WorldWideScience

Sample records for atomic recoil spectra

  1. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  2. Pump-probe and Four-wave Mixing Spectra Arising from Recoil-induced Resonance in an Operating Cesium Magneto-Optical Trap

    Science.gov (United States)

    Ji, Zhonghua; Zhang, Hongshan; Su, Dianqiang; Zhao, Yanting; Xiao, Liantuan; Jia, Suotang

    2018-02-01

    We present experimental observation of recoil-induced resonance (RIR) in an operating cesium magneto-optical trap (MOT) by both pump-probe absorption and four-wave mixing spectra simultaneously. We investigate the dependence of amplitudes of these two spectra on pump beam intensity and frequency. The measurement results agree well with the recoil-induced theory with modifications of Raman transition effect and atomic number. The systematical study on RIR spectra is meaningful for the diagnostic measurement of cold atoms in an operating MOT.

  3. Atomic-cascade experiment with detection of the recoil atom

    Energy Technology Data Exchange (ETDEWEB)

    Huelga, S.F. (Dept. de Fisica, Univ. de Oviedo (Spain)); Ferrero, M. (Dept. de Fisica, Univ. de Oviedo (Spain)); Santos, E. (Dept. de Fisica Moderna, Univ. de Cantabria (Spain))

    1994-07-20

    Bell's inequalities cannot be violated in atomic-cascade experiments, even with ideal apparatus, due to the three-body character of the atomic decay. Here we propose a new experiment that would block this loophole by means of a suitable selection of an ensemble of photon pairs. A threshold value for the quantum efficiency is found which may allow the discrimination between quantum mechanics and local-hidden-variables theories. Experimental requirements for performing such a test are discussed. (orig.).

  4. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Yosuke, E-mail: iwamoto.yosuke@jaea.go.jp; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for {sup 72}Ge, {sup 75}As, {sup 89}Y, and {sup 109}Ag in the ENDF/B-VII.1 library, and for {sup 90}Zr and {sup 55}Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  5. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    Science.gov (United States)

    Iwamoto, Yosuke; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for 72Ge, 75As, 89Y, and 109Ag in the ENDF/B-VII.1 library, and for 90Zr and 55Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  6. Search for the admixture of heavy neutrinos in the recoil spectra of {sup 37}Ar decay

    Energy Technology Data Exchange (ETDEWEB)

    Hindi, M.M.; Kozub, R.L.; Miocinovic, P. [Department of Physics, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Avci, R.; Zhu, L. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Hussein, A.H. [Physics Program, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9 (CANADA)

    1998-10-01

    Neutrino-induced recoil spectra of {sup 37}Cl ions produced in the electron capture (EC) decay of {sup 37}Ar were measured and searched for the presence of massive neutrinos admixed to the dominant electron neutrino. Fractions of a monolayer of {sup 37}Ar were physisorbed on Au and on several underlayers of {sup 40}Ar adsorbed on both Au and graphite substrates cooled to {le}20 K under ultrahigh vacuum conditions. Time-of-flight spectra of the recoiling ions were recorded in coincidence with x rays and Auger electrons emitted following the EC decay. By searching these spectra for peaks with energies between 7.6 eV and 3.6 eV upper limits were placed on the mixing probability of the electron neutrino with heavy neutrinos in the 370{endash}640 keV mass range. These limits vary from 1 to 4{percent}, at the 90{percent} confidence level. {copyright} {ital 1998} {ital The American Physical Society}

  7. Evaporation residue collection efficiencies and position spectra of the Dubna gas-filled recoil separator

    CERN Document Server

    Subotic, K M; Utyonkov, V K; Lobanov, Y V; Abdullin, F S; Polyakov, A N; Tsyganov, Yu S; Ivanov, O V

    2002-01-01

    The focal-plane position spectra and collection efficiencies of the Dubna gas-filled recoil separator at the U400 cyclotron used to separate evaporation residues of complete fusion reaction products are described. The separator consists of a 23 deg. -dipole magnet and a quadrupole doublet and is filled with hydrogen at a pressure of about 1 Torr. After passing through the time-of-flight system, the separated evaporation residues are collected in a 120 mm centre dot 40 mm position-sensitive semiconductor detector at the focal plane. Depending on the asymmetry of the projectile, target combinations, the measured collection efficiencies were 3-45%, with suppression factors exceeding 10 sup 1 sup 5 and 10 sup 4 for beam and target-like particles, respectively. The ANAMARI code that is used to determine the separator settings is described and its predictions for the evaporation residue position spectra and collection efficiencies are compared with experimental data.

  8. Genuine Tripartite Entanglement and Nonlocality in Bose-Einstein Condensates by Collective Atomic Recoil

    Directory of Open Access Journals (Sweden)

    Gerardo Adesso

    2013-05-01

    Full Text Available We study a system represented by a Bose-Einstein condensate interacting with a cavity field in presence of a strong off-resonant pumping laser. This system can be described by a three-mode Gaussian state, where two are the atomic modes corresponding to atoms populating upper and lower momentum sidebands and the third mode describes the scattered cavity field light. We show that, as a consequence of the collective atomic recoil instability, these modes possess a genuine tripartite entanglement that increases unboundedly with the evolution time and is larger than the bipartite entanglement in any reduced two-mode bipartition. We further show that the state of the system exhibits genuine tripartite nonlocality, which can be revealed by a robust violation of the Svetlichny inequality when performing displaced parity measurements. Our exact results are obtained by exploiting the powerful machinery of phase-space informational measures for Gaussian states, which we briefly review in the opening sections of the paper.

  9. Vibration spectra of single atomic nanocontacts

    Energy Technology Data Exchange (ETDEWEB)

    Bourahla, B [Laboratoire de Physique et Chimie Quantique, Departement de Physique, Faculte des Sciences, Universite Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou (Algeria); Khater, A [Laboratoire de Physique de l' Etat Condense UMR 6087, Universite du Maine, 72085 Le Mans (France); Rafil, O [Laboratoire de Physique de l' Etat Condense UMR 6087, Universite du Maine, 72085 Le Mans (France); Tigrine, R [Laboratoire de Physique et Chimie Quantique, Departement de Physique, Faculte des Sciences, Universite Mouloud Mammeri de Tizi-Ouzou, 15000 Tizi-Ouzou (Algeria)

    2006-10-04

    This paper introduces a simple model for an atomic nanocontact, where its mechanical properties are analysed by calculating numerically the local spectral properties at the contact atom and the nearby atoms. The standard methodology for calculating phonon spectral densities is extended to enable the calculation of localized contact modes and local density of states (DOS). The model system considered for the nanocontact consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. The matching method is used, in the harmonic approximation, to calculate the local Green's functions for the irreducible set of sites that constitute the inhomogeneous nanocontact domain. The Green's functions yield the vibration spectra and the DOS for the atomic sites. These are numerically calculated for different cases of elastic hardening and softening of the nanocontact domain. The purpose is to investigate how the local dynamics respond to local changes in the elastic environment. The analysis of the spectra and of the DOS identifies characteristic features and demonstrates the central role of a core subset of these sites for the dynamics of the nanocontact. The system models a situation which may be appropriate for contact atomic force microscopy.

  10. Students' Mental Models of Atomic Spectra

    Science.gov (United States)

    Körhasan, Nilüfer Didis; Wang, Lu

    2016-01-01

    Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…

  11. The New NIST Atomic Spectra Database

    Science.gov (United States)

    Kelleher, D. E.; Martin, W. C.; Wiese, W. L.; Sugar, J.; Fuhr, J. R.; Olsen, K.; Musgrove, A.; Mohr, P. J.; Reader, J.; Dalton, G. R.

    The new Atomic Spectra Database (ASD), Version 2.0, of the National Institute of Standards and Technology (NIST) contains significantly more data and covers a wider range of atomic and ionic transitions and energy levels than earlier versions. All data are integrated. It also has a new user interface and search engine. ASD contains spectral reference data which have been critically evaluated and compiled by NIST. Version 2.0 contains data on 900 spectra, with about 70000 energy levels and 91000 lines ranging from about 1 Ångström to 200 micrometers, roughly half of which have transition probabilities with estimated uncertainties. References to the NIST compilations and original data sources are listed in the ASD bibliography. A detailed “Help” file serves as a user's manual, and full search and filter capabilities are provided.

  12. Spreadsheet-Based Program for Simulating Atomic Emission Spectra

    Science.gov (United States)

    Flannigan, David J.

    2014-01-01

    A simple Excel spreadsheet-based program for simulating atomic emission spectra from the properties of neutral atoms (e.g., energies and statistical weights of the electronic states, electronic partition functions, transition probabilities, etc.) is described. The contents of the spreadsheet (i.e., input parameters, formulas for calculating…

  13. Harmonic polynomials, hyperspherical harmonics, and atomic spectra

    Science.gov (United States)

    Avery, John Scales

    2010-01-01

    The properties of monomials, homogeneous polynomials and harmonic polynomials in d-dimensional spaces are discussed. The properties are shown to lead to formulas for the canonical decomposition of homogeneous polynomials and formulas for harmonic projection. Many important properties of spherical harmonics, Gegenbauer polynomials and hyperspherical harmonics follow from these formulas. Harmonic projection also provides alternative ways of treating angular momentum and generalised angular momentum. Several powerful theorems for angular integration and hyperangular integration can be derived in this way. These purely mathematical considerations have important physical applications because hyperspherical harmonics are related to Coulomb Sturmians through the Fock projection, and because both Sturmians and generalised Sturmians have shown themselves to be extremely useful in the quantum theory of atoms and molecules.

  14. PREFACE: Atomic Spectra and Oscillator Strengths (ASOS9) Atomic Spectra and Oscillator Strengths (ASOS9)

    Science.gov (United States)

    Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter

    2009-05-01

    For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy by Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and Physics Department of Lund University, 7-10 August 2007, and was attended by 99 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume of Physica Scripta contains contributions from the invited presentations of the conference. For the first time, papers from the ASOS9 poster presentations have been made feely available online in a complementary volume of Journal of Physics: Conference Series. With these two volumes the character of ASOS9 is more evident, and together they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy, where both the providers and the users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, which includes fusion energy and lighting research. The oral presentations, all but one of which are presented in this volume, provided an extensive synopsis of techniques currently in use and those that are being planned. New to ASOS9 was the extent to which techniques such as cold, trapped atoms and molecules and frequency combs are

  15. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  16. Atomic transition probabilities of Ce I from Fourier transform spectra

    Science.gov (United States)

    Lawler, J. E.; Chisholm, J.; Nitz, D. E.; Wood, M. P.; Sobeck, J.; Den Hartog, E. A.

    2010-04-01

    Atomic transition probabilities for 2874 lines of the first spectrum of cerium (Ce I) are reported. These data are from new branching fraction measurements on Fourier transform spectra normalized with previously reported radiative lifetimes from time-resolved laser-induced-fluorescence measurements (Den Hartog et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085006). The wavelength range of the data set is from 360 to 1500 nm. Comparisons are made to previous investigations which are less extensive. Accurate Ce i transition probabilities are needed for lighting research and development on metal halide high-intensity discharge lamps.

  17. Atomic transition probabilities of Ce I from Fourier transform spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, J E; Wood, M P; Den Hartog, E A [Department of Physics, University of Wisconsin, 1150 University Ave., Madison, WI 53706 (United States); Chisholm, J [Department of Physics, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467 (United States); Nitz, D E [Department of Physics, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057 (United States); Sobeck, J, E-mail: jelawler@wisc.ed, E-mail: chishojd@bc.ed, E-mail: nitz@stolaf.ed, E-mail: mpwood@wisc.ed, E-mail: jsobeck@uchicago.ed, E-mail: eadenhar@wisc.ed [Department of Astronomy and Astrophysics, University of Chicago, 5640 Ellis Ave., Chicago, IL 60637 (United States)

    2010-04-28

    Atomic transition probabilities for 2874 lines of the first spectrum of cerium (Ce I) are reported. These data are from new branching fraction measurements on Fourier transform spectra normalized with previously reported radiative lifetimes from time-resolved laser-induced-fluorescence measurements (Den Hartog et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085006). The wavelength range of the data set is from 360 to 1500 nm. Comparisons are made to previous investigations which are less extensive. Accurate Ce i transition probabilities are needed for lighting research and development on metal halide high-intensity discharge lamps.

  18. Lyapunov spectra and conjugate-pairing rule for confined atomic fluids

    DEFF Research Database (Denmark)

    Bernadi, Stefano; Todd, B.D.; Hansen, Jesper Schmidt

    2010-01-01

    In this work we present nonequilibrium molecular dynamics simulation results for the Lyapunov spectra of atomic fluids confined in narrow channels of the order of a few atomic diameters. We show the effect that realistic walls have on the Lyapunov spectra. All the degrees of freedom of the confined...... the spectrum reflects the presence of two different dynamics in the system: one for the unthermostatted fluid atoms and the other one for the thermostatted and tethered wall atoms. In particular the Lyapunov spectrum of the whole system does not satisfy the conjugate-pairing rule. Two regions are instead...

  19. SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases

    Science.gov (United States)

    Goldenstein, Christopher S.; Miller, Victor A.; Mitchell Spearrin, R.; Strand, Christopher L.

    2017-10-01

    SpectraPlot is a web-based application for simulating spectra of atomic and molecular gases. At the time this manuscript was written, SpectraPlot consisted of four primary tools for calculating: (1) atomic and molecular absorption spectra, (2) atomic and molecular emission spectra, (3) transition linestrengths, and (4) blackbody emission spectra. These tools currently employ the NIST ASD, HITRAN2012, and HITEMP2010 databases to perform line-by-line simulations of spectra. SpectraPlot employs a modular, integrated architecture, enabling multiple simulations across multiple databases and/or thermodynamic conditions to be visualized in an interactive plot window. The primary objective of this paper is to describe the architecture and spectroscopic models employed by SpectraPlot in order to provide its users with the knowledge required to understand the capabilities and limitations of simulations performed using SpectraPlot. Further, this manuscript discusses the accuracy of several underlying approximations used to decrease computational time, in particular, the use of far-wing cutoff criteria.

  20. The generalized sturmian method for calculating spectra of atoms and ions

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2003-01-01

    The properties of generalized Sturmian basis sets are reviewed, and functions of this type are used to perform direct configuration interaction calculations on the spectra of atoms and ions. Singlet excited states calculated in this way show good agreement with experimentally measured spectra. When...... the generalized Sturmian method is applied to atoms, the configurations are constructed from hydrogenlike atomic orbitals with an effective charge which is characteristic of the configuration. Thus, orthonormality between the orbitals of different configurations cannot be assumed, and the generalized Slater...

  1. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution; Elastische Rueckstossatomspektrometrie leichter Elemente mit Subnanometer-Tiefenaufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kosmata, Marcel

    2011-06-30

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during

  2. Recoil polarization measurements

    Directory of Open Access Journals (Sweden)

    Brinkmann Kai-Thomas

    2017-01-01

    Building on experience with silicon detectors operated in the photon beamline environment, first possible layouts of Si detector telescopes for recoil protons were developed. Various geometries, e.g. Archimedean spiral design of annular sensors, sector shapes and rectangular sensors were studied and have been used during test measurements. A prototype for the recoil polarimeter was built and subjected to performance tests in protonproton scattering at the COSY-accelerator in Jülich.

  3. The FTS atomic spectrum tool (FAST) for rapid analysis of line spectra

    Science.gov (United States)

    Ruffoni, M. P.

    2013-07-01

    The FTS Atomic Spectrum Tool (FAST) is an interactive graphical program designed to simplify the analysis of atomic emission line spectra obtained from Fourier transform spectrometers. Calculated, predicted and/or known experimental line parameters are loaded alongside experimentally observed spectral line profiles for easy comparison between new experimental data and existing results. Many such line profiles, which could span numerous spectra, may be viewed simultaneously to help the user detect problems from line blending or self-absorption. Once the user has determined that their experimental line profile fits are good, a key feature of FAST is the ability to calculate atomic branching fractions, transition probabilities, and oscillator strengths-and their uncertainties-which is not provided by existing analysis packages. Program SummaryProgram title: FAST: The FTS Atomic Spectrum Tool Catalogue identifier: AEOW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 293058 No. of bytes in distributed program, including test data, etc.: 13809509 Distribution format: tar.gz Programming language: C++. Computer: Intel x86-based systems. Operating system: Linux/Unix/Windows. RAM: 8 MB minimum. About 50-200 MB for a typical analysis. Classification: 2.2, 2.3, 21.2. Nature of problem: Visualisation of atomic line spectra including the comparison of theoretical line parameters with experimental atomic line profiles. Accurate intensity calibration of experimental spectra, and the determination of observed relative line intensities that are needed for calculating atomic branching fractions and oscillator strengths. Solution method: FAST is centred around a graphical interface, where a user may view sets of experimental line profiles and compare

  4. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Cohen, D.D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P.; Walker, S. [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H.; Hult, M. [Lund Univ. (Sweden); Oestling, M.; Zaring, C. [Royal Inst. of Tech., Stockholm (Sweden)

    1993-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  5. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    Science.gov (United States)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; hide

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  6. Multifractal spectra of atomic force microscope images of amorphous electroless Ni Cu P alloy

    Science.gov (United States)

    Yu, Hui-Sheng; Sun, Xia; Luo, Shou-Fu; Wang, Yong-Rui; Wu, Zi-Qin

    2002-05-01

    The surface topographies of Si/TiN/Pd substrate and amorphous electroless Ni-13.1 wt.% Cu-9.3 wt.% P alloy deposited for various times were measured by atomic force microscope (AFM). Multifractal spectra f( α) show that the longer the deposition time, the wider the spectrum, and the larger the Δ f (Δ f= f( αmin)- f( αmax)). It is apparent that the nonuniformity of the height distribution increases with the increasing deposition time, and the nodules of Ni-Cu-P alloy grow in both horizontal and vertical way. These results show that the AFM images can be characterized by the multifractal spectra.

  7. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  8. The HERMES recoil detector

    Science.gov (United States)

    Airapetian, A.; Aschenauer, E. C.; Belostotski, S.; Borisenko, A.; Bowles, J.; Brodski, I.; Bryzgalov, V.; Burns, J.; Capitani, G. P.; Carassiti, V.; Ciullo, G.; Clarkson, A.; Contalbrigo, M.; De Leo, R.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Guler, H.; Gregor, I. M.; Hartig, M.; Hill, G.; Hoek, M.; Holler, Y.; Hristova, I.; Jo, H. S.; Kaiser, R.; Keri, T.; Kisselev, A.; Krause, B.; Krauss, B.; Lagamba, L.; Lehmann, I.; Lenisa, P.; Lu, S.; Lu, X.-G.; Lumsden, S.; Mahon, D.; Martinez de la Ossa, A.; Murray, M.; Mussgiller, A.; Nowak, W.-D.; Naryshkin, Y.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Petrov, A.; Pickert, N.; Prahl, V.; Protopopescu, D.; Reinecke, M.; Riedl, C.; Rith, K.; Rosner, G.; Rubacek, L.; Ryckbosch, D.; Salomatin, Y.; Schnell, G.; Seitz, B.; Shearer, C.; Shutov, V.; Statera, M.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Varanda, M.; Veretennikov, D.; Vilardi, I.; Vikhrov, V.; Vogel, C.; Yaschenko, S.; Ye, Z.; Yu, W.; Zeiler, D.; Zihlmann, B.

    2013-05-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with a field strength of 1T. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  9. Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments

    Energy Technology Data Exchange (ETDEWEB)

    Johns, H. M., E-mail: hjohns@lanl.gov; Lanier, N. E.; Kline, J. L.; Fontes, C. J.; Perry, T. S.; Fryer, C. L.; Sherrill, M. E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87544 (United States); Brown, C. R. D.; Morton, J. W. [AWE Aldermaston, Berkshire, Reading RG7 4PR (United Kingdom); Hager, J. D. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87544 (United States); Lockheed-Martin, 497 Electronics Parkway, Syracuse, New York 13221 (United States)

    2016-11-15

    We present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi{sub 6}O{sub 12} at 75 mg/cm{sup 3} density). We have determined that in the 50-200 eV T{sub e} range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for T{sub e} = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power reveals spectral sensitivity to T{sub e} changes of ∼3 eV.

  10. Conceptual DFT analysis of the fragility spectra of atoms along the minimum energy reaction coordinate

    Science.gov (United States)

    Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz

    2017-10-01

    Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.

  11. Multiple and double scattering contributions to depth resolution and low energy background in hydrogen elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.

  12. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ricca, Alessandra, E-mail: Charles.W.Bauschlicher@nasa.gov, E-mail: Alessandra.Ricca-1@nasa.gov [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States)

    2013-10-20

    The loss of one hydrogen from C{sub 96}H{sub 24} does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare.

  13. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  14. Blind deconvolution of time-of-flight mass spectra from atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.J.S., E-mail: larsj@ifm.liu.se [Linköping University, Department of Physics, Chemistry, and Biology (IFM), Linköping SE-581 83 (Sweden); Thuvander, M.; Stiller, K. [Chalmers University of Technology, Department of Applied Physics, Gothenburg, SE-412 96 (Sweden); Odén, M.; Hultman, L. [Linköping University, Department of Physics, Chemistry, and Biology (IFM), Linköping SE-581 83 (Sweden)

    2013-09-15

    A major source of uncertainty in compositional measurements in atom probe tomography stems from the uncertainties of assigning peaks or parts of peaks in the mass spectrum to their correct identities. In particular, peak overlap is a limiting factor, whereas an ideal mass spectrum would have peaks at their correct positions with zero broadening. Here, we report a method to deconvolute the experimental mass spectrum into such an ideal spectrum and a system function describing the peak broadening introduced by the field evaporation and detection of each ion. By making the assumption of a linear and time-invariant behavior, a system of equations is derived that describes the peak shape and peak intensities. The model is fitted to the observed spectrum by minimizing the squared residuals, regularized by the maximum entropy method. For synthetic data perfectly obeying the assumptions, the method recovered peak intensities to within ±0.33at%. The application of this model to experimental APT data is exemplified with Fe–Cr data. Knowledge of the peak shape opens up several new possibilities, not just for better overall compositional determination, but, e.g., for the estimation of errors of ranging due to peak overlap or peak separation constrained by isotope abundances. - Highlights: • A method for the deconvolution of atom probe mass spectra is proposed. • Applied to synthetic randomly generated spectra the accuracy was ±0.33 at. • Application of the method to an experimental Fe–Cr spectrum is demonstrated.

  15. The n,{gamma} discrimination in recoil-proton proportional counters. Application to the measurement of fast neutron spectra; Discrimination n,{gamma} dans les compteurs proportionnels a protons de recul. Application a la mesure des spectres de neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Jeandidier, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    A description is given of a spectrometry chain working in the energy range of a few keV to 1 MeV, and designed for measurement of fast neutron spectra. It consists of detectors, recoil proton proportional counters built especially for this work by R. COMTE (DEG/SER) and which make it possible to cover the energy range and also associated electronic equipment. A brief description is first given of the physical processes involved: (n,p) collisions in the gas, influence of {gamma} radiation; the method of discrimination is then presented. It is based on the difference in the rise-times of the pulses. In the experiments described here the use of a bi-parametric system made it possible to employ the most simple discrimination device, based on the fact that the high frequency gamma pulse components are, at a given energy, weaker than those of the neutron pulses. Results are given of measurements carried out on the Van der Graaff (mono-energetic neutrons for testing the linearity of the chain and the resolving power of the counters), and of those made in a sub-critical system Hug at Cadarache. (author) [French] On decrit une chaine de spectrometrie travaillant dans le domaine d'energie de quelques keV a 1 MeV destinee a la mesure des spectres de neutrons rapides. Elle comprend les detecteurs, compteurs proportionnels a protons de recul, realises specialement pour cette etude par M. R. COMTE (DEG/SER), permettant de couvrir la gamme d'energie et l'electronique associee. Apres un rappel des processus physiques mis en jeu: chocs (n,p) dans les gaz, influence des rayonnements {gamma}, on expose la methode de discrimination utilisee. Celle-ci est basee sur la difference des temps de montee des impulsions. Au cours des experiences rapportees ici, la mise en oeuvre d'un ensemble bi-parametrique a permis d'utiliser le dispositif de discrimination le plus simple, base sur la remarque que les composantes a haute frequence des impulsions {gamma} sont, a

  16. Controlling residual hydrogen gas in mass spectra during pulsed laser atom probe tomography.

    Science.gov (United States)

    Kolli, R Prakash

    2017-01-01

    Residual hydrogen (H2) gas in the analysis chamber of an atom probe instrument limits the ability to measure H concentration in metals and alloys. Measuring H concentration would permit quantification of important physical phenomena, such as hydrogen embrittlement, corrosion, hydrogen trapping, and grain boundary segregation. Increased insight into the behavior of residual H2 gas on the specimen tip surface in atom probe instruments could help reduce these limitations. The influence of user-selected experimental parameters on the field adsorption and desorption of residual H2 gas on nominally pure copper (Cu) was studied during ultraviolet pulsed laser atom probe tomography. The results indicate that the total residual hydrogen concentration, HTOT, in the mass spectra exhibits a generally decreasing trend with increasing laser pulse energy and increasing laser pulse frequency. Second-order interaction effects are also important. The pulse energy has the greatest influence on the quantity HTOT, which is consistently less than 0.1 at.% at a value of 80 pJ.

  17. High-precision three-dimensional atom localization via phase-sensitive absorption spectra in a four-level atomic system

    Science.gov (United States)

    Zhang, Duo; Yu, Rong; Sun, Zhaoyu; Ding, Chunling; Zubairy, M. Suhail

    2018-01-01

    We propose a new scheme for highly efficient three-dimensional (3D) atom localization in a coherently driven closed-loop four-level atomic system via measuring the probe absorption of the weak field. Due to the spatially dependent atom–field interaction, the absorption spectra of the weak probe laser field carry the information about the atomic position. By solving the density-matrix equations of motion and properly modulating the system parameters such as the probe detuning, the relative phase of three driving fields, and the intensity of the control and microwave fields, we can realize high-precision and high-resolution 3D atom localization. Furthermore, we can find the atom at a certain position with 100% probability under appropriate conditions, and then we employ the dressed-state analysis to explain qualitatively the reason of high-precision 3D atom localization.

  18. Role of geometry on the frequency spectra of U-shaped atomic force microscope probes

    Science.gov (United States)

    Rezaei, E.; Turner, J. A.

    2017-02-01

    Contact resonance atomic force microscopy (CR-AFM) is a specific technique that is used to determine elastic or viscoelastic properties of materials. The success of this technique is highly dependent on the accuracy of frequency spectra that must be measured for both noncontact and the case in which the tip is in contact with the sample of interest. Thus, choosing the right probe is crucial for accurate experiments. U-shaped probes also offer new opportunities for CR-AFM measurements because of certain specific modes that have tip motion parallel to the sample surface such that these resonances can access in-plane sample properties. However, analysis of the spectra from U-shaped probes is much more challenging due to these modes. The geometry of these probes is the main driver for the spectral response. Here, this influence on the resonance frequencies of the commercially fabricated U-shaped probe AN2-300 is evaluated with respect to geometry in terms of leg width, crossbeam width, and crossbeam length. Both noncontact and contact cases are examined with respect to variations of the nominal geometry. An energy distribution approach is also presented to assist with the identification of modes that have close resonances. Finally, this analysis allows recommendations to be made in order to minimize the convergence of multiple resonances for a specific range of measurement parameters.

  19. Isotope Effects on Delayed Annihilation Time Spectra of Antiprotonic Helium Atoms in Low-Temperature Gas

    CERN Document Server

    Ketzer, B; Daniel, H; Von Egidy, T; Niestroj, A; Schmid, S; Schmid, W; Yamazaki, T; Sugai, I; Nakayoshi, K; Hayano, R S; Maas, F E; Torii, H A; Ishikawa, T; Tamura, H; Morita, N; Horváth, D; Eades, John; Widmann, E

    1996-01-01

    The delayed annihilation time spectra (DATS) of antiprotonic helium atoms have been studied in isotopically pure low temperature ^3He and ^4He gas at various densities. The DATS taken at 5.8~K and 400~mbar are very similar in shape except for i) a small difference in the time scale and ii) the presence of a distinct fast decay component in the case of ^3He. The ratio of overall trapping times (mean lifetimes against annihilation), R = T_{\\mathrm{trap}}(\\mbox{^{4}He})/T_{\\mathrm{trap}}(\\mbox{^{3}He}), has been determined to be 1.144 \\pm 0.009, which is in good agreement with a theoretical estimate yielding R = [(M^*(\\mbox{\\overline{\\mathrm{p}}}\\mbox{^{4}He})/ M^*(\\mbox{\\overline{ \\mathrm{p}}}\\mbox{^{3}He})]^2=1.14, where M^* denotes the reduced mass of the \\mbox{\\overline{\\mathrm{p}}}\\mbox{He^{++}}\\ system. The presence of a short-lived component with a lifetime of (0.154\\pm 0.007)\\ \\mbox{\\mus} in the case of \\mbox{^{3}He}\\ suggests that the \\mbox{\\overline{\\mathrm{p}}}\\mbox{^{3}He^{+}}\\ atom has a state of in...

  20. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W.B.; Johnston, P.N.; Walker, S.R.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J.F. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  1. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  2. Displacement cross sections and PKA spectra: tables and applications. [Neutron damage energy cross sections to 20 MeV, primary knockon atom spectra to 15 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D G; Graves, N J

    1976-12-01

    Damage energy cross sections to 20 MeV are given for aluminum, vanadium, chromium, iron, nickel, copper, zirconium, niobium, molybdenum, tantalum, tungsten, lead, and 18Cr10Ni stainless steel. They are based on ENDF/B-IV nuclear data and the Lindhard energy partition model. Primary knockon atom (PKA) spectra are given for aluminum, iron, niobium, tantalum, and lead for neutron energies up to 15 MeV at approximately one-quarter lethargy intervals. The contributions of various reactions to both the displacement cross sections (taken to be proportional to the damage energy cross sections) and the PKA spectra are presented graphically. Spectral-averaged values of the displacement cross sections are given for several spectra, including approximate maps for the Experimental Breeder Reactor-II (EBR-II) and several positions in the Fast Test Reactor (FTR). Flux values are included to permit estimation of displacement rates. Graphs show integral PKA spectra for the five metals listed above for neutron spectra corresponding to locations in the EBR-II, the High Flux Isotope Reactor (HFIR), and a conceptual fusion reactor (UWMAK-I). Detailed calculations are given only for cases not previously documented. Uncertainty estimates are included.

  3. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  4. Regularity and Chaos in the Hydrogen Atom Highly Excited with a Strong Magnetic Field

    Directory of Open Access Journals (Sweden)

    M. Amdouni

    2014-01-01

    Full Text Available The effects of the relativistic corrections on the energy spectra are analyzed. Effective simulations based on manipulations of operators in the Sturmian basis are developed. Discrete and continuous energy spectra of a hydrogen atom with realistic nucleus mass in a strong magnetic field are computed. The transition from regularity to chaos in diamagnetic problem with the effect of the nucleus recoil energy is explored. Anticrossing of energy levels is observed for strong magnetic field.

  5. Sonic Rarefaction Wave Low Recoil Gun

    National Research Council Canada - National Science Library

    Kathe, E

    2002-01-01

    .... The sonic RArefaction waVE low recoil guN (RAVEN) is a novel invention to dramatically reduce the gas momentum contribution to recoil with absolutely no reduction in me ballistic efficiency of launch...

  6. Ab Initio Calculations of X-ray Spectra : Atomic Multiplet and Molecular Orbital Effects in a Multiconfigurational SCF Approach to the L-Edge Spectra of Transition Metal Complexes

    NARCIS (Netherlands)

    Josefsson, Ida; Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander; de Groot, Frank; Wernet, Philippe; Odelius, Michael

    2012-01-01

    A new ab initio approach to the calculation of X-ray spectra is demonstrated. It combines a high-level quantum chemical description of the chemical interactions and local atomic multiplet effects. We show here calculated L-edge X-ray absorption (XA) and resonant inelastic X-ray scattering spectra

  7. Atomic contributions to the valence band photoelectron spectra of metal-free, iron and manganese phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Bidermane, I., E-mail: ieva.bidermane@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Institut des Nanosciences de Paris, UPMC Univ. Paris 06, CNRS UMR 7588, F-75005 Paris (France); Brumboiu, I.E. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Totani, R. [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, Coppito, I-67010 L’Aquila (Italy); Grazioli, C. [CNR-IOM, Laboratorio TASC, ss. 14 km. 163.5, Basovizza, 34149 Trieste (Italy); Departement of Chemical and Pharmaceutical Sciences, University of Trieste (Italy); Shariati-Nilsson, M.N.; Herper, H.C.; Eriksson, O.; Sanyal, B. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden); Ressel, B. [University of Nova Gorica, Vipavska Cesta 11c, 5270 Ajdovščina (Slovenia); Simone, M. de [CNR-IOM, Laboratorio TASC, ss. 14 km. 163.5, Basovizza, 34149 Trieste (Italy); Lozzi, L. [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, Coppito, I-67010 L’Aquila (Italy); Brena, B.; Puglia, C. [Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala (Sweden)

    2015-11-15

    Highlights: • In detail comparison between the valence band structure of H{sub 2}Pc, FePc and MnPc. • Comparison between the gas phase samples and thin evaporated films on Au (1 1 1). • Detailed analysis of the atomic orbital contributions to the valence band features. • DFT/HSE06 study of the valence band electronic structure of H{sub 2}Pc, FePc and MnPc. - Abstract: The present work reports a photoelectron spectroscopy study of the low-energy region of the valence band of metal-free phthalocyanine (H{sub 2}Pc) compared with those of iron phthalocyanine (FePc) and manganese phthalocyanine (MnPc). We have analysed in detail the atomic orbital composition of the valence band both experimentally, by making use of the variation in photoionization cross-sections with photon energy, and theoretically, by means of density functional theory. The atomic character of the Highest Occupied Molecular Orbital (HOMO), reflected on the outermost valence band binding energy region, is different for MnPc as compared to the other two molecules. The peaks related to the C 2p contributions, result in the HOMO for H{sub 2}Pc and FePc and in the HOMO-1 for MnPc as described by the theoretical predictions, in very good agreement with the experimental results. The DFT simulations, discerning the atomic contribution to the density of states, indicate how the central metal atom interacts with the C and N atoms of the molecule, giving rise to different partial and total density of states for these three Pc molecules.

  8. Atomic shell structures observed in photoionization spectra of nickel and cobalt clusters

    Energy Technology Data Exchange (ETDEWEB)

    Vialle, J.L. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Pellarin, M. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Baguenard, B. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Lerme, J. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire; Broyer, M. [Lyon-1 Univ., 69 - Villeurbanne (France). Lab. de Spectrometrie Ionique et Moleculaire

    1995-12-31

    Nickel and cobalt clusters have been studied by near threshold laser-photoionization and time-of-flight mass spectrometry. In the size domain from 50 up to 800 atoms, the mass distributions of the photoionized products look very similar for nickel and cobalt clusters. In both cases a regular structure is observed which is periodic on a N{sup 1/3} scale. It is found to be consistent with the filling of successive icosahedral shells of atoms. The recurring details of this structure agree with the so-called umbrellas model. (orig.)

  9. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine)

    Science.gov (United States)

    Singh, J. S.

    2015-02-01

    FT-IR (400-4000 cm-1) and Raman spectra (200-4000 cm-1) of uracil and 5-methyluracil (thymine) have been recorded and analyzed. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-methyluracil (thymine) by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, most of the B3LYP/6-311++G∗∗ vibrational frequencies are in excellent agreement with the available experimental assignments and helped to propose in the reassignments of some missing frequencies in experimental study. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a‧) and non-planar (a″) for all 39 normal vibrational modes of 5-methyluracil are given by 26a‧ + 13a″, of which 30 modes (21a‧ + 9a″) correspond to the uracil moiety and 9 modes (5a‧ + 4a″) to the CH3 group. Consistent assignments have been made for the internal modes of CH3 group, especially for the anti-symmetric CH3 stretching and bending modes. A possible explanation could be the planarity of pyrimidine ring and non-planarity at carbon site of methyl group which might cause the splitting of frequencies including three components due to the substitution of CH3 group at the site of C5 atom on pyrimidine ring of uracil. The three non-equivalent CH bonds of CH3

  10. IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-aminouracil

    Science.gov (United States)

    Singh, J. S.

    2014-09-01

    Infrared (IR) and Raman spectra of uracil and 5-aminouracil have been recorded and analyzed between the region 200-4000 cm-1. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke’s exchange in conjunction with Lee-Yang-Parr’s correlation functional and Becke’s three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-aminouracil by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, the most of B3LYP/6-311++G** vibrational frequencies are in the excellent agreement with available experimental assignments and helped in the reassignments of some fundamental vibrational modes. On the basis of calculated results, the assignments of some missing frequencies in the experimental study are proposed. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a‧) and non-planar (a″) are given by 25a‧ + 11a″, of which 30 modes (21a‧ + 9a″) correspond to the uracil moiety and 6 modes (4a‧ + 2a″) to the NH2 group. Kekule ring stretching mode is found to be comparatively higher frequency magnitude than the mode of uracil due to the involvement of hydrogen bonding of amino group. But, the ring breathing is found to be lower frequency magnitude compared to those for uracil which could be due to mass effect of the NH2 group in place of the hydrogen atom. All other bands have also been assigned different fundamentals/overtones/combinations.

  11. Molecular structure refinement by direct fitting of atomic coordinates to experimental ESR spectra

    CERN Document Server

    Charnock, G T P; Kuprov, Ilya

    2011-01-01

    An attempt is made to bypass spectral analysis and fit internal coordinates of radicals directly to experimental liquid- and solid-state electron spin resonance (ESR) spectra. We take advantage of the recently introduced large-scale spin dynamics simulation algorithms and of the fact that the accuracy of quantum mechanical calculations of ESR parameters has improved to the point of quantitative correctness. Partial solutions are offered to the local minimum problem in spectral fitting and to the problem of spin interaction parameters (hyperfine couplings, chemical shifts, etc.) being very sensitive to distortions in molecular geometry.

  12. FOREWORD: The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    Science.gov (United States)

    Tchang-Brillet, Wad Lydia; Wyart, Jean-François; Zeippen, Claude

    1996-01-01

    The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas was held in Meudon, France, from August 28 to 31 1995. It was the fifth in a series started by the Atomic Spectroscopic Group at the University of Lund, Sweden, in 1983. Then followed the meetings in Toledo, USA, Amsterdam, The Nether- lands and Gaithersburg, USA, with a three year period. The original title of the series ended with "... for Astrophysics and Fusion Research" and became more general with the 4th colloquium in Gaithersburg. The purpose of the present meeting was, in line with tradition, to bring together "producers" and "users" of atomic data so as to ensure optimal coordination. Atomic physicists who study the structure of atoms and their radiative and collisional properties were invited to explain the development of their work, emphasizing the possibilities of producing precise transition wavelengths and relative line intensities. Astrophysicists and laboratory plasma physicists were invited to review their present research interests and the context in which atomic data are needed. The number of participants was about 70 for the first three meetings, then exploded to 170 at Gaithersburg. About 140 participants, coming from 13 countries, attended the colloquium in Meudon. This large gathering was partly due to a number of participants from Eastern Europe larger than in the past, and it certainly showed a steady interest for interdisciplinary exchanges between different communities of scientists. This volume includes all the invited papers given at the conference and, in the appendix, practical information on access to some databases. All invited speakers presented their talks aiming at good communication between scientists from different backgrounds. A separate bound volume containing extended abstracts of the poster papers has been published by the Publications de l'Observatoire de Paris, (Meudon 1996), under the responsibility of

  13. A Recoil Detector for electron scattering experiments with internal targets

    CERN Document Server

    Sambeek, M J M V; Blok, H P; Borrius, W C; Botto, T; Dodge, G E; Heimberg, P; Jansweijer, P; Kormanyos, C M; Lange, D J; Lienen, J V; Mul, F A; Steenbakkers, M F M; Steijger, J J M; Sturm, F C; Verkooijen, J C; Welling, J J; Zwanenburg, J

    1999-01-01

    A Recoil Detector has been constructed for electron-scattering experiments with gas targets internal to the Amsterdam Pulse Stretcher and storage ring (AmPS) at NIKHEF. The detector was designed to detect low-energy (1-20 MeV/nucleon) and low-mass (A <= 4) recoiling nuclei emerging from electron-induced reactions. It consists of four sensitive elements: a low-pressure two-step avalanche chamber, two layers of silicon strip detectors of 100 and 475 mu m thickness, and a scintillator. The signals from the separate detector elements are processed by custom-made analog and digital electronics. The detector was operated successfully at the AmPS electron scattering facility with a gaseous helium target of 10 sup 1 sup 5 atoms cm sup - sup 2 internal to the storage ring and beam currents of up to 200 mA. (author)

  14. Optical Bragg, atomic Bragg and cavity QED detections of quantum phases and excitation spectra of ultracold atoms in bipartite and frustrated optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jinwu, E-mail: jy306@ccs.msstate.edu [Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762 (United States); Zhang, K.Y.; Li, Yan [Department of Physics, East China Normal university, Shanghai, 200062 (China); Chen, Yan [Department of Physics, State Key Laboratory of Surface Physics and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China); Zhang, W.P. [Department of Physics, East China Normal university, Shanghai, 200062 (China)

    2013-01-15

    Ultracold atoms loaded on optical lattices can provide unprecedented experimental systems for the quantum simulations and manipulations of many quantum phases and quantum phase transitions between these phases. However, so far, how to detect these quantum phases and phase transitions effectively remains an outstanding challenge. In this paper, we will develop a systematic and unified theory of using the optical Bragg scattering, atomic Bragg scattering or cavity QED to detect the ground state and the excitation spectrum of many quantum phases of interacting bosons loaded in bipartite and frustrated optical lattices. The physically measurable quantities of the three experiments are the light scattering cross sections, the atom scattered clouds and the cavity leaking photons respectively. We show that the two photon Raman transition processes in the three detection methods not only couple to the density order parameter, but also the valence bond order parameter due to the hopping of the bosons on the lattice. This valence bond order coupling is very sensitive to any superfluid order or any valence bond (VB) order in the quantum phases to be probed. These quantum phases include not only the well-known superfluid and Mott insulating phases, but also other important phases such as various kinds of charge density waves (CDW), valence bond solids (VBS), and CDW-VBS phases with both CDW and VBS orders unique to frustrated lattices, and also various kinds of supersolids. We analyze respectively the experimental conditions of the three detection methods to probe these various quantum phases and their corresponding excitation spectra. We also address the effects of a finite temperature and a harmonic trap. We contrast the three scattering methods with recent in situ measurements inside a harmonic trap and argue that the two kinds of measurements are complementary to each other. The combination of both kinds of detection methods could be used to match the combination of

  15. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra.

    Science.gov (United States)

    Goings, Joshua J; Li, Xiaosong

    2016-06-21

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  16. Nuclear recoil measurements with the ARIS experiment

    Science.gov (United States)

    Fan, Alden; ARIS Collaboration

    2017-01-01

    As direct dark matter searches become increasingly sensitive, it is important to fully characterize the target of the search. The goal of the Argon Recoil Ionization and Scintillation (ARIS) experiment is to quantify information related to the scintillation and ionization energy scale, quenching factor, ion recombination probability, and scintillation time response of nuclear recoils, as expected from WIMPs, in liquid argon. A time projection chamber with an active mass of 0.5 kg of liquid argon and capable of full 3D position reconstruction was exposed to an inverse kinematic neutron beam at the Institut de Physique Nucleaire d'Orsay in France. A scan of nuclear recoil energies was performed through coincidence with a set of neutron detectors to quantify properties of nuclear recoils in liquid argon at various electric fields. The difference in ionization and scintillation response with differing recoil track angle to the electric field was also studied. The preliminary results of the experiment will be presented.

  17. Multipolarity effects in ionization of the inner level of an atom by an electron impact in extended fine structures of K and L spectra of electron energy losses

    Energy Technology Data Exchange (ETDEWEB)

    Grebennikov, V.I. [Institute of Metal Physics, UB RAS, 620066 Ekaterinburg (Russian Federation); Guy, D.E. [Physical-Technical Institute, Kirov st. 132, UB RAS, 426000 Izhevsk (Russian Federation)]. E-mail: lasas@fti.udm.ru; Ruts, Y.V. [Physical-Technical Institute, Kirov st. 132, UB RAS, 426000 Izhevsk (Russian Federation); Surnin, D.V. [Physical-Technical Institute, Kirov st. 132, UB RAS, 426000 Izhevsk (Russian Federation); Zheltysheva, O.R. [Physical-Technical Institute, Kirov st. 132, UB RAS, 426000 Izhevsk (Russian Federation)

    2005-05-01

    The problem of multipolarity of the atom core level ionization by electron impact in extended energy loss fine structure (EELFS) spectroscopy is studied. The intensities and amplitudes of electron transitions have been calculated in the OPW approximation. The experimental K EELFS spectra of Al, Si and L EELFS spectra of Fe, Co have been obtained. Corresponding calculations have been carried out in the monopole and dipole approximations. A comparison of theoretical and experimental spectra have been made. It is shown that a good agreement between the theoretical and experimental results points to the need for taking account of multipolarity of the electron transition processes in EELFS calculations.

  18. MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Inami, H. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Armus, L.; Stierwalt, S.; Díaz-Santos, T.; Surace, J.; Howell, J.; Marshall, J. [Spitzer Science Center, California Institute of Technology, CA 91125 (United States); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Groves, B. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kewley, L. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Petric, A. [Department of Astronomy, California Institute of Technology, MS 320-47, Pasadena, CA 91125 (United States); Rich, J. [The Observatories, Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Haan, S. [CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Mazzarella, J.; Lord, S. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Appleton, P. [NASA Herschel Science Center, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Spoon, H. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Frayer, D. [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); Matsuhara, H., E-mail: inami@noao.edu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (Japan); and others

    2013-11-10

    We present the data and our analysis of mid-infrared atomic fine-structure emission lines detected in Spitzer/Infrared Spectrograph high-resolution spectra of 202 local Luminous Infrared Galaxies (LIRGs) observed as part of the Great Observatories All-sky LIRG Survey (GOALS). We readily detect emission lines of [S IV], [Ne II], [Ne V], [Ne III], [S III]{sub 18.7{sub μm}}, [O IV], [Fe II], [S III]{sub 33.5{sub μm}}, and [Si II]. More than 75% of these galaxies are classified as starburst-dominated sources in the mid-infrared, based on the [Ne V]/[Ne II] line flux ratios and equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon feature. We compare ratios of the emission-line fluxes to those predicted from stellar photo-ionization and shock-ionization models to constrain the physical and chemical properties of the gas in the starburst LIRG nuclei. Comparing the [S IV]/[Ne II] and [Ne III]/[Ne II] line ratios to the Starburst99-Mappings III models with an instantaneous burst history, the emission-line ratios suggest that the nuclear starbursts in our LIRGs have ages of 1-4.5 Myr, metallicities of 1-2 Z{sub ☉}, and ionization parameters of 2-8 × 10{sup 7} cm s{sup –1}. Based on the [S III]{sub 33.5{sub μm}}/[S III]{sub 18.7{sub μm}} ratios, the electron density in LIRG nuclei is typically one to a few hundred cm{sup –3}, with a median electron density of ∼300 cm{sup –3}, for those sources above the low density limit for these lines. We also find that strong shocks are likely present in 10 starburst-dominated sources of our sample. A significant fraction of the GOALS sources (80) have resolved neon emission-line profiles (FWHM ≥600 km s{sup –1}) and five show clear differences in the velocities of the [Ne III] or [Ne V] emission lines, relative to [Ne II], of more than 200 km s{sup –1}. Furthermore, six starburst and five active galactic nucleus dominated LIRGs show a clear trend of increasing line width with ionization potential

  19. FOREWORD: The 9th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS 9)

    Science.gov (United States)

    Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter

    2008-07-01

    For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy of Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and the Physics Department of Lund University during from 8 to 10 August 2007 and was attended by nearly 100 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume contains the submitted contributions from the poster presentations of the conference, and represents approximately forty percent of the presented posters. A complementary volume of Physica Scripta provides the written transactions of the ASOS9 invited presentations. With these two volumes the character of ASOS9 is more fully evident, and they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy where both the providers and users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths, and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, the latter including fusion energy and lighting research. As a part of ASOS9 we were honored to celebrate the retirement of Professor Sveneric Johansson. At a special session on the spectroscopy of iron, which was conducted in his honor, he presented his insights into the Fe II term system and his most recent

  20. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.

    2010-01-01

    The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number...

  1. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia)

    1993-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  2. Heavy ion recoil spectrometry of Si{sub x}Ge{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S.R.; Johnston, P.N.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Hult, M.; Whitlow, H.J. [Lund Institute of Technology, Solvegatan (Sweden). Department of Nuclear Physics; Zaring, C.; Oestling, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics

    1993-12-31

    Mass and energy dispersive recoil spectrometry employing 77 MeV {sup 127}I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si{sub x}Ge{sub 1-x} grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si{sub x}Ge{sub 1-x} layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs.

  3. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    CERN Multimedia

    2002-01-01

    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  4. Measurement and analysis of atomic hydrogen and diatomic molecular AlO, C2, CN, and TiO spectra following laser-induced optical breakdown.

    Science.gov (United States)

    Parigger, Christian G; Woods, Alexander C; Witte, Michael J; Swafford, Lauren D; Surmick, David M

    2014-02-14

    In this work, we present time-resolved measurements of atomic and diatomic spectra following laser-induced optical breakdown. A typical LIBS arrangement is used. Here we operate a Nd:YAG laser at a frequency of 10 Hz at the fundamental wavelength of 1,064 nm. The 14 nsec pulses with anenergy of 190 mJ/pulse are focused to a 50 µm spot size to generate a plasma from optical breakdown or laser ablation in air. The microplasma is imaged onto the entrance slit of a 0.6 m spectrometer, and spectra are recorded using an 1,800 grooves/mm grating an intensified linear diode array and optical multichannel analyzer (OMA) or an ICCD. Of interest are Stark-broadened atomic lines of the hydrogen Balmer series to infer electron density. We also elaborate on temperature measurements from diatomic emission spectra of aluminum monoxide (AlO), carbon (C2), cyanogen (CN), and titanium monoxide (TiO). The experimental procedures include wavelength and sensitivity calibrations. Analysis of the recorded molecular spectra is accomplished by the fitting of data with tabulated line strengths. Furthermore, Monte-Carlo type simulations are performed to estimate the error margins. Time-resolved measurements are essential for the transient plasma commonly encountered in LIBS.

  5. A Measurement of the Recoil Polarization of Electroproduced Λ(1116)

    Energy Technology Data Exchange (ETDEWEB)

    McAleer, Simeon B. [Florida State Univ., Tallahassee, FL (United States)

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p → e' + K+ + Λ(1116) for events where Λ(1116) subsequently decayed via the channel Λ(1116) → p + π-. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q2 range from 0.5 to 2.8 GeV2 and nearly the entire range in the center of mass angles. The proton angular distribution in the Λ(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos θ$K+\\atop{cm}$ dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the Λ(1116) as a function of both cos θ$K+\\atop{cm}$ and W.

  6. Effect of the energy of recoil atoms on conductivity compensation in moderately doped n-Si and n-SiC under irradiation with MeV electrons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Kozlovski, V.V. [St. Petersburg State Polytechnic University, St. Petersburg 195251 (Russian Federation); Lebedev, A.A., E-mail: shura.lebe@mail.ioffe.ru [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); National Research University of Information Technologies, Mechanics, and Optics, St. Petersburg 197101 (Russian Federation); Emtsev, V.V.; Oganesyan, G.A. [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

    2016-10-01

    Processes of radiation defect formation and conductivity compensation in silicon and silicon carbide irradiated with 0.9 MeV electrons are considered in comparison with the electron irradiation at higher energies. The experimental values of the carrier removal rate at the electron energy of 0.9 MeV are nearly an order of magnitude smaller than the similar values of the parameter for higher energy electrons (6–9 MeV). At the same time, the formation cross-section of primary radiation defects (Frenkel pairs, FPs) is nearly energy-independent in this range. It is assumed that these differences are due to the influence exerted by the energy of primary knocked-on atoms (PKAs). As the PKA energy increases, the average distance between the genetically related FPs grows and, as a consequence, the fraction of FPs unrecombined under irradiation becomes larger. The FP recombination radius is estimated (∼1.1 nm), which makes it possible to ascertain the charge state of the recombining components. Second, the increase in the PKA energy enables formation of new, more complex secondary radiation defects. At electron energies exceeding 15 MeV, the average PKA energies are closer to the values obtained under irradiation with 1 MeV protons, compared with an electron irradiation at the same energy. As for the radiation-induced defect formation, the irradiation of silicon with MeV protons can be, in principle, regarded as a superposition of the irradiation with 1 MeV electrons and that with silicon ions having energy of ∼1 keV, with the “source” of silicon ions generating these ions uniformly across the sample thickness.

  7. Effect of the energy of recoil atoms on conductivity compensation in moderately doped n-Si and n-SiC under irradiation with MeV electrons and protons

    Science.gov (United States)

    Kozlovski, V. V.; Lebedev, A. A.; Emtsev, V. V.; Oganesyan, G. A.

    2016-10-01

    Processes of radiation defect formation and conductivity compensation in silicon and silicon carbide irradiated with 0.9 MeV electrons are considered in comparison with the electron irradiation at higher energies. The experimental values of the carrier removal rate at the electron energy of 0.9 MeV are nearly an order of magnitude smaller than the similar values of the parameter for higher energy electrons (6-9 MeV). At the same time, the formation cross-section of primary radiation defects (Frenkel pairs, FPs) is nearly energy-independent in this range. It is assumed that these differences are due to the influence exerted by the energy of primary knocked-on atoms (PKAs). As the PKA energy increases, the average distance between the genetically related FPs grows and, as a consequence, the fraction of FPs unrecombined under irradiation becomes larger. The FP recombination radius is estimated (∼1.1 nm), which makes it possible to ascertain the charge state of the recombining components. Second, the increase in the PKA energy enables formation of new, more complex secondary radiation defects. At electron energies exceeding 15 MeV, the average PKA energies are closer to the values obtained under irradiation with 1 MeV protons, compared with an electron irradiation at the same energy. As for the radiation-induced defect formation, the irradiation of silicon with MeV protons can be, in principle, regarded as a superposition of the irradiation with 1 MeV electrons and that with silicon ions having energy of ∼1 keV, with the ;source; of silicon ions generating these ions uniformly across the sample thickness.

  8. Thermodynamic magnon recoil for domain wall motion

    NARCIS (Netherlands)

    Yan, P.; Cao, Y.; Sinova, J.

    2015-01-01

    We predict a thermodynamic magnon recoil effect for domain wall motions in the presence of temperature gradients. All current thermodynamic theories assert that a magnetic domain wall must move toward the hotter side, based on equilibrium thermodynamic arguments. Microscopic calculations, on the

  9. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-halogenated uracils (5-X-uracils; X = F, Cl, Br, I)

    Science.gov (United States)

    Singh, J. S.

    2014-01-01

    Raman (200-4000 cm-1) and FT-IR (400-4000 cm-1) spectra of uracil and 5-halogenated uracils (5-X-uracils; X = F, Cl, Br, I) have been recorded and analyzed in the range 200-4000 cm-1. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Ab initio and DFT calculations [using Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP)] were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-halogenated uracils by employing Gaussian-03 program. Gauss View software was used to make the vibrational analysis. Raman and IR spectra have been computed theoretically for the uracil and 5-halogenated molecules. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. Quantum chemical calculations helped in the reassignments of some fundamental vibrational modes. Most of the B3LYP/6-311++G∗∗ vibrational frequencies are in excellent agreement with available experimental assignments. The ring breathing and kekule stretching modes are found to lower magnitudes compared to those for uracil which could be due to mass effect of halogen atom in place of the hydrogen atom. The C-X (X = F, Cl, Br, I) stretching frequency is distinctly separated from the CH/NH ring stretching frequencies on the pyrimidine ring. All other bands have also been assigned different fundamentals/overtones/combinations.

  10. Retrieval of parameters of few-cycle laser pulses from high-energy photoelectron spectra of atoms by a genetic algorithm

    Science.gov (United States)

    Zhou, Zhaoyan; Wang, Xu; Chen, Zhangjin; Lin, C. D.

    2017-06-01

    According to the quantitative rescattering theory, the laser features are imbedded in the returning electron wave packets. By analyzing high-energy photoelectron wave packets on the two sides of the linearly polarization axis we can retrieve the experimental laser pulse irrespective of the atomic targets. Laser parameters including its carrier-envelope phase, pulse duration, and peak intensity can be retrieved within a small range simultaneously from the output of the genetic algorithm. This is a simple direct retrieval method for characterizing a phase-stabilized few-cycle laser pulse based only on one set of photoelectron spectra.

  11. The change of the LMM auger spectra in 3d-metals due to oxidation and its correlation with the change of the atomic magnetic moment.

    Science.gov (United States)

    Zheltysheva, Olga R; Surnin, Dmitry V; Guy, Dmitry E; Gil'mutdinov, Faat Z; Ruts, Yuri V; Grebennikov, Vladimir I

    2005-12-01

    The surfaces of crystalline samples of 3d-metals (Mn, Fe, Co, Ni, and Cu) and their stoichiometric oxides have been studied by Auger spectroscopy. A correlation between the change in the LVV (L-inner level-valence-valence electron transition) Auger intensities and the change of the squares of the corresponding atomic-magnetic moments has been observed. This is because of the complicated nature of the Auger process. That is, the Auger electron emission is a result of the inner atomic level excitation by electron impact and Auger annihilation of the inner-level hole. Therefore, the Auger process has been considered a second-order process, and spin polarization of the valence states has been taken into account for the LMM (L-inner level-M-inner level-M-inner level electron transition) Auger spectra of 3d-metals.

  12. Nuclear astrophysics and the Daresbury Recoil Separator at the Holifield Radioactive Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.S.

    1997-12-01

    The Daresbury Recoil Separator (DRS) has been installed for nuclear astrophysics research at Oak Ridge National Laboratory`s Holifield Radioactive Ion Beam Facility. It will be used for direct measurements of capture reactions on radioactive ions which occur in stellar explosions such as novae, supernovae and X-ray bursts. These measurements will be made in inverse kinematics with radioactive heavy ion beams incident on hydrogen and helium targets, and the DRS will separate the capture reaction recoils from the intense flux of beam particles. Details of the new DRS experimental equipment and preliminary results from the first commissioning experiments with stable beams are described, along with the plans for the first measurements with radioactive beams. Other astrophysics research efforts at ORNL--in theoretical astrophysics, nuclear astrophysics data evaluation, heavy element nucleosynthesis, theoretical atomic astrophysics, and atomic astrophysics data--are also briefly described.

  13. Recoil corrections in antikaon-deuteron scattering

    Directory of Open Access Journals (Sweden)

    Mai Maxim

    2016-01-01

    Full Text Available Using the non-relativistic effective field theory approach for K−d scattering, it is demonstrated that a systematic perturbative expansion of the recoil corrections in the parameter ξ = MK/mN is possible in spite of the fact that K−d scattering at low energies is inherently non-perturbative due to the large values of the K̄N scattering lengths. The first order correction to the K−d scattering length due to single insertion of the retardation term in the multiple-scattering series is calculated. The recoil effect turns out to be reasonably small even at the physical value of MK/mN ≃ 0:5.

  14. Low-energy electronic recoil in xenon detectors by solar neutrinos

    Science.gov (United States)

    Chen, Jiunn-Wei; Chi, Hsin-Chang; Liu, C.-P.; Wu, Chih-Pan

    2017-11-01

    Low-energy electronic recoil caused by solar neutrinos in multi-ton xenon detectors is an important subject not only because it is a source of the irreducible background for direct searches of weakly-interacting massive particles (WIMPs), but also because it provides a viable way to measure the solar pp and 7Be neutrinos at the precision level of current standard solar model predictions. In this work we perform ab initio many-body calculations for the structure, photoionization, and neutrino-ionization of xenon. It is found that the atomic binding effect yields a sizable suppression to the neutrino-electron scattering cross section at low recoil energies. Compared with the previous calculation based on the free electron picture, our calculated event rate of electronic recoil in the same detector configuration is reduced by about 23%. We present in this paper the electronic recoil rate spectrum in the energy window of 100 eV to 30 keV with the standard per ton per year normalization for xenon detectors, and discuss its implication for low energy solar neutrino detection as the signal and WIMP search as a source of background.

  15. Low-energy electronic recoil in xenon detectors by solar neutrinos

    CERN Document Server

    Chen, Jiunn-Wei; Liu, C -P; Wu, Chih-Pan

    2016-01-01

    Low-energy electronic recoil caused by solar neutrinos in multi-ton xenon detectors is an important subject not only because it is a source of the irreducible background for direct searches of weakly-interacting massive particles (WIMPs), but also because it provides a viable way to measure the solar $pp$ and $^{7}\\textrm{Be}$ neutrinos at the precision level of current standard solar model predictions. In this work we perform $\\textit{ab initio}$ many-body calculations for the structure, photoionization, and neutrino-ionization of xenon. It is found that the atomic binding effect yields a sizable suppression to the neutrino-electron scattering cross section at low recoil energies. Compared with the previous calculation based on the free electron picture, our calculated event rate of electronic recoil in the same detector configuration is reduced by about $25\\%$. We present in this paper the electronic recoil rate spectrum in the energy window of 100 eV - 30 keV with the standard per ton per year normalizatio...

  16. Ion-atom interaction potential effects on the shape of energy spectra of ions backscattered by a thick target

    Energy Technology Data Exchange (ETDEWEB)

    Urmanov, A.R.; Bazhukov, S.I.; Puzanov, A.A.

    1986-06-01

    Based on the general Gaudsmit-Saunderson-Lewis model for multiple scattering in a semi-infinite medium, an expression accounting for the effects of multiple scattering on the shape of the backscattering energy spectrum has been obtained. This expression is represented by a series of ion angular distribution moments. The limits of the applicability of the small-angle approximation to the description of multiple scattering are defined. It is shown that the sensitivity of the angular distribution moments of multiple scattered ions to the type of ion-atom potential increases with an increase in the moment order. The possibility of investigation of the ion-atom interaction potential experimentally over a wide range of impact parameters by the backscattering method is discussed.

  17. Laser-Induced Fluorescence Measurements for Optical Single Atom Detection for Nuclear Astrophysics

    Science.gov (United States)

    Parzuchowski, Kristen; Singh, Jaideep; Wenzl, Jennifer; Frisbie, Dustin; Johnson, Maegan

    2016-09-01

    We propose a new highly selective detector to measure rare nuclear reactions relevant for nuclear astrophysics. Our primary interest is the 22Ne(α , n) 25Mg reaction, which is a primary source of neutrons for the s-process. Our proposed detector, in conjunction with a recoil separator, captures the recoil products resulting from the reaction in a cryogenically frozen thin film of solid neon. The fluorescence spectra of the captured atoms is shifted from the absorption spectra by hundreds of nanometers. This allows for the optical detection of individual fluorescence photons against a background of intense excitation light. We will describe our initial studies of laser-induced fluorescence of Yb and Mg in solid Ne. Neon is an attractive medium because it is optically transparent and provides efficient, pure, stable, & chemically inert confinement for a wide variety of atomic and molecular species. Yb is used as a test atom because of its similar atomic structure to Mg and much brighter fluorescence signal. This work is supported by funds from Michigan State University.

  18. Auger Spectra and Different Ionic Charges Following 3s, 3p and 3d Sub-Shells Photoionization of Kr Atoms

    Directory of Open Access Journals (Sweden)

    Yehia A. Lotfy

    2006-01-01

    Full Text Available The decay of inner-shell vacancy in an atom through radiative and non-radiative transitions leads to final charged ions. The de-excitation decay of 3s, 3p and 3d vacancies in Kr atoms are calculated using Monte-Carlo simulation method. The vacancy cascade pathway resulted from the de-excitation decay of deep core hole in 3s subshell in Kr atoms is discussed. The generation of spectator vacancies during the vacancy cascade development gives rise to Auger satellite spectra. The last transitions of the de-excitation decay of 3s, 3p and 3d holes lead to specific charged ions. Dirac-Fock-Slater wave functions are adapted to calculate radiative and non-radiative transition probabilities. The intensity of Kr^{4+} ions are high for 3s hole state, whereas Kr^{3+} and Kr^{2+} ions have highest intensities for 3p and 3d hole states, respectively. The present results of ion charge state distributions agree well with the experimental data.

  19. Inter-Series Interactions on the Atomic Photoionization Spectra Studied by the Phase-Shifted Multichannel-Quantum Defect Theory

    Directory of Open Access Journals (Sweden)

    Chun-Woo Lee

    2017-05-01

    Full Text Available Development in mathematical formulations of parameterizing the resonance structures using the phase-shifted multichannel quantum defect theory (MQDT and their use in analyzing the effect of inter-series interactions on the autoionizing Rydberg spectra is reviewed. Reformulation of the short-range scattering matrix into the form analogous to S = SBSR in scattering theory are the crucial step in this development. Formulation adopts different directions and goals depending on whether autoionizing series converge to the same limit (degenerate or to different limits (nondegenerate because of the different nature of the perturbation. For the nondegenerate case, finding the simplest form of profile index functions of the autoionizing spectra with the minimal number of parameters is the main goal and some results are reviewed. For the degenerate case where perturbation acts uniformly throughout the entire series, isolation of the overlapped autoionizing series into the unperturbed autoionizing series is the key objective in research and some results in that direction are reviewed.

  20. Molecular geometry, vibrational spectra, atomic charges, frontier molecular orbital and Fukui function analysis of antiviral drug zidovudine

    Science.gov (United States)

    Ramkumaar, G. R.; Srinivasan, S.; Bhoopathy, T. J.; Gunasekaran, S.

    2012-12-01

    The solid phase FT-IR and FT-Raman spectra of zidovudine (AZT) were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of zidovudine were obtained by the Restricted Hartree-Fock (RHF) density functional theory (DFT) with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The harmonic vibrational frequencies for zidovudine were calculated and the scaled values have been compared with experimental values of FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The harmonic vibrational wave numbers and intensities of vibrational bands of zidovudine with its cation and anion were calculated and compared with the neutral AZT. The DFT calculated HOMO and LUMO energies shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in AZT.

  1. Hydrodynamic, Atomic Kinetic, and Monte Carlo Radiation Transfer Models of the X-ray Spectra of Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W; Liedahl, D A; Akiyama, S; Plewa, T

    2008-02-08

    We describe the results of an effort, funded by the Lawrence Livermore National Laboratory Directed Research and Development Program, to model, using FLASH time-dependent adaptive-mesh hydrodynamic simulations, XSTAR photoionization calculations, HULLAC atomic data, and Monte Carlo radiation transport, the radiatively-driven photoionized wind and accretion flow of high-mass X-ray binaries (HMXBs). In this final report, we describe the purpose, approach, and technical accomplishments of this effort, including maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of the X-ray emission lines of the well-studied HMXB Vela X-1.

  2. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    Science.gov (United States)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  3. Neutron flux spectra in the FFTF In-Reactor Thimble

    Energy Technology Data Exchange (ETDEWEB)

    Wootan, D.W.; Dobbin, K.D.; Schmittroth, F.A.; Roberts, J.H.

    1982-12-01

    Neutron spectra measured in the FFTF In-Reactor Thimble (IRT) by proton recoil proportional counters, proton recoil emulsions, and passive dosimeters have been evaluated and compared with each other and with three-dimensionl diffusion theory calculated spectra for the purpose of validating the passive dosimeter spectrum adjustment technique. The least squares data adjustment code, FERRET, was used to combine measured reaction rates, calculated spectra, and dosimeter cross sections, resulting in adjusted spectra and cross sections with uncertainties and correlations that properly account for uncertainties and correlations on the input parameters.

  4. A new look at an energetic (e,2e) reaction: Binary versus recoil

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, A S [Research School of Physics, Australian National University, Canberra ACT 0200 (Australia); Naja, A; Casagrande, E M Staicu; Lahmam-Bennani, A, E-mail: A.Kheifets@anu.edu.a [Universite Paris-Sud 11, Laboratoire des Collisions Atomiques et Moleculaires, 91405 Orsay Cedex (France)

    2009-11-01

    We analyze the recoil-to-binary peak ratio in an energetic (e,2e) reaction on the valence ns sub-shell of noble gas atoms. Dramatic qualitative change in this ratio dependence on the ejected electron energy can be explained by variation of reflectivity of the short-range Hartree-Fock potential. The reflectivity increases profoundly from lighter (He) to heavier (Ne and Ar) noble gas atoms because of modification of the scattering phases due to occupation of the target p orbitals (Levinson theorem). This effect is further modified due to strong inter-shell correlations in Ar. These theoretical predictions are confirmed experimentally.

  5. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions

    OpenAIRE

    Ryabtsev, I. I.; Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.

    2011-01-01

    Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a star-like geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S_{1/2}->5P_{3/2}->6S_{1/2}->nP in Rb atoms have shown that compared to the one- and two-photon laser excitation this approach provides much narrower line width and longer coherence time for both cold atom samples and hot...

  6. Explicit Hilbert-space representations of atomic and molecular photoabsorption spectra - Computational studies of Stieltjes-Tchebycheff functions

    Science.gov (United States)

    Hermann, M. R.; Langhoff, P. W.

    1983-01-01

    Computational methods are reported for construction of discrete and continuum Schroedinger states in atoms and molecules employing explicit Hilbert space procedures familiar from bound state studies. As theoretical development, the Schroedinger problem of interest is described, the Cauchy-Lanczos bases and orthonormal polynomials used in constructing L-squared Stieltjes-Tchebycheff (ST) approximations to the discrete and continuum states are defined, and certain properties of these functions are indicated. Advantages and limitations of the ST approach to spectral studies relative to more conventional calculations are discussed, and aspects of the approach in single-channel approximations to larger molecules are described. Procedures are indicated for construction of photoejection anisotropies and for performing coupled-channel calculations employing the ST formalism. Finally, explicit descriptive intercomparisons are made of the nature and diagnostic value of ST functions with more conventional scattering functions.

  7. Analytical atomic spectroscopy of plutonium—I. High resolution spectra of plutonium emitted in an inductively coupled plasma

    Science.gov (United States)

    Edelson, M. C.; DeKalb, E. L.; Winge, R. K.; Fassel, V. A.

    In the atomic emission spectrum of Pu-242 emitted in an inductively coupled plasma (ICP) 23 lines with detection limits of less than 100 ng/ml were identified in the 200-700 nm spectral range. The line at 453.614 nm had the best detection limit of 15 ng/ml. The isotopic splittings of several Pu emission lines were resolved with a commercial 1.5m spectrometer. The line at 398.988 nm (Pu-240 wavelength) had the greatest isotope shift, but was interfered with by neighboring Pu lines. Other lines were shown to be useful for Pu isotopic analysis. The hyperfine splitting of some intense Pu-239 lines was measured; the Pu 453.614 nm line exhibited the widest splitting (5.9 pm).

  8. Performance of the LNL recoil mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Signorini, C. (Dipt. di Fisica dell' Univ., Padova (Italy) INFN, Padova (Italy)); Beghini, S. (Dipt. di Fisica dell' Univ., Padova (Italy) INFN, Padova (Italy)); Dal Bello, A. (Dipt. di Fisica dell' Univ., Padova (Italy) INFN, Padova (Italy)); Montagnoli, G. (Dipt. di Fisica dell' Univ., Padova (Italy) INFN, Padova (Italy)); Scarlassara, F. (Dipt. di Fisica dell' Univ., Padova (Italy) INFN, Padova (Italy)); Segato, G.F. (Dipt. di Fisica dell' Univ., Padova (Italy) INFN, Padova (Italy)); Soramel, F. (Dipt. di Fisica dell' Univ., Padova (Italy) INFN, Padova (Italy)); Ackermann, D. (INFN, Lab. Nazionali di Legnaro, Padova (Italy)); Corradi, L. (INFN, Lab. Nazionali di Legnaro, Padova (Italy)); Facco, A. (INFN, Lab. Nazionali di Legnaro, Padova (Italy)); Moreno, H. (INFN, Lab. Nazionali di Legnaro, Padova (Italy)); Mueller, L. (INFN, Lab. Nazionali di Legnaro, Padova (Italy)); Napoli, D.R. (INFN, Lab. Nazionali di Legnaro, Padova (Italy)); Prete, G.F. (INFN, Lab. Nazionali di Legnaro

    1994-02-01

    The LNL recoil mass spectrometer, in operation for some years on line with the LNL XTU Tandem accelerator has been used primarily for the study of reaction products emitted at 0 to the beam direction. In agreement with the design goal this instrument has a good mass resolution, in the range of 1/300, even with large energy ([+-] 20%) and solid angle (> 7.5 msr) acceptances; the mass dynamic range is around [+-]6% of the central mass. The beam rejection factor at 0 ranges from 10[sup +6] to 10[sup +11] according to various experimental parameters. Advantages and limitations of the spectrometer are discussed. (orig.)

  9. The distribution at low hadronic recoil

    Indian Academy of Sciences (India)

    Diganta Das

    2017-10-05

    Oct 5, 2017 ... resonant mode ¯B → ¯K. ∗ll and as sensitive probe for new physics beyond the Standard Model (SM). We show .... The phase space allows the angles to be within the ranges. −1 < cosθK ≤ 1, −1 < cosθl ≤ 1, 0 < φ ≤ 2π. In the low recoil region of interest the angular coeffi- cients Ii(q2, p2,cosθK ) are given ...

  10. ATOMIC POSITIONS ON OXYGEN-COVERED CU(110) SURFACES

    NARCIS (Netherlands)

    DORENBOS, G; BREEMAN, M; BOERMA, DO

    The reconstructed Cu(110)-p(2 x 1)O and Cu(110)-c(6 x 2)O surfaces were studied using low-energy ion scattering combined with time of flight. Azimuthal scans were measured with 6 keV Ar ions for recoiling O, scattered Ar and recoiling Cu atoms. Part of the scans were analysed using a newly developed

  11. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  12. Comparison of the Recoil of Conventional and Electromagnetic Cannon

    Directory of Open Access Journals (Sweden)

    Edward M. Schmidt

    2001-01-01

    Full Text Available The recoil from an electromagnetic (EM railgun is discussed and compared with that from conventional, propellant gas driven cannon. It is shown that, under similar launch conditions, the recoil of the EM gun is less than that of the powder gun; however, use of a muzzle brake on a powder gun can alter this relative behavior.

  13. Searching for the Recoiling Black Hole in BCG2261

    Science.gov (United States)

    Gultekin, Kayhan

    2017-09-01

    We propose a 100 ksec observation of the core of BCG 2261 to test for the presence of a recoiling SMBH. Binary SMBHs are thought to scour out cores in the host galaxy before coalescence of the black holes, which can lead to large recoils. Despite the importance of the connection between binary BHs, strong gravity, and galaxy evolution, it has never been conclusively observed. Without confirmation, we don't know if binary SMBHs can create stellar cores achieve high recoil velocities. We can produce the first direct observational proof of a recoiling SMBH in BCG 2261, the strongest candidate to date to host a recoiling SMBH and an extreme stellar core. With a detection, we will finally have definitive observational evidence connecting core formation, gravitational waves, and binary BHs.

  14. Scaling up precision in an Ytterbium BEC contrast interferometer for photon recoil and α.

    Science.gov (United States)

    Plotkin-Swing, Benjamin; Gochnauer, Daniel; McAlpine, Katherine; Gupta, Subhadeep

    2017-04-01

    Building on our earlier demonstration, we are now operating a second-generation Ytterbium (Yb) Bose-Einstein condensate (BEC) contrast interferometer. The device is designed to measure h/m, where h is Planck's constant and m is the mass of a Yb atom, in order to determine the fine structure constant α. The use of the non-magnetic Yb atom and the symmetric geometry of the interferometer make the measurement immune to several error sources. The narrow momentum and position spread of a BEC help improve the coherence length and signal strength of our measurement. A key advantage of the contrast interferometer is that the total phase accumulation and therefore the measurement sensitivity scales quadratically with the momentum separation of the interfering states. We have demonstrated the laser pulse atom-optics required to increase the momentum splitting, including using Bloch oscillations to impart 200 photon recoils with .5% atom loss per recoil. We have implemented the first steps in applying these high momentum transfer techniques to our interferometer, and will report on our progress towards achieving quadratically increased precision. Funding: NSF.

  15. Role of the recoil effect in two-center interference in X-ray photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)], E-mail: ueda@tagen.tohoku.ac.jp; Liu, X.-J. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Pruemper, G. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Lischke, T. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Tanaka, T. [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Hoshino, M. [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Tanaka, H. [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Minkov, I. [School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Kimberg, V. [School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Gel' mukhanov, F. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden)

    2006-10-26

    X-ray photoelectron spectra of the N{sub 2} molecule are studied both experimentally and theoretically in the extended energy region up to 1 keV. The ratio of the photoionization cross sections for the gerade and ungerade core levels displays a modulation in the high energy region caused by the two-center interference, as predicted by Cohen and Fano (CF) in 1966. The physical background of this CF effect is the same as in Young's double-slit experiment. We have found that the interference pattern deviates significantly from the CF prediction. The origin of such a breakdown of the CF formula is the scattering of the photoelectron inside the molecule and the momentum transfer from the emitted fast photoelectron to the nuclei. Usually the recoil effect is small. We show that the electron recoil strongly affects the two-center interference pattern. Both stationary and dynamical aspects of the recoil effect shed light on the role of the momentum exchange in the two-center interference.

  16. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the Darkside-50 Direct Dark Matter Experiment

    Science.gov (United States)

    Ludert, Erin Edkins

    While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a joint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, f 90, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the f90 distribution of nuclear recoils from Sc

  17. Atomic collisions involving C60 and collective excitation

    Science.gov (United States)

    Tribedi, L. C.; Kelkar, A. H.

    2011-12-01

    Here we review and discuss some of our recent investigations on collective excitation in a free C60 molecule and its influence on the atomic collisions. In particular, emphasis has been given for collisions with fast highly charged ions. It is demonstrated, from the charge-state-dependence studies of recoil-ion spectra, that the plasmon excitation plays a dominant role in the single and double ionization process. The observed linear charge-state-dependence is in contrast to the expected behavior predicted by ion-atom collisions models. This behavior was observed for different projectiles and at different energies. The time-of-flight recoil-ion mass spectroscopy experiments involve 1-5 MeV/u C, O, F and Si ion beams with different charge states, ranging between 4+ and 14+. In addition, the influence of the collective excitation on the electron capture process was also investigated. The wake-field induced Stark-mixing and splitting of sub-levels of projectile-ions following electron capture from C60 carries signature of the collective plasmon excitation. For the electron capture studies X-ray spectroscopic technique was used for collisions with bare and dressed S and Cl ion beams. The results on the TOF data on fullerene target obtained in last few years will be summarized.

  18. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  19. The alpha-recoil effects of uranium in the Oklo reactor

    Science.gov (United States)

    Sheng, Z. Z.; Kuroda, P. K.

    1984-12-01

    A series of acid-leaching experiments have been carried out on a sample of uranium ore from reactor zone number 10 of the Oklo mines in Gabon. Anomalously high U-234/U-238 ratios were observed accompanied by modestly increased U-235/U-238 ratios in uranium fractions. These results, which can be interpreted as being due to the alpha-recoil effects of U-238 and Pu-239, provide a convenient way of calculating the conversion factor (the fraction of uranium atoms converted to plutonium) of the natural reactors from radiochemical data, obviating the necessity for mass-spectrometric measurements.

  20. Spectra of atoms and molecules

    CERN Document Server

    Bernath, Peter F

    2005-01-01

    1. Introduction. 1.1. Waves, Particles, and Units. 1.2. The Electromagnetic Spectrum. 1.3. Interaction of Radiation with Matter. 1.3a. Blackbody Radiation. 1.3b. Einstein A and B Coefficients. 1.3c. Absorption and Emission of Radiation. 1.3d. Beer''s Law. 1.3e. Lineshape Functions. 1.3f. Natural Lifetime Broadening. 1.3g. Pressure Broadening. 1.3h. Doppler Broadening. 1.3i. Transit-Time Broadening. 1.3j. Power Broadening. 2. Molecular Symmetry. 2.1. Symmetry Operations. 2.1a. Operator Algebra. 2.1b. Symmetry Operator Algebra. 2.2. Groups. 2.2a. Point Groups. 2.2b. Classes. 2.2c. Subgroups. 2.3. Notation for Point Groups. 3. Matrix Representation of Groups. 3.1. Vectors and Matrices. 3.1a. Matrix Eigenvalue Problem. 3.1b. Similarity Transformations. 3.2. Symmetry Operations and Position Vectors. 3.2a. Reflection. 3.2b. Rotation. 3.2c. Rotation-Reflection. 3.2d. Inversion. 3.2e. Identity. 3.3. Symmetry Operators and Basic Vectors. 3.4. Symmetry Operators and Basic Functions. 3.4a. Function Spaces. 3.4b. Gram-Sc...

  1. Recoil and conversion electron considerations of the {sup 166}Dy/{sup 166}Ho in vivo generator

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, J.R. [North-West Univ., Mmabatho (South Africa). CARST; Szuecs, Z. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry; Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Takacs, S.; Jarvis, N. [Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Jansen, D. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry

    2012-07-01

    The use of radionuclides as potential therapeutic radiopharmaceuticals is increasingly investigated. An important aspect is the delivery of the radionuclide to the target, i.e. the radionuclide is not lost from the chelating agent. For in vivo generators, it is not only the log K of complexation between the metal ion and the chelator that is important, but also whether the daughter radionuclide stays inside the chelator after decay of the parent radionuclide. In our previous work, we showed that the classical recoil effect is only applicable for decays with a Q value higher than 0.6 MeV (in the atomic mass range around 100). However, Zhernosekov et al. published a result for {sup 140}Nd/{sup 140}Pr (Q = 0.222 MeV) which indicated that > 95% of the daughter ({sup 140}Pr) was lost by a DOTA chelator upon decay of {sup 140}Nd. The authors ascribed this to the ''post-effect''. Their experiment was repeated with the {sup 166}Dy/{sup 166}Ho generator to ascertain whether our calculations were correct. It was found that 72% of the daughter ({sup 166}Ho) was liberated from the DOTA chelator, indicating that the 'post effect' does exist in contrast to our recoil calculations. Upon further investigation, we determined that one should not only consider recoil energy levels but also the mode of decay which was able to explain the partial recoil found for {sup 166}Dy/{sup 166}Ho. It is concluded for the {sup 166}Dy/{sup 166}Ho system that the low recoil energy of the daughter nucleus {sup 166}Ho is not a sufficient reason to rule out release of the nuclide from chelators. On the other hand, we found that the ratio of the {sup 166}Ho that gets released corresponds to the ratio of relaxation of Ho atoms via the Auger process. (orig.)

  2. Direct and Recoil-Induced Electron Emission from Ion-Bombarded Solids

    DEFF Research Database (Denmark)

    Holmen, G.; Svensson, B.; Schou, Jørgen

    1979-01-01

    The kinetic emission of secondary electrons from ion-bombarded solid surfaces is split into two contributions, a direct one caused by ionizing collisions between the bombarding ion and target atoms, and an indirect one originating from ionizing collisions undergone by recoil atoms with other target...... atoms. The direct contribution, which has been treated by several authors in previous studies, shows a behavior that is determined primarily by the electronic stopping power of the bombarding ion, while the indirect contribution is nonproportionally related to the nuclear stopping power. This latter...... contribution is known to be quite important for heavy-ion bombardment at keV energies, and is shown to be of crucial importance for the understanding of the energy dependence of the electron yield in such cases. The model is shown to give consistent results for copper bombarded with electrons, protons...

  3. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions

    Energy Technology Data Exchange (ETDEWEB)

    Ryabtsev, I. I.; Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A. [A. V. Rzhanov Institute of Semiconductor Physics SB RAS, Prospekt Lavrentyeva 13, 630090 Novosibirsk (Russian Federation)

    2011-11-15

    Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a starlike geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S{sub 1/2}{yields}5P{sub 3/2}{yields}6S{sub 1/2}{yields}nP in Rb atoms have shown that, compared to the one- and two-photon laser excitation, this approach provides much narrower linewidth and longer coherence time for both cold atom samples and hot vapors, if the intermediate one-photon resonances of the three-photon transition are detuned by more than respective single-photon Doppler widths. This method can be used to improve fidelity of Rydberg quantum gates and precision of spectroscopic measurements in Rydberg atoms.

  4. A novel method for modeling the recoil in W boson events at hadron colliders

    NARCIS (Netherlands)

    Abazov, V.M.; et al., [Unknown; Ancu, L.S.; de Jong, S.J.; Filthaut, F.; Galea, C.F.; Hegeman, J.G.; Houben, P.; Meijer, M.M.; Svoisky, P.; van den Berg, P.J.; van Leeuwen, W.M.

    2009-01-01

    We present a new method for modeling the hadronic recoil in W -> lv events produced at hadron colliders. The recoil is chosen from a library of recoils in Z -> ll data events and overlaid on a simulated W -> lv event. Implementation of this method requires that the data recoil library describe the

  5. Design of the SUPERB Recoil Separator

    Science.gov (United States)

    Jackson, Zachary; Carpenter, Lisa; Amthor, Matt

    2013-10-01

    The reaccelerator ReA12 upgrade planned at the National Superconducting Cyclotron Lab (NSCL) at Michigan State University will produce higher energy rare isotope beams close to the neutron and proton drip lines. We present one option for the recoil separator which aims to take full advantage of the new capabilities of ReA12 in studying rare isotopes. The Separator for Unique Products of Experiments with Radioactive Beams (SUPERB), patterned after the second half of the Super Separator-Spectrometer (S3) currently under construction at the Grand Accélérateur National d'Ions Lourds (GANIL). This design includes both electric and magnetic dipoles and this will allow physical separation by mass-to-charge ratio (m/q) with a maximum solid angle of 26 msr and a maximum magnetic rigidity of 1.44 Tm. This design also allows for flexibility of optical modes. Both large acceptance and unit magnification modes will be presented. Also, a fully magnetic configuration is considered that would eliminate the expected electric rigidity limit of 10 MV and increase the maximum magnetic rigidity to 1.92 Tm. We will present optical designs and simulations of SUBERB developed in the code COSY Infinity including a first order system and a higher order Monte Carlo calculation simulating 100Sn production. This research was funded by the NSF REU program, grant PHY-1165694 with additional support from the DoD ASSURE program.

  6. Polymersomes as nano-carriers to retain harmful recoil nuclides in alpha radionuclide therapy. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Thijssen, L.; Schaart, D.R.; Vries, D. de; Denkova, A.G. [Delft Univ. of Technology (Netherlands). Radiation, Radionuclides and Reactors; Morgenstern, A.; Bruchertseifer, F. [European Commission, Joint Research Centre, Karlsruhe (Germany). Inst. for Transuranium Elements

    2012-07-01

    Targeted alpha therapy has shown promising pre-clinical and clinical results in the fight against cancer. The use of in vivo generators, generating a highly cytotoxic cascade of alpha particles, is attracting increasing interest for clinical application. {sup 225}Ac is one of the nuclides that can serve as an in vivo generator. It is commercially available and provides four alpha particles with a total energy of 28 MeV per {sup 225}Ac decay. However, its alpha emitting daughter nuclides may escape from the target region due to recoil and cause unwanted toxicity in other parts of the body. In this paper, we investigate the feasibility of designing spherical, block-copolymer based nano-carriers (polymersomes) to retain the recoiling daughter nuclides. A Monte Carlo code, called NANVES, has been developed to simulate the range distributions of recoil atoms in different materials and to determine the optimum nano-carriers design. Recoil ranges in planar polystyrene films were determined experimentally and compared to simulations of the experiment, indicating that NANVES may provide accurate results. Simulations of various nano-carriers designs indicate that double-layered polymersomes with a diameter of 800 nm are capable of completely retaining the first daughter nuclide {sup 221}Fr, while the escape fraction of the third radioactive daughter {sup 213}Bi is reduced to 20% and the percentage of alpha particles emitted from escaped daughter products outside the nano-carriers is less than 10%. (orig.)

  7. An energetic (e, 2e) reaction away from the Bethe ridge: recoil versus binary

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, A S [Research School of Physics, Australian National University, Canberra ACT 0200 (Australia); Naja, A; Casagrande, E M Staicu; Lahmam-Bennani, A, E-mail: A.Kheifets@anu.edu.a [Universite Paris-Sud 11, Laboratoire des Collisions Atomiques et Moleculaires, 91405 Orsay Cedex (France)

    2009-08-28

    We analyse the recoil-to-binary (RB) peak intensity ratio in an energetic (e, 2e) reaction performed on the valence ns sub-shell of noble gas atoms away from the Bethe ridge condition. A qualitative change in the RB ratio dependence on the ejected electron energy from He to Ar can be explained by the variation of reflectivity of the short-range Hartree-Fock potential. The reflectivity increases profoundly from lighter (He) to heavier (Ne and Ar) noble gas atoms because of modification of the scattering phases due to occupation of the target p orbitals (Levinson-Seaton theorem). This effect is further modified due to strong inter-shell correlations in Ar. These theoretical predictions are confirmed experimentally.

  8. Development of a Position Sensitive Beta and Recoil Ion Detectors for the 6He β - ν Angular Correlation Measurement

    Science.gov (United States)

    Hong, Ran; Bagdasarova, Yelena; Garcia, Alejandro; Storm, Derek; Sternberg, Matthew; Swanson, Erik; Wauters, Frederik; Zumwalt, David; Bailey, Kevin; Leredde, Arnaud; Mueller, Peter; O'Connor, Thomas; Fléchard, Xavier; Liennard, Etienne; Knecht, Andreas; Naviliat-Cuncic, Oscar

    2014-09-01

    In order to measure the β - ν angular correlation coefficient a and put more stringent limits on exotic tensor type weak currents, we constructed a system which detects β particles in coincidence with recoil ions from the β-decay of laser trapped 6He atoms. The β particles are detected by a scintillator and a multi-wire proportional chamber (MWPC) with a capacitive charge division anode. The recoil ions are detected by a microchannel plate (MCP) with delay-line anodes. The coefficient a is extracted by fitting the coincidence data to GEANT4 based Monte Carlo simulations, which are also used to study systematic uncertainties related to the detector system. A new method of calibrating the MWPC using a cathode focusing effect will be presented. This work is supported by DOE, Office of Nuclear Physics, under contract nos. DE-AC02-06CH11357 and DE-FG02-97ER41020.

  9. Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243

    CERN Document Server

    Forsberg, U; Andersson, L -L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Golubev, P; Gregorich, K E; Gross, C J; Herzberg, R -D; Hessberger, F P; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Sarmiento, L G; Schädel, M; Yakushev, A; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Dobaczewski, J; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nazarewicz, W; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Shi, Y; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2015-01-01

    Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum f\\"ur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.

  10. The Infrared Spectra of Polycyclic Aromatic Hydrocarbons with Excess Peripheral H Atoms (H(sub n)-PAHs) and their Relation to the 3.4 and 6.9 Micrometer PAH Emission Features

    Science.gov (United States)

    Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.

    2013-01-01

    A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.

  11. Recoil studies of photonuclear reactions at intermediate energies

    CERN Document Server

    Haba, H

    2002-01-01

    A review is given on the recoil studies of photonuclear reactions on complex nuclei at intermediate energies. Recoils of 167 radionuclides formed in the photonuclear reactions of sup 2 sup 7 Al, sup n sup a sup t V, sup n sup a sup t Cu, sup 9 sup 3 Nb, sup n sup a sup t Ag, sup n sup a sup t Ta, and sup 1 sup 9 sup 7 Au, induced by bremsstrahlung of end-point energies (E sub 0) from 600 to 1100 MeV, have been investigated by the thick-target thick-catcher method. The recoil velocity from the first step and the mean kinetic energy of the residual nuclei in the second step were deduced based on the two-step vector velocity model and discussed by comparing with the reported results on proton-induced reactions. Recoils of sup 2 sup 4 Na produced from sup 2 sup 7 Al, sup n sup a sup t V, sup n sup a sup t Cu, sup n sup a sup t Ag, and sup 1 sup 9 sup 7 Au are of special interest from a viewpoint of a change in the production mechanism with respect to target mass. Reaction yields of 58 and 63 radionuclides produce...

  12. Elastic recoil detection (ERD) with extremely heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Forster, J.S. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Currie, P.J. [Royal Tyrrell Museum, Drumheller, Alberta T0J 0Y0 (Canada); Davies, J.A. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Siegele, R. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Wallace, S.G. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Zelenitsky, D. [Department of Geology and Geophysics, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    1996-06-01

    Extremely heavy-ion beams such as {sup 209}Bi in elastic recoil detection (ERD) make ERD a uniquely valuable technique for thin-film analysis of elements with mass {<=}100. We report ERD measurements of compositional analysis of dinosaur eggshells and bones. We also show the capability of the ERD technique on studies of thin-film, high-temperature superconductors. (orig.).

  13. Recoil polarization measurements in $\\pi^{0}$ electroproduction at the peak of the Delta (1232)

    CERN Document Server

    Sarty, A J

    2001-01-01

    This talk presents a status report, along with some preliminary/on line results, from the Thomas Jefferson National Accelerator Facility (JLab) experiment E91011 which was performed in Hall A at JLab during the summer of 2000. The experiment measured angular distributions for the differential cross section and recoil proton polarizations in the reaction p(e, e'p) pi /sup 0/. Kinematics were chosen to be centered at a CMS energy of W=1232 MeV, and a squared four momentum transfer of Q/sup 2/=1.0 (GeV/c)/sup 2/. The primary objectives of the experiment are to isolate contributions from the resonant quadrupole N to Delta , multipole S/sub 1+/, and to clarify the role of other, small nonresonant multipole contributions to the reaction. Details of the experiment itself will be given, along with sample spectra illustrating the quality and coverage of the data obtained. (10 refs) .

  14. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Edkins, Erin Elisabeth [Univ. of Hawaii, Honolulu, HI (United States)

    2017-05-01

    While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a j oint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, $f_{90}$, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the $f_{90}$ distributio n of nuclear

  15. Demonstration of nuclear recoil discrimination using recoil range in a mixed CaF 2 + liquid scintillator gel detector for dark matter searches

    Science.gov (United States)

    Spooner, N. J. C.; Tovey, D. R.; Peak, C. D.; Roberts, J. W.

    1997-12-01

    We present first measurements on a prototype dark matter detector being developed to achieve event by event discrimination of nuclear recoils from electron recoils below 100 keV by utilising the difference in the recoil ranges of these particles. The detector consists of sub-micron scintillating grains of CaF 2 suspended in Dioxan gel scintillator with matched refractive index. We call this form of detector CASPAR (Cocktail of Alkali halide Scintillating PARticles). We present here results of monoenergetic neutron scattering tests on CASPAR and show how scintillation pulse shape analysis can be used as a powerful means of distinguishing Ca, F, C and H recoil events from electron recoils. > 90% discrimination of Ca and F recoils from electrons at 60 keV was observed for <5% loss of signal.

  16. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    Science.gov (United States)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  17. Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Bakes, E. L. O.

    2000-01-01

    We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.

  18. An intertwined method for making low-rank, sum-of-product basis functions that makes it possible to compute vibrational spectra of molecules with more than 10 atoms

    Science.gov (United States)

    Thomas, Phillip S.; Carrington, Tucker

    2017-05-01

    We propose a method for solving the vibrational Schrödinger equation with which one can compute spectra for molecules with more than ten atoms. It uses sum-of-product (SOP) basis functions stored in a canonical polyadic tensor format and generated by evaluating matrix-vector products. By doing a sequence of partial optimizations, in each of which the factors in a SOP basis function for a single coordinate are optimized, the rank of the basis functions is reduced as matrix-vector products are computed. This is better than using an alternating least squares method to reduce the rank, as is done in the reduced-rank block power method. Partial optimization is better because it speeds up the calculation by about an order of magnitude and allows one to significantly reduce the memory cost. We demonstrate the effectiveness of the new method by computing vibrational spectra of two molecules, ethylene oxide (C2H4O ) and cyclopentadiene (C5H6 ) , with 7 and 11 atoms, respectively.

  19. First detection of radon progeny recoil tracks by MIMAC

    Science.gov (United States)

    Riffard, Q.; Santos, D.; Guillaudin, O.; Bosson, G.; Bourrion, O.; Bouvier, J.; Descombes, T.; Fourel, C.; Muraz, J.-F.; Lebreton, L.; Maire, D.; Colas, P.; Ferrer-Ribas, E.; Giomataris, I.; Busto, J.; Fouchez, D.; Brunner, J.; Tao, C.

    2017-06-01

    The MIMAC experiment is a μ-TPC project for directional dark matter search. Directional detection strategy is based on the measurement of the WIMP flux anisotropy due to the solar system motion with respect to the dark matter halo. The main purpose of MIMAC project is the measurement of nuclear recoil energy and 3D direction from the WIMP elastic scattering on target nuclei. Since June 2012 a bi-chamber prototype is operating at the Modane underground laboratory. In this paper, we report the first ionization energy and 3D track observations of NRs produced by the radon progeny. This measurement shows the capability of the MIMAC detector and opens the possibility to explore the low energy recoil directionality signature.

  20. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T.R.H.; Whitlow, H.J. [Lund Univ. (Sweden); Bubb, I.F.; Short, R.; Johnston, P.N. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1996-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  1. Dynamical Formation of Horizons in Recoiling D Branes

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John

    2000-01-01

    A toy calculation of string/D-particle interactions within a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induces the appearance of a microscopic event horizon, or `bubble', inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a `bounce' solution. Within such `bubbles', massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially three for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3 branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.

  2. Recoiling supermassive black holes: a search in the nearby universe

    Energy Technology Data Exchange (ETDEWEB)

    Lena, D.; Robinson, A.; Axon, D. J.; Merritt, D. [School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623-5603 (United States); Marconi, A. [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Largo E. Fermi 2, I-50125, Firenze (Italy); Capetti, A. [INAF-Osservatorio Astronomico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Batcheldor, D., E-mail: dxl1840@g.rit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2014-11-10

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (≲ 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  3. Discrimination of nuclear recoils from alpha particles with superheated liquids

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, F; Auger, M; Genest, M-H; Giroux, G; Gornea, R; Faust, R; Leroy, C; Lessard, L; Martin, J-P; Morlat, T; Piro, M-C; Starinski, N; Zacek, V [Departement de Physique, Universite de Montreal, Montreal, H3C 3J7 (Canada); Beltran, B; Krauss, C B [Department of Physics, University of Alberta, Edmonton, T6G 2G7 (Canada); Behnke, E; Levine, I; Shepherd, T [Department of Physics and Astronomy, Indiana University South Bend, South Bend, IN 46634 (United States); Nadeau, P; Wichoski, U [Department of Physics, Laurentian University, Sudbury, P3E 2C6 (Canada)], E-mail: zacekv@lps.umontreal.ca (and others)

    2008-10-15

    The PICASSO collaboration observed for the first time a significant difference between the acoustic signals induced by neutrons and alpha particles in a detector based on superheated liquids. This new discovery offers the possibility of improved background suppression and could be especially useful for dark matter experiments. This new effect may be attributed to the formation of multiple bubbles on alpha tracks, compared to single nucleations created by neutron-induced recoils.

  4. A recoil mass separator for nuclear astrophysics experiments

    CERN Document Server

    Ishiyama, H; Yoshikawa, N; Jeong, S C; Wada, M; Ishida, Y; Tanaka, M H; Takaku, S; Fuchi, Y; Kawashima, H; Katayama, I; Nomura, T; Teranishi, T; Michimasa, M; Imai, N; Yanagisawa, Y; Kubono, S; Strasser, P; Kato, S

    2002-01-01

    A recoil mass separator was constructed for experiments of nuclear astrophysics using radioactive nuclear beams, and its performance was tested. The observed beam suppression factor around M approx 20 was 10 sup - sup 4 when the system was tuned for DELTA M=1 heavier ions than beam ions. With a charge state breeding technique, it became 10 sup - sup 8 when the system was tuned for DELTA q=+1 larger ions than beam ions.

  5. Black Hole Mergers and Recoils in Low-Mass Galaxies

    Science.gov (United States)

    Blecha, Laura; Kelley, Luke; Koss, Michael; Satyapal, Shobita

    2018-01-01

    Mergers between massive black holes (BHs) in the intermediate-mass range are one of the most promising sources of gravitational waves (GWs) detectable with LISA. These highly energetic GW events could be observed out to very high redshift, in the epoch where massive BH seeds are thought to form. Despite recent progress, however, much is still not known about the low-mass BH population even in the local Universe. The rates of BH binary formation, inspiral, and merger are also highly uncertain across the BH mass scale. To address these pressing issues in advance of LISA, cosmological hydrodynamics simulations and semi-analytic modeling are being used to model the formation and evolution of BH binaries, and the GW signals they produce. Efforts are also underway to understand the electromagnetic (EM) signatures of the BH binary population. These have proven largely elusive thus far, but an increasing population of BH pairs has been found, and advances in the coming years will provide important comparisons for models of GW sources. Moreover, asymmetry in the GW emission from BH mergers imparts a recoil kick to the merged BH, which in extreme cases can eject the BH from its host galaxy. This creates additional uncertainty in the BH merger rate, but the remnant recoiling BH could be observed as an offset quasar. Identifications of such objects would provide another EM signature of BH mergers that would help pave the way for LISA. We will review model predictions of the BH inspiral and merger rate across the mass scale. We will also describe how the EM signatures of active, merging BHs can be used to constrain theoretical merger rates. Finally, we will discuss the predicted observability of recoiling BHs and ongoing efforts to identify and confirm candidate recoils.

  6. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  7. Recoiling Black Holes: Electromagnetic Signatures, Candidates, and Astrophysical Implications

    Directory of Open Access Journals (Sweden)

    S. Komossa

    2012-01-01

    Full Text Available Supermassive black holes (SMBHs may not always reside right at the centers of their host galaxies. This is a prediction of numerical relativity simulations, which imply that the newly formed single SMBH, after binary coalescence in a galaxy merger, can receive kick velocities up to several 1000 km/s due to anisotropic emission of gravitational waves. Long-lived oscillations of the SMBHs in galaxy cores, and in rare cases even SMBH ejections from their host galaxies, are the consequence. Observationally, accreting recoiling SMBHs would appear as quasars spatially and/or kinematically offset from their host galaxies. The presence of the “kicks” has a wide range of astrophysical implications which only now are beginning to be explored, including consequences for black hole and galaxy assembly at the epoch of structure formation, black hole feeding, and unified models of active galactic nuclei (AGN. Here, we review the observational signatures of recoiling SMBHs and the properties of the first candidates which have emerged, including follow-up studies of the candidate recoiling SMBH of SDSSJ092712.65+294344.0.

  8. New developments of the recoil distance doppler-shift method

    Energy Technology Data Exchange (ETDEWEB)

    Fransen, Christoph; Blazhev, Andrey; Braunroth, Thomas; Dewald, Alfred; Goldkuhle, Alina; Jolie, Jan; Litzinger, Julia; Mueller-Gatermann, Claus; Woelk, Dorothea; Zell, Karl-Oskar [Institut fuer Kernphysik, Universitaet zu Koeln (Germany)

    2016-07-01

    The recoil distance Doppler-shift (RDDS) method is a very valuable technique for measuring lifetimes of excited nuclear states in the picosecond range to deduce absolute transition strengths between nuclear excitations independent on the reaction mechanism. Dedicated plunger devices were built by our group for measurements with this method for a broad range of beam energies ranging from few MeV/u up to relativistic energies of the order of 100 MeV/u. Those were designed to match the constraints defined by state-of-the art γ-ray spectrometers like AGATA, Galileo, Gammasphere. Here we give an overview about recent experiments of our group to determine transition strengths from level lifetimes in exotic nuclei where also recoil separators or mass spectrographs were used for an identification of the recoiling reaction products. The aim is to learn about phenomena like shape phase coexistence in exotic regions and the evolution of the shell structure far from the valley of stability. We also review new plunger devices that are developed by our group for future experimental campaigns with stable and radioactive beams in different energy regimes, e.g., a plunger for HIE-ISOLDE.

  9. The recoil proton polarization in. pi. p elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for ..pi../sup +/p and ..pi../sup -/p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P/sup 3/ East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10/sup 7/ ..pi../sup -/'s/sec and from 3.0 to 10.0 x 10/sup 7/ ..pi../sup +/'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs.

  10. A recoil detector of Koala experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huagen [Forschungszentrum Juelich (Germany)

    2015-07-01

    The concept of the luminosity detector for the PANDA experiment is based on measuring antiproton-proton elastic scattering in the Coulomb-nuclear interference region by 4 planes of HV-MAPS tracking detectors. The absolute precision is limited by the lack of existing data of the physics quantities σ{sub tot}, ρ and b describing the differential cross section as a function of squared 4-momentum transfer t in the relevant beam momentum region. Therefore, the so-called Koala experiment has been proposed to measure antiproton-proton elastic scattering. The goal of Koala experiment is to measure a wide range of t-distribution to determine the parameters σ{sub tot}, ρ and b. The idea is to measure the scattered beam antiprotons at forward angles by tracking detectors and the recoil target protons near 90 {sup circle} by energy detectors. In order to validate this method a recoil detector has been designed and built. Commissioning of the recoil detector by measuring proton-proton elastic scattering has been performed at COSY. Preliminary results of the commissioning are presented.

  11. The DarkSide-50 Experiment: Electron Recoil Calibrations and A Global Energy Variable

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, Brianne Rae [Hawaii U.

    2017-01-01

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds is done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introduc- ing radioactive sources into or near the detector in a joint eort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in mul- tiple calibration campaigns with both neutron and sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of calibration sources by constructing a global energy variable which takes into account the anti- correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted decay spectrum of 39Ar against 39Ar decay data collected in the early days of DarkSide-50 while it was lled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can predict

  12. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, Shawn S. [Princeton Univ., NJ (United States)

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and

  13. Sub-recoil cooling up to nano-Kelvin. Direct measurement of spatial coherency length. New tests for Levy statistics; Refroidissement laser subrecul au nanokelvin. Mesure directe de la longueur de coherence spatiale. Nouveaux tests des statistiques de Levy

    Energy Technology Data Exchange (ETDEWEB)

    Saubamea, B

    1998-12-15

    This thesis presents a new method to measure the temperature of ultracold atoms from the spatial autocorrelation function of the atomic wave-packets. We thus determine the temperature of metastable helium-4 atoms cooled by velocity selective dark resonance, a method known to cool the atoms below the temperature related to the emission or the absorption of a single photon by an atom at rest, namely the recoil temperature. This cooling mechanism prepares each atom in a coherent superposition of two wave-packets with opposite mean momenta, which are initially superimposed and then drift apart. By measuring the temporal decay of their overlap, we have access to the Fourier transform of the momentum distribution of the atoms. Using this method, we can measure temperatures as low as 5 nK, 800 times as small as the recoil temperature. Moreover we study in detail the exact shape of the momentum distribution and compare the experimental results with two different theoretical approaches: a quantum Monte Carlo simulation and an analytical model based on Levy statistics. We compare the calculated line shape with the one deduced from simulations, and each theoretical model with experimental data. A very good agreement is found with each approach. We thus demonstrate the validity of the statistical model of sub-recoil cooling and give the first experimental evidence of some of its characteristics: the absence of steady-state, the self-similarity and the non Lorentzian shape of the momentum distribution of the cooled atoms. All these aspects are related to the non ergodicity of sub-recoil cooling. (author)

  14. Structure and properties of CdO-B2O3 and CdO-MnO-B2O3 glasses; Criteria of getting the fraction of four coordinated boron atoms from infrared spectra

    Science.gov (United States)

    Doweidar, H.; El-Damrawi, G.; El-Stohy, Sh.

    2017-11-01

    IR spectra of CdO-B2O3 and xCdO·(50 - x)MnO·50B2O3 glasses (0 ≤ x ≤ 50 mol%) have been analyzed. The fraction N4 of four coordinated boron atoms obtained from the integrated area under the IR spectra of CdO-B2O3 glasses is markedly higher than the reported NMR values. In both cases, N4 does not change with CdO content. The difference between N4 values of both techniques has been correlated with the relative absorption coefficient of BO4 unit with respect to BO3 unit, as suggested by Chryssikos et al. N4 data of xCdO·(50 - x)MnO·50B2O3 glasses could be used to calculate the fraction of modifier and former CdO and MnO in the borate matrix, as a function of composition. There is a linear increase in both the density and molar volume with increasing CdO content. The change has been correlated with the contribution of CdO and MnO. Electric conduction is assumed to take place via hopping of small polarons. There is a decrease in conductivity with increasing CdO concentration, which suggests that the electrons related to Cd sites are more localized than those at Mn sites.

  15. Spin resonance strengths for radiative polarization and vertical momentum recoils using the spin response formalism

    Energy Technology Data Exchange (ETDEWEB)

    Mane, S.R. [Convergent Computing Inc., P.O. Box 561, Shoreham, NY 11786 (United States)], E-mail: srmane@optonline.net

    2008-08-21

    The radiative polarization of electrons and positrons in storage rings includes spin resonances driven by vertical momentum recoils due to spin flip photon emissions. This is in addition to the spin resonances driven by longitudinal momentum recoils. The underlying physics for the vertical momentum recoils is similar to the perturbations induced by a radial field (rf) dipole spin flipper. This paper derives the spin resonance strengths driven by the vertical momentum recoils using known techniques for spin flippers, such as the spin response formalism.

  16. Hydrogen and surface excitation in electron spectra of polyethylene

    Science.gov (United States)

    Orosz, G. T.; Gergely, G.; Menyhard, M.; Tóth, J.; Varga, D.; Lesiak, B.; Jablonski, A.

    2004-09-01

    The inelastic mean free path (IMFP) of electrons of polyethylene was determined by elastic peak electron spectroscopy (EPES). Hydrogen cannot be detected directly by conventional electron spectroscopies, such as Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), reflection electron energy loss spectroscopy (REELS) and EPES. The evaluation of electron spectra on polyethylene (PE) and other polymers needs corrections for hydrogen and surface excitation. Electron elastic backscattering on H atoms appears in the splitting of the elastic peak, shifting and Doppler broadening of the H peak produced by recoil effect. This shift is 0.34-3.8 eV for E=0.2-2.0 keV. Experiments resulted in separating the very low H elastic signal from the background. Surface excitation is characterised by the parameter Pse( E) which was described by formulae of Tanuma, Werner and Chen, using different definitions. The Pse( E) of PE was determined by our new procedure. Si and Ag were used as reference samples for its determination by EPES experiments. Experiments were made with a HSA spectrometer of high energy resolution. Their Monte Carlo evaluation was based on the NIST 64 database and IMFP of Tanuma et al., Gries and Cumpson. Pse( E) of PE was determined by best fit of experimental parameters, comparing the different IMFPs and surface excitation correction factors of Chen and Werner et al. The criteria of best fit are the RMS deviations from the different corrections. The total backscattering spectra (elastic and inelastic) of PE, C and Cu resulted in indirect observation of H.

  17. The XMM-Newton spectrum of a candidate recoiling supermassive black hole: An elusive inverted P-Cygni profile

    Energy Technology Data Exchange (ETDEWEB)

    Lanzuisi, G.; Civano, F.; Marchesi, S.; Hickox, R. [Department of Physics and Astronomy, Dartmouth College, Wilder Laboratory, Hanover, NH 03855 (United States); Comastri, A.; Cappelluti, N. [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Costantini, E. [SRON, Netherlands Institute for Space Research, Sorbonnelaan, 2, 3584 CA Utrecht (Netherlands); Elvis, M.; Fruscione, A. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Mainieri, V. [European Southern Observatory, Karl-Schwarschild-Strasse 2, D-85748 Garching bei Munchen (Germany); Jahnke, K. [Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany); Komossa, S. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Piconcelli, E. [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Italy); Vignali, C.; Brusa, M. [Dipartimento di Astronomia, Universitá degli Studi di Bologna, via Ranzani 1, I-40127 Bologna (Italy)

    2013-11-20

    We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ∼6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the new long XMM-Newton observation, while the overall spectral shape remains constant, the continuum 2-10 keV flux decrease of ∼20% with respect to previous observation and the absorption line is undetected. The upper limit on the intensity of the absorption line is EW < 162 eV. Extensive Monte Carlo simulations show that the nondetection of the line is solely due to variation in the properties of the inflowing material, in agreement with the transient nature of these features, and that the intensity of the line is lower than the previously measured with a probability of 98.8%. In the scenario of CID-42 as a recoiling SMBH, the absorption line can be interpreted as being due to an inflow of gas with variable density that is located in the proximity of the SMBH and recoiling with it. New monitoring observations will be requested to further characterize this line.

  18. Effect of different precursors on generation of reference spectra for structural molecular background correction by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: Determination of antimony in cosmetics.

    Science.gov (United States)

    Barros, Ariane Isis; Victor de Babos, Diego; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2016-12-01

    Different precursors were evaluated for the generation of reference spectra and correction of the background caused by SiO molecules in the determination of Sb in facial cosmetics by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis. Zeolite and mica were the most effective precursors for background correction during Sb determination using the 217.581nm and 231.147nm lines. Full 2 3 factorial design and central composite design were used to optimize the atomizer temperature program. The optimum pyrolysis and atomization temperatures were 1500 and 2100°C, respectively. A Pd(NO 3 ) 2 /Mg(NO 3 ) 2 mixture was employed as the chemical modifier, and calibration was performed at 217.581nm with aqueous standards containing Sb in the range 0.5-2.25ng, resulting in a correlation coefficient of 0.9995 and a slope of 0.1548s ng -1 . The sample mass was in the range 0.15-0.25mg. The accuracy of the method was determined by analysis of Montana Soil (II) certified reference material, together with addition/recovery tests. The Sb concentration found was in agreement with the certified value, at a 95% confidence level (paired t-test). Recoveries of Sb added to the samples were in the range 82-108%. The limit of quantification was 0.9mgkg -1 and the relative standard deviation (n=3) ranged from 0.5% to 7.1%. From thirteen analyzed samples, Sb was not detected in ten samples (blush, eye shadow and compact powder); three samples (two blush and one eye shadow) presented Sb concentration in the 9.1-14.5mgkg -1 range. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The WITCH experiment Acquiring the first recoil ion spectrum

    CERN Document Server

    Kozlov, V Yu; Coeck, S; Delahaye, P; Friedag, P; Herbane, M; Herlert, A; Kraev, I S; Tandecki, M; Van Gorp, S; Wauters, F; Weinheimer, Ch; Wenander, F; Zakoucky, D; Severijns, N

    2008-01-01

    The standard model of the electroweak interaction describes beta-decay in the well-known V-A form. Nevertheless, the most general Hamiltonian of a beta-decay includes also other possible interaction types, e.g. scalar (S) and tensor (T) contributions, which are not fully ruled out yet experimentally. The WITCH experiment aims to study a possible admixture of these exotic interaction types in nuclear beta-decay by a precise measurement of the shape of the recoil ion energy spectrum. The experimental set-up couples a double Penning trap system and a retardation spectrometer. The set-up is installed in ISOLDE/CERN and was recently shown to be fully operational. The current status of the experiment is presented together with the data acquired during the 2006 campaign, showing the first recoil ion energy spectrum obtained. The data taking procedure and corresponding data acquisition system are described in more detail. Several further technical improvements are briefly reviewed.

  20. Dynamical formation of horizons in recoiling D-branes

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    2000-01-01

    A toy calculation of string or D-particle interactions within a world-sheet approach indicates that quantum recoil effects-reflecting the gravitational back reaction on space-time foam due to the propagation of energetic particles-induces the appearance of a microscopic event horizon, or "bubble, " inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a "bounce" solution. Within such "bubbles, " massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially 3 for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3-branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface. (2...

  1. Oscillation and recoil of single and consecutively printed droplets

    Science.gov (United States)

    Yang, Xin; Chhasatia, Viral; Sun, Ying

    2012-11-01

    Drops are often used as building blocks for line and pattern printing where their interactions play an important role in determining the morphology and properties of deposited functional materials. In this study, the impact, spreading and oscillation of single and consecutively printed drops on substrates of different wettabilities are examined using a high speed camera. The results show that, for a single droplet impacting at a low Weber number, both the inertia and surface tension play important roles in the initial spreading stage before the droplet starts to oscillate. On a substrate of higher wettability, drop oscillation is damped down faster due to stronger viscous dissipation resulted from a longer liquid oscillation path. It is also found that when a drop impacting on an evaporating sessile drop sitting on a hydrophobic substrate, recoil of the combined drop is observed, in contrast to no recoil for the impact of a single drop under the same condition. Furthermore, a single-degree-of-freedom vibration model for the height of oscillating single and combined drops on a hydrophobic substrate is established. The results show that as viscosity of liquid increases, damping of drop oscillation becomes faster, and the combined drop oscillates longer compared to a single drop.

  2. Atmospheric chemistry of (CF3)2C=CH2: OH radicals, Cl atoms and O3 rate coefficients, oxidation end-products and IR spectra.

    Science.gov (United States)

    Papadimitriou, Vassileios C; Spitieri, Christina S; Papagiannakopoulos, Panos; Cazaunau, Mathieu; Lendar, Maria; Daële, Véronique; Mellouki, Abdelwahid

    2015-10-14

    The rate coefficients for the gas phase reactions of OH radicals, k1, Cl atoms, k2, and O3, k3, with 3,3,3-trifluoro-2(trifluoromethyl)-1-propene ((CF3)2C=CH2, hexafluoroisobutylene, HFIB) were determined at room temperature and atmospheric pressure employing the relative rate method and using two atmospheric simulation chambers and a static photochemical reactor. OH and Cl rate coefficients obtained by both techniques were indistinguishable, within experimental precision, and the average values were k1 = (7.82 ± 0.55) × 10(-13) cm(3) molecule(-1) s(-1) and k2 = (3.45 ± 0.24) × 10(-11) cm(3) molecule(-1) s(-1), respectively. The quoted uncertainties are at 95% level of confidence and include the estimated systematic uncertainties. An upper limit for the O3 rate coefficient was determined to be k3 < 9.0 × 10(-22) cm(3) molecule(-1) s(-1). In global warming potential (GWP) calculations, radiative efficiency (RE) was determined from the measured IR absorption cross-sections and treating HFIB both as long (LLC) and short (SLC) lived compounds, including estimated lifetime dependent factors in the SLC case. The HFIB lifetime was estimated from kinetic measurements considering merely the OH reaction, τOH = 14.8 days and including both OH and Cl chemistry, τeff = 10.3 days. Therefore, GWP(HFIB,OH) and GWP(HFIB,eff) were estimated to be 4.1 (LLC) and 0.6 (SLC), as well as 2.8 (LLC) and 0.3 (SLC) for a hundred year time horizon. Moreover, the estimated photochemical ozone creation potential (ε(POCP)) of HFIB was calculated to be 4.60. Finally, HCHO and (CF3)2C(O) were identified as final oxidation products in both OH- and Cl-initiated oxidation, while HC(O)Cl was additionally observed in the Cl-initiated oxidation.

  3. Neutral atom traps of radioactives

    CERN Document Server

    Behr, J A

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear beta decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left...

  4. A recoil detector for the Internal Target Facility of AmPS (NIKHEF).

    NARCIS (Netherlands)

    van Sambeek, M.J.M.; Blok, H.P.

    1997-01-01

    A recoil detector has been built for internal target experiments with the Amsterdam Pulse Stretcher and storage ring, AmPS, of NIKHEF. The detector was designed to detect low-energy (1-20 MeV/nucleon) and low-mass (A ≤ 4) recoiling nuclei emerging from electron-induced reactions. The detector

  5. A recoil detector for the internal target facility of AmPS (NIKHEF).

    NARCIS (Netherlands)

    van Sambeek, M.J.M.; Blok, H.P.; Dodge, G.E.; Heimberg, P.C.; Steenbakkers, M.F.M.

    1998-01-01

    A recoil detector has been built for internal target experiments with the Amsterdam Pulse Stretcher and storage ring, AmPS, of NIKHEF. The detector was designed to detect low-energy (1-20 MeV/nucleon) and low-mass (A ≤ 4) recoiling nuclei emerging from electron-induced reactions. The detector

  6. Calculations of Total and Differential Solid Angles for a Proton Recoil Solid State Detector

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J.; Lauber, A.; Tollander, B.

    1963-08-15

    The solid angles have been computed for a proton recoil counter consisting of a circular hydrogenous foil viewed by an isotropic neutron point source at different distances from the target foil. Tables are given for the total subtended solid angle as well as the differential energy distribution function of the proton recoil spectrum. The influence of finite foil thickness has also been studied.

  7. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Tenzing Henry Yatish [Univ. of California, Berkeley, CA (United States)

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  8. In-beam spectroscopy using the JYFL gas-filled magnetic recoil separator RITU

    CERN Document Server

    Uusitalo, J; Greenlees, P T; Rahkila, P; Leino, M; Andreyev, A N; Butler, P A; Enqvist, T; Eskola, Kari J; Grahn, T; Herzberg, R D; Hessberger, F P; Julin, R; Juutinen, S; Keenan, A; Kettunen, H; Kuusiniemi, P; Leppaenen, A P; Nieminen, P; Page, R; Pakarinen, J; Scholey, C

    2003-01-01

    The techniques of recoil-gating and recoil-decay tagging have been employed at Jyvaeskylae to perform in-beam gamma-ray and electron spectroscopy studies of heavy nuclei. The JUROSPHERE gamma-ray array and the SACRED electron spectrometer have been placed at the target position of the JYFL gas-filled recoil separator recoil ion transport unit (RITU). The RITU separator has been used to collect the recoils of interest and separate them from beam particles and fission products. At the focal plane a detector system consisting of time-of-flight and implantation detectors has been used for further event identification. The method and some highlights from the results in the lead region close to the proton drip line and in the transuranium region will be presented and discussed.

  9. Commissioning of the recoil silicon detector for the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pickert, N.C.

    2008-02-15

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  10. Mass attenuation coefficient (μ/ρ), effective atomic number (Z{sub eff}) and measurement of x-ray energy spectra using based calcium phosphate biomaterials: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Z, M. A.; Da Silva, T. A.; Nogueira, M. S. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Goncalves Z, E., E-mail: madelon@cdtn.br [Pontifice Catholic University of Minas Gerais, Av. Dom Jose Gaspar 500, Belo Horizonte 30535-901, Minas Gerais (Brazil)

    2015-10-15

    In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Z{sub eff} of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Z{sub eff} using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)

  11. Inequality spectra

    Science.gov (United States)

    Eliazar, Iddo

    2017-03-01

    Inequality indices are widely applied in economics and in the social sciences as quantitative measures of the socioeconomic inequality of human societies. The application of inequality indices extends to size-distributions at large, where these indices can be used as general gauges of statistical heterogeneity. Moreover, as inequality indices are plentiful, arrays of such indices facilitate high-detail quantification of statistical heterogeneity. In this paper we elevate from arrays of inequality indices to inequality spectra: continuums of inequality indices that are parameterized by a single control parameter. We present a general methodology of constructing Lorenz-based inequality spectra, apply the general methodology to establish four sets of inequality spectra, investigate the properties of these sets, and show how these sets generalize known inequality gauges such as: the Gini index, the extended Gini index, the Rényi index, and hill curves.

  12. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huajie [Princeton Univ., NJ (United States)

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  13. Recoiling supermassive black hole escape velocities from dark matter haloes

    Science.gov (United States)

    Choksi, Nick; Behroozi, Peter; Volonteri, Marta; Schneider, Raffaella; Ma, Chung-Pei; Silk, Joseph; Moster, Benjamin

    2017-12-01

    We simulate recoiling black hole trajectories from z = 20 to z = 0 in dark matter haloes, quantifying how parameter choices affect escape velocities. These choices include the strength of dynamical friction, the presence of stars and gas, the accelerating expansion of the Universe (Hubble acceleration), host halo accretion and motion, and seed black hole mass. Lambda cold dark matter halo accretion increases escape velocities by up to 0.6 dex and significantly shortens return time-scales compared to non-accreting cases. Other parameters change orbit damping rates but have subdominant effects on escape velocities; dynamical friction is weak at halo escape velocities, even for extreme parameter values. We present formulae for black hole escape velocities as a function of host halo mass and redshift. Finally, we discuss how these findings affect black hole mass assembly as well as minimum stellar and halo masses necessary to retain supermassive black holes.

  14. Lifetimes in {sup 161}Lu measured with recoil distance method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.H.; Lewis, J.M.; Riedinger, L.L. [and others

    1993-04-01

    High spin states of {sup 161}Lu are populated using the {sup 120}Sn({sup 45}Sc,4n){sup 161}Lu reaction with a 205 MeV {sup 45}Sc beam provided by the Oak Ridge National Lab. A plunger was used to stop the recoils at various distances and the {gamma}-rays were detected by the compact array of 20 Compton-suppressed Ge detectors of 17, 30, 60, 85, 140, 210, and 320 micrometers. These data are being analyzed in order to extract lifetimes. High spin lifetimes in the {pi}h{sub 11/12}, 9/2[514] band of {sup 161}Lu were previously measured with DSAM technique. Large energy signature splitting was observed in the low spin portion of this band, which has been interpreted as the evidence for triaxiality and small quadrupole deformation. The authors measured lifetimes at low spin will be helpful for the verification of this prediction.

  15. Measurement of the neutron electric form factor via recoil polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    T. Reichelt; R. Madey; A.Yu. Semenov; S. Taylor; A. Aghalarian; E. Crouse; G. MacLachlan; B. Plaster; S. Tajima; W. Tireman; C.Y. Yan; A. Ahmidouch; B.D. Anderson; R. Asaturian; O. Baker; A.R. Baldwin; H. Breuer; R. Carlini; E. Christy; S. Churchwell; L. Cole; S. Danagulian; D. Day; M. Elaasar; R. Ent; M. Farkhondeh; H. Fenker; J.M. Finn; L. Gan; K. Garrow; P. Gueye; C. Howell; B. Hu; M.K. Jones; J.J. Kelly; C. Keppel; M. Khandaker; W.Y. Kim; S. Kowalski; A. Lung; D. Mack; D.M. Manley; P. Markowitz; J. Mitchell; H. Mkrtchian; A.K. Opper; C. Perdrisat; V. Punjabi; B. Raue; J. Reinhold; J. Roche; Y. Sato; W. Seo; N. Simicevic; G. Smith; S. Stepanian; V. Tadevosian; L. Tang; P. Ulmer; W. Vulcan; J.W. Watson; S. Wells; F. Wesselmann; S. Wood; C. Yan; S. Yang; L. Yuan; W.M. Zhang; H. Zhu; X. Zhu; H. Arenhovel

    2003-10-22

    The ratio G{sub c}{sup n}/G{sub m}{sup n} of the electric to the magnetic form factor of the neutron has been measured by analyzing the polarization of the recoiling neutron in quasi-elastic scattering of longitudinally polarized electrons from deuterium at the Q{sup 2} values of 0.45, 1.15, and 1.47 (GeV/c){sup 2}. The experiment has been performed in Hall C of the Thomas Jefferson National Accelerator Facility. With G{sub m}{sup n} being known G can be deduced. The preliminary results show that the lowest Q{sup 2} points follow the Galster parameterization and that the 1.47 (GeV/c){sup 2} point rises above this parameterization.

  16. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  17. Corrosion resistance enhancement of SAE 1020 steel after Chromium implantation by nitrogen ion recoil

    Directory of Open Access Journals (Sweden)

    Geraldo Francisco Gomes

    2005-12-01

    Full Text Available SAE 1020 construction steel is widely used as mortar reinforcement and small machine parts, but aside good surface properties as high ductility, hardness and wear resistance, its surface is prone to severe corrosion. As it is known, Chromium in amount over 12%-13% in the Fe alloys renders them resistance to several corrosive attacks. SAE 1020 samples were recovered with Chromium film and then bombarded either by nitrogen Ion Beam (IB or Plasma Immersion Ion Implantation (PIII to recoil implant Cr atoms in the Fe matrix. Samples treated by 100 keV N+ IB showed irregular, thin Cr profile, remaining a part of the film on the surface, to about 10 nm. Samples treated by 40 kV N PIII presented Cr layer of about 18% at., ranging to around 90 nm. Cr of the film was implanted in the Fe matrix in an almost flat profile. Results of corrosion test showed good performance of the PIII treated sample. The IB treated sample showed some enhancement over the non-treated reference and the only Cr film deposited sample showed no modification on the corrosion behavior as compared to the non-treated reference sample.

  18. Enhancement of surface properties of SAE 1020 by chromium plasma immersion recoil implantation

    Science.gov (United States)

    Ueda, M.; Mello, C. B.; Beloto, A. F.; Rossi, J. O.; Reuther, H.

    2007-04-01

    SAE 1020 steel is commonly used as concrete reinforcement and small machine parts, but despite its good mechanical properties, as ductility, hardness and wear resistance, it is susceptible to severe corrosion. It is well known that chromium content above 12% in Fe alloys increases their corrosion resistance. In order to obtain this improvement, we studied the introduction of chromium atoms into the matrix of SAE 1020 steel by recoil implantation process using a plasma immersion ion implantation (PIII) system. Potentiodynamic scans showed that the presence of Cr film leads to a gain in the corrosion potential, from -650 mV to -400 mV. After PIII treatment, the corrosion potential increased further to -340 mV, but the corrosion current density presented no significant change. Vickers microhardness tests showed surface hardness increase of up to about 27% for the treated samples. Auger electron spectroscopy showed that, for a 30 nm film, Cr was introduced for about 20 nm into the steel matrix. Tribology tests, of pin-on-disk type, showed that friction coefficient of treated samples was reduced by about 50% and a change in wear mechanism, from adhesive to abrasive mode, occurred.

  19. A novel method for modeling the recoil in W boson events at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Abbott, B. [University of Oklahoma, Norman, OK 73019 (United States); Abolins, M. [Michigan State University, East Lansing, MI 48824 (United States); Acharya, B.S. [Tata Institute of Fundamental Research, Mumbai (India); Adams, M. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Adams, T. [Florida State University, Tallahassee, FL 32306 (United States); Aguilo, E. [University of Alberta, Edmonton, Alberta (Canada); Simon Fraser University, Burnaby, British Columbia (Canada); York University, Toronto, Ontario (Canada); McGill University, Montreal, Quebec (Canada); Ahsan, M. [Kansas State University, Manhattan, KS 66506 (United States); Alexeev, G.D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Alkhazov, G. [Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Alton, A. [University of Michigan, Ann Arbor, MI 48109 (United States); Alverson, G. [Northeastern University, Boston, MA 02115 (United States); Alves, G.A. [LAFEX, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Ancu, L.S. [Radboud University Nijmegen/NIKHEF, Nijmegen (Netherlands); Andeen, T.; Anzelc, M.S. [Northwestern University, Evanston, IL 60208 (United States); Aoki, M. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Arnoud, Y. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble (France); Arov, M. [Louisiana Tech University, Ruston, LA 71272 (United States); Arthaud, M. [CEA, Irfu, SPP, Saclay (France)] (and others)

    2009-10-11

    We present a new method for modeling the hadronic recoil in W{yields}l{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z{yields}ll data events and overlaid on a simulated W{yields}l{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

  20. Recoil effects on chemical G-values during ion irradiation of polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.B. (Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6376 (United States)); Lee, E.H. (Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6376 (United States)); Rao, G.R. (Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6376 (United States))

    1994-07-01

    Measurements of G-values (number of molecules emitted per 100 eV of absorbed radiation energy) have been made for helium and boron ion irradiations of polystyrene (PS) films of different thicknesses. These ions were chosen because the electronic linear energy transfer (LET) values for B[sup +] with energy near 200 keV is comparable to the corresponding LET for He[sup +] near 400 keV. In contrast, the nuclear of ''recoil'' LET of B[sup +] is several times larger than that of He[sup +] throughout the B[sup +] depth range. When the G-values for H[sub 2] and C[sub 2]H[sub 2] gas production were measured for these ions, three important findings were noted: (1) The G-values for H[sub 2] and C[sub 2]H[sub 2] showed only a slight increase and decrease respectively with increasing electronic LET. (2) The G(H[sub 2]) for B[sup +] irradiation was approximately 50% larger than that for He[sup +] irradiation. (3) The G(C[sub 2]H[sub 2]) was about a factor of five larger for the B[sup +] irradiation compared to the He[sup +]. In contrast to earlier speculation, no evidence was seen for an electronic LET threshold, above which the G-values rapidly increase. It appears that this anomaly was primarily due to changing the bombarding ion (increasing the atomic number) to reach a larger LET in the measurement. While G-value effects due to different ion-track energy densities are not yet resolved, our findings imply that most of the molecular gases formed from radiochemical reactions in polymers during typical ion irradiations are dependent not simply upon electronic energy, but upon a mechanism involving momentum transfer from the ion to the atomic nuclei of the target. ((orig.))

  1. Time-of-Flight Experiments in Molecular Motion and Electron-Atom Collision Kinematics

    Science.gov (United States)

    Donnelly, Denis P.; And Others

    1971-01-01

    Describes a set of experiments for an undergraduate laboratory which demonstrates the relationship between velocity, mass, and temperature in a gas. The experimental method involves time-of-flight measurements on atoms excited to metastable states by electron impact. Effects resulting from recoil in the electron-atom collision can also be…

  2. Simple model, including recoil, for the brightness of sodium guide stars created from CW single frequency fasors and comparison to measurements

    Science.gov (United States)

    Hillman, Paul D.; Drummond, Jack D.; Denman, Craig A.; Fugate, Robert Q.

    2008-07-01

    Using a stable single frequency (Δυ fasor we have characterized the guide star radiance under several conditions, including routinely measuring the radiance at various launch powers and simultaneously illuminating the same spot with a second fasor with a range of different frequency separations. Making use of sodium's hyperfine energy diagram and allowed transitions it is shown that some transitions do not contribute to the radiance after a short time period thus greatly reducing the number of states whose populations need to be tracked in a simple rate equation model. An offshoot of this view is the importance of the pump source's spectral content for efficient sodium scattering. Accounting for atomic recoil, which causes atoms to be Doppler shifted out of resonance, we obtain model curves for photon return flux versus launch power for both linear and circular polarization, both agree with measurements; the only free parameter being the sodium column density on the single night both sets of data were taken. We attempted to measure the sodium velocity distribution due to recoil using two Fasors in a pump-probe arrangement. We have measured some subtle phenomena that this simple model does not explain and these will be discussed. These may imply the importance of understanding the collision rates for sodium atoms to re-equilibrate through velocity changing collisions, spin relaxation and coherent beam propagation under various atmospheric conditions.

  3. Status of a facility for measuring nuclear recoils by neutron scattering from cryogenic particle detectors

    Science.gov (United States)

    van den Putte, M. J. J.; Hoess, C.; Giles, T. J.; Angrave, L.; Booth, N. E.; Cooper, S.; Esposito, E.; Gaitskell, R. J.; Houwman, E. P.; Salmon, G. L.; Wänninger, S.

    1996-02-01

    We are setting up a dedicated neutron-scattering facility in order to study the response of cryogenic detectors to nuclear recoils in preparation for dark matter searches. The design and status of the facility are presented.

  4. Status of a facility for measuring nuclear recoils by neutron scattering from cryogenic particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Van den Putte, M.J.J. [Oxford Univ. (United Kingdom). Dept. of Physics; Hoess, C. [Oxford Univ. (United Kingdom). Dept. of Physics; Giles, T.J. [Oxford Univ. (United Kingdom). Dept. of Physics; Angrave, L. [Oxford Univ. (United Kingdom). Dept. of Physics; Booth, N.E. [Oxford Univ. (United Kingdom). Dept. of Physics; Cooper, S. [Oxford Univ. (United Kingdom). Dept. of Physics; Esposito, E. [Oxford Univ. (United Kingdom). Dept. of Physics; Gaitskell, R.J. [Oxford Univ. (United Kingdom). Dept. of Physics; Houwman, E.P. [Oxford Univ. (United Kingdom). Dept. of Physics; Salmon, G.L. [Oxford Univ. (United Kingdom). Dept. of Physics; Waenninger, S. [Oxford Univ. (United Kingdom). Dept. of Physics

    1996-02-11

    We are setting up a dedicated neutron-scattering facility in order to study the response of cryogenic detectors to nuclear recoils in preparation for dark matter searches. The design and status of the facility are presented. (orig.).

  5. First Measurement of Beam-Recoil Observables Cx and Cz

    Energy Technology Data Exchange (ETDEWEB)

    R. Bradford; R.A. Schumacher; G. Adams; M.J. Amaryan; P. Ambrozewicz; E. Anciant; M. Anghinolfi; B. Asavapibhop; G. Asryan; G. Audit; H. Avakian; H. Bagdasaryan; N. Baillie; J.P. Ball; N.A. Baltzell; S. Barrow; V. Batourine; M. Battaglieri; K. Beard; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; B.L. Berman; N. Bianchi; A.S. Biselli; B.E. Bonner; S. Bouchigny; S. Boiarinov; D. Branford; W.J. Briscoe; W.K. Brooks; S. B¨ultmann; V.D. Burkert; C. Butuceanu; J.R. Calarco; S.L. Careccia; D.S. Carman; B. Carnahan; S. Chen; P.L. Cole; A. Coleman; P. Collins; P. Coltharp; D. Cords; † P. Corvisiero; D. Crabb; H. Crannell; V. Crede; J.P. Cummings; R. De Masi; E. De Sanctis; R. De Vita; P.V. Degtyarenko; H. Denizli; L. Dennis; A. Deur; K.V. Dharmawardane; R. Dickson; C. Djalali; G.E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O.P. Dzyubak; H. Egiyan; ; K.S. Egiyan; L. El Fassi; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; G. Feldman; R.J. Feuerbach; T.A. Forest; H. Funsten; M. Garcon; G. Gavalian; ; G.P. Gilfoyle; K.L. Giovanetti; F.X. Girod; J.T. Goetz; A. Gonenc; R.W. Gothe; K.A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; K. Hafidi; H. Hakobyan; R.S. Hakobyan; J. Hardie; D. Heddle; F.W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C.E. Hyde-Wright; Y. Ilieva; D.G. Ireland; B.S. Ishkhanov; E.L. Isupov; M.M. Ito; D. Jenkins; H.S. Jo; K. Joo; H.G. Juengst; N. Kalantarians; J.D. Kellie; M. Khandaker; K.Y. Kim; K. Kim; W. Kim; A. Klein; F.J. Klein; M. Klusman; M. Kossov; L.H. Kramer; V. Kubarovsky; J. Kuhn; S.E. Kuhn; S.V. Kuleshov; J. Lachniet; J.M. Laget; J. Langheinrich; D. Lawrence; A.C.S. Lima; K. Livingston; H.Y. Lu; K. Lukashin; M. MacCormick; J.J. Manak; C. Marchand; N. Markov; S. McAleer; B. McKinnon; J.W.C. McNabb; B.A. Mecking; M.D. Mestayer; C.A. Meyer; T. Mibe; K. Mikhailov; M. Mirazita; R. Miskimen; V. Mokeev; K. Moriya; S.A. Morrow; M. Moteabbed; V. Muccifora; J. Mueller; G.S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; N. Natasha; S. Niccolai; G. Niculescu; I. Niculescu; B.B. Niczyporuk; M.R. Niroula; R.A. Niyazov; M. Nozar; G.V. O’Rielly; M. Osipenko; A.I. Ostrovidov; K. Park; E. Pasyuk; C. Paterson; S.A. Philips; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; I. Popa; S. Pozdniakov; B.M. Preedom; J.W. Price; Y. Prok; D. Protopopescu; L.M. Qin; B.P. Quinn; B.A. Raue; G. Riccardi; G. Ricco; M. Ripani; B.G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P.D. Rubin; F. Sabatie; J. Salamanca; C. Salgado; J.P. Santoro; ; V. Sapunenko; V.S. Serov; A. Shafi; Y.G. Sharabian; J. Shaw; N.V. Shvedunov; S. Simionatto; A.V. Skabelin; E.S. Smith; L.C. Smith; D.I. Sober; D. Sokhan; M. Spraker; A. Stavinsky; S.S. Stepanyan; S. Stepanyan; B.E. Stokes; P. Stoler; I.I. Strakovsky; S. Strauch; M. Taiuti; S. Taylor; D.J. Tedeschi; U. Thoma; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M.F. Vineyard; A.V. Vlassov; K. Wang; D.P. Watts; L.B. Weinstein; H. Weller; D.P. Weygand; M. Williams; E. Wolin; M.H. Wood; A. Yegneswaran; J. Yun; L. Zana; J. Zhang; B. Zhao; and Z.W. Zhao

    2007-03-01

    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\\vec\\gamma + p \\to K^+ + \\vec\\Lambda$ and $\\vec\\gamma + p \\to K^+ + \\vec\\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\\cos\\theta_{K^+}^{c.m.}< +0.95$. For the $\\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\\it total} $\\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

  6. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Bouanani, M.E.; Persson, L.; Hult, M.; Jonsson, P.; Johnston, P.N. [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M. [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M.; Zaring, C. [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P.N.; Bubb, I.F.; Walker, B.R.; Stannard, W.B. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  7. Nuclear effects in atomic transitions

    CERN Document Server

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.

  8. The host galaxy of the gravitational wave recoiling black hole candidate 3C186

    Science.gov (United States)

    Chiaberge, Marco

    2017-08-01

    We discovered a gravitational wave (GW) recoiling black hole (BH) candidate in our HST WFC3 snapshot images of the radio-loud QSO 3C186. These events are expected to happen as a result of BH-BH mergers. This extremely energetic phenomenon leads to the production of an intense field of GWs, which in most cases are emitted anisotropically. As a result, the merged black hole may receive a kick and be displaced from the center of the host galaxy with velocities that can be as high as 4000 km/s. Depending on the relative orientation of the kick with respect to the line-of-sight, if the BH is active we expect to observe an offset QSO. Furthermore, the broad lines may be offset with respect to the narrow lines, which are emitted in the frame of the host. 3C186 shows all of the predicted observational features of a such an event. Spectra show offsets between narrow and broad emission lines of 2100km/s, and our HST image clearly shows that the QSO is offset by 1.3 with respect to the isophotal center of the host galaxy. Scenarios alternative to the GW kick as the origin for the observed features are unlikely, but still viable. Only HST allows us to obtain spatially resolved information, high sensitivity and stable PSF to better investigate the host galaxy properties. We will use ACS and WFC3 to obtain deep images and study the morphology of the host galaxy. We will unambiguously establish whether the host galaxy of 3C186 underwent a major merger and we will be able to set accurate constraints on the age of the merger. The proposed observations will have a tremendous impact on our knowledge of supermassive BH mergers and the associated emission of gravitational waves.

  9. Atom slowing via dispersive optical interactions

    Science.gov (United States)

    Hamamda, M.; Boustimi, M.; Correia, F.; Baudon, J.; Taillandier-Loize, T.; Dutier, G.; Perales, F.; Ducloy, M.

    2012-02-01

    A promising technique of atom slowing is proposed. It is based upon the dispersive interaction of atoms with optical potential pulses generated by a far-off-resonance standing wave modulated in time. Each pulse reduces the velocity by a small amount. By repeating the process thousands of times, the velocity can be lowered from several hundreds of meters per second down to almost zero, over a path as short as 20cm. In the absence of any random recoil process, the initial characteristics of the beam are preserved.

  10. Detection of exclusive reactions in the Hermes Recoil Fiber Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Keri, Tibor

    2008-08-15

    the RD (Recoil Detector) with an unpolarized target at this position. This detector consists of the Silicon Strip Detector, the SFT (Scintillating Fiber Tracker), the Photon Detector and is surrounded by a 1T superconducting magnet. It provides several space points for tracking and thus momentum reconstruction. The energy deposition in the various detectors is used to achieve particle identification. The main part of the thesis work was the implementation of the SFT and the RD readout system. Before the installation of the RD a series of test runs were carried out to proof the concept of the detector, to measure the internal alignment and to prepare the installation. These test runs for the SFT are described and major results are shown. Furthermore a preliminary analysis of the latest data 06d/06d0 was carried out to show the performance of the installed Recoil Detector in combination with the HERMES forward spectrometer. (orig.)

  11. Bloch oscillations of ultracold atoms and measurement of the fine structure constant; Oscillations de Bloch d'atomes ultrafroids et mesure de la constante de structure fine

    Energy Technology Data Exchange (ETDEWEB)

    Clade, P

    2005-10-15

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10{sup -9}, in conjunction with a careful study of systematic effects (5 10{sup -9}), has led us to a determination of alpha with an uncertainty of 6.7 10{sup -9}: {alpha}{sup -1}(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  12. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Q. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); University of Chinese Academy of Sciences, Beijing (China); Bechstedt, U.; Gillitzer, A.; Grzonka, D.; Lehrach, A.; Prasuhn, D.; Sefzick, T.; Stockmanns, T.; Xu, H. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Khoukaz, A.; Taeschner, A. [Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Klehr, F.; Wuestner, P. [Elektronik und Analytik, Forschungszentrum Juelich, Zentralinstitut fuer Engineering, Juelich (Germany); Ritman, J. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Ruhr-Universitaet Bochum, Bochum (Germany)

    2014-10-15

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to 90 {sup circle} are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment. (orig.)

  13. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90°

    Science.gov (United States)

    Hu, Q.; Bechstedt, U.; Gillitzer, A.; Grzonka, D.; Khoukaz, A.; Klehr, F.; Lehrach, A.; Prasuhn, D.; Ritman, J.; Sefzick, T.; Stockmanns, T.; Täschner, A.; Wuestner, P.; Xu, H.

    2014-10-01

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment.

  14. FAC: Flexible Atomic Code

    Science.gov (United States)

    Gu, Ming Feng

    2018-02-01

    FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.

  15. Nitrogen depletion of indium nitride films during Elastic Recoil Detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Santosh K. [School of Physical, Environmental and Mathematical Sciences, University College, University of New South Wales at the Australian Defence Force Academy, Northcott Dr, Canberra, ACT 2600 (Australia)]. E-mail: s.shrestha@adfa.edu.au; Timmers, Heiko [School of Physical, Environmental and Mathematical Sciences, University College, University of New South Wales at the Australian Defence Force Academy, Northcott Dr, Canberra, ACT 2600 (Australia); Department of Nuclear Physics, Australian National University, Canberra, ACT 0200 (Australia); Butcher, K. Scott A. [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Wintrebert-Fouquet, Marie [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Chen, Patrick P.-T. [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia)

    2005-06-01

    Elastic Recoil Detection analysis of different types of indium nitride films has been performed using a 200 MeV Au beam. Recoil ions were detected with a gas ionisation detector featuring a large detection solid angle. Severe and non-linear nitrogen depletion has been observed, with films grown by RF-sputtering losing nitrogen more quickly than MBE-grown films. Assuming the formation of molecular nitrogen as the decisive step leading to nitrogen loss, the nitrogen depletion process has been modelled using the bulk molecular recombination model. The model allows accurate extrapolations of the original nitrogen content of the material. Since the other important elements can also be quantified, the stoichiometry of the film can thus reliably be obtained from Elastic Recoil Detection analysis. All the films analysed have been found to have excess nitrogen.

  16. Collisional entanglement fidelities in quantum plasmas including strong quantum recoil and oscillation effects

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-10-01

    The quantum recoil and oscillation effects on the entanglement fidelity and the electron-exchange function for the electron-ion collision are investigated in a semiconductor plasma by using the partial wave analysis and effective interaction potential in strong quantum recoil regime. The magnitude of the electron-exchange function is found to increase as the collision energy increases, but it decreases with an increase in the exchange parameter. It is also found that the collisional entanglement fidelity in strong quantum recoil plasmas is enhanced by the quantum-mechanical and shielding effects. The collisional entanglement fidelity in a semiconductor plasma is also enhanced by the collective plasmon oscillation and electron-exchange effect. However, the electron-exchange effect on the fidelity ratio function is reduced as the plasmon energy increases. Moreover, the electron-exchange influence on the fidelity ratio function is found to increase as the Fermi energy in the semiconductor plasma increases.

  17. On recoil energy dependent void swelling in pure copper: Theoretical treatment

    DEFF Research Database (Denmark)

    Golubov, S.I.; Singh, Bachu Narain; Trinkaus, H.

    2000-01-01

    in Part I of this paper (Singh, Eldrup, Horsewell, Ehrhart and Dworschak 2000). The present paper attempts to provide a theoretical framework within which theeffect of recoil energy on damage accumulation behaviour can be understood. The damage accumulation under Frenkel pair production (e.g. 2.5 Me...... such asone-dimensional diffusional transport and thermal stability are found to be the main reasons for the recoil energy dependent vacancy supersaturation. The vacancy supersaturation is the main driving force for the void nucleation and void swelling. In thecase of Frenkel pair production, the experimental...

  18. A new recoil distance technique using low energy coulomb excitation in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Rother, W., E-mail: wolfram.rother@googlemail.com [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others

    2011-10-21

    We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.

  19. Radiation Recoil Effects on the Dynamical Evolution of Asteroids

    Science.gov (United States)

    Cotto-Figueroa, Desiree

    The Yarkovsky effect is a radiation recoil force that results in a semimajor axis drift in the orbit that can cause Main Belt asteroids to be delivered to powerful resonances from which they could be transported to Earth-crossing orbits. This force depends on the spin state of the object, which is modified by the YORP effect, a variation of the Yarkovsky effect that results in a torque that changes the spin rate and the obliquity. Extensive analyses of the basic behavior of the YORP effect have been previously conducted in the context of the classical spin state evolution of rigid bodies (YORP cycle). However, the YORP effect has an extreme sensitivity to the topography of the asteroids and a minor change in the shape of an aggregate asteroid can stochastically change the YORP torques. Here we present the results of the first simulations that self-consistently model the YORP effect on the spin states of dynamically evolving aggregates. For these simulations we have developed several algorithms and combined them with two codes, TACO and pkdgrav. TACO is a thermophysical asteroid code that models the surface of an asteroid using a triangular facet representation and which can compute the YORP torques. The code pkdgrav is a cosmological N-body tree code modified to simulate the dynamical evolution of asteroids represented as aggregates of spheres using gravity and collisions. The continuous changes in the shape of an aggregate result in a different evolution of the YORP torques and therefore aggregates do not evolve through the YORP cycle as a rigid body would. Instead of having a spin evolution ruled by long periods of rotational acceleration and deceleration as predicted by the classical YORP cycle, the YORP effect is self-limiting and stochastic on aggregate asteroids. We provide a statistical description of the spin state evolution which lays out the foundation for new simulations of a coupled Yarkovsky/YORP evolution. Both self-limiting YORP and to a lesser

  20. In vivo assessment of stent recoil of biodegradable polymer-coated cobalt-chromium sirolimus-eluting coronary stent system.

    Science.gov (United States)

    Abhyankar, Atul D; Thakkar, Ashok S

    2012-01-01

    Immediate and acute stent recoil has been observed following balloon deflation in normal and diseased coronary arteries, and the degree varies by stent design. A total of 19 patients, who underwent elective stent implantation for single de novo native coronary artery lesions, were enrolled: all patients treated with the biodegradable polymer-coated sirolimus-eluting cobalt-chromium coronary stent system (Supralimus-Core(®)). The immediate, acute and cumulative stent recoil was assessed by quantitative coronary angiography. The cumulative stent recoil was measured at 24 h of stent implantation. The absolute late loss due to recoil was found 0.08 ± 0.19 mm for Immediate Stent Recoil (ISR), 0.05 ± 0.21 mm for Acute Stent Recoil (ASR) and 0.11 ± 0.25 mm for Cumulative Stent Recoil (CSR) respectively. In vivo acute stent recoil of the Supralimus-Core(®) has higher radial strength compared to other available standard drug-eluting stents. Copyright © 2012 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  1. A deterministic method to calculate the radiation spectra of nuclides.

    Science.gov (United States)

    Stepanek, J

    1997-01-01

    Recently, the computer program IMRDEC has been developed to determine the radiation spectra due to a single atomic-subshell ionisation of a stable atom by a particle, or due to the atomic deexcitation or decay of nuclides. The data needed to describe the deexcitation or decay scheme are obtained from the Evaluated Nuclear Structure Data File (ENSDF) maintained at Brookhaven National Laboratory; this results in the simplest possible input specification. The atomic data as well as the atomic relaxation probabilities are taken from the Evaluated Atomic Data Library (EADL) from Lawrence Livermore National Laboratory. The program IMRDEC calculates the radiation spectra (inclusively the atomic relaxation cascades) deterministically rather than by the Monte Carlo method; this results in much shorter calculational time per nuclide. Since many assumptions still have to be made in determining the atomic relaxation probabilities and in calculating the atomic relaxation, the deterministic method seems to be a small source of inaccuracy.

  2. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions; Tests d'electrodynamique quantique et etalons de rayons-X a l'aide des atomes pioniques et des ions multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Trassinelli

    2005-12-15

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m({pi}{sup -}) = (139.571042 {+-} 0.000210 {+-} 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV.

  3. Detection of low momentum protons with the new HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Vilardi, Ignazio

    2008-10-15

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the {delta}{sup +} background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  4. Measurement of light and charge yield of low-energy electronic recoils in liquid xenon

    Science.gov (United States)

    Goetzke, L. W.; Aprile, E.; Anthony, M.; Plante, G.; Weber, M.

    2017-11-01

    The dependence of the light and charge yield of liquid xenon on the applied electric field and recoil energy is important for dark matter detectors using liquid xenon time projections chambers. Few measurements have been made of this field dependence at recoil energies less than 10 keV. In this paper, we present results of such measurements using a specialized detector. Recoil energies are determined via the Compton coincidence technique at four drift fields relevant for liquid xenon dark matter detectors: 0.19, 0.48, 1.02, and 2.32 kV /cm . Mean recoil energies down to 1 keV were measured with unprecedented precision. We find that the charge and light yield are anticorrelated above ˜3 keV and that the field dependence becomes negligible below ˜6 keV . However, below 3 keV, we find a charge yield significantly higher than expectation and a reconstructed energy deviating from linearity.

  5. WITCH: a recoil spectrometer for weak interaction and nuclear physics studies

    CERN Document Server

    Beck, M; Golovko, V.V.; Kozlov, V.Yu.; Kraev, I.S.; Lindroth, A.; Phalet, T.; Schuurmans, P.; Severijns, N.; Vereecke, B.; Versyck, S.; Beck, D.; Quint, W.; Ames, F.; Bollen, G.

    2003-01-01

    An experimental set-up is described for the precise measurement of the recoil energy spectrum of the daughter ions from nuclear beta decay. The experiment is called WITCH, short for Weak Interaction Trap for CHarged particles, and is set up at the ISOLDE facility at CERN. The principle of the experiment and its realization are explained as well as the main physics goal. A cloud of radioactive ions stored in a Penning trap serves as the source for the WITCH experiment, leading to the minimization of scattering and energy loss of the decay products. The energy spectrum of the recoiling daughter ions from the $\\beta$--decays in this ion cloud will be measured with a retardation spectrometer. The principal aim of the WITCH experiment is to study the electroweak interaction by determining the beta--neutrino angular correlation in nuclear $\\beta$--decay from the shape of this recoil energy spectrum. This will be the first time that the recoil energy spectrum of the daughter ions from $\\beta$--decay can be measured ...

  6. Hybrid recoil mass analyzer at IUAC–First results using gas-filled ...

    Indian Academy of Sciences (India)

    Hybrid recoil mass analyzer (HYRA) is a unique, dual-mode spectrometer designed to carry out nuclear reaction and structure studies in heavy and medium-mass nuclei using gas-filled and vacuum modes, respectively and has the potential to address newer domains in nuclear physics accessible using high energy, ...

  7. Nuclear radiative recoil corrections to the hyperfine structure of S-states in muonic hydrogen

    Science.gov (United States)

    Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.

    2017-09-01

    Nuclear radiative recoil corrections of order α( Zα)5 to the hyperfine splitting of S-states in muonic hydrogen are calculated on the basis of quasipotential method in quantum electrodynamics. The calculation is performed in the infrared safe Fried-Yennie gauge. Modern experimental data on the proton form factors are used.

  8. Photon recoil momentum in a Bose–Einstein condensate of a dilute gas

    NARCIS (Netherlands)

    Avetisyan, Yu. A.; Malyshev, V.A.; Trifonov, E. D.

    We develop a ‘minimal’ microscopic model to describe a two-pulse-Ramsey-interferometerbased scheme of measurement of the photon recoil momentum in a Bose–Einstein condensate of a dilute gas (Campbell et al 2005 Phys. Rev. Lett. 94 170403). We exploit the truncated coupled Maxwell–Schrödinger

  9. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    Science.gov (United States)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  10. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Fallows, Scott Mathew [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  11. Exclusive {rho}{sup 0} production measured with the HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Perez Benito, Roberto Francisco

    2010-12-15

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  12. Quantification of Left Ventricular Torsion and Diastolic Recoil Using Cardiovascular Magnetic Resonance Myocardial Feature Tracking

    Science.gov (United States)

    Hussain, Shazia T.; Kutty, Shelby; Steinmetz, Michael; Sohns, Jan M.; Fasshauer, Martin; Staab, Wieland; Unterberg-Buchwald, Christina; Bigalke, Boris; Lotz, Joachim; Hasenfuß, Gerd; Schuster, Andreas

    2014-01-01

    Objectives Cardiovascular magnetic resonance feature tracking (CMR-FT) offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV) torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and reproducibility of CMR-FT to quantify LV torsion and peak recoil rate using an optimal anatomical approach. Methods Short-axis cine stacks were acquired at rest and during dobutamine stimulation (10 and 20 µg·kg−1·min−1) in 10 healthy volunteers. Rotational displacement was analysed for all slices. A complete 3D-LV rotational model was developed using linear interpolation between adjacent slices. Torsion was defined as the difference between apical and basal rotation, divided by slice distance. Depending on the distance between the most apical (defined as 0% LV distance) and basal (defined as 100% LV distance) slices, four different models for the calculation of torsion were examined: Model-1 (25–75%), Model-2 (0–100%), Model-3 (25–100%) and Model-4 (0–75%). Analysis included subendocardial, subepicardial and global torsion and recoil rate (mean of subendocardial and subepicardial values). Results Quantification of torsion and recoil rate was feasible in all subjects. There was no significant difference between the different models at rest. However, only Model-1 (25–75%) discriminated between rest and stress (Global Torsion: 2.7±1.5°cm−1, 3.6±2.0°cm−1, 5.1±2.2°cm−1, p<0.01; Global Recoil Rate: −30.1±11.1°cm−1s−1,−46.9±15.0°cm−1s−1,−68.9±32.3°cm−1s−1, p<0.01; for rest, 10 and 20 µg·kg−1·min−1 of dobutamine, respectively). Reproducibility was sufficient for all parameters as determined by Bland-Altman analysis, intraclass correlation coefficients and coefficient of variation. Conclusions CMR-FT based derivation of myocardial torsion and recoil rate is feasible and reproducible at rest and with dobutamine

  13. Quantification of left ventricular torsion and diastolic recoil using cardiovascular magnetic resonance myocardial feature tracking.

    Directory of Open Access Journals (Sweden)

    Johannes T Kowallick

    Full Text Available Cardiovascular magnetic resonance feature tracking (CMR-FT offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and reproducibility of CMR-FT to quantify LV torsion and peak recoil rate using an optimal anatomical approach.Short-axis cine stacks were acquired at rest and during dobutamine stimulation (10 and 20 µg · kg(-1 · min(-1 in 10 healthy volunteers. Rotational displacement was analysed for all slices. A complete 3D-LV rotational model was developed using linear interpolation between adjacent slices. Torsion was defined as the difference between apical and basal rotation, divided by slice distance. Depending on the distance between the most apical (defined as 0% LV distance and basal (defined as 100% LV distance slices, four different models for the calculation of torsion were examined: Model-1 (25-75%, Model-2 (0-100%, Model-3 (25-100% and Model-4 (0-75%. Analysis included subendocardial, subepicardial and global torsion and recoil rate (mean of subendocardial and subepicardial values.Quantification of torsion and recoil rate was feasible in all subjects. There was no significant difference between the different models at rest. However, only Model-1 (25-75% discriminated between rest and stress (Global Torsion: 2.7 ± 1.5° cm(-1, 3.6 ± 2.0° cm(-1, 5.1 ± 2.2° cm(-1, p<0.01; Global Recoil Rate: -30.1 ± 11.1° cm(-1 s(-1,-46.9 ± 15.0° cm(-1 s(-1,-68.9 ± 32.3° cm(-1 s(-1, p<0.01; for rest, 10 and 20 µg · kg(-1 · min(-1 of dobutamine, respectively. Reproducibility was sufficient for all parameters as determined by Bland-Altman analysis, intraclass correlation coefficients and coefficient of variation.CMR-FT based derivation of myocardial torsion and recoil rate is feasible and reproducible at rest and with dobutamine stress. Using an optimal

  14. Conservation laws and laser cooling of atoms

    CERN Document Server

    Giuliani, Giuseppe

    2015-01-01

    The straightforward application of energy and linear momentum conservation to the absorption/emission of photons by atoms--first outlined by Schr\\"odinger in 1922--allows to establish the essential features of laser cooling of two levels atoms at low laser intensities. The minimum attainable average kinetic energy of the atoms depends on the ratio $\\Gamma/E_R$ between the natural linewidth and the recoil energy and tends to $E_R$ as $\\Gamma/E_R$ tends to zero. This treatment is valid for any value of the ratio $\\Gamma/E_R$ and contains the semiclassical theory of laser cooling as the limiting case in which $E_R\\ll \\Gamma$.

  15. Computer simulation of backscattering spectra from paint

    Science.gov (United States)

    Mayer, M.; Silva, T. F.

    2017-09-01

    To study the role of lateral non-homogeneity on backscattering analysis of paintings, a simplified model of paint consisting of randomly distributed spherical pigment particles embedded in oil/binder has been developed. Backscattering spectra for lead white pigment particles in linseed oil have been calculated for 3 MeV H+ at a scattering angle of 165° for pigment volume concentrations ranging from 30 vol.% to 70 vol.% using the program STRUCTNRA. For identical pigment volume concentrations the heights and shapes of the backscattering spectra depend on the diameter of the pigment particles: This is a structural ambiguity for identical mean atomic concentrations but different lateral arrangement of materials. Only for very small pigment particles the resulting spectra are close to spectra calculated supposing atomic mixing and assuming identical concentrations of all elements. Generally, a good fit can be achieved when evaluating spectra from structured materials assuming atomic mixing of all elements and laterally homogeneous depth distributions. However, the derived depth profiles are inaccurate by a factor of up to 3. The depth range affected by this structural ambiguity ranges from the surface to a depth of roughly 0.5-1 pigment particle diameters. Accurate quantitative evaluation of backscattering spectra from paintings therefore requires taking the correct microstructure of the paint layer into account.

  16. Hydrogen-bridge Si(μ-H)3CeH and inserted H3SiCeH molecules: Matrix infrared spectra and DFT calculations for reaction products of silane with Ce atoms

    Science.gov (United States)

    Xu, Bing; Shi, Peipei; Huang, Tengfei; Wang, Xuefeng

    2017-10-01

    Reactions of laser-ablated cerium atoms with silane were investigated by matrix isolation infrared spectroscopy and theoretical calculations. The reaction products, Si(μ-H)3CeH, H3SiCeH, H2Si(μ-H)CeH and HSi(μ-H)2CeH were identified on the basis of the SiD4 isotopic substitutions and DFT frequency calculations. In the solid argon or krypton matrix, the inserted H3SiCeH molecule was observed as initial product on deposition, which rearranged to hydrogen bridge species Si(μ-H)3CeH on follow-up annealing through H2Si(μ-H)CeH and HSi(μ-H)2CeH species. The Sisbnd Hsbnd Ce hydrogen bridge was investigated by NBO and ELF analysis. Calculation suggested that in Si(μ-H)3CeH molecule Ce atom donated one electron to Si atom, resulting in electron-rich SiH3 subunit, which was confirmed by ESP and AIM analysis. The increased basicity of Sisbnd H bond facilitates the formation of hydrogen bridge bond between Si and Ce. For comparison only insertion H3CCeH structure was obtained from the reaction of Ce atoms with CH4.

  17. First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment

    CERN Document Server

    Beck, M; Kozlov, V Yu; Breitenfeld, M; Delahaye, P; Friedag, P; Herbane, M; Herlert, A; Kraev, I S; Mader, J; Tandecki, M; Van Gorp, S; Wauters, F; Weinheimer, Ch; Wenander, F; Severijns, N

    2011-01-01

    The WITCH experiment (Weak Interaction Trap for CHarged particles) will search for exotic interactions by investigating the beta-neutrino angular correlation via the measurement of the recoil energy spectrum after beta decay. As a first step the recoil ions from the beta-minus decay of 124In stored in a Penning trap have been detected. The evidence for the detection of recoil ions is shown and the properties of the ion cloud that forms the radioactive source for the experiment in the Penning trap are presented.

  18. Zooming in on B → K*ll decays at low recoil

    Energy Technology Data Exchange (ETDEWEB)

    Brass, Simon [Universitaet Siegen, Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultaet, Siegen (Germany); Hiller, Gudrun; Nisandzic, Ivan [Technische Universitaet Dortmund, Institut fuer Physik, Dortmund (Germany)

    2017-01-15

    We analyse B → K*ll decays in the region of low hadronic recoil, where an operator product expansion (OPE) in 1/m{sub b} applies. Using a local model for charm contributions based on e{sup +}e{sup -} → hadrons against the OPE provides a data-driven method to access the limitations to the OPE's accuracy related to binnings in the dilepton mass. Model-independent fits to B → K*μμ low recoil angular observables exhibit presently only small sensitivity to different charm models. They give similar results to the fits based on the OPE and are in agreement with the standard model, but leave also room for new physics. Measurements with resolution small enough to probe charm resonances would be desirable. (orig.)

  19. Coupling of the recoil mass spectrometer CAMEL to the {gamma}-ray spectrometer GASP

    Energy Technology Data Exchange (ETDEWEB)

    Spolaore, P. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Ackermann, D. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Bednarczyk, P. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; De Angelis, G. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Napoli, D. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Rossi Alvarez, C. [INFN, Sezione di Padova, Padova (Italy); Bazzacco, D. [INFN, Sezione di Padova, Padova (Italy); Burch, R. [INFN, Sezione di Padova, Padova (Italy); Mueller, L. [INFN, Sezione di Padova, Padova (Italy); Segato, G.F. [Dipartimento di Fisica, Universita di Padova, Padova (Italy); Scarlassara, F. [Dipartimento di Fisica, Universita di Padova, Padova (Italy)

    1995-05-15

    A project has been realized to link the CAMEL recoil mass spectrometer to the GASP {gamma}-spectrometer in order to perform high resolution and efficiency {gamma}-recoil coincidence measurements. To preserve high flexibility and autonomy in the operation of the two complex apparatus a rough factor two of reduction in the overall heavy ion transmission was accepted in designing the optics of the particle transport from the GASP center to the CAMEL focal plane. The coupled configuration has been tested with the fusion reaction {sup 58}Ni (E=212 MeV)+{sup 64}Ni, obtaining a mass resolution of 1/300 and efficiency between similar 11% and similar 15% for different evaporation products. (orig.).

  20. Defect characterization of low-energy recoil events in silicon using classical molecular dynamics simulation

    CERN Document Server

    Otto, G; Gaertner, K

    2003-01-01

    We classify the defects generated by silicon recoils as a function of energy up to 200 eV, using classical molecular dynamics simulations and analysis of the geometry of each isolated defect. The majority of defects in this energy range are vacancies and interstitials, the latter mostly in split- configuration and less frequently in tetrahedral interstitial positions. Besides Frenkel pairs, bond defects and di-interstitials are found with significantly lower probability. The fraction of defects belonging to none of these types is less than 5% for recoil events below 200 eV, but rises sharply at higher energies and remains almost constant at a value of 40% between 300 and 500 eV. Moreover, we determine the projected range and the pair distance distribution of the defects. Throughout the paper we compare results obtained with the Tersoff and the Stillinger-Weber interatomic potential.

  1. Prospects for Precise Measurements with Echo Atom Interferometry

    Science.gov (United States)

    Barrett, Brynle; Carew, Adam; Beica, Hermina; Vorozcovs, Andrejs; Pouliot, Alexander; Kumarakrishnan, A.

    2016-06-01

    Echo atom interferometers have emerged as interesting alternatives to Raman interferometers for the realization of precise measurements of the gravitational acceleration $g$ and the determination of the atomic fine structure through measurements of the atomic recoil frequency $\\omega_q$. Here we review the development of different configurations of echo interferometers that are best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of laser-cooled rubidium atoms by a sequence of standing wave pulses to measure $\\omega_q$ with a statistical uncertainty of 37 parts per billion (ppb) on a time scale of $\\sim 50$ ms and $g$ with a statistical precision of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.

  2. Prospects for Precise Measurements with Echo Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Brynle Barrett

    2016-06-01

    Full Text Available Echo atom interferometers have emerged as interesting alternatives to Raman interferometers for the realization of precise measurements of the gravitational acceleration g and the determination of the atomic fine structure through measurements of the atomic recoil frequency ω q . Here we review the development of different configurations of echo interferometers that are best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of laser-cooled rubidium atoms by a sequence of standing wave pulses to measure ω q with a statistical uncertainty of 37 parts per billion (ppb on a time scale of ∼50 ms and g with a statistical precision of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.

  3. What Can We Learn From Proton Recoils about Heavy-Ion SEE Sensitivity?

    Science.gov (United States)

    Ladbury, Raymond L.

    2016-01-01

    The fact that protons cause single-event effects (SEE) in most devices through production of light-ion recoils has led to attempts to bound heavy-ion SEE susceptibility through use of proton data. Although this may be a viable strategy for some devices and technologies, the data must be analyzed carefully and conservatively to avoid over-optimistic estimates of SEE performance. We examine the constraints that proton test data can impose on heavy-ion SEE susceptibility.

  4. SDSS J1056+5516: A Triple AGN or an SMBH Recoil Candidate?

    Science.gov (United States)

    Kalfountzou, E.; Santos Lleo, M.; Trichas, M.

    2017-12-01

    We report the discovery of a kiloparsec-scale triple supermassive black hole system at z = 0.256: SDSS J1056+5516, discovered by our systematic search for binary quasars. The system contains three strong emission-line nuclei, which are offset by black hole (SMBH) interacting system, a triple AGN, or a recoiling SMBH. Each of these scenarios is unique for our understanding of the hierarchical growth of galaxies, AGN triggering, and gravitational waves.

  5. Psychological responses to a marine disaster during a recoil phase: experiences from the Estonia shipwreck.

    Science.gov (United States)

    Taiminen, T J; Tuominen, T

    1996-06-01

    The sinking of the car ferry, Estonia, was one of the world's most devastating marine disasters that has ever occurred in peace time. Altogether 138 passengers and crew members were rescued, and 38 of them were taken to the Turku University Central Hospital in Finland. The present article describes the various psychological reactions among the survivors during the first three days of the recoil phase.

  6. Angular dependence of recoil proton polarization in high-energy \\gamma d \\to p n

    CERN Document Server

    Jiang, X; Benmokhtar, F; Camsonne, A; Chen, J P; Choi, S; Chudakov, E; Cusanno, F; De Jager, C W; De Leo, R; Deur, A; Dutta, D; Garibaldi, F; Gaskell, D; Gayou, O; Gilman, R; Glashauser, C; Hamilton, D; Hansen, O; Higinbotham, D W; Holt, R J; Jones, M K; Kaufman, L J; Kinney, E R; Krämer, K; Lagamba, L; Lerose, J; Lhuillier, D; Lindgren, R; Liyanage, N; McCormick, K; Meziani, Z E; Michaels, R; Moffit, B; Monaghan, P; Nanda, S; Paschke, K D; Perdrisat, C F; Punjabi, V; Qattan, I A; Ransome, R D; Reimer, P E; Reitz, B; Saha, A; Schulte, E C; Sheyor, R; Slifer, K J; Solvignon, P; Sulkosky, V; Urciuoli, G M; Voutier, E; Wang, K; Wijesooriya, K; Wojtsekhowski, B; Zhu, L

    2007-01-01

    We measured the angular dependence of the three recoil proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily.. Transverse polarizations are not well described, but suggest isovector dominance.

  7. EMMA, a Recoil Mass Spectrometer for TRIUMF's ISAC-II Facility

    Science.gov (United States)

    Davids, Barry; EMMA Collaboration

    2016-09-01

    EMMA is a recoil mass spectrometer for TRIUMF's ISAC-II facility in the final stages of installation and commissioning. In this talk I will briefly review the spectrometer's design capabilities, describe recent progress in its installation and commissioning, and discuss plans for its initial experimental program. This work was supported by the Natural Sciences and Engineering Council of Canada. TRIUMF receives federal funds through a contribution agreement with the National Research Council of Canada.

  8. Investigation of a gas-catcher/ion guide system using alpha-decay recoil products

    CERN Document Server

    Peraejaervi, K; Rinta-Antila, S; Dendooven, P

    2002-01-01

    sup 2 sup 1 sup 9 Rn recoils from the alpha decay of sup 2 sup 2 sup 3 Ra have been used to study the efficiency and delay time distributions of a gas-catcher/ion guide system. Ions with charge states up to +4 were coming out of the gas cell. Combining efficiency and delay time measurements, ion survival times in plasma free conditions can be deduced.

  9. Monsters on the move: Confirming gravitational wave recoiling supermassive black hole candidates

    Science.gov (United States)

    Robinson, Andrew

    2017-08-01

    There is compelling evidence that supermassive black holes (SMBH) reside at the centers of all large galaxies and are the gravitational 'engines' of Active Galactic Nuclei (AGN). Mergers between galaxies are thought to have played a fundamental role in the growth and evolution of the largest galaxies in the nearby universe. Galaxy mergers lead to the formation of an SMBH binary, which eventually coalescences through the emission of gravitational waves and receives a recoil kick ( several 1000km/s). This recoil in turn causes the merged SMBH to oscillate ( 1Gyr) in the gravitational potential well of the host galaxy. During this time, the recoiling SMBH may be observed as a 'displaced' AGN. These events are a strong test of gravitational physics and the merger frequency of binary SMBH. Due to the long damping time of the post recoil oscillations, displacements 10-100pc may be expected even in nearby elliptical galaxies and can be measured as spatial offsets of AGN in high resolution optical or infrared images. In a preliminary study of 96 early type galaxies using archival HST/WFPC2 images we have identified 18 candidates that show a significant displacement between the SMBH (traced by the AGN) and the photocenter of the host galaxy, determined by isophotal analysis. However, it is necessary to confirm these displacements using IR images since diffuse galaxy scale and nuclear dust structures are common. Here we propose to obtain WFC3/IR F110W and F160W images of 6 of the 18 candidates for which no IR images are available in the HST archive. These observations will allow us to both confirm and improve the accuracy of the measured displacements.

  10. The HERMES recoil photon detector and the study of deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hulse, Charlotte van

    2011-03-15

    The study of deeply virtual Compton scattering (DVCS) gives information about the contribution of the quark orbital angular momentum to the spin of the proton. DVCS has been studied at the HERMES experiment at DESY in Hamburg. Here 27.6 GeV longitudinally polarized electrons and positrons were scattered off a gaseous proton target. For the analysis of DVCS the recoiling proton could not be detected, but was reconstructed via its missing mass. This method suffers, however, from a 14% background contribution, mainly originating from associated DVCS. In this process the proton does not stay in its ground state but is excited to a {delta}{sup +} resonance. In order to reduce the background contribution down to less than 1%, a recoil detector was installed in the HERMES experiment beginning of 2006. This detector consists of three subcomponents, of which one is the photon detector. The main function of the photon detector is the detection of {delta}{sup +} decay photons. The photon detector was started up and commissioned for the analysis of (associated) DVCS. Subsequently DVCS and associated DVCS were analyzed using the recoil detector. (orig.)

  11. DVCS at HERMES. The recoil detector and transverse target spin asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Murray, M.J.

    2008-02-15

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. One of the most exciting topics studied at HERMES is Deeply Virtual Compton Scattering (DVCS) which is the simplest interaction that provides a gateway for access to Generalised Parton Distributions (GPDs). GPDs are a theoretical framework which can be used to calculate the total angular momentum of the quarks in the nucleon. As such, they provide one piece of the puzzle of nucleonic spin structure. In 2005, HERMES was upgraded in the target region with a Recoil Detector that allows it to make truly exclusive measurements of the DVCS interaction for the first time. The design and construction of the Recoil Detector is discussed herein, in addition to a complete analysis of the Transverse Target Spin Asymmetry (TTSA) in DVCS. Experimental facilities that enable measurement of this asymmetry are rare. The importance of the information on the TTSA from HERMES is made yet greater as the transversely polarised target that allows the asymmetry to be measured has been replaced by an unpolarised target. This was to allow the Recoil Detector to be installed. The final stage of this thesis shows a model-dependent method for constraining the angular momentum of the quarks in the nucleon and speculates as to the other pieces of the spin puzzle. (orig.)

  12. Measurement of the W boson mass and width using a novel recoil model

    Energy Technology Data Exchange (ETDEWEB)

    Wetstein, Matthew J.

    2009-01-01

    This dissertation presents a direct measurement of the W boson mass (MW) and decay width (ΓW) in 1 fb-1 of W → ev collider data at D0 using a novel method to model the hadronic recoil. The mass is extracted from fits to the transverse mass MT, pT(e), and ET distributions. The width is extracted from fits to the tail of the MT distribution. The electron energy measurement is simulated using a parameterized model, and the recoil is modeled using a new technique by which Z recoils are chosen from a data library to match the pT and direction of each generated W boson. We measure the the W boson mass to be MW = 80.4035 ± 0.024(stat) ± 0.039(syst) from the MT, MW = 80.4165 ± 0.027(stat) ± 0.038(syst) from the pT(e), and MW = 80.4025 ± 0.023(stat) ± 0.043(syst) from the ET distributions. ΓW is measured to be ΓW = 2.025 ± 0.038(stat) ± 0.061(syst) GeV.

  13. The Benefits of B ---> K* l+ l- Decays at Low Recoil

    CERN Document Server

    Bobeth, Christoph; van Dyk, Danny

    2010-01-01

    Using the heavy quark effective theory framework put forward by Grinstein and Pirjol we work out predictions for B -> K* l+ l-, l = (e, mu), decays for a softly recoiling K*, i.e., for large dilepton masses sqrt{q^2} of the order of the b-quark mass m_b. We work to lowest order in Lambda/Q, where Q = (m_b, sqrt{q^2}) and include the next-to-leading order corrections from the charm quark mass m_c and the strong coupling at O(m_c^2/Q^2, alpha_s). The leading Lambda/m_b corrections are parametrically suppressed. The improved Isgur-Wise form factor relations correlate the B -> K* l+ l- transversity amplitudes, which simplifies the description of the various decay observables and provides opportunities for the extraction of the electroweak short distance couplings. We propose new angular observables which have very small hadronic uncertainties. We exploit existing data on B -> K* l+ l- distributions and show that the low recoil region provides powerful additional information to the large recoil one. We find disjoi...

  14. First observation of the excited states in the doubly odd nucleus [sup 118]Cs identified through [gamma]-recoil coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Bednarczyk, P. (INFN, Lab. Nazionali di Legnaro (Italy)); De Angelis, G. (INFN, Lab. Nazionali di Legnaro (Italy)); Spolaore, P. (INFN, Lab. Nazionali di Legnaro (Italy)); Ackermann, D. (INFN, Lab. Nazionali di Legnaro (Italy)); Rico, J. (INFN, Lab. Nazionali di Legnaro (Italy)); Bazzacco, D. (Dipt. di Fisica dell' Universita and INFN, Padua (Italy)); Lunardi, S. (Dipt. di Fisica dell' Universita and INFN, Padua (Italy)); Mueller, L. (Dipt. di Fisica dell' Universita and INFN, Padua (Italy)); Rossi Alvarez, C. (Dipt. di Fisica dell' Universita and INFN, Padua (Italy)); Scarlassara, R. (Dipt. di Fisica dell' Universita and INFN, Padua (Italy)); Segato, G.F. (Dipt. di Fisica dell' Universita and INFN, Padua (Italy)); Soramel, F. (Udine Univ. (Italy). Dipt. di Fisica)

    1993-10-01

    The previously unknown nucleus [sup 118]Cs has been identified through [gamma]-[gamma] and [gamma]-recoil coincidences using the GASP [gamma]-spectrometer and Recoil Mass Spectrometer. The level scheme constructed on the base of triple [gamma] coincidences shows a collective structure based on the [pi][sup -1] g[sub 9/2] x [nu] h[sub 11/2] configuration. (orig.)

  15. NEW INTERPRETATION OF THE ATOMIC SPECTRA OF THE HYDROGEN ATOM: A MIXED MECHANISM OF CLASSICAL LC CIRCUITS AND QUANTUM WAVE-PARTICLE DUALITY NUEVA INTERPRETACIÓN DEL ESPECTRO ATÓMICO DEL ÁTOMO DE HIDRÓGENO: UN MECANISMO MIXTO DE CIRCUITOS LC Y LA DUALIDAD ONDA CUÁNTICA-PARTÍCULA

    OpenAIRE

    Héctor Torres-Silva

    2008-01-01

    In this paper we study the energy conversion laws of the macroscopic harmonic LC oscillator, the electromagnetic wave (photon) and the hydrogen atom. As our analysis indicates, the energies of these apparently different systems obey exactly the same energy conversion law. Based on our results and the wave-particle duality of electrons, we find that the hydrogen atom is, in fact, a natural chiral microscopic LC oscillator. In the framework of classical electromagnetic field theory we analytica...

  16. The design of a cryogenic dark matter detector based on the detection of the recoil direction of target nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gaitskell, R.J. [Oxford Univ. (United Kingdom). Dept. of Physics; Angrave, L.C. [Oxford Univ. (United Kingdom). Dept. of Physics; Booth, N.E. [Oxford Univ. (United Kingdom). Dept. of Physics; Esposito, E. [Oxford Univ. (United Kingdom). Dept. of Physics; Giles, T.J. [Oxford Univ. (United Kingdom). Dept. of Physics; Hoess, C. [Oxford Univ. (United Kingdom). Dept. of Physics; Houwman, E.P. [Oxford Univ. (United Kingdom). Dept. of Physics; Salmon, G.L. [Oxford Univ. (United Kingdom). Dept. of Physics; Van den Putte, M. [Oxford Univ. (United Kingdom). Dept. of Physics; Waenninger, S. [Oxford Univ. (United Kingdom). Dept. of Physics

    1996-02-11

    We discuss the design of a cryogenic detector for a WIMP dark matter search based on single crystal absorbers and using Series Arrays of Superconducting Tunnel Junctions (SASTJs). The distribution of recoil vectors of target nuclei from WIMP interactions are affected by the motion of the laboratory through the dark matter halo. The angular distribution of recoil directions is skewed due to the motion of the solar system around the galaxy and is modulated by the diurnal and annual rotation of the earth. We discuss the kinematics of the recoil events and how a directional signal might be identified in our cryogenic detectors using the fast response of SASTJs to the ballistic phonons arising in the absorber from WIMP interactions. We consider how the anisotropy of a dark matter recoil distribution can be used to place statistical limits on its component relative to the isotropic background signal. We also consider how the dark matter limit is altered if only the axis of the nuclear recoil, rather than the full recoil direction is available. We also briefly consider the effect of phonon focusing within single crystal absorbers. Focusing will modulate strongly the signal detected by the SASTJs, on the crystal surface, as the position of the interaction within the crystal varies. A comparison is made between the behaviour of phonons in strongly focusing crystals, such as Nb, Si and LiF, and their near isotropic propagation in BaF{sub 2}. (orig.).

  17. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  18. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  19. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  20. Atmospheric chemistry of CH3O(CF2CF2O)(n)CH3 (n=1-3): Kinetics and mechanism of oxidation initiated by Cl atoms and OH radicals, IR spectra, and global warmin potentials

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Hurley, MD; Wallington, TJ

    2004-01-01

    Smog chambers equipped with FTIR spectrometers were used to study the Cl atom and OH radical initiated oxidation of CH3O(CF2CF2O)(n)CH3 (n = 1-3) in 720 +/- 20 Torr of air at 296 +/- 3 K. Relative rate techniques were used to measure k(Cl + CH3O(CF2CF2O)(n)CH3) (3.7 +/- 10.7) x 10(-13) and k(OH +...... of 0.051, 0.058, and 0.055 (100 year time horizon, relative to CFC-11) for CH3OCF2CF2OCH3, CH3O(CF2CF2O)(2)CH3, and CH3O(CF2CF2O)(3)CH3, respectively. Results are discussed with respect to the atmospheric chemistry of hydrofluoropolyethers (HFPEs)....

  1. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  2. Spectra of stable sonoluminescence

    Science.gov (United States)

    Lewis, Stephen D.

    1992-12-01

    The continuous emission of picosecond pulses of light has been observed to originate from a bubble trapped at the pressure antinode of a resonant sound field in water and in water/glycerin mixtures. The spectra of this light in several solutions has been measured with a scanning monochrometer/photomultiplier detector system. The spectra are broadband and show strong emission in the UV region. A comparison of this measurement to two other independently produced spectra is made. The spectra are also modeled by a blackbody radiation distribution to determine an effective blackbody temperature and a size is deduced as if Sonoluminescence were characterized by blackbody radiation.

  3. Order-of-Magnitude Estimate of Fast Neutron Recoil Rates in Proposed Neutrino Detector at SNS

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-02-01

    Yuri Efremenko (UT-K) and Kate Scholberg (Duke) indicated, during discussions on 12 January 2006 with the SNS Neutronics Team, interest in a new type of neutrino detector to be placed within the proposed neutrino bunker at SNS, near beam-line 18, against the RTBT. The successful operation of this detector and its associated experiments would require fast-neutron recoil rates of approximately one event per day of operation or less. To this end, the author has attempted the following order-of-magnitude estimate of this recoil rate in order to judge whether or not a full calculation effort is needed or justified. For the purposes of this estimate, the author considers a one-dimensional slab geometry, in which fast and high-energy neutrons making up the general background in the target building are incident upon one side of an irbon slab. This iron slab represents the neutrino bunker walls. If we assume that a significant fraction of the dose rate throughout the target building is due to fast or high-energy neutrons, we can estimate the flux of such neutrons based upon existing shielding calculations performed for radiation protection purposes. In general, the dose rates within the target building are controlled to be less than 0.25 mrem per hour. A variety of calculations have indicated that these dose rates have significant fast and high-energy neutron components. Thus they can estimate the fast neutron flux incident on the neutrino bunker, and thereby the fast neutron flux inside that bunker. Finally, they can estimate the neutron recoil rate within a nominal detector volume. Such an estimate is outlined in Table 1.

  4. Studies of electrochemical oxidation of Zircaloy nuclear reactor fuel cladding using time-of-flight-energy elastic recoil detection analysis

    Science.gov (United States)

    Whitlow, H. J.; Zhang, Y.; Wang, Y.; Winzell, T.; Simic, N.; Ahlberg, E.; Limbäck, M.; Wikmark, G.

    2000-03-01

    The trend towards increased fuel burn-up and higher operating temperatures in order to achieve more economic operation of nuclear power plants places demands on a better understanding of oxidative corrosion of Zircaloy (Zry) fuel rod cladding. As part of a programme to study these processes we have applied time-of-flight-energy elastic recoil detection (ToF-E ERD), electrochemical impedance measurements and scanning electron microscopy to quantitatively characterise thin-oxide films corresponding to the pre-transition oxidation regime. Oxide films of different nominal thickness in the 9-300 nm range were grown on a series of rolled Zr and Zry-2 plates by anodisation in dilute H 2SO 4 with applied voltages. The dielectric thickness of the oxide layer was determined from the electrochemical impedance measurements and the surface topography characterised by scanning electron microscopy. ToF-E ERD with a 60 MeV 127I 11+ ion beam was used to determine the oxygen content and chemical composition of the oxide layer. In the Zr samples, the oxygen content (O atom cm -2) that was determined by ERD was closely similar to the O content derived from impedance measurements from the dielectric film. The absolute agreement was well within the uncertainty associated with the stopping powers. Moreover, the measured composition of the thick oxide layers corresponded to ZrO 2 for the films thicker than 65 nm where the oxide layer was resolved in the ERD depth profile. Zry-2 samples exhibited a similar behaviour for small thickness ( ⩽130 nm) but had an enhanced O content at larger thicknesses that could be associated either with enhanced rough surface topography or porous oxide formation that was correlated with the presence of Second Phase Particles (SPP) in Zry-2. The concentration of SPP elements (Fe, Cr, Ni) in relation to Zr was the same in the outer 9×10 17 atom cm -2 of oxide as in the same thickness of metal. The results also revealed the presence of about 1 at.% 32S in the

  5. Spallation recoil II: Xenon evidence for young SiC grains

    Science.gov (United States)

    Ott, U.; Altmaier, M.; Herpers, U.; Kuhnhenn, J.; Merchel, S.; Michel, R.; Mohapatra, R. K.

    2005-11-01

    We have determined the recoil range of spallation xenon produced by irradiation of Ba glass targets with ˜1190 and ˜268 MeV protons, using a catcher technique, where spallation products are measured in target and catcher foils. The inferred range for 126Xe produced in silicon carbide is ˜0.19 μm, which implies retention of ˜70% for 126Xe produced in "typical" presolar silicon carbide grains of 1 μm size. Recoil loss of spallation xenon poses a significantly smaller problem than loss of the spallation neon from SiC grains. Ranges differ for the various Xe isotopes and scale approximately linearly as function of the mass difference between the target element, Ba, and the product. As a consequence, SiC grains of various sizes will have differences in spallation Xe composition. In an additional experiment at ˜66 MeV, where the recoil ranges of 22Na and 127Xe produced on Ba glass were determined using γ-spectrometry, we found no evidence for recoil ranges being systematically different at this lower energy. We have used the new data to put constraints on the possible presolar age of the SiC grains analyzed for Xe by Lewis et al. (1994). Uncertainties in the composition of the approximately normal Xe component in SiC (Xe-N) constitute the most serious problem in determining an age, surpassing remaining uncertainties in Xe retention and production rate. A possible interpretation is that spallation contributions are negligible and that trapped 124Xe/126Xe is ˜5% lower in Xe-N than in Q-Xe. But also for other reasonable assumptions for the 124Xe/126Xe ratio in Xe-N (e.g., as in Q-Xe), inferred exposure ages are considerably shorter than theoretically expected lifetimes for interstellar grains. A short presolar age is in line with observations by others (appearance, grain size distribution) that indicate little processing in the interstellar medium (ISM) of surviving (crystalline) SiC. This may be due to amorphization of SiC in the ISM on a much shorter time scale

  6. Broadband light generation at ~1300 nm through spectrally recoiled solitons and dispersive waves

    DEFF Research Database (Denmark)

    Falk, Peter Andreas; Frosz, Michael Henoch; Bang, Ole

    2008-01-01

    We experimentally study the generation of broadband light at ~1300 nm from an 810 nm Ti:sapphire femtosecond pump laser. We use two photonic crystal fibers with a second infrared zero-dispersion wavelength (λZ2) and compare the efficiency of two schemes: in one fiber λZ2=1400 nm and the light...... at 1300 nm is composed of spectrally recoiled solitons; in the other fiber λZ2=1200 nm and the light at 1300 nm is composed of dispersive waves....

  7. Nuclear-Recoil Discrimination in Cryogenic Silicon Detectors for Use in Dark Matter Searches

    Science.gov (United States)

    Penn, Michael James

    There is abundant evidence which suggests that the majority (>90%) of the mass in the universe is in a dark, unknown form. Weakly Interacting Massive Particles (WIMPs) are a particularly well motivated class of candidate dark matter particles. It may be possible to detect WIMPs via elastic scattering from the nuclei in laboratory detectors. In addition to sophisticated shielding schemes, the detector will need an active background rejection capability. One attractive background rejection technique is the discrimination of nuclear recoils (signal) from electron-recoils (backgrounds) based on the simultaneous measurement of both phonons and ionization. A nuclear -recoil event partitions more of its energy into phonons, and less into ionization, than does an equal energy electron -recoil event. We have configured a double-sided Silicon Crystal Acoustic Detector (SiCAD) for simultaneous measurement of both phonons and ionization. This detector operates at ~370 mK and consists of a Ti Transition Edge Sensor (TES), which is the phonon detector, on one side, and a similar pattern of metal, acting as an electrode for the ionization measurement, on the other side of a 300 μm thick high-purity, monocrystalline Si wafer. We present the results of experiments which demonstrate the discrimination capability and position sensitivity of the detector for energy depositions above ~3 keV. The physics of charge measurement, necessary for the background rejection technique, in silicon at low temperature (T < 0.5 K) and low applied electric field (E = 0.1-100 V/cm) has been examined in a variety of high purity, p-type silicon samples with room temperature resistivity in the range 2-40 kOmega-cm. We present results which indicate that a significant fraction of the total charge loss (compared to full collection) at low field occurs in the initial charge cloud near the event location. Measurements of the lateral size, transverse to the applied electric field, of the initial electron

  8. High-spin excitations in {sup 158,159,160}Hf from recoil-decay tagging

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K. Y. [Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903 (United States); Cizewski, J. A. [Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903 (United States); Seweryniak, D. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Amro, H. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Carpenter, M. P. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Davids, C. N. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Fotiades, N. [Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903 (United States); Janssens, R. V. F. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Lauritsen, T. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Lister, C. J. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)] (and others)

    2000-09-01

    The 270-MeV {sup 58}Ni+{sup A}Pd reaction was used for the first recoil-decay tagging measurement with Gammasphere coupled to the Fragment Mass Analyzer at Argonne National Laboratory. Level structures of {sup 158}Hf and {sup 159}Hf are identified for the first time, and that of {sup 160}Hf is extended. The systematical behavior of the energy levels in neighboring isotones and isotopes, as well as the aligned angular momenta as a function of rotational frequency, are examined. (c) 2000 The American Physical Society.

  9. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  10. Early Atomism

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  11. A high stability optical frequency reference based on thermal calcium atoms

    Science.gov (United States)

    2011-05-21

    simple, compact optical frequency standard based upon thennal calcium atoms. Using a Ramsey- Borde specu·ometer we excite features with linewidths < 5kHz...Optical Frequency (kHz) Figure 2: Ramsey- Borde fringes , shown here with both recoil components. Fringe width is < 5kHz (FWHM). tlli.s theoretical value...send ~ 2 m W of the light to a fom-beam Ramsey- Borde spectrometer that excites the atoms in a thermal beam [3]. Atoms emerge from an aperture in theCa

  12. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  13. Scintillation efficiency of nuclear recoils in a CaF sub 2 (Eu) crystal for Dark Matter search

    CERN Document Server

    Hazama, R; Hayakawa, H; Matsuoka, K; Miyawaki, H; Morikubo, K; Suzuki, N; Kishimoto, T

    2002-01-01

    The scintillation efficiency (quenching factor) of fluorine and calcium nuclei recoiling in a CaF sub 2 (Eu) crystal was measured in an energy region relevant to Dark Matter searches. The recoiling nuclei were obtained via the sup 1 sup 9 F(n,n') and sup 4 sup 0 Ca(n,n') reactions, where the neutron beam was provided via the d(d,n) sup 3 He reaction. The quenching factor of F and Ca nuclei in the CaF sub 2 (Eu) crystal was found to be 11-20%, and 9-23% relative to the electron equivalent energy for 53-192 keV and 25-91 keV recoil energies, respectively, and the energy dependence was observed. The quenching factor we measured here is a little larger than that of previous studies, which may depend on the Eu doping concentration of the crystal.

  14. CDMS Detector Fabrication Improvements and Low Energy Nuclear Recoil Measurements in Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, Andrew [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterzations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-t k-value of 0.146.

  15. The Final Merger of Massive Black Holes: Recoils, Gravitational Waves, and Electromagnetic Signatures

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.

  16. The HERMES recoil photon-detector and nuclear p{sub t}-Broadening at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Haarlem, Y. van

    2007-09-15

    The first part of this work consists of hardware research and development done in order to construct and test a photon-detector as one of the three detectors of the HERMES recoil detector. The HERMES recoil detector consists of a target cell, a silicon-detector, a scintillating fiber tracker, and a photon-detector. All are inside a super-conducting magnet. The silicon detector uses energy deposition to determine the momentum of the particle because in its energy range the energy deposition is an unambiguous function of the momentum of the particle. The scintillating fiber tracker is located outside the beam-vacuum and is surrounded by the photon-detector. It consists of two barrels with layers of scintillating fibers. It detects particles by converting their energy deposition into light. It measures two space points of a charged particle and from the bending of the assigned track (in the magnetic field provided by the super-conducting magnet) a momentum measurement can be derived. The photon-detector is located between the scintillating fiber tracker and the magnet. It consists (from the inside out) of three layers of tungsten showering material followed by scintillating strips. The second part of this work is an analysis performed concerning the transverse momentum broadening of hadrons produced in deep-inelastic scattering on a nuclear target compared to a D target. (orig.)

  17. Occurrence and predictors of acute stent recoil-A comparison between the xience prime cobalt chromium stent and the promus premier platinum chromium stent.

    Science.gov (United States)

    van Bommel, Rutger J; Lemmert, Miguel E; van Mieghem, Nicolas M; van Geuns, Robert-Jan; van Domburg, Ron T; Daemen, Joost

    2017-05-13

    To compare the occurrence of acute stent recoil in two different stent types (platinum chromium and cobalt chromium) and identify the potential predictors of significant acute stent recoil. Acute stent recoil is frequently observed after percutaneous coronary intervention and has been associated with in-stent restenosis and in-stent thrombosis. Different stent designs may result in varying degrees of stent recoil. From a registry of "all-comers" treated with either the Xience Prime Cobalt Chromium or Promus Premier Platinum Chromium stent, a random sample of 100 patients was drawn. Acute stent recoil was defined as the minimal luminal diameter (MLD) of the last inflated balloon minus the MLD after, divided by the MLD of the last inflated balloon. Significant acute stent recoil was defined as recoil ≥10%. A total of 123 lesions (61 Xience Prime vs 62 Promus Premier) in 100 patients were analyzed. Acute stent recoil of 8.6 ± 4.9% was observed in the Xience Prime group versus 8.7 ± 4.2% in the Promus Premier group, P = 0.970. In a multivariate model for significant acute stent recoil, a stent/vessel ratio ≥1 (hazard ratio 4.64 [1.94-11.12], P = 0.001), a balloon/stent ratio >1 (hazard ratio 3.83 [1.12-13.14], P = 0.032) and direct stenting (hazard ratio 0.42 [0.18-0.96], P = 0.039) were identified as predictors. No significant differences were observed in the extent of acute stent recoil between the Xience Prime and the Promus Premier stent. A larger stent/vessel ratio, a larger balloon/stent ratio, and direct stenting were associated with significant acute stent recoil ≥10%. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva [Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb (Croatia)

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  19. Preparing a dedicated set up for level lifetime measurements using the recoil Doppler shift technique with fast radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, M.; Fransen, C.; Dewald, A.; Braun, N.; Braunroth, T.; Jolie, J.; Litzinger, J.; Moschner, K.; Reiter, P.; Pfeiffer, M.; Rother, W.; Taprogge, J.; Wendt, A.; Zell, K.O. [IKP, Univ. zu Koeln (Germany); Algora, A.; Doncel, M.; Gadea, A. [Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Ameil, F.; Boutachkov, P.; Gerl, J.; Grebosz, J.; Guastalla, G.; Habermann, T.; Kurz, N.; Merchan, E.; Nociforo, C.; Pietri, S.; Quitana, B.; Wollersheim, H. [KP II, GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Corsi, A.; Louchar, C.; Obertelli, A. [CEA Saclay (France); Reese, M. [IKP, TU Darmstadt (Germany); Petkov, P. [INRNE, Sofia (Bulgaria)

    2012-07-01

    In this paper we report on the development of a new plunger device especially designed to meet the constraints found at the fragment recoil separator (FRS) at GSI (Darmstadt) in combination with PRESPEC. The aim is to measure level lifetimes in the pico-second range using the recoil distance Doppler shift (RDDS) method of states in exotic nuclei excited via Coulomb excitation or knock-out reactions with radioactive beams at relativistic energies. We also report on the first results obtained from a first commissioning run performed recently with a stable {sup 54}Cr beam.

  20. Atomic Data for UV Astronomy

    Science.gov (United States)

    Nave, Gillian

    2017-06-01

    Spectral lines of iron-group elements are observed in a wide variety of astrophysical objects including A- and B- type stars, the interstellar medium, quasi-stellar objects, and absorption spectra from quasi-stellar objects. Although lines of Fe II, Cr II and Ni II often dominate these spectra, even relatively low abundance elements such as Sc II can be important as their abundance can be significantly higher in some objects. In order to understand these spectra it is necessary to obtain and analyze high-resolution, high signal-to-noise ratio laboratory spectra to obtain accurate wavelengths and energy levels for all of the singly-ionized elements from scandium through nickel. For many years, the atomic spectroscopy groups at the National Institute of Standards and Technology (NIST), USA and Imperial College London, UK, have been recording high-resolution spectra of iron-group elements using Fourier transform (FT) and grating spectroscopy in order to complete their analyses. This has resulted comprehensive analyses of Fe II and Cr II from below 100 nm to 5000 nm, covering almost all of the region in which allowed lines of these spectra are typically observed in astronomical objects. Analysis of spectra of V II, Ti II and Co II recorded in less comprehensive regions using FT spectroscopy have also been published. I shall present our current work to extend the observations and analysis of Co II and Ti II to shorter wavelengths, and our comprehensive analyses of Mn II, Ni II, and Sc II.

  1. In vivo assessment of stent recoil of biodegradable polymer-coated cobalt–chromium sirolimus-eluting coronary stent system☆

    Science.gov (United States)

    Abhyankar, Atul D.; Thakkar, Ashok S.

    2012-01-01

    Introduction Immediate and acute stent recoil has been observed following balloon deflation in normal and diseased coronary arteries, and the degree varies by stent design. Methods A total of 19 patients, who underwent elective stent implantation for single de novo native coronary artery lesions, were enrolled: all patients treated with the biodegradable polymer-coated sirolimus-eluting cobalt–chromium coronary stent system (Supralimus-Core®). The immediate, acute and cumulative stent recoil was assessed by quantitative coronary angiography. The cumulative stent recoil was measured at 24 h of stent implantation. Results The absolute late loss due to recoil was found 0.08 ± 0.19 mm for Immediate Stent Recoil (ISR), 0.05 ± 0.21 mm for Acute Stent Recoil (ASR) and 0.11 ± 0.25 mm for Cumulative Stent Recoil (CSR) respectively. Conclusions In vivo acute stent recoil of the Supralimus-Core® has higher radial strength compared to other available standard drug-eluting stents. PMID:23253404

  2. SAWYER ASTEROID SPECTRA

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains 94 optical asteroid spectra obtained by Scott Sawyer as part of his Ph.D. dissertation at the University of Texas at Austin. Observational...

  3. Determination of Atomic Data Pertinent to the Fusion Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  4. Cooperatively coupled motion with superradiant and subradiant atoms

    Science.gov (United States)

    Lin, Guin-Dar; Lin, Kuan-Ting; Tang, Er-Siang

    2017-04-01

    We investigate the coupled motion of cooperative atoms subjected to the Doppler dissipative force. The dipole-dipole interaction introduces mutual decay channel and splits the super-radiant and sub-radiant states. The Doppler force is thus modified due to the collective emission and coupled recoil. Such a cooperative effect is more evident when the inter-atom separation is less than or comparable to a wavelength. In an optical molasses, we find that, along the axis of two atoms, there presents an effective potential with mechanically stable and unstable regions alternatively as their separation increases. Taking the cooperative Lamb shift into account, we map out the stability diagram and investigate the blockade effect. We thank the support from MOST of Taiwan under Grant No. 105-2112-M-002-015-MY3 and National Taiwan University under Grant No. NTU-ERP-105R891401.

  5. Monsters on the move: A search for supermassive black holes undergoing gravitational wave recoil

    Science.gov (United States)

    Jadhav, Yashashree; Robinson, Andrew; Lena, Davide

    2018-01-01

    There is compelling evidence that supermassive black holes (SMBH) reside at the centers of all large galaxies and are the gravitational ‘engines’ of Active Galactic Nuclei (AGN). Furthermore, galaxy mergers are thought to have played a fundamental role in the growth and evolution of the largest galaxies in the nearby universe. A galaxy merger is expected to lead to the formation of an SMBH binary, which itself eventually coalesces through the emission of gravitational waves. Such events fall outside the frequency range accessible to the LIGO/VIRGO gravitational wave detectors, but they can be detected via electromagnetic signatures. Numerical relativity simulations show that, depending on the initial spin-orbit configuration of the binary, the merged SMBH receives a gravitational recoil kick that may reach several 1000km/s. This recoil in turn causes the merged SMBH to oscillate for up to ~1 Gyr in the gravitational potential well of the galaxy. During this time, the recoiling SMBH may be observed as a ‘displaced’ AGN. Such events provide a strong test of gravitational physics and the formation and merger frequencies of binary SMBH. As a result of residual oscillations, displacements ~10 – 100pc may be expected even in nearby elliptical galaxies and can be measured as spatial offsets in high resolution optical or infrared images. We present the results of a preliminary study, in which isophotal analysis was conducted for a sample of 96 galaxies to obtain the photocenter of the galaxies using Hubble Space Telescope (HST) archival optical or infrared WFC2/PC, ACS or NICMOS images. The position of the nuclear point source (AGN) was also measured to obtain a displacement vector. This initial sample reveals 18 candidates that show a significant displacement. Of these, 14 are hosted by core ellipticals, while the rest have a cuspy light profile. As galactic and nuclear dust structures may interfere with the isophotal analysis, we are currently obtaining new WFC

  6. Recoil spectrometry of oil additive associated compositional changes in sliding metal surfaces

    Science.gov (United States)

    Whitlow, Harry J.; Johansson, Erik; Ingemarsson, P. Anders; Hogmark, Sture

    1992-03-01

    Mass and energy dispersive recoil spectrometry has been employed to semi-quantitatively characterize changes in the tribo-surfaces of bearing steel subjected to lubricated sliding wear in two model oils containing zinc dialkydithiophosphate (ZDDP) and di- tert nonyl pentasulphide (TNPS), respectively. The results show that for the ZDDP additive a boundary lubricating film is formed where O, S, P and Zn are taken up from the oil. Seizure results in a similar element uptake pattern suggesting that the boundary lubrication film thickens on Seizure. The behaviour for the TNPS oil is quite different with only S being taken up during film formation. Seizure in this oil is associated with uptake of oxygen whilst S is depleted indicating that chemical processes may be an important element in the breakdown.

  7. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  8. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    Science.gov (United States)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  9. Systematic investigation of background sources in neutron flux measurements with a proton-recoil silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Marini, P., E-mail: marini@cenbg.in2p3.fr [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Mathieu, L. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Acosta, L. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F. 01000 (Mexico); Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France)

    2017-01-01

    Proton-recoil detectors (PRDs), based on the well known standard H(n,p) elastic scattering cross section, are the preferred instruments to perform precise quasi-absolute neutron flux measurements above 1 MeV. The limitations of using a single silicon detector as PRD at a continuous neutron beam facility are investigated, with the aim of extending such measurements to neutron energies below 1 MeV. This requires a systematic investigation of the background sources affecting the neutron flux measurement. Experiments have been carried out at the AIFIRA facility to identify these sources. A study on the role of the silicon detector thickness on the background is presented and an energy limit on the use of a single silicon detector to achieve a neutron flux precision better than 1% is given.

  10. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2013-04-15

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  11. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfu, E-mail: zhangjfu@gmail.com; Ouyang, Xiaoping; Zhang, Xianpeng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Northwest Institute of Nuclear Technology, Xi’an 710024 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Guoguang [Applied Institute of Nuclear Technology, China Institute of Atomic Energy, Beijing 102413 (China); Ruan, Jinlu; Zhang, Xiaodong; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun [Northwest Institute of Nuclear Technology, Xi’an 710024 (China)

    2015-12-15

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10{sup −7} at an energy resolution of 1.5% for measuring DT neutrons.

  12. Sub-GeV dark matter detection with electron recoils in carbon nanotubes

    Science.gov (United States)

    Cavoto, G.; Luchetta, F.; Polosa, A. D.

    2018-01-01

    Directional detection of Dark Matter particles (DM) in the MeV mass range could be accomplished by studying electron recoils in large arrays of parallel carbon nanotubes. In a scattering process with a lattice electron, a DM particle might transfer sufficient energy to eject it from the nanotube surface. An external electric field is added to drive the electron from the open ends of the array to the detection region. The anisotropic response of this detection scheme, as a function of the orientation of the target with respect to the DM wind, is calculated, and it is concluded that no direct measurement of the electron ejection angle is needed to explore significant regions of the light DM exclusion plot. A compact sensor, in which the cathode element is substituted with a dense array of parallel carbon nanotubes, could serve as the basic detection unit.

  13. New design features of gas ionization detectors used for elastic recoil detection

    CERN Document Server

    Timmers, H; Ophel, T R

    2000-01-01

    Several alternative design features of large acceptance, gas ionization detectors have proven to be successful for application to elastic recoil detection analysis (ERDA). In particular, effects due to the distortion of the entrance field by a large area window have been eliminated in a simple fashion, to allow measurement of the initial rate of energy loss and to provide an energy- and species-independent cathode signal. No less importantly, use of a divided electrode in the anode plane has enabled a more straightforward means of determining the scattering angle that is required for kinematic corrections. An intermediate grid was found to provide a direct and true total energy signal, with only slightly diminished resolution compared with that of the summed total anode equivalent.

  14. Synthesis of superheavy elements at the Dubna gas-filled recoil separator

    Energy Technology Data Exchange (ETDEWEB)

    Voinov, A. A., E-mail: voinov@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Collaboration: JINR (Dubna), LLNL (Livermore), ORNL (Oak Ridge), University of Tennessee (Knoxville), Vanderbilt University (Nashville), Research Institute of Atomic Reactors (Dimitrovgrad) Collaboration

    2016-12-15

    A survey of experiments at the Dubna gas-filled recoil separator (Laboratory of Nuclear Reactions, JINR, Dubna) aimed at the detection and study of the “island of stability” of superheavy nuclei produced in complete fusion reactions of {sup 48}Ca ions and {sup 238}U–{sup 249}Cf target nuclei is given. The problems of synthesis of superheavy nuclei, methods for their identification, and investigation of their decay properties, including the results of recent experiments at other separators (SHIP, BGS, TASCA) and chemical setups, are discussed. The studied properties of the new nuclei, the isotopes of elements 112–118, as well as the properties of their decay products, indicate substantial growth of stability of the heaviest nuclei with increasing number of neutrons in the nucleus as the magic number of neutrons N = 184 is approached.

  15. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  16. The design of a proton recoil telescope for 14 MeV neutron spectrometry

    CERN Document Server

    Hawkes, N P; Croft, S; Jarvis, O N; Sherwood, A C

    2002-01-01

    As part of the design effort for a 14 MeV neutron spectrometer for the Joint European Torus (JET), computer codes were developed to calculate the response of a proton recoil telescope comprising a proton radiator film mounted in front of a proton detector. The codes were used to optimise the geometrical configuration in terms of efficiency and resolution, bearing in mind the constraints imposed by the proposed application as a JET neutron diagnostic for the Deuterium-Tritium phase. A prototype instrument was built according to the optimised design, and tested with monoenergetic 14 MeV neutrons from the Harwell 500 keV Van de Graaff accelerator. The measured energy resolution and absolute efficiency were found to be in acceptable agreement with the calculations. Based on this work, a multi-radiator production version of the spectrometer has now been constructed and successfully deployed at JET.

  17. Spin-orbit force, recoil corrections, and possible BB¯* and DD¯* molecular states

    Science.gov (United States)

    Zhao, Lu; Ma, Li; Zhu, Shi-Lin

    2014-05-01

    In the framework of the one-boson exchange model, we have calculated the effective potentials between two heavy mesons BB¯* and DD¯* from the t- and u-channel π-, η-, ρ-, ω-, and σ-meson exchanges with four kinds of quantum number: I=0, JPC=1++; I =0, JPC=1+-; I =1, JPC=1++; I =1, JPC=1+-. We keep the recoil corrections to the BB¯* and DD¯* systems up to O(1/M2). The spin-orbit force appears at O(/1M), which turns out to be important for the very loosely bound molecular states. Our numerical results show that the momentum-related corrections are unfavorable to the formation of the molecular states in the I =0, JPC=1++ and I =1, JPC=1+- channels in the DD¯* system.

  18. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    Science.gov (United States)

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. Copyright © 2015, American Association for the Advancement of Science.

  19. 2MASS J00423991+3017515: An Interacting Oddball or a Recoiling AGN?

    Science.gov (United States)

    Hogg, J. Drew; Blecha, Laura; Reynolds, Christopher S.

    2017-06-01

    We present deep, multiband Hubble imaging and two epochs of optical spectroscopic monitoring of a peculiar nearby (z=0.14) AGN, 2MASS J00423991+3017515. The host galaxy containing the AGN is morphologically disturbed and interacting with an unmerged companion galaxy, suggesting it has had a rich merger history. The AGN itself is spatially displaced from the apparent center of its host galaxy and the symmetric broad Hα and Hβ lines are consistently blueshifted from the narrow line emission and host galaxy absorption by Δv = 1530 km/s. The investigation is ongoing, but we put forward two hypotheses to explain the odd features of this system. First, the abnormalities could be due to separate, independent causes. Projection effects from the interaction of the two galaxies could give the appearance of a spatial offset, while complex wind dynamics from the AGN accretion disk could give rise to the kinematic shift in the broad line emission. Second, this could be a recoiling AGN. This system fits the template of an accreting supermassive black hole (SMBH) that has recently received a “kick” from the asymmetric emission of gravitational waves (GWs) following the merger of two progenitor SMBHs. SMBH mergers are a likely end-product of hierarchical structure formation and are the supermassive cousins of the stellar-mass BH mergers observed with LIGO in the GW150914 and GW151226 events. However, a SMBH merger has yet to be unambigously detected. If confirmed as a recoiling AGN, 2MASS J00423991+3017515 will provide the first evidence of this growth pathway acting in the SMBH regime.

  20. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  1. NEW INTERPRETATION OF THE ATOMIC SPECTRA OF THE HYDROGEN ATOM: A MIXED MECHANISM OF CLASSICAL LC CIRCUITS AND QUANTUM WAVE-PARTICLE DUALITY NUEVA INTERPRETACIÓN DEL ESPECTRO ATÓMICO DEL ÁTOMO DE HIDRÓGENO: UN MECANISMO MIXTO DE CIRCUITOS LC Y LA DUALIDAD ONDA CUÁNTICA-PARTÍCULA

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available In this paper we study the energy conversion laws of the macroscopic harmonic LC oscillator, the electromagnetic wave (photon and the hydrogen atom. As our analysis indicates, the energies of these apparently different systems obey exactly the same energy conversion law. Based on our results and the wave-particle duality of electrons, we find that the hydrogen atom is, in fact, a natural chiral microscopic LC oscillator. In the framework of classical electromagnetic field theory we analytically obtain, for the hydrogen atom, the quantized electron orbit radius , and quantized energy , (n = 1, 2, 3, · · ·, where is the Bohr radius and is the Rydberg constant. Without the adaptation of any other fundamental principles of quantum mechanics, we present a reasonable explanation of the polarization of photon, selection rules and Pauli exclusion principle. Our results also reveal an essential connection between electron spin and the intrinsic helical movement of electrons and indicate that the spin itself is the effect of quantum confinement.En este trabajo se presenta un estudio de las leyes macroscópicas de conversión de energía del oscilador armónico LC, la onda electromagnética (fotones y el átomo de hidrógeno. Como nuestro análisis indica, las energías de estos aparentemente diferentes sistemas obedecen exactamente la misma ley de conversión de la energía. Sobre la base de nuestros resultados y de la dualidad onda-partícula del electrón, nos encontramos con que el átomo de Hidrógeno, de hecho, es un oscilador LC microscópico naturalmente quiral. En el marco de la teoría clásica de campos electromagnéticos se obtiene analíticamente, para el átomo de hidrógeno, el radio cuantizado de la órbita electrónica , y la energía cuantizada , (n=1, 2, 3.., donde es el radio de Bohr, y es la constante de Rydberg. Sin la adaptación de otros principios fundamentales de la mecánica cuántica, se presenta una explicación razonable de

  2. Statistics of electric-quadrupole lines in atomic spectra

    OpenAIRE

    Pain, Jean-Christophe; Gilleron, Franck; Bauche, Jacques; Bauche-Arnoult, Claire

    2012-01-01

    In hot plasmas, a temperature of a few tens of eV is sufficient for producing highly stripped ions where multipole transitions become important. At low density, the transitions from tightly bound inner shells lead to electric-quadrupole (E2) lines which are comparable in strength with electric-dipole ones. In this work, we propose analytical formulas for the estimation of the number of E2 lines in a transition array. Such expressions rely on statistical descriptions of electron states and J-l...

  3. Atomic Power

    African Journals Online (AJOL)

    Atomic Power. By Denis Taylor: Dr. Taylor was formerly Chief UNESCO Advisor at the University. College, Nairobi, Kenya and is now Professor of Electrical Engineering in the Uni- versity of ... method of producing radioactive isotopes, which are materials .... the sealing and the pressure balancing, all can be carried out ...

  4. Strong Coupling on a Forbidden Transition in Strontium and Nondestructive Atom Counting

    CERN Document Server

    Norcia, Matthew A

    2015-01-01

    We observe strong collective coupling between an optical cavity and the forbidden spin singlet to triplet optical transition $^1$S$_0$ to $^3$P$_1$ in an ensemble of $^{88}$Sr. Despite the transition being 1000 times weaker than a typical dipole transition, we observe a well resolved vacuum Rabi splitting. We use the observed vacuum Rabi splitting to make non-destructive measurements of atomic population with the equivalent of projection-noise limited sensitivity and minimal heating ($<0.01$ photon recoils/atom). This technique may be used to enhance the performance of optical lattice clocks by generating entangled states and reducing dead time.

  5. Atomic arias

    Science.gov (United States)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  6. Atomic rivals

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  7. Validation of neutron data libraries by backscattered spectra of Pu-Be Neutrons

    CERN Document Server

    El-Agib, I

    1999-01-01

    Elastically backscattered spectra of Pu-Be neutrons have been measured for SiO sub 2 , water, graphite, paraffin oil and Al slabs using a proton recoil spectrometer. The results were compared with the calculated spectra obtained by the three-dimensional Monte-Carlo transport code MCNP-4B and point-wise cross sections from the ENDF/B-V, ENDF/B-VI, JENDL-3.1 and BROND-2 data libraries. The good agreement between the measured and calculated results indicates that this procedure can be used for validation of different data libraries. This simple method renders possible the detection of oxygen, carbon and hydrogen in bulk samples. (author)

  8. A new Recoil Proton Telescope for energy and fluence measurement of fast neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, Lena; Bachaalany, Mario [IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons), Cadarache Bat.159, 13115 Saint Paul-lez-Durance, (France); Husson, Daniel; Higueret, Stephane [IPHC / RaMsEs (Institut Pluridisciplinaire Hubert Curien / Radioprotection et Mesures Environnementales), 23 rue du loess - BP28, 67037 Strasbourg cedex 2, (France)

    2015-07-01

    The spectrometer ATHENA (Accurate Telescope for High Energy Neutron metrology Applications), is being developed at the IRSN / LMDN (Institut de Radioprotection et de Surete nucleaire / Laboratoire de Metrologie et de dosimetrie des neutrons) and aims at characterizing energy and fluence of fast neutron fields. The detector is a Recoil Proton Telescope and measures neutron fields in the range of 5 to 20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50{sub m} thick silicon sensors that use CMOS technology for the proton tracking and a 3 mm thick silicon diode to measure the residual proton energy. This first prototype used CMOS sensors called MIMOSTAR, initially developed for heavy ion physics. The use of CMOS sensors and silicon diode increases the intrinsic efficiency of the detector by a factor of ten compared with conventional designs. The first prototype has already been done and was a successful study giving the results it offered in terms of energy and fluence measurements. For mono energetic beams going from 5 to 19 MeV, the telescope offered an energy resolution between 5 and 11% and fluence difference going from 5 to 7% compared to other home standards. A second and final prototype of the detector is being designed. It will hold upgraded CMOS sensors called FastPixN. These CMOS sensors are supposed to run 400 times faster than the older version and therefore give the telescope the ability to support neutron flux in the order of 107 to 108cm{sup 2}:s{sup 1}. The first prototypes results showed that a 50 m pixel size is enough for a precise scattering angle reconstruction. Simulations using MCNPX and GEANT4 are already in place for further improvements. A DeltaE diode will replace the third CMOS sensor and will be installed right before the silicon diode for a better recoil proton selection. The final prototype with

  9. Spectra, Winter 2014

    Science.gov (United States)

    2014-01-01

    additional copies or more information, please email spectra@nrl.navy.mil. LEADINGEDGE 1 Contents 30 Navy Launches UAV from Submerged Submarine 31...the splash, Test Sub submerged and started moving underwater. Flying WANDA With the success of Test Sub, the Flimmer team applied the lessons to...coated for corrosion- proofing against the acidic environ- ment in the fuel cell and then welded together. Looking at the complexity of developing

  10. First identification of excited states in 117Ba using the recoil-β -delayed proton tagging technique

    Science.gov (United States)

    Ding, B.; Liu, Z.; Seweryniak, D.; Woods, P. J.; Wang, H. L.; Yang, J.; Liu, H. L.; Davids, C. N.; Carpenter, M. P.; Davinson, T.; Janssens, R. V. F.; Page, R. D.; Robinson, A. P.; Shergur, J.; Sinha, S.; Zhu, S.; Tang, X. D.; Wang, J. G.; Huang, T. H.; Zhang, W. Q.; Sun, M. D.; Liu, X. Y.; Lu, H. Y.

    2017-02-01

    Excited states have been observed for the first time in the neutron-deficient nucleus 117Ba using the recoil-decay tagging technique following the heavy-ion fusion-evaporation reaction 64Zn(58Ni, 2p3n)117Ba. Prompt γ rays have been assigned to 117Ba through correlations with β -delayed protons following the decay of A =117 recoils. Through the analysis of the γ -γ coincidence relationships, a high-spin level scheme consisting of two bands has been established in 117Ba. Based on the systematics of the level spacings in the neighboring barium isotopes, the two bands are proposed to have ν h11 /2[532 ] 5 /2- and ν d5 /2[413 ] 5 /2+ configurations, respectively. The observed band-crossing properties are interpreted in the framework of cranked shell model.

  11. Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Doncel, M. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Royal Institute of Technology, Department of Physics, Stockholm (Sweden); University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Gadea, A. [CSIC-University of Valencia, Istituto de Fisica Corpuscular, Valencia (Spain); Valiente-Dobon, J.J. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Quintana, B. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Modamio, V. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); University of Oslo, Oslo (Norway); Mengoni, D. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Moeller, O.; Pietralla, N. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Dewald, A. [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2017-10-15

    The current work presents the determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method, in combination with spectrometers for ion identification, normalizing the intensity of the peaks by the ions detected in the spectrometer as a valid technique that produces results comparable to the ones obtained by the conventional shifted-to-unshifted peak ratio method. The technique has been validated using data measured with the γ-ray array AGATA, the PRISMA spectrometer and the Cologne plunger setup. In this paper a test performed with the AGATA-PRISMA setup at LNL and the advantages of this new approach with respect to the conventional Recoil Distance Doppler Shift Method are discussed. (orig.)

  12. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    Science.gov (United States)

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; Wink, C. W.

    2016-11-01

    A time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum is presented. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording. Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.

  13. Pattern recognition in spectra

    Science.gov (United States)

    Gebran, M.; Paletou, F.

    2017-06-01

    We present a new automated procedure that simultaneously derives the effective temperature Teff, surface gravity log g, metallicity [Fe/H], and equatorial projected rotational velocity ve sin i for stars. The procedure is inspired by the well-known PCA-based inversion of spectropolarimetric full-Stokes solar data, which was used both for Zeeman and Hanle effects. The efficiency and accuracy of this procedure have been proven for FGK, A, and late type dwarf stars of K and M spectral types. Learning databases are generated from the Elodie stellar spectra library using observed spectra for which fundamental parameters were already evaluated or with synthetic data. The synthetic spectra are calculated using ATLAS9 model atmospheres. This technique helped us to detect many peculiar stars such as Am, Ap, HgMn, SiEuCr and binaries. This fast and efficient technique could be used every time a pattern recognition is needed. One important application is the understanding of the physical properties of planetary surfaces by comparing aboard instrument data to synthetic ones.

  14. Estimating Spectra from Photometry

    Science.gov (United States)

    Bryce Kalmbach, J.; Connolly, Andrew J.

    2017-12-01

    Measuring the physical properties of galaxies such as redshift frequently requires the use of spectral energy distributions (SEDs). SED template sets are, however, often small in number and cover limited portions of photometric color space. Here we present a new method to estimate SEDs as a function of color from a small training set of template SEDs. We first cover the mathematical background behind the technique before demonstrating our ability to reconstruct spectra based upon colors and then compare our results to other common interpolation and extrapolation methods. When the photometric filters and spectra overlap, we show that the error in the estimated spectra is reduced by more than 65% compared to the more commonly used techniques. We also show an expansion of the method to wavelengths beyond the range of the photometric filters. Finally, we demonstrate the usefulness of our technique by generating 50 additional SED templates from an original set of 10 and by applying the new set to photometric redshift estimation. We are able to reduce the photometric redshifts standard deviation by at least 22.0% and the outlier rejected bias by over 86.2% compared to original set for z ≤ 3.

  15. Complementarity and the Nature of Uncertainty Relations in Einstein–Bohr Recoiling Slit Experiment

    Directory of Open Access Journals (Sweden)

    Shogo Tanimura

    2015-07-01

    Full Text Available A model of the Einstein–Bohr recoiling slit experiment is formulated in a fully quantum theoretical setting. In this model, the state and dynamics of a movable wall that has two slits in it, as well as the state of a particle incoming to the two slits, are described by quantum mechanics. Using this model, we analyzed complementarity between exhibiting an interference pattern and distinguishing the particle path. Comparing the Kennard–Robertson type and the Ozawa-type uncertainty relations, we conclude that the uncertainty relation involved in the double-slit experiment is not the Ozawa-type uncertainty relation but the Kennard-type uncertainty relation of the position and the momentum of the double-slit wall. A possible experiment to test the complementarity relation is suggested. It is also argued that various phenomena which occur at the interface of a quantum system and a classical system, including distinguishability, interference, decoherence, quantum eraser, and weak value, can be understood as aspects of entanglement. Quanta 2015; 4: 1–9.

  16. Observation of a resonance in $B^+ \\to K^+ \\mu^+\\mu^-$ decays at low recoil

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Cowie, E; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hess, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    A broad peaking structure is observed in the dimuon spectrum of $B^+ \\to K^+ \\mu^+\\mu^-$ decays in the kinematic region where the kaon has a low recoil against the dimuon system. The structure is consistent with interference between the $B^+ \\to K^+ \\mu^+\\mu^-$ decay and a resonance and has a statistical significance exceeding six standard deviations. The mean and width of the resonance are measured to be $4191^{+9}_{-8}\\mathrm{\\,Me\\kern -0.1em V/}c^2$ and $65^{+22}_{-16}\\mathrm{\\,Me\\kern -0.1em V/}c^2$, respectively, where the uncertainties include statistical and systematic contributions. These measurements are compatible with the properties of the $\\psi(4160)$ meson. First observations of both the decay $B^+ \\to \\psi(4160) K^+$ and the subsequent decay $\\psi(4160) \\to \\mu^+\\mu^-$ are reported. The resonant decay and the interference contribution make up 20% of the yield for dimuon masses above 3770  MeV/c2. This contribution is larger than theoretical estimates.

  17. Potku - New analysis software for heavy ion elastic recoil detection analysis

    Science.gov (United States)

    Arstila, K.; Julin, J.; Laitinen, M. I.; Aalto, J.; Konu, T.; Kärkkäinen, S.; Rahkonen, S.; Raunio, M.; Itkonen, J.; Santanen, J.-P.; Tuovinen, T.; Sajavaara, T.

    2014-07-01

    Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-of-flight-energy (ToF-E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF-E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined ranges. Beam induced composition changes can be studied by displaying the event-based data in fractions relative to the substrate reference data. Optional angular input data allows for kinematic correction of the depth profiles. This open source software is distributed under the GPL license for Linux, Mac, and Windows environments.

  18. Compositional analysis of polycrystalline hafnium oxide thin films by heavy-ion elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, F.L. [Departamento de Electronica y Tecnologia de Computadoras, Universidad Politecnica de Cartagena, Campus Universitario Muralla del Mar, E-30202 Cartagena (Spain)]. E-mail: Felix.Martinez@upct.es; Toledano, M. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); San Andres, E. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Martil, I. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Gonzalez-Diaz, G. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Bohne, W. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Roehrich, J. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Strub, E. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany)

    2006-10-25

    The composition of polycrystalline hafnium oxide thin films has been measured by heavy-ion elastic recoil detection analysis (HI-ERDA). The films were deposited by high-pressure reactive sputtering (HPRS) on silicon wafers using an oxygen plasma at pressures between 0.8 and 1.6 mbar and during deposition times between 0.5 and 3.0 h. Hydrogen was found to be the main impurity and its concentration increased with deposition pressure. The composition was always slightly oxygen-rich, which is attributed to the oxygen plasma. Additionally, an interfacial silicon oxide thin layer was detected and taken into account. The thickness of the hafnium oxide film was found to increase linearly with deposition time and to decrease exponentially with deposition pressure, whereas the thickness of the silicon oxide interfacial layer has a minimum as a function of pressure at around 1.2 mbar and increases slightly as a function of time. The measurements confirmed that this interfacial layer is formed mainly during the early stages of the deposition process.

  19. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Science.gov (United States)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  20. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Finlay, P.; Breitenfeldt, M.; Porobic, T.; Wursten, E.; Couratin, C.; Soti, G.; Severijns, N. [KU Leuven University, Instituut voor Kern-en Stralingsfysica, Leuven (Belgium); Ban, G.; Fabian, X.; Flechard, X.; Lienard, E. [Normandie Univ., ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, Caen (France); Beck, M.; Friedag, P.; Weinheimer, C. [Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Glueck, F.; Kozlov, V.Y. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Herlert, A. [FAIR, Darmstadt (Germany); Knecht, A. [KU Leuven University, Instituut voor Kern-en Stralingsfysica, Leuven (Belgium); CERN, PH Department, Geneva (Switzerland); Tandecki, M. [TRIUMF, Vancouver BC (Canada); Traykov, E. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Van Gorp, S. [RIKEN, Atomic Physics Laboratory, Saitama (Japan); Zakoucky, D. [ASCR, Nuclear Physics Institute, Rez (Czech Republic)

    2016-07-15

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β{sup +} decay of {sup 35}Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2 ns and position resolution of 0.1 mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for {sup 35}Ar decay using the WITCH spectrometer. (orig.)

  1. CO laser photoacoustic spectra and vibrational modes of heroin ...

    Indian Academy of Sciences (India)

    Abstract. Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 µm and 10.6 µm regions of CO2 laser. It is very difficult to assign the modes of vibrations for PA bands by comparison with ...

  2. laser photoacoustic spectra and vibrational modes of heroin ...

    Indian Academy of Sciences (India)

    Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 m and 10.6 m regions of CO2 laser. It is very difficult to assign the modes of vibrations for PA bands by comparison with conventional low ...

  3. Cold Light from Hot Atoms and Molecules

    Science.gov (United States)

    Lister, Graeme; Curry, John J.

    2011-05-01

    The introduction of rare earth atoms and molecules into lighting discharges led to great advances in efficacy of these lamps. Atoms such as Dy, Ho and Ce provide excellent radiation sources for lighting applications, with rich visible spectra, such that a suitable combination of these elements can provide high quality white light. Rare earth molecules have also proved important in enhancing the radiation spectrum from phosphors in fluorescent lamps. This paper reviews some of the current aspects of lighting research, particularly rare earth chemistry and radiation, and the associated fundamental atomic and molecular data.

  4. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  5. An Interactive Gallery of Planetary Nebula Spectra

    Science.gov (United States)

    Kwitter, K. B.; Henry, R. B. C.

    2002-12-01

    We have created a website containing high-quality moderate-resolution spectra of 88 planetary nebulae (PNe) from 3600 to 9600 Å, obtained at KPNO and CTIO. Spectra are displayed in a zoomable window, and there are templates available that show wavelength and ion identifications. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution, and a table with atlas information for each object along with a link to an image. This table can be re-ordered by object name, galactic or equatorial coordinates, distance from the sun, the galactic center, or the galactic plane. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users. PN researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and finally, teachers of introductory astronomy can use this database to illustrate basic principles of atomic physics and radiation. To encourage such use, we have written two simple exercises at a basic level to introduce beginning astronomy students to the wealth of information that PN spectra contain. We are grateful to Adam Wang of the Williams College OIT and to his summer student teams who worked on various apects of the implementation of this website. This work has been supported by NSF grant AST-9819123 and by Williams College and the University of Oklahoma.

  6. SPECTRW: A software package for nuclear and atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalfas, C.A., E-mail: kalfas@inp.demokritos.gr [National Centre for Scientific Research Demokritos, Institute of Nuclear & Particle Physics, 15310 Agia Paraskevi, Attiki (Greece); Axiotis, M. [National Centre for Scientific Research Demokritos, Institute of Nuclear & Particle Physics, 15310 Agia Paraskevi, Attiki (Greece); Tsabaris, C. [Hellenic Centre for Marine Research, Institute of Oceanography, 46.7 Km Athens-Sounio Ave, P.O. Box 712, Anavyssos 19013 (Greece)

    2016-09-11

    A software package to be used in nuclear and atomic spectroscopy is presented. Apart from analyzing γ and X-ray spectra, it offers many additional features such as de-convolution of multiple photopeaks, sample analysis and activity determination, detection system evaluation and an embedded code for spectra simulation.

  7. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  8. Influence of nearly resonant light on the scattering length in low-temperature atomic gases

    CERN Document Server

    Fedichev, P O; Shlyapnikov, G V; Walraven, J T M

    1996-01-01

    We develop the idea of manipulating the scattering length a in low-temperature atomic gases by using nearly resonant light. As found, if the incident light is close to resonance with one of the bound p levels of electronically excited molecule, then virtual radiative transitions of a pair of interacting atoms to this level can significantly change the value and even reverse the sign of a. The decay of the gas due to photon recoil, resulting from the scattering of light by single atoms, and due to photoassociation can be minimized by selecting the frequency detuning and the Rabi frequency. Our calculations show the feasibility of optical manipulations of trapped Bose condensates through a light-induced change in the mean field interaction between atoms, which is illustrated for ^7Li.

  9. Control spectra for Quito

    Science.gov (United States)

    Aguiar, Roberto; Rivas-Medina, Alicia; Caiza, Pablo; Quizanga, Diego

    2017-03-01

    The Metropolitan District of Quito is located on or very close to segments of reverse blind faults, Puengasí, Ilumbisí-La Bota, Carcelen-El Inca, Bellavista-Catequilla and Tangahuilla, making it one of the most seismically dangerous cities in the world. The city is divided into five areas: south, south-central, central, north-central and north. For each of the urban areas, elastic response spectra are presented in this paper, which are determined by utilizing some of the new models of the Pacific Earthquake Engineering Research Center (PEER) NGA-West2 program. These spectra are calculated considering the maximum magnitude that could be generated by the rupture of each fault segment, and taking into account the soil type that exists at different points of the city according to the Norma Ecuatoriana de la Construcción (2015). Subsequently, the recurrence period of earthquakes of high magnitude in each fault segment is determined from the physical parameters of the fault segments (size of the fault plane and slip rate) and the pattern of recurrence of type Gutenberg-Richter earthquakes with double truncation magnitude (Mmin and Mmax) is used.

  10. A Potential Recoiling Supermassive Black Hole, CXO J101527.2+625911

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.-C.; Yoon, Ilsang; Evans, A. S.; Stierwalt, S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Privon, G. C. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Avda. Vicuna Mackenna 4860, Santiago, Codigo Postal: 8970117 (Chile); Harvey, D. [Laboratoire dAstrophysique, EPFL, Observatoire de Sauverny, Chemin des Maillettes, 51, Versoix CH-1290, Suisse (Switzerland); Kim, Ji Hoon, E-mail: dkim@nrao.edu [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States)

    2017-05-10

    We have carried out a systematic search for recoiling supermassive black holes (rSMBH) using the Chandra Source and SDSS Cross-Match Catalog. From the survey, we have detected a potential rSMBH, CXO J101527.2+625911, at z = 0.3504. The source CXO J101527.2+625911 has a spatially offset (1.26 ± 0.05 kpc) active SMBH and kinematically offset broad emission lines (175 ± 25 km s{sup −1} relative to the systemic velocity). The observed spatial and velocity offsets suggest that this galaxy could be an rSMBH, but we have also considered the possibility of a dual SMBH scenario. The column density toward the galaxy center was found to be Compton thin, but no X-ray source was detected. The non-detection of the X-ray source in the nucleus suggests that either there is no obscured actively accreting SMBH or that there exists an SMBH, but it has a low accretion rate (i.e., a low-luminosity AGN (LLAGN)). The possibility of the LLAGN was investigated and found to be unlikely based on the H α luminosity, radio power, and kinematic arguments. This, along with the null detection of an X-ray source in the nucleus, supports our hypothesis that CXO J101527.2+625911 is an rSMBH. Our GALFIT analysis shows the host galaxy to be a bulge-dominated elliptical. The weak morphological disturbance and small spatial and velocity offsets suggest that CXO J101527.2+625911 could be in the final stage of a merging process and about to turn into a normal elliptical galaxy.

  11. Gravitational wave recoils in non-axisymmetric Robinson-Trautman spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Aranha, R.F.; Soares, I.D. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil); Tonini, E.V. [Instituto Federal do Espirito Santo, Vitoria (Brazil)

    2014-10-15

    We examine the gravitational wave recoil and the associated kick velocities in non-axisymmetric Robinson-Trautman (RT) spacetimes. Characteristic initial data used for the dynamics correspond to non-head-on collisions of two black holes. We make a parameter study of the kick distributions for an extended range of the incidence angle ρ{sub 0} in the initial data. In the range examined 3 {sup circle} ≤ ρ{sub 0} ≤ 125 {sup circle} the kick distribution V{sub k} as a function of the symmetric mass η satisfies an empirically modified Fitchett law, with a parameter C that accounts for the nonzero net gravitational wave momentum flux in the equal-mass case. The law fits accurately the numerical data with a normalized rms error ≤0.3%. The maximum kick velocity is ≅190 km/s for ρ{sub 0} ≅55 {sup circle}. A recent modification of the Fitchett law motivated by the effective-one-body formalism (Nagar in Phys Rev D 88:121501R, 2013) is also examined and, with the needed introduction of C to account for non-head-on collisions, fits accurately the RT data with a normalized rms error ≤3 x 10{sup -5} %. We construct the surface V{sub k}(η, ρ{sub 0}) in the parameter space of RT initial data, which gives an overall view of the behavior of V{sub k} as the parameters change. The angular patterns of the gravitational waves emitted are analyzed and include the two polarization modes present in the radiative field of a non-head-on collision. (orig.)

  12. Prospects of Optical Single Atom Detection for Nuclear Astrophysics

    Science.gov (United States)

    Singh, Jaideep

    2015-10-01

    We will discuss the prospects of optically detecting single atoms captured in a cryogenic thin film of a noble gas such as neon. This proposed detection scheme, when coupled with a recoil separator, could be used to measure rare nuclear reactions relevant for nuclear astrophysics. In particular, we will focus on the 22Ne(α, n)25Mg reaction, which is an important source of neutrons for the s-process. Noble gas solids are an attractive medium because they are optically transparent and provide efficient, pure, stable, & chemically inert confinement for a wide variety of atomic and molecular species. Atoms embedded inside of noble gas solids have a fluorescence spectrum that is often significantly shifted from its absorption spectrum. This makes possible the detection of individual fluorescence photons against a background of intense excitation light, which can be suppressed using the appropriate optical filters. We will report on our efforts to optically detect single Yb atoms in solid Ne. Yb is an ideal candidate for initial studies because it emits a strong green fluorescence when excited by blue light and it has an atomic structure that very closely resembles that of Mg. This work is supported by funds from Michigan State University.

  13. Study of elementary transfer mechanisms during a collision between a swift multi-charged heavy ion and a neutral atom; Etude des mecanismes elementaires de transfert d`energie au cours d`une collision entre un ion lourd rapide multi-charge et un atome neutre

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, P. [Caen Univ., 14 (France)

    1995-12-31

    This work is dedicated to the study of the energy transfer mechanisms which occur during a collision between a swift multicharged heavy ion and a neutral atom. The elementary energy energy transfer mechanisms (scattering, excitation, ionization, capture) and their consequences on the target velocity after the collision (recoil velocity) are recalled in the first chapter. In the case of small projectile diffusion angles, we show that the recoil velocity component, transverse to the incident projectile direction, results principally from the diffusion mechanism, while the longitudinal component is due essentially to the mass transfer and the inelastic energy transfer mechanisms. Since the target recoil velocities are very small, we have built an experimental set-up which reduces the impreciseness on their measurement due to the target thermal spread using, as targets, cooled atoms of a supersonic jet (temperature < 1 K). The association of time of flight and localisation techniques allows us, for each ionised target atom, to determine the three recoil velocity components with a very good accuracy (a few tens of meters per second). In chapter three, we describe the data analysis method. And then we present in the last chapter the results we have obtained for the collision systems Xe{sup 44+}(6.7 MeV/A) + Ar => Xe{sup 44} + Ar{sup q+}+qe{sup -} (q ranging from 1 to 7); Xe{sup 44+} (6.7 MeV/A) + He => Xe{sup 44+} He{sup 1+,2+}+1e{sup -},2e{sup -}. We show that it is possible to interpret the recoil velocity in terms of kinetic energy transferred to the target and to the electrons ejected from the target. (author) 44 refs.

  14. Ab initio calculations and modelling of atomic cluster structure

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.

    2004-01-01

    framework for modelling the fusion process of noble gas clusters is presented. We report the striking correspondence of the peaks in the experimentally measured abundance mass spectra with the peaks in the size-dependence of the second derivative of the binding energy per atom calculated for the chain...... of the noble gas clusters up to 150 atoms....

  15. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F|info:eu-repo/dai/nl/08747610X

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  16. Primary retention following nuclear recoil in β-decay: Proposed synthesis of a metastable rare gas oxide ((38)ArO4) from ((38)ClO4(-)) and the evolution of chemical bonding over the nuclear transmutation reaction path.

    Science.gov (United States)

    Timm, Matthew J; Matta, Chérif F

    2014-12-01

    Argon tetroxide (ArO4) is the last member of the N=50 e(-) isoelectronic and isosteric series of ions: SiO4(4-), PO4(3-), SO4(2-), and ClO4(-). A high level computational study demonstrated that while ArO4 is kinetically stable it has a considerable positive enthalpy of formation (of ~298kcal/mol) (Lindh et al., 1999. J. Phys. Chem. A 103, pp. 8295-8302) confirming earlier predictions by Pyykkö (1990. Phys. Scr. 33, pp. 52-53). ArO4 can be expected to be difficult to synthesize by traditional chemistry due to its metastability and has not yet been synthesized at the time of writing. A computational investigation of the changes in the chemical bonding of chlorate (ClO4(-)) when the central chlorine atom undergoes a nuclear transmutation from the unstable artificial chlorine isotope (38)Cl to the stable rare argon isotope (38)Ar through β-decay, hence potentially leading to the formation of ArO4, is reported. A mathematical model is presented that allows for the prediction of yields following the recoil of a nucleus upon ejecting a β-electron. It is demonstrated that below a critical angle between the ejected β-electron and that of the accompanying antineutrino their respective linear momentums can cancel to such an extent as imparting a recoil to the daughter atom insufficient for breaking the Ar-O bond. As a result, a primary retention yield of ~1% of ArO4 is predicted following the nuclear disintegration. The study is conducted at the quadratic configuration interaction with single and double excitations [QCISD/6-311+G(3df)] level of theory followed by an analysis of the electron density by the quantum theory of atoms in molecules (QTAIM). Crossed potential energy surfaces (PES) were used to construct a PES from the metastable ArO4 ground singlet state to the Ar-O bond dissociation product ArO3+O((3)P) from which the predicted barrier to dissociation is ca. 22kcal/mol and the exothermic reaction energy is ca. 28kcal/mol [(U)MP2/6-311+G(d)]. Copyright © 2014

  17. A new laser cooling method for lithium atom interferometry

    Science.gov (United States)

    Kim, Geena

    An atom interferometer offers means to measure physical constants and physical quantities with a high precision, with relatively low cost and convenience as a table-top experiment. A precision measurement of a gravitational acceleration can test fundamental physics concepts such as Einstein equivalence principle (EEP). We identified that the two lithium isotopes (7Li and 6Li) have an advantage for the test of EEP, according to the standard model extension (SME). We aim to build the world's first lithium atom interferometer and test the Einstein equivalence principle. We demonstrate a new laser cooling method suitable for a lithium atom interferometer. Although lithium is often used in ultra-cold atom experiments for its interesting physical properties and measurement feasibility, it is more difficult to laser cool lithium than other alkali atoms due to its unresolved hyperfine states, light mass (large recoil velocity) and high temperature from the oven. Typically, standard laser cooling techniques such as Zeeman slowers and magneto-optical traps are used to cool lithium atoms to about 1 mK, and the evaporative cooling method is used to cool lithium atoms to a few muK for Bose-Einstein condensate (BEC) experiments. However, for the atom interferometry purpose, the evaporative cooling method is not ideal for several reasons: First, its cooling efficiency is so low (0.01 % or less) that typically only 104-105 atoms are left after cooling when one begins with 10. 9 atoms. More atoms in anatom interferometer are needed to have a better signal to noise ratio. Second, an evaporative cooling is used to make a BEC, but we do not need a BEC to make an atom interferometer. In an atom interferometer, a high density of atoms as in a BEC should be avoided since it causes a phase shift due to atom interactions. Third, a setup for an evaporative cooling requires intricate RF generating coils or a high power laser. With a simple optical lattice and a moderate laser power (100 m

  18. Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium

    NARCIS (Netherlands)

    McAlexander, W.I.; Abraham, E.R.I.; Ritchie, N.W.M.; Williams, C.J.; Stoof, H.T.C.; Hulet, R.G.

    1995-01-01

    We have obtained spectra of the high-lying vibrational levels of the 13Σg+ state of 6Li2 via photoassociation of ultracold 6Li atoms confined in a magneto-optical trap. The 13Σg+ state of the diatomic molecule correlates to a 2S1/2 state atom plus a 2P1/2 state atom. The long-range part of the

  19. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  20. Perfect Precision Detecting Probability Of An Atom Via Sgc Mechanism

    Science.gov (United States)

    Hamedi, H. R.

    2015-06-01

    This letter investigates a scheme of high efficient two-dimensional (2D) atom localization via scanning probe absorption in a Y-type four-level atomic scheme with two orthogonal standing waves. It is shown that because of the position dependent atom-field interaction, the spatial probability distribution of the atom can be directly determined via monitoring the probe absorption and gain spectra. The impact of different controlling parameters of the system on 2D localization is studied. We find that owning the effect of spontaneously generated coherence (SGC), the atom can be localized at a particular position and the maximal probability of detecting the atom within the sub-wavelength domain of the two orthogonal standing waves reaches to hundred percent. Phase controlling of position dependent probe absorption is then discussed. The presented scheme may be helpful in laser cooling or atom nanolithography via high precision and high resolution atom localization.

  1.  Ischemic Stroke Secondary to Aortic Dissection Following Rifle Butt Recoil Chest Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    John Valiath

    2011-11-01

    Full Text Available  Ischemic stroke secondary to aortic dissection is not uncommon. We present a patient with left hemiplegia secondary to Stanford type A aortic dissection extending to the supra-aortic vessels, which was precipitated by rifle butt recoil chest injury. The diagnosis of aortic dissection was delayed due to various factors. Finally, the patient underwent successful Bentall procedure with complete resolution of symptoms. This case emphasizes the need for caution in the use of firearms for recreation and to take precautions in preventing such incidents. In addition, this case illustrates the need for prompt cardiovascular physical examination in patients presenting with stroke.

  2. The recoil correction and spin-orbit force for the possible B*Bbar* and D*Dbar* states

    Science.gov (United States)

    Zhao, Lu; Ma, Li; Zhu, Shi-Lin

    2015-10-01

    In the framework of the one-boson exchange model, we have calculated the effective potentials between two heavy mesons B*Bbar* and D*Dbar* from the t- and u-channel π-, η-, ρ-, ω- and σ-meson exchanges. We keep the recoil corrections to the B*Bbar* and D*Dbar* systems up to O (1/M2), which turns out to be important for the very loosely bound molecular states. Our numerical results show that the momentum-related corrections are favorable to the formation of the molecular states in the IG =1+, JPC =1+- in the B*Bbar* and D*Dbar* systems.

  3. Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer

    Science.gov (United States)

    Meliani, Zakaria; Mizuno, Yosuke; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri

    2017-02-01

    Context. In many astrophysical phenomena, and especially in those that involve the high-energy regimes that always accompany the astronomical phenomenology of black holes and neutron stars, physical conditions that are achieved are extreme in terms of speeds, temperatures, and gravitational fields. In such relativistic regimes, numerical calculations are the only tool to accurately model the dynamics of the flows and the transport of radiation in the accreting matter. Aims: We here continue our effort of modelling the behaviour of matter when it orbits or is accreted onto a generic black hole by developing a new numerical code that employs advanced techniques geared towards solving the equations of general-relativistic hydrodynamics. Methods: More specifically, the new code employs a number of high-resolution shock-capturing Riemann solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of adaptive mesh-refinement (AMR) techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to accurately compute the electromagnetic emissions from such accretion flows. Results: We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry that are performed either in two or three spatial dimensions. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black-hole binary interacting with the surrounding circumbinary disc. In this way, we can present for the first time ray-traced images of the shocked fluid and the light curve resulting from consistent general-relativistic radiation-transport calculations from this process. Conclusions: The work presented here lays the ground for the development of a generic computational infrastructure employing AMR techniques to accurately and self

  4. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, G., E-mail: grzgr@ifm.liu.se [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Primetzhofer, D. [Department of Physics and Astronomy, The Ångström Laboratory, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Lu, J.; Hultman, L. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2017-02-28

    Highlights: • First non-destructive measurements of XPS core level binding energies for group IVb-VIb transition metal nitrides are presented. • All films are grown under the same conditions and analyzed in the same instrument, providing a useful reference for future XPS studies. • Extracted core level BE values are more reliable than those obtained from sputter-cleaned N-deficient surfaces. • Comparison to Ar+-etched surfaces reveals that even mild etching conditions result in the formation of a nitrogen-deficient surface layer. • The N/metal concentration ratios from capped samples are found to be 25-90% higher than those from the corresponding ion-etched surfaces. - Abstract: We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN’s) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N{sub 2} atmosphere. For XPS measurements, layers are either (i) Ar{sup +} ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy

  5. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    Science.gov (United States)

    Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L.

    2017-02-01

    We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN's) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N2 atmosphere. For XPS measurements, layers are either (i) Ar+ ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy values. These spectra-modifying effects of Ar+ ion bombardment increase with increasing the metal atom mass due to an increasing nitrogen-to-metal sputter yield ratio. The superior quality of the XPS spectra obtained in a non-destructive way from capped TMN films is evident from that numerous metal peaks, including Ti 2p, V 2p, Zr 3d, and Hf 4f, exhibit pronounced satellite features, in agreement with previously published spectra from layers grown and analyzed in situ. In addition, the N/metal concentration ratios are found to be 25-90% higher than those obtained from the corresponding ion-etched surfaces, and in most cases agree very well with the RBS and ToF-E ERDA values. The N 1 s BE:s extracted from

  6. INTRIGOSS: A new Library of High Resolution Synthetic Spectra

    Science.gov (United States)

    Franchini, Mariagrazia; Morossi, Carlo; Di Marcancantonio, Paolo; Chavez, Miguel; GES-Builders

    2018-01-01

    INTRIGOSS (INaf Trieste Grid Of Synthetic Spectra) is a new High Resolution (HiRes) synthetic spectral library designed for studying F, G, and K stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSP) and surface Flux SPectra (FSP), in the 4800-5400 Å wavelength range, were computed by means of the SPECTRUM code. The synthetic spectra are computed with an atomic and bi-atomic molecular line list including "bona fide" Predicted Lines (PLs) built by tuning loggf to reproduce very high SNR Solar spectrum and the UVES-U580 spectra of five cool giants extracted from the Gaia-ESO survey (GES). The astrophysical gf-values were then assessed by using more than 2000 stars with homogenous and accurate atmosphere parameters and detailed chemical composition from GES. The validity and greater accuracy of INTRIGOSS NSPs and FSPs with respect to other available spectral libraries is discussed. INTRIGOSS will be available on the web and will be a valuable tool for both stellar atmospheric parameters and stellar population studies.

  7. Sequencing BPS spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gukov, Sergei [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Max-Planck-Institut für Mathematik,Vivatsgasse 7, D-53111 Bonn (Germany); Nawata, Satoshi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Centre for Quantum Geometry of Moduli Spaces, University of Aarhus,Nordre Ringgade 1, DK-8000 (Denmark); Saberi, Ingmar [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Stošić, Marko [CAMGSD, Departamento de Matemática, Instituto Superior Técnico,Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Mathematical Institute SANU,Knez Mihajlova 36, 11000 Belgrade (Serbia); Sułkowski, Piotr [Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA 91125 (United States); Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland)

    2016-03-02

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d N=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  8. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon

    2006-08-15

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  9. Playing pinball with atoms.

    Science.gov (United States)

    Saedi, Amirmehdi; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Harold J W

    2009-05-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely controlling the tip current and distance we make two atom pairs behave like the flippers of an atomic-sized pinball machine. This atomic scale mechanical device exhibits six different configurations.

  10. Reactions of charged and neutral recoil particles following nuclear transformations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ache, H.J.

    1980-12-01

    A summary is given of the various activities conducted as part of the research on the chemical reactions of energetic particles generated in nuclear reactions. Emphasis was on hot atom chemistry in gases and liquids. A bibliography of 110 publications published as part of the program is included. (DLC)

  11. Electron and recoil ion momentum imaging with a magneto-optically trapped target

    Energy Technology Data Exchange (ETDEWEB)

    Hubele, R.; Schuricke, M.; Goullon, J.; Lindenblatt, H.; Ferreira, N.; Laforge, A.; Brühl, E.; Globig, D.; Misra, D.; Sell, M.; Song, Z.; Wang, X.; Zhang, S. [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg (Germany); Jesus, V. L. B. de [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rua Lucio Tavares 1045, 26530-060 Nilópolis, Rio de Janeiro (Brazil); Kelkar, A.; Schneider, K. [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg (Germany); Extreme Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt (Germany); Schulz, M. [Physics Department and LAMOR, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Fischer, D., E-mail: fischerda@mst.edu [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg (Germany); Physics Department and LAMOR, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States)

    2015-03-15

    A reaction microscope (ReMi) has been combined with a magneto-optical trap (MOT) for the kinematically complete investigation of atomic break-up processes. With the novel MOTReMi apparatus, the momentum vectors of the fragments of laser-cooled and state-prepared lithium atoms are measured in coincidence and over the full solid angle. The first successful implementation of a MOTReMi could be realized due to an optimized design of the present setup, a nonstandard operation of the MOT, and by employing a switching cycle with alternating measuring and trapping periods. The very low target temperature in the MOT (∼2 mK) allows for an excellent momentum resolution. Optical preparation of the target atoms in the excited Li 2{sup 2}P{sub 3/2} state was demonstrated providing an atomic polarization of close to 100%. While first experimental results were reported earlier, in this work, we focus on the technical description of the setup and its performance in commissioning experiments involving target ionization in 266 nm laser pulses and in collisions with projectile ions.

  12. On recoil energy dependent void swelling in pure copper: part 1, experimental results

    DEFF Research Database (Denmark)

    Singh, B.N.; Eldrup, M.; Horsewell, Andy

    2000-01-01

    In recent years, the problem of void swelling has been treated within the framework of production bias model (PBM). The model considers the intracascade clustering of vacancies and self-interstitial atoms (SIAs), their thermal stability and the resulting asymmetry in the production of free and mo...

  13. Recent Developments in the NIST Atomic Databases

    Science.gov (United States)

    Kramida, Alexander

    2011-05-01

    New versions of the NIST Atomic Spectra Database (ASD, v. 4.0) and three bibliographic databases (Atomic Energy Levels and Spectra, v. 2.0, Atomic Transition Probabilities, v. 9.0, and Atomic Line Broadening and Shapes, v. 3.0) have recently been released. In this contribution I will describe the main changes in the way users get the data through the Web. The contents of ASD have been significantly extended. In particular, the data on highly ionized tungsten (W III-LXXIV) have been added from a recently published NIST compilation. The tables for Fe I and Fe II have been replaced with newer, much more extensive lists (10000 lines for Fe I). The other updated or new spectra include H, D, T, He I-II, Li I-III, Be I-IV, B I-V, C I-II, N I-II, O I-II, Na I-X, K I-XIX, and Hg I. The new version of ASD now incorporates data on isotopes of several elements. I will describe some of the issues the NIST ASD Team faces when updating the data.

  14. Structure determination of small vanadium clusters by density-functional theory in comparison with experimental far-infrared spectra.

    Science.gov (United States)

    Ratsch, C; Fielicke, A; Kirilyuk, A; Behler, J; von Helden, G; Meijer, G; Scheffler, M

    2005-03-22

    The far-infrared vibrational spectra for charged vanadium clusters with sizes of 3-15 atoms have been measured using infrared multiple photon dissociation of Vn+Ar-->Vn(+)+Ar. Using density-functional theory calculations, we calculated the ground state energy and vibrational spectra for a large number of stable and metastable geometries of such clusters. Comparison of the calculated vibrational spectra with those obtained in the experiment allows us to deduce the cluster size specific atomic structures. In several cases, a unique atomic structure can be identified, while in other cases our calculations suggest the presence of multiple isomers.

  15. Development of an Atom Interferometer Gravity Gradiometer for Earth Sciences

    Science.gov (United States)

    Rakholia, A.; Sugarbaker, A.; Black, A.; Kasecivh, M.; Saif, B.; Luthcke, S.; Callahan, L.; Seery, B.; Feinberg, L.; Mather, J.; hide

    2017-01-01

    We report progress towards a prototype atom interferometer gravity gradiometer for Earth science studies from a satellite in low Earth orbit.The terrestrial prototype has a target sensitivity of 8 x 10(exp -2) E/Hz(sup 1/2) and consists of two atom sources running simultaneous interferometers with interrogation time T = 300 ms and 12 hk photon recoils, separated by a baseline of 2 m. By employing Raman side band cooling and magnetic lensing, we will generate atomic ensembles with N = 10(exp 6) atoms at a temperature of 3 nK. The sensitivity extrapolates to 7 x 10(exp -5) E/Hz(sup 1/2) in microgravity on board a satellite. Simulations derived from this sensitivity demonstrate a monthly time-variable gravity accuracy of 1 cm equivalent water height at 200 km resolution, yielding an improvement over GRACE by 1-2 orders of magnitude. A gravity gradiometer with this sensitivity would also benefit future planetary, lunar, and asteroidal missions.

  16. Laser sources for precision spectroscopy on atomic strontium.

    Science.gov (United States)

    Poli, N; Ferrari, G; Prevedelli, M; Sorrentino, F; Drullinger, R E; Tino, G M

    2006-04-01

    We present a new laser setup designed for high-precision spectroscopy on laser cooled atomic strontium. The system, which is entirely based on semiconductor laser sources, delivers 200 mW at 461 nm for cooling and trapping atomic strontium from a thermal source, 4 mW at 497 nm for optical pumping from the metastable P23 state, 12 mW at 689 nm on linewidth less than 1 kHz for second-stage cooling of the atomic sample down to the recoil limit, 1.2 W at 922 nm for optical trapping close to the "magic wavelength" for the 0-1 intercombination line at 689 nm. The 689 nm laser was already employed to perform a frequency measurement of the 0-1 intercombination line with a relative accuracy of 2.3 x 10(-11), and the ensemble of laser sources allowed the loading in a conservative dipole trap of multi-isotopes strontium mixtures. The simple and compact setup developed represents one of the first steps towards the realization of a transportable optical standards referenced to atomic strontium.

  17. The effect of moderators on the reactions of hot hydrogen atoms with methane

    CERN Document Server

    Estrup, Peder J.

    1960-01-01

    The reaction of recoil tritium with methane has been examined in further detail. The previous hypothesis that this system involves a hot displacement reaction of high kinetic energy hydrogen to give CH$_{3}$T, CH$_{2}$T and HT is confirmed. The effect of moderator on this process is studied by the addition of noble gases. As predicted these gases inhibit the hot reaction action, their efficiency in this respect being He > Ne > A > Se. The data are quantitatively in accord with a theory of hot atom kinetics. The mechanism of the hot displacement process is briefly discussed.

  18. Determination of the extraction efficiency for {sup 233}U source α-recoil ions from the MLL buffer-gas stopping cell

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars v.d.; Seiferle, Benedict; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Laatiaoui, Mustapha [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz Institut Mainz, Mainz (Germany)

    2015-03-01

    Following the α decay of {sup 233}U, {sup 229}Th recoil ions are shown to be extracted in a significant amount from the MLL buffer-gas stopping cell. The produced recoil ions and subsequent daughter nuclei are mass purified with the help of a customized quadrupole mass spectrometer. The combined extraction and mass purification efficiency for {sup 229}Th{sup 3+} is determined via MCP-based measurements and via the direct detection of the {sup 229}Th α decay. A large value of (10±2)% for the combined extraction and mass purification efficiency of {sup 229}Th{sup 3+} is obtained at a mass resolution of about 1u/e. In addition to {sup 229}Th, also other α-recoil ions of the {sup 233,} {sup 232}U decay chains are addressed. (orig.)

  19. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X......-ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation...

  20. Low Energy Electron and Nuclear Recoil Thresholds in the DRIFT-II Negative Ion TPC for Dark Matter Searches

    CERN Document Server

    Burgos, S; Forbes, J; Ghag, C; Gold, M; Hagemann, C; Kudryavtsev, V A; Lawson, T B; Loomba, D; Majewski, P; Muna, D; Murphy, A St J; Paling, S M; Petkov, A; Plank, S J S; Robinson, M; Sanghi, N; Snowden-Ifft, D P; Spooner, N J C; Turk, J; Tziaferi, E

    2009-01-01

    Understanding the ability to measure and discriminate particle events at the lowest possible energy is an essential requirement in developing new experiments to search for weakly interacting massive particle (WIMP) dark matter. In this paper we detail an assessment of the potential sensitivity below 10 keV in the 1 m^3 DRIFT-II directionally sensitive, low pressure, negative ion time projection chamber (NITPC), based on event-by-event track reconstruction and calorimetry in the multiwire proportional chamber (MWPC) readout. By application of a digital smoothing polynomial it is shown that the detector is sensitive to sulfur and carbon recoils down to 3.5 and 2.2 keV respectively, and 1.2 keV for electron induced tracks. The energy sensitivity is demonstrated through the 5.9 keV gamma spectrum of 55Fe, where the energy resolution is sufficient to identify the escape peak. In addition to recoil direction reconstruction for WIMP searches this sensitivity suggests new prospects for applications also in KK axion s...

  1. Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, Michael E. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2010-02-01

    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.

  2. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    Energy Technology Data Exchange (ETDEWEB)

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Antonsson, E. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Physikalische und Theoretische Chemie Institut für Chemie und Biochemie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin (Germany); Neville, J. J. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 6E2 (Canada); Miron, C., E-mail: Catalin.Miron@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Extreme Light Infrastructure - Nuclear Physics (ELI-NP), ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov (Romania)

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  3. An investigation of polarized atomic photofragments using the ion imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Bracker, A.S.

    1997-12-01

    This thesis describes measurement and analysis of the recoil angle dependence of atomic photofragment polarization (atomic v-J correlation). This property provides information on the electronic rearrangement which occurs during molecular photodissociation. Chapter 1 introduces concepts of photofragment vector correlations and reviews experimental and theoretical progress in this area. Chapter 2 described the photofragment ion imaging technique, which the author has used to study the atomic v-J correlation in chlorine and ozone dissociation. Chapter 3 outlines a method for isolating and describing the contribution to the image signal which is due exclusively to angular momentum alignment. Ion imaging results are presented and discussed in Chapter 4. Chapter 5 discusses a different set of experiments on the three-fragment dissociation of azomethane. 122 refs.

  4. Force-time profile differences in the delivery of simulated toggle-recoil spinal manipulation by students, instructors, and field doctors of chiropractic.

    Science.gov (United States)

    DeVocht, James W; Owens, Edward F; Gudavalli, Maruti Ram; Strazewski, John; Bhogal, Ramneek; Xia, Ting

    2013-01-01

    The objectives of this study were to examine the force-time profiles of toggle recoil using an instrumented simulator to objectively measure and evaluate students' skill to determine if they become quicker and use less force during the course of their training and to compare them to course instructors and to field doctors of chiropractic (DCs) who use this specific technique in their practices. A load cell was placed within a toggle recoil training device. The preload, speed, and magnitude of the toggle recoil thrusts were measured from 60 students, 2 instructors, and 77 DCs (ie, who use the toggle recoil technique in their regular practice). Student data were collected 3 times during their toggle course (after first exposure, at midterm, and at course end.) Thrusts showed a dual-peak force-time profile not previously described in other forms of spinal manipulation. There was a wide range of values for each quantity measured within and between all 3 subject groups. The median peak load for students decreased over the course of their class, but they became slower. Field doctors were faster than students or instructors and delivered higher peak loads. Toggle recoil thrusts into a dropping mechanism varied based upon subject and amount of time practicing the task. As students progressed through the class, speed reduced as they increased control to lower peak loads. In the group studies, field DCs applied higher forces and were faster than both students and instructors. There appears to be a unique 2-peak feature of the force-time plot that is unique to toggle recoil manipulation with a drop mechanism. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  5. Atomic transition probabilities of Gd i

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, J E; Den Hartog, E A [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States); Bilty, K A, E-mail: jelawler@wisc.edu, E-mail: biltyka@uwec.edu, E-mail: eadenhar@wisc.edu [Department of Physics and Astronomy, University of Wisconsin-Eau Claire, Eau Claire, WI 54702 (United States)

    2011-05-14

    Fourier transform spectra are used to determine emission branching fractions for 1290 lines of the first spectrum of gadolinium (Gd i). These branching fractions are converted to absolute atomic transition probabilities using previously reported radiative lifetimes from time-resolved laser-induced-fluorescence measurements (Den Hartog et al 2011 J. Phys. B: At. Mol. Opt. Phys. 44 055001). The wavelength range of the data set is from 300 to 1850 nm. A least squares technique for separating blends of the first and second spectra lines is also described and demonstrated in this work.

  6. Experimental Determination of the Angular Acceptance of the STrong Gradient Electromagnetic Online Recoil Separator for Capture Gamma Ray Experiment (St. George) and Observation of Quadrupole Field Reproducibility

    Science.gov (United States)

    Feltman, William; Couder, Manoel; Morales, Luis; Gilardy, Gwen; Seymour, Chris; Moylan, Shane; St. George Team Team

    2017-09-01

    The STrong Gradient Electromagnetic Online Recoil separator for capture Gamma ray Experiment (St. George) is in the process of determining its experimental limits. Currently the focus is on determining the angular acceptance of particles entering the St. George beam line. The demonstration of the current experimental angular acceptance is discussed in addition to the necessary procedure to ensure that St. George's quadrupoles generate consistent magnetic fields. The group working with the St. George Recoil separator located in the Nuclear Science Lab at the University of Notre Dame, located in Notre Dame Indiana.

  7. Control the fear atomic

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Gwan [I and Book, Seoul (Korea, Republic of)

    2003-04-15

    This book has a lot of explanation of nuclear energy with articles. Their titles are the bad man likes atomic, the secret of atom, nuclear explosion, NPT?, the secret of uranium fuel rod, nuclear power plant vs nuclear bomb, I hate atomic, keep plutonium in control, atomic in peace and find out alternative energy.

  8. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    Science.gov (United States)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  9. Influence of hydrogen on hydrogenated cadmium telluride optical spectra

    Energy Technology Data Exchange (ETDEWEB)

    Pociask, M.; Polit, J.; Sheregii, E.; Cebulski, J. [Institute of Physics, University of Rzeszow (Poland); Kisiel, A. [Institute of Physics, Jagiellonian University, Krakow (Poland); Mycielski, A. [Institute of Physics, PAS, Warszawa (Poland); Morgiel, J. [Polish Academy of Sciences, Institute of Metallurgy and Materials Sciences, Krakow (Poland); Piccinini, M. [INFN-Laboratori Nazionali di Frascati (Italy); Dipartimento Scienze Geologiche, Universita Roma Tre, Rome (Italy); Marcelli, A.; Robouch, B.; Guidi, M.C. [INFN-Laboratori Nazionali di Frascati (Italy); Savchyn, V. [Ivan Franko Lviv National University (Ukraine); Izhnin, I.I. [Institute for Materials SRC ' ' Carat' ' , Lviv (Ukraine); Zajdel, P. [Institute of Fizyki, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice (Poland); Nucara, A. [Universita' di Roma La Sapienza, P. le Aldo Moro 1, Rome (Italy)

    2009-09-15

    The presence of oxygen impurity in semiconducting materials affects the electrical properties of crystals and significantly limits their application. To remove oxygen impurity, ultra-pure hydrogen is used while growing Te-containing crystals such as CdTe, CdZnTe, and ZnTe. The hydrogenation of CdTe crystals is a technological process that purifies the basic material from oxygen, mainly cadmium and tellurium oxide compounds incorporated in CdTe crystalline lattice. In the present work we analyses the deformations induced by hydrogen and oxygen atoms in CdTe crystals looking at their influence on the near fundamental band (NFB), middle infrared (MIR) and far infrared (FIR) reflectivity spectra as well as on cathodoluminescence (CL) spectra. Comparison of the hydrogenated CdTe phonon structure profiles confirms the presence of hydrogen atoms bounded inside the lattice. The possible localization of hydrogen and oxygen ions within the tetrahedron coordinated lattice is discussed in the framework of a model that shows a good agreement with recent NFB, MIR and FIR experiments carried out on hydrogenated CdTe crystals. Measured reflection spectra in the wavelength range 190-1400 nm (NFB) indicate the appearance in CdTe(H{sub M}) and CdTe(H{sub L}) of additional maxima at 966 nm related to the electron transitions from level about 0.2 eV above the valence band. The CL spectra confirmed existence of this electron level. We present a possible H{sub 2} alignment similar to the single H model i.e., over the face (at about 0.38 Aa). For this model the angle from the central atom to the H atoms is equal to 64 which is also close to the bonding angle of CdH{sub 2} (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Microwave Spectroscopy of Cold Rubidium Atoms

    OpenAIRE

    Entin, V. M.; Ryabtsev, I. I.

    2004-01-01

    The effect of microwave radiation on the resonance fluorescence of a cloud of cold $^{85}Rb$ atoms in a magnetooptical trap is studied. The radiation frequency was tuned near the hyperfine splitting frequency of rubidium atoms in the 5S ground state. The microwave field induced magnetic dipole transitions between the magnetic sublevels of the 5S(F=2) and 5S(F=3) states, resulting in a change in the fluorescence signal. The resonance fluorescence spectra were recorded by tuning the microwave r...

  11. Measurement of a strong atomic hyperfine field allowing the determination of nuclear g-factors in (sub)nanosecond states

    CERN Document Server

    Vyvey, K; Cottenier, S; Balabanski, D L; Coulier, N; Coussement, R; Georgiev, G; Lépine-Szily, A; Ternier, S; Teughels, S

    2001-01-01

    An extension of the time-integrated atomic decoupling technique to measure g-factors of (sub)nanosecond isomers and/or the magnetic hyperfine field induced by highly excited atomic electrons on nuclei recoiling into vacuum is discussed. A high average field B sub h sub f =1080 sub - sub 1 sub 7 sub 5 sup + sup 2 sup 7 sup 0 T and an average atomic spin J=2.7(2) is deduced using the known magnetic moment of a 4.05(7) mu s isomer in sup 6 sup 9 Ge. Such high magnetic fields allow g-factor measurements of (sub)nanosecond states. Ab initio calculations show that the combination of a high average magnetic hyperfine field and a high average atomic spin is only possible if a considerable fraction of the ions is in a metastable excited state.

  12. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  13. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    Science.gov (United States)

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution.

  14. Interpretation of wave energy spectra

    National Research Council Canada - National Science Library

    Thompson, E.F

    1980-01-01

    Guidelines for interpreting nondirectional wave energy spectra and presented. A simple method is given for using the spectrum to estimate a significant height and period for each major wave train in most sea states...

  15. Infrared spectra of mineral species

    CERN Document Server

    Chukanov, Nikita V

    2014-01-01

    This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.

  16. Pileup correction of microdosimetric spectra

    CERN Document Server

    Langen, K M; Lennox, A J; Kroc, T K; De Luca, P M

    2002-01-01

    Microdosimetric spectra were measured at the Fermilab neutron therapy facility using low pressure proportional counters operated in pulse mode. The neutron beam has a very low duty cycle (<0.1%) and consequently a high instantaneous dose rate which causes distortions of the microdosimetric spectra due to pulse pileup. The determination of undistorted spectra at this facility necessitated (i) the modified operation of the proton accelerator to reduce the instantaneous dose rate and (ii) the establishment of a computational procedure to correct the measured spectra for remaining pileup distortions. In support of the latter effort, two different pileup simulation algorithms using analytical and Monte-Carlo-based approaches were developed. While the analytical algorithm allows a detailed analysis of pileup processes it only treats two-pulse and three-pulse pileup and its validity is hence restricted. A Monte-Carlo-based pileup algorithm was developed that inherently treats all degrees of pileup. This algorithm...

  17. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  18. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  19. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  20. Photon spectra from WIMP annihilation

    OpenAIRE

    Ruiz Cembranos, José Alberto; Cruz Dombriz, Álvaro de la; Dobado González, Antonio; Lineros, R. A.; López Maroto, Antonio

    2010-01-01

    If the present dark matter in the Universe annihilates into standard model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth and, in particular, to the observed gamma-ray fluxes. The magnitude of such a contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation int...

  1. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  2. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF).

    Science.gov (United States)

    Frenje, J A; Hilsabeck, T J; Wink, C W; Bell, P; Bionta, R; Cerjan, C; Gatu Johnson, M; Kilkenny, J D; Li, C K; Séguin, F H; Petrasso, R D

    2016-11-01

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T i ), yield (Y n ), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10 16 . At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

  3. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    Science.gov (United States)

    Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  4. Astrophysical limitations to the identification of dark matter: indirect neutrino signals vis-a-vis direct detection recoil rates

    CERN Document Server

    Serpico, Pasquale D

    2010-01-01

    A convincing identification of dark matter (DM) particles can probably be achieved only through a combined analysis of different detections strategies, which provides an effective way of removing degeneracies in the parameter space of DM models. In practice, however, this program is made complicated by the fact that different strategies depend on different physical quantities, or on the same quantities but in a different way, making the treatment of systematic errors rather tricky. We discuss here the uncertainties on the recoil rate in direct detection experiments and on the muon rate induced by neutrinos from dark matter annihilations in the Sun, and we show that, contrarily to the local DM density or overall cross section scale, irreducible astrophysical uncertainties affect the two rates in a different fashion, therefore limiting our ability to reconstruct the parameters of the dark matter particle. By varying within their respective errors astrophysical parameters such as the escape velocity and the velo...

  5. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Frenje, J. A., E-mail: jfrenje@psfc.mit.edu; Wink, C. W.; Gatu Johnson, M.; Li, C. K.; Séguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hilsabeck, T. J.; Kilkenny, J. D. [General Atomics, San Diego, California 92186 (United States); Bell, P.; Bionta, R.; Cerjan, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (T{sub i}), yield (Y{sub n}), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼10{sup 16}. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

  6. Semileptonic B to D Decays at Nonzero Recoil with 2+1 Flavors of Improved Staggered Quarks

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Si-Wei; /Utah U.; DeTar, Carleton; /Utah U.; Du, Daping; /Iowa U.; Kronfeld, Andreas S.; /Fermilab; Laiho, Jack; /Strathclyde U. /Glasgow U.; Van de Water, Ruth S.; /Brookhaven

    2011-11-01

    The Fermilab Lattice-MILC collaboration is completing a comprehensive program of heavy-light physics on the MILC (2+1)-flavor asqtad ensembles with lattice spacings as small as 0.045 fm and light-to-strange-quark mass ratios as low as 1/20. We use the Fermilab interpretation of the clover action for heavy valence quarks and the asqtad action for light valence quarks. The central goal of the program is to provide ever more exacting tests of the unitarity of the CKM matrix. We give a progress report on one part of the program, namely the analysis of the semileptonic decay B to D at both zero and nonzero recoil. Although final results are not presented, we discuss improvements in the analysis methods, the statistical errors, and the parameter coverage that we expect will lead to a significant reduction in the final error for |V{sub cb}| from this decay channel.

  7. The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

    Science.gov (United States)

    Frenje, J. A.; Hilsabeck, T. J.; Wink, C. W.; Bell, P.; Bionta, R.; Cerjan, C.; Gatu Johnson, M.; Kilkenny, J. D.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.

    2016-11-01

    The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ˜20 ps and energy resolution of ˜100 keV for total neutron yields above ˜1016. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ˜20 ps.

  8. Two-photon excitation of rubidium atoms inside porous glass

    Science.gov (United States)

    Amy, L.; Lenci, L.; Villalba, S.; Failache, H.; Lezama, A.

    2017-10-01

    We study the two-photon laser excitation to the 5 D5 /2 energy level of 85Rb atoms contained in the interstices of a porous material made from sintered ground glass with typical pore dimensions in the 10-100 μ m range. The excitation spectra show unusual flat-top line shapes, which are shown to be the consequence of wave-vector randomization of the laser light in the porous material. For large atomic densities, the spectra are affected by radiation trapping around the D2 transitions. The effect of the transient atomic response limited by the time of flight between pores walls appears to have a minor influence in the excitation spectra. It is however revealed by the shortening of the temporal evolution of the emitted blue light following a sudden switch-off of the laser excitation.

  9. Atomic Transition Probabilities for Neutral Cerium

    Science.gov (United States)

    Lawler, J. E.; den Hartog, E. A.; Wood, M. P.; Nitz, D. E.; Chisholm, J.; Sobeck, J.

    2009-10-01

    The spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are more complex than spectra of other rare earth species. The resulting high density of lines in the visible makes Ce ideal for use in metal halide (MH) High Intensity Discharge (HID) lamps. Inclusion of cerium-iodide in a lamp dose can improve both the Color Rendering Index and luminous efficacy of a MH-HID lamp. Basic spectroscopic data including absolute atomic transition probabilities for Ce I and Ce II are needed for diagnosing and modeling these MH-HID lamps. Recent work on Ce II [1] is now being augmented with similar work on Ce I. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2000 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. [4pt] [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [0pt] [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  10. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.

    1986-09-01

    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  11. Two-Color Laser Resonance Ionization Spectroscopy of Zirconium Atoms

    Science.gov (United States)

    Hasegawa, Shuichi; Nagamoto, Daisuke

    2017-10-01

    We have performed two-color laser resonance ionization spectroscopy of zirconium atoms to measure the energies of excited states below the third ionization limit. The number of intermediate states that we observed is 19, and energies deduced from the experiments agree with previous data. Complex ionization spectra of the excited states were observed through the intermediate states. The values of the first, second, and third ionization limits were derived from the Rydberg series of the spectra with quantum defect theory.

  12. Playing Pinball with Atoms

    NARCIS (Netherlands)

    Saedi, A.; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Henricus J.W.

    2009-01-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely

  13. Direct detection of antihydrogen atoms using a BGO crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Y. [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, 184-8588 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Kuroda, N., E-mail: kuroda@phys.c.u-tokyo.ac.jp [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Ohtsuka, M. [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Leali, M.; Lodi-Rizzini, E.; Mascagna, V. [Dipartimento di Ingegneria dell' Informazione, Universitá di Brescia, Brescia 25133 (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, Brescia 25133 (Italy); Tajima, M.; Torii, H.A. [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Zurlo, N. [Dipartimento di Ingegneria dell' Informazione, Universitá di Brescia, Brescia 25133 (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, Brescia 25133 (Italy); Matsuda, Y. [Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo (Japan); Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Venturelli, L. [Dipartimento di Ingegneria dell' Informazione, Universitá di Brescia, Brescia 25133 (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, Brescia 25133 (Italy); Yamazaki, Y. [Atomic Physics Research Unit, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan)

    2016-12-21

    The ASACUSA collaboration has developed a detector consisting of a large size BGO crystal to detect an atomic antihydrogen beam, and performed the direct detection of antihydrogen atoms. Energy spectra from antihydrogen annihilation on the BGO crystal are discussed in comparison to simulation results from the GEANT4 toolkit. Background mainly originating from cosmic rays were strongly suppressed by analyzing the energy deposited in the BGO and requiring a multiplicity of charged pions. Thus antihydrogen events were identified.

  14. Atomic Layer Epitaxial Growth of Gaas on Porous Silicon Substrate

    OpenAIRE

    Mohamed Lajnef; Afrah Bardaoui; Isabelle Sagne; Radwan Chtouroua; Hatem Ezzaouia

    2008-01-01

    GaAs thin film has been grown on porous silicon by metal organic chemical vapour deposition (MOCVD) for different growth temperatures using atomic layer epitaxy (ALE) technique. The morphology of GaAs layer was investigated by atomic force microscopy (AFM). The effect of growth temperature is studied using photoluminescence measurements (PL).The photoluminescence spectra revealed a dissymmetry form toward high energies attributed to strain effect resulting from the lattice mismatch between Ga...

  15. Atomization characteristics of a prefilming airblast atomizer

    Science.gov (United States)

    Hayashi, Shigeru; Koito, Atsushi; Hishiki, Manabu

    1992-01-01

    The size distribution of water test sprays generated by a prefilming airblast atomizer used for aeroengines was measured in swirling and non-swirling flows with the well established laser scattering particle sizing technique. Atomizing air velocity (or pressure difference) was varied in a range wider than the conditions of actual engines. The Sauter Mean Diameter (SMD) decreased at approximately a 1.5 power of the atomizing air velocity, being a higher velocity index than the previously reported values of 1 to 1.2. It was unexpectedly found that the effect of the liquid/air flow ratio was small. Since swirling flow increased the SMD at lower air velocities yet decreased it at higher ones, it is suggested that the reverse flow near the nozzle pintle adversely affects atomization.

  16. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail: jos@iac.es, E-mail: abml@iac.es, E-mail: rjt@ast.cam.ac.uk, E-mail: eterlevi@inaoep.mx, E-mail: cid@astro.ufsc.br [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  17. Single atom electrochemical and atomic analytics

    Science.gov (United States)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  18. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    Science.gov (United States)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  19. Low-temperature atomic layer deposition of copper(II) oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Iivonen, Tomi, E-mail: tomi.iivonen@helsinki.fi; Hämäläinen, Jani; Mattinen, Miika; Popov, Georgi; Leskelä, Markku [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki (Finland); Marchand, Benoît; Mizohata, Kenichiro [Division of Materials Physics, Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Kim, Jiyeon; Fischer, Roland A. [Chair of Inorganic Chemistry II, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)

    2016-01-15

    Copper(II) oxide thin films were grown by atomic layer deposition (ALD) using bis-(dimethylamino-2-propoxide)copper [Cu(dmap){sub 2}] and ozone in a temperature window of 80–140 °C. A thorough characterization of the films was performed using x-ray diffraction, x-ray reflectivity, UV‐Vis spectrophotometry, atomic force microscopy, field emission scanning electron microscopy, x-ray photoelectron spectroscopy, and time-of-flight elastic recoil detection analysis techniques. The process was found to produce polycrystalline copper(II) oxide films with a growth rate of 0.2–0.3 Å per cycle. Impurity content in the films was relatively small for a low temperature ALD process.

  20. Polarization spectroscopy of atomic erbium in a hollow cathode lamp

    Science.gov (United States)

    Ang’ong’a, Jackson; Gadway, Bryce

    2018-02-01

    In this work we perform polarization spectroscopy of erbium atoms in a hollow cathode lamp (HCL). We review the theory behind Doppler-free polarization spectroscopy, theoretically model the expected erbium polarization spectra, and compare the numerically calculated spectra to our experimental data. We further analyze the dependence of the measured spectra on the HCL current and the peak intensities of our pump and probe lasers to determine conditions. Applications include wavelength stabilization of diode laser radiation to the 400.91 nm erbium transition.

  1. New approaches in deep laser cooling of magnesium atoms for quantum metrology

    Science.gov (United States)

    Prudnikov, O. N.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.; Bonert, A. E.; Tropnikov, M. A.; Goncharov, A. N.

    2016-09-01

    Two approaches for solving the long-standing problem of deep laser cooling of neutral magnesium atoms are proposed. The first one uses optical molasses with orthogonal linear polarizations of light waves. The second approach involves a ‘nonstandard’ magneto-optical trap (NMOT) composed of light waves with elliptical polarizations (in general). Both the widely used semiclassical approach based on the Fokker-Planck equation and quantum treatment fully taking into account the recoil effect are employed for theoretical analysis. The results show the possibility of obtaining temperatures lower than 100 µK simultaneously with a large number of cold atoms ~106 ÷ 107. A new velocity-selective cooling technique allowing one to reach the microkelvin temperature range is also proposed. This technique may have some advantages over, for instance, the shallow-dipole-trap technique utilized by other authors. In the case of magnesium atoms this new technique may be used for obtaining a large number of ultracold atoms (T ~ 1 µK, N  >  105). Such a large number of ultracold atoms is crucial issue for metrological and many other applications of cold atoms.

  2. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  3. Fluorescence Spectra of Highlighter Inks

    Science.gov (United States)

    Birriel, Jennifer J.; King, Damon

    2018-01-01

    Fluorescence spectra excited by laser pointers have been the subject of several papers in "TPT". These papers all describe a fluorescence phenomenon in which the reflected laser light undergoes a change in color: this color change results from the combination of some partially reflected laser light and additional colors generated by…

  4. Correlation Functions and Power Spectra

    DEFF Research Database (Denmark)

    Larsen, Jan

    2006-01-01

    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions...

  5. INFRARED SPECTRA, THERMOGRAVIMETRIC ANALYSIS AND ...

    African Journals Online (AJOL)

    Preferred Customer

    characterized by melting point, molar conductivity, magnetic moment, elemental analysis, infrared spectra and thermal analyses. ... methyl-quinazolinone and the final products of the thermogravimetric analysis were recorded on a Perkin-Elmer FT-IR type ..... [Cu(CH3COO)(L)3]. CuO + 5C +12C2H2 + 4NO + NH3 + 0.5N2.

  6. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  7. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  8. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  9. Single atom microscopy.

    Science.gov (United States)

    Zhou, Wu; Oxley, Mark P; Lupini, Andrew R; Krivanek, Ondrej L; Pennycook, Stephen J; Idrobo, Juan-Carlos

    2012-12-01

    We show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity.

  10. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  11. Neutron energy spectra of sup 2 sup 5 sup 2 Cf, Am-Be source and of the D(d,n) sup 3 He reaction

    CERN Document Server

    Sang Tae Park

    2003-01-01

    The neutron energy spectrum of the following sources were measured using a fast neutron spectrometer with the NE-213 liquid scintillator: sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He reaction from a 3 MeV Pelletron accelerator in Tokyo Institute of Technology. The measured proton recoil pulse height data of sup 2 sup 5 sup 2 Cf, Am-Be and D(d,n) sup 3 He were unfolded using the mathematical program to obtain the neutron energy spectrum. The sup 2 sup 5 sup 2 Cf and Am-Be neutron energy spectra were measured and the results obtained showed a good agreement with the spectra usually published in the literature. The neutron energy spectrum from D(d,n) sup 3 He was measured and the results obtained also showed a good agreement with the calculation by time of flight (TOF) methods. (author)

  12. Neutron and gamma spectra measurements and calculations in benchmark spherical iron assemblies with sup 2 sup 5 sup 2 Cf neutron source in the centre

    CERN Document Server

    Jansky, B; Turzik, Z; Kyncl, J; Cvachovec, F; Trykov, L A; Volkov, V S

    2002-01-01

    The neutron and gamma spectra measurements have been made for benchmark iron spherical assemblies with the diameter of 30, 50 and 100 cm. The sup 2 sup 5 sup 2 Cf neutron sources with different emissions were placed into the centre of iron spheres. In the first stage of the project, independent laboratories took part in the leakage spectra measurements. The proton recoil method was used with stilbene crystals and hydrogen proportional counters. The working range of spectrometers for neutrons is in energy range from 0.01 to 16 MeV, and for gamma from 0.40 to 12 MeV. Some adequate calculations have been carried out. The propose to carefully analyse the leakage mixed neutron and gamma spectrum from iron sphere of diameter 50 cm and then adopt that field as standard.

  13. Ionization measurement at very low temperature for nuclear and electron recoils discrimination by ionization-heat simultaneous measurement for dark matter research

    CERN Document Server

    Navick, X F; Tourbot, R

    2000-01-01

    To achieve a high level of discrimination between nuclear recoils and electron recoils for dark matter research, we realized and studied ionization-heat detectors working at very low temperature (10-20 mK). To understand the mechanisms underlying the ionization measurement at this temperature range, we made systematic studies of detectors performances (time stability, energy resolution, etc.) in X- and gamma-rays detection for Ge and Si detectors. Results are presented and discussed. We found that the time stability is governed by the progressive space charge build-up due to impurities ionization by far-infrared radiation. Moreover if the energy resolution of HPGe-pin detectors is limited by the noise, it appears to be intrinsically limited by carrier trapping on neutral impurities in Si detectors.

  14. Energy calibration for the INDRA multidetector using recoil protons from sup 1 sup 2 C+ sup 1 H scattering

    CERN Document Server

    Trzcinski, A; Müller, W F J; Trautmann, W; Zwieglinski, B; Auger, G; Bacri, C O; Begemann-Blaich, M L; Bellaize, N; Bittiger, R; Bocage, F; Borderie, B; Bougault, R; Bouriquet, B; Buchet, P; Charvet, J L; Chbihi, A; Dayras, R; Doré, D; Durand, D; Frankland, J D; Galíchet, E; Gourio, D; Guinet, D; Hudan, S; Hurst, B; Lautesse, P; Lavaud, F; Laville, J L; Leduc, C; Lefèvre, A; Legrain, R; López, O; Lynen, U; Nalpas, L; Orth, H; Plagnol, E; Rosato, E; Saija, A; Schwarz, C; Sfienti, C; Steckmeyer, J C; Tabacaru, G; Tamain, B; Turzó, K; Vient, E; Vigilante, M; Volant, C

    2003-01-01

    An efficient method of energy scale calibration for the CsI(Tl) modules of the INDRA multidetector (rings 6-12) using elastic and inelastic sup 1 sup 2 C+ sup 1 H scattering at E( sup 1 sup 2 C)=30 MeV per nucleon is presented. Background-free spectra for the binary channels are generated by requiring the coincident detection of the light and heavy ejectiles. The gain parameter of the calibration curve is obtained by fitting the proton total charge spectra to the spectra predicted with Monte-Carlo simulations using tabulated cross section data. The method has been applied in multifragmentation experiments with INDRA at GSI.

  15. Investigations of interhydrogen bond dynamical coupling effects in the polarized IR spectra of acetanilide crystals.

    Science.gov (United States)

    Flakus, Henryk T; Michta, Anna

    2010-02-04

    This Article presents the investigation results of the polarized IR spectra of the hydrogen bond in acetanilide (ACN) crystals measured in the frequency range of the proton and deuteron stretching vibration bands, nu(N-H) and nu(N-D). The basic spectral properties of the crystals were interpreted quantitatively in terms of the "strong-coupling" theory. The model of the centrosymmetric dimer of hydrogen bonds postulated by us facilitated the explanation of the well-developed, two-branch structure of the nu(N-H) and nu(N-D) bands as well as the isotopic dilution effects in the spectra. On the basis of the linear dichroic and temperature effects in the polarized IR spectra of ACN crystals, the H/D isotopic "self-organization" effects were revealed. A nonrandom distribution of hydrogen isotope atoms (H or D) in the lattice was deduced from the spectra of isotopically diluted ACN crystals. It was also determined that identical hydrogen isotope atoms occupy both hydrogen bonds in the dimeric systems, where each hydrogen bond belongs to a different chain. A more complex fine structure pattern of nu(N-H) and nu(N-D) bands in ACN spectra in comparison with the spectra of other secondary amides (e.g., N-methylacetamide) can be explained in terms of the "relaxation" theory of the IR spectra of hydrogen-bonded systems.

  16. Solar Spectroscopy: Atomic Processes

    Science.gov (United States)

    Mason, H.; Murdin, P.

    2000-11-01

    A Greek philosopher called DEMOCRITUS (c. 460-370 BC) first introduced the concept of atoms (which means indivisible). His atoms do not precisely correspond to our atoms of today, which are not indivisible, but made up of a nucleus (protons with positive charge and neutrons which have no charge) and orbiting electrons (with negative charge). Indeed, in the solar atmosphere, the temperature is suc...

  17. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  18. Electronic spectra from TDDFT and machine learning in chemical space

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Hartmann, Mia; Tapavicza, Enrico, E-mail: Enrico.Tapavicza@csulb.edu [Department of Chemistry and Biochemistry, California State University, 1250 Bellflower Boulevard, Long Beach, California 90840 (United States); Lilienfeld, O. Anatole von, E-mail: anatole.vonlilienfeld@unibas.ch [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439 (United States)

    2015-08-28

    Due to its favorable computational efficiency, time-dependent (TD) density functional theory (DFT) enables the prediction of electronic spectra in a high-throughput manner across chemical space. Its predictions, however, can be quite inaccurate. We resolve this issue with machine learning models trained on deviations of reference second-order approximate coupled-cluster (CC2) singles and doubles spectra from TDDFT counterparts, or even from DFT gap. We applied this approach to low-lying singlet-singlet vertical electronic spectra of over 20 000 synthetically feasible small organic molecules with up to eight CONF atoms. The prediction errors decay monotonously as a function of training set size. For a training set of 10 000 molecules, CC2 excitation energies can be reproduced to within ±0.1 eV for the remaining molecules. Analysis of our spectral database via chromophore counting suggests that even higher accuracies can be achieved. Based on the evidence collected, we discuss open challenges associated with data-driven modeling of high-lying spectra and transition intensities.

  19. Calculation of {beta}-ray spectra. Odd-odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Takahiro [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering

    1996-05-01

    In order to study {beta}-ray of atomic nucleus, it is natural to consider {beta}-ray data fundamental and important. In a recent experiment, Rudstam measured {beta}-ray spectra from short term nuclear fission product species in 1990. It is an important check point in theoretical study on {beta}-ray to investigate if these experimental data can be reproduced by any theoretical calculation. As there are several spectrum studies of {beta}-ray through decay heat for its various properties due to the general theory of the {beta}-decay, little descriptions can be found. In even such studies, spectra under high excitation state of daughter species difficult to measure and apt to short experimental results were treated with combination spectra composed of experimental and calculated values such as substitution of a part of the general theory with calculated value. In this paper, the {beta} spectra supposed by only the general theory was reported without using such data combination in order to confirm effectiveness of the theory. In particular, this report was described mainly on the results using recent modification of odd-odd nucleus species. (G.K.)

  20. Evidence for age-dependent air-space enlargement contributing to loss of lung tissue elastic recoil pressure and increased shear modulus in older age.

    Science.gov (United States)

    Subramaniam, K; Kumar, H; Tawhai, M H

    2017-07-01

    As a normal part of mature aging, lung tissue undergoes microstructural changes such as alveolar air-space enlargement and redistribution of collagen and elastin away from the alveolar duct. The older lung also experiences an associated decrease in elastic recoil pressure and an increase in specific tissue elastic moduli, but how this relates mechanistically to microstructural remodeling is not well-understood. In this study, we use a structure-based mechanics analysis to elucidate the contributions of age-related air-space enlargement and redistribution of elastin and collagen to loss of lung elastic recoil pressure and increase in tissue elastic moduli. Our results show that age-related geometric changes can result in reduction of elastic recoil pressure and increase in shear and bulk moduli, which is consistent with published experimental data. All elastic moduli were sensitive to the distribution of stiffness (representing elastic fiber density) in the alveolar wall, with homogenous stiffness near the duct and through the septae resulting in a more compliant tissue. The preferential distribution of elastic proteins around the alveolar duct in the healthy young adult lung therefore provides for a more elastic tissue.NEW & NOTEWORTHY We use a structure-based mechanics analysis to correlate air-space enlargement and redistribution of elastin and collagen to age-related changes in the mechanical behavior of lung parenchyma. Our study highlights that both the cause (redistribution of elastin and collagen) and the structural effect (alveolar air-space enlargement) contribute to decline in lung tissue elastic recoil with age; these results are consistent with published data and provide a new avenue for understanding the mechanics of the older lung. Copyright © 2017 the American Physiological Society.

  1. Isotopic production cross-sections and recoil velocities of spallation-fission fragments in the reaction 238U(1A GeV)+e

    CERN Document Server

    Pereira, J; Wlazlo, W; Benlliure, J; Casarejos, E; Armbruster, P; Bernas, M; Enqvist, T; Legrain, R; Leray, S; Rejmund, F; Mustapha, B; Schmidt, K.-H; Stéphan, C; Taïeb, J; Tassan-Got, L; Volant, C; Boudard, A; Czajkowski, S; 10.1103/PhysRevC.75.014602

    2007-01-01

    Fission fragments of 1A GeV 238U nuclei interacting with a deuterium target have been investigatedwith the Fragment Separator (FRS) at GSI (Darmstadt) by measuring their isotopicproduction cross-sections and recoil velocities. The results, along with those obtained recently forspallation-evaporation fragments, provide a comprehensive analysis of the spallation nuclear productionsin the reaction 238U(1A GeV)+d. Details about experiment performance, data reductionand results will be presented.

  2. THE EXPERIMENTAL-DIDACTIC STAND FOR THE ANALYSIS OF THE INFLUECE OF THE PARALLEL SET OF MAGNETORHEOLOGICAL DAMPERS ON THE RECOIL OF THE SLIDING UNIT

    OpenAIRE

    Marcin BAJKOWSKI; Jacek Mateusz BAJKOWSKI; Radomski, Marek

    2014-01-01

    In this paper, the laboratory stand, dedicated for research and didactic purposes is presented. The stand allows investigating the parameters which characterizes the recoil effect in the 12,7 x 99 mm caliber arm. It is also possible to study the dependencies in the system with the parallel magnetorheological dampers, which are placed in the universal basis for weapon. The methodology of the research, as well as the experimental data and theoretical discussions concerning the components of the...

  3. Relationship between molecular structure and Raman spectra of quinolines

    Science.gov (United States)

    Frosch, Torsten; Popp, Jürgen

    2009-04-01

    DFT calculations were applied to investigate the relationship between the molecular structure and the Raman spectra of quinolines. A variety of different quinolines with increasing complexity was investigated and an aminoquinoline nucleus was found that describes the Raman spectrum of protonated chloroquine. It was discovered that the biological important, rigid C7-chloro group and C4-side chain of chloroquine significantly disturb certain molecular vibrations. The protonation at the N1 position causes dramatic changes of the Raman bands in the wavenumber region between 1500 cm -1 and 1650 cm -1. These bands are putative marker bands of the aminoquinoline drugs for π-π interactions to the hematin targets in malaria infected cells. The calculation of the normal modes and the illustration of the associated atomic displacements are very valuable for a deeper understanding of the associated bands in the Raman spectra.

  4. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Science.gov (United States)

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  5. Momentum densities and Compton profiles of alkali-metal atoms

    Indian Academy of Sciences (India)

    The latter situation reminds us of the well-known Moseley's law of. X-ray spectra. References. [1] A Sommerfeld, Atomic structure and spectral lines (Methuen and Co. Ltd., London, 1934). [2] N Schwentnu and M Chergeni, J. Chem. Phys. 85, 3458 (1986). A Bhattacharyya, P K Bera, M M Panja and B Talukdar, Phys. Rev.

  6. Single atom identification by energy dispersive x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lovejoy, T. C.; Dellby, N.; Krivanek, O. L. [Nion, 1102 8th St., Kirkland, Washington 98033 (United States); Ramasse, Q. M. [SuperSTEM Laboratory, STFC Daresbury, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); Falke, M.; Kaeppel, A.; Terborg, R. [Bruker Nano GmbH, Schwarzschildstr. 12, 12489 Berlin (Germany); Zan, R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

    2012-04-09

    Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

  7. Light element analysis in steel by high-energy heavy-ion time of flight elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, W.; Hayakawa, S.; Gohshi, Y. [University of Tokyo, 3-1, Hongo 7 chome, Bunkyo-Ku, Tokyo (Japan); Maeda, K.; Fukuda, S. [The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama (Japan)

    1999-01-04

    Time of flight elastic recoil detection analysis (TOF-ERDA) using high-energy heavy ions has been applied to determining the composition of light elements in stainless-steel (SUS304) samples before and after welding in order to monitor the variation in the composition of light elements in sample surfaces during a welding process. An argon-welding method using a welding rod (SUS304) and an arc-welding method using a welding rod were used to prepare samples. Four samples, welded and non-welded using two welding methods, were measured. {sup 40}Ar ions accelerated to 40.3 MeV were used as a probe. Carbon, oxygen and sodium were measured. It was found that the oxygen distributions near to the surfaces of the welded samples increased compared with those of the non-welded samples. However, variations in the carbon distributions were relatively smaller than that of oxygen distributions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. THE EXPERIMENTAL-DIDACTIC STAND FOR THE ANALYSIS OF THE INFLUECE OF THE PARALLEL SET OF MAGNETORHEOLOGICAL DAMPERS ON THE RECOIL OF THE SLIDING UNIT

    Directory of Open Access Journals (Sweden)

    Marcin BAJKOWSKI

    2014-03-01

    Full Text Available In this paper, the laboratory stand, dedicated for research and didactic purposes is presented. The stand allows investigating the parameters which characterizes the recoil effect in the 12,7 x 99 mm caliber arm. It is also possible to study the dependencies in the system with the parallel magnetorheological dampers, which are placed in the universal basis for weapon. The methodology of the research, as well as the experimental data and theoretical discussions concerning the components of the recoil force are provided. The part of the research devoted to the recoil effect was performed in a large-caliber arm configuration, which allows to fire shots in a laboratory conditions utilizing training bullets with reduced propellant charge. The experimental studies were also carried out for the rifle grenades. The results indicate the possibility of building a universal basis for 12,7 mm x 99 caliber weapons and can provide useful information for formulating the design assumptions for the controlled dampers with magnetorheological fluid, designed for special purposes.

  9. Study of Nuclear Collisions of 86 MeV/a.m.u. $^{12}$C with Heavy Targets by Collection of the Heavy Recoil Nuclei

    CERN Multimedia

    2002-01-01

    The aim of this experiment is twofold:\\\\ \\\\ Firstly to test the possibilities of collection of the heavy recoil nuclei with the device presented schematically on the figure. The recoil nuclei escaping from the irradiated target are first thermalised in a gas (N^2). One then takes advantage of their remaining charge to collect them with an electric field on the surface of a solid state detector. Tests already performed with other beams give absolute efficiency around 5\\%. The best conditions of collections with very energetic |1|2C have first to be tested. Secondly to get some insight into nuclear reaction mechanisms induced by 86~MeV/a.m.u. |1|2C using the possibilities of this recoil chamber. Two kinds of mechanisms should occur in these interactions. If the incident energy is damped (deep inelastic reaction, fusion), the heavy nucleus will be highly excited and the residual nuclei will lie along the @G^n/@G^p~=~1~line. For heavy nuclei this line is located at about 25~mass units from the stability line. If ...

  10. Ultraviolet Fluorescence Spectra of Fingerprints

    Directory of Open Access Journals (Sweden)

    Naoki Saitoh

    2005-01-01

    Full Text Available We have studied inherent fluorescence spectra and imaging of fingerprints in the deep ultraviolet (UV region with a nanosecond-pulsed Nd-YAG laser system that consists of a tunable laser, a cooled CCD camera, and a grating spectrometer. In this paper, we have studied UV fluorescence spectra of fingerprints under 266-nm illumination. Fluorescence spectra of fingerprints have two main peaks, around 330 nm (peak A and 440 nm (peak B. At first, when a fingerprint has just been pressed, peak A is dominant. However, its intensity reduces as the total illumination time increases. On the other hand, peak B is weak at first. It appears after enough 266-nm illumination and its intensity increases as time elapses. After 3 h of illumination, peak A almost diminishes and peak B becomes dominant. By leaving the fingerprint under a fluorescent lamp in a room without laser illumination, peak A can be restored partly, while the intensity of peak B still increases.Time-resolved fluorescence spectra were also measured for these two peaks. The lifetime of each peak is 2.0 nsec (peak A and 6.2 nsec (peak B on average. Both peaks seem to consist of several components with different lifetimes. In the case of peak A, the 330-nm peak decays fast and a new component at 360 nm becomes dominant when the delay time exceeds 20 nsec. In the case of peak B, unlike peak A, no clear peak separation is observed, but the peak position seems to move from 440 to 460 nm when the delay time becomes larger.

  11. Catalogue of representative meteor spectra

    Science.gov (United States)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2015-08-01

    Aims: We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to -3, corresponding to meteoroid sizes from 1 mm to 10 mm. Methods: Parallel double-station video observations allowed us to compute heliocentric orbits for all meteors. Most observations were performed during the periods of activity of major meteor showers in the years between 2006 and 2012. Spectra are classified according to relative intensities of the low-temperature emission lines of Mg, Na, and Fe. Results: Shower meteors were found to be of normal composition, except for Southern δ Aquariids and some members of the Geminid shower, neither of which have Na in the meteor spectra. Variations in Na content are typical for the Geminid shower. Three populations of Na-free mereoroids were identified. The first population are iron meteorites, which have an asteroidal-chondritic origin, but one meteoroid with low perihelion (0.11 AU) was found among the iron meteorites. The second population were Sun-approaching meteoroids in which sodium is depleted by thermal desorption. The third population were Na-free meteoroids of cometary origin. Long exposure to cosmic rays on the surface of comets in the Oort cloud and disintegration of this crust might be the origin of this population of meteoroids. Spectra (Figs. 17-30) are only, Tables 4-6 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A67

  12. Current Status of Atomic Spectroscopy Databases at NIST

    Science.gov (United States)

    Kramida, Alexander; Ralchenko, Yuri; Reader, Joseph

    2016-05-01

    NIST's Atomic Spectroscopy Data Center maintains several online databases on atomic spectroscopy. These databases can be accessed via the http://physics.nist.gov/PhysRefData web page. Our main database, Atomic Spectra Database (ASD), recently upgraded to v. 5.3, now contains critically evaluated data for about 250,000 spectral lines and 109,000 energy levels of almost all elements in the periodic table. This new version has added several thousand spectral lines and energy levels of Sn II, Mo V, W VIII, and Th I-III. Most of these additions contain critically evaluated transition probabilities important for astrophysics, technology, and fusion research. A new feature of ASD is providing line-ratio data for diagnostics of electron temperature and density in plasmas. Saha-Boltzmann plots have been modified by adding an experimental feature allowing the user to specify a multi-element mixture. We continue regularly updating our bibliography databases, ensuring comprehensive coverage of current literature on atomic spectra for energy levels, spectral lines, transition rates, hyperfine structure, isotope shifts, Zeeman and Stark effects. Our other popular databases, such as the Handbook of Basic Atomic Spectroscopy Data, searchable atlases of spectra of Pt-Ne and Th-Ne lamps, and non-LTE plasma-kinetics code comparisons, continue to be maintained.

  13. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  14. Effect of deposited tungsten on deuterium accumulation in beryllium in contact with atomic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Sharapov, V.M.; Gavrilov, L.E. [Institute of Physical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Kulikauskas, V.S.

    1998-01-01

    Usually ion or plasma beam is used for the experiment with beryllium which simulates the interaction of plasma with first wall in fusion devices. However, the use of thermal or subthermal atoms of hydrogen isotopes seems to be useful for that purpose. Recently, the authors have studied the deuterium accumulation in beryllium in contact with atomic deuterium. The experimental setup is shown, and is explained. By means of elastic recoil detection (ERD) technique, it was shown that in the exposure to D atoms at 740 K, deuterium is distributed deeply into the bulk, and is accumulated up to higher concentration than the case of the exposure to molecular deuterium. The depth and concentration of deuterium distribution depend on the exposure time, and those data are shown. During the exposure to atomic deuterium, oxide film grew on the side of a sample facing plasma. In order to understand the mechanism of deuterium trapping, the experiment was performed using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA). The influence that the tungsten deposit from the heated cathode exerted to the deuterium accumulation in beryllium in contact with atomic deuterium was investigated. These results are reported. (K.I.)

  15. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  16. Atoms, Molecules and Radiation

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Applications of Quantum Mechanics to 'Atoms, Molecules and Radiation' will be held at the Indian Academy of Sciences, Bangalore from December 8 to 20. 2014. The Course is primarily aimed at teachers teaching quantum mechanics and/ or atomic and molecular physics at the UG / PG level.

  17. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  18. Atomicity in Electronic Commerce,

    Science.gov (United States)

    1996-01-01

    Atomicity in Electronic Commerce J. D. Tygar January 1996 CMU-CS-96-112 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213...other research sponsor. Keywords: electronic commerce , atomicity, NetBill, IBIP, cryptography, transaction pro- cessing, ACID, franking, electronic ...goods over networks. Electronic commerce has inspired a large variety of work. Unfortunately, much of that work ignores traditional transaction

  19. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  20. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  1. Maximally Atomic Languages

    Directory of Open Access Journals (Sweden)

    Janusz Brzozowski

    2014-05-01

    Full Text Available The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.

  2. Atomic Data for Stellar Astrophysics: from the UV to the IR

    Science.gov (United States)

    Wahlgren, Glenn M.

    2011-01-01

    The study of stars and stellar evolution relies heavily on the analysis of stellar spectra. The need for atomic line data from the ultraviolet (UV) to the infrared (lR) regions is greater now than ever. In the past twenty years, the time since the launch of the Hubble Space Telescope, great progress has been made in acquiring atomic data for UV transitions. The optical wavelength region, now expanded by progress in detector technology, continues to provide motivation for new atomic data. In addition, investments in new instrumentation for ground-based and space observatories has lead to the availability of high-quality spectra at IR wavelengths, where the need for atomic data is most critical. In this review, examples are provided of the progress made in generating atomic data for stellar studies, with a look to the future for addressing the accuracy and completeness of atomic data for anticipated needs.

  3. Optical absorption and magnetic circular dichroism spectra of thiouracils: a quantum mechanical study in solution

    DEFF Research Database (Denmark)

    Martínez-Fernández, L.; Fahleson, Tobias; Norman, Patrick

    2017-01-01

    The excited electronic states of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil, the analogues of uracil where the carbonyl oxygens are substituted by sulphur atoms, have been investigated by computing the magnetic circular dichroism (MCD) and one-photon absorption (OPA) spectra at the time-depe...

  4. Database-Driven Analyses of Astronomical Spectra

    Science.gov (United States)

    Cami, Jan

    2012-03-01

    Spectroscopy is one of the most powerful tools to study the physical properties and chemical composition of very diverse astrophysical environments. In principle, each nuclide has a unique set of spectral features; thus, establishing the presence of a specific material at astronomical distances requires no more than finding a laboratory spectrum of the right material that perfectly matches the astronomical observations. Once the presence of a substance is established, a careful analysis of the observational characteristics (wavelengths or frequencies, intensities, and line profiles) allows one to determine many physical parameters of the environment in which the substance resides, such as temperature, density, velocity, and so on. Because of this great diagnostic potential, ground-based and space-borne astronomical observatories often include instruments to carry out spectroscopic analyses of various celestial objects and events. Of particular interest is molecular spectroscopy at infrared wavelengths. From the spectroscopic point of view, molecules differ from atoms in their ability to vibrate and rotate, and quantum physics inevitably causes those motions to be quantized. The energies required to excite vibrations or rotations are such that vibrational transitions generally occur at infrared wavelengths, whereas pure rotational transitions typically occur at sub-mm wavelengths. Molecular vibration and rotation are coupled though, and thus at infrared wavelengths, one commonly observes a multitude of ro-vibrational transitions (see Figure 13.1). At lower spectral resolution, all transitions blend into one broad ro-vibrational molecular band. The isotope. Molecular spectroscopy thus allows us to see a difference of one neutron in an atomic nucleus that is located at astronomical distances! Since the detection of the first interstellar molecules (the CH [21] and CN [14] radicals), more than 150 species have been detected in space, ranging in size from diatomic

  5. [Analysis of three-dimensional fluorescence overlapping spectra using differential spectra and independent component analysis].

    Science.gov (United States)

    Yu, Shao-Hui; Zhang, Yu-Jun; Zhao, Nan-Jing; Xiao, Xue; Wang, Huan-Bo; Yin, Gao-Fang

    2013-01-01

    The analysis of multi-component three-dimensional fluorescence overlapping spectra is always very difficult. In view of the advantage of differential spectra and based on the calculation principle of two-dimensional differential spectra, the three-dimensional fluorescence spectra with both excitation and emission spectra is fully utilized. Firstly, the excitation differential spectra and emission differential spectra are respectively computed after unfolding the three-dimensional fluorescence spectra. Then the excitation differential spectra and emission differential spectra of the single component are obtained by analyzing the multicomponent differential spectra using independent component analysis. In this process, the use of cubic spline increases the data points of excitation spectra, and the roughness penalty smoothing reduces the noise of emission spectra which is beneficial for the computation of differential spectra. The similarity indices between the standard spectra and recovered spectra show that independent component analysis based on differential spectra is more suitable for the component recognition of three-dimensional fluorescence overlapping spectra.

  6. Atomic transition probabilities of Er i

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, J E; Den Hartog, E A [Department of Physics, University of Wisconsin, 1150 University Ave., Madison, WI 53706 (United States); Wyart, J-F, E-mail: jelawler@wisc.ed, E-mail: jean-francois.wyart@lac.u-psud.f, E-mail: eadenhar@wisc.ed [Laboratoire Aime Cotton, CNRS (UPR3321), Bat. 505, Centre Universitaire Paris-Sud, 91405-Orsay (France)

    2010-12-14

    Atomic transition probabilities for 562 lines of the first spectrum of erbium (Er i) are reported. These data are from new branching fraction measurements on Fourier transform spectra normalized with previously reported radiative lifetimes from time-resolved laser-induced fluorescence measurements (Den Hartog et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 155004). The wavelength range of the data set is from 298 to 1981 nm. In this work we explore the utility of parametric fits based on the Cowan code in assessing branching fraction errors due to lines connecting to unobserved lower levels.

  7. BPS spectra from BPS graphs

    OpenAIRE

    Gabella, Maxime

    2017-01-01

    I present a simple graphical method to find the BPS spectra of $A_1$ theories of class S. BPS graphs provide a bridge between spectral networks and BPS quivers, the two main frameworks for the study of BPS states. Here I show how to essentially read off from a BPS graph the quantum spectrum generator (or BPS monodromy), expressed as a product of quantum dilogarithms. Thanks to the framed wall-crossing phenomenon for line defects, the determination of the BPS spectrum reduces to the computatio...

  8. Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C.H.O. [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Vasconcelos, M.S., E-mail: manoelvasconcelos@yahoo.com.br [Escola de Ciencias e Tecnologia, Universidade Federal do Rio grande do Norte, 59072-970 Natal-RN (Brazil); Barbosa, P.H.R.; Barbosa Filho, F.F. [Departamento de Fisica, Universidade Federal do Piaui, 64049-550 Teresina-Pi (Brazil)

    2012-07-15

    In this work we carry out a theoretical analysis of the spectra of magnons in quasiperiodic magnonic crystals arranged in accordance with generalized Fibonacci sequences in the exchange regime, by using a model based on a transfer-matrix method together random-phase approximation (RPA). The generalized Fibonacci sequences are characterized by an irrational parameter {sigma}(p,q), which rules the physical properties of the system. We discussed the magnonic fractal spectra for first three generalizations, i.e., silver, bronze and nickel mean. By varying the generation number, we have found that the fragmentation process of allowed bands makes possible the emergence of new allowed magnonic bulk bands in spectra regions that were magnonic band gaps before, such as which occurs in doped semiconductor devices. This interesting property arises in one-dimensional magnonic quasicrystals fabricated in accordance to quasiperiodic sequences, without the need to introduce some deferent atomic layer or defect in the system. We also make a qualitative and quantitative investigations on these magnonic spectra by analyzing the distribution and magnitude of allowed bulk bands in function of the generalized Fibonacci number F{sub n} and as well as how they scale as a function of the number of generations of the sequences, respectively. - Highlights: Black-Right-Pointing-Pointer Quasiperiodic magnonic crystals are arranged in accordance with the generalized Fibonacci sequence. Black-Right-Pointing-Pointer Heisenberg model in exchange regime is applied. Black-Right-Pointing-Pointer We use a theoretical model based on a transfer-matrix method together random-phase approximation. Black-Right-Pointing-Pointer Fractal spectra are characterized. Black-Right-Pointing-Pointer We analyze the distribution of allowed bulk bands in function of the generalized Fibonacci number.

  9. Machine learning molecular dynamics for the simulation of infrared spectra.

    Science.gov (United States)

    Gastegger, Michael; Behler, Jörg; Marquetand, Philipp

    2017-10-01

    Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.

  10. Electron-phonon interaction spectra in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Najdyuk, Yu.G.; Shklyarevskij, O.I. (AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur)

    1982-09-01

    Micro-contact (MC) method was used to investigate spectra of electron-phonon interaction (EPI) in berillium. MC spectra and the known dependences of phonon state density in this metal have been compared in detail. It is shown that the MC spectra can be used for refining the berillium phonon spectrum. The EPI integral parameter has been determined in the free electron model.

  11. Single-atom nanoelectronics

    CERN Document Server

    Prati, Enrico

    2013-01-01

    Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also from the point of view of large-scale industrial production. The publication provides a comprehensive picture of the state of the art at the cutting edge and constitutes a milestone in the emerging field of beyond-CMOS technology. Although there are

  12. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  13. Hierarchical resolution of power spectra

    Science.gov (United States)

    Badii, R.; Finardi, M.; Broggi, G.; Sepúlveda, M. A.

    1992-09-01

    We identify the basic ingredients determining the structure of the power spectra of non-linear dynamical systems in a hierarchical order of importance. The analysis, performed with the help of symbolic methods, shows that dynamical invariants such as topological and metric properties of the symbolic orbits explain the main qualitative features of the spectra, whereas the coordinate-dependent values of the observable itself represent a less relevant contribution. Consideration of simple dynamical models with increasing number of topological transition rules evidences the formation of coherent structures (peaks) and explains their position and size. By constructing the parse tree of the allowed symbolic itineraries, it is possible to estimate conditional probabilities by considering orbits belonging to adjacent tree levels. Accordingly, a Markov transition matrix is obtained for each level l and is used to generate signals with statistical properties which approximate those of the actual one increasingly better for l → ∞. A considerable improvement is achieved by recoding the original signal in terms of variable-length words and by re-applying the above procedure to the transformed signal, which is equivalent to a renormalization operation of the associated dynamical map. The accuracy of the estimates is directly related to the convergence of the scaling function for the conditional probabilities. Analytic results are presented for the simplest five Markov models arising from piecewise-linear, continuous, one-dimensional maps. Numerical studies have been performed for the logistic and Hénon maps and for the Lorenz system.

  14. Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra

    Science.gov (United States)

    Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.

    2017-02-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  15. Atomic & Molecular Interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  16. The Casimir atomic pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Razmi, H. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: razmi@qom.ac.ir; Abdollahi, M. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: mah.abdollahi@gmail.com

    2008-11-10

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock{exclamation_point}.

  17. The Casimir atomic pendulum

    Science.gov (United States)

    Razmi, H.; Abdollahi, M.

    2008-11-01

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock!

  18. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  19. Dalton's Atomic Theory

    National Research Council Canada - National Science Library

    DOBBIN, LEONARD

    1896-01-01

    WITH reference to the communications from the authors and from the reviewer of the "New View of the Origin of Dalton's Atomic Theory," published in NATURE for May 14, I beg leave to offer the following remarks...

  20. Atomic Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  1. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  2. Zeeman atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given. (WHK)

  3. Scikit-spectra: Explorative Spectroscopy in Python

    Directory of Open Access Journals (Sweden)

    Adam Hughes

    2015-06-01

    Full Text Available Scikit-spectra is an intuitive framework for explorative spectroscopy in Python. Scikit-spectra leverages the Pandas library for powerful data processing to provide datastructures and an API designed for spectroscopy. Utilizing the new IPython Notebook widget system, scikit-spectra is headed towards a GUI when you want it, API when you need it approach to spectral analysis. As an application, analysis is presented of the surface-plasmon resonance shift in a solution of gold nanoparticles induced by proteins binding to the gold’s surface. Please refer to the scikit-spectra website for full documentation and support: http://hugadams.github.io/scikit-spectra/

  4. Atomic Clocks Research - An Overview.

    Science.gov (United States)

    1987-08-15

    magnet. Since atomic deflection in an inhomogeneous magnetic field is inversely proportional to the square of the atomic speed, the atomic velocity...purifier and controlled leak; an atomic source (i.e., the dissociator under 39 study); a dipole electromagnetic with pole pieces shaped to produce an...34Relaxation Magnetique d’Atomes de Rubidium sur des Parois Paraffines," J. Phys. (Paris) 24, 379 (1963). 21. S. Wexler, "Deposition of Atomic Beams

  5. Wave Atom Based Watermarking

    OpenAIRE

    Bukhari, Ijaz; Nuhman-ul-Haq; Hyat, Khizar

    2013-01-01

    Watermarking helps in ensuring originality, ownership and copyrights of a digital image. This paper aims at embedding a Watermark in an image using Wave Atom Transform. Preference of Wave Atoms on other transformations has been due to its sparser expansion, adaptability to the direction of local pattern, and sharp frequency localization. In this scheme, we had tried to spread the watermark in an image so that the information at one place is very small and undetectable. In order to extract the...

  6. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  7. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  8. Atomic Bomb Health Benefits

    OpenAIRE

    Luckey, T. D.

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation,...

  9. Atomic interferometry; Interferometrie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Baudon, J.; Robert, J. [Paris-13 Univ., 93 - Saint-Denis (France)

    2004-07-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation {lambda} = h/(mv), where {lambda} is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  10. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T. (Nagasaki Univ. (Japan). School of Medicine)

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  11. Field-dependent atomic relaxation in a squeezed vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S S [Department of Mathematics, College of Science, University of Bahrain, PO Box 32038 (Bahrain); Jarad, T M [UMIST, Department of Mathematics, PO Box 88, Manchester M60 1QD (United Kingdom); Puri, R R [Bhabha Atomic Research Centre, Theoretical Physics Division, Bombay 400085 (India); Bullough, R K [UMIST, Department of Mathematics, PO Box 88, Manchester M60 1QD (United Kingdom)

    2005-11-01

    The relaxation process of a single two-level atom driven by an intense resonant coherent field is studied in the presence of a broadband squeezed vacuum field. Generalized forms for the self-field operator and the field-dependent damping coefficients are derived. In the steady state, positive atomic inversion ({approx}5%) is shown for some range of the phase of the squeezed vacuum field. The squeezing-induced enhanced and asymmetric coherence (i.e. non-zero dispersive atomic polarization) induces profound asymmetry in the side-bands of the Mollow fluorescent spectrum and the absorptive-dispersive spectra near the Rabi side-band frequencies. The case of two and three cooperative atoms, instead of a single atom, shows (i) positive atomic inversion in the steady state for larger interval of the squeeze phase parameter and more enhanced extrema for the atomic polarization components and (ii) the extra side peaks in the fluorescent spectrum become asymmetric and of dispersive-like profile. Dressed-state analysis in the single-atom case with the field-dependent decay process in the presence of the squeezed vacuum field is presented and shows that the inequality of the (field-dependent) decay rates of the dressed states leads to more positive inversion in the dressed states as compared with the normal vacuum case.

  12. Field-dependent atomic relaxation in a squeezed vacuum

    Science.gov (United States)

    Hassan, S. S.; Jarad, T. M.; Puri, R. R.; Bullough, R. K.

    2005-11-01

    The relaxation process of a single two-level atom driven by an intense resonant coherent field is studied in the presence of a broadband squeezed vacuum field. Generalized forms for the self-field operator and the field-dependent damping coefficients are derived. In the steady state, positive atomic inversion (~5%) is shown for some range of the phase of the squeezed vacuum field. The squeezing-induced enhanced and asymmetric coherence (i.e. non-zero dispersive atomic polarization) induces profound asymmetry in the side-bands of the Mollow fluorescent spectrum and the absorptive-dispersive spectra near the Rabi side-band frequencies. The case of two and three cooperative atoms, instead of a single atom, shows (i) positive atomic inversion in the steady state for larger interval of the squeeze phase parameter and more enhanced extrema for the atomic polarization components and (ii) the extra side peaks in the fluorescent spectrum become asymmetric and of dispersive-like profile. Dressed-state analysis in the single-atom case with the field-dependent decay process in the presence of the squeezed vacuum field is presented and shows that the inequality of the (field-dependent) decay rates of the dressed states leads to more positive inversion in the dressed states as compared with the normal vacuum case.

  13. Double photo-electron momentum spectra of Helium at infrared wavelength

    CERN Document Server

    Zielinski, Alejandro; Scrinzi, Armin

    2015-01-01

    Double photo-electron momentum spectra of the Helium atom are calculated \\textit{ab initio} at extreme ultra-violet and near infrared wavelengths. At short wavelengths two-photon double ionization yields, two-electron energy spectra, and triply differential cross sections agree with results from recent literature. At the near infrared wavelength of $780\\,nm$ the experimental single-to-double ionization ratio is reproduced up to intensities of $4\\times 10^{14}W/cm^2$, and two-electron energy spectra and joint angular distributions are presented. The time-dependent surface flux (tSurff) approach is extended to full 3+3 spatial dimensions and systematic error control is demonstrated. We analyze our differential spectra in terms of an experimentally accessible quantitative measure of correlation.

  14. Reflectance spectra of primitive chondrites

    Science.gov (United States)

    Trigo-Rodríguez, J. M.; Moyano-Cambero, C. E.; Llorca, J.

    2013-05-01

    We are studying a wide sample of pristine carbonaceous chondrites from the NASA Antarctic collection in order to get clues on the physico-chemical processes occurred in the parent bodies of these meteorites. We are obtaining laboratory reflectance spectra of different groups of carbonaceous chondrites, but here we focus in CM and CI chondrites. We discuss the main spectral features that can be used to identify primitive carbonaceous asteroids by remote sensing techniques. Two different spectrometers were used covering the entire 0.3 to 30 μm electromagnetic window. Only a handful of Near Earth Objects (NEOs) exhibit bands or features clearly associated with aqueous alteration. Among them are the target asteroids of Osiris Rex and Marco Polo-R missions.

  15. Graviton spectra in string cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Galluccio, Massimo [Osservatorio Astronomico di Roma (Roma-IT); Litterio, Marco [Istituto Astronomico dell' Universita (Roma-IT); Occhionero, Franco [Osservatorio Astronomico di Roma (Roma-IT)

    1996-08-01

    We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an ω³ increase and initiates an ω⁻⁷ decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.

  16. Spin and motion entanglement of neutral atoms with optical frequency combs

    Science.gov (United States)

    Quraishi, Qudsia; Malinovsky, Vladimir; Alexander, Jason; Prieto, Violeta; Rowlett, Chris; Lee, Patricia

    2012-06-01

    Optical frequency combs, emitted by ultrafast modelocked pulsed lasers, are excellent tools to perform quantum coherent control. The spectral purity, large bandwidth and high pulse powers makes these sources attractive for precision control of multi-level atoms. We envisage using pairs of OFC modes to drive stimulated Raman transitions between the two hyperfine clock states of ^87Rb confined on an atom chip. The Raman transitions will be driven using an all optical, four photon technique, whereby the first photon pair drives off-resonantly to the intermediate state ^2S1/2 |F=2, mf=0> and then a second photon pair resonantly drives to ^2S1/2 |F=2, mf=+1>. Co-propagating Raman fields impart only a spin flip whereas non-copropagating fields transfer two photon recoil momentum to the atoms, thus entangling the internal spin with the external motion of the atoms. For site dependent control, we plan to use the high AC Stark shifts produced by the high intensity pulses.

  17. /sup 57/Fe impurity atom lattice dynamics and systematics in group V and VI host metals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.D.; Kitchens, T.A. Jr.; Erickson, D.J.

    1976-01-01

    The Moessbauer recoil-free fraction f and thermal shift have been measured for very dilute /sup 57/Fe impurities in body-centered cubic V, Nb, Mo, Ta, and W host metals in the range 4 to 860/sup 0/K. These experimental quantities have been interpreted in terms of an impurity-atom lattice-dynamical model of Mannheim where the important parameter ..gamma../sub ih//..gamma../sub hh/ is a measure of the coupling of the impurity atom to the host lattice relative to the corresponding coupling in the pure host lattice. Values of ..gamma../sub ih//..gamma../sub hh/ for each host from the f-value data were obtained and, independently, from the shift data, and for each host rather good agreement is obtained. The general trend of the data shows that for neighboring hosts of the same row of the periodic table, the relative /sup 57/Fe impurity binding is stronger for the Group V host than for the Group VI host. The results also support a previous conjecture that the nearest-neighbor binding between the impurity and the host should be proportional to a geometric mean of the nearest-neighbor couplings for a lattice consisting entirely of impurity atoms and for a lattice of host atoms only.

  18. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick ⁹Be target and estimation of neutron yields.

    Science.gov (United States)

    Paul, Sabyasachi; Sahoo, G S; Tripathy, S P; Sharma, S C; Ramjilal; Ninawe, N G; Sunil, C; Gupta, A K; Bandyopadhyay, T

    2014-06-01

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK_n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed.

  19. Approaching {sup 100}Sn with GASP + Si-ball + recoil mass spectrometer: collective states of {sup 105}Sn and {sup 103,105}In

    Energy Technology Data Exchange (ETDEWEB)

    De Poli, M.; De Angelis, G.; Farnea, E.; Sferrazza, M.; Gadea, A.; Li, Y.; Spolaore, P.; Ackermann, D.; Bazzacco, D.; Bednarczyk, P.; Bizzeti, P.G.; Bizzeti Sona, A.M.; Brandolini, F.; Burch, R.; Buscemi, A.; De Acuna, D.; Fahlander, C.; Lipoglavsek, M.; Lunardi, S.; Makishima, A.; Menegazzo, R.; Mueller, L.; Napoli, D.; Ogawa, M.; Pavan, P.; Rossi Alvarez, C.; Scarlassara, F.; Segato, G.F.; Seweryniak, D.; Soramel, F.; Zanon, R. [INFN, Lab. Nazionali di Legnaro, Padova (Italy)]|[Sezione INFN and Dipt. di Fisica dell`Univ., Padova (Italy)]|[Sezione INFN and Dipt. di Fisica dell`Univ., Firenze (Italy)]|[Svedberg Lab., Univ. of Uppsala (Sweden)]|[Center for Radioisotope Science, National Defense Medical Coll., Tokorozawa (Japan)]|[Dept. of Energy Sciences, Tokyo Inst. of Tech., Yokohama (Japan)]|[Sezione INFN and Dipt. di Fisica dell`Univ., Udine (Italy)

    1995-12-31

    Very proton rich nuclei in the A {approx} 100 region have been investigated using the GASP array coupled with the Recoil Mass Spectrometer (RMS) and the GASP Si-ball. High-spin states of {sup 105}Sn and {sup 103,105}In nuclei formed with the reaction {sup 58}Ni + {sup 50}Cr at 210 MeV have been investigated up to {approx} 10 and 7 MeV of excitation energy respectively. We have confirmed the known excited states for both nuclei and extended to higher spin the level scheme. The experimental level schemes are compared with shell model calculations. (orig.).

  20. High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Sayre, D. B.; Skulina, K.; Yeamans, C. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M. P.; Hoppe, M.; Kilkenny, J. D.; Reynolds, H. G.; Schoff, M. E. [General Atomics, San Diego, California 92186 (United States)

    2016-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.

  1. Beta-decay of polarized $\\Lambda$ hyperons III Correlations in the $\\Lambda$ centre-of-mass system and the proton recoil spectrum

    CERN Document Server

    Althoff, K H; Freytag, D; Heard, K S; Heintze, J; Mundhenke, R; Rieseberg, H; Soergel, Volker; Stelzer, H; Wagner, A

    1973-01-01

    For pt. II see abstr. A14705 of 1972. From the analysis of 817 kinematically reconstructed beta decay events of polarized Lambda hyperons for the coefficient alpha /sub nu / of the neutrino correlation with respect to the Lambda spin, alpha /sub nu /=0,89+or-0.08, for the coefficient alpha /sub T/ of the T-odd correlation sigma /sub Lambda /(p/sub e/*p/sub nu /), alpha /sub T /=-0.14+or-0.13. The proton recoil spectrum yields mod g/sub 1//f/sub 1/ mod =0.64+or-0.06. (5 refs).

  2. An image-based skeletal model for the ICRP reference adult male-specific absorbed fractions for neutron-generated recoil protons

    Energy Technology Data Exchange (ETDEWEB)

    Jokisch, D W [Department of Physics and Astronomy, Francis Marion University, Florence, SC 29502-0547 (United States); Rajon, D A [Department of Neurosurgery, University of Florida, Gainesville, FL (United States); Bahadori, A A; Bolch, W E, E-mail: djokisch@fmarion.edu [Department of Biomedical Engineering, University of Florida, Gainesville, FL (United States)

    2011-11-07

    Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.

  3. Measurement of the proton recoil spectrum in neutron beta decay with the spectrometer aSPECT. Study of systematic effects

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Gertrud Emilie

    2012-01-24

    Free neutron decay, n{yields}pe anti {nu}{sub e}, is the simplest nuclear beta decay, well described as a purely left-handed, vector minus axial-vector interaction within the framework of the Standard Model (SM) of elementary particles and fields. Due to its highly precise theoretical description, neutron beta decay data can be used to test certain extensions to the SM. Possible extensions require, e.g., new symmetry concepts like left-right symmetry, new particles, leptoquarks, supersymmetry, or the like. Precision measurements of observables in neutron beta decay address important open questions of particle physics and cosmology, and are generally complementary to direct searches for new physics beyond the SM in high-energy physics. In this doctoral thesis, a measurement of the proton recoil spectrum with the neutron decay spectrometer aSPECT is described. From the proton spectrum the antineutrinoelectron angular correlation coefficient a can be derived. In our first beam time at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany (2005-2006), background instabilities due to particle trapping and the electronic noise level of the proton detector prevented us from presenting a new value for a. In the latest beam time at the Institut Laue-Langevin (ILL) in Grenoble, France (2007-2008), the trapped particle background has been reduced sufficiently and the electronic noise problem has essentially been solved. For the first time, a silicon drift detector was used. As a result of the data analysis, we identified and fixed a problem in the detector electronics which caused a significant systematic error. The target figure of the latest beam time was a new value for a with a total relative error well below the present literature value of 4 %. A statistical accuracy of about 1.4% was reached, but we could only set upper limits on the correction of the problem in the detector electronics, which are too high to determine a meaningful result. The present

  4. Low-phase noise and high-power laser for Bragg atom interferometer

    Science.gov (United States)

    Cheng, Yuan; Zhang, Ke; Chen, Le-Le; Xu, Wen-Jie; Luo, Qin; Zhou, Min-Kang; Hu, Zhong-Kun

    2017-09-01

    We present a laser system with low-phase noise and an output power up to 8.8 W at 780 nm for driving Bragg transitions in a 87Rb fountain. An optical phase-locked loop (OPLL) is employed to restrain the phase noise that arises from the spatial separation of the two Bragg beams at low frequencies. The residual phase variance is suppressed by two orders around 400 Hz. A Mach-Zehnder Bragg atom interferometer, based on the four-photon recoil scheme, has been realized using this laser system. This interferometer shows a resolution of 5 ×1 0-9g at an integration time of 1200 s for gravity measurements.

  5. Low-phase noise and high-power laser for Bragg atom interferometer

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    2017-09-01

    Full Text Available We present a laser system with low-phase noise and an output power up to 8.8 W at 780 nm for driving Bragg transitions in a   87Rb fountain. An optical phase-locked loop (OPLL is employed to restrain the phase noise that arises from the spatial separation of the two Bragg beams at low frequencies. The residual phase variance is suppressed by two orders around 400 Hz. A Mach-Zehnder Bragg atom interferometer, based on the four-photon recoil scheme, has been realized using this laser system. This interferometer shows a resolution of 5×10−9g at an integration time of 1200 s for gravity measurements.

  6. Experimental investigation of the triple differential cross section for electron impact ionization of N{sub 2} and CO{sub 2} molecules at intermediate impact energy and large ion recoil momentum

    Energy Technology Data Exchange (ETDEWEB)

    Lahmam-Bennani, A; Staicu Casagrande, E M; Naja, A, E-mail: azzedine.bennani@u-psud.f [Universite Paris-Sud 11, Laboratoire des Collisions Atomiques et Moleculaires (LCAM), Bat. 351, 91405 Orsay Cedex (France)

    2009-12-14

    The (e,2e) triple differential cross sections (TDCS) are measured for the ionization of nitrogen and carbon dioxide molecules in a coplanar asymmetric geometry for a wide range of ejected electron energies and at an incident energy about 500-700 eV. This kinematics corresponds to a large momentum imparted to the ion, and is meant to enhance the recoil scattering. The experimental binary and recoil angular distributions of the TDCS are characterized both by a shift towards larger angles with respect to the momentum transfer direction and by a large intensity in the recoil region, in particular for the ionization of the 'inner' N{sub 2}(2{sigma}{sub g}) molecular orbital. The data are compared with the results of calculations using the first Born approximation-two centre continuum (FBA-TCC) theoretical model for treating differential electron impact ionization. The experimentally observed shifts and recoil intensity enhancement are not predicted by the model calculations, which rather yield a TDCS symmetrically distributed around the momentum transfer direction, and completely fail in describing the recoil distribution. It is hoped that these new results will stimulate the development of more refined theories for correctly modelling single ionization of molecules.

  7. Irradiation effect on infrared spectra of LiF:OH crystals: Theoretical modeling

    Science.gov (United States)

    Inerbaev, Talgat; Dauletbekova, Alma; Abdrakhmetova, Ainash

    2017-09-01

    First-principles simulations of LiF:OH crystal infrared absorption spectra were performed using density functional calculations with periodic boundary conditions to explain the yet unclear nature of experimentally observed irradiation-induced absorption bands in infrared spectra in frequency range 1900-2200 and 1000-1300 cm-1. To model the irradiation effect, various defect structures were explored. Simulations demonstrated that a new type of defect should be taken into consideration to explain the infrared spectra features. Specific new defect is formed by one fluorine atom displaced from the lattice site into the interstitial position due to irradiation. At the same time, hydrogen atom, produced by of hydroxyl group radiolysis decay, occupies position between fluorine atoms in anionic (Fa) and interstitial (Fi) positions forming covalently bonded negatively charged defect, referred to as F-H-F complex. Asymmetrical stretching oscillation of this defect complex is responsible for infrared absorption band near 2200 cm-1. Features in the infrared spectra observed near 1000 cm-1 originate from two types of vibrations: bending vibrations of proposed new defect complex and oscillations of hydrogen ions in the anionic positions. Defect formed by negatively charged hydrogen ion in interstitial position results infrared absorption band at 1288 cm-1. The experimentally observed decrease of the oscillation frequency near 2200 cm-1 under further irradiation is associated with increase of negative charge value on the proposed defect complex caused by F-centers creation.

  8. Universal bosonic tetramers of dimer-atom-atom structure

    OpenAIRE

    Deltuva, A.

    2012-01-01

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  9. On-Line Mass Separator of Superheavy Atoms

    CERN Document Server

    Oganessian, Yu T

    2002-01-01

    The concept is presented of an on-line Mass Analyzer of SuperHeavy Atoms (MASHA) dedicated to the separation and determination of the mass and decay properties of new elements and isotopes produced in heavy-ion induced reactions. The new nuclides with half-lives T_{1/2}\\ge 1 s are transported to an ECR-source working at a frequency of 2.45 GHz and are separated by mass with a mass resolution of M/\\Delta M\\sim 1500. In the focal plane of the magnetic analyzer a front strip detector surrounded by side detectors will be placed to determine the mass according to the signals from the detected alpha-particles or fission fragments with efficiency of about 90 %. In comparison to other existing in-flight recoil separators, the present setup will be characterized by higher efficiency and high selectivity relative to background reaction products. The setup MASHA may be used also in the investigation of nuclear reactions of different type induced by stable and radioactive beams.

  10. Neutron spectra measurement and calculations using data libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 in iron benchmark assemblies

    Science.gov (United States)

    Jansky, Bohumil; Rejchrt, Jiri; Novak, Evzen; Losa, Evzen; Blokhin, Anatoly I.; Mitenkova, Elena

    2017-09-01

    The leakage neutron spectra measurements have been done on benchmark spherical assemblies - iron spheres with diameter of 20, 30, 50 and 100 cm. The Cf-252 neutron source was placed into the centre of iron sphere. The proton recoil method was used for neutron spectra measurement using spherical hydrogen proportional counters with diameter of 4 cm and with pressure of 400 and 1000 kPa. The neutron energy range of spectrometer is from 0.1 to 1.3 MeV. This energy interval represents about 85 % of all leakage neutrons from Fe sphere of diameter 50 cm and about of 74% for Fe sphere of diameter 100 cm. The adequate MCNP neutron spectra calculations based on data libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 were done. Two calculations were done with CIELO library. The first one used data for all Fe-isotopes from CIELO and the second one (CIELO-56) used only Fe-56 data from CIELO and data for other Fe isotopes were from ENDF/B-VII.1. The energy structure used for calculations and measurements was 40 gpd (groups per decade) and 200 gpd. Structure 200 gpd represents lethargy step about of 1%. This relatively fine energy structure enables to analyze the Fe resonance neutron energy structure. The evaluated cross section data of Fe were validated on comparisons between the calculated and experimental spectra.

  11. Sampling the Hydrogen Atom

    Directory of Open Access Journals (Sweden)

    Graves N.

    2013-01-01

    Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.

  12. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  13. Calculation of reactor antineutrino spectra in TEXONO

    CERN Document Server

    Chen Dong Liang; Mao Ze Pu; Wong, T H

    2002-01-01

    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  14. High-accuracy coupled cluster calculations of atomic properties

    Energy Technology Data Exchange (ETDEWEB)

    Borschevsky, A. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel and Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0745 Auckland (New Zealand); Yakobi, H.; Eliav, E.; Kaldor, U. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv (Israel)

    2015-01-22

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm{sup −1}, the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues.

  15. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  16. Hirshfeld atom refinement

    Directory of Open Access Journals (Sweden)

    Silvia C. Capelli

    2014-09-01

    Full Text Available Hirshfeld atom refinement (HAR is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's, all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules, the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  17. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  18. Atoms in Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Thomas S. [University of Tennessee

    1965-01-01

    Agriculture benefits from the applications of research. Radioactive techniques have been used to study soils, plants, microbes, insects, farm animals, and new ways to use and preserve foodstuffs. Radioactive atoms are not used directly by farmers but are used in research directed by the U. S. Department of Agriculture and Atomic Energy Commission, by the agricultural experiment stations of the various states, and by numerous public and private research institutions. From such research come improved materials and methods which are used on the farm.

  19. From Atoms to Solids

    Science.gov (United States)

    1999-01-31

    Honea. M.L. Homer, J.L. Persson, R.L. Whetten , Chem. atoms Phys. Lett. 171 (1990) 147. [17] M.R. Hoare, Adv. Chem. Phys. 40 (1979) 49. Two types of...Persson, M.E. LaVilla, R.L. tal conditions, the clusters become rigid. Thereafter, Whetten , J. Phys. Chem. 93 (1989) 2869. each newly added atom condenses...106 (1981) 265. M. Broyer, Phys. Rev. A 39 (1989) 6056. [9] W. Ekardt, Ber. Bunsenges. Phys. Chem. 88 (1984) 289. [38] R.L. Whetten , private

  20. Korean atomic bomb victims.

    Science.gov (United States)

    Sasamoto, Yukuo

    2009-01-01

    After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea).

  1. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, Michito; Tomonaga, Masao; Amenomori, Tatsuhiko; Matsuo, Tatsuki (Nagasaki Univ. (Japan). School of Medicine)

    1991-03-01

    Characteristic features of leukemia among atomic bomb survivors were studied. The ratio of a single leukemia type to all leukemias was highest for CML in Hiroshima, and the occurrence of CML was thought to be most characteristic for atomic bomb radiation induced leukemia. In the distribution of AML subtypes of FAB classification, there was no M3 cases in 1 Gy or more group, although several atypical AML cases of survivors were observed. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral blood of proximal survivors. (author).

  2. Comparison of in vivo acute stent recoil between the bioabsorbable everolimus-eluting coronary stent and the everolimus-eluting cobalt chromium coronary stent: insights from the ABSORB and SPIRIT trials

    DEFF Research Database (Denmark)

    Tanimoto, Shuzou; Serruys, Patrick W; Thuesen, Leif

    2007-01-01

    artery lesions, were enrolled: 27 patients treated with the BVS and 27 patients treated with the everolimus-eluting cobalt chromium stent (EES). Acute absolute recoil, assessed by quantitative coronary angiography, was defined as the difference between mean diameter of the last inflated balloon......OBJECTIVES: This study sought to evaluate and compare in vivo acute stent recoil of a novel bioabsorbable stent and a metallic stent. BACKGROUND: The bioabsorbable everolimus-eluting coronary stent (BVS) is composed of a poly-L-lactic acid backbone, coated with a bioabsorbable polymer containing...... the antiproliferative drug, everolimus, and expected to be totally metabolized and absorbed in the human body. Because the BVS is made from polymer, it may have more acute recoil than metallic stents in vivo. METHODS: A total of 54 patients, who underwent elective stent implantation for single de novo native coronary...

  3. X-ray Signature of Charge Exchange in the Spectra of L-shell Iron Ions

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P; Schweikhard, L; Liebisch, P; Brown, G V

    2007-01-05

    The X-ray signature of charge exchange between highly charged L-shell iron ions and neutral gas atoms was studied in the laboratory in order to assess its diagnostic utility. Significant differences with spectra formed by electron-impact excitation were observed. In particular, a strong enhancement was found of the emission corresponding to n {le} 4 {yields} n = 2 transitions relative to the n = 3 {yields} n = 2 emission. This enhancement was detectable even with relatively low-resolution X-ray instrumentation (E/{Delta}E {approx} 10) and may enable future identification of charge exchange as a line-formation mechanism in astrophysical spectra.

  4. Atomic Data for the CHIANTI Database

    Science.gov (United States)

    Bhatia, Anand K.; Landi, E.

    2012-01-01

    The CHIANTI spectral code consists of an atomic database and a suite of computer programs to calculate the optically thin spectrum of astrophysical objects and to carry out spectroscopic plasma diagnostics. The database includes atomic energy levels, wavelengths, radiative transition rates, collisional excitation, ionization and recombination rate coefficients, as well as data to calculate free-free, free-bound and two-photon continuum emission. In recent years, we have been pursuing a program to calculate atomic data for ions whose lines have been observed in astrophysical spectra but have been neglected in the literature, and to provide CHIANTI with all the data necessary to predict line intensities. There are two types of such ions: those for which calculations are available for low-energy configurations but not for high-energy configurations (i.e., C-like, N-like, O-like systems), and ions that have never or only seldom been studied. This poster will summarize the current status of this project and indicate the future activities .

  5. Recoil-range studies of heavy products of multinucleon transfer from /sup 18/O to /sup 245/Cm and /sup 249/Cf

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, R.M.

    1982-09-01

    Recoil range distributions were measured for alpha and spontaneous fission activities made in the bombardment of /sup 245/Cm and /sup 249/Cf with /sup 18/O from 6.20 MeV/nucleon down to the interaction barrier. The shape of the distributions indicates tht transfers of up to four protons take place via a combination of quasi-elastic (QET) and deep inelastic (DIT) mechanisms, rather than complete fusion-de-excitation (CF) or massive transfer (MT). Angular distributions constructed from recoil range distributions, assuming QET/DIT, indicate that the QET component contributes more significantly to the heavy product residue cross section than the DIT, even though primary cross sections are expected to be higher for DIT than for QET. This may be explained qualitatively as a result of the high excitation energies associated with DIT; the very negative Q/sub gg/ of projectile stripping for these systems combined with the lower expected optimal Q/sub rxn/ of QET compared to DIT can give QET products comparatively low excitation.

  6. Resonance Fluorescence from an Artificial Atom in Squeezed Vacuum

    Directory of Open Access Journals (Sweden)

    D. M. Toyli

    2016-07-01

    Full Text Available We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. 58, 2539 (1987], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments.

  7. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  8. Atomic physics and reality

    CERN Multimedia

    1985-01-01

    An account of the long standing debate between Niels Bohr and Albert Einstein regarding the validity of the quantum mechanical description of atomic phenomena.With physicts, John Wheeler (Texas), John Bell (CERN), David Rohm (London), Abner Shimony (Boston), Alain Aspect (Paris)

  9. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  10. Atomic Force Microscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological Systems ... Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 ...

  11. Observational Evidence for Atoms.

    Science.gov (United States)

    Jones, Edwin R., Jr.; Childers, Richard L.

    1984-01-01

    Discusses the development of the concept of atomicity and some of the many which can be used to establish its validity. Chemical evidence, evidence from crystals, Faraday's law of electrolysis, and Avogadro's number are among the areas which show how the concept originally developed from a purely philosophical idea. (JN)

  12. Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Boothroyd, C.B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Moreno, M.S. [Centro Atómico Bariloche, 8400 – San Carlos de Bariloche (Argentina); Duchamp, M.; Kovács, A. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Monge, N.; Morales, G.M.; Barbero, C.A. [Department of Chemistry, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto (Argentina); Dunin-Borkowski, R.E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2014-10-15

    We present an atomic resolution transmission electron microscopy (TEM) and scanning TEM (STEM) study of the local structure and composition of graphene oxide modified with Ba{sup 2+}. In our experiments, which are carried out at 80 kV, the acquisition of contamination-free high-resolution STEM images is only possible while heating the sample above 400 °C using a highly stable heating holder. Ba atoms are identified spectroscopically in electron energy-loss spectrum images taken at 800 °C and are associated with bright contrast in high-angle annular dark-field STEM images. The spectrum images also show that Ca and O occur together and that Ba is not associated with a significant concentration of O. The electron dose used for spectrum imaging results in beam damage to the specimen, even at elevated temperature. It is also possible to identify Ba atoms in high-resolution TEM images acquired using shorter exposure times at room temperature, thereby allowing the structure of graphene oxide to be studied using complementary TEM and STEM techniques over a wide range of temperatures. - Highlights: • Graphene oxide modified with Ba{sup 2+} was imaged using TEM and STEM at 80 kV. • High-resolution images and spectra were obtained only by heating above 400 °C. • Elemental maps show the distribution of C, Ba, O and Ca on the graphene oxide. • Single Ba atoms were identified in STEM HAADF and HRTEM images.

  13. Fast ion atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berry, H.G.; Young, L.; Goodman, L.S.; Somerville, L.P.; Hardis, J.; Neek, D.

    1984-01-01

    We have set up two collinear fast beam/laser excitation systems, one at the Argonne Dynamitron Accelerator (0.5 to 5.0 MeV beam energy) and another at a small electrostatic accelerator (20 to 130 keV). Our objective is to study fine structure, hyperfine structure and QED effects in ions of a few electrons. Initial projects underway include studies of multi-excited transitions in Li/sup -/ and Li/sup 0/, and transitions to high Rydberg states in H/sup 0/ and He/sup 0/. We have simultaneously excited a sodium jet with a laser at the resonance wavelength (D/sub 1/ or D/sub 2/ lines) and a 1-MeV He/sup +/ beam to produce excitation to autoionizing Na and Na/sup +/ states. The Auger electron spectra are compared to spectra obtained without laser excitation, and indicate strong variations in final state populations. 17 references.

  14. Diagnosing the accretion flow in ultraluminous X-ray sources using soft X-ray atomic features

    NARCIS (Netherlands)

    Middleton, M.J.; Walton, D.J.; Fabian, A.; Roberts, T.P.; Heil, L.; Pinto, C.; Anderson, G.; Sutton, A.

    2015-01-01

    The lack of unambiguous detections of atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) has proven a hindrance in diagnosing the nature of the accretion flow. The possible association of spectral residuals at soft energies with atomic features seen in absorption and/or

  15. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections.

  16. Coherently controlling Raman-induced grating in atomic media

    OpenAIRE

    Arkhipkin, V. G.; Myslivets, S. A.; Timofeev, I. V.

    2015-01-01

    We consider dynamically controllable periodic structures, called Raman induced gratings, in three- and four-level atomic media, resulting from Raman interaction in a standing-wave pump. These gratings are due to periodic spatial modulation of the Raman nonlinearity and fundamentally differ from the ones based on electromagnetically induced transparency. The transmission and reflection spectra of such gratings can be simultaneously amplified and controlled by varying the pump field intensity. ...

  17. QUANTUM NETWORKS WITH SINGLE ATOMS, PHOTONS AND PHONONS

    Science.gov (United States)

    2016-10-04

    position above the surface of the alligator PCW. Our calculations and measurements of Γ1D agree with COMSOL simulations (38) of the trap position, and...Version 8.12. http://www.lumerical.com/tcad-products/ fdtd/. 38. COMSOL Inc. (2009) COMSOL Multiphysics ( COMSOL AB, Stockholm), Version 3.5a. 39...for the infinite structure with COMSOL . The trap depth is calibrated with the 12-MHz AC Stark shift measured from the atomic spectra. Fig. S5B shows

  18. Inversed linear dichroism in F K-edge NEXAFS spectra of fluorinated planar aromatic molecules

    DEFF Research Database (Denmark)

    de Oteyza, D. G.; Sakko, A.; El-Sayed, A.

    2012-01-01

    orbitals with significant density of states on the fluorine atoms show different symmetry from those mainly located on C and N atoms. As a result, the angle-dependent linear dichroism in NEXAFS F K-edge spectra is inversed with respect to that in the C and N K-edges. In addition, the significant overlap...... in energy of π* and σ* orbitals throughout the F K-edge spectrum hampers its use for analysis of molecular orientations from angle-dependent NEXAFS measurements....

  19. Mass Spectra of Tetraselenafulvalenes, Diselenadithiafulvalenes and Tetrathiafulvalenes

    DEFF Research Database (Denmark)

    Andersen, Jan Rud; Egsgaard, Helge; Larsen, Elfinn

    1978-01-01

    The mass spectra of 13 heterofulvalenes are reported. The spectra show great similarities within the selenium and within the sulphur series. The main difference between the selenium and the sulphur compounds results from the more facile loss of selenium compared with sulphur, and from the first...

  20. Spectra of Velocity components over Complex Terrain

    DEFF Research Database (Denmark)

    Panofsky, H. A.; Larko, D.; Lipschut, R.

    1982-01-01

    Spectra have been measured over a variety of types of complex terrain: on tops of hills and escarpments, over land downstream of a water surface, and over rolling terrain. Differences between spectra over many types of complex terrain, and over uniform terrain, can be explained by these hypotheses...

  1. Resolution enhancement in second-derivative spectra.

    Science.gov (United States)

    Czarnecki, Mirosław A

    2015-01-01

    Derivative spectroscopy is a powerful tool for the resolution enhancement in infrared, near-infrared, Raman, ultraviolet-visible, nuclear magnetic resonance, electron paramagnetic resonance, and fluorescence spectroscopy. Despite its great significance in analytical chemistry, not all aspects of the applications of this method have been explored as yet. This is the first systematic study of the parameters that influence the resolution enhancement in the second derivative spectra. The derivative spectra were calculated with the Savitzky-Golay method with different window size (5, 15, 25) and polynomial order (2, 4). The results obtained in this work show that the resolution enhancement in the second derivative spectra strongly depends on the data spacing in the original spectra, window size, polynomial order, and peak profile. As shown, the resolution enhancement is related to variations in the width of the peaks upon the differentiation. The present study reveals that in order to maximize the separation of the peaks in the second derivative spectra, the original spectra should be recorded at high resolution and differentiated using a small window size and high polynomial order. However, working with the real spectra one has to compromise between the noise reduction and optimization of the resolution enhancement in the second derivative spectra.

  2. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  3. Decomposition of spectra using maximum autocorrelation factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2001-01-01

    This paper addresses the problem of generating a low dimensional representation of the variation present in a set of spectra, e.g. reflection spectra recorded from a series of objects. The resulting low dimensional description may subseque ntly be input through variable selection schemes into cla......This paper addresses the problem of generating a low dimensional representation of the variation present in a set of spectra, e.g. reflection spectra recorded from a series of objects. The resulting low dimensional description may subseque ntly be input through variable selection schemes...... Fourier decomposition these new variables are located in frequency as well as well wavelength. The proposed algorithm is tested on 100 samples of NIR spectra of wheat....

  4. General Notes on Processes and Their Spectra

    Directory of Open Access Journals (Sweden)

    Gustav Cepciansky

    2012-01-01

    Full Text Available The frequency spectrum performs one of the main characteristics of a process. The aim of the paper is to show the coherence between the process and its own spectrum and how the behaviour and properties of a process itself can be deduced from its spectrum. Processes are categorized and general principles of their spectra calculation and recognition are given. The main stress is put on power spectra of electric and optic signals, as they also perform a kind of processes. These spectra can be directly measured, observed and examined by means of spectral analyzers and they are very important characteristics which can not be omitted at transmission techniques in telecommunication technologies. Further, the paper also deals with non electric processes, mainly with processes and spectra at mass servicing and how these spectra can be utilised in praxis.

  5. Optical absorption spectra of Ag-11 isomers

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Fernandez, E. M.

    2009-01-01

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground......-stale configuration predominantly present in the laboratory beams based on a direct comparison between the calculated photoabsorptiou response for the Ag-11 isomers and the measured spectra of medium-size silver clusters trapped in noble gas Ar and Ne matrices at different, temperatures. This assignment is confirmed...

  6. Modelling the Energetics of Encapsulation of Atoms and Atomic ...

    Indian Academy of Sciences (India)

    user

    2015-07-04

    Jul 4, 2015 ... Modelling the Energetics of Encapsulation of. Atoms and Atomic Clusters into Carbon. Nanotubes: Insights from Analytical Approaches. R. S. Swathi. School of Chemistry. Indian Institute of Science Education and Research. Thiruvananthapuram, Kerala, India ...

  7. Role of atoms in atomic gravitational-wave detectors

    Science.gov (United States)

    Norcia, Matthew A.; Cline, Julia R. K.; Thompson, James K.

    2017-10-01

    Recently, it has been proposed that space-based atomic sensors may be used to detect gravitational waves. These proposals describe the sensors either as clocks or as atom interferometers. Here, we seek to explore the fundamental similarities and differences between the two types of proposals. We present a framework in which the fundamental mechanism for sensitivity is identical for clock and atom interferometer proposals, with the key difference being whether or not the atoms are tightly confined by an external potential. With this interpretation in mind, we propose two major enhancements to detectors using confined atoms, which allow for an enhanced sensitivity analogous to large momentum transfer used in atom interferometry (though with no transfer of momentum to the atoms), and a way to extend the useful coherence time of the sensor beyond the atom's excited-state lifetime.

  8. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT......-molecular orbital calculations by use of the Gaussian 03W pro- gram, based on complete geometry minimizations of the conformational energy of the S-(+)-amphetamine molecule, the S-(+)-amphetamine-H+ ion, and the R-(–)-amphetamine molecule. Following this, harmonic frequency calculations have been made, providing...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  9. Quasiclassical analysis of spectra in two groups of central potentials

    CERN Document Server

    Shpatakovskaya, G V

    2001-01-01

    The method for the spectra analysis in the gravitational central potentials with the Coulomb feature in the zero (interatomic potentials) and the finite ones in the zero (potentials in the spheric clusters nuclei) is proposed. It is shown that by the degeneration removal by the orbital quantum number for the n-shell by small l the difference epsilon sub n sub l - epsilon sub n sub 0 approx = a subepsilon sub sub n sub sub 0 (l + 1/2) sup 2. The correctness of the presented formula for the internal electrons is demonstrated by the mercury atoms spectrum calculations. The reverse dependence takes place, as a rule, in the cluster potentials. The dependence of the area position with the degenerated level on the N cluster size is analyzed by the example of the Al sub N aluminium clusters. It is known that the increase in the N leads to the pressing-out of this area upwards

  10. Geometry, chemical reactivity and Raman spectra of gold clusters

    Directory of Open Access Journals (Sweden)

    Ngangbam Bedamani Singh

    2015-12-01

    Full Text Available Structures, stability, and chemical reactivity of Aun (n = 2-10 clusters are investigated using density functional theory (DFT. We have studied the reactivity parameters of the clusters in terms of relevant electronic structure principles. It is observed that stability and properties are strongly dependent on the cluster size. Clusters with an even number of atoms are found to be energetically and chemically more stable than odd-numbered clusters. Electronic structure of clusters has been investigated using partial density of states (PDOS. PDOS analysis clearly shows that energy states of highest occupied molecular orbital and lowest unoccupied molecular orbital are predominantly contributed by s orbital. From time-dependent DFT calculations, it is shown that absorption spectra of even-numbered clusters are more intense and are observed at lower wavelength region than the odd-sized gold clusters.

  11. Moisture dependence of positron annihilation spectra in nylon-6

    Science.gov (United States)

    Singh, J. J.; St. Clair, T. L.; Holt, W. H.; Mock, W., Jr.

    1984-01-01

    Positron annihilation time spectra have been measured in nylon-6 samples as a function of their moisture content. The measured average long life component lifetime values are: 1722 + or - 47 ps (dry), 1676 + or - 40 ps (14.6 percent saturation value), 1719 + or - 26 ps (29.3 percent saturation value), 1720 + or - 35 ps (50 percent of saturation value), 1857 + or - 35 ps (78.1 percent saturation value), and 1936 + or - 57 ps (saturated). It appears that nylon-6 has a special affinity for water at low concentration levels where H2O molecules enter between the (C = O - H-N) chemical bonds between nylon molecular chains. As the water concentration increases beyond a critical level, nylon-6 specimens start trapping H2O molecules in other bond sites or potential wells. The trapped water increases the free volume in the test specimens and reduces Ps atom formation as well as its subsequent decay rate.

  12. Fractals and spectra related to fourier analysis and function spaces

    CERN Document Server

    Triebel, Hans

    1997-01-01

    Fractals and Spectra Hans Triebel This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated. ------ It is worth mentioning that there is virtually no literature on this topic and hence the most of the presented material is published here the first time. - Zentralblatt MATH (…) ...

  13. A=225 implantation for $^{221}$Fr source for TRIUMF atom trap

    CERN Multimedia

    The FrPNC Collaboration is mounting an atom trap for parity violation experiments and precision spectroscopy on francium atoms at TRIUMF's ISAC facility. We would like to use ISOLDE's capability of simultaneously implanting A=225 (while another experiment runs online) to make a long-lived source feeding $^{221}$Fr for tests of the trap. $^{225}$Ra $\\beta$-decays to $^{225}$Ac, which then $\\alpha$-decays, producing 100 keV $^{221}$Fr t$_{1/2}$= 4.8 minute recoils. The implanted A=225 source would be shipped to TRIUMF, where it would be held for several minutes at a time a few mm from the same yttrium foil that normally receives the ISAC beam. SRIM calculations imply that 20% of the $^{221}$Fr will be implanted in a 1 cm diameter spot on the yttrium. Then the yttrium foil is moved to the trap and heated to release the Fr atoms, just as in normal ISAC online operation. A test implantation will be done at 10$^{7}$/sec production for 1 day, testing whether carbon cracking on the implantation foil in the mass separ...

  14. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  15. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  16. Cavity enhanced atomic magnetometry.

    Science.gov (United States)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-20

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  17. Cavity enhanced atomic magnetometry

    CERN Document Server

    Crepaz, Herbert; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  18. Atomes et rayonnement

    OpenAIRE

    Dalibard, Jean; Haroche, Serge

    2013-01-01

    Matière et lumière sont intimement liées dans notre modélisation du monde physique. De l’élaboration de la théorie quantique à l’invention du laser, l’interaction entre atomes et rayonnement a joué un rôle central dans le développement de la science et de la technologie d’aujourd’hui. La maîtrise de cette interaction permet désormais d’atteindre les plus basses températures jamais mesurées. Le refroidissement de gaz d’atomes par la lumière d’un laser conduit à une « matière quantique » aux pr...

  19. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  20. Navigation with Atom Interferometers

    Science.gov (United States)

    2017-03-20

    stability of the design and will be measured at a future time. Angle random walk can be calculated from first principles from the shot-noise limited...interferometer cannot distinguish between the two sources of phase shifts. We describe a design for a dual atom interferometer to simultaneously...stability. This paper is organized as follows: we first describe the basic building blocks of the interferometer: beam splitters and mirrors. We then