-space transmission line. When voltage waves constructively interfere, the superposition has twice the electrical energy of the individual waveforms because current goes to zero, converting magnetic to electrical energy. When voltage waves destructively interfere, the superposition has no electrical energy because it transforms to magnetic energy. Although the impedance of the individual waves is that of free space, a superposition of waves may exhibit arbitrary impedance. Further, interferences of identical waveforms allow no energy transfer between opposite ends of a transmission line. The waves appear to recoil elastically one from another. Although alternate interpretations are possible, these appear less likely. Similar phenomenology arises i...

  13. B -> K(*) l+ l- @ Low Recoil and Physics Implications

    CERN Document Server

    Hiller, Gudrun

    2013-01-01

    This talk covers recent theoretical progress in exclusive semileptonic rare B-decays at low hadronic recoil. The efficient parametric suppression of the 1/mb corrections in this region provides opportunities to probe the Standard Model and beyond at precision level. Notably, angular analysis allows to simultaneously access electroweak flavor physics and hadronic matrix elements, the latter of which constitute the leading source of theoretical uncertainty. Ratios of B ->K* form factors can already be extracted from present data. A comparison with existing theoretical determinations by lattice QCD and light cone sum rules gives a consistent picture over the whole kinematic range. In the future improved analyses will advance our understanding of non-perturbative methods for QCD and of |Delta B|=1 transitions.

  14. Neutron absorbed dose determination by calculations of recoil energy.

    Science.gov (United States)

    Wrobel, F; Benabdesselam, M; Iacconi, P; Lapraz, D

    2004-01-01

    The aim of this work is to calculate the absorbed dose to matter due to neutrons in the 5-150 MeV energy range. Materials involved in the calculations are Al2O3, CaSO4 and CaS, which may be used as dosemeters and have already been studied for their luminescent properties. The absorbed dose is assumed to be mainly due to the energy deposited by the recoils. Elastic reactions are treated with the ECIS code while for the non-elastic ones, a Monte Carlo code has been developed and allowed to follow the nucleus decay and to determine its characteristics (nature and energy). Finally, the calculations show that the absorbed dose is mainly due to non-elastic process and that above 20 MeV this dose decreases slightly with the neutron energy. PMID:15353750

  15. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  16. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huajie [Princeton Univ., NJ (United States)

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  17. Enhancement of surface properties of SAE 1020 by chromium plasma immersion recoil implantation

    Science.gov (United States)

    Ueda, M.; Mello, C. B.; Beloto, A. F.; Rossi, J. O.; Reuther, H.

    2007-04-01

    SAE 1020 steel is commonly used as concrete reinforcement and small machine parts, but despite its good mechanical properties, as ductility, hardness and wear resistance, it is susceptible to severe corrosion. It is well known that chromium content above 12% in Fe alloys increases their corrosion resistance. In order to obtain this improvement, we studied the introduction of chromium atoms into the matrix of SAE 1020 steel by recoil implantation process using a plasma immersion ion implantation (PIII) system. Potentiodynamic scans showed that the presence of Cr film leads to a gain in the corrosion potential, from -650 mV to -400 mV. After PIII treatment, the corrosion potential increased further to -340 mV, but the corrosion current density presented no significant change. Vickers microhardness tests showed surface hardness increase of up to about 27% for the treated samples. Auger electron spectroscopy showed that, for a 30 nm film, Cr was introduced for about 20 nm into the steel matrix. Tribology tests, of pin-on-disk type, showed that friction coefficient of treated samples was reduced by about 50% and a change in wear mechanism, from adhesive to abrasive mode, occurred.

  18. A Novel method for modeling the recoil in W boson events at hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Abolins, Maris A.; /Michigan State U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Aguilo, Ernest; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, Mahsana; /Kansas State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    We present a new method for modeling the hadronic recoil in W {yields} {ell}{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z {yields} {ell}{ell} data events and overlaid on a simulated W {yields} {ell}{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

  19. Mass attenuation coefficient (μ/ρ), effective atomic number (Z{sub eff}) and measurement of x-ray energy spectra using based calcium phosphate biomaterials: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Z, M. A.; Da Silva, T. A.; Nogueira, M. S. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Goncalves Z, E., E-mail: madelon@cdtn.br [Pontifice Catholic University of Minas Gerais, Av. Dom Jose Gaspar 500, Belo Horizonte 30535-901, Minas Gerais (Brazil)

    2015-10-15

    In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Z{sub eff} of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Z{sub eff} using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)

  20. Nuclear recoil correction to the g factor of boron-like argon

    CERN Document Server

    Shchepetnov, Arseniy A; Volotka, Andrey V; Shabaev, Vladimir M; Tupitsyn, Ilya I; Plunien, Guenter

    2014-01-01

    The nuclear recoil effect to the g factor of boron-like ions is investigated. The one-photon-exchange correction to the nuclear recoil effect is calculated in the non-relativistic approximation for the nuclear recoil operator and in the Breit approximation for the interelectronic-interaction operator. The screening potential is employed to estimate the higher-order contributions. The updated g-factor values are presented for the ground 2P_1/2 and first excited 2P_3/2 states of B-like argon 40^Ar^13+, which are presently being measured by the ARTEMIS group at GSI.

  1. Improved measurement of the 'head-tail' effect in nuclear recoils

    Energy Technology Data Exchange (ETDEWEB)

    Dujmic, D; Fisher, P; Henderson, S; Kaboth, A; Kohse, G; Lanza, R; Monroe, J; Sciolla, G; Vanderspek, R; Yamamoto, R [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ahlen, S; Lewandowska, M; Roccaro, A; Tomita, H [Boston University, Boston, MA 02215 (United States); Skvorodnev, N; Wellenstein, H [Brandeis University, Waltham, MA 02454 (United States)], E-mail: ddujmic@mit.edu

    2008-07-15

    We present new results with a prototype detector that is being developed by the DMTPC collaboration for the measurement of the direction tag ('head-tail') of dark matter wind. We use neutrons from a {sup 252}Cf source to create low-momentum nuclear recoils in elastic scattering with the residual gas nuclei. The recoil track is imaged in low-pressure time-projection chamber with optical readout. We measure the ionization rate along the recoil trajectory, which allows us to determine the direction tag of the incoming neutrons.

  2. Use of thin collodion films to prevent recoil-ion contamination of alpha-spectrometry detectors

    International Nuclear Information System (INIS)

    Recoil ions from alpha-particle emission can contaminate surface-barrier detection systems. This contamination results in increased measurement uncertainty, and may require the replacement of expensive detectors. Disposable thin Collodion films are easily prepared and effectively retard the recoil ions when either directly applied to the surface of alpha-sources or as catcher foils between the source and the detector. The thin films are particularly effective for relatively low-level sources, but can sustain structural damage when exposed to high levels of recoil ions (tens of thousands per second) over extended periods of time. (author)

  3. A high density target of ultracold atoms and momentum resolved measurements of ion-atom collisions

    OpenAIRE

    Götz, Simone Andrea

    2012-01-01

    In this thesis an ultracold high density target with high loading flux in combination with a recoil ion momentum spectrometer (RIMS) is presented. Trapped rubidium atoms serve as a high density target (up to 10¹¹ atoms/cm³) at a temperature of only 200 µK. The target is loaded from a two-dimensional magneto-optical trap (2D MOT), which delivers an atom beam with a brilliance of 8 x 10¹² atoms/(s*rad) and a longitudinal momentum spread of 0.25 a.u.. The great advantage of this source is that t...

  4. Observation of atomic collisions in crystalline solids

    CERN Document Server

    Nelson, R S; Gevers, R

    2013-01-01

    The Observation of Atomic Collisions in Crystalline Solids presents a critical account of the more important experiments which have provided the basis for a better understanding of atomic collision phenomena in crystalline solids. Collisions have been divided into two artificial regimes; primary collisions which deal with the interaction of the incident particles with the solid, and secondary collisions which deal with those events which occur as a result of lattice atoms recoiling from primary encounters. Although the book is intended principally for the experimentalist some simple theoretica

  5. Automation of experiments at Dubna Gas-Filled Recoil Separator

    Science.gov (United States)

    Tsyganov, Yu. S.

    2016-01-01

    Approaches to solving the problems of automation of basic processes in long-term experiments in heavy ion beams of the Dubna Gas-Filled Recoil Separator (DGFRS) facility are considered. Approaches in the field of spectrometry, both of rare α decays of superheavy nuclei and those for constructing monitoring systems to provide accident-free experiment running with highly radioactive targets and recording basic parameters of experiment, are described. The specific features of Double Side Silicon Strip Detectors (DSSSDs) are considered, special attention is paid to the role of boundary effects of neighboring p-n transitions in the "active correlations" method. An example of an off-beam experiment attempting to observe Zeno effect is briefly considered. Basic examples for nuclear reactions of complete fusion at 48Ca ion beams of U-400 cyclotron (LNR, JINR) are given. A scenario of development of the "active correlations" method for the case of very high intensity beams of heavy ions at promising accelerators of LNR, JINR, is presented.

  6. Moving towards first science with the St. George recoil separator

    Science.gov (United States)

    Meisel, Zachary; Berg, G. P. A.; Gilardy, G.; Moran, M.; Schmitt, J.; Seymour, C.; Stech, E.; Couder, M.

    2015-10-01

    The St. George recoil mass separator has recently been coupled to the 5MV St. Ana accelerator at the University of Notre Dame's Nuclear Science Lab. St. George is a unique tool designed to measure radiative alpha-capture reactions for nuclei up to A = 40 in inverse kinematics in order to directly obtain cross sections required for astrophysical models of stellar and explosive helium burning. Commissioning of St. George is presently taking place with primary beams of hydrogen, helium, and oxygen. In this presentation, results will be shown for the measured energy acceptance of St. George, which compare favorably to COSY results when employing the calculated optimal ion-optical settings. Additionally, future plans will be discussed, such as assessing the angular acceptance of St. George and the re-integration of HiPPO at the separator target position to provide a dense, windowless helium gas-jet target. The material presented in this work is partially supported by the National Science Foundation Grant No. 1419765.

  7. First Measurement of Beam-Recoil Observables Cx and Cz

    Energy Technology Data Exchange (ETDEWEB)

    R. Bradford; R.A. Schumacher; G. Adams; M.J. Amaryan; P. Ambrozewicz; E. Anciant; M. Anghinolfi; B. Asavapibhop; G. Asryan; G. Audit; H. Avakian; H. Bagdasaryan; N. Baillie; J.P. Ball; N.A. Baltzell; S. Barrow; V. Batourine; M. Battaglieri; K. Beard; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; B.L. Berman; N. Bianchi; A.S. Biselli; B.E. Bonner; S. Bouchigny; S. Boiarinov; D. Branford; W.J. Briscoe; W.K. Brooks; S. B¨ultmann; V.D. Burkert; C. Butuceanu; J.R. Calarco; S.L. Careccia; D.S. Carman; B. Carnahan; S. Chen; P.L. Cole; A. Coleman; P. Collins; P. Coltharp; D. Cords; † P. Corvisiero; D. Crabb; H. Crannell; V. Crede; J.P. Cummings; R. De Masi; E. De Sanctis; R. De Vita; P.V. Degtyarenko; H. Denizli; L. Dennis; A. Deur; K.V. Dharmawardane; R. Dickson; C. Djalali; G.E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O.P. Dzyubak; H. Egiyan; ; K.S. Egiyan; L. El Fassi; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; G. Feldman; R.J. Feuerbach; T.A. Forest; H. Funsten; M. Garcon; G. Gavalian; ; G.P. Gilfoyle; K.L. Giovanetti; F.X. Girod; J.T. Goetz; A. Gonenc; R.W. Gothe; K.A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; K. Hafidi; H. Hakobyan; R.S. Hakobyan; J. Hardie; D. Heddle; F.W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C.E. Hyde-Wright; Y. Ilieva; D.G. Ireland; B.S. Ishkhanov; E.L. Isupov; M.M. Ito; D. Jenkins; H.S. Jo; K. Joo; H.G. Juengst; N. Kalantarians; J.D. Kellie; M. Khandaker; K.Y. Kim; K. Kim; W. Kim; A. Klein; F.J. Klein; M. Klusman; M. Kossov; L.H. Kramer; V. Kubarovsky; J. Kuhn; S.E. Kuhn; S.V. Kuleshov; J. Lachniet; J.M. Laget; J. Langheinrich; D. Lawrence; A.C.S. Lima; K. Livingston; H.Y. Lu; K. Lukashin; M. MacCormick; J.J. Manak; C. Marchand; N. Markov; S. McAleer; B. McKinnon; J.W.C. McNabb; B.A. Mecking; M.D. Mestayer; C.A. Meyer; T. Mibe; K. Mikhailov; M. Mirazita; R. Miskimen; V. Mokeev; K. Moriya; S.A. Morrow; M. Moteabbed; V. Muccifora; J. Mueller; G.S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; N. Natasha; S. Niccolai; G. Niculescu; I. Niculescu; B.B. Niczyporuk; M.R. Niroula; R.A. Niyazov; M. Nozar; G.V. O’Rielly; M. Osipenko; A.I. Ostrovidov; K. Park; E. Pasyuk; C. Paterson; S.A. Philips; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; I. Popa; S. Pozdniakov; B.M. Preedom; J.W. Price; Y. Prok; D. Protopopescu; L.M. Qin; B.P. Quinn; B.A. Raue; G. Riccardi; G. Ricco; M. Ripani; B.G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P.D. Rubin; F. Sabatie; J. Salamanca; C. Salgado; J.P. Santoro; ; V. Sapunenko; V.S. Serov; A. Shafi; Y.G. Sharabian; J. Shaw; N.V. Shvedunov; S. Simionatto; A.V. Skabelin; E.S. Smith; L.C. Smith; D.I. Sober; D. Sokhan; M. Spraker; A. Stavinsky; S.S. Stepanyan; S. Stepanyan; B.E. Stokes; P. Stoler; I.I. Strakovsky; S. Strauch; M. Taiuti; S. Taylor; D.J. Tedeschi; U. Thoma; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M.F. Vineyard; A.V. Vlassov; K. Wang; D.P. Watts; L.B. Weinstein; H. Weller; D.P. Weygand; M. Williams; E. Wolin; M.H. Wood; A. Yegneswaran; J. Yun; L. Zana; J. Zhang; B. Zhao; and Z.W. Zhao

    2007-03-01

    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\\vec\\gamma + p \\to K^+ + \\vec\\Lambda$ and $\\vec\\gamma + p \\to K^+ + \\vec\\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\\cos\\theta_{K^+}^{c.m.}< +0.95$. For the $\\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\\it total} $\\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

  8. Superconducting Nuclear Recoil Sensor for Directional Dark Matter Detection

    Science.gov (United States)

    Junghans, Ann; Baldwin, Kevin; Hehlen, Markus; Lafler, Randy; Loomba, Dinesh; Phan, Nguyen; Weisse-Bernstein, Nina

    The Universe consists of 72% dark energy, 23% dark matter and only 5% of ordinary matter. One of the greatest challenges of the scientific community is to understand the nature of dark matter. Current models suggest that dark matter is made up of slowly moving, weakly interacting massive particles (WIMPs). But detecting WIMPs is challenging, as their expected signals are small and rare compared to the large background that can mimic the signal. The largest and most robust unique signature that sets them apart from other particles is the day-night variation of the directionality of dark matter on Earth. This modulation could be observed with a direction-sensitive detector and hence, would provide an unambiguous signature for the galactic origin of WIMPs. There are many studies underway to attempt to detect WIMPs both directly and indirectly, but solid-state WIMP detectors are widely unexplored although they would present many advantages to prevalent detectors that use large volumes of low pressure gas. We present first results of a novel multi-layered architecture, in which WIMPs would interact primarily with solid layers to produce nuclear recoils that then induce measureable voltage pulses in adjacent superconductor layers. This work was supported by the U.S. Department of Energy through the LANL Laboratory Directed Research and Development Program.

  9. Multiphoton ionization of atoms

    International Nuclear Information System (INIS)

    The paper is devoted to the analysis of high intensity effects which result from multiphoton ionization of atoms in a high laser intensity, ranging from 1010 to 1015 W cm-2. Resonant multiphoton ionization of atoms, the production of multiply charged ions, and electron energy spectra, are all discussed. (U.K.)

  10. About the importance of the nuclear recoil in \\alpha emission near the DNA

    CERN Document Server

    Rizzini, E Lodi; Corradini, M; Leali, M; Mascagna, V; Venturelli, L; Zurlo, N

    2011-01-01

    The effect of the energy deposition inside the human body made by radioactive substances is discussed. For the first time, we stress the importance of the recoiling nucleus in such reactions, particularly concerning the damage caused on the DNA structure.

  11. MIMAC low energy electron-recoil discrimination measured with fast neutrons

    CERN Document Server

    Riffard, Q; Guillaudin, O; Bosson, G; Bourrion, O; Bouvier, J; Descombes, T; Muraz, J -F; Lebreton, L; Maire, D; Colas, P; Giomataris, I; Busto, J; Fouchez, D; Brunner, J; Tao, C

    2016-01-01

    MIMAC (MIcro-TPC MAtrix of Chambers) is a directional WIMP Dark Matter detector project. Direct dark matter experiments need a high level of electron/recoil discrimination to search for nuclear recoils produced by WIMP-nucleus elastic scattering. In this paper, we proposed an original method for electron event rejection based on a multivariate analysis applied to experimental data acquired using monochromatic neutron fields. This analysis shows that a $10^{5}$ rejection power is reachable for electron/recoil discrimination. Moreover, the efficiency was estimated by a Monte-Carlo simulation showing that a $10^{5}$ electron rejection power is reached with a 85.1\\% nuclear recoil efficiency using the same detector gain that on the detectors running at Modane.

  12. Karakteristike trzanja elektromagnetskog topa / Recoil characteristics of an electromagnetic rail gun

    Directory of Open Access Journals (Sweden)

    Zoran B. Ristić

    2009-10-01

    Full Text Available U radu je razmatrano trzanje elektromagnetskog šinskog topa i upoređeno sa trzanjem konvencionalnog topa sa barutnim punjenjem. Zaključuje se da je kod elektromagnetskog topa trzanje manje nego kod topa sa barutnim punjenjem. Takođe, pokazano je da pri istim uslovima lansiranja upotreba gasne kočnice topa sa barutnim punjenjem može izmeniti karakteristike trzanja i više ih približiti ponašanju elektromagnetskog topa. / In this paper the electromagnetic rail gun recoil is discussed and compared with the recoil of a conventional, propellant gas driven gun. It is shown that, under similar launch conditions, the recoil of an electromagnetic gun is weaker than that of the powder-driven gun. The use of a muzzle brake on a powder-driven gun can alter its recoil characteristics and make its behavior closer to that of the electromagnetic rail gun.

  13. Acute stent recoil in the left main coronary artery treated with additional stenting.

    Science.gov (United States)

    Battikh, Kais; Rihani, Riadh; Lemahieu, Jean Michel

    2003-01-01

    We report a case of acute stent recoil occurring after the stenting of an ostial left main coronary artery lesion. The marked recoil after high-pressure balloon inflation confirmed that the radial force of the first stent was unable to ensure vessel patency. The addition of a second stent provided the necessary support to achieve a good final result. This case illustrates a possible complication of aorto-ostial angioplasty that could be treated with double stenting. PMID:12499528

  14. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    International Nuclear Information System (INIS)

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs

  15. As-Al recoil implantation through Si 3N 4 barrier layer

    Science.gov (United States)

    Godignon, P.; Morvan, E.; Montserrat, J.; Jordà, X.; Flores, D.; Rebollo, J.

    1999-01-01

    Al recoil implantation have been shown to be a possible alternative to direct Al ion implantation to avoid usual problems linked with Al sources. Poor efficiency of the recoil + annealing process is observed if no barrier or an oxyde screen layers are used. This problem can be solved using a Si 3N 4 screen layer. Then, P-N and N +/P/N structures can be obtained with deep low doped P-well with reduced thermal budget.

  16. As-Al recoil implantation through Si3N4 barrier layer

    International Nuclear Information System (INIS)

    Al recoil implantation have been shown to be a possible alternative to direct Al ion implantation to avoid usual problems linked with Al sources. Poor efficiency of the recoil + annealing process is observed if no barrier or an oxyde screen layers are used. This problem can be solved using a Si3N4 screen layer. Then, P-N and N+/P/N structures can be obtained with deep low doped P-well with reduced thermal budget

  17. First analysis of hard exclusive data using the HERMES recoil scintillating fiber tracker

    Energy Technology Data Exchange (ETDEWEB)

    Keri, Tibor; Dueren, Michael; Perez-Benito, Roberto Francisco; Yu, Weilin [II.Physikalisches Institut, Justus-Liebig-Universitaet, Giessen (Germany)

    2008-07-01

    The HERMES experiment was upgraded by a recoil detector that contains a scintillating fiber tracker in order to measure recoiling protons and pions with low momentum and at large polar angle. The upgrade improves the event selections of hard-exclusive processes and helps to access Generalized Parton Distributions. Preliminary studies to extract single spin asymmetries of DVCS processes were carried out and first results are presented.

  18. Investigation on modeling and controability of a magnetorheological gun recoil damper

    Science.gov (United States)

    Hu, Hongsheng; Wang, Juan; Wang, Jiong; Qian, Suxiang; Li, Yancheng

    2009-07-01

    Magnetorheological (MR) fluid as a new smart material has done well in the vibration and impact control engineering fields because of its good electromechanical coupling characteristics, preferable dynamic performance and higher sensitivity. And success of MRF has been apparent in many engineering applied fields, such as semi-active suspension, civil engineering, etc. So far, little research has been done about MR damper applied into the weapon system. Its primary purpose of this study is to identify its dynamic performance and controability of the artillery recoil mechanism equipped with MR damper. Firstly, based on the traditional artillery recoil mechanism, a recoil dynamic model is developed in order to obtain an ideal rule between recoil force and its stroke. Then, its effects of recoil resistance on the stability and firing accuracy of artillery are explored. Because MR gun recoil damper under high impact load shows a typical nonlinear character and there exists a shear-thinning phenomenon, to establish an accurate dynamic model has been a seeking aim of its design and application for MR damper under high impact load. Secondly, in this paper, considering its actual bearing load, an inertia factor was introduced to Herschel-Bulkley model, and some factor's effect on damping force are simulated and analyzed by using numerical simulation, including its dynamic performance under different flow coefficients and input currents. Finally, both of tests with the fixed current and different On-Off control algorithms have been done to confirm its controability of MR gun recoil damper under high impact load. Experimental results show its dynamic performances of the large-scale single-ended MR gun recoil damper can be changed by altering the applied currents and it has a good controllability.

  19. High-purity germanium detector ionization pulse shapes of nuclear recoils, gamma interactions and microphonism

    OpenAIRE

    Baudis, L.; Hellmig, J.; Klapdor-Kleingrothaus, H. V.; Ramachers, Y.; Hammer, J. W.; Mayer, A.

    1999-01-01

    Nuclear recoil measurements with high-purity Germanium detectors are very promising to directly detect dark matter candidates. The main background sources in such experiments are natural radioactivity and microphonic noise. Digital pulse shape analysis is an encouraging approach to reduce the background originating from the latter. To study the pulse shapes of nuclear recoil events we performed a neutron scattering experiment, which covered the ionization energy range from 20 to 80 keV. We ha...

  20. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Bouanani, M.E.; Persson, L.; Hult, M.; Jonsson, P.; Johnston, P.N. [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M. [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M.; Zaring, C. [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P.N.; Bubb, I.F.; Walker, B.R.; Stannard, W.B. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  1. Electron scattering from Xe: the relation between the differential elastic cross section and shape and intensity of the energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.a [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia)

    2010-11-14

    The measurement of the energy loss spectra of energetic electrons scattered from Xe over large angles is reported. The incoming energy was chosen between 600 eV and 1550 eV. The calculated Xe elastic scattering cross section has a sharp minimum for 750 eV electrons near 135{sup 0}. This minimum is confirmed by studying a Xe-H{sub 2} mixture and separating their elastic peak based on the recoil effect. The energy loss part of the Xe spectra is rich in structure. Surprisingly the shape and intensity (relative to the elastic peak) changes dramatically if one approaches the scattering conditions for which the elastic cross section has a minimum. These observations are rationalized by describing the inelastic intensity semi-classically, as a consequence of a two-step process occurring at the same atom involving scattering from the nucleus and an electronic excitation. The change in shape of the loss spectra is attributed to a large increase in relative intensity of the dipole-forbidden transitions near sharp minima in the elastic cross section.

  2. Comparison between measured and calculated neutron spectra in FCA assemblies

    International Nuclear Information System (INIS)

    The neutron spectra measured in FCA Assembly VI-2, VI-1 and V-2 are discussed, and are compared with the results by calculation. The data were obtained by measurements of proton-recoil counter and double scintillator methods. Calculations were made with cell-program SP-2000 and fine-group cross section library AGRI/2, and the spectra with 1950 groups and broadened 64 and 26 group were derived. The measured spectra in the energy range of 5 keV to 6 MeV were effectively compared with the calculational results, by using C/E values. There are large differences between the measured and the calculated spectra near the 430 keV oxygen and 29 keV iron resonances. The experimental and the calculated central fission rate ratios were also compared. (author)

  3. Recoil-free gamma resonant absorption in 57 Fe nuclei in the presence of strong microwave field

    International Nuclear Information System (INIS)

    The growing interest paid to the multiphoton nuclear transitions in the last twenty years is due in part to the promising applications of these phenomena in the nuclear spectroscopy. The exciting possibility to compensate the nuclear recoil by the intense beams of photons of corresponding frequency was noted since 1975 and the absorption cross section of the multiphoton process was evaluated in some particular cases. In this paper a test of the multiphoton model is performed in an experiment of recoil-free 14.14 keV γ-ray resonant absorption in a thin absorber of potassium trioxalatoferrate exposed to a pulsed 1 Mw microwave field with the frequency of 3 GHz, the pulse width of 1 μs and the pulse train frequency of 222 Hz. The single line absorber, enriched in 57 Fe, in powder form, was uniformly pasted by silicon grease on a teflon support making an angle of 45 angle toward the reciprocally perpendicular direction of the γ beam and guided field propagation. The absorption spectra were recorded by a 1 μs linear gate, using a conventional constant acceleration Moessbauer transmission spectrometer and a moving 57 Co (Cu) γ source. Two velocity scales of 30 cm/s and of 10 mm/s were used to looking for the first order sidebands corresponding to the 3 GHz and to examine the microwave perturbation of the parent resonance. A careful computer analysis has shown a clear decrease of the area ratio for the un-shifted line without a sensitive change in the Γ value of the half linewidth. Any acoustic or strange rf effects were avoided by the proper choice of the absorber. Also, any possible thermal effect was eliminated by supplementary temperature dependence measurements on the sample. Thus, a multiphoton nature can be attributed to the observed microwave perturbation. (authors)

  4. Detection of exclusive reactions in the Hermes Recoil Fiber Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Keri, Tibor

    2008-08-15

    the RD (Recoil Detector) with an unpolarized target at this position. This detector consists of the Silicon Strip Detector, the SFT (Scintillating Fiber Tracker), the Photon Detector and is surrounded by a 1T superconducting magnet. It provides several space points for tracking and thus momentum reconstruction. The energy deposition in the various detectors is used to achieve particle identification. The main part of the thesis work was the implementation of the SFT and the RD readout system. Before the installation of the RD a series of test runs were carried out to proof the concept of the detector, to measure the internal alignment and to prepare the installation. These test runs for the SFT are described and major results are shown. Furthermore a preliminary analysis of the latest data 06d/06d0 was carried out to show the performance of the installed Recoil Detector in combination with the HERMES forward spectrometer. (orig.)

  5. Reactions of charged and neutral recoil particles following nuclear transformations

    International Nuclear Information System (INIS)

    The status of the following programs is reported: study of the stereochemistry of halogen atom or ion reactions produced via (eta,γ) or (IT) nuclear reactions with diastereomeric molecules; study of nuclear decay induced reactions of halogen species with organic compounds in the gas phase; decay-induced labelling of compounds of biochemical interest; energetics and mechanisms involved in the reactions of highly energetic carbon-11 atoms with simple organic molecules; and chemistry of the positronium. (LK)

  6. Influence of atom-photon correlations on atom-atom entanglement

    CERN Document Server

    Lastra, F

    2009-01-01

    The electronic entanglement between two atoms is obtained including the effects of photon recoil, for the case when quantum dispersion can be neglected during the atomic excited-state lifetime. Different from previous treatments using common or statistically independent reservoirs, a continuous transition between these limits is observed, that depends on the inter-atomic distance and degree of localization. The occurance of entanglement sudden death and birth as predicted by the presented Wigner-Weisskopf theory deviates from previous results using master equations in Born-Markov approximation. Moreover, the creation of a dark state is predicted, which manifests itself by a stationary entanglement that even may be created from an initially separable state.

  7. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); University of Chinese Academy of Sciences, Beijing (China); Bechstedt, U.; Gillitzer, A.; Grzonka, D.; Lehrach, A.; Prasuhn, D.; Sefzick, T.; Stockmanns, T.; Xu, H. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Khoukaz, A.; Taeschner, A. [Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Klehr, F.; Wuestner, P. [Elektronik und Analytik, Forschungszentrum Juelich, Zentralinstitut fuer Engineering, Juelich (Germany); Ritman, J. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Ruhr-Universitaet Bochum, Bochum (Germany)

    2014-10-15

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to 90 {sup circle} are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment. (orig.)

  8. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90°

    Science.gov (United States)

    Hu, Q.; Bechstedt, U.; Gillitzer, A.; Grzonka, D.; Khoukaz, A.; Klehr, F.; Lehrach, A.; Prasuhn, D.; Ritman, J.; Sefzick, T.; Stockmanns, T.; Täschner, A.; Wuestner, P.; Xu, H.

    2014-10-01

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment.

  9. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90$^{\\circ}$

    CERN Document Server

    Hu, Q; Gillitzer, A; Grzonka, D; Khoukaz, A; Klehr, F; Lehrach, A; Prasuhn, D; Ritman, J; Sefzick, T; Stockmann, T; Täschner, A; Wuestner, P; Xu, H

    2014-01-01

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to 90$^{\\circ}$ are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment.

  10. On the M\\"ossbauer effect and the rigid recoil question

    CERN Document Server

    Davidson, Mark

    2016-01-01

    Various theories for the M\\"ossbauer rigid-recoil effect, which enables a crystal to absorb momentum but not appreciable energy, are compared. These suggest that the recoil may not be instantaneous, and that the recoil time could be used to distinguish between them. An experiment is proposed to measure this time. The idea is to use a small sphere whose outer surface is coated with an electrically charged M\\"ossbauer-active element, and then to measure the amount of energy lost due to Bremmsstrahlung during the recoil of this sphere when a M\\"ossbauer event occurs. As the energy radiated is proportional to the square of the acceleration from Larmor's formula, the amount of energy so radiated varies inversely proportional to the recoil time, and proportional to the charge squared. Although this energy is quite small, it can in principle be measured with the extreme sensitivity available in M\\"ossbauer experiments. It is found that the most information would be gained with more long-lived isomers such as Rhodium...

  11. Nuclear effects in atomic transitions

    CERN Document Server

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.

  12. First measurement of nuclear recoil head-tail sense in a fiducialised WIMP dark matter detector

    CERN Document Server

    Battat, J B R; Ezeribe, A C; Gauvreau, J -L; Harton, J L; Lafler, R; Lee, E R; Loomba, D; Lumnah, A; Miller, E H; Mouton, F; Murphy, A StJ; Paling, S M; Phan, N S; Robinson, M; Sadler, S W; Scarff, A; Schuckman, F G; Snowden-Ifft, D P; Spooner, N J C

    2016-01-01

    Recent computational results suggest that directional dark matter detectors have potential to probe for WIMP dark matter particles below the neutrino floor. The DRIFT-IId detector used in this work is a leading directional WIMP search time projection chamber detector. We report the first measurements of the detection of the directional nuclear recoils in a fully fiducialised low-pressure time projection chamber. In this new operational mode, the distance between each event vertex and the readout plane is determined by the measurement of minority carriers produced by adding a small amount of oxygen to the nominal CS$_{2}$ + CF$_{4}$ target gas mixture. The CS$_2$ + CF$_4$ + O$_2$ mixture has been shown to enable background-free operation at current sensitivities. Sulfur, fluorine, and carbon recoils were generated using neutrons emitted from a $^{252}$Cf source positioned at different locations around the detector. Measurement of the relative energy loss along the recoil tracks allowed the track vector sense, ...

  13. Observation of the 'head-tail' effect in nuclear recoils of low-energy neutrons

    CERN Document Server

    Dujmic, D; Lewandowska, M; Ahlen, S; Fisher, P; Kaboth, A; Kohse, G; Lanza, R; Monroe, J; Roccaro, A; Sciolla, G; Skvorodnev, N; Vanderspek, R; Wellenstein, H; Yamamoto, R

    2008-01-01

    The current experimental techniques may be inadequate to provide unambiguous positive signals as the limits on direct searches for dark matter improve. Thus, convincing evidence for dark matter particles may be possible only by detecting the direction of the incoming particles in the presence of background. We present in this article an experimental method to determine the direction and sense ('head-tail') of dark matter wind by measuring the direction of the elastic nuclear recoils in the scattering of dark matter particles with the detector material. We measure the direction and sense of the nuclear recoils created by the scattering of low-energy neutrons with CF4 in a low-pressure time-projection chamber as a demonstration. The decreasing stopping power along the recoil trajectory allows us to detect the sense and direction of the incoming neutrons, and proves that the 'head-tail' effect can be measured.

  14. Experimental Concept for a Precision Measurement of Nuclear Recoil Ionization Yields for Low Mass WIMP Searches

    Science.gov (United States)

    Saab, T.; Figueroa-Feliciano, E.

    2016-07-01

    Understanding the response of dark matter detectors at the lowest recoil energies is important for correctly interpreting data from current experiments or predicting the sensitivity of future experiments to low mass weakly interacting massive particles. In particular, the ionization yield is essential for determining the correct recoil energy of candidate nuclear recoil events; however, few measurements in cryogenic crystals exist below 1 keV. Using the voltage-assisted calorimetric ionization detection technique with a mono-energetic neutron source, we show that it is possible to determine the ionization yield in cryogenic crystals down to an energy to 100 eV. This measurement will also determine the statistics of ionization production at these low energies.

  15. The HERMES recoil detector. Particle identification and determination of detector efficiency of the scintillating fiber tracker

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xianguo

    2009-11-15

    HERMES is a fixed target experiment using the HERA 27.6 GeV polarized electron/positron beams. With the polarized beams and its gas targets, which can be highly polarized, HERMES is dedicated to study the nucleon spin structure. One of its current physics programs is to measure deeply virtual Compton scattering (DVCS). In order to detect the recoiling proton the Recoil Detector was installed in the target region in the winter of 2005, taking data until the HERA-shutdown in the summer of 2007. The Recoil Detector measured energy loss of the traversing particles with its sub-detectors, including the silicon strip detector and the scintillating fiber tracker. This enables particle identification for protons and pions. In this work a systematic particle identification procedure is developed, whose performance is quantified. Another aspect of this work is the determination of the detector efficiency of the scintillating fiber tracker. (orig.)

  16. Searching for universal behaviour in superheated droplet detector with effective recoil nuclei

    Indian Academy of Sciences (India)

    Mala Das; Susnata Seth

    2013-06-01

    Energy calibration of superheated droplet detector is discussed in terms of the effective recoil nucleus threshold energy and the reduced superheat. This provides a universal energy calibration curve valid for different liquids used in this type of detector. Two widely used liquids, R114 and C4F10, one for neutron detection and the other for weakly interacting massive particles (WIMPs) dark matter search experiment, have been compared. Liquid having recoil nuclei with larger values of linear energy transfer (LET) provides better neutron- discrimination. Gamma () response of C4F10 has also been studied and the results are discussed. Behaviour of nucleation parameter with the effective recoil nucleus threshold energy and the reduced superheat have been explored.

  17. Measurements of LET spectra and comparison to models.

    Science.gov (United States)

    Wiegel, B; Heinrich, W; Benton, E V; Frank, A

    1992-01-01

    We present measurements of LET spectra for near earth orbits with various inclinations and altitudes. A comparison with calculated LET spectra shows that the contribution from direct ionizing galactic cosmic rays is well described by the models. An additional contribution to the spectra originates from stopping protons and from nuclear interactions of particles with material. In the case of an interaction a large amount of energy is deposited in a small volume by target recoils or target fragments. These events will be called short range (SR) events. For a low inclination orbit radiation belt protons are the main source of these events while galactic protons become more important when increasing the inclination to near polar orbits. We show that the contribution of SR events for orbits with low altitude (324 km) and 57 degrees inclination is comparable to that for an orbit with 28 degrees inclination at a high altitude (510 km). PMID:11537028

  18. Atomic Data: Division B / Commission 14 / Working Group Atomic Data

    CERN Document Server

    Nave, Gillian; Zhao, Gang

    2015-01-01

    This report summarizes laboratory measurements of atomic wavelengths, energy levels, hyperfine and isotope structure, energy level lifetimes, and oscillator strengths. Theoretical calculations of lifetimes and oscillator strengths are also included. The bibliography is limited to species of astrophysical interest. Compilations of atomic data and internet databases are also included. Papers are listed in the bibliography in alphabetical order, with a reference number in the text. Comprehensive lists of references for atomic spectra can be found in the NIST Atomic Spectra Bibliographic Databases http://physics.nist.gov/asbib.

  19. Spectrum of recoil nucleons in quasi-elastic neutrino-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Juszczak, C.; Nowak, J.A.; Sobczyk, J.T. [Wroclaw University, Institute of Theoretical Physics, Wroclaw (Poland)

    2005-02-01

    We have analyzed the consequences of introducing the local density approximation combined with an effective nuclear momentum-dependent potential into the CC quasi-elastic neutrino-nucleus scattering. We note that the distribution of recoil nucleons momenta becomes smooth for low momentum values and the sharp threshold is removed. Our results may be relevant for Sci-Fi detector analysis of K2K experiments. The total amount of observed recoil protons is reduced because some of them remain bound inside the nucleus. We compare theoretical predictions for a probability of such events with the results given by NUX+FLUKA MC simulations. (orig.)

  20. A new recoil distance technique using low energy coulomb excitation in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Rother, W., E-mail: wolfram.rother@googlemail.com [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others

    2011-10-21

    We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.

  1. As-Al recoil implantation through Si{sub 3}N{sub 4} barrier layer

    Energy Technology Data Exchange (ETDEWEB)

    Godignon, P. E-mail: philippe@cnm.es; Morvan, E.; Montserrat, J.; Jorda, X.; Flores, D.; Rebollo, J

    1999-01-01

    Al recoil implantation have been shown to be a possible alternative to direct Al ion implantation to avoid usual problems linked with Al sources. Poor efficiency of the recoil + annealing process is observed if no barrier or an oxyde screen layers are used. This problem can be solved using a Si{sub 3}N{sub 4} screen layer. Then, P-N and N{sup +}/P/N structures can be obtained with deep low doped P-well with reduced thermal budget.

  2. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    CERN Document Server

    Wei, W -Z; Mei, D -M

    2016-01-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  3. Deeply-virtual Compton scattering measured with the recoil detector at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Brodski, Irina [II. Physikalisches Institut, JLU, Giessen (Germany); Collaboration: HERMES-Collaboration

    2011-07-01

    The HERMES experiment at DESY was originally designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. By adding a recoil detector, Hermes is able to measure recoiling protons and backward pions and thus is able to measure the complete kinematics of certain exclusive reactions. One of the most interesting exclusive reactions is Deeply-virtual Compton scattering, as it gives a direct access to certain Generalized Parton Distributions (GPDs) of the nucleon. This talk reports on recent measurements of spin and charge asymmetries of DVCS processes at HERMES.

  4. Finite nuclear size corrections to the recoil effect in hydrogenlike ions

    CERN Document Server

    Aleksandrov, I A; Glazov, D A; Shabaev, V M

    2014-01-01

    The finite nuclear size corrections to the relativistic recoil effect in H-like ions are calculated within the Breit approximation. The calculations are performed for the $1s$, $2s$, and $2p_{1/2}$ states in the range $Z =$ 1-110. The obtained results are compared with previous evaluations of this effect. It is found that for heavy ions the previously neglected corrections amount to about 20% of the total nuclear size contribution to the recoil effect calculated within the Breit approximation.

  5. Hamiltonian chaos with a cold atom in an optical lattice

    CERN Document Server

    Prants, S V

    2012-01-01

    We consider a basic model of the lossless interaction between a moving two-level atom and a standing-wave single-mode laser field. Classical treatment of the translational atomic motion provides the semiclassical Hamilton-Schrodinger equations which are a 5D nonlinear dynamical system with two integrals of motion. The atomic dynamics can be regular or chaotic in dependence on values of the control parameters, the atom-field detuning and recoil frequency. We develop a semiclassical theory of the chaotic atomic transport in terms of a random walk of the atomic electric dipole moment $u$. Based on a jump-like behavior of this variable for atoms crossing nodes of the standing wave, we construct a stochastic map that specifies the center-of-mass motion. We find the relations between the detuning, recoil frequency and the atomic energy, under which atoms may move in a optical lattice in a chaotic way. We obtain the analytical conditions under which deterministic atomic transport has fractal properties and explain a...

  6. Absolute total cross sections for the scattering of 2--18-eV electrons by cesium atoms

    International Nuclear Information System (INIS)

    Absolute total cross sections for the scattering of electrons by cesium atoms between 2 and 18 eV have been measured using the atomic-recoil technique in the scattering-out mode. Our results are somewhat lower than those of Visconti, Slevin, and Rubin [Phys. Rev. A 3, 1310 (1971)] above 2 eV

  7. Absolute total cross sections for the scattering of 2--18-eV electrons by cesium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Jaduszliwer, B.; Chan, Y.C. (Electronics Technology Center, The Aerospace Corporation, P. O. Box 92957, Los Angeles, California 90009 (United States))

    1992-01-01

    Absolute total cross sections for the scattering of electrons by cesium atoms between 2 and 18 eV have been measured using the atomic-recoil technique in the scattering-out mode. Our results are somewhat lower than those of Visconti, Slevin, and Rubin (Phys. Rev. A 3, 1310 (1971)) above 2 eV.

  8. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions

    International Nuclear Information System (INIS)

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m(π-) = (139.571042 ± 0.000210 ± 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV

  9. Bloch oscillations of ultracold atoms and measurement of the fine structure constant; Oscillations de Bloch d'atomes ultrafroids et mesure de la constante de structure fine

    Energy Technology Data Exchange (ETDEWEB)

    Clade, P

    2005-10-15

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10{sup -9}, in conjunction with a careful study of systematic effects (5 10{sup -9}), has led us to a determination of alpha with an uncertainty of 6.7 10{sup -9}: {alpha}{sup -1}(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  10. Atomic physics with highly charged ions. Progress report, 15 February 1985-14 February 1986

    International Nuclear Information System (INIS)

    The experimental program has three directions: the study of collisions of very low velocity, highly-charged secondary recoil ions with stationary gas atoms, the study of collisions of high velocity, highly-charged ions with stationary targets, and the study of the theoretical descriptions of atomic collisions and atomic structure properties of highly-charged ions. Brief reports of the progress in these areas are given

  11. An experiment on multibubble sonoluminescence spectra in sodium chloride solution

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhan; XU JunFeng; HUANG Wei; CHEN WeiZhong; MIAO GuoQing

    2008-01-01

    We investigated experimentally the spectra of MBSL in sodium chloride water solution with krypton as dissolved gas. We observed and compared the spectra of hydroxyl ion at 310 nm and that of sodium atom at 589 nm. It has been found that under the same experimental condition, the intensity of sodium atom spectra is obviously higher than that of the hydroxyl ion spectra, and is more sensitive to the experimental condition. The krypton content, the concentration of sodium chloride solution, and the driving sound pressure obviously affect the spectra intensity in certain range.

  12. Excitation of atoms and molecules in collisions with fast, highly charged ions

    International Nuclear Information System (INIS)

    This paper discusses the following topics: charge distributions for Ar recoil-ions produced in one- and two-electron capture collisions by Oq+ projectiles; charge distributions of He, Ne, and Ar recoil-ions produced in collisions with 10 to 30 MeV/u N7+ ions; studies of recoil ions produced in collisions of 40 MeV Ar13+ with atomic and molecular targets; two-fragment coincidence studies of molecular dissociation induced by heavy ion collisions; resonant electron transfer to double K-vacancy states in oxygen compounds; quenching of metastable states in fast Mg projectiles; and design and construction of an atomic physics beamline for the ECR ion source

  13. Kinematically Identified Recoiling Supermassive Black Hole Candidates in SDSS QSOs with z $<$ 0.25

    CERN Document Server

    Kim, D -C; Stierwalt, S; Privon, G C

    2016-01-01

    We have performed a spectral decomposition to search for recoiling supermassive black holes (rSMBH) in the SDSS QSOs with $z<0.25$. Out of 1271 QSOs, we have identified 26 rSMBH candidates that are recoiling toward us. The projected recoil velocities range from $-76\\ \\kms$ to $-307\\ \\kms$ with a mean of $-149\\pm58\\ \\kms$. Most of the rSMBH candidates are hosted by gas-rich LIRGs/ULIRGs, but only 23\\% of them shows signs of tidal features suggesting majority of them are advanced mergers. We find that the black hole masses $M_{BH}$ of the rSMBH candidates are on average $\\sim$5 times smaller than that of their stationary counterparts and cause a scatter in $M_{BH}-\\sigma_*$ relation. The Eddington ratios of all of the rSMBH candidates are larger than 0.1, with mean of 0.52$\\pm$0.27, suggesting they are actively accreting mass. Velocity shifts in high-excitation coronal lines suggest that the rSMBH candidates are recoiling with an average velocity of about $-265\\ \\kms$. Electron density in the narrow line reg...

  14. Helium concentration in tungsten nano-tendril surface morphology using Elastic Recoil Detection

    NARCIS (Netherlands)

    Woller, K.B.; Whyte, D. G.; Wright, G. M.; Doerner, R. P.; De Temmerman, G.

    2013-01-01

    Helium (He) concentrations in tungsten nano-tendrils (W fuzz) have been measured for the first time using Elastic Recoil Detection (ERD). Fuzzy and non-fuzzy W surfaces were analyzed in order to illuminate the role of He in the transition in surface morphologies. Samples grown in the PISCES-A and PI

  15. Detection of low momentum protons with the new HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Vilardi, Ignazio

    2008-10-15

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the {delta}{sup +} background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  16. Detection of low momentum protons with the new HERMES recoil detector

    International Nuclear Information System (INIS)

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the Δ+ background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  17. Electrochemical etching amplification of low-let recoil particle tracks in polymers for fast neutron dosimetry

    International Nuclear Information System (INIS)

    An electrochemical etching method for the amplification of fast-neutron-induced recoil particle tracks in polymers was investigated. The technique gave superior results over those obtained by conventional etching methods especially when polycarbonate foils were used for recoil particle track amplification. Electrochemical etching systems capable of multi-foil processing were designed and constructed to demonstrate the feasibility of the techniques for large-scale neutron dosimetry. Electrochemical etching parameters were studied including the nature or type of the polymer foil used, foil thickness and its effect on etching time, the applied voltage and its frequency, the chemical composition, concentration, and temperature of the etchant, distance and angle between the electrodes, and the type of particles such as recoil particles including protons. Recoil particle track density, mean track diameter, and optical density as functions of the mentioned parameters were determined. Each parameter was found to have a distinct effect on the etching results in terms of the measured responses. Several new characteristics of this fast neutron dosimetry method were studied especially for personnel dosimetry using various radiation sources such as nuclear reactors, medical cyclotrons, and isotopic neutron sources. The dose range, neutron energy dependence, directional response, fading characteristics, neutron threshold energy, etc. were investigated

  18. Investigation of a gas-catcher/ion guide system using alpha-decay recoil products

    Energy Technology Data Exchange (ETDEWEB)

    Peraejaervi, K. E-mail: kari.perajarvi@phys.jyu.fi; Huikari, J.; Rinta-Antila, S.; Dendooven, P

    2002-04-22

    {sup 219}Rn recoils from the alpha decay of {sup 223}Ra have been used to study the efficiency and delay time distributions of a gas-catcher/ion guide system. Ions with charge states up to +4 were coming out of the gas cell. Combining efficiency and delay time measurements, ion survival times in plasma free conditions can be deduced.

  19. Response of the XENON100 dark matter detector to nuclear recoils

    NARCIS (Netherlands)

    E. Aprile; M. Alfonsi; . et al; A.P. Colijn; M.P. Decowski

    2013-01-01

    Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso, Italy are presented. Data from measurements with an external AmBe241 neutron source are compared with a detailed Monte Carlo simulation which is used to

  20. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Fallows, Scott Mathew [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  1. Search for event rate modulation in XENON100 electronic recoil data

    NARCIS (Netherlands)

    E. Aprile; . et al; J. Aalbers; M. Alfons; P.A. Breur; A. Brown; A.P. Colijn; M.P. Decowski; A. Tiseni; C. Tunnell

    2015-01-01

    We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its ba

  2. Exclusive {rho}{sup 0} production measured with the HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Perez Benito, Roberto Francisco

    2010-12-15

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  3. Optical molasses: The coldest atoms ever

    International Nuclear Information System (INIS)

    Optical molasses is a three-dimensional (3-D) configuration of laser beams used to laser-cool and to viscously confine neutral atoms. Atoms laser cooled in optical molasses reach temperatures much lower than the limit given by the original theories of laser cooling based on the Doppler effect. This cooling below the Doppler-cooling limit is now seen as being due to new laser cooling mechanisms not considered in the original theories. The dependence of the atomic temperature on parameters such as laser intensity and detuning shows good agreement between calculations performed in 1-D and experiments performed in 3-D. For cooling of Na and Cs atoms, the lowest observed temperatures correspond to rms velocities between three and four times the single photon recoil velocity. For Cs the temperature is 2.5±0.6 μK and is the lowest temperature ever measured for 3-D cooling. (orig.)

  4. Bloch oscillations of ultracold atoms and measurement of the fine structure constant

    International Nuclear Information System (INIS)

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10-9, in conjunction with a careful study of systematic effects (5 10-9), has led us to a determination of alpha with an uncertainty of 6.7 10-9: α-1(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  5. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  6. Phase shift in atom interferometry due to spacetime curvature

    CERN Document Server

    Asenbaum, Peter; Kovachy, Tim; Brown, Daniel D; Hogan, Jason M; Kasevich, Mark A

    2016-01-01

    We present a single-source dual atom interferometer and utilize it as a gradiometer for precise gravitational measurements. The macroscopic separation between interfering atomic wave packets (as large as 16 cm) reveals the interplay of recoil effects and gravitational curvature from a nearby Pb source mass. The gradiometer baseline is set by the laser wavelength and pulse timings, which can be measured to high precision. Using a long drift time and large momentum transfer atom optics, the gradiometer reaches a resolution of $3 \\times 10^{-9}$ s$^{-2}$ per shot and measures a 1 rad phase shift induced by the source mass.

  7. Se-atom incorporation in fullerene and the MD simulation

    International Nuclear Information System (INIS)

    The formation of Se atom-incorporated fullerenes has been investigated by using radionuclides produced by nuclear reactions. From the trace of radioactivities of 75Se after High Performance Liquid Chromatography (HPLC), it was found that the formation of endohedral fullerenes or hetrofullerenes is possible by a recoil process following the nuclear reaction. To confirm the produced materials, ab initio molecular-dynamics simulations based on an all-electron mixed-basis approach were carried out. We found that the insertion of Se atom into C60 cage is much easier than that of As and Ge atoms. (author)

  8. Dose spectra from energetic particles and neutrons

    Science.gov (United States)

    Schwadron, Nathan; Bancroft, Chris; Bloser, Peter; Legere, Jason; Ryan, James; Smith, Sonya; Spence, Harlan; Mazur, Joe; Zeitlin, Cary

    2013-10-01

    spectra from energetic particles and neutrons (DoSEN) are an early-stage space technology research project that combines two advanced complementary radiation detection concepts with fundamental advantages over traditional dosimetry. DoSEN measures not only the energy but also the charge distribution (including neutrons) of energetic particles that affect human (and robotic) health in a way not presently possible with current dosimeters. For heavy ions and protons, DoSEN provides a direct measurement of the lineal energy transfer (LET) spectra behind shielding material. For LET measurements, DoSEN contains stacks of thin-thick Si detectors similar in design to those used for the Cosmic Ray Telescope for the Effects of Radiation. With LET spectra, we can now directly break down the observed spectrum of radiation into its constituent heavy-ion components and through biologically based quality factors that provide not only doses and dose rates but also dose equivalents, associated rates, and even organ doses. DoSEN also measures neutrons from 10 to 100 MeV, which requires enough sensitive mass to fully absorb recoil particles that the neutrons produce. DoSEN develops the new concept of combining these independent measurements and using the coincidence of LET measurements and neutron detection to significantly reduce backgrounds in each measurement. The background suppression through the use of coincidence allows for significant reductions in size, mass, and power needed to provide measurements of dose, neutron dose, dose equivalents, LET spectra, and organ doses. Thus, we introduce the DoSEN concept: a promising low-mass instrument that detects the full spectrum of energetic particles, heavy ions, and neutrons to determine biological impact of radiation in space.

  9. Recoil ions from molecular targets: sequential Coulomb explosions

    International Nuclear Information System (INIS)

    Fast ion collision processes appear to be ideal for producing multiply charged molecular ions. The advantage of this technique has not been appreciated so far and very little work has been carried out so far. We have initiated a programme to study the formation of multiply charged molecular ions and their dissociation dynamics using fast ion beam from the pelletron. Measurements have been carried out on several molecules including N2, CO, CO2, CS2, CH4 and CH3I. Measurements of the kinetic energy distributions of the fragment ions provided novel results on the fragmentation of CS2 and CO2 ions. As expected the positive ions of S and O possessed very large kinetic energies resulting from the Coulomb explosion of highly charged molecular ions. The surprising result was that the positive ions (C+ and C2+) from the central carbon atom of the linear symmetric molecules possessed much larger energies that what is expected from the conventional physical picture of Coulomb explosion. It is concluded that the observed high kinetic energy C+ and C2+ ions are formed by sequential fragmentation of CO2n+ ions through an intermediate K-shell excited CO+* ions. (author). 4 refs., 1 fig

  10. Heavy ion elastic recoil detection analysis of AlxOy/Pt/AlxOy multilayer selective solar absorber

    International Nuclear Information System (INIS)

    Highlights: • AlxOy/Pt/AlxOy solar absorber was thermally stable in air up to 500 °C for 2 h. • AlxOy/Pt/AlxOy solar absorber was investigated using HI-ERDA. • The cause of degradation of the coatings above 500 °C was identified. • An outward diffusion of Cu substrate towards the coating was observed at 600 °C. • At 700 °C, formation of CuO and Cu2O phases were confirmed. - Abstract: An AlxOy/Pt/AlxOy multilayer solar absorber for use in solar-thermal applications has been deposited onto copper substrate by electron beam (e-beam) vacuum evaporation at room temperature. Different samples were annealed at different temperatures in air and characterized by spectrophotometry, emissometry, heavy ion elastic recoil detection analysis (HI-ERDA), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The AlxOy/Pt/AlxOy multilayer solar absorbers heated up to 500 °C were found to exhibit good spectral selectivity (α/ε) of 0.951/0.08. However, beyond 500 °C the spectral selectivity decreased to 0.846/0.11, possibly due to thermally activated atomic interdiffusion profiles. HI-ERDA has been used to study depth-dependent atomic concentration profiles. These measurements revealed outward diffusion of the copper substrate towards the surface and therefore, the decrease in the constituents of the coating. The decrease in the intensity of Pt grains and formation of CuO and Cu2O phases at 700 °C were confirmed by XRD and EDS

  11. Stiff Stability of the Hydrogen atom in dissipative Fokker electrodynamics

    CERN Document Server

    De Luca, J

    2005-01-01

    We introduce an ad-hoc electrodynamics with advanced and retarded Lienard-Wiechert interactions plus the dissipative Lorentz-Dirac self-interaction force. We study the covariant dynamical system of the electromagnetic two-body problem, i.e., the hydrogen atom. We perform the linear stability analysis of circular orbits for oscillations perpendicular to the orbital plane. In particular we study the normal modes of the linearized dynamics that have an arbitrarily large imaginary eigenvalue. These large eigenvalues are fast frequencies that introduce a fast (stiff) timescale into the dynamics. As an application, we study the phenomenon of resonant dissipation, i.e., a motion where both particles recoil together in a drifting circular orbit (a bound state), while the atom dissipates center-of-mass energy only. This balancing of the stiff dynamics is established by the existence of a quartic resonant constant that locks the dynamics to the neighborhood of the recoiling circular orbit. The resonance condition quant...

  12. High-order inertial phase shifts for time-domain atom interferometers

    CERN Document Server

    Bongs, K; Kasevich, M A; Bongs, Kai; Launay, Romain; Kasevich, Mark A.

    2002-01-01

    High-order inertial phase shifts are calculated for time-domain atom interferometers. We obtain closed-form analytic expressions for these shifts in accelerometer, gyroscope, optical clock and photon recoil measurement configurations. Our analysis includes Coriolis, centrifugal, gravitational, and gravity gradient-induced forces. We identify new shifts which arise at levels relevant to current and planned experiments.

  13. Long-Term Evolution of and X-ray Emission from a Recoiling Supermassive Black Hole in a Disk Galaxy

    OpenAIRE

    Fujita, Yutaka

    2008-01-01

    Recent numerical relativity simulations have shown that the emission of gravitational waves at the merger of two black holes gives a recoil kick to the final black hole. We follow the orbits of a recoiling supermassive black hole (SMBH) in a fixed background potential of a disk galaxy including the effect of dynamical friction. If the recoil velocity of the SMBH is smaller than the escape velocity of the galaxy, the SMBH moves around in the potential along a complex trajectory before it spira...

  14. Complex Spectra in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hellermann, M.G. von; Jaspers, R. [FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein (Netherlands); Bertschinger, G.; Biel, W.; Marchuk, O. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik; Giroud, C.; Zastrow, K.D. [UKAEA Culham Laboratory Euratom Association, Abingdon (United Kingdom); Jupen, C. [Univ. of Lund (Sweden). Physics Dept.; O' Mullane, M.; Summers, H.P.; Whiteford, A. [Univ. of Strathclyde, Glasgow (United Kingdom). Applied Physics Dept.

    2005-12-15

    The need for quantitative evaluation of complex line emission spectra as observed in hot fusion plasmas initiated a challenging development of sophisticated interpretation tools based on integrating advanced atomic modelling with detailed treatment of the plasma environment. The successful merging of the two worlds has led to routine diagnostic procedures which have contributed enormously to the understanding of underlying plasma processes and also to a wide acceptance of spectroscopy as a reliable diagnostic method. In this paper three characteristic types of spectra of current and continuing interest are presented. The first is that of medium/heavy species with many ionisation stages revealed in survey VUV and XUV spectra. Such species occur as control gases, as wall materials, as ablated heavy species and possible as layered wall dopants for monitoring erosion. The spectra are complex with line-like and quasi-continuum regions and are amenable to advanced ?pattern recognition' methods. The second type is of few electron, highly ionised systems observed as line-of-sight integrated passive emission spectra in the soft X-ray region. They are analysed successfully in terms of plasma parameters through matching of observation with predicted synthetic spectra. Examples used here include highly resolved helium-like emission spectra of argon, iron and titanium observed on the tokamaks TEXTOR and Tore Supra. The third type, and the emphasis of this work, comprises spectra linked to active beam spectroscopy, that is, charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES). In this case, a complex spectrum is again composed of a (usually) dominating active spectrum and an underlying passive emission spectrum. Its analysis requires modelling of both active and passive features. Examples used here are from the CXRS diagnostic at JET and TEXTOR. They display characteristic features of the main light impurity ions (C{sup +6}, He{sup +2}, N

  15. Modeling and Measurement of 39Ar Recoil Loss From Biotite as a Function of Grain Dimensions

    Science.gov (United States)

    Paine, J. H.; Nomade, S.; Renne, P. R.

    2004-12-01

    The call for age measurements with less than 1 per mil error puts a demand upon geochronologists to be aware of and quantify a number of problems which were previously negligible. One such factor is 39Ar recoil loss during sample irradiation, a phenomenon which is widely assumed to affect only unusually small crystals having exceptionally high surface/volume ratios. This phenomenon has important implications for thermochronologic studies seeking to exploit a range of closure temperatures arising from variable diffusion radii. Our study focuses on biotite, in which spatial isotope distributions cannot be reliably recovered by stepwise heating and which therefore lack recoil-diagnostic age spectrum behavior. Previous work by Renne et al. [Application of a deuteron-deuteron (D-D) neutron generator to 40Ar/39Ar geochronology, Applied Radiation and Isotopes, in press] used the SRIM code to calculate a ˜20% 39Ar recoil loss from the outermost 0.25 μ m of an infinite slab of phyllosillicate. This result is applied to measured grains of the biotite standard GA1550, a hypabyssal granite from the Mount Dromedary Complex, Australia. We measure the thickness and surface area of 166 grains and approximate the shape of each grain as a cylinder. Grain thickness ranges from 3 to 210 μ m, with an average grain radius of 350 μ m. We predict the amount of 39Ar recoil loss from each grain, finding an expected age error >0.1 % for grains thinner than 150 μ m, a >1% error for grain less than 10 μ m thick, and up to a 3% error for grains less than 3 μ m thick. These modeling results will be tested by analysis of the measured grains after irradiation in the Oregon State University TRIGA reactor. It is important to either account for 39Ar loss in thin biotite grains, or use sufficiently thick ones so that recoil loss is negligible. Our results indicate that only biotite grains thicker than 150 μ m should be used for neutron fluence monitoring in order to avoid bias greater than the

  16. Nuclear effects in atomic transitions

    OpenAIRE

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects ...

  17. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions; Tests d'electrodynamique quantique et etalons de rayons-X a l'aide des atomes pioniques et des ions multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Trassinelli

    2005-12-15

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m({pi}{sup -}) = (139.571042 {+-} 0.000210 {+-} 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV.

  18. D-D neutron energy-spectra measurements in Alcator C

    International Nuclear Information System (INIS)

    Measurements of energy spectra of neutrons produced during high density (anti n/sub e/ > 2 x 1014 cm-3) deuterium discharges have been performed using a proton-recoil (NE 213) spectrometer. A two foot section of light pipe (coupling the scintillator and photomultiplier) was used to extend the scintillator into a diagnostic viewing port to maximize the neutron detection efficiency while not imposing excessive magnetic shielding requirements. A derivative unfolding technique was used to deduce the energy spectra. The results showed a well defined peak at 2.5 MeV which was consistent with earlier neutron flux measurements on Alcator C that indicated the neutrons were of thermonuclear origin

  19. Observation and analysis of X-ray spectra of highly-ionized atoms produced by laser irradiation in the wavelength range 0.60 nm to 0.95 nm

    International Nuclear Information System (INIS)

    The spectra of highly-charged ions produced by laser irradiation on flat targets at about 5 x 1014 Wcm-2 are recorded in the range from 0.60 nm to 0.95 nm (6 A to 9.5 A) by means of two spectrographs (a flat ADP crystal and a Johann SiO2 crystal spectrograph). The identification of the lines is supported by calculations of energies and transition probabilities in the relativistic parametric potential model. New identifications in several spectra of iron (Fe XXIII to Fe XXI), sodium-like strontium, Sr XXVIII, magnesium-like indium. In XXXVIII, and cobalt-like samarium, Sm XXXVI, are given. In the case of Fe XXIII, relativistic and non-relativistic (Cowan) ab initio calculations are compared. (orig.)

  20. Satellite spectra of heliumlike nickel

    International Nuclear Information System (INIS)

    Spectra of heliumlike nickel, NiXXVII, have been observed from Tokamak Fusion Test Reactor (TFTR) plasmas with a high resolution crystal spectrometer. The experimental arrangement permits simultaneous observation of the heliumlike resonance line, the intercombination and forbidden lines, and all the associated satellites due to transitions 1s2nl - 1s2l'nl'' with N ≥ 2. Relative wavelengths and line intensities can thus be determined very accurately. The observed spectral data are in good agreement with results from the present Hartree-Fock-Slater atomic model calculations and predictions from the Z-expansion method

  1. Vapour Recoil Effect on a Vapour-Liquid System with a Deformable Interface

    Institute of Scientific and Technical Information of China (English)

    LIU Rong; LIU Qiu-Sheng

    2006-01-01

    @@ A new two-sided model of vapour-Iiquid layer system with a deformable interface is proposed. In this model,the vapour recoil effect on the Marangoni-Bénard instability of a thin evaporating liquid layer can be examined only when the interface deflexion is considered. The instability of a liquid layer undergoing steady evaporation induced by the coupling of vapour recoil effect and the Marangoni effect is analysed using a linear stability theory.We modify and develop the Chebyshev-Tau method to solve the instability problem of a deformable interface system by introducing a new equation at interface boundary. New instability behaviour of the system has been found and the self-amplification mechanism between the evaporation flux and the interface deflexion is discussed.

  2. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Yves

    2016-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis.

  3. Digital characterization of recoil charged-particle tracks for neutron measurements

    International Nuclear Information System (INIS)

    We are developing a new optical ionization detector for imaging the track of a charged neutron-recoil particle in a gas. Electrons produced in the path of the recoil particle are excited by an external, high-voltage, rf, electric field of short duration. Their oscillatory motion causes ionization and excitation of nearby gas molecules, which then emit light in subsequent de-excitation. Two digital cameras image the optical radiation across two perpendicular planes and analyze it for the numbers of electrons in various volume elements along the track. These numbers constitute the digital characterization of the track. This information can then be used to infer the energy deposited in the track and the track LET in the gas. We have now observed alpha-particle tracks in a chamber utilizing these principles. The application of such a device for neutron dosimetry and neuron spectrometry will be described. (orig.)

  4. A coherent understanding of low-energy nuclear recoils in liquid xenon

    CERN Document Server

    Sorensen, Peter

    2010-01-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (<10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. Our method should enable future measurements of the scintillation yield to converge. Our results also yield a rigorous treatment of detector threshold and energy resolution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dar...

  5. A coherent understanding of low-energy nuclear recoils in liquid xenon

    Science.gov (United States)

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (lesssim10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  6. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    International Nuclear Information System (INIS)

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis. (authors)

  7. Fabrication and testing of the recoil mass spectrometer at Bombay Pelletron

    Indian Academy of Sciences (India)

    S Nagaraj; H C Jain; P K Joshi; S D Paul; R Palit; H V Panchal; B S Naidu; A Chatterjee; A Navin

    2001-07-01

    A recoil mass spectrometer (RMS) has been designed, fabricated and installed at the 15°S beam-line of the Pelletron at TIFR. The RMS consists of a quadrupole doublet just after the target chamber followed by an ‘electrostatic deflector’, a magnetic dipole and a second electrostatic deflector. The recoils produced in the 12C+58Ni reaction using 60 MeV 12C beam were focussed with the help of electric and magnetic fields and detected in a strip detector placed at the focal plane of the RMS. Further testing of the spectrometer to obtain mass resolution and efficiency are in progress.

  8. PROTEX: A proton-recoil detector for inertial confinement fusion neutrons

    International Nuclear Information System (INIS)

    Fusion neutron diagnostics are important to inertial confinement fusion (ICF) because they characterize fusion performance and help to provide the understanding that is needed to develop higher-yield sources. Present yields in excess of 1012 deuterium-tritium (DT) neutrons now can be measured with a proton-recoil detector. This technique, which has not been practical with lower yields, is desirable because it provides prompt, accurate, and unambiguous results. The PROTEX is a proton-recoil detector which features a compact coaxial cylindrical geometry for maximum sensitivity, in situ simultaneous measurement of background signals, and an ab initio calculated absolute sensitivity. The calculated sensitivity has an estimated absolute accuracy of 6%. With simple adjustments, PROTEX can provide absolute measurement of yield for the National Ignition Facility, the Laser Megajoule Facility, or for any ICF source having a yield greater than 1012 DT neutrons

  9. Velocity dependence of enhanced dynamic hyperfine field for Pd ions swiftly recoiling in magnetized Fe

    International Nuclear Information System (INIS)

    The velocity-dependence of the magnitude of the enchanced dynamic hyperfine magnetic field (EDF) manifest at nuclei of 108Pd ions swiftly recoiling through thin magnetized Fe has been investigated at ion velocities higher than have heretofore been examined for the heavier nuclides (i.e., at initial recoil velocities (v/Zv0)=0.090 and 0.160, v0=c/137). These results for 108Pd, when taken in conjunction with those of prior similar measurements for 106Pd at lower velocities, and fitted to a velocity dependence for the EDF, give for the Pd isotopes over the extended velocity range 1.740)<=7.02, p=0.41+-0.15; a result incompatible with previous attributions of a linear velocity dependence for the field

  10. A Predictive Theory for Elastic Scattering and Recoil of Protons from $^4$He

    CERN Document Server

    Hupin, Guillaume; Navrátil, Petr

    2014-01-01

    Low-energy cross sections for elastic scattering and recoil of protons from $^4$He nuclei (also known as $\\alpha$ particles) are calculated directly by solving the Schr\\"odinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe concentrations and depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among different data sets and can be used to predict these cross sections when measurements are not available.

  11. A Microscopic Recoil Model for Light-Cone Fluctuations in Quantum Gravity

    OpenAIRE

    Ellis, John; Mavromatos, N. E.; Nanopoulos, D. V.

    1999-01-01

    We present a microscopic model for light-cone fluctuations ``in vacuo'', which incorporates a treatment of quantum-gravitational recoil effects induced by energetic particles. Treating defects in space-time as solitons in string theory, we derive an energy-dependent refractive index and a stochastic spread in the arrival times of mono-energetic photons due to quantum diffusion through space-time foam, as found previously using an effective Born-Infeld action. Distant astrophysical sources pro...

  12. The Effect of Gravitational Recoil on Black Holes Forming in a Hierarchical Universe

    OpenAIRE

    Libeskind, N. I.; S. Cole; Frenk, C.S.; Helly, J. C.

    2005-01-01

    Galactic bulges are known to harbour central black holes whose mass is tightly correlated with the stellar mass and velocity dispersion of the bulge. In a hierarchical universe, mergers of subgalactic units are accompanied by the amalgamation of bulges and the likely coalescence of galactocentric black holes. In these mergers, the beaming of gravitational radiation during the plunge phase of the black hole collision can impart a linear momentum kick or ``gravitational recoil'' to the remnant....

  13. First measurement of nuclear recoil head-tail sense in a fiducialised WIMP dark matter detector

    OpenAIRE

    Battat, J. B. R.; Daw, E.; Ezeribe, A. C.; Gauvreau, J. -L.; Harton, J.L.; Lafler, R.; Lee, E. R.; Loomba, D.; Lumnah, A.; Miller, E. H.; Mouton, F.; Murphy, A. StJ.; Paling, S. M.; Phan, N. S.; Robinson, M.

    2016-01-01

    Recent computational results suggest that directional dark matter detectors have potential to probe for WIMP dark matter particles below the neutrino floor. The DRIFT-IId detector used in this work is a leading directional WIMP search time projection chamber detector. We report the first measurements of the detection of the directional nuclear recoils in a fully fiducialised low-pressure time projection chamber. In this new operational mode, the distance between each event vertex and the read...

  14. CHANDRA HIGH-RESOLUTION OBSERVATIONS OF CID-42, A CANDIDATE RECOILING SUPERMASSIVE BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Civano, F.; Elvis, M.; Lanzuisi, G.; Aldcroft, T.; Trichas, M.; Fruscione, A. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bongiorno, A.; Brusa, M. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Blecha, L.; Loeb, A. [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Comastri, A.; Gilli, R. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, Bologna 40127 (Italy); Salvato, M.; Komossa, S. [Max-Planck-Institute for Plasma Physics, Excellence Cluster, Boltzmannstrass 2, 85748 Garching (Germany); Koekemoer, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mainieri, V. [ESO, Karl-Schwarzschild-Strasse 2, 85748 Garching (Germany); Piconcelli, E. [INAF-Osservatorio Astronomico di Roma, Via Frascati 33, Monteporzio-Catone 00040 (Italy); Vignali, C. [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, Bologna 40127 (Italy)

    2012-06-10

    We present Chandra High Resolution Camera observations of CID-42, a candidate recoiling supermassive black hole (SMBH) at z = 0.359 in the COSMOS survey. CID-42 shows two optical compact sources resolved in the HST/ACS image embedded in the same galaxy structure and a velocity offset of {approx}1300 km s{sup -1} between the H{beta} broad and narrow emission line, as presented by Civano et al. Two scenarios have been proposed to explain the properties of CID-42: a gravitational wave (GW) recoiling SMBH and a double Type 1/Type 2 active galactic nucleus (AGN) system, where one of the two is recoiling because of slingshot effect. In both scenarios, one of the optical nuclei hosts an unobscured AGN, while the other one, either an obscured AGN or a star-forming compact region. The X-ray Chandra data allow us to unambiguously resolve the X-ray emission and unveil the nature of the two optical sources in CID-42. We find that only one of the optical nuclei is responsible for the whole X-ray unobscured emission observed and a 3{sigma} upper limit on the flux of the second optical nucleus is measured. The upper limit on the X-ray luminosity plus the analysis of the multiwavelength spectral energy distribution indicate the presence of a star-forming region in the second source rather than an obscured SMBH, thus favoring the GW recoil scenario. However, the presence of a very obscured SMBH cannot be fully ruled out. A new X-ray feature, in a SW direction with respect to the main source, is discovered and discussed.

  15. Investigation of a gas-catcher/ion guide system using alpha-decay recoil products

    CERN Document Server

    Peraejaervi, K; Rinta-Antila, S; Dendooven, P

    2002-01-01

    sup 2 sup 1 sup 9 Rn recoils from the alpha decay of sup 2 sup 2 sup 3 Ra have been used to study the efficiency and delay time distributions of a gas-catcher/ion guide system. Ions with charge states up to +4 were coming out of the gas cell. Combining efficiency and delay time measurements, ion survival times in plasma free conditions can be deduced.

  16. What Can We Learn From Proton Recoils about Heavy-Ion SEE Sensitivity?

    Science.gov (United States)

    Ladbury, Raymond L.

    2016-01-01

    The fact that protons cause single-event effects (SEE) in most devices through production of light-ion recoils has led to attempts to bound heavy-ion SEE susceptibility through use of proton data. Although this may be a viable strategy for some devices and technologies, the data must be analyzed carefully and conservatively to avoid over-optimistic estimates of SEE performance. We examine the constraints that proton test data can impose on heavy-ion SEE susceptibility.

  17. Design and Characterization of a Neutron Calibration Facility for the Study of sub-keV Nuclear Recoils

    CERN Document Server

    Barbeau, P S; Whaley, P M

    2007-01-01

    As part of an experimental effort to demonstrate sensitivity in a large-mass detector to the ultra-low energy recoils expected from coherent neutrino-nucleus elastic scattering, we have designed and built a highly monochromatic 24 keV neutron beam at the Kansas State University Triga Mark-II reactor. The beam characteristics were chosen so as to mimic the soft recoil energies expected from reactor antineutrinos in a variety of targets, allowing to understand the response of detector technologies in this yet unexplored sub-keV recoil range. A full characterization of the beam properties (intensity, monochromaticity, contaminations, beam profile) is presented, together with first tests of the calibration setup using proton recoils in organic scintillator.

  18. Design and characterization of a neutron calibration facility for the study of sub-keV nuclear recoils

    Science.gov (United States)

    Barbeau, P. S.; Collar, J. I.; Whaley, P. M.

    2007-05-01

    We have designed and built a highly monochromatic 24 keV neutron beam at the Kansas State University Triga Mark-II reactor, as part of an experimental effort to demonstrate sensitivity in a large-mass detector to the ultra-low energy recoils expected from coherent neutrino-nucleus elastic scattering. The beam characteristics were chosen so as to mimic the soft recoil energies expected from reactor antineutrinos in a variety of targets, allowing to understand the response of dedicated detector technologies in this yet unexplored sub-keV recoil range. A full characterization of the beam properties (intensity, monochromaticity, contaminations, beam profile) is presented, together with first tests of the calibration facility using proton recoils in organic scintillator.

  19. Measurement of the W boson mass and width using a novel recoil model

    Energy Technology Data Exchange (ETDEWEB)

    Wetstein, Matthew J.; /Maryland U.

    2009-01-01

    This dissertation presents a direct measurement of the W boson mass (M{sub W}) and decay width ({Lambda}{sub W}) in 1 fb{sup -1} of W {yields} e{nu} collider data at D0 using a novel method to model the hadronic recoil. The mass is extracted from fits to the transverse mass M{sub T}, p{sub T}(e), and E{sub T} distributions. The width is extracted from fits to the tail of the M{sub T} distribution. The electron energy measurement is simulated using a parameterized model, and the recoil is modeled using a new technique by which Z recoils are chosen from a data library to match the p{sub T} and direction of each generated W boson. We measure the the W boson mass to be M{sub W} = 80.4035 {+-} 0.024(stat) {+-} 0.039(syst) from the M{sub T}, M{sub W} = 80.4165 {+-} 0.027(stat) {+-} 0.038(syst) from the pT(e), and MW = 80.4025 {+-} 0.023(stat) {+-} 0.043(syst) from the E{sub T} distributions. {Lambda}{sub W} is measured to be {Lambda}{sub W} = 2.025 {+-} 0.038(stat) {+-} 0.061(syst) GeV.

  20. The HERMES recoil photon detector and the study of deeply virtual Compton scattering

    International Nuclear Information System (INIS)

    The study of deeply virtual Compton scattering (DVCS) gives information about the contribution of the quark orbital angular momentum to the spin of the proton. DVCS has been studied at the HERMES experiment at DESY in Hamburg. Here 27.6 GeV longitudinally polarized electrons and positrons were scattered off a gaseous proton target. For the analysis of DVCS the recoiling proton could not be detected, but was reconstructed via its missing mass. This method suffers, however, from a 14% background contribution, mainly originating from associated DVCS. In this process the proton does not stay in its ground state but is excited to a Δ+ resonance. In order to reduce the background contribution down to less than 1%, a recoil detector was installed in the HERMES experiment beginning of 2006. This detector consists of three subcomponents, of which one is the photon detector. The main function of the photon detector is the detection of Δ+ decay photons. The photon detector was started up and commissioned for the analysis of (associated) DVCS. Subsequently DVCS and associated DVCS were analyzed using the recoil detector. (orig.)

  1. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xeq+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  2. First results of exclusive {rho}{sup 0} production from the Recoil Detector at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Benito, Roberto [II. Phys. Institut, Univ. Giessen, Giessen (Germany)

    2009-07-01

    The HERMES experiment (HERa MEasurement of Spin) at DESY was designed to study the spin structure of the nucleon by semi-inclusive deep inelastic scattering. Here, we report on hard exclusive processes that can be understood in terms of Generalised Patron Distributions (GPDs). The accumulated HERMES data offer access to GPDs in different combinations of beam charge and beam helicity asymmetries. The ratio of the cross-sections of {rho}{sup 0} meson production between hydrogen and deuterium will provide an insight into the relative contribution to the nucleon cross-section from quarks and gluons. In January 2006 a Recoil Detector was installed that surrounded the internal gas target of the HERMES experiment. The HERMES Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector with three layers of tungsten and scintillator bars in three different orientations. All three detectors were located inside a solenoidal magnet which provided a 1 T longitudinal magnetic field. The detector improves the selection of exclusive events by a direct measurement of the recoiling target nucleon in an intermediate momentum range from 0.1 to 1.4 GeV/c as well as by rejecting non-exclusive background.

  3. Exclusive {rho}{sup 0} production from the Recoil Detector at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Benito, Roberto Francisco; Dueren, Micheal; Hayrapetyan, Avetik; Stenzel, Hasko; Yu, Weilin [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut (Germany)

    2010-07-01

    The HERMES experiment (HERa MEasurement of Spin) at DESY was originally designed to study the spin structure of the nucleon by inclusive and semi-inclusive deep inelastic scattering. Here, we report about hard exclusive processes that can be described in terms of Generalised Patron Distribution (GPDs). The extraction of beam-charge, beam-helicity and target-spin asymmetries from the accumulated HERMES data allows access to GPD-related information. In January 2006 a Recoil Detector was installed that surrounded the internal gas target of the HERMES experiment. The HERMES Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector with three layers of tungsten and scintillator bars in three different orientations. All three detectors were located inside a solenoidal magnet which provides a 1T longitudinal magnetic field. The detector improves the selection of exclusive events by a direct measurement of the recoiling target nucleon in an intermediate momentum range of 0.1 to 1.4 GeV/c as well as by rejecting non-exclusive background. The ratio of the cross-sections of {rho}{sup 0} meson production between hydrogen and deuterium will provide an insight into the relative contribution to the nucleon cross-section from quarks and gluons.

  4. DVCS at HERMES. The recoil detector and transverse target spin asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Murray, M.J.

    2008-02-15

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. One of the most exciting topics studied at HERMES is Deeply Virtual Compton Scattering (DVCS) which is the simplest interaction that provides a gateway for access to Generalised Parton Distributions (GPDs). GPDs are a theoretical framework which can be used to calculate the total angular momentum of the quarks in the nucleon. As such, they provide one piece of the puzzle of nucleonic spin structure. In 2005, HERMES was upgraded in the target region with a Recoil Detector that allows it to make truly exclusive measurements of the DVCS interaction for the first time. The design and construction of the Recoil Detector is discussed herein, in addition to a complete analysis of the Transverse Target Spin Asymmetry (TTSA) in DVCS. Experimental facilities that enable measurement of this asymmetry are rare. The importance of the information on the TTSA from HERMES is made yet greater as the transversely polarised target that allows the asymmetry to be measured has been replaced by an unpolarised target. This was to allow the Recoil Detector to be installed. The final stage of this thesis shows a model-dependent method for constraining the angular momentum of the quarks in the nucleon and speculates as to the other pieces of the spin puzzle. (orig.)

  5. The Benefits of B ---> K* l+ l- Decays at Low Recoil

    CERN Document Server

    Bobeth, Christoph; van Dyk, Danny

    2010-01-01

    Using the heavy quark effective theory framework put forward by Grinstein and Pirjol we work out predictions for B -> K* l+ l-, l = (e, mu), decays for a softly recoiling K*, i.e., for large dilepton masses sqrt{q^2} of the order of the b-quark mass m_b. We work to lowest order in Lambda/Q, where Q = (m_b, sqrt{q^2}) and include the next-to-leading order corrections from the charm quark mass m_c and the strong coupling at O(m_c^2/Q^2, alpha_s). The leading Lambda/m_b corrections are parametrically suppressed. The improved Isgur-Wise form factor relations correlate the B -> K* l+ l- transversity amplitudes, which simplifies the description of the various decay observables and provides opportunities for the extraction of the electroweak short distance couplings. We propose new angular observables which have very small hadronic uncertainties. We exploit existing data on B -> K* l+ l- distributions and show that the low recoil region provides powerful additional information to the large recoil one. We find disjoi...

  6. Measurement of the W boson mass and width using a novel recoil model

    Energy Technology Data Exchange (ETDEWEB)

    Wetstein, Matthew J.

    2009-01-01

    This dissertation presents a direct measurement of the W boson mass (MW) and decay width (ΓW) in 1 fb-1 of W → ev collider data at D0 using a novel method to model the hadronic recoil. The mass is extracted from fits to the transverse mass MT, pT(e), and ET distributions. The width is extracted from fits to the tail of the MT distribution. The electron energy measurement is simulated using a parameterized model, and the recoil is modeled using a new technique by which Z recoils are chosen from a data library to match the pT and direction of each generated W boson. We measure the the W boson mass to be MW = 80.4035 ± 0.024(stat) ± 0.039(syst) from the MT, MW = 80.4165 ± 0.027(stat) ± 0.038(syst) from the pT(e), and MW = 80.4025 ± 0.023(stat) ± 0.043(syst) from the ET distributions. ΓW is measured to be ΓW = 2.025 ± 0.038(stat) ± 0.061(syst) GeV.

  7. The HERMES recoil photon detector and the study of deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hulse, Charlotte van

    2011-03-15

    The study of deeply virtual Compton scattering (DVCS) gives information about the contribution of the quark orbital angular momentum to the spin of the proton. DVCS has been studied at the HERMES experiment at DESY in Hamburg. Here 27.6 GeV longitudinally polarized electrons and positrons were scattered off a gaseous proton target. For the analysis of DVCS the recoiling proton could not be detected, but was reconstructed via its missing mass. This method suffers, however, from a 14% background contribution, mainly originating from associated DVCS. In this process the proton does not stay in its ground state but is excited to a {delta}{sup +} resonance. In order to reduce the background contribution down to less than 1%, a recoil detector was installed in the HERMES experiment beginning of 2006. This detector consists of three subcomponents, of which one is the photon detector. The main function of the photon detector is the detection of {delta}{sup +} decay photons. The photon detector was started up and commissioned for the analysis of (associated) DVCS. Subsequently DVCS and associated DVCS were analyzed using the recoil detector. (orig.)

  8. Nuclear Recoil Calibrations in the LUX Detector Using Direct and Backscattered D-D Neutrons

    Science.gov (United States)

    Rhyne, Casey; LUX Collaboration

    2016-03-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will discuss the latest calibration of the nuclear recoil (NR) response in liquid xenon (LXe), performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced via the Adelphi Technologies, Inc. DD108 D-D neutron generator. The calibration measured the NR charge yield in LXe (Qy) to 0.7 keVnr recoil energy with an absolute determination of deposited energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keVnr, both of which improve upon all previous measurements. I will then focus in depth on the extension of this calibration using a new technique for generating a beam of sub-300 keV quasi-mono-energetic neutrons via the backscatter of 2.45 MeV neutrons off a deuterium-based reflector. Current simulations work optimizing the technique, its advantages, and its impact on future research will be discussed, including the extension of the NR Qy calibration down to 0.14 keVnr, an independent NR Ly calibration, and an a priori estimate of the expected 8B solar neutrino-nucleus coherent scattering signal in the upcoming LUX-ZEPLIN experiment.

  9. DVCS at HERMES. The recoil detector and transverse target spin asymmetries

    International Nuclear Information System (INIS)

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. One of the most exciting topics studied at HERMES is Deeply Virtual Compton Scattering (DVCS) which is the simplest interaction that provides a gateway for access to Generalised Parton Distributions (GPDs). GPDs are a theoretical framework which can be used to calculate the total angular momentum of the quarks in the nucleon. As such, they provide one piece of the puzzle of nucleonic spin structure. In 2005, HERMES was upgraded in the target region with a Recoil Detector that allows it to make truly exclusive measurements of the DVCS interaction for the first time. The design and construction of the Recoil Detector is discussed herein, in addition to a complete analysis of the Transverse Target Spin Asymmetry (TTSA) in DVCS. Experimental facilities that enable measurement of this asymmetry are rare. The importance of the information on the TTSA from HERMES is made yet greater as the transversely polarised target that allows the asymmetry to be measured has been replaced by an unpolarised target. This was to allow the Recoil Detector to be installed. The final stage of this thesis shows a model-dependent method for constraining the angular momentum of the quarks in the nucleon and speculates as to the other pieces of the spin puzzle. (orig.)

  10. Standard Model tests with trapped radioactive atoms

    CERN Document Server

    Behr, J A; 10.1088/0954-3899/36/3/033101

    2009-01-01

    We review the use of laser cooling and trapping for Standard Model tests, focusing on trapping of radioactive isotopes. Experiments with neutral atoms trapped with modern laser cooling techniques are testing several basic predictions of electroweak unification. For nuclear $\\beta$ decay, demonstrated trap techniques include neutrino momentum measurements from beta-recoil coincidences, along with methods to produce highly polarized samples. These techniques have set the best general constraints on non-Standard Model scalar interactions in the first generation of particles. They also have the promise to test whether parity symmetry is maximally violated, to search for tensor interactions, and to search for new sources of time reversal violation. There are also possibilites for exotic particle searches. Measurements of the strength of the weak neutral current can be assisted by precision atomic experiments using traps of small numbers of radioactive atoms, and sensitivity to possible time-reversal violating elec...

  11. Recoil ion and electronic angular asymmetry parameters for photo double ionization of helium at 99 eV

    Energy Technology Data Exchange (ETDEWEB)

    Braeuning, H. [Kansas State Univ., Physics Dept., Manhattan, KS (United States)]|[Lawrence Berkeley National Lab., Berkeley, CA (United States); Doerner, R.; Braeuning-Demian, A. [Universitaet Frankfurt, Inst. fuer Kernphysik, Frankfurt (Germany)] [and others

    1997-10-14

    Recoil ion momentum spectroscopy has been used to map the entire five-dimensional momentum space of the photo double ionization of helium at 20 eV above threshold. Angular asymmetry parameters for the relative motion of the electrons and the recoil ion have been determined and are found to be close to similar data at 1 eV above threshold. In addition the asymmetry parameter of one photoelectron is found to be in good agreement with recent theory. (author).

  12. Atom interferometry in the presence of an external test mass

    CERN Document Server

    Dubetsky, B; Libby, S B; Berman, P R

    2016-01-01

    The influence of an external test mass on the phase of the signal of an atom interferometer is studied theoretically. Using traditional techniques in atom optics based on the density matrix equations in the Wigner representation, we are able to extract the various contributions to the phase of the signal associated with the classical motion of the atoms, the quantum correction to this motion resulting from atomic recoil that is produced when the atoms interact with Raman field pulses, and quantum corrections to the atomic motion that occur in the time between the Raman field pulses. By increasing the effective wave vector associated with the Raman field pulses using modified field parameters, we can increase the sensitivity of the signal to the point where the quantum corrections can be measured. The expressions that are derived can be evaluated numerically to isolate the contribution to the signal from an external test mass. The regions of validity of the exact and approximate expressions are determined.

  13. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  14. Measurements of neutron spectra from iron and boron—in—polyethylene bomareded with 14MeV nuetrons

    Institute of Scientific and Technical Information of China (English)

    ZhouYu-Qing; ChenYuan; 等

    1997-01-01

    The leakage spectra of 14MeV neutrons from spheres of iron and boron-inpolyethylene with three differnet mass ratios of boron carbide to polyethylene were measured over the energy range of 20 keV to 16MeV by using proton recoil method.The integral leakages and removal cross sections at different lower cut-off energy were given.

  15. Atom Chips

    CERN Document Server

    Folman, R; Cassettari, D; Hessmo, B; Maier, T; Schmiedmayer, J; Folman, Ron; Krüger, Peter; Cassettari, Donatella; Hessmo, Björn; Maier, Thomas

    1999-01-01

    Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems.

  16. A New Theoretical Study of Quantum Atomic Energy Spectra for Lowest Excited States of Central (PIHOIQ Potential in Noncommutative Spaces and Phases Symmetries at Plan’s and Nanoscales

    Directory of Open Access Journals (Sweden)

    Abdelmadjid Maireche

    2016-06-01

    Full Text Available In this research paper, we consider full phase-space noncommutativity in the Schrödinger equation (SE, we apply Boopp’s shift method and standard perturbation theory to the modified (SE in order to obtain exactly new modified energy eigenvalues in noncommutative two dimensional real space-phase NC-2D: RSP for prolonged isotropic Harmonic oscillator plus inverse quadratic potential (PCIHOIQ potential (central singular even-power potential (CSEP potential with novel two parts and , it is observed that the new energy dependent with new atomic quantum numbers, we have also constructed the corresponding modified anisotropic Hamiltonian operator.

  17. Theoretical prediction of vibrational spectra

    Science.gov (United States)

    Niu, Zefu; Dunn, Kevin M.; Boggs, James E.

    The complete harmonic force field and the diagonal and first off-diagonal cubic constants of aniline have been calculated ab initio using a 4-21 basis set augmented by addition of d functions to the nitrogen atom. The force constants were then scaled using scale factors optimized previously to give the best fit to the similarly computed vibrational spectra of benzene and its deuterated isotopomers. The vibrational spectra of aniline, aniline-NHD, and aniline-ND2 were then calculated from this scaled quantum mechanical (SQM) force field and compared with experimentally observed spectra. Several corrections were made to previously proposed empirical spectral assignments. Because of computational difficulties, no definitive statement can be made about the torsion or inversion modes of the amino group. Aside from these and the C-H stretching frequencies for which the detailed assignment is still quite uncertain, the average deviation between the observed frequencies and those obtained entirely from the scaled computed force field is 9·1 cm-1. Dipole moment derivatives and infrared absorption intensities were also calculated, but these are of lower accuracy.

  18. Master equation for collective spontaneous emission with quantized atomic motion

    OpenAIRE

    Damanet, François; Braun, Daniel; Martin, John

    2015-01-01

    We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including the quantization of their motion. Our equation provides a unifying picture of the effects of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, generalizing those in Ref. [1]. We find closed-form formulas for a numb...

  19. Atomic mobility in energetic cluster deposition

    Institute of Scientific and Technical Information of China (English)

    PAN Zheng-Ying; WANG Yue-Xia; WEI Qi; LI Zhi-Jie; ZHOU Liang; ZHANG Liang-Kun

    2004-01-01

    This paper tries to outline the influence of atomic mobility on the initial fabrication of thin films formed by LECBD. Based on our recent studies on low-energy cluster beam deposition (LECBD) by molecular dynamics simulation, two examples, the deposition of small carbon clusters on Si and diamond surfaces and Al clusters on Ni substrate, were mainly discussed. The impact energy of the cluster ranges from 0.1 eV to 100 eV. In the former case,the mobility and the lateral migration of surface atoms, especially the recoil atoms, are enhanced with increasing the impact energy, which promote the film to be smoother and denser. For the latter case, the transverse kinetic energy of cluster atoms, caused mainly by the collision between moving cluster atoms, dominates the lateral spread of cluster atoms on the surface, which is contributive to layer-by-layer growth of thin films. Our result is consistent with the experimental observations that the film structure is strongly dependent on the impact energy. In addition, it elucidates that the atomic mobility takes a leading role in the structure characteristic of films formed by LECBD.

  20. Prospects for Precise Measurements with Echo Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Brynle Barrett

    2016-06-01

    Full Text Available Echo atom interferometers have emerged as interesting alternatives to Raman interferometers for the realization of precise measurements of the gravitational acceleration g and the determination of the atomic fine structure through measurements of the atomic recoil frequency ω q . Here we review the development of different configurations of echo interferometers that are best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of laser-cooled rubidium atoms by a sequence of standing wave pulses to measure ω q with a statistical uncertainty of 37 parts per billion (ppb on a time scale of ∼50 ms and g with a statistical precision of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.

  1. Prospects for Precise Measurements with Echo Atom Interferometry

    CERN Document Server

    Barrett, Brynle; Beica, Hermina C; Vorozcovs, Andrejs; Pouliot, Alexander; Kumarakrishnan, A

    2016-01-01

    Echo atom interferometers have emerged as interesting alternatives to Raman interferometers for the realization of precise measurements of the gravitational acceleration $g$ and the determination of the atomic fine structure through measurements of the atomic recoil frequency $\\omega_q$. Here we review the development of different configurations of echo interferometers that are best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of laser-cooled rubidium atoms by a sequence of standing wave pulses to measure $\\omega_q$ with a statistical uncertainty of 37 parts per billion (ppb) on a time scale of $\\sim 50$ ms and $g$ with a statistical precision of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.

  2. PPARγ deficiency results in reduced lung elastic recoil and abnormalities in airspace distribution

    Directory of Open Access Journals (Sweden)

    Starcher Barry C

    2010-06-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor (PPAR-γ is a nuclear hormone receptor that regulates gene expression, cell proliferation and differentiation. We previously described airway epithelial cell PPARγ deficient mice that develop airspace enlargement with decreased tissue resistance and increased lung volumes. We sought to understand the impact of airspace enlargement in conditionally targeted mice upon the physio-mechanical properties of the lung. Methods We measured elastic recoil and its determinants, including tissue structure and surface forces. We measured alveolar number using radial alveolar counts, and airspace sizes and their distribution using computer-assisted morphometry. Results Air vs. saline-filled pressure volume profiles demonstrated loss of lung elastic recoil in targeted mice that was contributed by both tissue components and surface tension, but was proportional to lung volume. There were no significant differences in surfactant quantity/function nor in elastin and collagen content between targeted animals and littermate controls. Importantly, radial alveolar counts were significantly reduced in the targeted animals and at 8 weeks of age there were 18% fewer alveoli with 32% more alveolar ducts. Additionally, the alveolar ducts were 19% larger in the targeted animals. Conclusions Our data suggest that the functional abnormalities, including loss of recoil are secondary to altered force transmission due to differences in the structure of alveolar ducts, rather than changes in surfactant function or elastin or collagen content. These data further define the nature of abnormal lung maturation in the absence of airway epithelial cell PPARγ and identify a putative genetic determinant of dysanapsis, which may serve as a precursor to chronic lung disease.

  3. Experimental Evidence of the Vapor Recoil Mechanism in the Boiling Crisis

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Y; Beysens, D

    2016-01-01

    Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.

  4. Broadband light generation at ~1300 nm through spectrally recoiled solitons and dispersive waves

    DEFF Research Database (Denmark)

    Falk, Peter Andreas; Frosz, Michael Henoch; Bang, Ole;

    2008-01-01

    We experimentally study the generation of broadband light at ~1300 nm from an 810 nm Ti:sapphire femtosecond pump laser. We use two photonic crystal fibers with a second infrared zero-dispersion wavelength (λZ2) and compare the efficiency of two schemes: in one fiber λZ2=1400 nm and the light...... at 1300 nm is composed of spectrally recoiled solitons; in the other fiber λZ2=1200 nm and the light at 1300 nm is composed of dispersive waves....

  5. Ischemic stroke secondary to aortic dissection following rifle butt recoil chest injury: a case report.

    Science.gov (United States)

    Rao, Mamatha; Panduranga, Prashanth; Al-Mukhaini, Mohammed; Al-Jufaili, Mahmood; Valiath, John

    2011-11-01

    Ischemic stroke secondary to aortic dissection is not uncommon. We present a patient with left hemiplegia secondary to Stanford type A aortic dissection extending to the supra-aortic vessels, which was precipitated by rifle butt recoil chest injury. The diagnosis of aortic dissection was delayed due to various factors. Finally, the patient underwent successful Bentall procedure with complete resolution of symptoms. This case emphasizes the need for caution in the use of firearms for recreation and to take precautions in preventing such incidents. In addition, this case illustrates the need for prompt cardiovascular physical examination in patients presenting with stroke.

  6. Recoil polarization measurements of the proton electromagnetic form factor ratio at high momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Puckett

    2009-12-01

    Electromagnetic form factors are fundamental properties of the nucleon that describe the effect of its internal quark structure on the cross section and spin observables in elastic lepton-nucleon scattering. Double-polarization experiments have become the preferred technique to measure the proton and neutron electric form factors at high momentum transfers. The recently completed GEp-III experiment at the Thomas Jefferson National Accelerator Facility used the recoil polarization method to extend the knowledge of the proton electromagnetic form factor ratio GpE/GpM to Q2 = 8.5 GeV2. In this paper we present the preliminary results of the experiment.

  7. Parameter monitoring system of the Dubna Gas-Filled Recoil Separator

    CERN Document Server

    Tsyganov, Y S; Sukhov, A M

    2015-01-01

    PC-based one-crate monitoring and control system of the Dubna Gas Filled Recoil Separator (DGFRS) is considered. It is developed for the long-term experiments at the U400 FLNR cyclotron and is aimed at the synthesis of super heavy nuclei in heavy ion induced complete fusion reactions. Parameters related to: a) beam and cyclotron; b) separator by itself, c) detection system, d) target and entrance window are measured and stored in the protocol file of the experiment. Special attention is paid to generating the alarm signals and implementing further the appropriate procedures

  8. The Benefits of B ---> K* l+ l- Decays at Low Recoil

    OpenAIRE

    Bobeth, Christoph; Hiller, Gudrun; van Dyk, Danny

    2010-01-01

    Using the heavy quark effective theory framework put forward by Grinstein and Pirjol we work out predictions for B -> K* l+ l-, l = (e, mu), decays for a softly recoiling K*, i.e., for large dilepton masses sqrt{q^2} of the order of the b-quark mass m_b. We work to lowest order in Lambda/Q, where Q = (m_b, sqrt{q^2}) and include the next-to-leading order corrections from the charm quark mass m_c and the strong coupling at O(m_c^2/Q^2, alpha_s). The leading Lambda/m_b corrections are parametri...

  9. Spallation recoil II: Xenon evidence for young SiC grains

    Science.gov (United States)

    Ott, U.; Altmaier, M.; Herpers, U.; Kuhnhenn, J.; Merchel, S.; Michel, R.; Mohapatra, R. K.

    2005-11-01

    We have determined the recoil range of spallation xenon produced by irradiation of Ba glass targets with ˜1190 and ˜268 MeV protons, using a catcher technique, where spallation products are measured in target and catcher foils. The inferred range for 126Xe produced in silicon carbide is ˜0.19 μm, which implies retention of ˜70% for 126Xe produced in "typical" presolar silicon carbide grains of 1 μm size. Recoil loss of spallation xenon poses a significantly smaller problem than loss of the spallation neon from SiC grains. Ranges differ for the various Xe isotopes and scale approximately linearly as function of the mass difference between the target element, Ba, and the product. As a consequence, SiC grains of various sizes will have differences in spallation Xe composition. In an additional experiment at ˜66 MeV, where the recoil ranges of 22Na and 127Xe produced on Ba glass were determined using γ-spectrometry, we found no evidence for recoil ranges being systematically different at this lower energy. We have used the new data to put constraints on the possible presolar age of the SiC grains analyzed for Xe by Lewis et al. (1994). Uncertainties in the composition of the approximately normal Xe component in SiC (Xe-N) constitute the most serious problem in determining an age, surpassing remaining uncertainties in Xe retention and production rate. A possible interpretation is that spallation contributions are negligible and that trapped 124Xe/126Xe is ˜5% lower in Xe-N than in Q-Xe. But also for other reasonable assumptions for the 124Xe/126Xe ratio in Xe-N (e.g., as in Q-Xe), inferred exposure ages are considerably shorter than theoretically expected lifetimes for interstellar grains. A short presolar age is in line with observations by others (appearance, grain size distribution) that indicate little processing in the interstellar medium (ISM) of surviving (crystalline) SiC. This may be due to amorphization of SiC in the ISM on a much shorter time scale

  10. Lifetime measurement of the 41+ state of 58Ni with the recoil distance method

    Science.gov (United States)

    Loelius, C.; Iwasaki, H.; Brown, B. A.; Honma, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Braunroth, T.; Campbell, C. M.; Dewald, A.; Gade, A.; Kobayashi, N.; Langer, C.; Lee, I. Y.; Lemasson, A.; Lunderberg, E.; Morse, C.; Recchia, F.; Smalley, D.; Stroberg, S. R.; Wadsworth, R.; Walz, C.; Weisshaar, D.; Westerberg, A.; Whitmore, K.; Wimmer, K.

    2016-08-01

    The quadrupole transition rate for the 41+→21+ transition of 58Ni was determined from an application of the recoil distance method with the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA). The present result of the B (E 2 ;41+→21+) was found to be 50-6+11e2fm4 , which is about three times smaller than the literature value, indicating substantially less collectivity than previously believed. Shell model calculations performed with the GXPF1A effective interaction agree with the present data and the validity of the standard effective charges in understanding collectivity in the nickel isotopes is discussed.

  11. Analytical Morse/long-Range model potential and predicted infrared and microwave spectra for a symmetric top-atom dimer: A case study of CH{sub 3}F–He

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yong-Tao; Li, Hui, E-mail: Prof-huili@jlu.edu.cn [Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023 (China); Zeng, Tao [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

    2014-06-07

    Four-dimensional ab initio intermolecular potential energy surfaces (PESs) for CH{sub 3}F–He that explicitly incorporates dependence on the Q{sub 3} stretching normal mode of the CH{sub 3}F molecule and are parametrically dependent on the other averaged intramolecular coordinates have been calculated. Analytical three-dimensional PESs for v{sub 3}(CH{sub 3}F) = 0 and 1 are obtained by least-squares fitting the vibrationally averaged potentials to the Morse/Long-Range potential function form. With the 3D PESs, we employ Lanczos algorithm to calculate rovibrational levels of the dimer system. Following some re-assignments, the predicted transition frequencies are in good agreement with experimental microwave data for ortho-CH{sub 3}F, with the root-mean-square deviation of 0.042 cm{sup −1}. We then provide the first prediction of the infrared and microwave spectra for the para-CH{sub 3}F–He dimer. The calculated infrared band origin shifts associated with the ν{sub 3} fundamental of CH{sub 3}F are 0.039 and 0.069 cm{sup −1} for para-CH{sub 3}F–He and ortho-CH{sub 3}F–He, respectively.

  12. Atom chips

    CERN Document Server

    Reichel, Jakob

    2010-01-01

    This book provides a stimulating and multifaceted picture of a rapidly developing field. The first part reviews fundamentals of atom chip research in tutorial style, while subsequent parts focus on the topics of atom-surface interaction, coherence on atom chips, and possible future directions of atom chip research. The articles are written by leading researchers in the field in their characteristic and individual styles.

  13. Decoherence Spectroscopy for Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Raisa Trubko

    2016-08-01

    Full Text Available Decoherence due to photon scattering in an atom interferometer was studied as a function of laser frequency near an atomic resonance. The resulting decoherence (contrast-loss spectra will be used to calibrate measurements of tune-out wavelengths that are made with the same apparatus. To support this goal, a theoretical model of decoherence spectroscopy is presented here along with experimental tests of this model.

  14. Action spectra again?

    Science.gov (United States)

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  15. Commissioning and performance studies of a proton recoil detector at the COMPASS-II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joerg, Philipp; Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Koenigsmann, Kay; Kremser, Paul; Schopferer, Sebastian [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg (Germany); Collaboration: COMPASS Collaboration

    2014-07-01

    The COMPASS-II experiment is a fixed target experiment situated at CERN. A tertiary myon beam from the SPS scattered of protons from a liquid hydrogen target is used to measure Deeply Virtual Compton Scattering (DVCS) and Hard Exclusive Meson Production (HEMP). These processes offer a unique way to determine Generalized Parton Distributions, which are related to the total angular momentum of quarks, antiquarks and gluons in the nucleon by Ji's Sum Rule. One of the major parts of the COMPASS-II upgrade is the CAMERA detector. CAMERA is a proton recoil detector surrounding the COMPASS-II liquid hydrogen target. Its purpose is to measure the recoiled target proton in DVCS and HEMP reactions and viz to act as a veto to ensure the exclusivity of the measurement. The talk gives an outline of the detector and its readout electronics. It is focused on the commissioning and performance of the CAMERA detector and gives a brief insight into the ongoing DVCS analysis.

  16. Simulations of Recoiling Massive Black Holes in the Via Lactea Halo

    CERN Document Server

    Guedes, Javiera; Kuhlen, Micheal; Diemand, Jürg; Zemp, Marcel

    2009-01-01

    The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its ejection from the galaxy core. We have carried out N-body simulations of the motion of a MBH = 3.7x10^6 Msun MBH remnant in the Via Lactea I simulation, a Milky Way sized dark matter halo. The black hole receives a recoil velocity of Vkick = 80, 120, 200, 300, and 400 km/s at redshift 1.5, and its orbit is followed for over 1 Gyr within a live host halo, subject only to gravity and dynamical friction against the dark matter background. We show that, owing to asphericities in the dark matter potential, the orbit of the MBH is hightly non-radial, resulting in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro-Frenk-White dark matter halo plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion tensor...

  17. Gravitational-wave memory revisited: Memory from the merger and recoil of binary black holes

    International Nuclear Information System (INIS)

    Gravitational-wave memory refers to the permanent displacement of the test masses in an idealized (freely-falling) gravitational-wave interferometer. Inspiraling binaries produce a particularly interesting form of memory-the Christodoulou memory. Although it originates from nonlinear interactions at 2.5 post-Newtonian order, the Christodoulou memory affects the gravitational-wave amplitude at leading (Newtonian) order. Previous calculations have computed this non-oscillatory amplitude correction during the inspiral phase of binary coalescence. Using an 'effective-one-body' description calibrated with the results of numerical relativity simulations, the evolution of the memory during the inspiral, merger, and ringdown phases, as well as the memory's final saturation value, are calculated. Using this model for the memory, the prospects for its detection are examined, particularly for supermassive black hole binary coalescences that LISA will detect with high signal-to-noise ratios. Coalescing binary black holes also experience center-of-mass recoil due to the anisotropic emission of gravitational radiation. These recoils can manifest themselves in the gravitational-wave signal in the form of a 'linear' memory and a Doppler shift of the quasi-normal-mode frequencies. The prospects for observing these effects are also discussed.

  18. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Chris [TRIUMF, Vancouver, BC (Canada); Greife, Uwe; Hager, Ulrike [Colorado School of Mines, Golden, CO (United States)

    2014-06-15

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities. (orig.)

  19. The HERMES recoil photon-detector and nuclear p{sub t}-Broadening at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Haarlem, Y. van

    2007-09-15

    The first part of this work consists of hardware research and development done in order to construct and test a photon-detector as one of the three detectors of the HERMES recoil detector. The HERMES recoil detector consists of a target cell, a silicon-detector, a scintillating fiber tracker, and a photon-detector. All are inside a super-conducting magnet. The silicon detector uses energy deposition to determine the momentum of the particle because in its energy range the energy deposition is an unambiguous function of the momentum of the particle. The scintillating fiber tracker is located outside the beam-vacuum and is surrounded by the photon-detector. It consists of two barrels with layers of scintillating fibers. It detects particles by converting their energy deposition into light. It measures two space points of a charged particle and from the bending of the assigned track (in the magnetic field provided by the super-conducting magnet) a momentum measurement can be derived. The photon-detector is located between the scintillating fiber tracker and the magnet. It consists (from the inside out) of three layers of tungsten showering material followed by scintillating strips. The second part of this work is an analysis performed concerning the transverse momentum broadening of hadrons produced in deep-inelastic scattering on a nuclear target compared to a D target. (orig.)

  20. Planar track model and the prediction of alpha-recoil aging in radwaste materials

    Energy Technology Data Exchange (ETDEWEB)

    Borg, J.; Dran, J.C.; Langevin, Y.; Maurette, M.; Petit, J.C.; Vassent, B. (Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse)

    1982-10-01

    High fluences of low energy heavy ions generate very thin layers of radiation-damaged material on the surface of solid-state track detectors such as glasses and silicate minerals. For glasses, such layers undergo above a critical dose complex modifications in their chemical reactivity which strongly depend on the particular glass-leachant system. We have explained this striking threshold effect by the formation of a particular structural state on both crystalline and amorphous insulators, generated by the accumulation of individual damaged islands produced by the incident ions. We first recall our experimental technique that is based on an implantation of lead ions. Then we report on new experimental results on the ion-induced etchability of two very different insulating materials, muscovite mica and soda-lime glass which are conveniently described by a refined version of our planar track model. Finally, by assimilating such lead ions to recoil nuclei emitted during the ..cap alpha..-decay of actinide elements incorporated in radioactive waste storage materials (radwaste materials) we tentatively apply this new concept of planar track to the important problem of radiation stability of radwaste materials exposed to the internal irradiation with ..cap alpha..-recoils and subjected to corrosion by ground waters.

  1. Analysis of hard exclusive scattering processes of the HERMES recoil experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brodski, Irina

    2014-11-15

    Deeply virtual Compton Scattering (DVCS), ep → epγ is the simplest reaction giving indication of generalized parton distributions (GPD) of the nucleon. The DVCS process has the same final state as the Bethe-Heitler process (BH). For this reason the access is taken not through the cross-sections directly but through asymmetries between DVCS events depending on charge and polarization of the 27.6 GeV beam. For the first time the azimuthal asymmetry amplitudes according the charge of the lepton beam are extracted using a kinematically complete reconstruction method at the HERMES experiment. The recoil detector installed in 2006 allows the reconstruction of recoiling protons that completes the measurements of the forward detector to cover almost the complete angle range around the vertex. This approach allows suppressing the background processes by almost a complete magnitude compared to the traditional method using only the information of the forward spectrometer. The analysis of the asymmetries was carried out at different values of the kinematic variables t{sub c'} x{sub B} and Q{sup 2} to investigate the dependence of these variables. This work pushes the limits of the readability of data and shows which periods have been found to be unstable in the data acquisition. It points out the impact of this finding to previous HERMES publications.

  2. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.

  3. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    CERN Document Server

    Xu, Jingke; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K; Ianni, Aldo; Lamere, Edward; Lippincott, W Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-01-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3keV$_{\\text{nr}}$ to 52keV$_{\\text{nr}}$, covering the whole DAMA/LIBRA energy region for light WIMP interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies, but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  4. Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector

    CERN Document Server

    Chavarria, A E; Pena, J; Privitera, P; Robinson, A E; Scholz, B; Sengul, C; Zhou, J; Estrada, J; Izraelevitch, F; Tiffenberg, J; Neto, J R T de Mello; Machado, D Torres

    2016-01-01

    We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils were produced by low-energy neutrons ($<$24 keV) from a $^{124}$Sb-$^{9}$Be photoneutron source, and their ionization signal was measured down to 60 eV electron-equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency was found to deviate from the extrapolation to low energies of Lindhard model. This measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, a dark matter direct detection experiment located in the SNOLAB underground laboratory.

  5. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  6. Absorption spectra of AA-stacked graphite

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F [Department of Physics, National Cheng Kung University, Taiwan (China); Shyu, F L, E-mail: fl.shyu@msa.hinet.ne, E-mail: mflin@mail.ncku.edu.t [Department of Physics, ROC Military Academy, 830 Kaohsiung, Taiwan (China)

    2010-08-15

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  7. Detection of nuclear recoils in prototype dark matter detectors, made from Al, Sn and Zn Superheated Superconducting Granules

    OpenAIRE

    Abplanalp, M.; Berger, C.; Czapek, G.; Diggelmann, U.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pozzi, R.; Pretzl, K.; Schmiemann, K.; Perret-Gallix, D.; Brandt, B. van den; Konter, J. A.; Mango, S.

    1994-01-01

    This work is part of an ongoing project to develop a Superheated Superconducting Granule (SSG) detector for cold dark matter and neutrinos. The response of SSG devices to nuclear recoils has been explored irradiating SSG detectors with a 70MeV neutron beam. The aim of the experiment was to test the sensitivity of Sn, Al and Zn SSG detectors to nuclear recoil energies down to a few keV. The detector consisted of a hollow teflon cylinder (0.1cm$^3$ inner volume) filled with tiny superconducting...

  8. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva [Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb (Croatia)

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  9. Design and Characterization of a Neutron Calibration Facility for the Study of sub-keV Nuclear Recoils

    OpenAIRE

    Barbeau, P. S.; Collar, J.I.(Enrico Fermi Institute, KICP, University of Chicago, Chicago, IL, United States of America); Whaley, P. M.

    2007-01-01

    As part of an experimental effort to demonstrate sensitivity in a large-mass detector to the ultra-low energy recoils expected from coherent neutrino-nucleus elastic scattering, we have designed and built a highly monochromatic 24 keV neutron beam at the Kansas State University Triga Mark-II reactor. The beam characteristics were chosen so as to mimic the soft recoil energies expected from reactor antineutrinos in a variety of targets, allowing to understand the response of dedicated detector...

  10. Unconventional scanning tunneling conductance spectra for graphene

    OpenAIRE

    Saha, K.; Paul, I.; Sengupta, K.

    2009-01-01

    We compute the tunneling conductance of graphene as measured by a scanning tunneling microscope (STM) with a normal/superconducting tip. We demonstrate that for undoped graphene with zero Fermi energy, the first derivative of the tunneling conductance with respect to the applied voltage is proportional to the density of states of the STM tip. We also show that the shape of the STM spectra for graphene doped with impurities depends qualitatively on the position of the impurity atom in the grap...

  11. Cassini UVIS observations of Titan nightglow spectra

    OpenAIRE

    Ajello, Joseph M.; West, Robert A.; Gustin, Jacques; Larsen, Kristopher; Stewart, A. Ian F.; Esposito, Larry W.; Mcclintock, William E.; Holsclaw, Gregory M.; Bradley, E. Todd

    2012-01-01

    In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluor...

  12. Spectra of stable sonoluminescence

    OpenAIRE

    Lewia, Stephen D.

    1992-01-01

    Approved for public release; distribution is unlimited The continuous emission of picosecond pulses of light has been observed to originate from a bubble trapped at the pressure antinode of a resonant sound field in water and in water/glycerin mixtures. The spectra of this light in several solutions has been measured with a scanning monochrometer/photomultiplier detector system. The spectra are broadband and show strong emission in the UV region. A comparison of this measurement to two ...

  13. 18F in hot atom chemistry and equilibrium chemical kinetics

    International Nuclear Information System (INIS)

    Superexcited molecules are unusual species that at present can only be investigated using nuclear recoil methods. The thermochemical technique for measuring the excitation energy distributions of superexcited molecules is reviewed and applied to recent studies of CF318F and C2F518F formed from high energy atomic exchange reactions in CF4 and C2F6. The nascent CF318F and C2F518F range in energy from 1.7 to about 45 eV. The average energies of these products range from 15 to 20 eV. The internal excitation that accompanies these reactions is initially localized near the 18F bonding site, and the C2F518F decomposition mechanism is non-statistical. Moderated nuclear recoil experiments yield mechanisms and rates for the reactions of thermal 18F atoms. Under our standard experimental conditions from 3.4 x 104 to 3.4 x 108 labeled product molecules are available for radioassay. This procedure is free from systematic error and the measurements yield exceptional precision and sensitivity because (1) high energy reactions with the thermally active reagents are suppressed. (2) the host environment is rigorously controlled, and (3) the molecular products from many single atom reactions are directly counted. The limitations of this technique are described and results are presented for the reactions of thermal 18F atoms with CH4 and C2H4. (J.P.N.)

  14. Chaotic spectra: How to extract dynamic information

    International Nuclear Information System (INIS)

    Nonlinear dynamics is applied to chaotic unassignable atomic and molecular spectra with the aim of extracting detailed information about regular dynamic motions that exist over short intervals of time. It is shown how this motion can be extracted from high resolution spectra by doing low resolution studies or by Fourier transforming limited regions of the spectrum. These motions mimic those of periodic orbits (PO) and are inserts into the dominant chaotic motion. Considering these inserts and the PO as a dynamically decoupled region of space, resonant scattering theory and stabilization methods enable us to compute ladders of resonant states which interact with the chaotic quasi-continuum computed in principle from basis sets placed off the PO. The interaction of the resonances with the quasicontinuum explains the low resolution spectra seen in such experiments. It also allows one to associate low resolution features with a particular PO. The motion on the PO thereby supplies the molecular movements whose quantization causes the low resolution spectra. Characteristic properties of the periodic orbit based resonances are discussed. The method is illustrated on the photoabsorption spectrum of the hydrogen atom in a strong magnetic field and on the photodissociation spectrum of H3+. Other molecular systems which are currently under investigation using this formalism are also mentioned. 53 refs., 10 figs., 2 tabs

  15. Chaotic spectra: How to extract dynamic information

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, H.S.; Gomez Llorente, J.M.; Zakrzewski, J.; Kulander, K.C.

    1988-10-01

    Nonlinear dynamics is applied to chaotic unassignable atomic and molecular spectra with the aim of extracting detailed information about regular dynamic motions that exist over short intervals of time. It is shown how this motion can be extracted from high resolution spectra by doing low resolution studies or by Fourier transforming limited regions of the spectrum. These motions mimic those of periodic orbits (PO) and are inserts into the dominant chaotic motion. Considering these inserts and the PO as a dynamically decoupled region of space, resonant scattering theory and stabilization methods enable us to compute ladders of resonant states which interact with the chaotic quasi-continuum computed in principle from basis sets placed off the PO. The interaction of the resonances with the quasicontinuum explains the low resolution spectra seen in such experiments. It also allows one to associate low resolution features with a particular PO. The motion on the PO thereby supplies the molecular movements whose quantization causes the low resolution spectra. Characteristic properties of the periodic orbit based resonances are discussed. The method is illustrated on the photoabsorption spectrum of the hydrogen atom in a strong magnetic field and on the photodissociation spectrum of H/sub 3//sup +/. Other molecular systems which are currently under investigation using this formalism are also mentioned. 53 refs., 10 figs., 2 tabs.

  16. Mass and energy dispersive recoil spectrometry of GaAs structures

    International Nuclear Information System (INIS)

    Mass and energy dispersive Recoil Spectrometry (RS) using heavy ions at energies of about 0.2Α-0.8Α MeV has attracted much interest recently due to its potential for separately and unambiguously generating information on isotopic depth distributions. The principal advantages of mass and energy dispersive RS are that both light and heavy elements can be separately studied simultaneously and problems caused by chemical matrix effects are avoided since the technique is based on high energy nucleus-nucleus scattering. In order to elucidate reactions taking place in various GaAs structures, Time of flight-Energy (ToF-E) RS was developed to allow Ga and As to be studied separately down to depths of about 500-800 nm with a depth resolution of about 16 nm at the surface. This was shown in a study of an AlxGa1-xAs quantum-well structure. The benefits of using ToF-E RS on GaAs structures were further demonstrated in studies of Co/GaAs and CoSi2/GaAs reactions, as well as in a study of the composition of MOCVD grown AlxGa1-xAs. Most recoil measurements employed 127I at energies of about 50-90 MeV as projectiles. The recoil detector telescope consisted of a silicon energy detector and two carbon foil time pick-off detectors separated by a variable flight length of 213.5-961 mm. The reactions taking place between various thin films and GaAs were also studied using complementary techniques such as XRD, XPS and SEM. Co was found to react extensively with GaAs, already at about 300 degrees C, making it unsuitable as a contact material. Thin films of Co and Si were found to react extensively with each other and to form CoSi2 at 500 degrees C and above. CoSi2, a low resistivity silicide, turned out to be stable on GaAs, at least up to 700 degrees C. Considerable grain growth could cause problems, however, in the use of CoSi2-contacts. 112 refs, figs, tabs

  17. Atomic physics

    International Nuclear Information System (INIS)

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 23Po,2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 23Po level of helium-like krypton

  18. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  19. Supermassive recoil velocities for binary black-hole mergers with antialigned spins.

    Science.gov (United States)

    González, José A; Hannam, Mark; Sperhake, Ulrich; Brügmann, Bernd; Husa, Sascha

    2007-06-01

    Recent calculations of the recoil velocity in binary black-hole mergers have found the kick velocity to be of the order of a few hundred km/s in the case of nonspinning binaries and about 500 km/s in the case of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km/s. We test these predictions and demonstrate that kick velocities of at least 2500 km/s are possible for equal-mass binaries with antialigned spins in the orbital plane. Kicks of that magnitude are likely to have significant repercussions for models of black-hole formation, the population of intergalactic black holes, and the structure of host galaxies. PMID:17677893

  20. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  1. Measurements of X-rays from Ne recoil ions with a position sensitive detector

    International Nuclear Information System (INIS)

    Measurements of soft X-rays with wavelength 35-47 nm from Ne recoil ions, excited by 24 MeV Cl ions, are reported obtained with a 2.2 m grazing incidence spectrometer. A position sensitive channelplate detector with a two-dimensional wedge and strip readout is used instead of a channeltron, scanning along the Rowland circle. The perfomance of this position sensitive detector is optimized, wavelength calibration procedures are worked out and its efficiency is compared with the scanning channeltron. The detection yield and resolution is measured as a function of the angle of the radiation to the detector normal. An increase by a factor of 12 in the detection efficiency over a spectral region is found for the position sensitive detector compared with a scanning channeltron detector. (orig.)

  2. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    Science.gov (United States)

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ.

  3. Absolute Absorption Cross Sections from Photon Recoil in a Matter-Wave Interferometer

    Science.gov (United States)

    Eibenberger, Sandra; Cheng, Xiaxi; Cotter, J. P.; Arndt, Markus

    2014-06-01

    We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates many problems related to photon cycling, state mixing, photobleaching, photoinduced heating, fragmentation, and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters, and nanoparticles.

  4. Absolute absorption cross sections from photon recoil in a matter-wave interferometer

    CERN Document Server

    Eibenberger, Sandra; Cotter, J P; Arndt, Markus

    2014-01-01

    We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates all problems related to photon-cycling, state-mixing, photo-bleaching, photo-induced heating, fragmentation and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters and nanoparticles.

  5. Neutron elastic recoil detection analysis for the JT-60U armor tile

    International Nuclear Information System (INIS)

    The neutron elastic recoil detection analysis (NERDA) using 14.1 MeV D-T neutrons has been proposed to extend the analyzing depth of hydrogen isotopes up to several hundreds micrometers. The proof-of-principle experiment is performed using the standard sample of polyethylene films. The uniform depth profile of hydrogen isotope consistent with the nominal density is obtained. The NERDA method is applied to analyze the plasma facing component (PFC) of JT-60U tokamak. The hydrogen depth profile from the surface to 900μm with two components is obtained. The results support that the NERDA method is applicable to measure the absolute depth profiles in fusion reactor materials. (T.I.)

  6. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  7. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfu, E-mail: zhangjfu@gmail.com; Ouyang, Xiaoping; Zhang, Xianpeng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Guoguang [Applied Institute of Nuclear Technology, China Institute of Atomic Energy, Beijing 102413 (China); Ruan, Jinlu; Zhang, Xiaodong; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun [Northwest Institute of Nuclear Technology, Xi’an 710024 (China)

    2015-12-15

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10{sup −7} at an energy resolution of 1.5% for measuring DT neutrons.

  8. The Annealing of (n, γ) Recoil Damage in Ferroelectric Tri-Glycine Sulphate

    International Nuclear Information System (INIS)

    The investigation of neutron irradiated ferroelectric crystals may throw light on some factors controlling the annealing reactions of (n, γ) recoil fragments in complex crystals. Experiments conducted with irradiated triglycine sulphate crystal show wide variations of the S35 retention as a function of the annealing temperature. Annealing both below and above ferroelectric transition temperature (47°C) proceeds at faster rates than at this temperature. The kinetics of annealing as a function of the dielectric constant of the ferroelectric crystals is compared to results obtained for ammonium sulphate (which presents a ferroelectric transition at a much lower temperature). A discussion of the observations is presented in the light of present theories of annealing phenomena. (author)

  9. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2013-04-15

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  10. Recoil properties of radionuclides formed in the photonuclear reactions on natCu at intermediate energies

    International Nuclear Information System (INIS)

    The recoil properties of 26 radionuclides produced in the photonuclear reactions on Cu at bremsstrahlung end-point energies (E0) of 250 to 1000 MeV have been investigated using the thick-target thick-catcher method. Kinematic properties of the product nuclei were calculated by the two-step vector velocity model. The calculated mean kinetic energies, T, of product nuclei increase with increase of the mass difference between products and target, reflecting the resonance natures and absorption mechanisms. The T at E0 ≥ 600 MeV were well reproduced by a calculation performed by PICA code by GABRIEL and ALSMILLER at E0 = 400 MeV, except for (γ,xn) products by giant-resonance. (author)

  11. Development of neutron radiography facility for detection of hydrogenous components using recoil protons technique

    International Nuclear Information System (INIS)

    The neutron radiography facility of Egypt second research reactor (ETRR-2)has been developed toward quantitative neutron radiography to detect hydrogenous components in soil and sandstone samples. The development includes using of portable Am241-Be neutron source of activity 1 Ci, rather than using of the reactor neutron radiography beam,i.e., no need for reactor operation .In this paper, the characterization parameters of the neutron source were measured to use the source in measuring of hydrogenous contents in soil using recoil protons technique. The usefulness of this technique is to detect the underground water for ancient Egyptian and islamic heritage protection and use methods to treat soil for preventing water migration inside. Also,sandstone Samples had been studied using the same technique to detect the trace amount of petroleum in domestic sandstone samples from different Egyptian locations.

  12. Search for Event Rate Modulation in XENON100 Electronic Recoil Data

    CERN Document Server

    Aprile, E; Agostini, F; Alfonsi, M; Anthony, M; Arazi, L; Arisaka, K; Arneodo, F; Balan, C; Barrow, P; Baudis, L; Bauermeister, B; Breur, P A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Buetikofer, L; Cardoso, J M R; Cervantes, M; Coderre, D; Colijn, A P; Contreras, H; Cussonneau, J P; Decowski, M P; de Perio, P; Di Giovanni, A; Duchovni, E; Fattori, S; Ferella, A D; Fieguth, A; Fulgione, W; Gao, F; Garbini, M; Geis, C; Goetzke, L W; Grignon, C; Gross, E; Hampel, W; Hasterok, C; Itay, R; Kaether, F; Kaminsky, B; Kessler, G; Kish, A; Landsman, H; Lang, R F; Calloch, M Le; Lellouch, D; Levinson, L; Levy, C; Lindemann, S; Lindner, M; Lopes, J A M; Lyashenko, A; Macmullin, S; Undagoitia, T Marrodan; Masbou, J; Massoli, F V; Mayani, D; Meng, A J Melgarejo Fernandez Y; Messina, M; Micheneau, K; Miguez, B; Molinario, A; Murra, M; Naganoma, J; Ni, K; Oberlack, U; Orrigo, S E A; Pakarha, P; Persiani, R; Piastra, F; Pienaar, J; Plante, G; Priel, N; Rauch, L; Reichard, S; Reuter, C; Rizzo, A; Rosendahl, S; Santos, J M F dos; Sartorelli, G; Schindler, S; Schreiner, J; Schumann, M; Lavina, L Scotto; Selvi, M; Shagin, P; Simgen, H; Teymourian, A; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C; Wall, R; Wang, H; Weber, M; Weinheimer, C; Zhang, Y

    2015-01-01

    We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.

  13. Exclusion of Leptophilic Dark Matter Models using XENON100 Electronic Recoil Data

    CERN Document Server

    Aprile, E; Alfonsi, M; Arazi, L; Arisaka, K; Arneodo, F; Auger, M; Balan, C; Barrow, P; Baudis, L; Bauermeister, B; Behrens, A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Buetikofer, L; Cardoso, J M R; Cervantes, M; Coderre, D; Colijn, A P; Contreras, H; Cussonneau, J P; Decowski, M P; Di Giovanni, A; Duchovni, E; Fattori, S; Ferella, A D; Fieguth, A; Fulgione, W; Gao, F; Garbini, M; Geis, C; Goetzke, L W; Grignon, C; Gross, E; Hampel, W; Itay, R; Kaether, F; Kaminsky, B; Kessler, G; Kish, A; Landsman, H; Lang, R F; Calloch, M Le; Lellouch, D; Levinson, L; Levy, C; Lindemann, S; Lindner, M; Lopes, J A M; Lyashenko, A; Macmullin, S; Undagoitia, T Marrodan; Masbou, J; Massoli, F V; Paras, D Mayani; Fernandez, A J Melgarejo; Meng, Y; Messina, M; Miguez, B; Molinario, A; Morana, G; Murra, M; Naganoma, J; Ni, K; Oberlack, U; Orrigo, S E A; Pakarha, P; Pantic, E; Persiani, R; Piastra, F; Pienaar, J; Plante, G; Priel, N; Rauch, L; Reichard, S; Reuter, C; Rizzo, A; Rosendahl, S; Santos, J M F dos; Sartorelli, G; Schindler, S; Schreiner, J; Schumann, M; Lavina, L Scotto; Selvi, M; Shagin, P; Simgen, H; Teymourian, A; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C; Vitells, O; Wall, R; Wang, H; Weber, M; Weinheimer, C

    2015-01-01

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross-sections above 6x10^(-35) cm^2 for particle masses of m_chi = 2 GeV/c^2. Independent of the dark matter halo, we exclude leptophilic models as explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4 sigma confidence level, mirror dark matter at 3.6 sigma, and luminous dark matter at 4.6 sigma.

  14. Proton recoil telescope based on diamond detectors for measurement of fusion neutrons

    CERN Document Server

    Caiffi, B; Ripani, M; Pillon, M; Taiuti, M

    2015-01-01

    Diamonds are very promising candidates for the neutron diagnostics in harsh environments such as fusion reactor. In the first place this is because of their radiation hardness, exceeding that of Silicon by an order of magnitude. Also, in comparison to the standard on-line neutron diagnostics (fission chambers, silicon based detectors, scintillators), diamonds are less sensitive to $\\gamma$ rays, which represent a huge background in fusion devices. Finally, their low leakage current at high temperature suppresses the detector intrinsic noise. In this talk a CVD diamond based detector has been proposed for the measurement of the 14 MeV neutrons from D-T fusion reaction. The detector was arranged in a proton recoil telescope configuration, featuring a plastic converter in front of the sensitive volume in order to induce the (n,p) reaction. The segmentation of the sensitive volume, achieved by using two crystals, allowed to perform measurements in coincidence, which suppressed the neutron elastic scattering backg...

  15. Fabrication of {sup 94}Zr thin target for recoil distance doppler shift method of lifetime measurement

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, C.K.; Rohilla, Aman [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Abhilash, S.R.; Kabiraj, D.; Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Mehta, D. [Department of Physics, Panjab University, Chandigarh 160014 (India); Chamoli, S.K., E-mail: skchamoli@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-11-11

    A thin isotopic {sup 94}Zr target of thickness 520μg/cm{sup 2} has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm{sup 2} thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of {sup 94}Zr from peeling off, a very thin layer of gold has been evaporated on a {sup 94}Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched {sup 94}Zr target material was utilized for the fabrication of {sup 94}Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  16. Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer

    CERN Document Server

    Meliani, Zakaria; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri

    2016-01-01

    (Abridged) We here continue our effort to model the behaviour of matter when orbiting or accreting onto a generic black hole by developing a new numerical code employing advanced techniques geared solve the equations of in general-relativistic hydrodynamics. The new code employs a number of high-resolution shock-capturing Riemann-solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of AMR techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to compute accurately the electromagnetic emissions from such accretion flows. We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry and performed either in 2D or 3D. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black hole binary interacting with the surrounding ...

  17. Gas flow scintillation detector for weak beta emitters and its application to recoil tritium chemistry

    International Nuclear Information System (INIS)

    The scintillation flow counter was employed in a radio gas chromatograph. The scintillation detector utilized anthracene crystals as a fluor. The scintillation flow counter did not quench with the chloroethylene system, gave better peak resolution, exhibited less tailing of the peaks, and returned to the initial background level much faster. A computer program was developed to find and determine the areas of the peaks from the radio gas chromatograph. An improved gas chromatographic separation of the products for the dichloroethylene system was developed utilizing two columns in series and temperature programming. The reaction of recoil tritium with unsaturated carbons of the cis- and trans-1,2-dichloroethylene was studied. The data support the fast, direct substitution mechanism with retention of configuration in the liquid phase. The small geometric isomerization of 1,2-dichloroethylene probably arises from rotation about the ethylenic double bond of the excited 1,2-dichloroethylene molecule produced from the tritium for hydrogen substitution reaction

  18. Studies of (p, {gamma}) reactions with the Daresbury Recoil Separator at ORNL'S HRIBF

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, R. [Dept. of Physics and Astronomy, Univ. of North Carolina, Chapel Hill, NC 27599 (United States); Abbotoy, E. [Physics Dept., Tennessee Technological Univ., Cookeville, TN 38505 (United States); Bardayan, D.W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Blackmon, J.C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Champagne, A.E. [Dept. of Physics and Astronomy, Univ. of North Carolina, Chapel Hill, NC 27599 (United States); Chen, A.A. [A. W. Wright Nuclear Structure Laboratory, Yale Univ., New Haven, CT 06511 (United States); Greife, U. [Dept. of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Hill, D.W. [Physics Dept., Tennessee Technological Univ., Cookeville, TN 38505 (United States); James, A.N. [Univ. of Liverpool, Liverpool L69 3BX, UK (United Kingdom); Kozub, R.L. [Physics Dept., Tennessee Technological Univ., Cookeville, TN 38505 (United States); Lewis, T.A. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Livesay, R. [Dept. of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Ma, Z. [Univ. of Tennessee, Knoxville, TN 37996 (United States); Mahan, S.L. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); McConnell, J.W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Milner, W.T. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Moazen, B.H. [Physics Dept., Tennessee Technological Univ., Cookeville, TN 38505 (United States); Parker, P.D. [A. W. Wright Nuclear Structure Laboratory, Yale Univ., New Haven, CT 06511 (United States); Pierce, D.E. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Roettger, M.E. [Physics Dept., Tennessee Technological Univ., Cookeville, TN 38505 (United States)] [and others

    2005-02-07

    The fusion of protons with radioactive nuclei is important in stellar explosions such as novae and X-ray bursts and for the production of neutrinos in the sun. The Daresbury Recoil Separator and a windowless gas target system have been installed at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) for measurements of proton capture reactions in inverse kinematics with radioactive ion beams. The performance of the system has been characterized with a number of experiments using stable ion beams. We report on results from these commissioning measurements and plans for measurements of the {sup 1}H({sup 17}F,{sup 18}Ne) and {sup 1}H({sup 7}Be,{sup 8}B) reactions.

  19. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  20. Measurement of the ionization yield of nuclear recoils in liquid argon at 80 and 233 keV

    CERN Document Server

    Bondar, A; Dolgov, A; Grishnyaev, E; Polosatkin, S; Shekhtman, L; Shemyakina, E; Sokolov, A

    2014-01-01

    The energy calibration of nuclear recoil detectors is of primary importance to rare-event experiments such as those of direct dark matter search and coherent neutrino-nucleus scattering. In particular, such a calibration is performed by measuring the ionization yield of nuclear recoils in liquid Ar and Xe detection media, using neutron elastic scattering off nuclei. In the present work, the ionization yield for nuclear recoils in liquid Ar has for the first time been measured in the higher energy range, at 80 and 233 keV, using a two-phase Cryogenic Avalanche Detector (CRAD) and DD neutron generator. The ionization yield in liquid Ar at an electric field of 2.3 kV/cm amounted to 7.8+/-1.1 and 9.7+/-1.3 e-/keV at 80 and 233 keV respectively. Neither Jaffe model for nuclear recoil-induced ionization nor that of Thomas-Imel can consistently describe the energy dependence of the ionization yield.