WorldWideScience

Sample records for atomic recoil spectra

  1. ZZ RECOIL/B, Heavy Charged Particle Recoil Spectra Library for Radiation Damage Calculation

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Amburgey, J.D.; Greene, N.M.

    1983-01-01

    1 - Description of problem or function: Format: GAM-II group structure; Number of groups: 104 neutron and Recoil-energy groups; Nuclides: Elements Included in Charged-Particle Recoil Data Base: Al, W, Ti, Pb, V, Mg, Cr, Be, Mn, C, Fe, Au, Co, Si, Ni, B-10, Cu, B-11, Zr, N, Nb, Li-6, Mo, Li-7, Ta (Data for Ta-181,Ta-182), O, Origin: ENDF/B-IV cross-section data. A heavy charged-particle recoil data base (primary knock-on atom (PKA) spectra) and an analysis program have been created to assist experimentalists in studying, evaluating, and correlating radiation-damage effects in different neutron environments. Since experimentally obtained controlled thermo-nuclear-reactor-type neutron spectra are not presently available, the data base can be extremely useful in relating currently obtainable radiation damage to that which is anticipated in future fusion devices. However, the usefulness of the data base is not restricted to just CTR needs. Most of the elements of interest to the radiation-damage community and all neutron reactions of any significance for these elements have been processed, using available ENDF/B-IV cross-section data, and are included in the data base. Calculated data such as primary recoil spectra, displacement rates, and gas-production rates, obtained with the data base, for different radiation environments are presented and compared with previous calculations. Primary neutrons with energies up to 20 MeV have been considered. The elements included in the data base are listed in Table I. All neutron reactions of significance for these elements (i.e., elastic, inelastic, (n,2n), (n,3n), (n,p), (n,sigma), (n,gamma), etc.,) which have cross sections available from ENDF/B-IV have been processed and placed in the data base. Table I - Elements Included in Charged-Particle Recoil Data Base: Al, W, Ti, Pb, V, Mg, Cr, Be, Mn, C, Fe, Au, Co, Si, Ni, 10 B, Cu, 11 B, Zr, N, Nb, 6 Li, Mo, 7 Li, Ta (Data for Ta 181 ,Ta 182 ), O. 2 - Method of solution: The neutron

  2. Energy spectra of primary knock-on atoms under neutron irradiation

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Marian, J.; Sublet, J.-Ch.

    2015-01-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main “measure” of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared. - Highlights: • Recoil cross-section matrices under neutron irradiation are generated. • Primary knock-on atoms (PKA) spectra are calculated for fusion relevant materials. • Variation in PKA spectra due to changes in geometry are considered. • Inventory simulations to consider time-evolution in PKA spectra. • Damage quantification using damage functions from different approximations.

  3. Cage effect in recoil studies

    International Nuclear Information System (INIS)

    Berei, K.

    1983-09-01

    The role of cage effect is one of the most discussed questions of hot atom chemistry in condensed organic systems. So far no direct evidence is available for assessing the exact contribution of thermal recombinations occurring in the liquid cage to the stabilization processes of recoil atoms. However, some conclusions can be drawn from experimental observations concerning the influence on product yield of hot atom recoil spectra, the effects of density, phase and long range order of the medium as well as from comparisons with systems providing cage walls of different chemical reactivities towards the recoil atom. Recent developments in this field are reviewed based primarily on the investigations of recoil halogen reactions in aliphatic and aromatic hydrocarbons and their haloderivatives. (author)

  4. Model-independent evaluation of recoils channeling impact on visible energy spectra in dark matter particles crystalline detectors

    International Nuclear Information System (INIS)

    Dyuldya, S.V.; Bratchenko, M.I.

    2012-01-01

    Proposed is a direct method of Dark Matter crystalline scintillation detectors calibration by means of an atomistic molecular dynamics modeling of their responses to ∼10 keV recoil atoms. Simulations show that the recoils channeling exists in NaI lattice with probabilities of ∼5 - 15 %. It does not affect the mean values of quenching factors but gives rise to high visible energy spectral tails absent in disordered detectors. As a result, the lattice ordering manifests the ∼100 % effect on NaI(Tl) visible energy spectra at 2-6 keV window

  5. Chemical reactions of recoil atoms and thermal atoms of tritium with haloid benzenes

    International Nuclear Information System (INIS)

    Simirskij, Yu.N.; Firsova, L.P.

    1978-01-01

    Radiochemical yields have been determined for the products of substitution of hydrogen atoms and halides in Cl-, Br-, and I-benzenes with tritium atoms obtained during thermal dissociation of T 2 and with recoil atoms T arising in nuclear reaction 6 Li(n, P)T. It is shown that in the series of Cl-, Br-, and I-benzenes yields of the products of substitution of halides atoms with tritium grow, whereas those of hydrogen atom substitution change only little. The correlation nature of the yields of substitution products of halide atoms with tritium remains constant in a wide range of the initial kinetic energies of T atoms for the recoil atoms with E 0 =2.7 MeV and for the completely thermolized atoms during thermal dissociation of T 2

  6. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Yosuke, E-mail: iwamoto.yosuke@jaea.go.jp; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for {sup 72}Ge, {sup 75}As, {sup 89}Y, and {sup 109}Ag in the ENDF/B-VII.1 library, and for {sup 90}Zr and {sup 55}Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  7. Primary processes and ionic reactions in the chemistry of recoiling silicon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Boo, B.H.; Stewart, G.W.

    1993-01-01

    Hot atom chemistry has permitted the elucidation of the chemistry of free atoms, and these include the polyvalent atoms of refractory group 14 elements, that is, carbon, silicon and germanium. Since no more than two bonds are formed normally in a single reactive collision of free atoms, the study on the chemistry of atoms like C, Si and Ge that require the formation of more than two bonds to saturate their chemical valence necessarily involves the study of reactive intermediates. By the studies on the chemistry of recoiling 31 Si atoms, the mechanistic conclusions reached are reported. The most important unanswered questions concerning the reaction of recoiling 31 Si atoms in the systems are shown, and progress has been made toward the answering. By using tetramethyl silane as a trapping agent for silicon ions, it has been established that the reaction of 31 Si ions contributes significantly to the formation of products in recoil systems. The studies by various researchers on this theme are reported. (K.I.)

  8. Atom location using recoil ion spectroscopy

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1985-01-01

    Low energy ion scattering (LEIS) using inert gas and alkali ions is widely used in studies of the surface atomic layer. The extreme surface sensitivity of this technique ensures that it yields both compositional and structural information on clean and adsorbate covered surfaces. Low Energy Negative recoil Spectroscopy (LENRS) has been applied to a study of oxygen on Ni(110) to gauge the sensitivity to coverage and site location

  9. Recent results from the chemistry of recoiling carbon and silicon atoms: The interplay between hot atom chemistry and gas kinetics

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Ferrieri, R.A.; Wolf, A.P.

    1990-01-01

    Recent results from the chemistry of recoiling carbon and silicon atoms illustrate the power of an experimental approach to the solution of complex mechanistic problems that combines the study of the reactions of recoiling atoms with conventional gas kinetic techniques. Included will be the reactions of 11 C atoms with anisole, addressing the question whether an aromatic pi-electron system can compete as a reactive site with carbon-hydrogen bonds

  10. Calculations of charged-particle recoils, slowing-down spectra, LET and event-size distributions for fast neutrons and comparisons with measurements

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1979-01-01

    A rapid system has been developed for computing charged-particle distributions generated in tissue by any neutron spectra less than 4 MeV. Oxygen and carbon recoils were derived from R-matrix theory, and hydrogen recoils were obtained from cross-section evaluation. Application to two quite different fission-neutron spectra demonstrates the flexibility of this method for providing spectral details of the different types of charged-particle recoils. Comparisons have been made between calculations and measurements of event-size distributions for a sphere of tissue 1 μm in diameter irradiated by these two neutron spectra. LET distributions have been calculated from computed charged-particle recoils and also derived from measurements using the conventional approximation that all charged particles traverse the chamber. The limitations of the approximation for these neutron spectra are discussed. (author)

  11. Differential dpa calculations with SPECTRA-PKA

    Science.gov (United States)

    Gilbert, M. R.; Sublet, J.-Ch.

    2018-06-01

    The processing code SPECTRA-PKA produces energy spectra of primary atomic recoil events (or primary knock-on atoms, PKAs) for any material composition exposed to an irradiation spectrum. Such evaluations are vital inputs for simulations aimed at understanding the evolution of damage in irradiated material, which is generated in cascade displacement events initiated by PKAs. These PKA spectra present the full complexity of the input (to SPECTRA-PKA) nuclear data-library evaluations of recoil events. However, the commonly used displacements per atom (dpa) measure, which is an integral measure over all possible recoil events of the displacement damage dose, is still widely used and has many useful applications - as both a comparative and correlative quantity. This paper describes the methodology employed that allows the SPECTRA-PKA code to evaluate dpa rates using the energy-dependent recoil (PKA) cross section data used for the PKA distributions. This avoids the need for integral displacement kerma cross sections and also provides new insight into the relative importance of different reaction channels (and associated different daughter residual and emitted particles) to the total integrated dpa damage dose. Results are presented for Fe, Ni, W, and SS316. Fusion dpa rates are compared to those in fission, highlighting the increased contribution to damage creation in the former from high-energy threshold reactions.

  12. Proceedings of the symposium on measurements of neutron energy spectra using recoil proton proportional counters

    International Nuclear Information System (INIS)

    Urabe, Itsumasa

    1986-01-01

    This is a report of the symposium on measurements of neutron energy spectra using recoil proton proportional counters held at the Research Reactor Institute of Kyoto University on January 27 in 1986. An energy resolution, wall effects of response functions, n · γ discrimination methods and other fundamental properties of recoil proton counters are discussed for a new development of an application of this counter. (author)

  13. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Cohen, D.D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P.; Walker, S. [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H.; Hult, M. [Lund Univ. (Sweden); Oestling, M.; Zaring, C. [Royal Inst. of Tech., Stockholm (Sweden)

    1993-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  14. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N; Cohen, D D [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P; Walker, S [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H; Hult, M [Lund Univ. (Sweden); Oestling, M; Zaring, C [Royal Inst. of Tech., Stockholm (Sweden)

    1994-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  15. Recoil ion charge state distributions in low energy Arq+ - Ar collisions

    International Nuclear Information System (INIS)

    Vancura, J.; Marchetti, V.; Kostroun, V.O.

    1992-01-01

    We have measured the recoil ion charge state distributions in Ar q+ -- Ar (8≤q≤16) collisions at 2.3 qkeV and 0.18qkeV by time of flight (TOF) spectroscopy. For Ar 8-16+ , recoil ion charge states up to 6+ are clearly present, indicating that the 3p subshell in the target atom is being depleted, while for Ar 10-16+ , there is evidence that target 3s electrons are also being removed. Comparison of the recoil ion charge state spectra at 2.3 and 0.18 qkeV shows that for a given projectile charge, there is very little dependence of the observed recoil target charge state distribution on projectile energy

  16. Techniques for measuring the atomic recoil frequency using a grating-echo atom interferometer

    Science.gov (United States)

    Barrett, Brynle

    I have developed three types of time-domain echo atom interferometer (AIs) that use either two or three standing-wave pulses in different configurations. Experiments approaching the transit time limit are achieved using samples of laser-cooled rubidium atoms with temperatures AI. This interferometer uses two standing-wave pulses applied at times t = 0 and t = T 21 to create a superposition of atomic momentum states differing by multiples of the two-photon momentum, ħq = 2 ħk where k is the optical wave number, that interfere in the vicinity of t = 2T 21. This interference or "echo" manifests itself as a density grating in the atomic sample, and is probed by applying a near-resonant traveling-wave "read-out" pulse and measuring the intensity of the coherent light Bragg-scattered in the backward direction. The scattered light from the grating is associated with a λ/2-periodic modulation produced by the interference of momentum states differing by ħq. Interfering states that differ by more than ħq—which produce higher-frequency spatial modulation within the sample—cannot be detected due to the nature of the Bragg scattering detection technique employed in the experiment. The intensity of the scattered light varies in a periodic manner as a function of the standing-wave pulse separation, T21. The fundamental frequency of this modulation is the two-photon atomic recoil frequency, ω q = ħq2/2M, where q = 2k and M is the mass of the atom (a rubidium isotope in this case). The recoil frequency, ω q, is related to the recoil energy, Eq = ħωq, which is the kinetic energy associated with the recoil of the atom after a coherent two-photon scattering process. By performing the experiment on a suitably long time scale ( T21 >> τq = π/ω q ˜32 μs), ωq can be measured precisely. Since ωq contains the ratio of Planck's constant to the mass of the atom, h/M, a precise measurement of ωq can be used as a strict test of quantum theories of the electromagnetic force

  17. Chemical effects of /sup 32/P recoil atom

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, N [Tokyo Univ. (Japan). Coll. of General Education

    1975-06-01

    Szilard-Chalmers' effect of /sup 32/P were reviewed. The concentration method using Szilard-Chalmers' effect in production of radioisotope, circumstances such as exposure time in an atomic pile, states of target substances and the yields by them were discussed. Many kinds of chemical effects, such as chemical effects of /sup 32/P recoil atom in phosphorated glass, studies of the effect of adducts, the threshold of ..gamma..-ray effect, the oxidation number of /sup 32/P in phosphorated glass by exposure time in the pile and the labelling position of /sup 32/P, are associated with caryotransformation (nuclear transformation) by environmental factors. The abovementioned articles were explained concerning /sup 32/P.

  18. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  19. Complementary scattered and recoiled ion data from TOF-E heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    The advantage of Time of Flight and Energy (ToF-E) Heavy Ion Elastic Recoil Detection Analysis (HIERDA) over Rutherford Backscattering (RBS) analysis is its mass and energy dispersive capabilities. The mass resolution of ToF-E HIERDA deteriorates for very heavy elements. The limitation is related to the poor energy resolution of Si detectors for heavy ions. While the energy spectra from ToF-E HIERDA data are normally used to extract depth profiles, this work discusses the benefits of using the time spectra of both the recoiled and the scattered ions for depth profiling. The simulation of the complementary scattered and recoiled ion time spectra improves depth profiling and reduced current limitations when dealing with very heavy ions, such as Pt, Bi, Ta. (authors)

  20. Recoil ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Olson, R.E.

    1991-01-01

    The collision of a fast moving heavy ion with a neutral atomic target can produce very highly charged but slowly moving target ions. This article reviews experimental and theoretical work on the production and use of recoil ions beyond the second ionization state by beams with specific energies above 0.5 MeV/amu. A brief historical survey is followed by a discussion of theoretical approaches to the problem of the removal of many electrons from a neutral target by a rapid, multiply charged projectile. A discussion of experimental techniques and results for total and differential cross sections for multiple ionization of atomic and molecular targets is given. Measurements of recoil energy are discussed. The uses of recoil ions for in situ spectroscopy of multiply charged ions, for external beams of slow, highly charged ions and in ion traps are reviewed. Some possible future opportunities are discussed. (orig.)

  1. Possibility of obtaining enriched americium-242g by the elution of recoil atoms from zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Shafiev, A I; Vityutnev, V M; Ivanov, V M; Yakovlev, G N

    1974-12-31

    On the example of production the possibility of obtaining enriched actinide isotopes by the elution of recotl atoms with the use of a zeolite- americium-241 target was shown. The enrichment factor and the recoil atoms of / sup 242g/Am yield depend on preliminary target treatment and solution composition used for elution. (auth)

  2. Laser cooling of 85Rb atoms to the recoil-temperature limit

    Science.gov (United States)

    Huang, Chang; Kuan, Pei-Chen; Lan, Shau-Yu

    2018-02-01

    We demonstrate the laser cooling of 85Rb atoms in a two-dimensional optical lattice. We follow the two-step degenerate Raman sideband cooling scheme [Kerman et al., Phys. Rev. Lett. 84, 439 (2000), 10.1103/PhysRevLett.84.439], where a fast cooling of atoms to an auxiliary state is followed by a slow cooling to a dark state. This method has the advantage of independent control of the heating rate and cooling rate from the optical pumping beam. We operate the lattice at a Lamb-Dicke parameter η =0.45 and show the cooling of spin-polarized 85Rb atoms to the recoil temperature in both dimensions within 2.4 ms with the aid of adiabatic cooling.

  3. Effect of pressure on the radiation annealing of recoil atoms in chromates

    International Nuclear Information System (INIS)

    Stamouli, M.I.

    1986-01-01

    The effect of pressure on the annealing of recoil atoms by gamma radiation in neutron irradiated potassium chromate, ammonium chromate and ammonium dichromate was studied. In potassium chromate the pressure applied before the gamma-irradiation was found to retard the radiation annealing process. In ammonium chromate and ammonium dichromate the radiation annealing was found to be enhanced in the compressed samples in comparison to the noncompressed ones. (author)

  4. An electrostatic plunger device and the analysis of recoil-distance spectra

    International Nuclear Information System (INIS)

    Marchie van Voorthuysen, E.H. du; Smith, Ph.B.

    1975-01-01

    In the electrostatic plunger apparatus, a large stopper foil is drawn towards the target electrostatically. The attracting field is controlled in a feedback loop by the capacity, so that the distance is stabilized during the measurement. Formulae for line-shape analysis of γ-ray spectra from recoil-distance lifetime measurements (RDM) are given. A measurement of the life-time of the 1759 keV level in 26 Al is reported yielding (3.4+-0.6)ps, in agreement with results from Doppler-shift attenuation, but in disagreement with other RDM results. In addition, accurate stopping-power measurements are reported for 2-9MeV alpha particles in Al, Ni, Cu, Au and Mylar. (Auth.)

  5. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    International Nuclear Information System (INIS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-01-01

    Reflection electron energy loss spectra from some insulating materials (CaCO 3 , Li 2 CO 3 , and SiO 2 ) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO 2 , good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E gap ) 1.5 . For CaCO 3 , the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li 2 CO 3 (7.5 eV) is the first experimental estimate

  6. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  7. High-resolution elastic recoil detection utilizing Bayesian probability theory

    International Nuclear Information System (INIS)

    Neumaier, P.; Dollinger, G.; Bergmaier, A.; Genchev, I.; Goergens, L.; Fischer, R.; Ronning, C.; Hofsaess, H.

    2001-01-01

    Elastic recoil detection (ERD) analysis is improved in view of depth resolution and the reliability of the measured spectra. Good statistics at even low ion fluences is obtained utilizing a large solid angle of 5 msr at the Munich Q3D magnetic spectrograph and using a 40 MeV 197 Au beam. In this way the elemental depth profiles are not essentially altered during analysis even if distributions with area densities below 1x10 14 atoms/cm 2 are measured. As the energy spread due to the angular acceptance is fully eliminated by ion-optical and numerical corrections, an accurate and reliable apparatus function is derived. It allows to deconvolute the measured spectra using the adaptive kernel method, a maximum entropy concept in the framework of Bayesian probability theory. In addition, the uncertainty of the reconstructed spectra is quantified. The concepts are demonstrated at 13 C depth profiles measured at ultra-thin films of tetrahedral amorphous carbon (ta-C). Depth scales of those profiles are given with an accuracy of 1.4x10 15 atoms/cm 2

  8. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  9. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  10. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  11. Proton recoil spectra in spherical proportional counters calculated with finite element and Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Benmosbah, M. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Groetz, J.E. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: jegroetz@univ-fcomte.fr; Crovisier, P. [Service de Protection contre les Rayonnements, CEA Valduc, 21120 Is/Tille (France); Asselineau, B. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN, Cadarache BP3, 13115 St Paul-lez-Durance (France); Truffert, H.; Cadiou, A. [AREVA NC, Etablissement de la Hague, DQSSE/PR/E/D, 50444 Beaumont-Hague Cedex (France)

    2008-08-11

    Proton recoil spectra were calculated for various spherical proportional counters using Monte Carlo simulation combined with the finite element method. Electric field lines and strength were calculated by defining an appropriate mesh and solving the Laplace equation with the associated boundary conditions, taking into account the geometry of every counter. Thus, different regions were defined in the counter with various coefficients for the energy deposition in the Monte Carlo transport code MCNPX. Results from the calculations are in good agreement with measurements for three different gas pressures at various neutron energies.

  12. 100 group displacement cross sections from RECOIL data base

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.

    1995-01-01

    Displacement cross sections in 100 neutron energy groups were calculated from the RECOIL data base using the RECOIL program, for use in DPA (Displacement Per Atom) calculations for FBTR and PFBR materials. 100 group displacement cross sections were calculated using RECOIL-Data Base and RECOIL Program. Modifications were made in the data base to reduce space requirement, and in the program for easy handling on a PC. 2 refs

  13. Ejection of fast recoil atoms from solids under ion bombardment (medium-energy ion scattering by solid surfaces: Pt. 3)

    International Nuclear Information System (INIS)

    Dodonoy, A.I.; Mashkova, E.S.; Molchanov, V.A.

    1989-01-01

    This paper is the third part of our review surface scattering. Part I, which was devoted to the scattering of ions by the surfaces of disordered solids, was published in 1972; Part II, concerning scattering by crystal surfaces, was published in 1974. Since the publication of these reviews the material contained in them has become obsolete in many respects. A more recent account of the status of the problem has been given in a number of studies, including the book by E.S. Mashkova and V.A. Molchanov, Medium-Energy Ion Scattering by Solid Surfaces (Atomizdat, Moscow, 1980), than extended version of which was published by North-Holland in 1985. We note, however, that at the time these reviews were written the study of fast recoil atoms had not been carried out systematically; the problem was studied only as a by-product of surface scattering and sputtering. For this reason, in the above-mentioned works and in other reviews the data relating to recoil atoms were considered only occasionally. In recent years there have appeared a number of works - theoretical, experimental and computer -specially devoted to the study of the ejection of recoil atoms under ion bombardment. A number of interesting effects, which are due to the crystal structure of the target, have been discovered. It therefore, appeared desirable to us to systematize the available material and to present it as Part III of our continuing review. (author)

  14. Vibration spectra of single atomic nanocontacts

    International Nuclear Information System (INIS)

    Bourahla, B; Khater, A; Rafil, O; Tigrine, R

    2006-01-01

    This paper introduces a simple model for an atomic nanocontact, where its mechanical properties are analysed by calculating numerically the local spectral properties at the contact atom and the nearby atoms. The standard methodology for calculating phonon spectral densities is extended to enable the calculation of localized contact modes and local density of states (DOS). The model system considered for the nanocontact consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. The matching method is used, in the harmonic approximation, to calculate the local Green's functions for the irreducible set of sites that constitute the inhomogeneous nanocontact domain. The Green's functions yield the vibration spectra and the DOS for the atomic sites. These are numerically calculated for different cases of elastic hardening and softening of the nanocontact domain. The purpose is to investigate how the local dynamics respond to local changes in the elastic environment. The analysis of the spectra and of the DOS identifies characteristic features and demonstrates the central role of a core subset of these sites for the dynamics of the nanocontact. The system models a situation which may be appropriate for contact atomic force microscopy

  15. Multiple and double scattering contributions to depth resolution and low energy background in hydrogen elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.

  16. Multiple and double scattering contributions to depth resolution and low energy background in hydrogen elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L S [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1997-12-31

    The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.

  17. Recoil 18F-chemistry in fluoroalkanes

    International Nuclear Information System (INIS)

    Linde, K.D. van der.

    1982-01-01

    This thesis describes the study of the chemical reactions of recoil 18 F-atoms in gaseous fluoromethanes and fluoroethanes. A brief survey of the organic hot atom chemistry is given in Chapter I. Chapter II deals with the experimental procedures used in this investigation. The irradiation facilities, the vapour phase radio-chromatography and the identification, including the synthesis of some fluorocarbons, are described in detail. Chapter III consists of a study on the applicability of perfluoropropene, C 3 F 6 , as scavenger for thermal 18 F-atoms and radicals. Chapters IV, V, VI and VII deal with 18 F-recoil chemistry in gaseous fluoroethanes, using H 2 S as scavenger. Chapter VIII is a short discussion on the hot 18 F-atom based production of 18 F-labeled organic compounds via decay of the intermediate 18 Ne. A target system is proposed for production of this isotope in high energy and ultra high flux particle beams, which possibly would become available in fast breeders and fusion reactors. (Auth.)

  18. Synchrotron-radiation experiments with recoil ions

    International Nuclear Information System (INIS)

    Levin, J.C.

    1989-01-01

    Studies of atoms, ions and molecules with synchrotron radiation have generally focused on measurements of properties of the electrons ejected during, or after, the photoionization process. Much can also be learned, however, about the atomic or molecular relaxation process by studies of the residual ions or molecular fragments following inner-shell photoionization. Measurements are reported of mean kinetic energies of highly charged argon, krypton, and xenon recoil ions produced by vacancy cascades following inner-shell photoionization using white and monochromatic synchrotron x radiation. Energies are much lower than for the same charge-state ions produced by charged-particle impact. The results may be applicable to design of future angle-resolved ion-atom collision experiments. Photoion charge distributions are presented and compared with other measurements and calculations. Related experiments with synchrotron-radiation produced recoil ion, including photoionization of stored ions and measurement of shakeoff in near-threshold excitation, are briefly discussed. 24 refs., 6 figs., 1 tab

  19. Atomic and molecular effects in the VUV spectra of solids

    International Nuclear Information System (INIS)

    Sonntag, B.

    1977-10-01

    The VUV spectra of solids are often dominated by atomic or molecular effects, which clearly manifest themselves in the gross features of the spectra and the fine structure at inner shell excitation thresholds. Evidence for the influence of atomic and molecular matrix elements, multiplet-splitting and correlation is presented. Special emphasis is given to the direct experimental verification based on the comparison of atomic and solid state spectra. (orig.) [de

  20. Influence of crystal defects on the chemical reactivity of recoil atoms in oxygen-containing chromium compounds

    International Nuclear Information System (INIS)

    Costea, T.

    1969-01-01

    The influence of crystal defects on the chemical reactivity of recoil atoms produced by the reaction 50 Cr (n,γ) 51 Cr in oxygen-containing chromium compounds has been studied. Three methods have been used to introduce the defects: doping (K 2 CrO 4 doped with BaCrO 4 ), irradiation by ionizing radiation (K 2 CrO 4 irradiated in the presence of Li 2 CO 3 ) and non-stoichiometry (the semi-conducting oxides of the CrO 3 -Cr 2 O 3 series). The thermal annealing kinetics of the irradiated samples have been determined, and the activation energy has been calculated. In all cases it has been observed that there is a decrease in the activation energy for thermal annealing in the presence of the defects. In order to explain the annealing process, an electronic mechanism has been proposed based on the interaction between the recoil species and the charge-carriers (holes or electrons). (author) [fr

  1. Recoil-ion momentum spectroscopy

    International Nuclear Information System (INIS)

    Ullrich, J.; Moshammer, R.; Doerner, R.; Jagutzki, O.; Mergel, V.; Schmidt-Boecking, H.; Spielberger, L.

    1996-10-01

    High-resolution recoil-ion momentum spectroscopy (RIMS) is a novel technique to determine the charge state and the complete final momentum vector P R of a recoiling target ion emerging from an ionising collision of an atom with any kind of radiation. It offers a unique combination of superior momentum resolution in all three spatial directions of ΔP R = 0.07 a.u. with a large detection solid angle of ΔΩ R /4π≥ 98%. Recently, low-energy electron analysers based on rigorously new concepts and reaching similar specifications were successfully integrated into RIM spectrometers yielding so-called ''reaction microscopes''. Exploiting these techniques, a large variety of atomic reactions for ion, electron, photon and antiproton impact have been explored in unprecedented detail and completeness. Among them first kinematically complete experiments on electron capture, single and double ionisation in ion-atom collisions at projectile energies between 5 keV and 1.4 GeV. Double photoionisation of He has been investigated at energies E γ close to the threshold (E γ = 80 eV) up to E γ = 58 keV. At E γ >8 keV the contributions to double ionisation after photoabsorption and Compton scattering were kinematically separated for the first time. These and many other results will be reviewed in this article. In addition, the experimental technique is described in some detail and emphasis is given to envisage the rich future potential of the method in various fields of atomic collision physics with atoms, molecules and clusters. (orig.)

  2. Recoil ion momentum spectroscopy in atomic and nuclear physics: applications to low energy ion-atom/molecule collisions and to beta-neutrino angular correlation in beta decay

    International Nuclear Information System (INIS)

    Flechard, X.

    2012-12-01

    Since the early 1990's, Recoil Ion Momentum Spectroscopy is an ideal tool for ion-atom and ion-molecule collisions study. We detail here the development of this experimental technique during the last twenty years, illustrated with some of the most striking results obtained at GANIL (Caen) and J.R. Mac Donald Laboratory (Kansas State University). Recoil Ion Momentum Spectroscopy is also particularly well suited for β-ν angular correlation measurements in nuclear β decay. The LPCTrap experiment, installed at GANIL, is based on this technique, coupled to the use of a Paul trap for the radioactive ions confinement. The precise measurements performed with this setup allow both, to test specific aspects of the Standard Model of elementary particles, and to study the electron shake-off process following β decay. (author)

  3. On the limitations introduced by energy spread in elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2001-01-01

    Improvements in experimental techniques have led to monolayer depth resolution in heavy ion elastic recoil detection analysis (HI-ERDA). Evaluation of the spectra, however, is not trivial. The spectra, using even the best experimental set-up, are subject to finite energy resolution of both extrinsic and intrinsic origin. A proper account for energy spread is necessary to extract the correct depth profile from the measured spectra. With calculation of the correct energy (or depth) resolution of a given method, one can decide in advance whether or not the method will resolve details of interest in the depth profile. To achieve the best depth resolution, it is also possible to find optimum parameters for the experiments. The limitations introduced by the energy spread effects are discussed. An example for simulation is shown for high energy resolution HI-ERDA measurements. Satisfactory agreement between the simulated and the measured HI-ERDA spectra taken by 60 MeV 127 I 23+ ions on highly oriented pyrolythic graphite (HOPG) sample is found, in spite of the non-equilibrium charge state of the recoils and the difference in the stopping powers caused by the given charge state of the incident ion and the recoil, which are not taken into account. To achieve more precise data evaluation these effects should be included in simulation codes, or all the subspectra corresponding to different recoils charge states should be measured and summed

  4. On the limitations introduced by energy spread in elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E. E-mail: szilagyi@rmki.kfki.hu

    2001-07-01

    Improvements in experimental techniques have led to monolayer depth resolution in heavy ion elastic recoil detection analysis (HI-ERDA). Evaluation of the spectra, however, is not trivial. The spectra, using even the best experimental set-up, are subject to finite energy resolution of both extrinsic and intrinsic origin. A proper account for energy spread is necessary to extract the correct depth profile from the measured spectra. With calculation of the correct energy (or depth) resolution of a given method, one can decide in advance whether or not the method will resolve details of interest in the depth profile. To achieve the best depth resolution, it is also possible to find optimum parameters for the experiments. The limitations introduced by the energy spread effects are discussed. An example for simulation is shown for high energy resolution HI-ERDA measurements. Satisfactory agreement between the simulated and the measured HI-ERDA spectra taken by 60 MeV {sup 127}I{sup 23+} ions on highly oriented pyrolythic graphite (HOPG) sample is found, in spite of the non-equilibrium charge state of the recoils and the difference in the stopping powers caused by the given charge state of the incident ion and the recoil, which are not taken into account. To achieve more precise data evaluation these effects should be included in simulation codes, or all the subspectra corresponding to different recoils charge states should be measured and summed.

  5. Anion effect on the retention of recoil atom of coordination crystalline compounds

    International Nuclear Information System (INIS)

    Dimotakis, P.N.; Papadopoulos, B.P.

    1980-01-01

    The anion effect of various cobaltic crystalline compounds - having the same cation and differing in anion -on the retention of neutron activated central cobalt atom has been studied. The cation was trans-dichloro(bis)ethylenediamine cobalt(III) and the anions were simple spherical anions (Cl - , Br - , I - ), planar anions (NO 3 - ), trigonal pyramidal anions (ClO 3 - , BrO 3 - ), tetrahedral anions (SO 4 2- , CrO 4 2- , MnO 4 - ) and linear anions (SCN - ). The cobalt-60 activity after reactor irradiation either in simple Co 2+ cation or in cobaltic complex cation determined the retention values. In all irradiations at ordinary temperature and at liquid nitrogen temperature the results showed an effect of the different anions, depending on the geometry, volume and charge, on the recombination of the recoil cobalt with the ligands in the coordination sphere. (author)

  6. Shallow doping of gallium arsenide by recoil implantation

    International Nuclear Information System (INIS)

    Sadana, D.K.; Souza, J.P. de; Rutz, R.F.; Cardone, F.; Norcott, M.H.

    1989-01-01

    Si atoms were recoil-implanted into GaAs by bombarding neutral (As + ) or dopant (Si + ) ions through a thin Si cap. The bombarded samples were subsequently rapid thermally or furnace annealed at 815-1000 degree C in Ar or arsine ambient. The presence of the recoiled Si in GaAs and resulting n + -doping was confirmed by secondary ion mass spectrometry and Hall measurements. It was found that sheet resistance of 19 cm 3 and the annealing temperature was > 850 degree C. The present electrical data show that the recoil implant method is a viable alternative to direct shallow implant for n + doping of GaAs. 7 refs., 3 figs., 1 tab

  7. The new NIST atomic spectra database

    International Nuclear Information System (INIS)

    Kelleher, D.E.; Martin, W.C.; Wiese, W.L.; Sugar, J.; Fuhr, J.R.; Olsen, K.; Musgrove, A.; Mohr, P.J.; Reader, J.; Dalton, G.R.

    1999-01-01

    The new atomic spectra database (ASD), Version 2.0, of the National Institute of Standards and Technology (NIST) contains significantly more data and covers a wider range of atomic and ionic transitions and energy levels than earlier versions. All data are integrated. It also has a new user interface and search engine. ASD contains spectral reference data which have been critically evaluated and compiled by NIST. Version 2.0 contains data on 900 spectra, with about 70000 energy levels and 91000 lines ranging from about 1 Aangstroem to 200 micrometers, roughly half of which have transition probabilities with estimated uncertainties. References to the NIST compilations and original data sources are listed in the ASD bibliography. A detailed ''Help'' file serves as a user's manual, and full search and filter capabilities are provided. (orig.)

  8. Recoil effects of neutron-irradiated metal salts

    International Nuclear Information System (INIS)

    Lee, B.H.

    1980-01-01

    The distribution of sup(56)Mn and sup(38)Cl recoil species following radiative neutron capture permanganates, chlorates and perchlorates has been investigated by using ion-exchange chromatography method. The whole of the sup(56)Mn radioactivity in permanganates appeared in two valence states, the sup(38)Cl radioactivity in chlorates in two valence states and also the sup(38)Cl radioactivity in perchlorates in three valence states. Recoil energy was calculated. The internal conversion of sup(38m)Cl isomer transition affects the retention value. The greater the radii of the cation, the higher is the probability of the recoil atom breaking through the secondary cage. In ammonium salt, the ammonium ion behaves as a reducing agent. Crystal structures with their greater free space have shown by retention. (Author)

  9. Energy and depth resolution in elastic recoil coincidence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E., E-mail: szilagyi@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2010-06-15

    Elastic recoil coincidence spectrometry was implemented into the analytical ion beam simulation program DEPTH. In the calculations, effective detector geometry and multiple scattering effects are considered. Mott's cross section for the identical, spin zero particles is included. Spectra based on the individual detector signal and summing the energy of the recoiled and scattered particles originating from the same scattering events can also be calculated. To calculate this latter case, the dependency of the energy spread contributions had to be reconsidered.

  10. Energy and depth resolution in elastic recoil coincidence spectrometry

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2010-01-01

    Elastic recoil coincidence spectrometry was implemented into the analytical ion beam simulation program DEPTH. In the calculations, effective detector geometry and multiple scattering effects are considered. Mott's cross section for the identical, spin zero particles is included. Spectra based on the individual detector signal and summing the energy of the recoiled and scattered particles originating from the same scattering events can also be calculated. To calculate this latter case, the dependency of the energy spread contributions had to be reconsidered.

  11. Particle unstable excited states in /sup 9/Be influence of beta recoil and width on delayed particle spectra

    CERN Document Server

    Nyman, G H; Jonson, B; Kratz, K L; Larsson, P O; Mattsson, S; Ziegert, W

    1981-01-01

    The light nucleus /sup 9/Be has been studied through the emission of beta-delayed neutrons and alpha particles from /sup 9/Li. The activity is produced at the ISOLDE facility in fragmentation reactions induced either by 600 MeV proton or 910 MeV /sup 3/He beams from the CERN Synchro-cyclotron. After mass separation neutron spectra are recorded using /sup 3/He-filled proportional counters, while surface barrier detectors are used for the spectroscopy of alpha particles. Effects on the spectrum shape induced by recoil and polarization phenomena as well as large widths of the intermediate states are discussed. (14 refs).

  12. A new recoil filter for {gamma}-detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Heese, J; Lahmer, W; Maier, K H [Hahn-Meitner-Institut Berlin GmbH (Germany); Janicki, M; Meczynski, W; Styczen, J [Institute of Nuclear Physics, Cracow (Poland)

    1992-08-01

    A considerable improvement of gamma spectra recorded in heavy ion induced fusion evaporation residues can be achieved when gamma rays are detected in coincidence with the recoiling evaporations residues. This coincidence suppresses gamma rays from fission processes, Coulombic excitation, and reactions with target contaminations, and therefore cleans gamma spectra and improves the peak to background ratio. A sturdy detector for evaporation residues has been designed as an additional detector for the OSIRIS spectrometer. The recoil filter consists of two rings of six and twelve detector elements. In each detector element, nuclei hitting a thin Mylar foil produce secondary electrons, which are electrostatically accelerated and focussed onto a thin plastic scintillator. Recoiling evaporation residues are discriminated from other reaction products and scattered beam by the pulse height of the scintillation signal and time of flight. The detector signal is fast enough to allow the detection of an evaporation residue even if the scattered beam hits the detector first. In-beam experiment were performed with the reactions {sup 40}Ar+{sup 124}Sn, {sup 40}Ar+{sup 152}Sm at 185 MeV beam energy, and {sup 36}Ar+{sup 154,156}Gd at 175 MeV. In the latter two cases, fission amount to 50-75% of the total fusion cross section. 10 refs., 4 figs.

  13. Commissioning of a proton-recoil spectrometer

    International Nuclear Information System (INIS)

    Nunes, J.C.; Faught, R.T.

    2000-01-01

    Measurements of neutron fluence spectra in fields from bare and heavy-water-moderated 252 Cf were made with a commercially available proton-recoil spectrometer (PRS) that covers 50 keV to 4.5 MeV. Data obtained from these measurements were compared with data from Bonner sphere spectrometry, Monte Carlo simulation and the open literature. Alterations to the input data file used in unfolding recoil-proton pulse-height distributions were made. Understanding the reasons for these changes and considering the effects of some of the results in an appreciation of the significance of parameters used in the unfolding. An uncertainty of 10% is estimated for values of fluence and ambient dose equivalent for the energy region covered by this PRS. (author)

  14. Limitations to depth resolution in high-energy, heavy-ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Elliman, R.G.; Palmer, G.R.; Ophel, T.R.; Timmers, H.

    1998-01-01

    The depth resolution of heavy-ion elastic recoil detection analysis was examined for Al and Co thin films ranging in thickness from 100 to 400 nm. Measurements were performed with 154 MeV Au ions as the incident beam, and recoils were detected using a gas ionisation detector. Energy spectra were extracted for the Al and Co recoils and the depth resolution determined as a function of film thickness from the width of the high- and low- energy edges. These results were compared with theoretical estimates calculated using the computer program DEPTH. (authors)

  15. Application of evaporation model to the calculation of energy spectrum and angular distribution of recoil nuclei from neutron induced reaction

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y; Sugimoto, M; Sugiyama, K [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1978-12-01

    Calculated angular distributions and energy spectra from 14.8 MeV neutron induced (n,2n) reactions based on a simple evaporation model were obtained by means of the Monte Carlo method. It was ascertained that the effects on the spectra of the method of determining the nuclear temperature and the value of the level density parameter are much smaller than those of the reaction Q-value and the nuclear mass. As a check on the calculational procedure, results of similar calculations were compared with the experimental recoil escape efficiency for /sup 27/Al(n,..cap alpha..)/sup 24/Na reaction. Distortions of the energy spectra in thick target materials were also obtained. These results suggest that this model is fully applicable to the calculation of primary knock-on atoms distributions from various nuclear reactions.

  16. Recoil ion spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Beyer, H.F.; Mann, R.

    1984-01-01

    This chapter examines the production of very high charge state ions in single ion-atom collisions. Topics considered include some aspects of highly ionized atoms, experimental approaches, the production of highly charged target ions (monoatomic targets, recoil energy distribution, molecular fragmentation, outer-shell rearrangement, lifetime measurements, a comparison of projectile-, target-, and plasma-ion stripping), and secondary collision experiments (selective electron capture, potential applications). The heavy-ion beams for the described experiments were provided by accelerators such as tandem Van de Graaff facility and the UNILAC

  17. Reaction studies of hot silicon, germanium and carbon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1990-01-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs

  18. Spectra of matrix isolated metal atoms and clusters

    International Nuclear Information System (INIS)

    Meyer, B.

    1977-01-01

    The matrix isolation spectra of all of the 40 presently known atomic metal species show strong matrix effects. The transition energies are increased, and the bands are broad and exhibit splitting of sublevels which are degenerate in the gas phase. Several models have been proposed for splitting of levels, but basic effects are not yet understood, and spectra cannot be predicted, yet it is possible to correlate gas phase and matrix in many of the systems. Selective production of diatomics and clusters via thermal and optical annealing of atomic species can be monitored by optical spectra, but yields spectroscopically complex systems which, however, especially in the case of transition metals, can be used as precursors in novel chemical reactions. A combination of absorption, emission, ir, Raman, ESR, and other methods is now quickly yielding data which will help correlate the increasing wealth of existing data. 55 references, 6 figures

  19. Explanation of the Hund's rule for atomic spectra

    International Nuclear Information System (INIS)

    Muftakhova, F.I.; Zilberman, L.A.

    1982-01-01

    An original formula for electrostatic interaction in many-electron atoms, based on a new mathematical method, related by recoupling a matrix of n vector coupling momenta and its permutation properties, is given in general form. Hund's rule for atomic spectra-like maximum probability of couple momentum of l 2 configuration in the LS term of lsup(n) configuration is explained. Also, non-competence of exchange interaction notion for d and f atoms is based on mentioned formula. (Auth.)

  20. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    Science.gov (United States)

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  1. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  2. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  3. The generalized sturmian method for calculating spectra of atoms and ions

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2003-01-01

    The properties of generalized Sturmian basis sets are reviewed, and functions of this type are used to perform direct configuration interaction calculations on the spectra of atoms and ions. Singlet excited states calculated in this way show good agreement with experimentally measured spectra. When...... the generalized Sturmian method is applied to atoms, the configurations are constructed from hydrogenlike atomic orbitals with an effective charge which is characteristic of the configuration. Thus, orthonormality between the orbitals of different configurations cannot be assumed, and the generalized Slater...

  4. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    Science.gov (United States)

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Lyapunov spectra and conjugate-pairing rule for confined atomic fluids

    DEFF Research Database (Denmark)

    Bernadi, Stefano; Todd, B.D.; Hansen, Jesper Schmidt

    2010-01-01

    In this work we present nonequilibrium molecular dynamics simulation results for the Lyapunov spectra of atomic fluids confined in narrow channels of the order of a few atomic diameters. We show the effect that realistic walls have on the Lyapunov spectra. All the degrees of freedom of the confin...... evolved Lyapunov vectors projected into a reduced dimensional phase space. We finally observe that the phase-space compression due to the thermostat remains confined into the wall region and does not significantly affect the purely Newtonian fluid region....

  6. Heavy ion recoil spectrometry of SixGe1-x thin films

    International Nuclear Information System (INIS)

    Walker, S.R.; Johnston, P.N.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Hult, M.; Whitlow, H.J.; Zaring, C.; Oestling, M.

    1993-01-01

    Mass and energy dispersive recoil spectrometry employing 77 MeV 127 I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si x Ge 1-x grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si x Ge 1-x layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs

  7. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.

    1984-01-01

    Underlying ion-beam modification of surfaces is the more basic subject of particle-surface interaction. The ideas can be grouped into forward and backward features, i.e. those affecting the interior of the target and those leading to particle expulsion. Forward effects include the stopping of the incident particles and the deposition of energy, both governed by integral equations which are easily set up but difficult to solve. Closely related is recoil implantation where emphasis is placed not on the stopping of the incident particles but on their interaction with target atoms with resulting implantation of these atoms. Backward effects, all of which are denoted as sputtering, are in general either of collisional, thermal, electronic, or exfoliational origin. (Auth.)

  8. Sub-recoil cooling up to nano-Kelvin. Direct measurement of spatial coherency length. New tests for Levy statistics

    International Nuclear Information System (INIS)

    Saubamea, B.

    1998-12-01

    This thesis presents a new method to measure the temperature of ultracold atoms from the spatial autocorrelation function of the atomic wave-packets. We thus determine the temperature of metastable helium-4 atoms cooled by velocity selective dark resonance, a method known to cool the atoms below the temperature related to the emission or the absorption of a single photon by an atom at rest, namely the recoil temperature. This cooling mechanism prepares each atom in a coherent superposition of two wave-packets with opposite mean momenta, which are initially superimposed and then drift apart. By measuring the temporal decay of their overlap, we have access to the Fourier transform of the momentum distribution of the atoms. Using this method, we can measure temperatures as low as 5 nK, 800 times as small as the recoil temperature. Moreover we study in detail the exact shape of the momentum distribution and compare the experimental results with two different theoretical approaches: a quantum Monte Carlo simulation and an analytical model based on Levy statistics. We compare the calculated line shape with the one deduced from simulations, and each theoretical model with experimental data. A very good agreement is found with each approach. We thus demonstrate the validity of the statistical model of sub-recoil cooling and give the first experimental evidence of some of its characteristics: the absence of steady-state, the self-similarity and the non Lorentzian shape of the momentum distribution of the cooled atoms. All these aspects are related to the non ergodicity of sub-recoil cooling. (author)

  9. Effects of recoil-implanted oxygen on depth profiles of defects and annealing processes in P{sup +}-implanted Si studied using monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Moriya, Tsuyoshi; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kitano, Tomohisa; Watanabe, Masahito; Kawano, Takao; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa

    1996-04-01

    Effects of oxygen atoms recoiled from SiO{sub 2} films on depth profiles of defects and annealing processes in P{sup +}-implanted Si were studied using monoenergetic positron beams. For an epitaxial Si specimen, the depth profile of defects was found to be shifted toward the surface by recoil implantation of oxygen atoms. This was attributed to the formation of vacancy-oxygen complexes and a resultant decrease in the diffusion length of vacancy-type defects. The recoiled oxygen atoms stabilized amorphous regions introduced by P{sup +}-implantation, and the annealing of these regions was observed after rapid thermal annealing (RTA) at 700degC. For a Czochralski-grown Si specimen fabricated by through-oxide implantation, the recoiled oxygen atoms introduced interstitial-type defects upon RTA below the SiO{sub 2}/Si interface, and such defects were dissociated by annealing at 1000degC. (author)

  10. The coherence and spectra of a Bose condensate generated by an atomic laser

    International Nuclear Information System (INIS)

    Kozlovskii, A.V.

    2003-01-01

    The first-order coherence dynamics of a Bose condensate generated by a cw atomic laser with evaporative cooling is analyzed. For the atomic-laser multimode model, the coherence functions and atomic field spectra are calculated by the master equation technique. Elastic collisions in the trapped atomic gas lead to significant broadening of the atomic laser line, a shift of its center, and a multi peak structure of the spectra. The oscillatory time dynamics of the atomic-field coherence function is studied. For the atomic laser, the free phase diffusion of the field typical of optical lasers, and characterized by monotonically decreasing mean field with a constant mean phase, is absent due to elastic collisions

  11. Recoil implantation of boron into silicon by high energy silicon ions

    Science.gov (United States)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  12. Theoretical Atomic Physics code development IV: LINES, A code for computing atomic line spectra

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.

    1988-12-01

    A new computer program, LINES, has been developed for simulating atomic line emission and absorption spectra using the accurate fine structure energy levels and transition strengths calculated by the (CATS) Cowan Atomic Structure code. Population distributions for the ion stages are obtained in LINES by using the Local Thermodynamic Equilibrium (LTE) model. LINES is also useful for displaying the pertinent atomic data generated by CATS. This report describes the use of LINES. Both CATS and LINES are part of the Theoretical Atomic PhysicS (TAPS) code development effort at Los Alamos. 11 refs., 9 figs., 1 tab

  13. The FTS atomic spectrum tool (FAST) for rapid analysis of line spectra

    Science.gov (United States)

    Ruffoni, M. P.

    2013-07-01

    The FTS Atomic Spectrum Tool (FAST) is an interactive graphical program designed to simplify the analysis of atomic emission line spectra obtained from Fourier transform spectrometers. Calculated, predicted and/or known experimental line parameters are loaded alongside experimentally observed spectral line profiles for easy comparison between new experimental data and existing results. Many such line profiles, which could span numerous spectra, may be viewed simultaneously to help the user detect problems from line blending or self-absorption. Once the user has determined that their experimental line profile fits are good, a key feature of FAST is the ability to calculate atomic branching fractions, transition probabilities, and oscillator strengths-and their uncertainties-which is not provided by existing analysis packages. Program SummaryProgram title: FAST: The FTS Atomic Spectrum Tool Catalogue identifier: AEOW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 293058 No. of bytes in distributed program, including test data, etc.: 13809509 Distribution format: tar.gz Programming language: C++. Computer: Intel x86-based systems. Operating system: Linux/Unix/Windows. RAM: 8 MB minimum. About 50-200 MB for a typical analysis. Classification: 2.2, 2.3, 21.2. Nature of problem: Visualisation of atomic line spectra including the comparison of theoretical line parameters with experimental atomic line profiles. Accurate intensity calibration of experimental spectra, and the determination of observed relative line intensities that are needed for calculating atomic branching fractions and oscillator strengths. Solution method: FAST is centred around a graphical interface, where a user may view sets of experimental line profiles and compare

  14. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W.B.; Johnston, P.N.; Walker, S.R.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J.F. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  15. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W B; Johnston, P N; Walker, S R; Bubb, I F [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J F [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  16. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for PKA energy spectra and heating number under neutron irradiation

    International Nuclear Information System (INIS)

    Iwamoto, Y.; Ogawa, T.

    2016-01-01

    The modelling of the damage in materials irradiated by neutrons is needed for understanding the mechanism of radiation damage in fission and fusion reactor facilities. The molecular dynamics simulations of damage cascades with full atomic interactions require information about the energy distribution of the Primary Knock on Atoms (PKAs). The most common process to calculate PKA energy spectra under low-energy neutron irradiation is to use the nuclear data processing code NJOY2012. It calculates group-to-group recoil cross section matrices using nuclear data libraries in ENDF data format, which is energy and angular recoil distributions for many reactions. After the NJOY2012 process, SPKA6C is employed to produce PKA energy spectra combining recoil cross section matrices with an incident neutron energy spectrum. However, intercomparison with different processes and nuclear data libraries has not been studied yet. Especially, the higher energy (~5 MeV) of the incident neutrons, compared to fission, leads to many reaction channels, which produces a complex distribution of PKAs in energy and type. Recently, we have developed the event generator mode (EGM) in the Particle and Heavy Ion Transport code System PHITS for neutron incident reactions in the energy region below 20 MeV. The main feature of EGM is to produce PKA with keeping energy and momentum conservation in a reaction. It is used for event-by-event analysis in application fields such as soft error analysis in semiconductors, micro dosimetry in human body, and estimation of Displacement per Atoms (DPA) value in metals and so on. The purpose of this work is to specify differences of PKA spectra and heating number related with kerma between different calculation method using PHITS-EGM and NJOY2012+SPKA6C with different libraries TENDL-2015, ENDF/B-VII.1 and JENDL-4.0 for fusion relevant materials

  17. Global characteristics of atomic spectra and their use for the analysis of spectra. IV. Configuration interaction effects

    International Nuclear Information System (INIS)

    Kucas, S.; Jonauskas, V.; Karazija, R.

    1997-01-01

    For pt.III see ibid., vol.52, p.639, 1995. Changes of the moments of atomic spectrum due to configuration interaction (CI), the CI strength, the average shift of the energy of a level due to its interaction with all levels of distant configuration and other global characteristics of CI effects in atoms are systematised and their expressions presented. The results of the calculation of those characteristics for the energy level spectra of the 3s3p 3 + 3s 2 3p3d configurations in Si isoelectronic series, 3p 5 3d N + 3p 6 3d N-2 4p + 3p 6 3d N-2 4f (N = 5, 6, 7, 8) in Cr, Mn, Fe and Co isoelectronic series, ns 2 np N + np N+2 at n = 2 - 5 and N = 2 - 4 in neutral atoms as well as for the characteristic emission spectra corresponding to the 3p 5 3d 9 + 3d 7 4p → 3d 8 transitions as well as for the Auger M 4.3 N 1 N 2.3 spectra in Kr and N 4.5 O 1 O 2.3 in Xe are given and compared with the same characteristics of the more complete experimental spectra. (orig.)

  18. Neutron spectrometry for D-T plasmas in JET, using a tandem annular-radiator proton-recoil spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, N.P.; Bond, D.S.; Kiptily, V.; Jarvis, O.N. E-mail: onj@jet.uk; Conroy, S.W

    2002-01-01

    A selection of the 14-MeV neutron spectra obtained at the JET Joint Undertaking tokamak during the deuterium-tritium operating campaign in 1997 are presented and analyzed. While several neutron spectrometers were operational during this campaign, the present paper is concerned solely with one: the tandem annular-radiator proton-recoil spectrometer (or proton recoil telescope, for brevity). During neutral beam heating with combined d- and t-beams, analysis of the spectra can define the core fuel composition (D:T) ratio. The spectra are sensitive to the population balance of the fast ions streaming in directions parallel and opposite to that of the injected beams. During ICRF heating of minority deuterium in bulk tritium plasmas, the spectra provide measurements of the effective temperature of the fast-deuteron energy tail and of its relative strength, which vary with the deuterium concentration. This information contributes to the overall understanding of the fusion performance of the various operating scenarios.

  19. Direct and Recoil-Induced Electron Emission from Ion-Bombarded Solids

    DEFF Research Database (Denmark)

    Holmen, G.; Svensson, B.; Schou, Jørgen

    1979-01-01

    The kinetic emission of secondary electrons from ion-bombarded solid surfaces is split into two contributions, a direct one caused by ionizing collisions between the bombarding ion and target atoms, and an indirect one originating from ionizing collisions undergone by recoil atoms with other target...... atoms. The direct contribution, which has been treated by several authors in previous studies, shows a behavior that is determined primarily by the electronic stopping power of the bombarding ion, while the indirect contribution is nonproportionally related to the nuclear stopping power. This latter...

  20. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  1. Study of absorption spectra for alkali and alkaline earth metal salts in flameless atomic absorption spectrometry using a carbon tube atomizer

    International Nuclear Information System (INIS)

    Yasuda, Seiji; Kakiyama, Hitoo

    1975-01-01

    Absorption spectra of various salts such as alkali metal salts, alkaline earth dichlorides, and ammonium halides were investigated and absorptions of some molecular species produced in the carbon tube were identified. The aqueous solution (20 μl) containing 1.0 mg/ml of each salt was placed in the carbon tube atomizer and heated in a similar manner to usual flameless atomic absorption method. D 2 -lamp was used as a continuous light source and argon gas was employed as an inert sheath gas. The spectra were obtained over the range of wavelength 200 to 350 nm. When alkali halides were feeded, the absorption spectra agreed with those of alkali halide vapors. Therefore, in such cases vapors of the alkali halides were probably produced by the sublimation or vaporization in the atomizer. The spectra of alkali perchlorates were considered to be those of alkali chlorides produced by the pyrolysis of the perchlorates in the atomizer. The absorptions of alkaline earth chlorides below 250 nm were probably due to their gaseous states. Sulfur dioxide was found to be produced by the pyrolysis of alkali sulfates, bisulfates and sulfites in the atomizer, Alkali phosphates and pyrophosphates gave almost identical spectra below 300 nm. Gamma band spectrum of nitrogen monoxide was observed from 200 to 240 nm during ashing at bout 330 0 C for alkali nitrates and nitrites. Ammonia vapor was produced from ammonium halides during drying at about 170 0 C. Although the absorptions of alkali carbonates and hydroxides were almost undetectable, the same spectra as those of alkali halides were observed by the addition of ammonium halides to the solutions of alkali compounds. This shows that alkali halides are produced in the atomizer by the addition of halide ions. (auth.)

  2. ASAS: Computational code for Analysis and Simulation of Atomic Spectra

    Directory of Open Access Journals (Sweden)

    Jhonatha R. dos Santos

    2017-01-01

    Full Text Available The laser isotopic separation process is based on the selective photoionization principle and, because of this, it is necessary to know the absorption spectrum of the desired atom. Computational resource has become indispensable for the planning of experiments and analysis of the acquired data. The ASAS (Analysis and Simulation of Atomic Spectra software presented here is a helpful tool to be used in studies involving atomic spectroscopy. The input for the simulations is friendly and essentially needs a database containing the energy levels and spectral lines of the atoms subjected to be studied.

  3. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Laurent, G.; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A.

    2003-01-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O 6+ + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O 4+ (1s 2 nln ' l ' ) populated after double electron-capture events

  4. The Belgian repository of fundamental atomic data and stellar spectra (BRASS). I. Cross-matching atomic databases of astrophysical interest

    Science.gov (United States)

    Laverick, M.; Lobel, A.; Merle, T.; Royer, P.; Martayan, C.; David, M.; Hensberge, H.; Thienpont, E.

    2018-04-01

    Context. Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the Universe. Despite the significant work underway to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can propagate throughout the entire field of astronomy. Aims: The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage. To prepare for it, we first compiled multiple literature occurrences of many individual atomic transitions, from several atomic databases of astrophysical interest, and assessed their agreement. In a second step synthetic spectra will be compared against extremely high-quality observed spectra, for a large number of BAFGK spectral type stars, in order to critically evaluate the atomic data of a large number of important stellar lines. Methods: Several atomic repositories were searched and their data retrieved and formatted in a consistent manner. Data entries from all repositories were cross-matched against our initial BRASS atomic line list to find multiple occurrences of the same transition. Where possible we used a new non-parametric cross-match depending only on electronic configurations and total angular momentum values. We also checked for duplicate entries of the same physical transition, within each retrieved repository, using the non-parametric cross-match. Results: We report on the number of cross-matched transitions for each repository and compare their fundamental atomic parameters. We find differences in log(gf) values of up to 2 dex or more. We also find and report that 2% of our line list and Vienna atomic line database retrievals are composed of duplicate transitions. Finally we provide a number of examples of atomic spectral lines

  5. Polarization-dependent spectra in the photoassociative ionization of cold atoms in a bright sodium beam

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jaime; DeGraffenreid, William; Weiner, John

    2002-01-01

    We report measurements of cold photoassociative ionization (PAI) spectra obtained from collisions within a slow, bright Na atomic beam. A high-brightness atom flux, obtained by optical cooling and focusing of the atom beam, permits a high degree of alignment and orientation of binary collisions with respect to the laboratory atom-beam axis. The results reveal features of PAI spectra not accessible in conventional magneto-optical trap studies. We take advantage of this high degree of alignment to selectively excite autoionizing doubly excited states of specific symmetry

  6. On unfolding counting-rate spectra of recoil-proton neutron detectors

    International Nuclear Information System (INIS)

    Yeivin, Yehuda

    1983-01-01

    This note proposes a possible scheme for unfolding recoil-proton neutron detector data, in which at first the undistorted proton source spectrum is derived. The main argument in favour of this scheme is that, compared with the conventional scheme, it necessitates somewhat weaker assumptions with respect to the unknown spectrum above the detector's upper energy cutoff, and would therefore be more reliable. We also demonstrate a simple, elementary proof of the wall effect correction for spherical detectors, and, in order to gain insight of the potential merits of the proposed unfolding scheme, illustrate our main argument by considering a hypothetic linear range-energy relation, in which case complete unfolding becomes possible with no assumptions at all on the proton spectrum above the cutoff energy. (author)

  7. COREL, Ion Implantation in Solids, Range, Straggling Using Thomas-Fermi Cross-Sections. RASE4, Ion Implantation in Solids, Range, Straggling, Energy Deposition, Recoils. DAMG2, Ion Implantation in Solids, Energy Deposition Distribution with Recoils

    International Nuclear Information System (INIS)

    Brice, D. K.

    1979-01-01

    1 - Description of problem or function: COREL calculates the final average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 calculates the instantaneous average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 also calculates the instantaneous rate at which the projectile is depositing energy into atomic processes (damage) and into electronic processes (electronic excitation), the average range of target atom recoils projected onto the direction of motion of the projectiles, and the standard deviation in the recoil projected range. DAMG2 calculates the distribution in depth of the energy deposited into atomic processes (damage), electronic processes (electronic excitation), or other energy-dependent quality produced by energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. 2 - Method of solution: COREL: The truncated differential equation which governs the several variables being sought is solved through second-order by trapezoidal integration. The energy-dependent coefficients in the equation are obtained by rectangular integration over the Thomas-Fermi elastic scattering cross section. RASE4: The truncated differential equation which governs the range and straggling variables is solved through second-order by trapezoidal integration. The energy

  8. Coincident Auger electron and recoil ion momentum spectroscopy for low-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, G. E-mail: glaurent@ganil.fr; Tarisien, M.; Flechard, X.; Jardin, P.; Guillaume, L.; Sobocinski, P.; Adoui, L.; Bordenave-Montesquieu, A.; Bordenave-Montesquieu, D.; Chesnel, J.-Y.; Fremont, F.; Hennecart, D.; Lienard, E.; Maunoury, L.; Moretto-Capelle, P.; Cassimi, A

    2003-05-01

    The recoil ion momentum spectroscopy (RIMS) method combined with the detection of Auger electrons has been used successfully to analyse double electron capture following O{sup 6+} + He collisions at low impact velocities. Although RIMS and Auger spectroscopies are known to be efficient tools to obtain details on the primary processes occurring during the collision, the conjunction of both techniques provides new insights on the electron capture process. In the present experiment, triple coincidence detection of the scattered projectile, the target recoil ion and the Auger electron allows for a precise identification of the doubly excited states O{sup 4+} (1s{sup 2}nln{sup '}l{sup '}) populated after double electron-capture events.

  9. Penetration of HEPA filters by alpha recoil aerosols

    International Nuclear Information System (INIS)

    McDowell, W.J.; Seeley, F.G.; Ryan, M.T.

    1976-01-01

    The self-scattering of alpha-active substances has long been recognized and is attributed to expulsion of aggregates of atoms from the surface of alpha-active materials by alpha emission recoil energy, and perhaps to further propulsion of these aggregates by subsequent alpha recoils. Workers at the University of Lowell recently predicted that this phenomenon might affect the retention of alpha-active particulate matter by HEPA filters, and found support in experiments with 212 Pb. Tests at Oak Ridge National Laboratory have confirmed that alpha-emitting particulate matter does penetrate high-efficiency filter media, such as that used in HEPA filters, much more effectively than do non-radioactive or beta-gamma active aerosols. Filter retention efficiencies drastically lower than the 99.9 percent quoted for ordinary particulate matter were observed with 212 Pb, 253 Es, and 238 Pu sources, indicating that the phenomenon is common to all of these and probably to all alpha-emitting materials of appropriate half-life. Results with controlled air-flow through filters in series are consistent with the picture of small particles dislodged from the ''massive'' surface of an alpha-active material, and then repeatedly dislodged from positions on the filter fibers by subsequent alpha recoils. The process shows only a small dependence on the physical form of the source material. Oxide dust, nitrate salt, and plated metal all seem to generate the recoil particles effectively. The amount penetrating a series of filters depends on the total amount of activity in the source material, its specific activity, and the length of time of air flow

  10. Adsorption of Hydrogen and Potassium on GaAs(110) Studied by Time-of-Flight Scattering and Recoiling Spectrometry

    International Nuclear Information System (INIS)

    Gayone, J.E.

    2000-01-01

    We study the adsorption of H and K on a GaAs(ll0) surface by Time-of-Flight Ion-Scattering (ISS) and Direct Recoiling (DRS) Spectrometry. The method for cleaning and preparation of the surface consists on cycles of grazing bombardment with 20 keV Ar+ combined with annealing. Since this is the first time that this method is applied to a semiconductor surface, the crystallographic structure of the grazing ion bombarded surface is first characterized by ISS and DRS. The variations of the projectile scattered intensity as a function of the incident and azimuthal angles are interpreted in terms of calculated shadowing and focusing effects. The crystallographic structure of the GaAs(ll0) surface prepared by this method presents the surface relaxation observed for cleaved surfaces. The adsorption of H on GaAs(ll0) is studied as a function of the H 2 exposure and the surface temperature.The behavior of the intensity of projectiles scattered from the first two As and Ga layers is consistent with a process of unrelaxation towards the ideal surface termination upon H adsorption. We have determined that for exposures of 1000 L and 2000 L the AsI-GaI splitting corresponding to the unrelaxed surface is reduced to ΔZ = (0.0 n 0.08) A, as it should be expected for the bulk terminated surface. In addition, the fraction of the surface remaining relaxed as in the clean surface decreases strongly with the H 2 exposure. The H atoms adsorbed on the surface can be detected as recoils produced in quasi-single collisions allowing the study of the adsorption kinetics. The variations of the H recoil intensity with the exposure show that the sticking coefficient changes strongly with the H coverage since the beginning the adsorption. Above ∼ 500 L, the adsorption kinetics deviates from the initial behavior and the sticking coefficient becomes almost constant and small. The simultaneous measurements of the H coverage (with DRS) and the changes in the atomic structure (with ISS) as a

  11. Heavy ion recoil spectrometry of Si{sub x}Ge{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S.R.; Johnston, P.N.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Hult, M.; Whitlow, H.J. [Lund Institute of Technology, Solvegatan (Sweden). Department of Nuclear Physics; Zaring, C.; Oestling, M. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics

    1993-12-31

    Mass and energy dispersive recoil spectrometry employing 77 MeV {sup 127}I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si{sub x}Ge{sub 1-x} grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si{sub x}Ge{sub 1-x} layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs.

  12. Heavy ion recoil spectrometry of Si{sub x}Ge{sub 1-x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S R; Johnston, P N; Bubb, I F [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Hult, M; Whitlow, H J [Lund Institute of Technology, Solvegatan (Sweden). Department of Nuclear Physics; Zaring, C; Oestling, M [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Solid State Electronics

    1994-12-31

    Mass and energy dispersive recoil spectrometry employing 77 MeV {sup 127}I ions from ANTARES (FN Tandem) facility at Lucas Heights has been used to examine the isotopic composition of samples of Si{sub x}Ge{sub 1-x} grown at the Australian National University by Electron Beam Evaporation (EBE). The recoiling target nuclei were analysed by a Time Of Flight and Energy (TOF-E) detector telescope composed of two timing pickoff detectors and a surface barrier (energy) detector. From the time of flight and energy, the ion mass can be determined and individual depth distributions for each element can be obtained. Recoil spectrometry has shown the presence of oxygen in the Si{sub x}Ge{sub 1-x} layer and has enabled the separate determination of energy spectra for individual elements. 9 refs., 3 figs.

  13. Hot atom chemistry of monovalent atoms in organic condensed phases

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1975-01-01

    The advantages and disadvantages of hot atom studies in condensed organic phases are considered, and recent advances in condensed phase organic hot atom chemistry of recoil tritium and halogen atoms are discussed. Details are presented of the present status and understanding of liquid phase hot atom chemistry and also that of organic solids. The consequences of the Auger effect in condensed organic systems are also considered. (author)

  14. Thermal annealing and recoil reactions of 128I atoms in thermal neutron activated iodate-nitrate mixed crystals

    International Nuclear Information System (INIS)

    Mishra, S.P.; Sharma, R.B.

    1983-01-01

    Recoil reaction of 128 I atoms in neutron irradiated mixed crystals (iodate-nitrate) have been studied by thermal annealing methods. The retention of 128 I (i.e. radioactivity of 128 I retained in the parent chemi cal form) decreases sharply in the beginning and then attains saturation value with the increase in concentration of nitrate. The annealing followed the usual characteristic pattern, viz., a steep rise in retention within the first few minutes and then a saturation value thereafter but these saturation values in case of mixed crystals are lower in comparison to those of pure iodate targets. The process obeys simple first order kinetics and the activation energy obtained are of lower order than those obtained in case of pure targets. The results are discussed in the light of present ideas and the role of nitrate ion and its radiolytic products have also been invoked. (author)

  15. Role of the recoil effect in two-center interference in X-ray photoionization

    International Nuclear Information System (INIS)

    Ueda, K.; Liu, X.-J.; Pruemper, G.; Lischke, T.; Tanaka, T.; Hoshino, M.; Tanaka, H.; Minkov, I.; Kimberg, V.; Gel'mukhanov, F.

    2006-01-01

    X-ray photoelectron spectra of the N 2 molecule are studied both experimentally and theoretically in the extended energy region up to 1 keV. The ratio of the photoionization cross sections for the gerade and ungerade core levels displays a modulation in the high energy region caused by the two-center interference, as predicted by Cohen and Fano (CF) in 1966. The physical background of this CF effect is the same as in Young's double-slit experiment. We have found that the interference pattern deviates significantly from the CF prediction. The origin of such a breakdown of the CF formula is the scattering of the photoelectron inside the molecule and the momentum transfer from the emitted fast photoelectron to the nuclei. Usually the recoil effect is small. We show that the electron recoil strongly affects the two-center interference pattern. Both stationary and dynamical aspects of the recoil effect shed light on the role of the momentum exchange in the two-center interference

  16. Interplay of intra-atomic and interatomic effects: An investigation of the 2p core level spectra of atomic Fe and molecular FeCl2

    International Nuclear Information System (INIS)

    Richter, T.; Wolff, T.; Zimmermann, P.; Godehusen, K.; Martins, M.

    2004-01-01

    The 2p photoabsorption and photoelectron spectra of atomic Fe and molecular FeCl 2 were studied by photoion and photoelectron spectroscopy using monochromatized synchrotron radiation and atomic or molecular beam technique. The atomic spectra were analyzed with configuration interaction calculations yielding excellent agreement between experiment and theory. For the analysis of the molecular photoelectron spectrum which shows pronounced interatomic effects, a charge transfer model was used, introducing an additional 3d 7 configuration. The resulting good agreement between the experimental and theoretical spectrum and the remarkable similarity of the molecular with the corresponding spectrum in the solid phase opens a way to a better understanding of the interplay of the interatomic and intra-atomic interactions in the 2p core level spectra of the 3d metal compounds

  17. On recoil energy dependent void swelling in pure copper: Theoretical treatment

    International Nuclear Information System (INIS)

    Golubov, S.I.; Singh, B.N.; Trinkaus, H.

    2000-06-01

    Over the years, an enormous amount of experimental results have been reported on damage accumulation (e.g. void swelling) in metals and alloys irradiated under vastly different recoil energy conditions. Unfortunately, however, very little is known either experimentally or theoretically about the effect of recoil energy on damage accumulation. Recently, dedicated irradiation experiments using 2.5 MeV electrons, 3.0 MeV protons and fission neutrons have been carried out to determine the effect of recoil energy on the damage accumulation behaviour in pure copper and the results have been reported in Part I of this paper (Singh, Eldrup, Horsewell, Ehrhart and Dworschak 2000). The present paper attempts to provide a theoretical framework within which the effect of recoil energy on damage accumulation behaviour can be understood. The damage accumulation under Frenkel pair production (e.g. 2.5 MeV electron) has been treated in terms of the standard rate theory (SRT) model whereas the evolution of the defect microstructure under cascade damage conditions (e.g. 3.0 MeV protons and fission neutrons) has been calculated within the framework of the production bias model (PBM). Theoretical results, in agreement with experimental results, show that the damage accumulation behaviour is very sensitive to recoil energy and under cascade damage conditions can be treated only within the framework of the PBM. The intracascade clustering of self-interstitial atoms (SIAs) and the properties of SIA clusters such as one-dimensional diffusional transport and thermal stability are found to be the main reasons for the recoil energy dependent vacancy supersaturation. The vacancy supersaturation is the main driving force for the void nucleation and void swelling. In the case of Frenkel pair production, the experimental results are found to be consistent with the SRT model with a dislocation bias value of 2 %. (au)

  18. Newly appreciated roles for electrons in ion-atom collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1990-01-01

    Since the previous Debrecen workshop on High-Energy Ion-Atom Collisions there have been numerous experiments and substantial theoretical developments in the fields of fast ion-atom and ion- solid collisions concerned with explicating the previously largely underappreciated role of electrons as ionizing and exciting agents in such collisions. Examples to be discussed include the double electron ionization problem in He; transfer ionization by protons in He; double excitation in He; backward scattering of electrons in He; the role of electron-electron interaction in determining beta parameters for ELC; projectile K ionization by target electrons; electron spin exchange in transfer excitation; electron impact ionization in crystal channels; resonant coherent excitation in crystal channels; excitation and dielectronic recombination in crystal channels; resonant transfer and excitation; the similarity of recoil ion spectra observed in coincidence with electron capture vs. electron loss; and new research on ion-atom collisions at relativistic energies

  19. Implantation of 111In in NTDSi by heavy ion recoil technique

    International Nuclear Information System (INIS)

    Thakare, S.V.; Tomar, B.S.

    1998-01-01

    Heavy ion recoil implantation technique has been used to implant 111 In in n-type silicon using medium energy heavy ion accelerator Pelletron, at TIFR, Colaba, Mumbai. The nuclear reaction used for this purpose was 109 Ag( 7 Li,p4n) 111 In. The beam energy was optimised to be 50 MeV for maximum concentration of the implanted probe atoms. The gamma-ray spectrum of the implanted sample after 24 hours was found to contain only 171 and 245 keV gamma rays of 111 In. The penetration depth of ion is increased to 1.6 μm by heavy ion recoil implantation technique as compared to 0.16 μm with the conventional ion implantation technique. (author)

  20. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  1. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  2. High energy neutron recoil scattering from liquid 4He

    International Nuclear Information System (INIS)

    Holt, R.S.; Needham, L.M.; Paoli, M.P.

    1987-10-01

    The neutron recoil scattering from liquid 4 He at 4.2 K and 1.6 K has been observed for a momentum transfer of 150 A -1 using the Electron Volt Spectrometer on the pulsed neutron source, ISIS. The experiment yielded mean atomic kinetic energy values = 14.8 +- 3 K at 4.2 K and = 14.6 +- 3.2 K at 1.6 K in good agreement with values obtained at lower momentum transfers. (author)

  3. Measurements of the ballistic-phonon component resulting from nuclear and electron recoils in crystalline silicon

    International Nuclear Information System (INIS)

    Lee, A.T.; Cabrera, B.; Dougherty, B.L.; Penn, M.J.; Pronko, J.G.; Tamura, S.

    1996-01-01

    We present measurements of the ballistic-phonon component resulting from nuclear and electron recoils in silicon at ∼380 mK. The detectors used for these experiments consist of a 300-μm-thick monocrystal of silicon instrumented with superconducting titanium transition-edge sensors. These sensors detect the initial wavefront of athermal phonons and give a pulse height that is sensitive to changes in surface-energy density resulting from the focusing of ballistic phonons. Nuclear recoils were generated by neutron bombardment of the detector. A Van de Graaff proton accelerator and a thick 7 Li target were used. Pulse-height spectra were compared for neutron, x-ray, and γ-ray events. A previous analysis of this data set found evidence for an increase in the ballistic-phonon component for nuclear recoils compared to electron recoils at a 95% confidence level. An improved understanding of the detector response has led to a change in the result. In the present analysis, the data are consistent with no increase at the 68% confidence level. This change stems from an increase in the uncertainty of the result rather than a significant change in the central value. The increase in ballistic phonon energy for nuclear recoils compared to electron recoils as a fraction of the total phonon energy (for equal total phonon energy events) was found to be 0.024 +0.041 -0.055 (68% confidence level). This result sets a limit of 11.6% (95% confidence level) on the ballistic phonon enhancement for nuclear recoils predicted by open-quote open-quote hot spot close-quote close-quote and electron-hole droplet models, which is the most stringent to date. To measure the ballistic-phonon component resulting from electron recoils, the pulse height as a function of event depth was compared to that of phonon simulations. (Abstract Truncated)

  4. Bibliography on atomic energy levels and spectra. Special pub., Jul 1971--Jun 1975

    International Nuclear Information System (INIS)

    Hagan, L.

    1977-01-01

    This is the first supplement to the NBS Special Publication 363, 'Bibliography on Atomic Energy Levels and Spectra, July 1968 through June 1971,' and it covers the most recent literature from July 1971 through June 1975. It contains approximately 2150 references classified by subject for individual atoms and atomic ions. A number index identifies the references. An author index is included. References included contain data on energy levels, classified lines, wavelengths, Zeeman effect, Stark effect, hyperfine structure, isotope shift, ionization potentials, or theory which gives results for specific atoms or atomic ions

  5. Momentum spectra for single and double electron ionization of He in relativistic collisions

    International Nuclear Information System (INIS)

    Wood, C.J.; Olson, R.E.

    1997-08-01

    The complete momentum spectra for single and double ionization of He by 1GeV/u (β=0.88) U 92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r 12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons. (orig.)

  6. Oxygen recoil implant from SiO2 layers into single-crystalline silicon

    International Nuclear Information System (INIS)

    Wang, G.; Chen, Y.; Li, D.; Oak, S.; Srivastav, G.; Banerjee, S.; Tasch, A.; Merrill, P.; Bleiler, R.

    2001-01-01

    It is important to understand the distribution of recoil-implanted atoms and the impact on device performance when ion implantation is performed at a high dose through surface materials into single crystalline silicon. For example, in ultralarge scale integration impurity ions are often implanted through a thin layer of screen oxide and some of the oxygen atoms are inevitably recoil implanted into single-crystalline silicon. Theoretical and experimental studies have been performed to investigate this phenomenon. We have modified the Monte Carlo ion implant simulator, UT-Marlowe (B. Obradovic, G. Wang, Y. Chen, D. Li, C. Snell, and A. F. Tasch, UT-MARLOWE Manual, 1999), which is based on the binary collision approximation, to follow the full cascade and to dynamically modify the stoichiometry of the Si layer as oxygen atoms are knocked into it. CPU reduction techniques are used to relieve the demand on computational power when such a full cascade simulation is involved. Secondary ion mass spectrometry (SIMS) profiles of oxygen have been carefully obtained for high dose As and BF 2 implants at different energies through oxide layers of various thicknesses, and the simulated oxygen profiles are found to agree very well with the SIMS data. [copyright] 2001 American Institute of Physics

  7. Systematic comparisons between the 4d spectra of lanthanide atoms and solids

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, E R [Bonn Univ. (Germany, F.R.). Physikalisches Inst.

    1979-02-14

    It is shown that the lanthanides can be divided into two groups according to the occupation of the 4f subshell in the solid and in the atom. In the first group the 4d absorption spectrum in the atom and in the solid are similar. In the second group the atomic spectrum of the element with nuclear charge Z corresponds to the solid with nuclear charge (Z + 1). Predictions are made for the 4d spectra of those lanthanides which remain to be observed.

  8. Systematic comparisons between the 4d spectra of lanthanide atoms and solids

    International Nuclear Information System (INIS)

    Radtke, E.R.

    1979-01-01

    It is shown that the lanthanides can be divided into two groups according to the occupation of the 4f subshell in the solid and in the atom. In the first group the 4d absorption spectrum in the atom and in the solid are similar. In the second group the atomic spectrum of the element with nuclear charge Z corresponds to the solid with nuclear charge (Z + 1). Predictions are made for the 4d spectra of those lanthanides which remain to be observed. (author)

  9. Valter Ritz as a theoretical physicist and his research on atomic spectra theory

    International Nuclear Information System (INIS)

    El'yashevich, M.A.; Kemberovskaya, N.G.; Tomil'chik, L.M.

    1995-01-01

    The article presents a historic-methodological analysis of the scientific heritage of an outstanding Swiss physicist Walter Ritz (1878-1909); the analysis is based on the study of a complete collection of his works published in 1911. In addition to a general description of Ritz's works which comprise publications in spectroscopy, variational method and electrodynamics, the article deals in detail with this fundamental research into atomic spectra theory. Elastic and magnetic model of the atom proposed by Ritz for explaining atomic spectra within the framework of the classical approach are discussed. It is shown that the generalized formulas of Balmer and Rydbery, as well as the combination principle which served later as a basis for formalting Bohr's condition of frequencies, were derived by Ritz as regions corollaries of this models and were out of semiempiric nature, as was assumed. 124 refs

  10. Multivariate analysis method for energy calibration and improved mass assignment in recoil spectrometry

    International Nuclear Information System (INIS)

    El Bouanani, Mohamed; Hult, Mikael; Persson, Leif; Swietlicki, Erik; Andersson, Margaretha; Oestling, Mikael; Lundberg, Nils; Zaring, Carina; Cohen, D.D.; Dytlewski, Nick; Johnston, P.N.; Walker, S.R.; Bubb, I.F.; Whitlow, H.J.

    1994-01-01

    Heavy ion recoil spectrometry is rapidly becoming a well established analysis method, but the associated data analysis processing is still not well developed. The pronounced nonlinear response of silicon detectors for heavy ions leads to serious limitation and complication in mass gating, which is the principal factor in obtaining energy spectra with minimal cross talk between elements. To overcome the above limitation, a simple empirical formula with an associated multiple regression method is proposed for the absolute energy calibration of the time of flight-energy dispersive detector telescope used in recoil spectrometry. A radical improvement in mass assignment was realized, which allows a more accurate and improved depth profiling with the important feature of making the data processing much easier. ((orig.))

  11. High-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei by pion-transfer reactions of inverse kinematics using the GSI cooler ring ESR

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1991-02-01

    Many studies published in the past are reviewed first in relation to high-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei. The report then describes a procedure for applying the method of inverse kinematics to the case of (d, 3 He) reactions. The (d, 3 He) reaction in inverse kinematics is feasible from practical viewpoints. Thus a discussion is made of the inverse kinematics in which a heavy-ion beam ( 208 Pb for instance) with a projectile kinetic energy hits a deuteron target and ejected recoil 3 He nuclei are measured in the forward direction. The recoil momentum is calculated as a function of the Q value. Analysis shows that the recoil spectroscopy with inverse kinematics can be applied to the case of (d, 3 He) reaction, which will yield a very high mass resolution. The experimental setup for use in the first stage is then outlined, and a simple detector configuration free of magnetic field is discussed. These investigations demonstrate that the (d, 3 He) reaction in inverse kinematics provides a promising tool for obtaining high-resolution spectra of deeply-bound pionic atoms. (N.K.)

  12. The effect of decaying atomic states on integral and time differential Moessbauer spectra

    International Nuclear Information System (INIS)

    Kankeleit, E.

    1975-01-01

    Moessbauer spectra for time dependent monopole interaction have been calculated for the case that the nuclear transition feeding the Moessbauer state excites an electric state of the atom. This is assumed to decay in a time comparable with the lifetime of the Moessbauer state. Spectra have been calculated for both time differential and integral experiments. (orig.) [de

  13. A Measurement of the Recoil Polarization of Electroproduced Λ(1116)

    Energy Technology Data Exchange (ETDEWEB)

    McAleer, Simeon B. [Florida State Univ., Tallahassee, FL (United States)

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p → e' + K+ + Λ(1116) for events where Λ(1116) subsequently decayed via the channel Λ(1116) → p + π-. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q2 range from 0.5 to 2.8 GeV2 and nearly the entire range in the center of mass angles. The proton angular distribution in the Λ(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos θ$K+\\atop{cm}$ dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the Λ(1116) as a function of both cos θ$K+\\atop{cm}$ and W.

  14. Use of the on-line Moessbauer effect as a contribution to the study of recoil defects in solids

    International Nuclear Information System (INIS)

    Jeandey, Christian

    1974-01-01

    This research thesis addresses the study of effects of nuclear reactions, also known as 'after-effects' such as atomic disorders resulted from atom recoil, but also possible chemical modifications. The author more particularly focuses of recoil defects. He reports a critical review of studies of structure defects (in pure metals, ordered alloys, ionic crystals) performed by using conventional resonance absorption, and then presents an analysis of results of the defect creation dynamics as it had been proposed by other authors. He also proposes an overview of the evolution and disappearance of defects during thermal treatments. After a review of experiments based on the on-line Moessbauer effect, the author reports the study of recoil effects in pure metals (iron, hafnium), in alloys (Fe 1-x Al x , FeGe 2 , cubic, monoclinic and hexagonal FeGe), and in organic complexes (ferrous oxalate, different types of hafnium chelate, hafnium oxide). He finally discusses the electronic properties of different types of iron and hafnium chelate in solid phase [fr

  15. Photoabsorption spectra in the perturbative regime for atoms in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Marxer, H.; Moser, I.; O'Mahony, P.F.; Mota-Furtado, F.

    1994-01-01

    We calculate photoabsorption spectra of atoms in crossed electric and magnetic fields using a truncated basis of Coulomb eigenfunctions. The method yields spectra in the regime where inter-n-mixing is not dominant and allows for the treatment of non-hydrogenic atoms via a simple recourse to quantum defects. We compare results for hydrogen to those obtained in second order perturbation theory where the residual degeneracy left in first order perturbation theory is completely lifted and we show that only a very small basis size is needed to achieve convergence to within the accuracy of second order perturbation theory. In the case of lithium the coupling of an incomplete hydrogen-like manifold to states with non-negligible quantum defects substantially modifies the spectra obtained in comparison to the purely hydrogenic spectra. In the inter-n-mixing regime we also compare our convoluted results directly with an experimental spectrum for hydrogen and find good agreement below the saddle point. (Author)

  16. Cold-target recoil-ion momentum-spectroscopy: First results and future perspectives of a novel high resolution technique for the investigation of collision induced many-particle reactions

    International Nuclear Information System (INIS)

    Ullrich, J.; Doerner, R.; Mergel, V.; Jagutzki, O.; Spielberger, L.; Schmidt-Boecking, H.

    1994-09-01

    In order to investigate many-particle reaction dynamics in atomic collisions a novel high-resolution technique has been developed, which determines the momentum and the charge state of the slowly recoiling target ions. Using a very cold, thin, and localized supersonic gas jet target a momentum resolution of better than 0.05 a.u. is obtained by measuring the recoil-ion time-of-flight and the recoil-ion trajectory. Because of the very high detection efficiency of nearly 100% this technique is well suited for many-particle coincidence measurements in ionizing collisions. First experimental results for fast ion and electron impact on helium targets are presented. Future applications in atomic collision physics and related areas are discussed. (orig.)

  17. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  18. Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    Science.gov (United States)

    Fuselier, S. A.; Allegrini, F.; Bzowski, M.; Funsten, H. O.; Ghielmetti, A. G.; Gloeckler, G.; Heirtzler, D.; Janzen, P.; Kubiak, M.; Kucharek, H.; hide

    2012-01-01

    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s.

  19. Momentum spectra for single and double electron ionization of He in relativistic collisions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The complete momentum spectra for single and double ionization of He by 1-GeV/u (β=0.88) U 92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r 12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons. copyright 1997 The American Physical Society

  20. Chromium 51 em K2CrO4: reactions of dopant atoms in solid state

    International Nuclear Information System (INIS)

    Valim, J.B.; Nascimento, R.L.G. do; Collins, C.H.; Collins, K.E.

    1986-01-01

    The study of the chemistry of 'dopant' 51 Cr(III) atoms in crystalline Cr(VI) compounds began as a sub-field of Hot Atom Chemistry. We shall review the attempts to use 'dopant' chromium-51 atoms as surrogate chromium recoil atoms with the special property of having a low-energy, recoil-dam-age-free history. These dopant atoms have shown behaviors very similar to those of high energy recoil 51 Gr atoms, thus offering little hope of learning about special damage site structures and reactions by behavioral differences. Recent work has shown that at least some of the 'dopant' 51 Cr(III) is present as a second, non-chromate solid phase in 'doped crystal' experiments. Monodisperse 51 Cr(OH) 3 particles mixed with pure K 2 CrO 4 are very reactive. (Author) [pt

  1. Subthermal linewidths in photoassociation spectra of cold alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Machholm, Mette; Julienne, Paul S.; Suominen, Kalle-Antti

    2002-01-01

    Narrow s-wave features with subthermal widths are predicted for the 1 Π g photoassociation spectra of cold alkaline-earth-metal atoms. The phenomenon is explained by numerical and analytical calculations. These show that only a small subthermal range of collision energies near threshold contributes to the s-wave features that are excited when the atoms are very far apart. The resonances survive thermal averaging, and may be detectable for Ca cooled near the Doppler cooling temperature of the 4 1 P 1 S laser-cooling transition

  2. Resonance fluorescence spectra of three-level atoms in a squeezed vacuum

    International Nuclear Information System (INIS)

    Ferguson, M.R.; Ficek, Z.; Dalton, B.J.

    1996-01-01

    The fluorescence field from one of the two allowed transitions in a three-level atom can sense squeezed fluctuations of a vacuum field coupled to the other transition. We examine the fluorescence spectra of strongly driven three-level atoms in Λ, V, and cascade configurations in which one of the two one-photon transitions is coupled to a finite-bandwidth squeezed vacuum field, when the bandwidth is much smaller than the difference in the atomic transition frequencies, though much larger than atomic decay rates and Rabi frequencies of the driving fields. The driving fields are on one-photon resonance, and the squeezed vacuum field is generated by a degenerate parameter oscillator. Details are only given for the Λ configuration. The extension to the V and cascade configurations is straightforward. We find that in all configurations the fluorescence spectra of the transition not coupled to the squeezed vacuum field are composed of five lines, one central and two pairs of sidebands, with intensities and widths strongly influenced by the squeezed vacuum field. However, only the central component and the outer sidebands exhibit a dependence on the squeezing phase. We also examine the fluorescence spectrum for the cascade configuration with a squeezed vacuum field on resonance with the two-photon transition between the ground and the most excited states and now generated by a nondegenerate parametric oscillator. In this case, where the squeezed vacuum field can be made coupled to both transitions, all spectral lines depend on the squeezing phase. The spectral features are explained in terms of the dressed-atom model of the system. We show that the coherent mixing of the atomic states by the strong driving fields modifies transition rates between the dressed states, which results in the selective phase dependence of the spectral features. copyright 1996 The American Physical Society

  3. A note on the random walk theory of recoil movement in prolonged ion bombardment

    International Nuclear Information System (INIS)

    Koponen, Ismo

    1994-01-01

    A characteristic function is derived for the probability distribution of final positions of recoil atoms in prolonged ion bombardment of dense matter. The derivation is done within the framework of Poissonian random walk theory using a jump distribution, which is somewhat more general than those studied previously. ((orig.))

  4. High resolution atomic spectra of rare earths : progress report

    International Nuclear Information System (INIS)

    Saksena, G.D.; Ahmad, S.A.

    1976-01-01

    High resolution studies of atomic spectra of neodymium and gadolinium are being carried out on a recording Fabry-Perot spectrometer. The present progress report concerns work done on new assignments as well as confirmation of recently assigned electronic configurations and evaluation of isotope shifts of energy levels which have been possible from the isotope shift data obtained for several transitions of NdI, NdII and GdI, GdII respectively. (author)

  5. D0-brane recoil revisited

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [California Institute of Technology 452-48, Pasadena, CA 91125 (United States); Nakamura, Shin [Physics Department, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2006-12-15

    One-loop string scattering amplitudes computed using the standard D0-brane conformal field theory (CFT) suffer from infrared divergences associated with recoil. A systematic framework to take recoil into account is the worldline formalism, where fixed boundary conditions are replaced by dynamical D0-brane worldlines. We show that, in the worldline formalism, the divergences that plague the CFT are automatically cancelled in a non-trivial way. The amplitudes derived in the worldline formalism can be reproduced by deforming the CFT with a specific 'recoil operator', which is bilocal and different from the ones previously suggested in the literature.

  6. The relative reactivities of ethane, ethane-d6, n-butane and neopentane towards 'hot' tritium atoms

    International Nuclear Information System (INIS)

    Urch, D.S.; Welch, M.J.

    1974-01-01

    The reactions of recoil tritium with ethane-butane, and ethane-neopentane mixtures have been studied in the presence and absence of helium moderator. It is shown that the larger molecules are labelled by recoil atoms of a higher mean energy than those which label ethane. It is also shown that hydrogen atoms at CH 2 sites are replaced by higher energy tritium atoms than those at CH 3 sites. An analogy is drawn with the abstraction reaction and a simple unified model for high-energy recoil tritium reactions at a C-H site is proposed. The more complex the other groups attached to the carbon the greater the mean energy of the recoil atoms reacting with the C-H bond. Experiments with ethane-d 6 established that the primary isotope effect for abstraction is comparable to that for displacement with a value of 1.25 approximately 1.30. (orig.) [de

  7. Photoelectron spectra as a probe of double-core resonsance in two-electron atoms

    International Nuclear Information System (INIS)

    Grobe, R.; Haan, S.L.; Eberly, J.H.

    1996-01-01

    The authors calculate photoelectron spectra for a two-electron atom under the influence of two external driving fields, using an essential states formalism. They focus on the regime of so-called coherence transfer, in which electron-electron correlation transfers field-induced photo-coherence from one electron to the other. In the case studied here, two laser fields are resonant with coupled atomic transitions, in the manner familiar from three-level dark-state spectroscopy. Dynamical two electron effects are monitored via the photoelectron energy spectrum. The authors show that the distribution of the photoelectron energies can be singly, doubly or triply peaked depending on the relative laser intensities. The electron spectra are independent of the turn-on sequence of the fields

  8. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1998-01-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by 10 B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark experiments

  9. Line Identification of Atomic and Ionic Spectra of Holmium in the Near-UV. Part I. Spectrum of Ho i

    Energy Technology Data Exchange (ETDEWEB)

    Al-Labady, N.; Özdalgiç, B. [Graduate School of Engineering and Sciences, Istanbul University, TR-34452 Beyazıt, Istanbul (Turkey); Er, A.; Güzelçimen, F.; Öztürk, I. K.; Başar, Gö. [Faculty of Science, Department of Physics, Istanbul University, TR-34134 Vezneciler, Istanbul (Turkey); Kröger, S. [Hochschule für Technik und Wirtschaft Berlin, Wilhelminenhofstr. 75A, D-12459 Berlin (Germany); Kruzins, A.; Tamanis, M.; Ferber, R., E-mail: ikanat@istanbul.edu.tr [Laser Centre, The University of Latvia, Rainis Boulevard 19, LV-1586 Riga (Latvia)

    2017-02-01

    The Fourier Transform spectra of a Holmium hollow cathode discharge lamp have been investigated in the UV spectral range from 25,000 up to 31,530 cm{sup −1} (317 to 400 nm). Two Ho spectra have been measured with neon and argon as buffer gases. Based on the intensity ratios from these two spectra, a distinction was made between atomic and ionic lines (ionic lines are discussed in an accompanying paper). Using the known Ho i energy levels, 71 lines could be classified as transitions of atomic Ho, 34 of which have not been published previously. Another 32 lines, which could not be classified, are listed in the literature and assigned as atomic Ho. An additional 370 spectral lines have been assigned to atomic Ho based on the signal-to-noise ratio in the two spectra measured under different discharge conditions, namely with buffer gases argon and neon, respectively. These 370 lines have not been previously listed in the literature.

  10. Multiple scattering problems in heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    A number of groups use Heavy Ion Elastic Recoil Detection Analysis (HIERDA) to study materials science problems. Nevertheless, there is no standard methodology for the analysis of HIERDA spectra. To overcome this deficiency we have been establishing codes for 2-dimensional data analysis. A major problem involves the effects of multiple and plural scattering which are very significant, even for quite thin (∼100 nm) layers of the very heavy elements. To examine the effects of multiple scattering we have made comparisons between the small-angle model of Sigmund et al. and TRIM calculations. (authors)

  11. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia)

    1993-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  12. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S H; Suter, G F [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A; Green, T H [Macquarie Univ., North Ryde, NSW (Australia)

    1994-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  13. Recoil generated radiotracers in studies of molecular dynamics

    International Nuclear Information System (INIS)

    Spicer, L.D.

    1981-01-01

    This chapter summarizes many of the contributions that the recoil technique of generating excited radiotracer atoms in the presence of a thermal environment is making to the field of chemical dynamics. Specific topics discussed critically include characterization of the generation and behavior of excited molecules including fragmentation kinetics and energy transfer, measurement of thermal and hot kinetic parameters, and studies of reaction mechanisms and stereochemistry as a function of reaction energy. Distinctive features that provide unique approaches to dynamical problems are evaluated in detail and the complementarity with more conventional techniques is addressed. Prospects for future applications are also presented

  14. Interpreting Recoil for Undergraduate Students

    Science.gov (United States)

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  15. Recoil and conversion electron considerations of the {sup 166}Dy/{sup 166}Ho in vivo generator

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, J.R. [North-West Univ., Mmabatho (South Africa). CARST; Szuecs, Z. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry; Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Takacs, S.; Jarvis, N. [Hungarian Academy of Sciences, Debrecen (Hungary). Inst. of Nuclear Research; Jansen, D. [Nesca (South African Nuclear Energy Corporation Ltd.), Pretoria (South Africa). Radiochemistry

    2012-07-01

    The use of radionuclides as potential therapeutic radiopharmaceuticals is increasingly investigated. An important aspect is the delivery of the radionuclide to the target, i.e. the radionuclide is not lost from the chelating agent. For in vivo generators, it is not only the log K of complexation between the metal ion and the chelator that is important, but also whether the daughter radionuclide stays inside the chelator after decay of the parent radionuclide. In our previous work, we showed that the classical recoil effect is only applicable for decays with a Q value higher than 0.6 MeV (in the atomic mass range around 100). However, Zhernosekov et al. published a result for {sup 140}Nd/{sup 140}Pr (Q = 0.222 MeV) which indicated that > 95% of the daughter ({sup 140}Pr) was lost by a DOTA chelator upon decay of {sup 140}Nd. The authors ascribed this to the ''post-effect''. Their experiment was repeated with the {sup 166}Dy/{sup 166}Ho generator to ascertain whether our calculations were correct. It was found that 72% of the daughter ({sup 166}Ho) was liberated from the DOTA chelator, indicating that the 'post effect' does exist in contrast to our recoil calculations. Upon further investigation, we determined that one should not only consider recoil energy levels but also the mode of decay which was able to explain the partial recoil found for {sup 166}Dy/{sup 166}Ho. It is concluded for the {sup 166}Dy/{sup 166}Ho system that the low recoil energy of the daughter nucleus {sup 166}Ho is not a sufficient reason to rule out release of the nuclide from chelators. On the other hand, we found that the ratio of the {sup 166}Ho that gets released corresponds to the ratio of relaxation of Ho atoms via the Auger process. (orig.)

  16. Fourier transform infrared emission spectra of atomic rubidium: g- and h-states

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Ferus, Martin; Kubelík, Petr; Chernov, Vladislav E.; Zanozina, Ekaterina M.

    2012-01-01

    Roč. 45, č. 17 (2012), s. 175002 ISSN 0953-4075 R&D Projects: GA AV ČR IAAX00100903 Institutional support: RVO:61388955 Keywords : Fourier transform infrared emission spectra * atomic rubidium * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.031, year: 2012

  17. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  18. Recoil effect on β-decaying in vivo generators, interpreted for 103Pd/103mRh

    International Nuclear Information System (INIS)

    Szucs, Zoltan; Rooyen, Johann van; Zeevaart, Jan Rijn

    2009-01-01

    The use of Auger emitters as potential radiopharmaceuticals is being increasingly investigated. One of the radionuclides of interest is 103m Rh, which can be produced from 103 Ru or 103 Pd in an in vivo generator. A potential problem, however, is the recoil of the 103m Rh out of the carrier molecule and even out of the target cell. In order to determine the likelihood of this happening in the 103 Pd/ 103m Rh, case calculations were made to prove that this does not happen. The equations were generalised for all radionuclides with an atomic mass of 10-240 as a tool for determining the recoil threshold of any β-emitting radionuclide.

  19. Recoil mixing in high-fluence ion implantation

    International Nuclear Information System (INIS)

    Littmark, U.; Hofer, W.O.

    1979-01-01

    The effect of recoil mixing on the collection and depth distribution of implanted projectiles during high-fluence irradiation of a random solid is investigated by model calculations based on a previously published transport theoretical approach to the general problem of recoil mixing. The most pronounced effects are observed in the maximum implantable amount of projectiles and in the critical fluence for saturation. Both values are significantly increased by recoil mixing. (Auth.)

  20. Recoil halogen reactions in liquid and frozen aqueous solutions of biomolecules

    International Nuclear Information System (INIS)

    Arsenault, L.J.; Blotcky, A.J.; Firouzbakht, M.L.; Rack, E.P.; Nebraska Univ., Omaha

    1982-01-01

    Reactions of recoil 38 Cl, 80 Br and 128 I have been studied in crystalline systems of 5-halouracil, 5-halo-2'-deoxyuridine and 5-halouridine as well as liquid and frozen aqueous solutions of these halogenated biomolecules. In all systems expect crystalline 5-iuodouracil the major product was the radio-labelled halide ion. There was no evidence for other halogen inorganic species. The major labelled organic product was the parent molecule. A recoil atom tracer technique was developed to acquire site information of the biomolecule solutes in the liquid and frozen aqueous systems. For all liquid and frozen aqueous systems, the halogenated biomolecules tended to aggregate. For liquid systems, the tendency for aggregation diminished as the solute concentration approached zero, where the probable state of the solute approached a monomolecular dispersion. Unlike the liquid state, the frozen ice lattice demonstated a ''caging effect'' for the solute aggregates which resulted in constant product yields over the whole concentration range. (orig.)

  1. Monte-Carlo simulation of heavy ion elastic recoil detection analysis data to include the effects of large angle plural scattering

    International Nuclear Information System (INIS)

    Johnston, P.N.; Franich, R.D.

    1999-01-01

    Heavy Ion Elastic Recoil Detection Analysis (HIERDA) is becoming widely used to study a range of problems in materials science, however there is no standard methodology for the analysis of HIERDA spectra. Major impediments are the effects of multiple and plural scattering which are very significant, even for quite thin (∼100nm) layers of very heavy elements. To examine the effects of multiple scattering a fast FORTRAN version of TRIM has been adapted to simulate the spectrum of backscattered and recoiled ions reaching the detector. Two problems have been initially investigated. In the first, the detector is positioned beyond the critical angle for single scattering from a pure vanadium target where traditional slab analysis would not predict any scattered yield. In the second, a thin Au layer on a Si substrate is modelled for two different thicknesses of the substrate to investigate the effect of the substrate chosen. The use of multiple processors enabled the acquisition of statistically reasonable simulation spectra for scattered and recoiled ions. For each target modelled, 10 9 incident ions were tracked. The results of the simulations are compared with experimental measurements performed using ToF-E HIERDA at Lucas Heights and show good agreement except in the long tails due to Plural Scattering

  2. Higher order corrections to energy levels of muonic atoms

    International Nuclear Information System (INIS)

    Rinker, G.A. Jr.; Steffen, R.M.

    1975-08-01

    In order to facilitate the analysis of muonic x-ray spectra, the results of numerical computations of all higher order quantum electrodynamical corrections to the energy levels of muonic atoms are presented in tabular and graphical form. These corrections include the vacuum polarization corrections caused by emission and reabsorption of virtual electron pairs to all orders, including ''double-bubble'' and ''cracked-egg'' diagrams. An estimate of the Delbruecke scattering-type correction is presented. The Lamb-shift (second- and fourth-order vertex) corrections have been calculated including the correction for the anomalous magnetic moment of the muon. The relativistic nuclear motion (or recoil) correction as well as the correction caused by the screening of the atomic electrons is presented in graphs. For the sake of completeness a graph of the nuclear polarization as computed on the basis of Chen's approach has been included. All calculations were made with a two-parameter Fermi distribution of the nuclear charge density. 7 figures, 23 references

  3. Scintillation efficiency of nuclear recoil in liquid xenon

    CERN Document Server

    Arneodo, F; Badertscher, A; Benetti, P; Bernardini, E; Bettini, A; Borio di Tigliole, A A; Brunetti, R; Bueno, A G; Calligarich, E; Campanelli, M; Carpanese, C; Cavalli, D; Cavanna, F; Cennini, P; Centro, Sandro; Cesana, A; Cline, D; De Mitri, I; Dolfini, R; Ferrari, A; Gigli-Berzolari, A; Matthey, C; Mauri, F; Mazza, D; Mazzone, L; Meng, G; Montanari, C; Nurzia, G; Otwinowski, S; Palamara, O; Pascoli, D; Pepato, Adriano; Petrera, S; Periale, L; Piano Mortari, G; Piazzoli, A; Picchi, P; Pietropaolo, F; Rancati, T; Rappoldi, A; Raselli, G L; Rebuzzi, D; Revol, Jean Pierre Charles; Rico, J; Rossella, M; Rossi, C; Rubbia, André; Rubbia, Carlo; Sala, P; Scannicchio, D A; Sergiampietri, F; Suzuki, S; Terrani, M; Tian, W; Ventura, Sandro; Vignoli, C; Wang, H; Woo, J; Xu, Z

    2000-01-01

    We present the results of a test done with a Liquid Xenon (LXe) detector for 'Dark Matter' search, exposed to a neutron beam to produce nuclear recoil events simulating those which would be generated by WIMP's elastic scattering. The aim of the experiment was to measure directly the scintillation efficiency of nuclear recoil. The nuclear recoil considered in the test was in the tens of keV range. The ratio of measured visible energy over the true recoil energy was evaluated to be about 20%, in good agreement with the theoretical predictions.

  4. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    Science.gov (United States)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  5. Optimizing Higgs factories by modifying the recoil mass

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jiayin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics; Li, Ying-Ying [Hong Kong Univ. of Science and Technology, Kowloon (China). Dept. of Physics

    2017-10-15

    It is difficult to measure the WW-fusion Higgs production process (e{sup +}e{sup -}→ν anti νh) at a lepton collider with a center of mass energy of 240-250 GeV due to its small rate and the large background from the Higgsstrahlung process with an invisible Z (e{sup +}e{sup -}→hZ, Z→ν anti ν). We construct a modified recoil mass variable, m{sup p}{sub recoil}, defined using only the 3-momentum of the reconstructed Higgs particle, and show that it can better separate the WW-fusion and Higgsstrahlung events than the original recoil mass variable m{sub recoil}. Consequently, the m{sup p}{sub recoil} variable can be used to improve the overall precisions of the extracted Higgs couplings, in both the conventional framework and the effective-field-theory framework. We also explore the application of the m{sup p}{sub recoil} variable in the inclusive cross section measurements of the Higgsstrahlung process, while a quantitive analysis is left for future studies.

  6. Recoil-free Fraction in Amorphous and Nanocrystalline Aluminium Based Alloys

    Science.gov (United States)

    Sitek, Jozef

    2008-10-01

    Aluminium based rapidly quenched alloys of nominal composition Al90Fe7Nb3 and Al94Fe2V4 were studied by Mössbauer spectroscopy. We have measured the recoil-free fraction and thermal shift at room and liquid nitrogen temperature. The frequency modes of atomic vibrations were determined and consequently the characteristic Debye temperature was derived. Characteristic temperature calculated from f-factor was lower than those fitted from second order Doppler shift. This indicates the presence of different frequency modes for amorphous and nanocrystalline states.

  7. Chemistry of nuclear recoil 18F atoms. VIII. Mechanisms and yields of caging reactions in liquid phase 1,1-difluoroethane and 1,1,1-trifluoroethane

    International Nuclear Information System (INIS)

    Manning, R.G.; Root, J.W.

    1976-01-01

    New procedures are reported for the specification of caging yields in nuclear recoil chemistry experiments. All five hot 18 F substitution channels in CH 3 CF 3 and CH 3 CHF 2 exhibit caging at large density. The respective total caged yields at 195 degreeK are 4.0% +- 0.6% and 5.6% +- 0.6%, and the total yields of stabilized substitution products are 8.9% +- 0.4% and 8.6% +- 0.6%. The simplest plausible caging mechanism involves primary Franck--Rabinowitsch radical recombination of 18 F atoms with aliphatic radicals. Density-variation results cannot be used for the qualitative detection of caging reactions unless excitation-stabilization complications have been shown to be unimportant

  8. Recoil saturation of the self-energy in atomic systems

    International Nuclear Information System (INIS)

    Manson, J.R.; Ritchie, R.H.

    1988-01-01

    Within the framework of the general self-energy problem for the interaction of a projectile with a many-body system, we consider the dispersion force between two atoms or between a charge and an atom. Since the Born-Oppenheimer approximation is not made, this is a useful approach for exhibiting non-adiabatic effects. We find compact expressions in terms of matrix elements of operators in the atomic displacement which are not limited by multipole expansions. 7 refs

  9. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    Meisels, G.G.; Freeman, J.P.; Gregory, J.P.; Richardson, W.C.; Sroka, G.J.

    1978-01-01

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U 235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 10 20 to 9.0 x 10 20 eV, and was independent of density between 12.5 and 127.5 g l -1 N 2 O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  10. A proton-recoil neutron spectrometer for time-dependent ion temperatures on the National Ignition Facility

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1995-01-01

    Ion temperatures from inertial confinement fusion targets are usually determined by measuring the Doppler broadening of the neutron spectrum using the time-of-flight method. Measurement systems are generally designed so that the contribution of the duration of neutron production (∼100 ps) to the width of the neutron signal is negligible. This precludes the possibility of time-dependent ion temperature. If, however, one could measure the neutron energy and arrival time at a detector independently, then time-dependent neutron spectra could be obtained, and ion temperature information deduced. A concept utilizing a proton-recoil neutron spectrometer has been developed in which recoil protons from a small plastic foil are measured. From the energy, arrival time, and recoil angle of the recoil proton, the birth time and energy of the incident neutron can be deduced. The sensitivity of the system is low, but the higher anticipated neutron yields from the proposed National Ignition Facility may make the technique feasible. Large scintillator arrays currently in use on the Nova facility for neutron spectral measurements consist of ∼1,000 channels and detect between 50 and 500 counts for typical time-integrated data. Time-dependent results would then require about an order of magnitude larger system. Key issues for making this system feasible will be keeping the cost per channel low while allowing adequately time (∼ 50 ps), energy (20 keV), and angular resolution (2 mrad) for each of the proton detectors

  11. Some aspects of the use of proton recoil proportional counters for fast neutron personnel dosimeters

    International Nuclear Information System (INIS)

    Yule, T.J.; Bennett, E.F.

    1984-01-01

    Gas-filled proton recoil proportional counters have been used extensively for the measurement of neutron spectra in degraded fission-spectrum environments. Some considerations relating to the use of these counters for personnel dosimetry are here described. High sensitivity and good accuracy in the determination of dose-equivalent can be obtained if relatively high pressure hydrogen-filled proportional counters are used as the active element in a dosimeter system

  12. An Evaluation of Magneto Rheological Dampers for Controlling Gun Recoil Dynamics

    Directory of Open Access Journals (Sweden)

    Mehdi Ahmadian

    2001-01-01

    Full Text Available The application of magneto rheological dampers for controlling recoil dynamics is examined, using a recoil demonstrator that includes a single-shot 50 caliber BMG rifle action and a MR damper. The demonstrator is selected such that it can adequately represent the velocities that commonly occur in weapons with a recoil system, and can be used for collecting data for analyzing the effects of MR dampers on recoil dynamics. The MR damper is designed so that it can work effectively at the large velocities commonly occurring in gun recoil, and also be easily adjusted to reasonably optimize the damper performance for the recoil demonstrator. The test results show that it is indeed possible to design and use MR dampers for recoil applications, which subject the damper to relative velocities far larger than the applications that such dampers have commonly been used for (i.e., vehicle applications. Further, the results indicate that the recoil force increases and the recoil stroke decreases nonlinearly with an increase in the damping force. Also of significance is the fact that the adjustability of MR dampers can be used in a closed-loop system such that the large recoil forces that commonly occur upon firing the gun are avoided and, simultaneously, the recoil stroke is reduced. This study points to the need for several areas of research including establishing the performance capabilities for MR dampers for gun recoil applications in an exact manner, and the potential use of such dampers for a fire out of battery recoil system.

  13. Gas powered fluid gun with recoil mitigation

    Science.gov (United States)

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  14. Sub-recoil cooling up to nano-Kelvin. Direct measurement of spatial coherency length. New tests for Levy statistics; Refroidissement laser subrecul au nanokelvin. Mesure directe de la longueur de coherence spatiale. Nouveaux tests des statistiques de Levy

    Energy Technology Data Exchange (ETDEWEB)

    Saubamea, B

    1998-12-15

    This thesis presents a new method to measure the temperature of ultracold atoms from the spatial autocorrelation function of the atomic wave-packets. We thus determine the temperature of metastable helium-4 atoms cooled by velocity selective dark resonance, a method known to cool the atoms below the temperature related to the emission or the absorption of a single photon by an atom at rest, namely the recoil temperature. This cooling mechanism prepares each atom in a coherent superposition of two wave-packets with opposite mean momenta, which are initially superimposed and then drift apart. By measuring the temporal decay of their overlap, we have access to the Fourier transform of the momentum distribution of the atoms. Using this method, we can measure temperatures as low as 5 nK, 800 times as small as the recoil temperature. Moreover we study in detail the exact shape of the momentum distribution and compare the experimental results with two different theoretical approaches: a quantum Monte Carlo simulation and an analytical model based on Levy statistics. We compare the calculated line shape with the one deduced from simulations, and each theoretical model with experimental data. A very good agreement is found with each approach. We thus demonstrate the validity of the statistical model of sub-recoil cooling and give the first experimental evidence of some of its characteristics: the absence of steady-state, the self-similarity and the non Lorentzian shape of the momentum distribution of the cooled atoms. All these aspects are related to the non ergodicity of sub-recoil cooling. (author)

  15. Metal screen retention for thoron daughter free atoms and atoms attached to condensation nuclei

    International Nuclear Information System (INIS)

    Cash, W.; Webb, J.; Fitts, D.; Skrable, K.W.; Chabot, G.E.

    1978-01-01

    Metal support screens available in a 47 mm commercial filter holder (model F3052-4, available from Scientific Products, Bedford, MA) assembly were tested for retention of thoron daughter atoms and atoms attached to condensation nuclei as a function of the flow rate of the carrier air stream. Sources of Pb-212 were generated on the surface of a metal disk by exposing the disk to thoron emanation generated from a special preparation of Th-228. This source of Pb-212, in transient equilibrium with its daughters, was placed in a flow through chamber connected in series to two of the metal screens backed by a glass fiber filter. Most of the recoil product radioactivity emitted from the Pb-212 source and collected on the screens was due to single atoms of Tl-208, which is born by alpha decay of Bi-212 with a recoil energy of 116 keV. Some free atoms of Bi-212 were also observed. Alpha autoradiographs of Filter samples placed on the downstream side of the two metal screens gave proof of the existence of Pb-212 aggregates through their alpha star images. These aggregate recoil particles were found to have a much higher penetration through the screens than free atoms of Tl-208 and Bi-212. Penetration of Tl-208 atoms and ions decreased exponentially as the inverse of the carrier air flow rate. Penetration varied from 0.047 at 0.088 cfm to 0.661 at 2.47 cfm. Atoms of Pb-212 attached to condensation nuclei were obtained by passing thoron into a reaction chamber containing naturally occurring condensation nuclei from the laboratory. The retention for these attached species varied both as a function of the flow rate and the age of the aerosol. The maximum retention varied from 0.525% at 6.38 cfm to 3.5% at 0.636 cfm for respective delay times of 120 and 30 minutes post the introduction of the thoron into the reaction chamber. A system consisting of a single screen backed by a glass fiber filter may be used to obtain the numbers of radon or thoron daughter free atoms and attached

  16. Optimizing Higgs factories by modifying the recoil mass

    Science.gov (United States)

    Gu, Jiayin; Li, Ying-Ying

    2018-02-01

    It is difficult to measure the WW-fusion Higgs production process ({{{e}}}+{{{e}}}-\\to {{ν }}\\bar{{{ν }}}{{h}}) at a lepton collider with a center of mass energy of 240-250 GeV due to its small rate and the large background from the Higgsstrahlung process with an invisible Z ({{{e}}}+{{{e}}}-\\to {{hZ}},{{Z}}\\to {{ν }}\\bar{{{ν }}}). We construct a modified recoil mass variable, {m}{{recoil}}p, defined using only the 3-momentum of the reconstructed Higgs particle, and show that it can separate the WW-fusion and Higgsstrahlung events better than the original recoil mass variable m recoil. Consequently, the {m}{{recoil}}p variable can be used to improve the overall precisions of the extracted Higgs couplings, in both the conventional framework and the effective-field-theory framework. We also explore the application of the {m}{{recoil}}p variable in the inclusive cross section measurements of the Higgsstrahlung process, while a quantitive analysis is left for future studies. JG is Supported by an International Postdoctoral Exchange Fellowship Program between the Office of the National Administrative Committee of Postdoctoral Researchers of China (ONACPR) and DESY. YYL is Supported by Hong Kong PhD Fellowship (HKPFS) and the Collaborative Research Fund (CRF) (HUKST4/CRF/13G)

  17. Effects of quantum chemistry models for bound electrons on positron annihilation spectra for atoms and small molecules

    International Nuclear Information System (INIS)

    Wang Feng; Ma Xiaoguang; Selvam, Lalitha; Gribakin, Gleb; Surko, Clifford M

    2012-01-01

    The Doppler-shift spectra of the γ-rays from positron annihilation in molecules were determined by using the momentum distribution of the annihilation electron–positron pair. The effect of the positron wavefunction on spectra was analysed in a recent paper (Green et al 2012 New J. Phys. 14 035021). In this companion paper, we focus on the dominant contribution to the spectra, which arises from the momenta of the bound electrons. In particular, we use computational quantum chemistry models (Hartree–Fock with two basis sets and density functional theory (DFT)) to calculate the wavefunctions of the bound electrons. Numerical results are presented for noble gases and small molecules such as H 2 , N 2 , O 2 , CH 4 and CF 4 . The calculations reveal relatively small effects on the Doppler-shift spectra from the level of inclusion of electron correlation energy in the models. For atoms, the difference in the full-width at half-maximum of the spectra obtained using the Hartree–Fock and DFT models does not exceed 2%. For molecules the difference can be much larger, reaching 8% for some molecular orbitals. These results indicate that the predicted positron annihilation spectra for molecules are generally more sensitive to inclusion of electron correlation energies in the quantum chemistry model than the spectra for atoms are. (paper)

  18. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    International Nuclear Information System (INIS)

    Singh, Harinder J; Wereley, Norman M

    2014-01-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events. (paper)

  19. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    Science.gov (United States)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  20. A gun recoil system employing a magnetorheological fluid damper

    International Nuclear Information System (INIS)

    Li, Z C; Wang, J

    2012-01-01

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment. (paper)

  1. Position Dependent Spontaneous Emission Spectra of a Λ-Type Atomic System Embedded in a Defective Photonic Crystal

    International Nuclear Information System (INIS)

    Entezar, S. Roshan

    2012-01-01

    We investigate the position dependent spontaneous emission spectra of a Λ-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap reservoir with a defect mode in the band gap. It is shown that, for the atom at the defect location, we have a two-peak spectrum with a wide dark line due to the strong coupling between the atom and the defect mode. While, when the atom is far from the defect location (or in the absence of the defect mode), the spectrum has three peaks with two dark lines due to the coupling between the atom and the photonic band gap reservoir with the largest density of states near the band edges. On the other hand, we have a four-peak spectrum for the atom at the space in between. Moreover, the average spontaneous emission spectra of the atoms uniformly embedded in high dielectric or low dielectric regions are described. It is shown that the atoms embedded in high (low) dielectric regions far from the defect location, effectively couple to the modes of the lower (upper) photonic band. However, the atoms embedded in high dielectric or low dielectric regions at the defect location, are coupled mainly to the defect modes. While, the atoms uniformly embedded in high (low) dielectric regions with a normal distance from the defect location, are coupled to both of defect and lower (upper) photonic band modes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  3. Nuclear-Recoil Energy Scale in CDMS II Silicon Dark-Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; et al.

    2018-03-07

    The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum $^{252}$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $4.8^{+0.7}_{-0.9}$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $\\sim$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $\\sim$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small.

  4. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    International Nuclear Information System (INIS)

    Liu, F. K.; Wang Dong; Chen Xian

    2012-01-01

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q ∼> 0.3 with a minimum possible value q min ≅ 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s –1 in the direction within an angle ∼< 40° relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  5. Neutron spectra measurements and neutron flux monitoring for radiation damage purposes

    International Nuclear Information System (INIS)

    Osmera, B.; Petr, J.; Racek, J.; Rumler, C.; Turzik, Z.; Franc, L.; Holman, M.; Hogel, J.; Kovarik, K.; Marik, P.; Vespalec, R.; Albert, D.; Hansen, V.; Vogel, W.

    1979-09-01

    Neutron spectra were measured for the TR-0, WWR-S and SR-0 experimental reactors using the recoil proton method, 6 Li spectrometry, scintillation spectrometry and activation detectors in a variety of conditions. Neutron fluence was also measured and calculated. (M.S.)

  6. Effect of γ-exposure on retention of recoil 56Mn in permanganates

    International Nuclear Information System (INIS)

    Mishra, S.P.; Vijaya

    2002-01-01

    Full text: γ-exposure effect on recombination of recoil 56 Mn atom in La, Sr and Ba permanganates were studied with a special emphasis to pre-and post-activation γ-ray irradiation treatment using 60 Co source. Permanganates were inactivated by ionizing radiation as a function of γ-dose without neutron irradiation, however, pronounced effects were seen after neutron activation. Pre-irradiation increase the initial retention and promotes the annealing phenomenon as the introduction of defect into the lattice though on the other hand radiolytic phenomenon may also appear. Pre-activated sample gave higher retention value for lanthanum and barium permanganates in comparison to strontium permanganate at different γ-doses for desired period of gamma annealing than those obtained at corresponding γ-doses for similar length of time in case of post-activated targets. Kinetics of annealing by γ-radiolytic effects follow first order rate law. The observed results are discussed in the light of existing ideas for understanding the recoil stabilization phenomenon of parent reformation and the nature of precursors in permanganates

  7. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  8. Recoil momenta distributions in the double photoionization

    International Nuclear Information System (INIS)

    Amusia, M Ya; Liverts, E Z; Drukarev, E G; Mikhai, A I

    2014-01-01

    We calculate the distributions in recoil momenta for the high energy double photoionization of helium caused by quasifree mechanism. The distributions obtain local maxima at small values of the recoil momenta. This agrees with earlier predictions and recent experimental data. Angular correlations which reach the largest value for 'back-to-back' configuration of photoelectrons are also obtained.

  9. Spectra of highly ionized atoms of tokamak interest

    International Nuclear Information System (INIS)

    Cowan, R.D.

    1977-01-01

    The general nature of the change in energy level structures along an isoelectronic sequence is reviewed, with particular emphasis on relativistic effects and changes in coupling conditions. The accuracy of computed wavelengths is checked by comparison with experimental data on inner-shell (x-ray) transitions in singly ionized atoms. Relativistic effects can be extremely important for Δn = 0 transitions, but are taken into account fairly accurately by the approximate relativistic methods used. Computed ionization energies are given for important ions of Cr, Fe, Ni, Kr, Mo, Xe, W, and Au. Computed wavelengths and oscillator strengths are given for resonance lines of most of these elements in the simple isoelectronic sequences of neutral Li, Be, Na, Mg, K, Ni, Cu, and Zn, and more detailed electric- and magnetic-dipole spectra are given for ions of greatest importance

  10. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Science.gov (United States)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity

  11. Recoil-proton fast-neutron counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica); Galeazzi, G.; Bressanini, G.

    1981-12-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  12. Recoil-proton fast-neutron-counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Bressanini, G.

    1981-01-01

    A proton-recoil neutron counter telescope is described composed of a solid state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time-of-flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV, presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  13. Recent progress in the studies of atomic spectra and transition probabilities by beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Martinson, I.

    1982-01-01

    A review is given of recent studies of atomic structure (in particular atomic spectra, energy levels and transition probabilities) using fast beams from ion accelerators. Thanks to improved spectral resolution detailed and quite accurate studies of energy levels are now possible, a number of such results will be discussed. The non-autoionizing, multiply excited levels in atoms and ions (including negative ions) are being vigorously investigated at present, some new results will be reported. The accuracy in lifetime determinations continues to improve, and several new ways for reduction of cascading effects have been developed. Some selected examples of recent progress in lifetime measurements are also included. (orig.)

  14. Bloch oscillations of ultracold atoms and measurement of the fine structure constant; Oscillations de Bloch d'atomes ultrafroids et mesure de la constante de structure fine

    Energy Technology Data Exchange (ETDEWEB)

    Clade, P

    2005-10-15

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10{sup -9}, in conjunction with a careful study of systematic effects (5 10{sup -9}), has led us to a determination of alpha with an uncertainty of 6.7 10{sup -9}: {alpha}{sup -1}(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  15. Hot atom reactions involving multivalent and univalent species. Progress report, February 1976--January 1977

    International Nuclear Information System (INIS)

    Tang, Y.N.

    1977-01-01

    Multivalent hot atoms formed by the nuclear recoil method were studied: 31 Si, 32 P, and 11 C. For the recoil 31 Si reactions, we have completed the study on the reactivities of conjugated dienes towards monomeric 31 SiF 2 . The relative reactivities of 1,3-butadiene, trans-pentadiene, cis-pentadiene and 2-methyl-1,3-butadiene towards 31 SiF 2 have been measured as: 1.0:0.89:0.91:1.06 for singlet 31 SiF 2 ; and as 1.0:0.80:0.52:0.89 for the triplet. The large steric effect detected here between cis- and trans-pentadienes for their reactivities towards triplet 31 SiF 2 -donor indicates that a direct 1,4-addition process is possible for such 31 SiF 2 donating complexes. 2-methyl-1,1-diflorosilacyclopent-3-ene and its 3-methyl isomer were successfully synthesized by the co-pyrolysis technique. Experiments to evaluate the relative addition efficiencies of 31 SiH 2 towards various conjugated dienes; and to study to H- and F-abstraction mechanism by 31 Si atoms were begun. For recoil 32 P reactions, some progress has been made towards evaluating the mechanism of abstraction reactions by recoil 32 P atoms in PF 3 -PCl 3 system, and the moderator effect for recoil 32 P reactions with PF 3 -CH 4 mixtures. The possible formation of 32 PH, and the formation of 32 P atoms via the 32 S(n,p) 32 P process have also been explored. For recoil 11 C reactions, major progress has been obtained in the moderator studies of its reactions with 1,3-butadiene. With the successive addition of Ne as a moderator, the yield of acetylene- 11 C decreased, the yield of cyclopentene- 11 C increased while those of both 1,2,4-pentatriene- 11 C and cyclopentadiene- 11 C went through a minimum. Some progress for the identification of the last unknown 11 C-labeled product from this system has also been made

  16. Time-of-flight scattering and recoiling spectrometry

    International Nuclear Information System (INIS)

    Rabalais, J.W.

    1991-01-01

    Ion scattering and recoiling spectrometry consists of directing a collimated beam of monoenergetic ions towards a surface and measuring the flux of scattered and recoiled particles from this surface. When the neutral plus ion flux is velocity selected by measuring the flight times from the sample to the detector, the technique is called time-of-flight scattering and recoiling spectrometry (TOF-SARS). TOF-SARS is capable of (1) surface elemental analysis by applying classical mechanics to the velocities of the particles, (2) surface structural analysis by monitoring the angular anisotropies in the particle flux, and (3) ion-surface electron exchange probabilities by analysis of the ion/neutral fractions in the particle flux. Examples of these three areas are presented herein

  17. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  18. DSA lifetime measurements in 21Ne at high recoil velocity

    International Nuclear Information System (INIS)

    Grawe, H.; Heidinger, F.; Kaendler, K.

    1977-01-01

    States in 21 Ne up to 5 MeV excitation energy have been populated using the inverted reaction 2 H( 20 Ne,pγ). The Doppler shift attenuation (DSA) analysis of the pγ coincidence spectra taken in a Ge(Li) detector at 45 0 and 135 0 and an annular silicon surface barrier detector near 0 0 yielded the lifetimes of 8 states in 21 Ne. Due to the large recoil of vi/c approximately equal to 4% three new lifetimes were determined for the short lived levels at 2.80, 4.68 and 4.73 MeV, namely 10 +- 4 fs, 16 +- 4 fs and 10 +- 4 fs, respectively. The results are compared with rotational and shell model calculations. (orig.) [de

  19. Recoil-ion fractions in collisions of keV Ar sup + and Kr sup + ions with clean and adsorbate covered GaAs(1 1 0) surfaces

    CERN Document Server

    Gayone, J E; Grizzi, O; Vergara, L I; Passeggi, M C G; Vidal, R; Ferron, J

    2002-01-01

    Ion scattering and recoiling spectroscopy with time of flight analysis is used to study the ion fractions of Ga and As atoms recoiled in collisions of 5 keV Ar sup + and Kr sup + with clean GaAs(1 1 0) and with GaAs(1 1 0) covered with H, alkali metals (K and Cs) and fluorides (AlF sub 3). For the case of the clean surface, the Ga ion fraction is positive, large (approx 50%) and independent of the projectile type. The As ion fraction is also positive, low for Ar sup + (<10%) and relatively large (25%) for Kr sup + projectiles. The adsorption of H produces slight changes in both the As and Ga ion fractions, which is in agreement with the adsorption model where H reacts with both As and Ga atoms. The adsorption of alkalis produces strong changes in the ion fractions. At the beginning of the alkali adsorption the neutralization of Ga recoils increases fast with the coverage and follows approximately the variation of the work function. At coverages above half of the saturation value, where the work function ha...

  20. Calibration of a compact magnetic proton recoil neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfu, E-mail: zhang_jianfu@163.com [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ouyang, Xiaoping; Zhang, Xianpeng [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Ruan, Jinlu [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhang, Guoguang [Applied Institute of Nuclear Technology, China Institute of Atomic Energy, Beijing 102413 (China); Zhang, Xiaodong [Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua [Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-04-21

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium–tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  1. Spectral flux of the p-7Li(C Q-M neutron source measured by proton recoil telescope

    Directory of Open Access Journals (Sweden)

    Simakov S.P.

    2010-10-01

    Full Text Available The cyclotron-based fast neutron source at NPI produces mono-energetic neutron fields up to 35 MeV neutron energy using the p + 7Li(carbon backing reactions. To be applied for activation cross-section measurements, not only the intensity of neutron peak, but also the contribution of low-energy continuum in the spectra must be well determined. Simulations of the spectral flux from present source at a position of irradiated samples were performed using CYRIC TOF-data validated in the present work against LA150h by calculations with the transport Monte Carlo code MCNPX. Simulated spectra were tested by absolute measurements using a proton-recoil telescope technique. The recoil-proton spectrometer consisted of a shielded scattering chamber with polyethylene and carbon radiators and the ΔE1-ΔE2-E telescope of silicon-surface detectors located to the neutron beam axis at 45° in the laboratory system. Si-detectors were handled by usual data acquisition system. Dead-time – and pulse-overlap losses of events were determined from the count rate of pulse generator registered during duty cycle of accelerator operation. The proton beam charge and data were taken in the list mode for later replay and analysis. The calculations for 7Li(p,n and 12C(p,n reactions reasonably reproduce CYRIC TOF neutron source spectra. The influence of neutron source set-up (proton beam dimensions, 7Li-foil, carbon stopper, cooling medium, target support/chamber and the geometry-arrangement of irradiated sample on the spectral flux is discussed in details.

  2. Transportation system of recoil nucleus by helium jet

    International Nuclear Information System (INIS)

    Cabral, S.C.; Borges, A.M.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The transportation system of recoil nucleus by helium jet, is studied. It is used a technique aiming to put in the detection area (region of low background) the recoils, produced by nuclear reactions between target and particle beams, those produced with the help of cyclotron CV-28. (E.G.) [pt

  3. Bloch oscillations of ultracold atoms and measurement of the fine structure constant

    International Nuclear Information System (INIS)

    Clade, P.

    2005-10-01

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10 -9 , in conjunction with a careful study of systematic effects (5 10 -9 ), has led us to a determination of alpha with an uncertainty of 6.7 10 -9 : α -1 (Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  4. Complete single ionization momentum spectra for strong perturbation collisions

    International Nuclear Information System (INIS)

    Olson, R.E.; Wood, C.J.

    1997-09-01

    The combination of recoil ion and ionized electron momentum spectroscopy provides an unparalleled method to investigate the details of ion-atom collision dynamics in kinematically complete experiments. To predict singleionization scattering behavior at the level now realized by experiment, the classical trajectory three-body Monte Carlo method has been used to obtain complete momenta information for the ionized electron, recoil ion, and projectile in the collision plane defined by the incident projectile and outgoing recoil ion. Strongly coupled systems were considered where the charge state of the projectile divided by the speed of the collision q/v is greater than unity. Illustrated are 3.6 MeV/u Se 28+ and 9.5 MeV/u Ni 26+ collisions on He where experimental data are available. The theoretical results are in good agreement with these data and calculations have been performed for 165 keV/u and 506 keV/u C 6+ +He to compare results for the same q/v perturbation strengths. (orig.)

  5. Heavy quark symmetry at large recoil: The case of baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kroll, P.

    1992-02-01

    We analyze the large recoil behaviour of heavy baryon transition form factors in semi-leptonic decays. We use a generalized Brodsky-Lepage hard scattering formalism where diquarks are considered as quasi-elementary constituents of baryons. In the limit of infinitely heavy quark masses the large recoil form factors exhibit a new model-independent heavy quark symmetry which is reminiscent but not identical to the Isgur-Wise symmetry at low recoil. (orig.)

  6. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  7. Attractive interaction between an atom and a surface

    International Nuclear Information System (INIS)

    Manson, J.R.; Ritchie, R.H.

    1983-01-01

    Using a general self-energy formalism we examine the interaction between an atom and a surface. Considered in detail are deviations from the Van der Waals force due to recoil and finite velocity of the particle. Calculations for positronium near a metal surface show that for such systems recoil and velocity effects are significant even at very low energies. We also examine the mechanisms for energy exchange with the surface and calculations show that single quantum events do not always dominate the exchange rates. 8 references, 2 figures

  8. Interference spectra induced by a bichromatic field in the excited state of a three-level atom

    International Nuclear Information System (INIS)

    Mavroyannis, C.

    1998-01-01

    The interference spectra for the excited state of a three-level atom have been considered, where the strong and the weak atomic transitions leading to an electric dipole allowed excited state and to a metastable excited state are driven by resonant and nonresonant laser fields, respectively. In the low intensity limit of the strong laser field, there are two short lifetime excitations, the spontaneous one described by the weak signal field and the one induced by the strong laser field, both of which appear at the same frequency, and a long lifetime excitation induced by the weak laser field. The maximum intensities (heights) of the two peaks describing the short lifetime excitations take equal positive and negative values and, therefore, cancel each other out completely, while the long lifetime excitation dominates. This indicates the disappearance of the short lifetime excitations describing the strong atomic transition for a period equal to the lifetime of the long lifetime excitation, which is roughly equal to half of the lifetime of the metastable state. The computed spectra have been graphically presented and discussed at resonance and for finite detunings. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Recoil release of fission products from nuclear fuel

    International Nuclear Information System (INIS)

    Wise, C.

    1985-01-01

    An analytical approximation is developed for calculating recoil release from nuclear fuel into gas filled interspaces. This expression is evaluated for a number of interspace geometries and shown to be generally accurate to within about 10% by comparison with numerical calculations. The results are applied to situations of physical interest and it is demonstrated that recoil can be important when modelling fission product release from low temperature CAGR pin failures. Furthermore, recoil can contribute significantly in experiments on low temperature fission product release, particularly where oxidation enhancement of this release is measured by exposing the fuel to CO 2 . The calculations presented here are one way of allowing for this, other methods are suggested. (orig.)

  10. Neutron energy spectra produced by α-bombardment of light elements in thick targets

    International Nuclear Information System (INIS)

    Jacobs, G.J.H.

    1982-01-01

    The aim of the work, presented in this thesis, is to determine energy spectra of neutrons produced by α-particle bombardment of thick targets containing light elements. These spectra are required for nuclear waste management. The set-up of the neutron spectrometer is described, and its calibration discussed. Absolute efficiencies were determined at various neutron energies, using monoenergetic neutrons produced with the Van de Graaff accelerator in pulsed mode. The additional calibration of the neutron spectrometer as proton-recoil spectrometer was carried out primarily for future applications in measurements where no pulsed neutron source is available or the neutron flux density is too low. The basis for an accurate uncertainty analysis is made by the determination of the covariance matrix for the uncertainties in the efficiencies. The determination of the neutron energy spectra from time-of-flight and from proton-recoil measurements is described. A comparison of the results obtained from the two different types of measurements is made. The experimentally determined spectra were compared with spectra calculated from stopping powers and theoretically determined cross sections. These cross sections were calculated from optical model parameters and level parameters using the Hauser-Feshbach formalism. Measurements were carried out on thick targets of silicon, aluminium, magnesium, carbon, boron nitride, calcium fluoride, aluminium oxide, silicon oxide and uranium oxide at four different α-particle energies. (Auth.)

  11. The hot-atom chemistry of crystalline chromates. Chapter 8

    International Nuclear Information System (INIS)

    Collins, C.H.; Collins, K.E.

    1979-01-01

    Chromates in general and potassium chromate in particular, have been attractive as compounds for hot-atom chemical study because of the favourable nuclear properties of chromium, the great thermal and radiation stability of the compounds, the apparent structural simplicity of the crystals and the presumed known and simple chemistry of the expected recoil products. A wealth of information has been accumulated over the past 25 years, from which the anticipation of a straightforward chemistry has given way to an expanding realization that these systems are actually quite complex. More solid-state hot-atom chemical studies have dealt with potassium chromate than with any other compound. Thus, a major fraction of this review is given to this compound. The emphasis is on recent literature and on the pesent views of phenomena which affect the chemical fate of recoil chromium atoms in chromates. Many other data are tabulated so that the interested reader can speculate independently on the results of a wide variety of experiments. (Auth.)

  12. Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments

    Energy Technology Data Exchange (ETDEWEB)

    Johns, H. M., E-mail: hjohns@lanl.gov; Lanier, N. E.; Kline, J. L.; Fontes, C. J.; Perry, T. S.; Fryer, C. L.; Sherrill, M. E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87544 (United States); Brown, C. R. D.; Morton, J. W. [AWE Aldermaston, Berkshire, Reading RG7 4PR (United Kingdom); Hager, J. D. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87544 (United States); Lockheed-Martin, 497 Electronics Parkway, Syracuse, New York 13221 (United States)

    2016-11-15

    We present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi{sub 6}O{sub 12} at 75 mg/cm{sup 3} density). We have determined that in the 50-200 eV T{sub e} range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for T{sub e} = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power reveals spectral sensitivity to T{sub e} changes of ∼3 eV.

  13. Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms

    International Nuclear Information System (INIS)

    Wang Dawei; Li Zhenghong; Zheng Hang; Zhu Shiyao

    2010-01-01

    A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.

  14. Ab-initio modeling of an iron laser-induced plasma: Comparison between theoretical and experimental atomic emission spectra

    International Nuclear Information System (INIS)

    Colgan, J.; Judge, E.J.; Kilcrease, D.P.; Barefield, J.E.

    2014-01-01

    We report on efforts to model the Fe emission spectrum generated from laser-induced breakdown spectroscopy (LIBS) measurements on samples of pure iron oxide (Fe 2 O 3 ). Our modeling efforts consist of several components. We begin with ab-initio atomic structure calculations performed by solving the Hartree–Fock equations for the neutral and singly ionized stages of Fe. Our energy levels are then adjusted to their experimentally known values. The atomic transition probabilities and atomic collision quantities are also computed in an ab-initio manner. We perform LTE or non-LTE calculations that generate level populations and, subsequently, an emission spectrum for the iron plasma for a range of electron temperatures and electron densities. Such calculations are then compared to the experimental spectrum. We regard our work as a preliminary modeling effort that ultimately strives towards the modeling of emission spectra from even more complex samples where less atomic data are available. - Highlights: • LIBS plasma of iron oxide • Ab-initio theoretical Modeling • Discussion of LTE versus non-LTE criteria and assessment • Boltzmann plots for Fe—determination of when LTE is a valid assumption • Emission spectra for Fe—comparison of theoretical modeling and measurement: good agreement obtained

  15. Atomic collisions by neutrons-induced charged particles in water, protein and nucleic acid

    International Nuclear Information System (INIS)

    Bergman, R.

    1976-01-01

    The action of slow charged particles is peculiar in that atomic collisions are commonly invlolved. In atomic collisions, which are rare events when fast particles interact with matter, displacement of atoms and chemical bond-breakage is possible. Sufficiently energetic neutrons generate charged recoil particles in matter. Some of these are slow as compared to orbital electrons, but the energy transferred to such slow particles is generally relatively small. Yet, it contributes significantly to the dose absorbed from 0.1-30 keV neutrons. In tissue all recoils induced by neutrons of less than 30 keV are slow, and above 0.1 keV the absorbed dose due to collisiondominates over that due to capture reactions. The aim of the present paper is to identify those intervals of neutron energy in which atomic collision damage is most probable in living matter. The results of calculations presented here indicate that atomic collisions should be most significant for 0.5-3 keV neutrons. (author)

  16. Adsorption of Hydrogen and Potassium on GaAs(110) Studied by Time-of-Flight Scattering and Recoiling Spectrometry; Espectrometria de Iones Aplicada al Estudio de la Adsorcion de H y K en GaAs(110)

    Energy Technology Data Exchange (ETDEWEB)

    Gayone, J E [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)

    2000-07-01

    We study the adsorption of H and K on a GaAs(ll0) surface by Time-of-Flight Ion-Scattering (ISS) and Direct Recoiling (DRS) Spectrometry. The method for cleaning and preparation of the surface consists on cycles of grazing bombardment with 20 keV Ar+ combined with annealing. Since this is the first time that this method is applied to a semiconductor surface, the crystallographic structure of the grazing ion bombarded surface is first characterized by ISS and DRS. The variations of the projectile scattered intensity as a function of the incident and azimuthal angles are interpreted in terms of calculated shadowing and focusing effects. The crystallographic structure of the GaAs(ll0) surface prepared by this method presents the surface relaxation observed for cleaved surfaces. The adsorption of H on GaAs(ll0) is studied as a function of the H{sub 2} exposure and the surface temperature.The behavior of the intensity of projectiles scattered from the first two As and Ga layers is consistent with a process of unrelaxation towards the ideal surface termination upon H adsorption. We have determined that for exposures of 1000 L and 2000 L the AsI-GaI splitting corresponding to the unrelaxed surface is reduced to {delta}Z = (0.0 n 0.08) A, as it should be expected for the bulk terminated surface. In addition, the fraction of the surface remaining relaxed as in the clean surface decreases strongly with the H{sub 2} exposure. The H atoms adsorbed on the surface can be detected as recoils produced in quasi-single collisions allowing the study of the adsorption kinetics. The variations of the H recoil intensity with the exposure show that the sticking coefficient changes strongly with the H coverage since the beginning the adsorption. Above {approx} 500 L, the adsorption kinetics deviates from the initial behavior and the sticking coefficient becomes almost constant and small. The simultaneous measurements of the H coverage (with DRS) and the changes in the atomic structure

  17. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  18. A recoil-proton fast-neutron counter telescope

    International Nuclear Information System (INIS)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Galeazzi, G.; Bressanini, G.

    1981-01-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV. (author)

  19. Design of magnetic analysis system for magnetic proton recoil spectrometer

    International Nuclear Information System (INIS)

    Qi Jianmin; Jiang Shilun; Zhou Lin; Peng Taiping

    2010-01-01

    Magnetic proton recoil (MPR) spectrometer is a novel diagnostic instrument with high performance for measurements of the neutron spectra from inertial confinement fusion (ICF) experiments and high power fusion devices. The design of the magnetic analysis system, which is a key part of the compact MPR-type spectrometer, has been completed through two-dimensional beam transport simulations and three-dimensional particle transport simulation. The analysis of the system's parameters and performances was performed, as well as system designs based on preferential principles of energy resolution, detection efficiency, and count rate, respectively. The results indicate that the magnetic analysis system can achieve a detection efficiency of 10 -5 ∼ 10 -4 level at the resolution range of 1.5% to 3.0% and fulfill the design goals of the compact MPR spectrometer. (authors)

  20. Blind deconvolution of time-of-flight mass spectra from atom probe tomography

    International Nuclear Information System (INIS)

    Johnson, L.J.S.; Thuvander, M.; Stiller, K.; Odén, M.; Hultman, L.

    2013-01-01

    A major source of uncertainty in compositional measurements in atom probe tomography stems from the uncertainties of assigning peaks or parts of peaks in the mass spectrum to their correct identities. In particular, peak overlap is a limiting factor, whereas an ideal mass spectrum would have peaks at their correct positions with zero broadening. Here, we report a method to deconvolute the experimental mass spectrum into such an ideal spectrum and a system function describing the peak broadening introduced by the field evaporation and detection of each ion. By making the assumption of a linear and time-invariant behavior, a system of equations is derived that describes the peak shape and peak intensities. The model is fitted to the observed spectrum by minimizing the squared residuals, regularized by the maximum entropy method. For synthetic data perfectly obeying the assumptions, the method recovered peak intensities to within ±0.33at%. The application of this model to experimental APT data is exemplified with Fe–Cr data. Knowledge of the peak shape opens up several new possibilities, not just for better overall compositional determination, but, e.g., for the estimation of errors of ranging due to peak overlap or peak separation constrained by isotope abundances. - Highlights: • A method for the deconvolution of atom probe mass spectra is proposed. • Applied to synthetic randomly generated spectra the accuracy was ±0.33 at. • Application of the method to an experimental Fe–Cr spectrum is demonstrated

  1. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    Science.gov (United States)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  2. Fast neutron spectroscopy by gas proton-recoil methods at the light water reactor pressure vessel simulator

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1980-10-01

    Fast neutron spectrum measurements were made in a Light Water Reactor (LWR) Pressure Vessel Simulator (PVS) to provide neutron spectral definition required to appropriately perform and interpret neutron dosimetry measurements related to fast neutron damage in LWR-PV steels. Proton-recoil proportional counter methods using hydrogen and methane gas-filled detectors were applied to obtain the proton spectra from which the neutron spectra were derived. Cylindrical and spherical geometry detectors were used to cover the neutron energy range between 50 keV and 2 MeV. Results show that the neutron spectra shift in energy distribution toward lower energy between the front and back of a PVS. The relative neutron flux densities increase in this energy range with increasing thickness of the steel. Neutron spectrum fine structure shapes and changes are observed. These results should assist in the generation of more accurate effective cross sections and fluences for use in LWR-PV fast neutron dosimetry and materials damage analyses

  3. Depth of origin and angular spectrum of sputtered atoms

    International Nuclear Information System (INIS)

    Vicanek, M.; Jimenez Rodriguez, J.J.; Sigmund, P.

    1989-01-01

    A theoretical analysis is presented of the depth of origin of atoms sputtered from a random target. The physical model aims at high energy sputtering under linear cascade conditions and assumes a dilute source of recoil atoms. The initial distribution of the recoils is assumed isotropic, and their energy distribution is E -2 like without an upper or lower cutoff. The scattering medium is either infinite or bounded by a plane surface. Atoms scatter according to the m=0 power cross section. Electronic stopping is ignored. The sputtered flux, differential in depth of origin, ejection energy and ejection angle has been evaluated by Monte Carlo simulation and by five distinct methods of solution of the linear Boltzmann equation reaching from continuous slowing down neglecting angular scattering to the P 3 approximation and a Gram-Charlier expansion going over spatial moments. The continuous slowing down approximation used in previous work leads to results that are identical to those found from a scheme that only ignores angular scattering but allows for energy loss straggling. Moreover, these predictions match more closely with the Monte Carlo results than any of the approximate analytical schemes that take account of angular scattering. The results confirm the common assertion that the depth of origin of sputtered atoms is determined mainly by the stopping of low energy recoil atoms. The effect of angular scattering turns out to be astonishingly small. The distributions in depth of origin, energy, and angle do not depend significantly on whether the scattering medium is a halfspace or an infinite medium with a reference plane. The angular spectrum comes out only very slightly over cosine from the model as it stands, in agreement with previous experience, but comments are made on essential features that are not incorporated in the physical model but might influence the angular spectrum. (orig./WL)

  4. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    CERN Multimedia

    2002-01-01

    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  5. Spontaneous emission spectra and simulating multiple spontaneous generation coherence in a five-level atomic medium

    International Nuclear Information System (INIS)

    Li Jiahua; Liu Jibing; Qi Chunchao; Chen Aixi

    2006-01-01

    We investigate the features of the spontaneous emission spectra in a coherently driven cold five-level atomic system by means of a radio frequency (rf) or microwave field driving a hyperfine transition within the ground state. It is shown that a few interesting phenomena such as spectral-line narrowing, spectral-line enhancement, spectral-line suppression, and spontaneous emission quenching can be realized by modulating the frequency and intensity of the rf-driving field in our system. In the dressed-state picture of the coupling and rf-driving fields, we find that this coherently driven atomic system has three close-lying levels so that multiple spontaneously generated coherence (SGC) arises. Our considered atomic model can be found in real atoms, such as rubidium or sodium, so a corresponding experiment can be done to observe the expected phenomena related to SGC reported by Fountoulakis et al. [Phys. Rev. A 73, 033811 (2006)], since no rigorous conditions are required

  6. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    International Nuclear Information System (INIS)

    Makarov, D.N.; Matveev, V.I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  7. On the M\\"ossbauer effect and the rigid recoil question

    OpenAIRE

    Davidson, Mark

    2016-01-01

    Various theories for the M\\"ossbauer rigid-recoil effect, which enables a crystal to absorb momentum but not appreciable energy, are compared. These suggest that the recoil may not be instantaneous, and that the recoil time could be used to distinguish between them. An experiment is proposed to measure this time. The idea is to use a small sphere whose outer surface is coated with an electrically charged M\\"ossbauer-active element, and then to measure the amount of energy lost due to Bremmsst...

  8. Hydrogen analysis by elastic recoil spectrometry

    International Nuclear Information System (INIS)

    Tirira, J.; Trocellier, P.

    1989-01-01

    An absolute, quantitative procedure was developed to determine the hydrogen content and to describe its concentration profile in the near-surface region of solids. The experimental technique used was the elastic recoil detection analysis of protons induced by 4 He beam bombardment in the energy range <=1.8 MeV. The hydrogen content was calculated using a new recoil cross section expression. The analyses were performed in silicon crystals implanted with hydrogen at 10 keV. The implantation dose was evaluated with an accuracy of 10% and the hydrogen depth profile with that of +-10 nm around 200 nm. (author) 10 refs.; 3 figs

  9. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    International Nuclear Information System (INIS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Oak Ridge National Laboratory; Zhang, Y.; Oak Ridge National Laboratory

    2017-01-01

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, E_d, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for E_d are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  10. Analysis of x-ray spectra emitted from highly ionized atoms in the vacuum spark and laser-produced high power plasma sources

    International Nuclear Information System (INIS)

    Mandelbaum, P.

    1987-05-01

    The interest in atomic spectroscopy has greatly been reinforced in the last ten years. This gain of interest is directly related to the developments in different fields of research where hot plasmas are created. These fields include in particular controlled thermonuclear fusion research by means of inertial or magnetic confinement approaches and also the most recent efforts to achieve lasers in the XUV region. The present work is based on the specific contribution of the atomic spectroscopy group at the Hebrew University. The recent development of both theoretical and experimental tools allowed us to progress in the understanding of the highly ionized states of heavy elements. In this work the low-inductance vacuum-spark developed at the Hebrew University was used as the hot plasma source. The spectra were recorded in the 7-300 A range by means of a high-resolution extreme-grazing-incidence spectrometer developed at the Racah Institute by Profs. J.L. Schwob and B.S. Fraenkel. To the extend the spectroscopic studies to higher-Z atoms, the laser-produced plasma facility at Soreq Nuclear Center was used. In this work the spectra of the sixth row elements were recorded in the x-rays by means of a crystal spectrometer. All these experimental systems are briefly described in chapter one. Chapter two deals with the theoretical methods used in the present work for the atomic calculations. Chapter three deals with the spectra of elements of the fifth row emitted from the vacuum-spark in the 30-150 A range. These spectra as experimental data were used in order to test ab-initio computations along the NiI sequence 3d-nl transitions. The results of this work are presented in chapter four. Chapter five is devoted to the measurement and analysis of spectra emitted from the vacuum-spark by rare-earth elements. (author)

  11. The atomic coilgun and single-photon cooling

    Energy Technology Data Exchange (ETDEWEB)

    Libson, Adam, E-mail: alibson@physics.utexas.edu; Bannerman, Stephen Travis; Clark, Robert J.; Mazur, Thomas R.; Raizen, Mark G. [University of Texas at Austin, Center for Nonlinear Dynamics and Department of Physics (United States)

    2012-12-15

    As the simplest atom, hydrogen has a unique role as a testing ground of fundamental physics. Precision measurements of the hydrogen atomic structure provide stringent tests of current theory, while tritium is an excellent candidate for studies of {beta}-decay and possible measurement of the neutrino rest mass. Furthermore, precision measurement of antihydrogen would allow for tests of fundamental symmetries. Methods demonstrated in our lab provide an avenue by which hydrogen isotopes can be trapped and cooled to near the recoil limit. The atomic coilgun, which we have demonstrated with metastable neon and molecular oxygen, provides a general method of stopping a supersonic beam of any paramagnetic species. This tool provides a method by which hydrogen and its isotopes can be magnetically trapped at around 100 mK using a room temperature apparatus. Another tool developed in our laboratory, single-photon cooling, allows further cooling of a trapped sample to near the recoil limit. This cooling method has already been demonstrated on a trapped sample of rubidium. We report on the progress of implementing these methods to trap and cool hydrogen isotopes, and on the prospects for using cold trapped hydrogen for precision measurements.

  12. RECOILING MASSIVE BLACK HOLES IN GAS-RICH GALAXY MERGERS

    International Nuclear Information System (INIS)

    Guedes, Javiera; Madau, Piero; Mayer, Lucio; Callegari, Simone

    2011-01-01

    The asymmetric emission of gravitational waves produced during the coalescence of a massive black hole (MBH) binary imparts a velocity 'kick' to the system that can displace the hole from the center of its host. Here, we study the trajectories and observability of MBHs recoiling in three (one major, two minor) gas-rich galaxy merger remnants that were previously simulated at high resolution, and in which the pairing of the MBHs had been shown to be successful. We run new simulations of MBHs recoiling in the major merger remnant with Mach numbers in the range 1≤M≤6 and use simulation data to construct a semi-analytical model for the orbital evolution of MBHs in gas-rich systems. We show the following. (1) In major merger remnants the energy deposited by the moving hole into the rotationally supported, turbulent medium makes a negligible contribution to the thermodynamics of the gas. This contribution becomes significant in minor merger remnants, potentially allowing for an electromagnetic signature of MBH recoil. (2) In major merger remnants, the combination of both deeper central potential well and drag from high-density gas confines even MBHs with kick velocities as high as 1200 km s -1 within 1 kpc from the host's center. (3) Kinematically offset nuclei may be observable for timescales of a few Myr in major merger remnants in the case of recoil velocities in the range 700-1000 km s -1 . (4) In minor merger remnants the effect of gas drag is weaker, and MBHs with recoil speeds in the range 300-600 km s -1 will wander through the host halo for longer timescales. When accounting for the probability distribution of kick velocities, however, we find that the likelihood of observing recoiling MBHs in gas-rich galaxy mergers is very low even in the best-case scenario.

  13. Enhancing the sensitivity of recoil-beta tagging

    International Nuclear Information System (INIS)

    Henderson, J; Jenkins, D G; Davies, P J; Henry, T W; Joshi, P; Nichols, A J; Ruotsalainen, P; Scholey, C; Auranen, K; Grahn, T; Greenlees, P T; Herzáň, A; Jakobsson, U; Julin, R; Juutinen, S; Konki, J; Leino, M; Pakarinen, J; Lotay, G; Obertelli, A

    2013-01-01

    Tagging with β-particles at the focal plane of a recoil separator has been shown to be an effective technique for the study of exotic proton-rich nuclei. This article describes three new pieces of apparatus used to greatly improve the sensitivity of the recoil-beta tagging technique. These include a highly-pixelated double-sided silicon strip detector, a plastic phoswich detector for discriminating high-energy β-particles, and a charged-particle veto box. The performance of these new detectors is described and characterised, and the resulting improvements are discussed.

  14. Multiple scattering effects in depth resolution of elastic recoil detection

    International Nuclear Information System (INIS)

    Wielunski, L.S.; Harding, G.L.

    1998-01-01

    Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors)

  15. Accurate atom-solid kinetic energy shifts from the simultaneous measurement of the KLL Auger spectra for Na, Mg, Al and Si

    International Nuclear Information System (INIS)

    Aksela, S; Turunen, P; Kantia, T; Aksela, H

    2011-01-01

    KLL Auger-energy shifts between free atoms and their solid surfaces were determined from spectra measured simultaneously in identical experimental conditions. Essentially, the shift values obtained for Na, Mg, Al and Si were more accurate than those achieved by combining the results from separate vapour and solid measurements. Using atomic Auger energies and determined shifts, reliable absolute solid state Auger energies with respect to the vacuum level were also obtained. Experimental shift values were also compared with calculations obtained with the excited atom model. 2s and 2p binding energy shifts were estimated from recent high resolution and due to open shell strongly split vapour phase spectra and corresponding published solid state results. Also, the question of the extent to which the 2s and 2p shifts deviate has been discussed here. (paper)

  16. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Edkins, Erin Elisabeth [Univ. of Hawaii, Honolulu, HI (United States)

    2017-05-01

    While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a j oint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, $f_{90}$, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the $f_{90}$ distributio n of nuclear

  17. Comparison of the Recoil of Conventional and Electromagnetic Cannon

    Directory of Open Access Journals (Sweden)

    Edward M. Schmidt

    2001-01-01

    Full Text Available The recoil from an electromagnetic (EM railgun is discussed and compared with that from conventional, propellant gas driven cannon. It is shown that, under similar launch conditions, the recoil of the EM gun is less than that of the powder gun; however, use of a muzzle brake on a powder gun can alter this relative behavior.

  18. Self-triggering detectors for recoil nuclei

    International Nuclear Information System (INIS)

    Aleksanyan, A.S.; Asatiani, T.I.; Gasparyan, A.O.

    1975-01-01

    Hybrid α-detectors consisting of wide gap spark chambers and signal α detectors are described. The investigations have been carried out with γ-beams of Yerevan Electron Synchrotron. The possibility of using such detectors in the experiments on particle photoproduction on gas helium with the determination of the interaction point, emission angle of the recoil nucleus and its energy by means of range measurement has been shown. It has been shown that self - triggering wide gap spark chamber allows to detect and measure the range of the recoil nuclei α-particles with energies Esub(α) > or approximately (1 - 2) Mev which correspond to momentum transfers apprxomation (10 -2 - 10 -3 ) (GeV/c) 2

  19. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the Darkside-50 Direct Dark Matter Experiment

    Science.gov (United States)

    Ludert, Erin Edkins

    While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a joint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, f 90, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the f90 distribution of nuclear recoils from Sc

  20. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    International Nuclear Information System (INIS)

    Bauschlicher, Charles W. Jr.; Ricca, Alessandra

    2013-01-01

    The loss of one hydrogen from C 96 H 24 does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare

  1. D-D neutron energy-spectra measurements in Alcator C

    International Nuclear Information System (INIS)

    Pappas, D.S.; Wysocki, F.J.; Furnstahl, R.J.

    1982-08-01

    Measurements of energy spectra of neutrons produced during high density (anti n/sub e/ > 2 x 10 14 cm -3 ) deuterium discharges have been performed using a proton-recoil (NE 213) spectrometer. A two foot section of light pipe (coupling the scintillator and photomultiplier) was used to extend the scintillator into a diagnostic viewing port to maximize the neutron detection efficiency while not imposing excessive magnetic shielding requirements. A derivative unfolding technique was used to deduce the energy spectra. The results showed a well defined peak at 2.5 MeV which was consistent with earlier neutron flux measurements on Alcator C that indicated the neutrons were of thermonuclear origin

  2. Computer simulation of high-energy recoils in FCC metals: cascade shapes and sizes

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1981-01-01

    Displacement cascades in copper generated by primary knock-on atoms with energies from 1 keV to 500 keV were produced with the computer code MARLOWE. The sizes and other features of the point defect distributions were measured as a function of energy. In the energy range from 30 keV to 50 keV there is a transition from compact single damage regions to chains of generally closely-spaced, but distinct multiple damage regions. The average spacing between multiple damage regions remains constant with energy. Only a small fraction of the recoils from fusion neutrons is expected to produce widely separated subcascades

  3. Quantum chemical approach for positron annihilation spectra of atoms and molecules beyond plane-wave approximation

    Science.gov (United States)

    Ikabata, Yasuhiro; Aiba, Risa; Iwanade, Toru; Nishizawa, Hiroaki; Wang, Feng; Nakai, Hiromi

    2018-05-01

    We report theoretical calculations of positron-electron annihilation spectra of noble gas atoms and small molecules using the nuclear orbital plus molecular orbital method. Instead of a nuclear wavefunction, the positronic wavefunction is obtained as the solution of the coupled Hartree-Fock or Kohn-Sham equation for a positron and the electrons. The molecular field is included in the positronic Fock operator, which allows an appropriate treatment of the positron-molecule repulsion. The present treatment succeeds in reproducing the Doppler shift, i.e., full width at half maximum (FWHM) of experimentally measured annihilation (γ-ray) spectra for molecules with a mean absolute error less than 10%. The numerical results indicate that the interpretation of the FWHM in terms of a specific molecular orbital is not appropriate.

  4. D-particle Recoil Space Times and "Glueball" Masses

    CERN Document Server

    Mavromatos, Nikolaos E; Mavromatos, Nick E.; Winstanley, Elizabeth

    2001-01-01

    We discuss the properties of matter in a D-dimensional anti-de-Sitter-type space time induced dynamically by the recoil of a very heavy D(irichlet)-particle defect embedded in it. The particular form of the recoil geometry, which from a world-sheet view point follows from logarithmic conformal field theory deformations of the pertinent sigma-models, results in the presence of both infrared and ultraviolet (spatial) cut-offs. These are crucial in ensuring the presence of mass gaps in scalar matter propagating in the D-particle recoil space time. The analogy of this problem with the Liouville-string approach to QCD, suggested earlier by John Ellis and one of the present authors, prompts us to identify the resulting scalar masses with those obtained in the supergravity approach based on the Maldacena's conjecture, but without the imposition of any supersymmetry in our case. Within reasonable numerical uncertainties, we observe that agreement is obtained between the two approaches for a particular value of the ra...

  5. Multiple scattering effects in depth resolution of elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Harding, G.L. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Telecommunications and Industrial Physics; Szilagyi, E. [KFKI Research Institute for Particle and Nuclear Physics, Budapest, (Hungary)

    1998-06-01

    Elastic Recoil Detection (ERD) is used to profile hydrogen and other low mass elements in thin films at surface and interfaces in a similar way that Rutherford Backscattering Spectroscopy (RBS) is used to detect and profile heavy elements. It is often assumed that the depth resolutions of these two techniques are similar. However, in contrast to typical RBS, the depth resolution of ERD is limited substantially by multiple scattering. In experimental data analysis and/or spectra simulations of a typical RBS measurement multiple scattering effects are often ignored. Computer programs used in IBA, such as RUMP, HYPRA or RBX do not include multiple scattering effects at all. In this paper, using practical thin metal structures with films containing intentionally introduced hydrogen, we demonstrate experimental ERD depth resolution and sensitivity limitations. The effects of sample material and scattering angle are also discussed. (authors). 19 refs., 4 figs.

  6. All-optical atom trap as a target for MOTRIMS-like collision experiments

    Science.gov (United States)

    Sharma, S.; Acharya, B. P.; De Silva, A. H. N. C.; Parris, N. W.; Ramsey, B. J.; Romans, K. L.; Dorn, A.; de Jesus, V. L. B.; Fischer, D.

    2018-04-01

    Momentum-resolved scattering experiments with laser-cooled atomic targets have been performed since almost two decades with magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) setups. Compared to experiments with gas-jet targets, MOTRIMS features significantly lower target temperatures allowing for an excellent recoil ion momentum resolution. However, the coincident and momentum-resolved detection of electrons was long rendered impossible due to incompatible magnetic field requirements. Here we report on an experimental approach which is based on an all-optical 6Li atom trap that—in contrast to magneto-optical traps—does not require magnetic field gradients in the trapping region. Atom temperatures of about 2 mK and number densities up to 109 cm-3 make this trap ideally suited for momentum-resolved electron-ion coincidence experiments. The overall configuration of the trap is very similar to conventional magneto-optical traps. It mainly requires small modifications of laser beam geometries and polarization which makes it easily implementable in other existing MOTRIMS experiments.

  7. THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH SOME OR ALL HYDROGEN ATOMS REMOVED

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ricca, Alessandra, E-mail: Charles.W.Bauschlicher@nasa.gov, E-mail: Alessandra.Ricca-1@nasa.gov [Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States)

    2013-10-20

    The loss of one hydrogen from C{sub 96}H{sub 24} does not significantly affect the infrared spectra of the neutral, cation, or anion. Excluding a very weak C-C stretching band at 5.1 μm, the loss of two adjacent duo hydrogens does not significantly affect the spectra compared with the parent. Removing all of the hydrogen atoms significantly increases the intensity of the new C-C stretching band, and, for the cation, shifts it to a longer (5.2 μm) wavelength. Observations show a feature near 5.25 μm, which has been attributed to overtone and combination bands from polycyclic aromatic hydrocarbons (PAHs). This current work suggests that dehydrogenated PAHs might also contribute to this band, but its weakness implies that fully dehydrogenated cationic or dicationic species are very rare.

  8. Competition between Final-State and Pairing-Gap Effects in the Radio-Frequency Spectra of Ultracold Fermi Atoms

    International Nuclear Information System (INIS)

    Perali, A.; Pieri, P.; Strinati, G. C.

    2008-01-01

    The radio-frequency spectra of ultracold Fermi atoms are calculated by including final-state interactions affecting the excited level of the transition and compared with the experimental data. A competition is revealed between pairing-gap effects which tend to push the oscillator strength toward high frequencies away from threshold and final-state effects which tend instead to pull the oscillator strength toward threshold. As a result of this competition, the position of the peak of the spectra cannot be simply related to the value of the pairing gap, whose extraction thus requires support from theoretical calculations

  9. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    Science.gov (United States)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  10. Hot atom reactions involving multivalent and univalent species. Progress report, February 1979-January 1980

    International Nuclear Information System (INIS)

    Tang, Y.N.

    1980-01-01

    The major progress during this period was in the study of recoil 31 Si and recoil 11 C reactions and in the initiation of the studies on the interaction of molecular tritium on solid surfaces. For the recoil 31 Si systems, heterogeneous hydrogenation experiments have been designed to positively confirm that a major unknown product, derived from the interaction of 31 Si atoms with 1,3-butadiene, is 1-silacyclopenta-2,4-diene. This compound has been shown to be very sensitive to γ-ray irradiation and to be thermally unstable at a temperature higher than 100 0 C. Another recoil 31 Si experiment was designed to review the mechanism of the 31 Si abstraction reactions. From the fact that high yields of [ 31 Si]-1-fluorosilacyclopent-3-ene were obtained as a product from a mixture of PH 3 and PF 3 together with 1,3-butadiene, the stepwise abstraction mechanism is definitely much more predominant than the possible simultaneous abstraction. Other recoil 31 Si works involved a detailed systematic composition study of 31 SiF 2 reactions with 1,3-butadiene, some neon moderator studies, and the continuation of the studies on the reactions of 31 SiF 2 and 31 SiH 2 with conjugated hexadienes. By using 2- 14 C-propanone and 1,3- 14 C-propanone, the mechanism of solvent-free oxidative cleavage of propanone by KMnO 4 was elucidated. Information thus derived was used to degradate the 11 C-labelled propadiene derived from the reactions of recoil 11 C atoms with ethylene. Results indicate that 73% of the 11 C-labelled propadiene was center-labelled. This value was observed to change with additives. Various mechanistic studies on the heterogeneous interactions of molecular T 2 on solid surfaces such as Pd supported on active carbon have been initiated

  11. Signal yields of keV electronic recoils and their discrimination from nuclear recoils in liquid xenon

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Mahlstedt, J.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2018-05-01

    We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V /cm , 154 V /cm and 366 V /cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V /cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.

  12. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  13. Karakteristike trzanja elektromagnetskog topa / Recoil characteristics of an electromagnetic rail gun

    Directory of Open Access Journals (Sweden)

    Zoran B. Ristić

    2009-10-01

    Full Text Available U radu je razmatrano trzanje elektromagnetskog šinskog topa i upoređeno sa trzanjem konvencionalnog topa sa barutnim punjenjem. Zaključuje se da je kod elektromagnetskog topa trzanje manje nego kod topa sa barutnim punjenjem. Takođe, pokazano je da pri istim uslovima lansiranja upotreba gasne kočnice topa sa barutnim punjenjem može izmeniti karakteristike trzanja i više ih približiti ponašanju elektromagnetskog topa. / In this paper the electromagnetic rail gun recoil is discussed and compared with the recoil of a conventional, propellant gas driven gun. It is shown that, under similar launch conditions, the recoil of an electromagnetic gun is weaker than that of the powder-driven gun. The use of a muzzle brake on a powder-driven gun can alter its recoil characteristics and make its behavior closer to that of the electromagnetic rail gun.

  14. FOREWORD: 4th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    Science.gov (United States)

    Leckrone, David S.; Sugar, Jack

    1993-01-01

    In 1983 the Atomic Spectroscopy Group at the University of Lund organized a conference at Lund the purpose of which was to establish a dialogue between scientists whose research made use of basic atomic data, and scientists whose research produced such data. The data in question include complete descriptions of atomic and ionic spectra, accurate transition wavelengths and relative intensities, energy levels, lifetimes, oscillator strengths, line shapes, and nuclear effects (hyperfine structure and isotope shifts). The "consumers" in urgent need of new or improved atomic data included astrophysicsts, laboratory plasma physicists, and spectrochemists. The synergism between these specialists and the theoretical and experimental atomic physicists resulted in a highly successful meeting, attended by approximately 70 people. The rapid advances foreseen at that time in all of these areas of observational, experimental and theoretical science stimulated planning for a second conference on this subject in 1986 at the University of Toledo, and subsequently a third meeting was held at the Royal Netherlands Academy of Arts and Sciences in Amsterdam in 1989. Again attendance at the latter two meetings totaled approximately 70 researchers. The participants in Amsterdam agreed to re-convene at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, in 1992, maintaining the frequency of these conferences at one every three years. The present Topical Issue of Physica Scripta consists of 31 invited reviews given at the Gaithersburg meeting. Extended abstracts of 63 poster papers from the meeting are being published in NIST Special Publication SP850. Approximately 170 scientists attended the Gaithersburg conference, representing a substantial growth in the size of meetings in this series. One session of the conference was devoted to an informal workshop, at which any participant could give a brief oral statement about his or her most immediate data need

  15. Detector for recoil nuclei stopping in the spark chamber gas

    International Nuclear Information System (INIS)

    Aleksanyan, A.S.; Asatiani, T.L.; Ivanov, V.I.; Mkrtchyan, G.G.; Pikhtelev, R.N.

    1974-01-01

    A detector consisting of the combination of a drift and a wide gap spark chambers and designed to detect recoil nuclei stopping in the spark chamber gas is described. It is shown, that by using an appropriate discrimination the detector allows to detect reliably the recoil nuclei in the presence of intensive electron and γ-quanta beams

  16. Sonic Rarefaction Wave Low Recoil Gun

    National Research Council Canada - National Science Library

    Kathe, E

    2002-01-01

    A principal challenge faced by the U.S. Army TACOM-ARDEC Benet Laboratories in the design of armaments for lightweight future fighting vehicles with lethality overmatch is mitigating the deleterious effects of large caliber cannon recoil...

  17. Ultra-narrow EIA spectra of 85Rb atom in a degenerate Zeeman multiplet system

    Science.gov (United States)

    Rehman, Hafeez Ur; Qureshi, Muhammad Mohsin; Noh, Heung-Ryoul; Kim, Jin-Tae

    2015-05-01

    Ultra-narrow EIA spectral features of thermal 85Rb atom with respect to coupling Rabi frequencies in a degenerate Zeeman multiplet system have been unraveled in the cases of same (σ+ -σ+ , π ∥ π) and orthogonal (σ+ -σ- , π ⊥ π)polarization configurations. The EIA signals with subnatural linewidth of ~ 100 kHz even in the cases of same circular and linear polarizations of coupling and probe laser have been obtained for the first time theoretically and experimentally. In weak coupling power limit of orthogonal polarization configurations, time-dependent transfer of coherence plays major role in the splitting of the EIA spectra while in strong coupling power, Mollow triplet-like mechanism due to strong power bring into broad split feature. The experimental ultra-narrow EIA features using one laser combined with an AOM match well with simulated spectra obtained by using generalized time-dependent optical Bloch equations.

  18. Study of elementary transfer mechanisms during a collision between a swift multi-charged heavy ion and a neutral atom; Etude des mecanismes elementaires de transfert d`energie au cours d`une collision entre un ion lourd rapide multi-charge et un atome neutre

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, P. [Caen Univ., 14 (France)

    1995-12-31

    This work is dedicated to the study of the energy transfer mechanisms which occur during a collision between a swift multicharged heavy ion and a neutral atom. The elementary energy energy transfer mechanisms (scattering, excitation, ionization, capture) and their consequences on the target velocity after the collision (recoil velocity) are recalled in the first chapter. In the case of small projectile diffusion angles, we show that the recoil velocity component, transverse to the incident projectile direction, results principally from the diffusion mechanism, while the longitudinal component is due essentially to the mass transfer and the inelastic energy transfer mechanisms. Since the target recoil velocities are very small, we have built an experimental set-up which reduces the impreciseness on their measurement due to the target thermal spread using, as targets, cooled atoms of a supersonic jet (temperature < 1 K). The association of time of flight and localisation techniques allows us, for each ionised target atom, to determine the three recoil velocity components with a very good accuracy (a few tens of meters per second). In chapter three, we describe the data analysis method. And then we present in the last chapter the results we have obtained for the collision systems Xe{sup 44+}(6.7 MeV/A) + Ar => Xe{sup 44} + Ar{sup q+}+qe{sup -} (q ranging from 1 to 7); Xe{sup 44+} (6.7 MeV/A) + He => Xe{sup 44+} He{sup 1+,2+}+1e{sup -},2e{sup -}. We show that it is possible to interpret the recoil velocity in terms of kinetic energy transferred to the target and to the electrons ejected from the target. (author) 44 refs.

  19. Mechanisms of defect production and atomic mixing in high energy displacement cascades: A molecular dynamics study

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Guinan, M.W.

    1991-01-01

    We have performed molecular dynamics computer simulation studies of displacement cascades in Cu at low temperature. For 25 keV recoils we observe the splitting of a cascade into subcascades and show that cascades in Cu may lead to the formation of vacancy and interstitial dislocation loops. We discuss a new mechanism of defect production based on the observation of interstitial prismatic dislocation loop punching from cascades at 10 K. We also show that below the subcascade threshold, atomic mixing in the cascade is recoil-energy dependent and obtain a mixing efficiency that scales as the square root of the primary recoil energy. 44 refs., 12 figs

  20. A recoil detector of Koala experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huagen [Forschungszentrum Juelich (Germany)

    2015-07-01

    The concept of the luminosity detector for the PANDA experiment is based on measuring antiproton-proton elastic scattering in the Coulomb-nuclear interference region by 4 planes of HV-MAPS tracking detectors. The absolute precision is limited by the lack of existing data of the physics quantities σ{sub tot}, ρ and b describing the differential cross section as a function of squared 4-momentum transfer t in the relevant beam momentum region. Therefore, the so-called Koala experiment has been proposed to measure antiproton-proton elastic scattering. The goal of Koala experiment is to measure a wide range of t-distribution to determine the parameters σ{sub tot}, ρ and b. The idea is to measure the scattered beam antiprotons at forward angles by tracking detectors and the recoil target protons near 90 {sup circle} by energy detectors. In order to validate this method a recoil detector has been designed and built. Commissioning of the recoil detector by measuring proton-proton elastic scattering has been performed at COSY. Preliminary results of the commissioning are presented.

  1. The XMM-Newton spectrum of a candidate recoiling supermassive black hole: An elusive inverted P-Cygni profile

    Energy Technology Data Exchange (ETDEWEB)

    Lanzuisi, G.; Civano, F.; Marchesi, S.; Hickox, R. [Department of Physics and Astronomy, Dartmouth College, Wilder Laboratory, Hanover, NH 03855 (United States); Comastri, A.; Cappelluti, N. [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Costantini, E. [SRON, Netherlands Institute for Space Research, Sorbonnelaan, 2, 3584 CA Utrecht (Netherlands); Elvis, M.; Fruscione, A. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Mainieri, V. [European Southern Observatory, Karl-Schwarschild-Strasse 2, D-85748 Garching bei Munchen (Germany); Jahnke, K. [Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany); Komossa, S. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Piconcelli, E. [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Italy); Vignali, C.; Brusa, M. [Dipartimento di Astronomia, Universitá degli Studi di Bologna, via Ranzani 1, I-40127 Bologna (Italy)

    2013-11-20

    We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ∼6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the new long XMM-Newton observation, while the overall spectral shape remains constant, the continuum 2-10 keV flux decrease of ∼20% with respect to previous observation and the absorption line is undetected. The upper limit on the intensity of the absorption line is EW < 162 eV. Extensive Monte Carlo simulations show that the nondetection of the line is solely due to variation in the properties of the inflowing material, in agreement with the transient nature of these features, and that the intensity of the line is lower than the previously measured with a probability of 98.8%. In the scenario of CID-42 as a recoiling SMBH, the absorption line can be interpreted as being due to an inflow of gas with variable density that is located in the proximity of the SMBH and recoiling with it. New monitoring observations will be requested to further characterize this line.

  2. Localization of the relative position of two atoms induced by spontaneous emission

    International Nuclear Information System (INIS)

    Zheng, L.; Li, C.; Li, Y.; Sun, C.P.

    2005-01-01

    We reexamine the back-action of emitted photons on the wave packet evolution about the relative position of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the localization of the relative position of the two atoms through the entanglement between the spatial motion of individual atoms and their emitted photons. The obtained result provides a more realistic model for the analysis of the environment-induced localization of a macroscopic object

  3. Recoil transporter devices

    International Nuclear Information System (INIS)

    Madhavan, N.

    2005-01-01

    The study of sparsely produced nuclear reaction products in the direction of intense primary beam is a challenging task, the pursuit of which has given rise to the advent or several types of selective devices. These range from a simple parallel plate electrostatic deflector to state-of-the-art electromagnetic separators. There is no single device which can satisfy all the requirements of an ideal recoil transporter, simultaneously. An overview of such devices and their building blocks is presented, which may help in the proper choice of the device as per the experimental requirements. (author)

  4. Nuclear reactions excited by recoil protons on a nuclear reactor

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Khaydarov, A.; Barsukova, E.G.

    2006-01-01

    The nuclear reactions excited by recoil protons and of the detection possibility of the various chemical elements with the use of these secondary nucleus reactions were investigated. The recoil protons are produced on a nuclear reactor in the result of (n, p) inelastic and elastic scattering interaction of fast neutrons with nuclei of hydrogen. It is well known that the share of fast neutrons in energetic spectrum of reactor's neutrons in comparison with the share of thermal neutrons is small. . Consequently, the share of recoil protons produced in the result of fast neutron interaction with nuclei of light elements, capable to cause the nuclear reactions, is also small, des, due to Coulomb barrier of nuclei the recoil protons can cause the nuclear reactions only on nuclei of light and some middle elements. Our studies show that observable yields have radio nuclides excited in the result of nuclear reactions on Li, B, O, V and Cu. Our experimental results have demonstrated that the proton activation analysis based on the application of secondary nuclear reactions is useful technique to determine large contents of various light and medium chemical elements. Detection limits for studied chemical elements are estimated better than 10 ppm

  5. An automatic controlled apparatus of target chamber for atomic spectra and level lifetime measurements

    International Nuclear Information System (INIS)

    Zhao Mengchun; Yang Zhihu

    1998-01-01

    An automatically controlled apparatus of target chamber was made to measure spectra of the excited atoms and lifetime of the excited levels. The hardware is composed of nine parts including a computer and a step-motor, while the software consists of three branch programs. The maximum movable distance of target position is 65 cm with a step-length of 8.3 μm and a precision of +- 18 μm per 2 mm. On account of simple structure and double protection, the apparatus exhibits flexibility and reliability in years service

  6. Investigation of fractional momentum transfer: measurement of forward recoil ranges in 16O + natTm collisions

    International Nuclear Information System (INIS)

    Singh, Pushpendra P.; Unnati; Sharma, Manoj Kumar; Singh, B.P.; Prasad, R.; Rakesh Kumar; Golda, K.S.; Bhardwaj, H.D.

    2006-01-01

    For better understanding of complete fusion and incomplete fusion in heavy ion reactions a programme of precise measurements of excitation functions, recoil range distribution and angular distributions of recoils has been undertaken. In the present contribution the recoil range distribution for the residues have been measured at ≅ 6 MeV/nucleon, using recoil-catcher technique followed by off-line gamma-spectroscopy

  7. Measurements of recoil and projectile momentum distributions for 19-MeV F9+ + Ne collisions

    International Nuclear Information System (INIS)

    Frohne, V.; Cheng, S.; Ali, R.M.; Raphaelian, M.L.; Cocke, C.L.; Olson, R.

    1996-01-01

    The collision system of 19-MeV F 9+ on Ne has been studied using recoil and projectile momentum spectroscopy. For each event, identified by final recoil and projectile charge state, the three-dimensional momentum vector of the recoil ion and the transverse momentum vector of the projectile ion were measured. The transverse momenta of the recoil and projectile ions were found to be equal in magnitude and opposite in direction, indicating that the transverse momentum exchange is dominated by interactions between the two ion cores. The transverse momentum distributions are well described by nCTMC calculations. The longitudinal momentum distributions of the recoil ions show that a large fraction of the momentum transferred to the projectile is carried off by continuum electrons. The recoil ions are scattered slightly backward, in partial agreement with predictions of nCTMC calculations. copyright 1996 The American Physical Society

  8. Consistent empirical physical formula construction for recoil energy distribution in HPGe detectors by using artificial neural networks

    International Nuclear Information System (INIS)

    Akkoyun, Serkan; Yildiz, Nihat

    2012-01-01

    The gamma-ray tracking technique is a highly efficient detection method in experimental nuclear structure physics. On the basis of this method, two gamma-ray tracking arrays, AGATA in Europe and GRETA in the USA, are currently being tested. The interactions of neutrons in these detectors lead to an unwanted background in the gamma-ray spectra. Thus, the interaction points of neutrons in these detectors have to be determined in the gamma-ray tracking process in order to improve photo-peak efficiencies and peak-to-total ratios of the gamma-ray peaks. In this paper, the recoil energy distributions of germanium nuclei due to inelastic scatterings of 1–5 MeV neutrons were first obtained by simulation experiments. Secondly, as a novel approach, for these highly nonlinear detector responses of recoiling germanium nuclei, consistent empirical physical formulas (EPFs) were constructed by appropriate feedforward neural networks (LFNNs). The LFNN-EPFs are of explicit mathematical functional form. Therefore, the LFNN-EPFs can be used to derive further physical functions which could be potentially relevant for the determination of neutron interactions in gamma-ray tracking process.

  9. The DarkSide-50 Experiment: Electron Recoil Calibrations and A Global Energy Variable

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, Brianne Rae [Hawaii U.

    2017-01-01

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds is done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introduc- ing radioactive sources into or near the detector in a joint eort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in mul- tiple calibration campaigns with both neutron and sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of calibration sources by constructing a global energy variable which takes into account the anti- correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted decay spectrum of 39Ar against 39Ar decay data collected in the early days of DarkSide-50 while it was lled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can predict

  10. Exclusive ρ0 production measured with the HERMES recoil detector

    International Nuclear Information System (INIS)

    Perez Benito, Roberto Francisco

    2010-12-01

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  11. Neutral atom traps of radioactives

    International Nuclear Information System (INIS)

    Behr, J.A.

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear β decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left up to other presenters

  12. Neutral atom traps of radioactives

    CERN Document Server

    Behr, J A

    2003-01-01

    Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of experiments with radioactive isotopes. In nuclear beta decay, neutrino spectroscopy from beta-recoil coincidences, along with highly polarized samples, enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Los Alamos and Berkeley will be highlighted. The traps also offer bright sources for Doppler-free spectroscopy, particularly in high-Z atoms where precision measurements could measure the strength of weak neutral nucleon-nucleon and electron-nucleon interactions. Physics with francium atoms has been vigorously pursued at Stony Brook. Several facilities plan work with radioactive atom traps; concrete plans and efforts at KVI Groningen and Legnaro will be among those summarized. Contributions to the multidisciplinary field of trace analysis will be left...

  13. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Fallows, Scott Mathew [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  14. New developments on Monte Carlo simulation code for the calculation of Atom Displacements Induced rates by High Energy Electrons in Solid Materials

    International Nuclear Information System (INIS)

    Damiani, Daniela D.; Cruz, Carlos M.; Pinnera, Ibrahin; Abreu, Yamiel; Leyva, Antonio

    2015-01-01

    New developments and simulations on regard to the interactions of incident gamma radiation over solids materials using the MCSAD (Monte Carlo Simulation of Atom Displacement) code are presented. In this code Monte Carlo algorithms are applied in order to sample all electrons and gamma interaction processes occurring during their transport through a solid target, especially those connected to the output of atom displacements events. Particularly, it is calculated the limit angle to elastic scattering for the electrons on a new approach, which allows correctly the splitting of the electron single processes at higher scattering angles. On this way, the probability of single electron scattering processes transferring high recoil atomic energy leading to atom displacement effects is calculated and consequently sampled in the MCSAD code. In addition, it is considered some other new theoretical aspects in order to improve previous versions, like the one concerning the selection of threshold energy for displacements at a given atom site in dependence of the atom recoil direction. (Author)

  15. Hot atom reactions involving multivalent and univalent species. Progress report, February 1979-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Y.N.

    1980-01-01

    The major progress during this period was in the study of recoil /sup 31/Si and recoil /sup 11/C reactions and in the initiation of the studies on the interaction of molecular tritium on solid surfaces. For the recoil /sup 31/Si systems, heterogeneous hydrogenation experiments have been designed to positively confirm that a major unknown product, derived from the interaction of /sup 31/Si atoms with 1,3-butadiene, is 1-silacyclopenta-2,4-diene. This compound has been shown to be very sensitive to ..gamma..-ray irradiation and to be thermally unstable at a temperature higher than 100/sup 0/C. Another recoil /sup 31/Si experiment was designed to review the mechanism of the /sup 31/Si abstraction reactions. From the fact that high yields of (/sup 31/Si)-1-fluorosilacyclopent-3-ene were obtained as a product from a mixture of PH/sub 3/ and PF/sub 3/ together with 1,3-butadiene, the stepwise abstraction mechanism is definitely much more predominant than the possible simultaneous abstraction. Other recoil /sup 31/Si works involved a detailed systematic composition study of /sup 31/SiF/sub 2/ reactions with 1,3-butadiene, some neon moderator studies, and the continuation of the studies on the reactions of /sup 31/SiF/sub 2/ and /sup 31/SiH/sub 2/ with conjugated hexadienes. By using 2-/sup 14/C-propanone and 1,3-/sup 14/C-propanone, the mechanism of solvent-free oxidative cleavage of propanone by KMnO/sub 4/ was elucidated. Information thus derived was used to degradate the /sup 11/C-labelled propadiene derived from the reactions of recoil /sup 11/C atoms with ethylene. Results indicate that 73% of the /sup 11/C-labelled propadiene was center-labelled. This value was observed to change with additives. Various mechanistic studies on the heterogeneous interactions of molecular T/sub 2/ on solid surfaces such as Pd supported on active carbon have been initiated.

  16. Validation of neutron data libraries by backscattered spectra of Pu-Be Neutrons

    CERN Document Server

    El-Agib, I

    1999-01-01

    Elastically backscattered spectra of Pu-Be neutrons have been measured for SiO sub 2 , water, graphite, paraffin oil and Al slabs using a proton recoil spectrometer. The results were compared with the calculated spectra obtained by the three-dimensional Monte-Carlo transport code MCNP-4B and point-wise cross sections from the ENDF/B-V, ENDF/B-VI, JENDL-3.1 and BROND-2 data libraries. The good agreement between the measured and calculated results indicates that this procedure can be used for validation of different data libraries. This simple method renders possible the detection of oxygen, carbon and hydrogen in bulk samples. (author)

  17. Molecular frame and recoil frame angular distributions in dissociative photoionization of small molecules

    International Nuclear Information System (INIS)

    Lucchese, R R; Carey, R; Elkharrat, C; Houver, J C; Dowek, D

    2008-01-01

    Photoelectron angular distributions in the dipole approximation can be written with respect to several different reference frames. A brief review of the molecular frame and recoil frame are given. Experimentally, one approach for obtaining such angular distributions is through angle-resolved coincidence measurements of dissociative ionization. If the system dissociates into two heavy fragments, then the recoil frame angular distribution can be measured. Computed molecular frame and recoil frame photoelectron angular distributions are compared to experimental data for the Cl 2p ionization of CH 3 Cl.

  18. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    Science.gov (United States)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  19. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    International Nuclear Information System (INIS)

    Mehdizadeh, Arash; Al-Sarawi, Said; Abbott, Derek; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi

    2013-01-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5–7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5

  20. Recoiling Black Holes: Electromagnetic Signatures, Candidates, and Astrophysical Implications

    Directory of Open Access Journals (Sweden)

    S. Komossa

    2012-01-01

    Full Text Available Supermassive black holes (SMBHs may not always reside right at the centers of their host galaxies. This is a prediction of numerical relativity simulations, which imply that the newly formed single SMBH, after binary coalescence in a galaxy merger, can receive kick velocities up to several 1000 km/s due to anisotropic emission of gravitational waves. Long-lived oscillations of the SMBHs in galaxy cores, and in rare cases even SMBH ejections from their host galaxies, are the consequence. Observationally, accreting recoiling SMBHs would appear as quasars spatially and/or kinematically offset from their host galaxies. The presence of the “kicks” has a wide range of astrophysical implications which only now are beginning to be explored, including consequences for black hole and galaxy assembly at the epoch of structure formation, black hole feeding, and unified models of active galactic nuclei (AGN. Here, we review the observational signatures of recoiling SMBHs and the properties of the first candidates which have emerged, including follow-up studies of the candidate recoiling SMBH of SDSSJ092712.65+294344.0.

  1. Study of elementary transfer mechanisms during a collision between a swift multi-charged heavy ion and a neutral atom

    International Nuclear Information System (INIS)

    Jardin, P.

    1995-01-01

    This work is dedicated to the study of the energy transfer mechanisms which occur during a collision between a swift multicharged heavy ion and a neutral atom. The elementary energy energy transfer mechanisms (scattering, excitation, ionization, capture) and their consequences on the target velocity after the collision (recoil velocity) are recalled in the first chapter. In the case of small projectile diffusion angles, we show that the recoil velocity component, transverse to the incident projectile direction, results principally from the diffusion mechanism, while the longitudinal component is due essentially to the mass transfer and the inelastic energy transfer mechanisms. Since the target recoil velocities are very small, we have built an experimental set-up which reduces the impreciseness on their measurement due to the target thermal spread using, as targets, cooled atoms of a supersonic jet (temperature 44+ (6.7 MeV/A) + Ar => Xe 44 + Ar q+ +qe - (q ranging from 1 to 7); Xe 44+ (6.7 MeV/A) + He => Xe 44+ He 1+,2+ +1e - ,2e - . We show that it is possible to interpret the recoil velocity in terms of kinetic energy transferred to the target and to the electrons ejected from the target. (author)

  2. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T.R.H.; Whitlow, H.J. [Lund Univ. (Sweden); Bubb, I.F.; Short, R.; Johnston, P.N. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1996-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  3. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T R.H.; Whitlow, H J [Lund Univ. (Sweden); Bubb, I F; Short, R; Johnston, P N [Royal Melbourne Inst. of Tech., VIC (Australia)

    1997-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  4. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.

    2010-01-01

    The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number...

  5. Light absorption during alkali atom-noble gas atom interactions at thermal energies: a quantum dynamics treatment.

    Science.gov (United States)

    Pacheco, Alexander B; Reyes, Andrés; Micha, David A

    2006-10-21

    The absorption of light during atomic collisions is treated by coupling electronic excitations, treated quantum mechanically, to the motion of the nuclei described within a short de Broglie wavelength approximation, using a density matrix approach. The time-dependent electric dipole of the system provides the intensity of light absorption in a treatment valid for transient phenomena, and the Fourier transform of time-dependent intensities gives absorption spectra that are very sensitive to details of the interaction potentials of excited diatomic states. We consider several sets of atomic expansion functions and atomic pseudopotentials, and introduce new parametrizations to provide light absorption spectra in good agreement with experimentally measured and ab initio calculated spectra. To this end, we describe the electronic excitation of the valence electron of excited alkali atoms in collisions with noble gas atoms with a procedure that combines l-dependent atomic pseudopotentials, including two- and three-body polarization terms, and a treatment of the dynamics based on the eikonal approximation of atomic motions and time-dependent molecular orbitals. We present results for the collision induced absorption spectra in the Li-He system at 720 K, which display both atomic and molecular transition intensities.

  6. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Bouanani, M.E.; Persson, L.; Hult, M.; Jonsson, P.; Johnston, P.N. [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M. [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M.; Zaring, C. [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P.N.; Bubb, I.F.; Walker, B.R.; Stannard, W.B. [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  7. Multivariate techniques of analysis for ToF-E recoil spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H J; Bouanani, M E; Persson, L; Hult, M; Jonsson, P; Johnston, P N [Lund Institute of Technology, Solvegatan, (Sweden), Department of Nuclear Physics; Andersson, M [Uppsala Univ. (Sweden). Dept. of Organic Chemistry; Ostling, M; Zaring, C [Royal institute of Technology, Electrum, Kista, (Sweden), Department of Electronics; Johnston, P N; Bubb, I F; Walker, B R; Stannard, W B [Royal Melbourne Inst. of Tech., VIC (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Multivariate statistical methods are being developed by the Australian -Swedish Recoil Spectrometry Collaboration for quantitative analysis of the wealth of information in Time of Flight (ToF) and energy dispersive Recoil Spectrometry. An overview is presented of progress made in the use of multivariate techniques for energy calibration, separation of mass-overlapped signals and simulation of ToF-E data. 6 refs., 5 figs.

  8. The extraction of lifetimes of weakly-populated nuclear levels in recoil distance method experiments

    International Nuclear Information System (INIS)

    Kennedy, D.L.; Stuchbery, A.E.; Bolotin, H.H.

    1979-01-01

    Two analytic techniques are described which extend the conventional analysis of recoil-distance method (RDM) data. The first technique utilizes the enhanced counting statistics of the composite spectrum formed by the addition of all γ-ray spectra recorded at the different target-to-stopper distances employed, in order to extract the lifetimes of levels whose observed depopulating γ-ray transitions have insufficient statistics to permit conventional analysis. The second technique analyses peak centroids rather than peak areas to account for contamination by flight distance dependent background. The results from a recent study of the low-lying excited states in 196 198 Pt for those levels whose lifetimes could be extracted by conventional RDM analysis are shown to be in good agreement with those obtained using the new methods of analysis

  9. Gravitational recoil from binary black hole mergers: The close-limit approximation

    International Nuclear Information System (INIS)

    Sopuerta, Carlos F.; Yunes, Nicolas; Laguna, Pablo

    2006-01-01

    The coalescence of a binary black hole system is one of the main sources of gravitational waves that present and future detectors will study. Apart from the energy and angular momentum that these waves carry, for unequal-mass binaries there is also a net flux of linear momentum that implies a recoil velocity of the resulting final black hole in the opposite direction. Due to the relevance of this phenomenon in astrophysics, in particular, for galaxy merger scenarios, there have been several attempts to estimate the magnitude of this velocity. Since the main contribution to the recoil comes from the last orbit and plunge, an approximation valid at the last stage of coalescence is well motivated for this type of calculation. In this paper, we present a computation of the recoil velocity based on the close-limit approximation scheme, which gives excellent results for head-on and grazing collisions of black holes when compared to full numerical relativistic calculations. We obtain a maximum recoil velocity of ∼57 km/s for a symmetric mass ratio η=M 1 M 2 /(M 1 +M 2 ) 2 ∼0.19 and an initial proper separation of 4M, where M is the total Arnowitt-Deser-Misner (ADM) mass of the system. This separation is the maximum at which the close-limit approximation is expected to provide accurate results. Therefore, it cannot account for the contributions due to inspiral and initial merger. If we supplement this estimate with post-Newtonian (PN) calculations up to the innermost stable circular orbit, we obtain a lower bound for the recoil velocity, with a maximum around 80 km/s. This is a lower bound because it neglects the initial merger phase. We can however obtain a rough estimate by using PN methods or the close-limit approximation. Since both methods are known to overestimate the amount of radiation, we obtain in this way an upper bound for the recoil with maxima in the range of 214-240 km/s. We also provide nonlinear fits to these estimated upper and lower bounds. These

  10. Exclusive {rho}{sup 0} production measured with the HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Perez Benito, Roberto Francisco

    2010-12-15

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  11. Recoiling D-branes

    International Nuclear Information System (INIS)

    Nakamura, Shin

    2005-01-01

    We propose a new method to describe a recoiling D-brane that is elastically scattered by closed strings in the nonrelativistic region. We utilize the low-energy effective field theory on the worldvolume of the D-brane, and the velocity of the D-brane is described by the time derivative of the expectation values of the massless scalar fields on the worldvolume. The effects of the closed strings are represented by a source term for the massless fields in this method. The momentum conservation condition between the closed strings and the D-brane is derived up to the relative sign of the momentum of the D-brane

  12. Remote recoil: a new wave mean interaction effect

    Science.gov (United States)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the

  13. Reactions of 11C recoil atoms in the systems H2O-NH3, H2O-CH4 and NH3-CH4

    International Nuclear Information System (INIS)

    Nebeling, B.

    1988-11-01

    In this study the chemical reactions of recoil carbon 11 in the binary gas mixtures H 2 O-NH 3 , H 2 O-CH 4 and NH 3 -CH 4 in different mixing ratios as well as in solid H 2 O and in a solid H 2 O-NH 3 mixture were analyzed in dependence of the dose. The analyses were to serve e.g. the simulation of chemical processes caused by solar wind, solar radiation and cosmic radiation in the coma and core of comets. They were to give further information about the role of the most important biogeneous element carbon, i.e. carbon, in the chemical evolution of the solar system. Besides the actual high energy processes resulting in the so-called primary products, also the radiation-chemical changes of the primary products were also observed in a wide range of dosing. The generation of the energetic 11 C atoms took place according to the target composition by the nuclear reactions 14 N(p,α) 11 C, 12 C( 3 He,α) 11 C or the 16 O(p,αpn) 11 C reaction. The identification of the products marked with 11 C was carried out by means of radio gas chromatography or radio liquid chromatography (HPLC). (orig./RB) [de

  14. Advanced nuclear data for radiation-damage calculations

    International Nuclear Information System (INIS)

    MacFarlane, R.E.; Foster, D.G. Jr.

    1983-01-01

    Accurate calculations of atomic displacement damage in materials exposed to neutrons require detailed spectra for primary recoil nuclei. Such data are not available from direct experimental measurements. Moreover, they cannot always be computed accurately starting from evaluated nuclear data libraries such as ENDF/B-V that were developed primarily for neutron transport applications, because these libraries lack detailed energy-and-angle distributions for outgoing charged particles. Fortunately, a new generation of nuclear model codes is now available that can be used to fill in the missing spectra. One example is the preequilibrium statistical-model code GNASH. For heating and damage applications, a supplementary code called RECOIL has been developed. RECOIL uses detailed reaction data from GNASH, together with angular distributions based on Kalbach-Mann systematics to compute the energy and angle distributions of recoil nuclei. The energy-angle distributions for recoil nuclei and outgoing particles are written out in the new ENDF/B File 6 format. The result is a complete set of nuclear data that can be used to calculate displacement-energy production, heat production, gas production, transmutation, and activation. Sample results for iron are given and compared to the results of conventional damage models such as those used in NJOY

  15. Development and evaluation of a collection apparatus for recoil products for study of the deexcitation process of "2"3"5"mU

    International Nuclear Information System (INIS)

    Shigekawa, Y.; Kasamatsu, Y.; Shinohara, A.

    2016-01-01

    The nucleus "2"3"5"mU is an isomer with extremely low excitation energy (76.8 eV) and decays dominantly through the internal conversion (IC) process. Because outer-shell electrons are involved in the IC process, the decay constant of "2"3"5"mU depends on its chemical environment. We plan to study the deexcitation process of "2"3"5"mU by measuring the energy spectra of IC electrons in addition to the decay constants for various chemical forms. In this paper, the preparation method of "2"3"5"mU samples from "2"3"9Pu by using alpha-recoil energy is reported. A Collection Apparatus for Recoil Products was fabricated, and then collection efficiencies under various conditions were determined by collecting "2"2"4Ra recoiling out of "2"2"8Th electrodeposited and precipitated sources. The pressure in the apparatus (vacuum or 1 atm of N_2 gas) affected the variations of the collection efficiencies depending on the negative voltage applied to the collector. The maximum values of the collection efficiencies were mainly affected by the thickness of the "2"2"8Th sources. From these results, the suitable conditions of the "2"3"9Pu sources for preparation of "2"3"5"mU were determined. In addition, dissolution efficiencies were determined by washing collected "2"2"4Ra with solutions. When "2"2"4Ra was collected in 1 atm of N_2 gas and dissolved with polar solutions such as water, the dissolution efficiencies were nearly 100%. The method of rapid dissolution of recoil products would be applicable to rapid preparation of short-lived "2"3"5"mU samples for various chemical forms.

  16. Application of some Hartree-Fock model calculations to the analysis of atomic and free-ion optical spectra

    International Nuclear Information System (INIS)

    Hayhurst, T.L.

    1980-01-01

    Techniques for applying ab-initio calculations to the analysis of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multiconfiguration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e. wavefunctions with radical correlations between electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to screen the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the KI sequence from K 0+ through Fe 7+ , fitting to experimental levels for V 4+ , and Cr 5+ ; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: Energy levels of the Uranium hexahalide complexes, (UX 6 ) 2- for X = F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O/sub h/ symmetry) with corrections proposed by Brian Judd

  17. Application of some Hartree-Fock model calculations to the analysis of atomic and free-ion optical spectra

    International Nuclear Information System (INIS)

    Hayhurst, T.L.

    1980-05-01

    Techniques for applying ab-initio calculations to the analysis of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multi-configuration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e., wavefunctions with radial correlations between electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to screen the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the K I sequence from K 0+ through Fe 7+ , fitting to experimental levels for V 4+ , and Cr 5+ ; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: energy levels of the uranium hexahalide complexes, (UX 6 ) 2- for X = F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O/sub h/ symmetry) with corrections proposed by Brian Judd

  18. A G/NARRLI Effort. Measuring the Ionization Yield of Low-Energy Nuclear Recoils in Liquid Argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Tenzing Henry Yatish [Univ. of California, Berkeley, CA (United States)

    2014-01-01

    Liquid argon has long been used for particle detection due to its attractive drift properties, ample abundance, and reasonable density. The response of liquid argon to lowenergy O(102 -1044 eV) interactions is, however, largely unexplored. Weakly interacting massive particles such as neutrinos and hypothetical dark-matter particles (WIMPs) are predicted to coherently scatter on atomic nuclei, leaving only an isolated low-energy nuclear recoil as evidence. The response of liquid argon to low-energy nuclear recoils must be studied to determine the sensitivity of liquid argon based detectors to these unobserved interactions. Detectors sensitive to coherent neutrino-nucleus scattering may be used to monitor nuclear reactors from a distance, to detect neutrinos from supernova, and to test the predicted behavior of neutrinos. Additionally, direct detection of hypothetical weakly interacting dark matter would be a large step toward understanding the substance that accounts for nearly 27% of the universe. In this dissertation I discuss a small dual-phase (liquid-gas) argon proportional scintillation counter built to study the low-energy regime and several novel calibration and characterization techniques developed to study the response of liquid argon to low-energy O(102 -104 eV) interactions.

  19. In-beam electron spectrometer used in conjunction with a gas-filled recoil separator

    International Nuclear Information System (INIS)

    Kankaanpaeae, H.; Butler, P.A.; Greenlees, P.T.; Bastin, J.E.; Herzberg, R.D.; Humphreys, R.D.; Jones, G.D.; Jones, P.; Julin, R.; Keenan, A.; Kettunen, H.; Leino, M.; Miettinen, L.; Page, T.; Rahkila, P.; Scholey, C.; Uusitalo, J.

    2004-01-01

    The conversion-electron spectrometer SACRED has been redesigned for use in conjunction with the RITU gas-filled recoil separator. The system allows in-beam recoil-decay-tagging (RDT) measurements of internal conversion electrons. The performance of the system using standard sources and in-beam is described

  20. New developments of the recoil distance doppler-shift method

    Energy Technology Data Exchange (ETDEWEB)

    Fransen, Christoph; Blazhev, Andrey; Braunroth, Thomas; Dewald, Alfred; Goldkuhle, Alina; Jolie, Jan; Litzinger, Julia; Mueller-Gatermann, Claus; Woelk, Dorothea; Zell, Karl-Oskar [Institut fuer Kernphysik, Universitaet zu Koeln (Germany)

    2016-07-01

    The recoil distance Doppler-shift (RDDS) method is a very valuable technique for measuring lifetimes of excited nuclear states in the picosecond range to deduce absolute transition strengths between nuclear excitations independent on the reaction mechanism. Dedicated plunger devices were built by our group for measurements with this method for a broad range of beam energies ranging from few MeV/u up to relativistic energies of the order of 100 MeV/u. Those were designed to match the constraints defined by state-of-the art γ-ray spectrometers like AGATA, Galileo, Gammasphere. Here we give an overview about recent experiments of our group to determine transition strengths from level lifetimes in exotic nuclei where also recoil separators or mass spectrographs were used for an identification of the recoiling reaction products. The aim is to learn about phenomena like shape phase coexistence in exotic regions and the evolution of the shell structure far from the valley of stability. We also review new plunger devices that are developed by our group for future experimental campaigns with stable and radioactive beams in different energy regimes, e.g., a plunger for HIE-ISOLDE.

  1. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  2. Investigations of Atomic Transport Induced by Heavy Ion Irradiation

    Science.gov (United States)

    Banwell, Thomas Clyde

    The mechanisms of atomic transport induced by ion irradiation generally fall into the categories of anisotropic or isotropic processes. Typical examples of these are recoil implantation and cascade mixing, respectively. We have measured the interaction of these processes in the mixing of Ti/SiO(,2)/Si, Cr/SiO(,2)/Si and Ni/SiO(,2)/Si multi-layers irradiated with Xe at fluences of 0.01 - 10 x 10('15)cm('-2). The fluence dependence of net metal transport into the underlying layers was measured with different thicknesses of SiO(,2) and different sample temperatures during irradiation (-196 to 500C). There is a linear dependence at low fluences. At high fluences, a square-root behavior predominates. For thin SiO(,2) layers (primary recoils is quite pronounced since the gross mixing is small. A significant correlation exists between the mixing and the energy deposited through elastic collisions F(,D ). Several models are examined in an attempt to describe the transport process in Ni/SiO(,2). It is likely that injection of Ni by secondary recoil implantation is primarily responsible for getting Ni into the SiO(,2). Secondary recoil injection is thought to scale with F(,D). Trends in the mixing rates indicate that the dominant mechanism for Ti and Cr could be the same as for Ni. The processes of atomic transport and phase formation clearly fail to be separable at higher temperatures. A positive correlation with chemical reactivity emerges at higher irradiation temperatures. The temperature at which rapid mixing occurs is not much below that for spontaneous thermal reaction. Less Ni is retained in the SiO(,2) at high irradiation temperatures. Ni incorporated in the SiO(,2) by low temperature irradiation is not expelled during a consecutive high temperature irradiation. The Ni remains trapped within larger clusters during a sequential 500C irradiation. (Abstract shortened with permission of author.).

  3. Influence of Neutron Spectra Unfolding Method on Fast Neutron Dose Determination

    International Nuclear Information System (INIS)

    Marinkovic, P.

    1991-01-01

    Full text: Accuracy of knowing the fast neutron spectra has great influence on equivalent dose determination. In usual fast neutron spectrum measurements with scintillation detectors based on proton recoil, the main difficulty is confidence of unfolding method. In former ones variance of obtained result is usually great and negative values are possible too, which does means that we don't now exactly is obtained neutron spectrum real one. The new unfolding method based on Shanon's information theory, which gives non-negative spectrum and relative low variance, is obtained and appropriate numerical code for application in fast neutron spectrometry based on proton recoil is realized. In this method principle of maximum entropy and maximum likelihood are used together. Unknown group density distribution functions, which are considered as desired normalized mean neutron group flux, are constl u cted using only constrain of knowing mean value. Obtained distributions are consistent to available information (counts in NCA from proton recoil), while being maximally noncommittal with respect to all other unknown circumstances. For maximum likelihood principle, distribution functions around mean value of counts in the channels of MCA are taken to be Gauss function shape. Optimal non-negative solution is searched by means of Lagrange parameter method. Nonlinear system of equations, is solved using gradient and Newton iterative algorithm. Error covariance matrix is obtained too. (author)

  4. 18F in hot atom chemistry and equilibrium chemical kinetics

    International Nuclear Information System (INIS)

    Root, J.W.; Tomiyoshi, Katsumi; Knickelbein, M.B.

    1993-01-01

    Superexcited molecules are unusual species that at present can only be investigated using nuclear recoil methods. The thermochemical technique for measuring the excitation energy distributions of superexcited molecules is reviewed and applied to recent studies of CF 3 18 F and C 2 F 5 18 F formed from high energy atomic exchange reactions in CF 4 and C 2 F 6 . The nascent CF 3 18 F and C 2 F 5 18 F range in energy from 1.7 to about 45 eV. The average energies of these products range from 15 to 20 eV. The internal excitation that accompanies these reactions is initially localized near the 18 F bonding site, and the C 2 F 5 18 F decomposition mechanism is non-statistical. Moderated nuclear recoil experiments yield mechanisms and rates for the reactions of thermal 18 F atoms. Under our standard experimental conditions from 3.4 x 10 4 to 3.4 x 10 8 labeled product molecules are available for radioassay. This procedure is free from systematic error and the measurements yield exceptional precision and sensitivity because (1) high energy reactions with the thermally active reagents are suppressed. (2) the host environment is rigorously controlled, and (3) the molecular products from many single atom reactions are directly counted. The limitations of this technique are described and results are presented for the reactions of thermal 18 F atoms with CH 4 and C 2 H 4 . (J.P.N.)

  5. Thermal annealing of recoil 56Mn in strontium permanganate under (n,γ) process

    International Nuclear Information System (INIS)

    Mishra, Shuddhodan P.; Vijaya

    2002-01-01

    Chemical stabilization of recoil 56 Mn in strontium permanganate (hydrous and anhydrous) has been investigated with a special reference to pre-and post-activation thermal annealing treatments. The retention of 56 Mn in neutron irradiated strontium permanganate showed significant variation on thermal annealing in both pre-and post-activation heated target. The recoil re-entry process obeys simple first order kinetics and the activation energy deduced for thermal annealing process is very low as computed by classical Arrhenius plots. The results observed are discussed in the light of existing ideas for understanding the recoil stabilization mechanism of parent reformation and the nature of precursors in permanganates. (author)

  6. Atoms - molecules - nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Otter, G.; Honecker, R.

    1993-01-01

    This first volume covers the following topics: Wave-particle dualism, classical atomic physics; the Schroedinger equation, angular momentum in quantum physics, one-electron atoms and many-electron atoms with atomic structure, atomic spectra, exotic atoms, influence of electric and magnetic fields

  7. Quality factor calculations for neutron spectra below 4 MeV

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1979-01-01

    A method is described for computing the distribution of absorbed dose, D(L), as a function of linear energy transfer, L, for any neutron spectrum with energies below 4 MeV. The results are used to determine the average quality factor for two distinctly different neutron spectra using the ICRP recommended values of the quality factor, Q(L). A comparison is made between the calculations and measurements of D(L) using a spherical tissue equivalent proportional counter. Heavy ion recoil contributions to the average quality factor are examined in detail. (author)

  8. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions

    International Nuclear Information System (INIS)

    Martino, Trassinelli

    2005-12-01

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m(π - ) = (139.571042 ± 0.000210 ± 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV

  9. Ion peening and stress relaxation induced by low-energy atom bombardment of covalent solids

    International Nuclear Information System (INIS)

    Koster, Monika; Urbassek, Herbert M.

    2001-01-01

    Using molecular-dynamics simulation, we study the buildup and relaxation of stress induced by low-energy (≤150 eV) atom bombardment of a target material. The effect is brought out most clearly by using an initially compressed specimen. As target material, we employ Si, based on the Tersoff potential. By varying the bond strength in the potential, we can specifically study its effect on damage production and stress changes. We find that in general, stress is relaxed by the atom bombardment; only for low bombarding energies and strong bonds, atom bombardment increases stress. We rationalize this behavior by considering the role of energized atoms and of recoil-implanted target atoms

  10. INS gas-filled recoil isotope separator

    International Nuclear Information System (INIS)

    Miyatake, M.; Nomura, T.; Kawakami, H.

    1986-09-01

    The characteristics and performance of a small sized gas-filled recoil isotope separator recently made at INS are described. The total efficiency and the ΔBρ/Bρ values have been measured using low velocity 16 O, 40 Ar and 68 As ions and found to be 10 and 5 %, respectively. The Z-dependence of the mean charge is discussed. (author)

  11. 102(ℎ/2π)k Large Area Atom Interferometers

    International Nuclear Information System (INIS)

    Chiow, Sheng-wey; Kovachy, Tim; Chien, Hui-Chun; Kasevich, Mark A.

    2011-01-01

    We demonstrate atom interferometers utilizing a novel beam splitter based on sequential multiphoton Bragg diffractions. With this sequential Bragg large momentum transfer (SB-LMT) beam splitter, we achieve high contrast atom interferometers with momentum splittings of up to 102 photon recoil momenta (102(ℎ/2π)k). To our knowledge, this is the highest momentum splitting achieved in any atom interferometer, advancing the state-of-the-art by an order of magnitude. We also demonstrate strong noise correlation between two simultaneous SB-LMT interferometers, which alleviates the need for ultralow noise lasers and ultrastable inertial environments in some future applications. Our method is intrinsically scalable and can be used to dramatically increase the sensitivity of atom interferometers in a wide range of applications, including inertial sensing, measuring the fine structure constant, and detecting gravitational waves.

  12. An experiment on multibubble sonoluminescence spectra in sodium chloride solution

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhan; XU JunFeng; HUANG Wei; CHEN WeiZhong; MIAO GuoQing

    2008-01-01

    We investigated experimentally the spectra of MBSL in sodium chloride water solution with krypton as dissolved gas. We observed and compared the spectra of hydroxyl ion at 310 nm and that of sodium atom at 589 nm. It has been found that under the same experimental condition, the intensity of sodium atom spectra is obviously higher than that of the hydroxyl ion spectra, and is more sensitive to the experimental condition. The krypton content, the concentration of sodium chloride solution, and the driving sound pressure obviously affect the spectra intensity in certain range.

  13. Recoil detector test for the day-one experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Institute of Modern Physics, CAS, 730000 Lanzhou (China); Forschungszentrum Juelich, 52425 Juelich (Germany); Xu, Huagen; Ritman, James [Forschungszentrum Juelich, 52425 Juelich (Germany)

    2013-07-01

    The proposed day-one experiment at HESR is a dedicated measurement of antiproton-proton elastic scattering. The aim of the day-one experiment is to determine the elastic differential parameters (total cross section σ{sub T}, the ratio of real to imaginary part of the forward scattering amplitude ρ, and the slope parameter B) by measuring a large range of 4-momentum transfer squared t (0.0008-0.1 GeV{sup 2}). The conceptual design of the day-one experiment is to measure the elastic scattered antiproton and recoil proton, by a tracking detector in the small polar angle range and by an energy detector near 90 , respectively. The recoil arm covers a maximum polar angle range from 71 to 90 and consists of two silicon strip detectors (76.8(length) x 50.0(width) x 1.0(thickness) mm{sup 3}) and two germanium detectors (80.4(length) x 50.0(width) x 5.0 (11.0) (thickness) mm{sup 3}). All detectors are single sided structure with 1.2 mm pitch. The silicon detectors will be used to detect recoil protons with energy up to about 12 MeV and the germanium detectors will be used to detect protons with energy from 12 MeV to 60 MeV. At present, one recoil arm is being constructed and the test for the detectors with radioactive sources is on-going. Preliminary test results indicate that all detectors are operational and work properly. The latest test results of these detectors are presented.

  14. Nuclear recoil scintillation and ionisation yields in liquid xenon from ZEPLIN-III data

    Energy Technology Data Exchange (ETDEWEB)

    Horn, M., E-mail: m.horn@imperial.ac.uk [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Belov, V.A.; Akimov, D.Yu. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araujo, H.M. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Barnes, E.J. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Burenkov, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Chepel, V. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Currie, A. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Edwards, B. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Ghag, C.; Hollingsworth, A. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Kalmus, G.E. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Kobyakin, A.S.; Kovalenko, A.G. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Lebedenko, V.N. [High Energy Physics group, Blackett Laboratory, Imperial College London (United Kingdom); Lindote, A. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Lopes, M.I. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Luescher, R.; Majewski, P. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Murphy, A.StJ. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom)

    2011-11-24

    Scintillation and ionisation yields for nuclear recoils in liquid xenon above 10 keV{sub nr} (nuclear recoil energy) are deduced from data acquired using broadband Am-Be neutron sources. The nuclear recoil data from several exposures to two sources were compared to detailed simulations. Energy-dependent scintillation and ionisation yields giving acceptable fits to the data were derived. Efficiency and resolution effects are treated using a light collection Monte Carlo, measured photomultiplier response profiles and hardware trigger studies. A gradual fall in scintillation yield below {approx}40 keV{sub nr} is found, together with a rising ionisation yield; both are in agreement with the latest independent measurements. The analysis method is applied to the most recent ZEPLIN-III data, acquired with a significantly upgraded detector and a precision-calibrated Am-Be source, as well as to the earlier data from the first run in 2008. A new method for deriving the recoil scintillation yield, which includes sub-threshold S1 events, is also presented which confirms the main analysis.

  15. Laterally and longitudinally dispersive recoil mass separators

    International Nuclear Information System (INIS)

    Wollnik, H.

    1987-01-01

    Principles of laterally dispersive and time-of-flight mass separators are outlined. Special emphasis is given to separators for very energetic recoils for which electrostatic fields would be technologically impossible. The principle of energy isochronous time-of-flight mass separators is shown to be applicable to storage rings. (orig.)

  16. The recoil proton polarization in πp elastic scattering

    International Nuclear Information System (INIS)

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for π + p and π - p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P 3 East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10 7 π - 's/sec and from 3.0 to 10.0 x 10 7 π + 's/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs

  17. Measurement of fast neutron spectra. 1-2

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1976-01-01

    The present status of the techniques for the measurement of fast neutron spectra is reviewed with particular attention to the recent activities in Japan. The first section of this report defines the energy range of fast neutrons, and various techniques are classified into four groups. In the following sections, recent development in each group is reviewed. The first part is the integral method represented mainly by the activation method. The variation of this method is shortly reviewed, and some results of the spectrum measurement for JRR-4 (a thermal research reactor) and YAYOI (a fast neutron source reactor) are presented together with the results of computed spectra. The second part is the method of proton recoil. The improvement of a proportional counter by Ichimori is shortly reviewed. The use of liquid scintillator is also discussed together with the experimental and computational results of YAYOI benchmark spectra of fast neutrons transmitted through the layers of iron. The utilization of n-α or n-p reaction as a sandwitch counter is discussed in the third part. Measured and calculated spectra in the FCA (a fast critical assembly) core are presented as examples. The method of time-of-flight is discussed in the fourth part. Recent developments in Japan such as the method with a double-scintillation counter are shortly presented together with its block diagram. (Aoki, K.)

  18. TRIDYN - binary collision simulation of atomic collisions dynamic composition changes in solids

    International Nuclear Information System (INIS)

    Moeller, W.; Eckstein, W.

    1988-05-01

    The report deals with the computerized simulation of the following problem: a beam of fast ions entering a solid substance is slowed down and scattered due to electronic interaction and nuclear collisions. Together with created recoil atoms local compositional changes are produced. For large fluences collisional mixing is caused in layered substances. (BHO)

  19. Determination by vibrational spectra of the strength and the bond length of atoms U and O in uranyl complexes

    International Nuclear Information System (INIS)

    Rodriguez S, A.; Martinez Q, E.

    1996-01-01

    The vibrational spectra of different uranyl compounds were studied. The wave number was related to the harmonic oscillator model and to the mathematical expression of Badger as modified by Jones, to determine the strength and the bond length of atoms U and O in UO 2 2+ . A mathematical simplification develop by us is proposed and its results compared with values obtained by other methods. (Author)

  20. Recoil distance lifetime measurements in 122,124Xe

    Science.gov (United States)

    Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.

    1998-02-01

    Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.

  1. Water droplet spreading and recoiling upon contact with thick-compact maltodextrin agglomerates.

    Science.gov (United States)

    Meraz-Torres, Lesvia Sofía; Quintanilla-Carvajal, María Ximena; Téllez-Medina, Darío I; Hernández-Sánchez, Humberto; Alamilla-Beltrán, Liliana; Gutiérrez-López, Gustavo F

    2011-11-01

    The food and pharmaceutical industries handle a number of compounds in the form of agglomerates which must be put into contact with water for rehydration purposes. In this work, liquid-solid interaction between water and maltodextrin thick-compact agglomerates was studied at different constituent particle sizes for two compression forces (75 and 225 MPa). Rapid droplet spreading was observed which was similar in radius to the expected one for ideal, flat surfaces. Contact angle determinations reported oscillations of this parameter throughout the experiments, being indicative of droplet recoiling on top of the agglomerate. Recoiling was more frequent in samples obtained at 225 MPa for agglomerate formation. Agglomerates obtained at 75 MPa exhibited more penetration of the water. Competition between dissolution of maltodextrin and penetration of the water was, probably, the main mechanism involved in droplet recoiling. Micrographs of the wetting marks were characterized by means of image analysis and the measurements suggested more symmetry of the wetting mark at higher compression force. Differences found in the evaluated parameters for agglomerates were mainly due to compaction force used. No significant effect of particle size in recoiling, penetration of water into the agglomerate, surface texture and symmetry was observed. Copyright © 2011 Society of Chemical Industry.

  2. Prospects for Precise Measurements with Echo Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Brynle Barrett

    2016-06-01

    Full Text Available Echo atom interferometers have emerged as interesting alternatives to Raman interferometers for the realization of precise measurements of the gravitational acceleration g and the determination of the atomic fine structure through measurements of the atomic recoil frequency ω q . Here we review the development of different configurations of echo interferometers that are best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of laser-cooled rubidium atoms by a sequence of standing wave pulses to measure ω q with a statistical uncertainty of 37 parts per billion (ppb on a time scale of ∼50 ms and g with a statistical precision of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.

  3. Atomic substitution in selected high-temperature superconductors: Elucidating the nature of Raman spectra excitations

    Science.gov (United States)

    Hewitt, Kevin Cecil

    2000-10-01

    In this thesis, the effects of atomic substitution on the vibrational and electronic excitations found in the Raman spectra of selected high-temperature superconductors (HTS) are studied. In particular, atomic and isotopic substitution methods have been used to determine the character of features observed in the Raman spectra of Bi2Sr2Ca n-1CunO2 n+4+delta (n = 1 - Bi2201, n = 2 - Bi2212) and YBa2Cu3O7-delta (Y123). In Bi2201, Pb substitution for Bi (and Sr) has led to the reduction and eventual removal of the structural modulation, characteristic of all members of the Bi-family of HTS. The high quality single crystals and our sensitive triple spectrometer enabled identification of a pair of low frequency modes. The modes are determined to arise from shear and compressional rigid-layer vibrations. The normal state of underdoped cuprates is characterized by a pseudogap of unknown origin. In crystals of underdoped Bi2212 a spectral peak found at 590 cm-1, previously attributed to the pairing of quasiparticles (above Tc) and hence to the formation of a normal state pseudogap, has been found to soften by 3.8% with oxygen isotope exchange. In addition, the feature is absent in fully oxygenated and yttrium underdoped crystals. In this study, the first of its kind on underdoped and isotope substituted Bi2212, the feature has been assigned to stretching vibrations of oxygen in the a-b plane. Bi2212 crystals with varying hole concentrations (0.07 Raman scattering experiments that sample the diagonal (B 2g) and principal axes (B1 g) of the BZ have led us to conclude that the superconducting gap possesses dx2-y2 symmetry, in the underdoped and overdoped regimes. It is found that the magnitude of the superconducting gap (Delta(k)) is sensitive to changes in p. Studies of the pair-breaking peak found in the B1g spectra allow us to conclude that the magnitude of the maximum gap (Deltamax) decreases monotonically with increasing hole doping, for p > 0.13. The pair

  4. Current ideas on ion-atom collisions

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1975-09-01

    A survey is given of recent developments in the understanding of ion-atom collisions, with particular emphasis on processes leading to ion-induced X-rays. The inner-shell Coulomb ionization phenomena are discussed at some length, with stress on the near-quantitative picture that appears to emerge from simple-minded models. The phenomenon of Pauli excitations and the formation of quasi-molecules leading to united atom phenomena are qualitatively reviewed together with a brief mention of target recoil effects and electron capture processes. Selected background phenomena of importance in interpreting experiments are touched upon, such as various types of bremsstrahlung production. Implications of the recently-discovered interplay between Coulomb-induced processes and united atom phenomena are especially mentioned. It is suggested that this branch of collision physics is now (1975) reaching a point where new notions and more advanced and unifying models are greatly needed. (auth)

  5. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions; Tests d'electrodynamique quantique et etalons de rayons-X a l'aide des atomes pioniques et des ions multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Trassinelli

    2005-12-15

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m({pi}{sup -}) = (139.571042 {+-} 0.000210 {+-} 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV.

  6. The Performance of the HRIBF Recoil Mass Spectrometry

    International Nuclear Information System (INIS)

    Ginter, T.N.

    1998-01-01

    The Recoil Mass Spectrometer (RMS) is a mass separator located at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. This paper describes the RMS, its performance, its detector systems, and discusses some experiments to illustrate its capabilities

  7. RITA, a promising Monte Carlo code for recoil implantation

    International Nuclear Information System (INIS)

    Desalvo, A.; Rosa, R.

    1982-01-01

    A computer code previously set up to simulate ion penetration in amorphous solids has been extended to handle with recoil phenomena. Preliminary results are compared with existing experimental data. (author)

  8. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huajie [Princeton Univ., NJ (United States)

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  9. A study of nuclear recoil backgrounds in dark matter detectors

    Science.gov (United States)

    Westerdale, Shawn S.

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the 1-1000 GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering off of nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating (alpha, n) yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development

  10. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, Shawn S. [Princeton Univ., NJ (United States)

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and

  11. Recoil polarization measurements in $\\pi^{0}$ electroproduction at the peak of the Delta (1232)

    CERN Document Server

    Sarty, A J

    2001-01-01

    This talk presents a status report, along with some preliminary/on line results, from the Thomas Jefferson National Accelerator Facility (JLab) experiment E91011 which was performed in Hall A at JLab during the summer of 2000. The experiment measured angular distributions for the differential cross section and recoil proton polarizations in the reaction p(e, e'p) pi /sup 0/. Kinematics were chosen to be centered at a CMS energy of W=1232 MeV, and a squared four momentum transfer of Q/sup 2/=1.0 (GeV/c)/sup 2/. The primary objectives of the experiment are to isolate contributions from the resonant quadrupole N to Delta , multipole S/sub 1+/, and to clarify the role of other, small nonresonant multipole contributions to the reaction. Details of the experiment itself will be given, along with sample spectra illustrating the quality and coverage of the data obtained. (10 refs) .

  12. Coincidence measurements of slow recoil ions with projectile ions in 42-MeV Arq+-Ar collisions

    International Nuclear Information System (INIS)

    Tonuma, T.; Kumagai, H.; Matsuo, T.; Tawara, H.

    1989-01-01

    Slow Ar recoil-ion production cross sections by projectiles of 1.05-MeV/amu Ar q+ (q=4,6,8,10,12,14) were measured using a projectile-ion--recoil-ion coincidence technique. The present results indicate that the average recoil ion charges left-angle i right-angle increase with increasing the incident projectile charge q and the number of the lost and captured electrons from and/or into projectiles, whereas the projectile charge-changing cross sections for loss ionization decrease steeply with increasing q for low-charge-state projectiles, and those for transfer ionization increase rapidly with increasing q for high-charge-state projectiles. For Ar projectiles with q=10, which corresponds to the equilibrium charge state of Ar projectiles at the present collision energy, the average recoil-ion charges are nearly the same in both loss and transfer ionization, and a pure ionization process plays a much more important role in producing highly charged recoil ions, in contrast to projectile electron loss or transfer processes, which play a role in other projectile charge states

  13. Dynamics and mechanisms of hot chemistry stimulated by recoil methods. Progress report, March 1, 1977--February 28, 1978

    International Nuclear Information System (INIS)

    Spicer, L.D.

    1977-11-01

    Evaluation of the nuclear recoil chemical activation process in cyclobutane-t and subsequent collisional energy transfer processes has shown: The average quanta of energy transferred from cyclobutane excited to vibrational energies near 100 kcal/mole upon collision is in the kcal/collision range, and also the hot tritium for hydrogen replacement reaction deposits about 46% of its kinetic energy into internal modes of the cyclobutane-t and the energy distribution of activated molecules is relatively independent of the composition of mixed bath systems. An evaluation of the average energy at which recoil stimulated, hot hydrogen replacement reaction in cyclohexane and n-butane occurs has been made as a function of added moderator. Calculated results indicate that the average reaction energy is relatively independent of composition over the range from 0 to 99% moderation with noble gases in well scavenged systems of moderate reactivity. Geometrical isomerization accompanying the gas phase chlorine atom replacement reaction in 2,3 dichlorohexafluoro-2-butene as a function of moderation has been investigated. Both a thermal or near thermal reaction path having a trans/cis product ratio of 1.3 and a high energy process which preferentially forms trans product from both cis and trans reactant are found

  14. Recoil effects in multiphoton electron-positron pair creation

    International Nuclear Information System (INIS)

    Krajewska, K.; Kaminski, J. Z.

    2010-01-01

    Triply differential probability rates for electron-positron pair creation in laser-nucleus collisions, calculated within the S-matrix approach, are investigated as functions of the nuclear recoil. Pronounced enhancements of differential probability rates of multiphoton pair production are found for a nonzero momentum transfer from the colliding nucleus. The corresponding rates show a very dramatic dependence on the polarization of the laser field impinging on the nucleus; only for a linearly polarized light are the multiphoton rates for electron-positron pair production considerably large. We focus therefore on this case. Our numerical results for different geometries of the reaction particles demonstrate that, for the linearly polarized laser field of an infinite extent (which is a good approximation for femtosecond laser pulses), the pair creation is far more efficient if the nucleus is detected in the direction of the laser-field propagation. The corresponding angular distributions of the created particles show that the high-energy pairs are predominantly produced in the plane spanned by the polarization vector and the laser-field propagation direction, while the low-energy pairs are rather spread around the latter of the two directions. The enhancement of differential probability rates at each energy sector, defined by the four-momentum conservation relation, is observed with varying the energy of the produced particles. The total probability rates of pair production are also evaluated and compared with the corresponding results for the case when one disregards the recoil effect. A tremendous enhancement of the total probability rates of the electron-positron pair creation is observed if one takes into account the nuclear recoil.

  15. Elastic recoil atomic spectroscopy of light elements with sub-nanometer depth resolution

    International Nuclear Information System (INIS)

    Kosmata, Marcel

    2011-01-01

    In this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two components. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a highresistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during

  16. Determination of deuterium adsorption site on palladium(1 0 0) using low energy ion recoil spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kambali, I. [Department of Physics, University of Newcastle, Callaghan (Australia); O' Connor, D.J. [Department of Physics, University of Newcastle, Callaghan (Australia)], E-mail: john.oconnor@newcastle.edu.au; Gladys, M.J. [Department of Physics, University of Newcastle, Callaghan (Australia); Karolewski, M.A. [Department of Chemistry, University of Brunei Darussalam, Gadong BE1410 (Brunei Darussalam)

    2008-05-15

    Ion beam analysis has been recently applied to study the adsorption phenomena of some adsorbates on metal surfaces. In this paper, surface recoils created by low energy Ne{sup +} ions are employed to study the adsorption site of deuterium (D) atoms on Pd(1 0 0). This technique is extremely surface sensitive with the capacity for atomic layer depth resolution. From azimuthal angle observations of Pd(1 0 0) specimen, it was found that at room temperature, D was adsorbed in the fourfold hollow site of Pd(1 0 0) at a height of 0.25 {+-} 0.05 A above the surface. The adsorbate remains in the hollow site at all temperatures to 383 K though the vertical height above the surface is found to depend on coverage and for the first time evidence is found of a transition to a p(2 x 2) structure for the adsorbate. There is no evidence of D sitting in the Pd(1 0 0) subsurface at room and higher temperatures.

  17. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-01-01

    An experiment is described to study highly charged recoil ions on-line to the heavy accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy-ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q = 15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q = 4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q = 6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix

  18. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-05-01

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  19. Recoil-proton polarization in πp elastic scattering at 547 and 625 MeV/c

    International Nuclear Information System (INIS)

    Seftor, C.J.; Adrian, S.D.; Briscoe, W.J.; Mokhtari, A.; Taragin, M.F.; Sadler, M.E.; Barlow, D.B.; Nefkens, B.M.K.; Pillai, C.

    1989-01-01

    The polarization of the recoil proton in π + p and π - p elastic scattering using a liquid-hydrogen target has been measured for backward angles at 547 and 625 MeV/c. The scattered pion and recoil proton were detected in coincidence using the large-acceptance spectrometer to detect and analyze the momentum of the pions and the JANUS polarimeter to identify and measure the polarization of the protons. Results from this experiment agree with other measurements of the recoil polarization, with analyzing-power data previously taken by this group, and with predictions of partial-wave analyses

  20. Correlated charge-changing ion-atom collisions

    International Nuclear Information System (INIS)

    Tanis, J.A.

    1992-04-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from March 16, 1991 through March 15, 1992. This work involves the experimental investigation of fundamental atomic processes in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron correlation effects. Processes involving combinations of excitation, ionization, and charge transfer are investigated utilizing coincidence techniques in which projectiles charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. New results have been obtained for studies involving (1) resonant recombination of atomic ions, (2) double ionization of helium, and (3) continuum electron emission. Experiments were conducted using accelerators at the Lawrence Berkeley Laboratory, Argonne National Laboratory, Michigan State University, Western Michigan University, and the Institute of Nuclear Research, Debrecen, Hungary. Brief summaries of work completed and work in progress are given in this report

  1. Recoil Considerations for Shoulder-Fired Weapons

    Science.gov (United States)

    2012-05-01

    than would be deduced from the force levels defined by the pressure-time curve of the cartridge. Further and just like a large-caliber weapon mounted...force. If each of the force curves over the time interval were integrated, the result should be the same as that derived from a ballistic pendulum...Kathe, E.; Dillon, R. Sonic Rarefaction Wave Low Recoil Gun; Report ARCCB-TR-2001; U.S. Army Armament Research, Development, and Engineering Center

  2. COMMENT ON THE BLACK HOLE RECOIL CANDIDATE QUASAR SDSS J092712.65+294344.0

    International Nuclear Information System (INIS)

    Shields, G. A.; Bonning, E. W.; Salviander, S.

    2009-01-01

    The Sloan Digital Sky Survey (SDSS) quasar J092712.65+294344.0 has been proposed as a candidate for a supermassive black hole (∼10 8.8 M sun ) ejected at high speed from the host galactic nucleus by gravitational radiation recoil, or alternatively for a supermassive black hole binary. This is based on a blueshift of 2650 km s -1 of the broad emission lines ('b-system') relative to the narrow emission lines ('r-system') presumed to reflect the galaxy velocity. New observations with the Hobby-Eberly Telescope (HET) confirm the essential features of the spectrum. We note a third redshift system, characterized by weak, narrow emission lines of [O III] and [O II] at an intermediate velocity 900 km s -1 redward of the broad-line velocity ('i-system'). A composite spectrum of SDSS QSOs similar to J0927+2943 illustrates the feasibility of detecting the calcium K absorption line in spectra of sufficient quality. The i-system may represent the QSO host galaxy or a companion. Photoionization requires the black hole to be ∼3 kpc from the r-system emitting gas, implying that we are observing the system only 10 6 yr after the recoil event and contributing to the low probability of observing such a system. The HET observations give an upper limit of 10 km s -1 per year on the rate of change of the velocity difference between the r- and b-systems, constraining the orbital phase in the binary model. These considerations and the presence of a cluster of galaxies apparently containing J0927+2943 favor the idea that this system represents a superposition of two active galactic nuclei.

  3. Lifetime measurements using the recoil distance method—achievements and perspectives

    Science.gov (United States)

    Krücken, R.

    2001-07-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of "magnetic rotation" are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed.

  4. Lifetime measurements using the recoil distance method - achievements and perspectives

    International Nuclear Information System (INIS)

    Kruecken, R.

    2001-01-01

    The recoil distance method (RDM) for measuring pico-second nuclear level lifetimes and its use in nuclear structure studies is reviewed and perspectives for the future are presented. High precision measurements in the mass-130 region, studies of multi-phonon states in rare earth nuclei, the investigation of shape coexistence and the recently discovered phenomenon of 'magnetic rotation' are reviewed. Prospects for lifetime measurements in exotic regions of nuclei such as the measurement of lifetimes in neutron rich nuclei populated via spontaneous and heavy-ion induced fission are discussed. Other prospects include the use of the RDM technique in conjunction with recoil separators. The relevance of these techniques for experiments with radioactive ion beams will be discussed

  5. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    International Nuclear Information System (INIS)

    Bhalla, R.K.; Poletti, A.R.

    1984-01-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM). γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22 Ne, 1.275 MeV level (2 + -> 0 + ), 5.16 +- 0.13 ps; 26 Mg, 3.588 MeV level (0 + -> 2 + ), 9.29 +- 0.23 ps; 30 Si, 3.788 MeV level (0 + -> 2 + ), 12.00 +- 0.70 ps; 38 Ar, 3.377 MeV level (0 + -> 2 + ), 34.5 +- 1.5 ps. The present measurements are compared to those of previous investigators. For the 22 Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations. (orig.)

  6. Test of a superheated superconducting granule detector with nuclear recoil measurements

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Flammer, I.; Frei, D.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.; Perret-Gallix, D.; Konter, J.A.; Mango, S.

    1993-01-01

    The presented results are part of a Superheated Superconducting Granule (SSG) detector development for neutrinos and dark matter. An aluminum SSG detector was exposed to a 70MeV neutron beam to test the detector sensitivity to nuclear recoils. The neutron scattering angels were determined using a scintillator hodoscope. Coincidences between the SSG and the hodoscope signals have been clearly established. Data were taken at an operating temperature of 120mK for different SSG intrinsic thresholds. The proved sensitivity of the detector to nuclear recoils above 10keV is encouraging for possible applications of SSG as a dark matter detector. (orig.)

  7. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  8. Dynamical Formation of Horizons in Recoiling D Branes

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John

    2000-01-01

    A toy calculation of string/D-particle interactions within a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induces the appearance of a microscopic event horizon, or `bubble', inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a `bounce' solution. Within such `bubbles', massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially three for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3 branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.

  9. A correlation between isomer shifts of 237Np Moessbauer spectra and coordination numbers of Np atoms in neptunyl(V) compounds

    International Nuclear Information System (INIS)

    Saeki, M.; Nakada, M.; Nakamoto, T.; Yamashita, T.; Masaki, N.M.; Krot, N.N.

    1999-01-01

    Five neptunyl(V) compounds were synthesized and studied by 237 Np Moessbauer spectroscopy. The isomer shifts (δ) of the Moessbauer spectra ranged from -18.6 to -19.1 mm/s for the compounds with Np atoms surrounded by 7 oxygen atoms (coordination number (CN) 7). On the other hand, the larger value of δ was obtained for the compound with CN 8. From the comparison of the present results with those reported on neptunyl(V) and (VI) compounds, it is concluded that there is a correlation between the δ and the CN for neptunyl(V) compounds, and the distribution of δ is narrower for neptunyl(V) compounds than that of neptunyl(VI) compounds. (author)

  10. Calculations of Total and Differential Solid Angles for a Proton Recoil Solid State Detector

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J; Lauber, A; Tollander, B

    1963-08-15

    The solid angles have been computed for a proton recoil counter consisting of a circular hydrogenous foil viewed by an isotropic neutron point source at different distances from the target foil. Tables are given for the total subtended solid angle as well as the differential energy distribution function of the proton recoil spectrum. The influence of finite foil thickness has also been studied.

  11. Emission spectra of alkali-metal (K,Na,Li)-He exciplexes in cold helium gas

    International Nuclear Information System (INIS)

    Enomoto, K.; Hirano, K.; Kumakura, M.; Takahashi, Y.; Yabuzaki, T.

    2004-01-01

    We have observed emission spectra of excimers and exciplexes composed of a light alkali-metal atom in the first excited state and 4 He atoms [K*He n (n=1-6), Na * He n (n=1-4), and Li * He n (n=1,2)] in cryogenic He gas (the temperature 2 K -1 . Differently from exciplexes with heavier alkali-metal atoms, the spectra for the different number of He atoms were well separated, so that their assignment could be made experimentally. Comparing with the spectra of K * He n , we found that the infrared emission spectrum of the K atom excited in liquid He was from K*He 6 . To confirm the assignment, we have also carried out ab initio calculation of adiabatic potential curves and peak positions of the emission spectra of the exciplexes

  12. Superheated superconducting granule detector tested with nuclear recoil measurements

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Flammer, I.; Frei, D.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.; Perret-Gallix, D.; Brandt, B. van den; Konter, J.A.; Mango, S.

    1993-01-01

    The presented results are part of a superheated superconducting granule (SSG) detector development for neutrino and dark matter. The aim of the experiment was to measure the sensitivity of the detector to nuclear recoil energies when exposed to a 70 MeV neutron beam. The detector consists of a small readout coil (diameter 5 mm, length 10 mm) filled with aluminum granules of average diameter 23 μm embedded in an Al 2 O 3 granulate with a 6% volume filling factor. The neutron scattering angles were determined using a scintillator hodoscope. Coincidences between the SSG and the hodoscope signals have been clearly established. Data were taken at an operating temperature of 120 mK for different SSG intrinsic thresholds. The results prove the sensitivity of the detector to nuclear recoils around 10 keV. (orig.)

  13. Dama annual modulation from electron recoils

    OpenAIRE

    Foot, R.

    2018-01-01

    Plasma dark matter, which arises in dissipative dark matter models, can give rise to large annual modulation signals from keV electron recoils. Previous work has argued that the DAMA annual modulation signal might be explained in such a scenario. Detailed predictions are difficult due to the inherent complexities involved in modelling the halo plasma interactions with Earth bound dark matter. Here, we consider a simplified phenomenological model for the dark matter density and temperature nea...

  14. Configuration interaction in charge exchange spectra of tin and xenon

    Science.gov (United States)

    D'Arcy, R.; Morris, O.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; O'Sullivan, G.

    2011-06-01

    Charge-state-specific extreme ultraviolet spectra from both tin ions and xenon ions have been recorded at Tokyo Metropolitan University. The electron cyclotron resonance source spectra were produced from charge exchange collisions between the ions and rare gas target atoms. To identify unknown spectral lines of tin and xenon, atomic structure calculations were performed for Sn14+-Sn17+ and Xe16+-Xe20+ using the Hartree-Fock configuration interaction code of Cowan (1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)). The energies of the capture states involved in the single-electron process that occurs in these slow collisions were estimated using the classical over-barrier model.

  15. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    Science.gov (United States)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  16. Coupled electron and atomic kinetics through the solution of the Boltzmann equation for generating time-dependent X-ray spectra

    International Nuclear Information System (INIS)

    Sherrill, M.E.; Abdallah, J. Jr.; Csanak, G.; Kilcrease, D.P.; Dodd, E.S.; Fukuda, Y.; Akahane, Y.; Aoyama, M.; Inoue, N.; Ueda, H.; Yamakawa, K.; Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.; Skobelev, I.Yu.

    2006-01-01

    In this work, we present a model that solves self-consistently the electron and atomic kinetics to characterize highly non-equilibrium plasmas, in particular for those systems where both the electron distribution function is far from Maxwellian and the evolution of the ion level populations are dominated by time-dependent atomic kinetics. In this model, level populations are obtained from a detailed collisional-radiative model where collision rates are computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. The Boltzmann collision term includes the effects of electron-electron collisions, electron collisional ionization, excitation and de-excitation. An application for He α spectra from a short pulse laser irradiated argon cluster target will be shown to illustrate the results of our model

  17. Coupled electron and atomic kinetics through the solution of the Boltzmann equation for generating time-dependent X-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Sherrill, M.E. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States)]. E-mail: manolo@t4.lanl.gov; Abdallah, J. Jr. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Csanak, G. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Kilcrease, D.P. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Dodd, E.S. [Los Alamos National Laboratory, X-1, Los Alamos, NM 87545 (United States); Fukuda, Y. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Akahane, Y. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Aoyama, M. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Inoue, N. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Ueda, H. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Yamakawa, K. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Faenov, A.Ya. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Magunov, A.I. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Pikuz, T.A. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation)

    2006-05-15

    In this work, we present a model that solves self-consistently the electron and atomic kinetics to characterize highly non-equilibrium plasmas, in particular for those systems where both the electron distribution function is far from Maxwellian and the evolution of the ion level populations are dominated by time-dependent atomic kinetics. In this model, level populations are obtained from a detailed collisional-radiative model where collision rates are computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. The Boltzmann collision term includes the effects of electron-electron collisions, electron collisional ionization, excitation and de-excitation. An application for He{sub {alpha}} spectra from a short pulse laser irradiated argon cluster target will be shown to illustrate the results of our model.

  18. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    International Nuclear Information System (INIS)

    Sorensen, Peter; Dahl, Carl Eric

    2011-01-01

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  19. Investigation of complete and incomplete fusion in 20Ne + 51V system using recoil range measurement

    Directory of Open Access Journals (Sweden)

    Ali Sabir

    2015-01-01

    Full Text Available Recoil range distributions of evaporation residues, populated in 20Ne + 51V reaction at Elab ≈ 145 MeV, have been studied to determine the degree of momentum transferred through the complete and incomplete fusion reactions. Evaporation residues (ERs populated through the complete and incomplete fusion reactions have been identified on the basis of their recoil range in the Al catcher medium. Measured recoil range of evaporation residues have been compared with the theoretical value calculated using the code SRIM. Range integrated cross section of observed ERs have been compared with the value predicted by statistical model code PACE4.

  20. Hot atom chemistry of mixed crystals. 35 years of research

    International Nuclear Information System (INIS)

    Mueller, H.

    1993-01-01

    When this contribution was prepared, the author decided to present the more personal aspects of his work and the concepts that directed him. Since the time when the author interested in solid state hot atom chemistry more than 30 years ago, still now the generally accepted theory has not been existed. The irradiation test by using the BEPO pile in Harwell is reported. The use of glass fiber paper instead of cellulose paper was investigated. The real problem of the different models of primary retention should be solved. The idea of mixed crystal systems was the result of an experimental accident. The attempt of preparing mixed crystals, the papers that the author has written, the procedures of the experiment such as electrophoresis, the results of the electrophoretic separation are discussed. The next step was obviously the investigation of the ligand recoil. The production of the transient ligand vacancy complexes and their final fate resulted in mixed hexachlorobromometallate species is shown for the system K 2 O s Cl 6 -K 2 O s Br 6 (n,γ) 38 Cl. The reaction of the 38 Cl, the information about recoil atom reactions which increased with the complexity of target substances, and the resulted informations are reported. (K.I.)71 refs

  1. Raman spectra of filled carbon nanotubes

    International Nuclear Information System (INIS)

    Bose, S.M.; Behera, S.N.; Sarangi, S.N.; Entel, P.

    2004-01-01

    The Raman spectra of a metallic carbon nanotube filled with atoms or molecules have been investigated theoretically. It is found that there will be a three way splitting of the main Raman lines due to the interaction of the nanotube phonon with the collective excitations (plasmons) of the conduction electrons of the nanotube as well as its coupling with the phonon of the filling material. The positions and relative strengths of these Raman peaks depend on the strength of the electron-phonon interaction, phonon frequency of the filling atom and the strength of interaction of the nanotube phonon and the phonon of the filling atoms. Careful experimental studies of the Raman spectra of filled nanotubes should show these three peaks. It is also shown that in a semiconducting nanotube the Raman line will split into two and should be observed experimentally

  2. Accurate measurements of E2 lifetimes using the coincidence recoil-distance method

    Science.gov (United States)

    Bhalla, R. K.; Poletti, A. R.

    1984-05-01

    Mean lives of four E2 transitions in the (2s, 1d) shell have been measured using the recoil-distance method (RDM), γ-rays de-exciting the level of interest were detected in coincidence with particles detected in an annular detector at a backward angle thereby reducing the background and producing a beam of recoiling nuclei of well-defined energy and recoil direction. Lifetimes measured were: 22Ne, 1.275 MeV level (2 + → 0 +), 5.16±0.13 ps; 26Mg, 3.588 MeV level (0 + → 2 +), 9.29±0.23 ps; 30Si, 3.788 MeV level (0 +→ 2 +), 12.00±0.70 ps; 38Ar, 3.377 MeV level (0 + → 2 +), 34.5±1.5 ps. The present measurements are compared to those of previous investigators. For the 22Ne level, averaged results from four different measurement techniques are compared and found to be in good agreement. The experimental results are compared to shell-model calculations.

  3. An investigation of polarized atomic photofragments using the ion imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Bracker, A.S.

    1997-12-01

    This thesis describes measurement and analysis of the recoil angle dependence of atomic photofragment polarization (atomic v-J correlation). This property provides information on the electronic rearrangement which occurs during molecular photodissociation. Chapter 1 introduces concepts of photofragment vector correlations and reviews experimental and theoretical progress in this area. Chapter 2 described the photofragment ion imaging technique, which the author has used to study the atomic v-J correlation in chlorine and ozone dissociation. Chapter 3 outlines a method for isolating and describing the contribution to the image signal which is due exclusively to angular momentum alignment. Ion imaging results are presented and discussed in Chapter 4. Chapter 5 discusses a different set of experiments on the three-fragment dissociation of azomethane. 122 refs.

  4. Sensitive detection of hydrogen in a-Si:H by coincidence measurement of elastically scattered 100 MeV /sup 3/He/sup 2 +/ ions and recoil protons

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Noboru; Imura, Takeshi; Hiraki, Akio [Osaka Univ., Suita (Japan). Faculty of Engineering; Itahashi, Takahisa; Fukuda, Tomokazu; Tanaka, Masayoshi

    1982-09-01

    We have drastically improved the sensitivity of the nuclear elastic scattering (NES) method for determining hydrogen concentrations in hydrogenated amorphous silicon (a-Si:H) films. A beam of 100 MeV /sup 3/He/sup 2 +/ ions was used in the experiment. By taking the coincidence of detection of the scattered /sup 3/He ion with that of the recoil proton, we could achieve a sensitivity of 0.1 atomic percent with a precision of about 1 percent for 1 ..mu..m films.

  5. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    Energy Technology Data Exchange (ETDEWEB)

    Goings, Joshua J.; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2016-06-21

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entire ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.

  6. Hot atom chemistry: Three decades of progress

    International Nuclear Information System (INIS)

    Urch, D.S.

    1990-01-01

    The seminal experiments of Szilard and Chalmers indicated that the energy released in a nuclear transformation could be used to initiate chemical reaction. But basic studies of small molecules in the gas phase, from which reaction mechanisms could be elucidated, were not made until the late 50's. Since then theory and experiments have gone hand in hand in the study of the hot atom reactions of many recoil species. This review will present a broad overview of progress that has been made in understanding how the energy received by the atom (translation, ionization, electronic) in a nuclear transformation is used to drive chemical reactions. The limitations implied by concomitant radiation damage and ignorance of the exact state of the reacting species, upon fundamental studies and practical applications, will also be discussed

  7. SIMULATIONS OF RECOILING MASSIVE BLACK HOLES IN THE VIA LACTEA HALO

    International Nuclear Information System (INIS)

    Guedes, J.; Madau, P.; Diemand, J.; Kuhlen, M.; Zemp, M.

    2009-01-01

    The coalescence of a massive black hole (MBH) binary leads to the gravitational-wave recoil of the system and its ejection from the galaxy core. We have carried out N-body simulations of the motion of a M BH = 3.7 x 10 6 M sun MBH remnant in the 'Via Lactea I' simulation, a Milky Way-sized dark matter halo. The black hole receives a recoil velocity of V kick = 80, 120, 200, 300, and 400 km s -1 at redshift 1.5, and its orbit is followed for over 1 Gyr within a 'live' host halo, subject only to gravity and dynamical friction against the dark matter background. We show that, owing to asphericities in the dark matter potential, the orbit of the MBH is highly nonradial, resulting in a significantly increased decay timescale compared to a spherical halo. The simulations are used to construct a semi-analytic model of the motion of the MBH in a time-varying triaxial Navarro-Frenk-White dark matter halo plus a spherical stellar bulge, where the dynamical friction force is calculated directly from the velocity dispersion tensor. Such a model should offer a realistic picture of the dynamics of kicked MBHs in situations where gas drag, friction by disk stars, and the flattening of the central cusp by the returning black hole are all negligible effects. We find that MBHs ejected with initial recoil velocities V kick ∼> 500 km s -1 do not return to the host center within a Hubble time. In a Milky Way-sized galaxy, a recoiling hole carrying a gaseous disk of initial mass ∼M BH may shine as a quasar for a substantial fraction of its 'wandering' phase. The long decay timescales of kicked MBHs predicted by this study may thus be favorable to the detection of off-nuclear quasar activity.

  8. Experiments with recoil ions and other considerations

    Energy Technology Data Exchange (ETDEWEB)

    Cocke, C.L.

    1987-01-01

    Some opportunities in collisions physics with slow, multiply charged ions are addressed. A distinction between inner and outer shell collisions is drawn. The applicability of recoil ion sources to outer shell collision systems is discussed, with emphasis on the quality of the beam desired. An example of an inner shell collision is discussed, and the usefulness of not pushing the collision energy too low is pointed out. 13 refs., 14 figs.

  9. Cold atoms in optical cavities and lattices

    International Nuclear Information System (INIS)

    Horak, P.

    1996-11-01

    The thesis is organized in three chapters covering different aspects of the interaction of atoms and light in the framework of theoretical quantum optics. In chapter 1 a special case of a microscopic laser where one or two atoms interact with several quantized cavity modes is discussed. In particular I investigate the properties of the light field created in one of the cavity modes. It is shown that a single-atom model already predicts average photon numbers in agreement with a semiclassical many-atom theory. The two-atom model exhibits additional collective features, such as superradiance and subradiance. In chapter 2 effects of the photon recoil on cold atoms in the limit of long-lived atomic transitions are investigated. First, I demonstrate that, in principle, relying on this scheme, a continuous-wave laser in the ultraviolet frequency domain could be established. Second, the splitting of an atomic beam into two coherent subbeams is discussed within the same scheme. Such beamsplitters play an important role in high-precision measurements using atomic interferometers. Finally, chapter 3 deals with cooling and trapping of atoms by the interaction with laser light. I discuss the properties and the light scattering of atoms trapped in a new light field configuration, a so-called dark optical superlattice. In principle, such systems allow the trapping of more than one atom in the ground state of a single optical potential well. This could give rise to the observation of e.g. atom-atom interactions and quantum statistical effects. (author)

  10. Elastic recoil detection (ERD) with extremely heavy ions

    International Nuclear Information System (INIS)

    Forster, J.S.; Davies, J.A.; Siegele, R.; Wallace, S.G.; Zelenitsky, D.

    1996-01-01

    Extremely heavy-ion beams such as 209 Bi in elastic recoil detection (ERD) make ERD a uniquely valuable technique for thin-film analysis of elements with mass ≤100. We report ERD measurements of compositional analysis of dinosaur eggshells and bones. We also show the capability of the ERD technique on studies of thin-film, high-temperature superconductors. (orig.)

  11. Low energy recoil detection with a spherical proportional counter

    Science.gov (United States)

    Savvidis, I.; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.

    2018-01-01

    We present results for the detection of low energy nuclear recoils in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am-9Be fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keV energy region was measured by observing the 5.9 keV line of a 55Fe X-ray source, with energy resolution of 10% (σ). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am-9Be source, while SRIM was used to calculate the Ionization Quenching Factor (IQF), the simulation results are compared with the measurements. The potential of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).

  12. Characterization of TiAlN thin film annealed under O2 by in situ time of flight direct recoil spectroscopy/mass spectroscopy of recoiled ions and ex situ x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Tempez, A.; Bensaoula, A.; Schultz, A.

    2002-01-01

    The oxidation of an amorphous TiAlN coating has been studied by in situ direct recoil spectroscopy (DRS) and mass spectroscopy of recoiled ions (MSRI) and ex situ x-ray photoelectron spectroscopy (XPS). DRS and MSRI monitored the changes in surface composition as the sample was heated to 460 deg. C under an 18 O 2 pressure of 10 -6 Torr. Angular resolved XPS data were acquired for thickness-dependence information. The initial surface was partially oxidized from air exposure. Both DRS and XPS showed the Al-rich near surface and the presence of N in the subsurface. As shown by DRS and MSRI, oxidation at elevated temperatures yielded surface nitrogen loss and Ti enrichment. XPS confirmed the preferential formation of TiO 2 on the surface. This study also provides a comparison between the direct recoil (neutrals and ions) and the ionic recoil signals. In our conditions, the negative ionic fraction of all elements except H tracks their true surface content variations given by DRS. The results were compared with early work performed on identical samples. In this case the TiAlN film was oxidized with an O 2 pressure in the mTorr range and the surface changes are followed in situ by positive MSRI and XPS. This experiment also indicates that Al and N are buried under TiO 2 but from 600 deg. C

  13. Damage functions generation for polyatomic materials irradiated in test reactors

    International Nuclear Information System (INIS)

    Alberman, A.; Lesueur, D.

    1987-06-01

    Neutron exposure parameters in polyatomic materials is of great importance for fusion technology programs. The COMPOSI code computes the number of displaced atoms of sub-lattice ''j'' induced by one atom of sub-lattice ''i'' either by direct collision or through intermediate knocked atom. The code uses Lindhard equations; it is solved by iterative process. The atomic displacements cross-sections, as a function of neutron energy are derived by folding previous results with ''i'' type PKA. Moreover the COMPOSI code may include recoils from charged particles e.g.: Alpha + Triton from Li 6 capture in Li Al 0 2 . These responses in various spectra are discussed [fr

  14. Photoproduction of pions on nuclear in chiral bag model with account of motion effects of recoil nucleon

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Kanokov, Z.; Musakhanov, M.M.; Rakhimov, A.M.

    1989-01-01

    Pion production on a nucleon is studied in the chiral bag model (CBM). A CBM version is investigated in which the pions get into the bag and interact with quarks in a pseudovector way in the entire volume. Charged pion photoproduction amplitudes are found taking into account the recoil nucleon motion effects. Angular and energy distributions of charged pions, polarization of the recoil nucleon, multipoles are calculated. The recoil effects are shon to give an additional contribution to the static approximation of order of 10-20%. At bag radius value R=1 in the calculations are consistent with the experimental data

  15. Theoretical and experimental investigations of the damage and activation of pure iron under irradiation with energetic light ions

    International Nuclear Information System (INIS)

    Daum, E.

    1996-10-01

    In this report the applicability of light ion simulation irradiations with respect to the displacement damage under fusion neutron irradiation is investigated by theoretical and experimental activities. The production of primary knock-on atoms (PKA) and the displacement of lattice atoms (DPA) under proton and α-particle irradiation is considered in pure iron. The main focus is put on the effect of the non-elastic processes which are characterized by nuclear reactions and taken into account quantitatively for the first time. The profiles of the non-elastic PKA spectra can be characterized by the excitation functions of the corresponding nuclear reactions and by the mean recoil ranges of the residue nuclides. In this framework the excitation functions of proton- and α-particle-induced nuclear reactions leading to the long-lived nuclides from 57 Ni to 47 Sc are measured. The short-lived nuclides 53 Fe g , 53 Fe m , 52 Mn m and 52 V are investigated for the first time. The mean recoil ranges of the non-elastic PKA are experimentally determined by the same method. Based on theoretical calculations with nuclear and range models, non-elastic PKA spectra are obtained for all open reaction channels. (orig./WL)

  16. Hydrogen depth profiling using elastic recoil detection

    International Nuclear Information System (INIS)

    Doyle, B.L.; Peercy, P.S.

    1979-01-01

    The elastic recoil detection (ERD) analysis technique for H profiling in the near surface regions of solids is described. ERD is shown to have the capability of detecting H and its isotopes down to concentrations of approx. 0.01 at. % with a depth resolution of a few hundred angstroms. Is is demonstrated that 2.4-MeV He ions can be used successfully to profile 1 H and 2 D using this technique. 12 figures

  17. Deuterium electrodisintegration at high recoil momentum

    International Nuclear Information System (INIS)

    Steenholen, G.

    1996-01-01

    The availability of continuous electron beams made it possible to carry out various deuterium electro-disintegration experiments in kinematical domains corresponding to a high recoil momentum. Three such experiments are discussed: 1) the left-right asymmetry with respect to the direction of the momentum transfer has been measured with good precision; 2) cross sections have been obtained in a kinematical region well above the quasi-elastic peak; 3) data have been taken in quasi-elastic kinematics that can be used to study high-momentum components in the deuterium wave function [ru

  18. Molecular absorption spectra of beryllium, cerium, lanthanum, iron, and platinum salts

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1980-01-01

    The absorption spectra of some salts of beryllium, cerium, lanthanum, iron and platinum in air-acetylene flame were measured in the wavelength range from 200 to 400 nm. A Hitachi 207 type atomic absorption spectrophotometer was used. A deuterium lamp, a home-made continuous radiation lamp and some hollow cathode lamps were used as light sources. The new molecular absorption spectra of cerium, lanthanum and platinum and the absorption spectra due to Be(OH) 2 , LaO, PtH, FeO and FeCl in 200-400 nm region were obtained. Emission spectra of CeO, LaO and FeOH were also obtained. These molecular absorption bands were estimated as absorption errors of maximum 15 times to the sensitivity of each elements in atomic absorption spectrometry. In addition, spectral line interferences of iron were observed in atomic absorption spectrometry of Zn, Cd, Ni, Cu and Cr. (author)

  19. Synthesis of a New Element with Atomic Number Z=117

    International Nuclear Information System (INIS)

    Oganessian, Yu. Ts.; Abdullin, F. Sh.; Dmitriev, S. N.; Itkis, M. G.; Lobanov, Yu. V.; Mezentsev, A. N.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu. S.; Utyonkov, V. K.; Voinov, A. A.; Vostokin, G. K.; Bailey, P. D.; Benker, D. E.; Ezold, J. G.; Porter, C. E.; Riley, F. D.

    2010-01-01

    The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293 117 and 294 117 were produced in fusion reactions between 48 Ca and 249 Bk. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z≥111, validating the concept of the long sought island of enhanced stability for superheavy nuclei.

  20. Fractional momentum transfer in incomplete fusion reaction: measurement of recoil range distributions in 20Ne + 159Tb system

    International Nuclear Information System (INIS)

    Ali, R.; Singh, D.; Pachouri, Dipti; Afzal Ansari, M.; Rashid, M.H.

    2007-01-01

    The recoil range distribution (RRD) of several residues have been measured for the system 20 Ne + 159 Tb at 165 MeV beam energy by collecting the recoiling residues in the Al-catcher foils of varying thickness

  1. Optimizing recoil-isomer tagging with the Argonne fragment mass analyzer

    International Nuclear Information System (INIS)

    Garnsworthy, A.B.; Lister, C.J.; Regan, P.H.; Blank, B.B.; Cullen, I.J.; Gros, S.; Henderson, D.J.; Jones, G.A.; Liu, Z.; Seweryniak, D.; Shumard, B.R.; Thompson, N.J.; Williams, S.J.; Zhu, S.

    2008-01-01

    A new focal plane detector arrangement for the Fragment Mass Analyzer (FMA) has been built and tested at Argonne National Laboratory. This set-up is particularly sensitive for performing Recoil-Isomer Tagging on nuclei with isomeric states with lifetimes in the microsecond range. Recoiling nuclei from fusion-evaporation reactions at the target position are dispersed by their ratio of mass to charge (A/q) by the FMA and stopped in low pressure gas (air) at the focal plane. Subsequent gamma decays from isomeric states in the reaction products are observed using Ge detectors. A constant gas flow through the focal plane chamber efficiently removes longer-lived beta-decaying species from sight of the detectors. This set-up has been commissioned successfully with the microsecond isomer in 80 Rb, populated via the 52 Cr( 32 S, 3pn) reaction at 135 MeV

  2. Measurement of neutron spectra through composed material block bombarded with D-T neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, T.H. [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, P.O. BOX 919-213, Mian yang 621900 (China)], E-mail: zhutonghua@yahoo.com.cn; Liu, R.; Lu, X.X.; Jiang, L.; Wen, Z.W.; Wang, M.; Lin, J.F. [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, P.O. BOX 919-213, Mian yang 621900 (China)

    2009-12-15

    A 2-dimensional composed material assembly made of the iron and hydric block has been established. The neutron spectra from the assembly bombarded with 14-MeV neutrons at neutron generator have been obtained using the proton recoil technique with a stillbene detector. The detector positions were selected at the 60 deg., 120 deg., 180 deg. on the surface of the iron spherical shell. The background neutron spectra consisted of background and room return radiation were subtracted with combination of methods of experimental shielding and MCNP calculation. The uncertainty of results was 6.3-7.4%. The experiment results were analyzed and simulated by MCNP code and two data library. The difference is integral neutron flux (background neutron subtracted) of measured results greater than calculations with maximum of 21.2% in the range of 1-16 MeV.

  3. Detection of nuclear recoils in prototype dark matter detectors, made from Al, Sn and Zn superheated superconducting granules

    International Nuclear Information System (INIS)

    Abplanalp, M.; Van den Brandt, B.; Konter, J.A.; Mango, S.

    1995-01-01

    This work is part of an ongoing project to develop a superheated superconducting granule (SSG) detector for cold dark matter and neutrinos. The response of SSG devices to nuclear recoils has been explored irradiating SSG detectors with a 70 MeV neutron beam. The aim of the experiment was to test the sensitivity of Sn, Al and Zn SSG detectors to nuclear recoil energies down to a few keV. The detector consisted of a hollow teflon cylinder (0.1 cm 3 inner volume) filled with tiny superconducting metastable granules embedded in a dielectric medium. The nuclear recoil energies deposited in the SSG were determined measuring the neutron scattering angles with a neutron hodoscope. Coincidences in time between the SSG and the hodoscope signals have been clearly established. In this paper the results of the neutron irradiation experiments at different SSG intrinsic thresholds are discussed and compared to Monte Carlo simulations. The results show that SSG are sensitive to recoil energies down to similar 1 keV. The limited angular resolution of the neutron hodoscope prevented us from measuring the SSG sensitivity to even lower recoil energies. (orig.)

  4. Auger Spectra and Different Ionic Charges Following 3s, 3p and 3d Sub-Shells Photoionization of Kr Atoms

    Directory of Open Access Journals (Sweden)

    Yehia A. Lotfy

    2006-01-01

    Full Text Available The decay of inner-shell vacancy in an atom through radiative and non-radiative transitions leads to final charged ions. The de-excitation decay of 3s, 3p and 3d vacancies in Kr atoms are calculated using Monte-Carlo simulation method. The vacancy cascade pathway resulted from the de-excitation decay of deep core hole in 3s subshell in Kr atoms is discussed. The generation of spectator vacancies during the vacancy cascade development gives rise to Auger satellite spectra. The last transitions of the de-excitation decay of 3s, 3p and 3d holes lead to specific charged ions. Dirac-Fock-Slater wave functions are adapted to calculate radiative and non-radiative transition probabilities. The intensity of Kr^{4+} ions are high for 3s hole state, whereas Kr^{3+} and Kr^{2+} ions have highest intensities for 3p and 3d hole states, respectively. The present results of ion charge state distributions agree well with the experimental data.

  5. Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra

    Science.gov (United States)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-02-01

    This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.

  6. Recoil range distribution measurement in 20Ne + 181Ta reaction

    International Nuclear Information System (INIS)

    Tripathi, R.; Sudarshan, K.; Goswami, A.; Guin, R.; Reddy, A.V.R.

    2005-01-01

    In order to investigate linear momentum transfer in various transfer channels in 20 Ne + 181 Ta, recoil range distribution measurements have been carried out at E lab = 180 MeV, populating significant number of l-waves above l crit

  7. Development of an Atom Interferometer Gravity Gradiometer for Earth Sciences

    Science.gov (United States)

    Rakholia, A.; Sugarbaker, A.; Black, A.; Kasecivh, M.; Saif, B.; Luthcke, S.; Callahan, L.; Seery, B.; Feinberg, L.; Mather, J.; hide

    2017-01-01

    We report progress towards a prototype atom interferometer gravity gradiometer for Earth science studies from a satellite in low Earth orbit.The terrestrial prototype has a target sensitivity of 8 x 10(exp -2) E/Hz(sup 1/2) and consists of two atom sources running simultaneous interferometers with interrogation time T = 300 ms and 12 hk photon recoils, separated by a baseline of 2 m. By employing Raman side band cooling and magnetic lensing, we will generate atomic ensembles with N = 10(exp 6) atoms at a temperature of 3 nK. The sensitivity extrapolates to 7 x 10(exp -5) E/Hz(sup 1/2) in microgravity on board a satellite. Simulations derived from this sensitivity demonstrate a monthly time-variable gravity accuracy of 1 cm equivalent water height at 200 km resolution, yielding an improvement over GRACE by 1-2 orders of magnitude. A gravity gradiometer with this sensitivity would also benefit future planetary, lunar, and asteroidal missions.

  8. IDEN2-A program for visual identification of spectral lines and energy levels in optical spectra of atoms and simple molecules

    Science.gov (United States)

    Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.

    2018-04-01

    The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.

  9. Measurement of the neutron and gamma-ray spectra originating from a 14-MeV neutron source in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Broecker, B.; Clausen, K.; Schneider-Kuehnle, P.; Weinert, M.

    1975-01-01

    An experiment to measure the radiation transport originating from a 14-MeV neutron source in liquid nitrogen and liquid air is presented. Neutron and gamma-ray spectra were measured with a proton-recoil NE 213 scintillator and with four spherical proportional counters in a tank filled with liquid nitrogen or liquid air. The neutron spectra cover the energy range of 20 keV to 18 MeV. The source-detector separation varies in the liquid medium between 60 and 240 cm. The experimental setup is briefly described and the errors are estimated. (2 tables, 9 figures) (auth)

  10. Binary black holes: Spin dynamics and gravitational recoil

    International Nuclear Information System (INIS)

    Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M.; Laguna, Pablo; Matzner, Richard A.

    2007-01-01

    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are antialigned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with antialigned spins to fit the parameters in the Kidder kick formula, and verify that the recoil in the direction of the orbital angular momentum is ∝sinθ and on the orbital plane ∝cosθ, with θ the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius

  11. Recoil Induced Room Temperature Stable Frenkel Pairs in a-Hafnium Upon Thermal Neutron Capture

    Science.gov (United States)

    Butz, Tilman; Das, Satyendra K.; Dey, Chandi C.; Ghoshal, Shamik

    2013-11-01

    Ultrapure hafnium metal (110 ppm zirconium) was neutron activated with a thermal neutron flux of 6:6 · 1012 cm-2s-1 in order to obtain 181Hf for subsequent time differential perturbed angular correlation (TDPAC) experiments using the nuclear probe 181Hf(β-) 181Ta. Apart from the expected nuclear quadrupole interaction (NQI) signal for a hexagonal close-packed (hcp) metal, three further discrete NQIs were observed with a few percent fraction each. The TDPAC spectra were recorded for up to 11 half lives with extreme statistical accuracy. The fitted parameters vary slightly within the temperature range between 248 K and 373 K. The signals corresponding to the three additional sites completely disappear after `annealing' at 453 K for one minute. Based on the symmetry of the additional NQIs and their temperature dependencies, they are tentatively attributed to Frenkel pairs produced by recoil due to the emission of a prompt 5:694 MeV -ray following thermal neutron capture and reported by the nuclear probe in three different positions. These Frenkel pairs are stable up to at least 373 K.

  12. DVCS at HERMES. The recoil detector and transverse target spin asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Murray, M.J.

    2008-02-15

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. One of the most exciting topics studied at HERMES is Deeply Virtual Compton Scattering (DVCS) which is the simplest interaction that provides a gateway for access to Generalised Parton Distributions (GPDs). GPDs are a theoretical framework which can be used to calculate the total angular momentum of the quarks in the nucleon. As such, they provide one piece of the puzzle of nucleonic spin structure. In 2005, HERMES was upgraded in the target region with a Recoil Detector that allows it to make truly exclusive measurements of the DVCS interaction for the first time. The design and construction of the Recoil Detector is discussed herein, in addition to a complete analysis of the Transverse Target Spin Asymmetry (TTSA) in DVCS. Experimental facilities that enable measurement of this asymmetry are rare. The importance of the information on the TTSA from HERMES is made yet greater as the transversely polarised target that allows the asymmetry to be measured has been replaced by an unpolarised target. This was to allow the Recoil Detector to be installed. The final stage of this thesis shows a model-dependent method for constraining the angular momentum of the quarks in the nucleon and speculates as to the other pieces of the spin puzzle. (orig.)

  13. DVCS at HERMES. The recoil detector and transverse target spin asymmetries

    International Nuclear Information System (INIS)

    Murray, M.J.

    2008-02-01

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. One of the most exciting topics studied at HERMES is Deeply Virtual Compton Scattering (DVCS) which is the simplest interaction that provides a gateway for access to Generalised Parton Distributions (GPDs). GPDs are a theoretical framework which can be used to calculate the total angular momentum of the quarks in the nucleon. As such, they provide one piece of the puzzle of nucleonic spin structure. In 2005, HERMES was upgraded in the target region with a Recoil Detector that allows it to make truly exclusive measurements of the DVCS interaction for the first time. The design and construction of the Recoil Detector is discussed herein, in addition to a complete analysis of the Transverse Target Spin Asymmetry (TTSA) in DVCS. Experimental facilities that enable measurement of this asymmetry are rare. The importance of the information on the TTSA from HERMES is made yet greater as the transversely polarised target that allows the asymmetry to be measured has been replaced by an unpolarised target. This was to allow the Recoil Detector to be installed. The final stage of this thesis shows a model-dependent method for constraining the angular momentum of the quarks in the nucleon and speculates as to the other pieces of the spin puzzle. (orig.)

  14. Lamb shift in the muonic deuterium atom

    Energy Technology Data Exchange (ETDEWEB)

    Krutov, A. A.; Martynenko, A. P. [Samara State University, Pavlov street 1, 443011, Samara (Russian Federation); Samara State University, Pavlov Street 1, 443011, Samara, Russia and Samara State Aerospace University named after academician S.P. Korolyov, Moskovskoye Shosse 34, 443086, Samara (Russian Federation)

    2011-11-15

    We present an investigation of the Lamb shift (2P{sub 1/2}-2S{sub 1/2}) in the muonic deuterium ({mu}D) atom using the three-dimensional quasipotential method in quantum electrodynamics. The vacuum polarization, nuclear-structure, and recoil effects are calculated with the account of contributions of orders {alpha}{sup 3}, {alpha}{sup 4}, {alpha}{sup 5}, and {alpha}{sup 6}. The results are compared with earlier performed calculations. The obtained numerical value of the Lamb shift at 202.4139 meV can be considered a reliable estimate for comparison with forthcoming experimental data.

  15. Use of nuclear recoil for separating 228Ra, 224Ra, and 233Pa from colloidal thorium

    International Nuclear Information System (INIS)

    Beydon, J.; Gratot, I.

    1968-01-01

    By using α-recoil it is possible to separate by dialysis the α disintegration products (224 Ra; 228 Ra) of thorium from colloidal thorium hydroxide.The use of n, γ recoil allows the separation of 233 Pa produced by the neutron irradiation of thorium, on condition that the colloidal thorium hydroxide is irradiated in the presence of a dispersing. (author) [fr

  16. Electrochemical etching amplification of low-let recoil particle tracks in polymers for fast neutron dosimetry

    International Nuclear Information System (INIS)

    Sohrabi, M.; Morgan, K.Z.

    1975-11-01

    An electrochemical etching method for the amplification of fast-neutron-induced recoil particle tracks in polymers was investigated. The technique gave superior results over those obtained by conventional etching methods especially when polycarbonate foils were used for recoil particle track amplification. Electrochemical etching systems capable of multi-foil processing were designed and constructed to demonstrate the feasibility of the techniques for large-scale neutron dosimetry. Electrochemical etching parameters were studied including the nature or type of the polymer foil used, foil thickness and its effect on etching time, the applied voltage and its frequency, the chemical composition, concentration, and temperature of the etchant, distance and angle between the electrodes, and the type of particles such as recoil particles including protons. Recoil particle track density, mean track diameter, and optical density as functions of the mentioned parameters were determined. Each parameter was found to have a distinct effect on the etching results in terms of the measured responses. Several new characteristics of this fast neutron dosimetry method were studied especially for personnel dosimetry using various radiation sources such as nuclear reactors, medical cyclotrons, and isotopic neutron sources. The dose range, neutron energy dependence, directional response, fading characteristics, neutron threshold energy, etc. were investigated

  17. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  18. The role of Rydberg and continuum levels in computing high harmonic generation spectra of the hydrogen atom using time-dependent configuration interaction

    International Nuclear Information System (INIS)

    Luppi, Eleonora; Head-Gordon, Martin

    2013-01-01

    We study the role of Rydberg bound-states and continuum levels in the field-induced electronic dynamics associated with the High-Harmonic Generation (HHG) spectroscopy of the hydrogen atom. Time-dependent configuration-interaction (TD-CI) is used with very large atomic orbital (AO) expansions (up to L= 4 with sextuple augmentation and off-center functions) to describe the bound Rydberg levels, and some continuum levels. To address the lack of ionization losses in TD-CI with finite AO basis sets, we employed a heuristic lifetime for energy levels above the ionization potential. The heuristic lifetime model is compared against the conventional atomic orbital treatment (infinite lifetimes), and a third approximation which is TD-CI using only the bound levels (continuum lifetimes go to zero). The results suggest that spectra calculated using conventional TD-CI do not converge with increasing AO basis set size, while the zero lifetime and heuristic lifetime models converge to qualitatively similar spectra, with implications for how best to apply bound state electronic structure methods to simulate HHG. The origin of HHG spectral features including the cutoff and extent of interference between peaks is uncovered by separating field-induced coupling between different types of levels (ground state, bound Rydberg levels, and continuum) in the simulated electronic dynamics. Thus the origin of deviations between the predictions of the semi-classical three step model and the full simulation can be associated with particular physical contributions, which helps to explain both the successes and the limitations of the three step model

  19. Recoil velocity at second post-Newtonian order for spinning black hole binaries

    International Nuclear Information System (INIS)

    Racine, Etienne; Buonanno, Alessandra; Kidder, Larry

    2009-01-01

    We compute the flux of linear momentum carried by gravitational waves emitted from spinning binary black holes at second post-Newtonian (2PN) order for generic orbits. In particular we provide explicit expressions of three new types of terms, namely, next-to-leading order spin-orbit terms at 1.5 post-Newtonian (1.5PN) order, spin-orbit tail terms at 2PN order, and spin-spin terms at 2PN order. Restricting ourselves to quasicircular orbits, we integrate the linear-momentum flux over time to obtain the recoil velocity as function of orbital frequency. We find that in the so-called superkick configuration the higher-order spin corrections can increase the recoil velocity up to a factor ∼3 with respect to the leading-order PN prediction. Whereas the recoil velocity computed in PN theory within the adiabatic approximation can accurately describe the early inspiral phase, we find that its fast increase during the late inspiral and plunge, and the arbitrariness in determining until when it should be trusted, makes the PN predictions for the total recoil not very accurate and robust. Nevertheless, the linear-momentum flux at higher PN orders can be employed to build more reliable resummed expressions aimed at capturing the nonperturbative effects until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasicircular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mikoczi, Vasuth, and Gergely. We also verified that in the limit of extreme mass ratio our expressions for the energy and angular momentum fluxes match the ones of Tagoshi, Shibata, Tanaka, and Sasaki obtained in the context of black hole perturbation theory.

  20. Treatment for the recoil effects of the multi-step heavy-ion nucleon transfers with the orthogonalized coupled-reaction-channel theory

    International Nuclear Information System (INIS)

    Misono, S.; Imanishi, B.

    1997-02-01

    We have investigated recoil effects in heavy-ion reactions for the nucleon transfers, and the validity of the spatially local approximation for the non-local transfer interaction defined by the orthogonalized coupled-reaction-channel (OCRC) theory. This approximation makes it easier to treat multi-step transfer processes with the coupled channel method and makes it possible to define the nucleon molecular orbitals with the inclusion of the recoil effects. The transfer interaction is expanded in a power series of the momentum operator, and is approximated by the first order term, i.e., the spatially local term. The numerical calculation for the core-symmetric systems 12 C+ 13 C and 16 O+ 17 O with this approximation shows that the recoil effects are well included in the results at energies lower than a few MeV/nucleon. Furthermore, the OCRC formalism allows us even to employ the complete no-recoil approximation for the calculation of cross sections, even though it is not adequate to use this approximation in the distorted wave Born approximation (DWBA) method. As to polarization, however, the no-recoil approximation is not good even in the OCRC formalism. We discuss the recoil effects on nucleon molecular-orbital states. It is shown that states of the covalent molecular orbitals of the valence (transferred) nucleon are little affected by the recoil effects, as already suggested by Korotky et al. in the full finite-range DWBA analysis of the transfer reaction, 13 C( 13 C, 12 C) 14 C. (author). 59 refs

  1. Studies of α-spectra in 221Fr, 217At, 213Bi and 213Po decays

    International Nuclear Information System (INIS)

    Chumin, V.G.; Fominykh, V.I.; Furyaev, T.A.; Gromov, K.Ya.; Jabber, J.K.; Kalyapkin, K.V.; Kudrya, S.A.; Tsupko-Sitnikov, V.V.

    1997-01-01

    The alpha-recoil phenomenon is used to gain data on the weak components of the α-spectra of the nuclides from the 225 Ac equilibrium chain. It is established that there is no experimental basis for introducing the 450 keV level of 213 Bi in the 217 At decay and the 868 keV level of 209 Tl in the 213 Bi decay. Excitation of the 759 keV level in the 217 At decay is confirmed. The intensities of the 221 Fr, 217 At and 213 Bi β - -decay are measured

  2. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  3. FOREWORD: The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    Science.gov (United States)

    Tchang-Brillet, Wad Lydia; Wyart, Jean-François; Zeippen, Claude

    1996-01-01

    The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas was held in Meudon, France, from August 28 to 31 1995. It was the fifth in a series started by the Atomic Spectroscopic Group at the University of Lund, Sweden, in 1983. Then followed the meetings in Toledo, USA, Amsterdam, The Nether- lands and Gaithersburg, USA, with a three year period. The original title of the series ended with "... for Astrophysics and Fusion Research" and became more general with the 4th colloquium in Gaithersburg. The purpose of the present meeting was, in line with tradition, to bring together "producers" and "users" of atomic data so as to ensure optimal coordination. Atomic physicists who study the structure of atoms and their radiative and collisional properties were invited to explain the development of their work, emphasizing the possibilities of producing precise transition wavelengths and relative line intensities. Astrophysicists and laboratory plasma physicists were invited to review their present research interests and the context in which atomic data are needed. The number of participants was about 70 for the first three meetings, then exploded to 170 at Gaithersburg. About 140 participants, coming from 13 countries, attended the colloquium in Meudon. This large gathering was partly due to a number of participants from Eastern Europe larger than in the past, and it certainly showed a steady interest for interdisciplinary exchanges between different communities of scientists. This volume includes all the invited papers given at the conference and, in the appendix, practical information on access to some databases. All invited speakers presented their talks aiming at good communication between scientists from different backgrounds. A separate bound volume containing extended abstracts of the poster papers has been published by the Publications de l'Observatoire de Paris, (Meudon 1996), under the responsibility of

  4. Atomic rearrangements in ordered fcc alloys during neutron irradiation

    International Nuclear Information System (INIS)

    Kirk, M.A.; Blewitt, T.H.

    1978-01-01

    Three sets of experiments performed at Argonne National Laboratory over the past few years are described. These experiments deal with atomic rearrangements in the ordered alloys Ni 3 Mn and Cu 3 Au during fast and thermal neutron bombardment. The unique magnetic properties of ordered Ni 3 Mn are utilized to investigate radiation damage production mechanisms at low temperature (5 K) where defect migration is not possible and only disordering is observed. In the case of thermal neutron bombardment, the average recoil energy is about 450 eV and significant disordering due to [110] replacement collision sequences is observed. For fast neutron bombardment where typical recoil energies are 20 keV, significant random disordering is observed but no evidence for sizable replacement sequences is found. The bombardment of ordered Cu 3 Au by fast and thermal neutrons at higher temperature (approx. 150 0 C) is studied by electrical resistance techniques. Both ordering and disordering are observed and related to the number of migrating vacancies escaping from the high energy collision cascade

  5. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  6. Multivariate analysis of TOF-SIMS spectra of monolayers on scribed silicon.

    Science.gov (United States)

    Yang, Li; Lua, Yit-Yian; Jiang, Guilin; Tyler, Bonnie J; Linford, Matthew R

    2005-07-15

    Static time-of-flight secondary ion mass spectrometry (TOF-SIMS) was performed on monolayers on scribed silicon (Si(scr)) derived from 1-alkenes, 1-alkynes, 1-holoalkanes, aldehydes, and acid chlorides. To rapidly determine the variation in the data without introducing user bias, a multivariate analysis was performed. First, principal components analysis (PCA) was done on data obtained from silicon scribed with homologous series of aldehydes and acid chlorides. For this study, the positive ion spectra, the negative ion spectra, and the concatentated (linked) positive and negative ion spectra were preprocessed by normalization, mean centering, and autoscaling. The mean centered data consistently showed the best correlations between the scores on PC1 and the number of carbon atoms in the adsorbate. These correlations were not as strong for the normalized and autoscaled data. After reviewing these methods, it was concluded that mean centering is the best preprocessing method for TOF-SIMS spectra of monolayers on Si(scr). A PCA analysis of all of the positive ion spectra revealed a good correlation between the number of carbon atoms in all of the adsorbates and the scores on PC1. PCA of all of the negative ion spectra and the concatenated positive and negative ion spectra showed a correlation based on the number of carbon atoms in the adsorbate and the class of the adsorbate. These results imply that the positive ion spectra are most sensitive to monolayer thickness, while the negative ion spectra are sensitive to the nature of the substrate-monolayer interface and the monolayer thickness. Loadings show an inverse relationship between (inorganic) fragments that are expected from the substrate and (organic) fragments expected from the monolayer. Multivariate peak intensity ratios were derived. It is also suggested that PCA can be used to detect outlier surfaces. Partial least squares showed a strong correlation between the number of carbon atoms in the adsorbate and the

  7. Atomic and molecular data for radiotherapy

    International Nuclear Information System (INIS)

    1989-05-01

    An Advisory Group Meeting devoted solely to review the atomic and molecular data needed for radiotherapy was held in Vienna from 13 to 16 June 1988. The following items as related to the atoms and molecules of human tissues were reviewed: Cross sections differential in energy loss for electrons and other charged particles. Secondary electron spectra, or differential ionization cross sections. Total cross sections for ionization and excitation. Subexcitation electrons. Cross sections for charged-particle collisions in condensed matter. Stopping power for low-energy electrons and ions. Initial yields of atomic and molecular ions and their excited states and electron degradation spectra. Rapid conversion of these initial ions and their excited states through thermal collisions with other atoms and molecules. Track-structure quantities. Other relevant data. Refs, figs and tabs

  8. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen

    International Nuclear Information System (INIS)

    Can, C.; Gray, T.J.; Varghese, S.L.; Hall, J.M.; Tunnell, L.N.

    1985-01-01

    Electron-capture cross sections for low-velocity (10 6 --10 7 cm/s) highly charged Ne/sup q/+ (2< or =q< or =7) and Ar/sup q/+ (2< or =q< or =10)= projectiles incident on molecular- and atomic-hydrogen targets have been measured. A recoil-ion source that used the collisions of fast heavy ions (1 MeV/amu) with target gas atoms was utilized to produce slow highly charged ions. Atomic hydrogen was produced by dissociating hydrogen molecules in a high-temperature oven. Measurements and analysis of the data for molecular- and atomic-hydrogen targets are discussed in detail. The measured absolute cross sections are compared with published data and predictions of theoretical models

  9. The rates of elementary atomic processes and laser spectroscopy

    International Nuclear Information System (INIS)

    Rudzikas, Z.; Sereapinas, P.; Kaulakys, B.

    1989-01-01

    Laser spectroscopy and physics of the atom are closely interrelated. Spectra are the fundamental characteristics of atoms. Modern atomic spectroscopy deals with the structure and properties of any atom of the periodic table as well as of ions of any ionization degree. Therefore, one has to develop fairly universal and, at the same time, exact methods. In this paper briefly analyze the contemporary status of the theory of many-electron atoms and ions, the peculiarities of their structure and spectra, as well as of the processes of their interaction with radiation, interatomic interaction and of the plasma spectroscopy. The attention mainly is paid to the spectroscopy of multiply charged ions and to the processes with highly excited atoms

  10. Effect of deuteration on the vibrational spectra of organic molecules

    International Nuclear Information System (INIS)

    Billes, Ferenc; Endredi, Henrietta; Varady, Balazs

    2001-01-01

    The stable isotope substitution of organic compounds deforms their vibrational spectra. The modifications of the spectra appear as band shifts and changes in intensities and shapes of the bands. The magnitude of the effect depends on the ratio of the masses of the new and old isotopes and on the atom active position. According to these mentioned reasons large effects can be observed only if hydrogen atoms are substituted. With the effect of the substitution we dealt already in a former lecture. In this lecture we concentrate on the effect of the change of hydrogen to deuterium. We investigate the changes both experimentally and theoretically. There are two possibilities: - the hydrogen atom is in an active position, its interaction with the environment is strong, either it can dissociate or move on the skeleton of the molecule (tautomerism, resonance) and it can build hydrogen bond, (e.g. it is connected to nitrogen and oxygen atoms); - the hydrogen atom is in an indifferent position in the molecule, its interaction with the environment is weak (e.g. it joins carbon atom). When building the hydrogen bond besides the hydrogen donors also acceptors exist, namely, oxygen and nitrogen atoms having non-bonded electron pairs. When comparing the experimental and theoretical (calculated) effects of this type of isotope changes one must take into account that the calculations refer to the isolated molecule while the experimental spectra characterize the compound. The hydrogen bond is a very strong intermolecular interaction and produces tremendous changes in the infrared spectrum of the molecule in comparison to the imagined theoretical spectrum of the molecule. Some bands disappear, appear, or shift and deform drastically. The H/D change diminishes these effects. Of course, these changes entail the shift of several bands. The Raman spectrum is less sensitive to the large dipole moment changes therefore the deuteration effect is there less dramatic. Deuteration of hydrogen

  11. Correlated charge changing ion-atom collisions

    International Nuclear Information System (INIS)

    Bernstein, E.M.; Tanis, J.A.

    1990-02-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant FG02-87ER13778 from August 15, 1987 through February 15, 1990. The general scope of this work involves the experimental investigation of fundamental atomic interactions in collisions of highly charged projectiles with neutral targets, with a particular emphasis on two-electron interactions. Inner-shell processes involving excitation, ionization, and charge transfer are investigated using, for the most part, coincidence techniques in which projectile charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. Measurements were conducted using accelerators at the Lawrence Berkeley Laboratory (LBL), Argonne National Laboratory (ANL), Hahn-Meitner-Institut, Berlin (HMI), and Western Michigan University (WMU). The research described here has resulted in 34 published papers, 14 invited presentations at national and international meetings, and 31 contributed presentations. Brief summaries of work completed and work in progress are discussed in this paper

  12. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Batty, C.J.

    1989-07-01

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  13. INTRIGOSS: A new Library of High Resolution Synthetic Spectra

    Science.gov (United States)

    Franchini, Mariagrazia; Morossi, Carlo; Di Marcancantonio, Paolo; Chavez, Miguel; GES-Builders

    2018-01-01

    INTRIGOSS (INaf Trieste Grid Of Synthetic Spectra) is a new High Resolution (HiRes) synthetic spectral library designed for studying F, G, and K stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSP) and surface Flux SPectra (FSP), in the 4800-5400 Å wavelength range, were computed by means of the SPECTRUM code. The synthetic spectra are computed with an atomic and bi-atomic molecular line list including "bona fide" Predicted Lines (PLs) built by tuning loggf to reproduce very high SNR Solar spectrum and the UVES-U580 spectra of five cool giants extracted from the Gaia-ESO survey (GES). The astrophysical gf-values were then assessed by using more than 2000 stars with homogenous and accurate atmosphere parameters and detailed chemical composition from GES. The validity and greater accuracy of INTRIGOSS NSPs and FSPs with respect to other available spectral libraries is discussed. INTRIGOSS will be available on the web and will be a valuable tool for both stellar atmospheric parameters and stellar population studies.

  14. The HERMES recoil photon detector and the study of deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hulse, Charlotte van

    2011-03-15

    The study of deeply virtual Compton scattering (DVCS) gives information about the contribution of the quark orbital angular momentum to the spin of the proton. DVCS has been studied at the HERMES experiment at DESY in Hamburg. Here 27.6 GeV longitudinally polarized electrons and positrons were scattered off a gaseous proton target. For the analysis of DVCS the recoiling proton could not be detected, but was reconstructed via its missing mass. This method suffers, however, from a 14% background contribution, mainly originating from associated DVCS. In this process the proton does not stay in its ground state but is excited to a {delta}{sup +} resonance. In order to reduce the background contribution down to less than 1%, a recoil detector was installed in the HERMES experiment beginning of 2006. This detector consists of three subcomponents, of which one is the photon detector. The main function of the photon detector is the detection of {delta}{sup +} decay photons. The photon detector was started up and commissioned for the analysis of (associated) DVCS. Subsequently DVCS and associated DVCS were analyzed using the recoil detector. (orig.)

  15. Fast phase stabilization of a low frequency beat note for atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Oh, E.; Horne, R. A.; Sackett, C. A., E-mail: sackett@virginia.edu [Department of Physics, University of Virginia, 382 McCormick Road, Charlottesville, Virginia 22904-4714 (United States)

    2016-06-15

    Atom interferometry experiments rely on the ability to obtain a stable signal that corresponds to an atomic phase. For interferometers that use laser beams to manipulate the atoms, noise in the lasers can lead to errors in the atomic measurement. In particular, it is often necessary to actively stabilize the optical phase between two frequency components of the beams. Typically this is achieved using a time-domain measurement of a beat note between the two frequencies. This becomes challenging when the frequency difference is small and the phase measurement must be made quickly. The method presented here instead uses a spatial interference detection to rapidly measure the optical phase for arbitrary frequency differences. A feedback system operating at a bandwidth of about 10 MHz could then correct the phase in about 3 μs. This time is short enough that the phase correction could be applied at the start of a laser pulse without appreciably degrading the fidelity of the atom interferometer operation. The phase stabilization system was demonstrated in a simple atom interferometer measurement of the {sup 87}Rb recoil frequency.

  16. No-recoil approximation to the knock-on exchange potential in the double folding model for heavy-ion collisions

    International Nuclear Information System (INIS)

    Hagino, K.; Takehi, T.; Takigawa, N.

    2006-01-01

    We propose the no-recoil approximation, which is valid for heavy systems, for a double folding nucleus-nucleus potential. With this approximation, the nonlocal knock-on exchange contribution becomes a local form. We discuss the applicability of this approximation for elastic scattering of the 6 Li + 40 Ca system. We find that, for this and heavier systems , the no-recoil approximation works as good as another widely used local approximation that employs a local plane wave for the relative motion between the colliding nuclei. We also compare the results of the no-recoil calculations with those of the zero-range approximation often used to handle the knock-on exchange effect

  17. A new recoil distance technique using low energy coulomb excitation in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Rother, W., E-mail: wolfram.rother@googlemail.com [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others

    2011-10-21

    We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.

  18. Vibration dynamics of single atomic nanocontacts

    International Nuclear Information System (INIS)

    Khater, A; Bourahla, B; Tigrine, R

    2007-01-01

    The motivation for this work is to introduce a model for an atomic nanocontact, whereby its mechanical properties can be analysed via the local spectra. The model system consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. We calculate the vibration spectra and the local densities of vibration states, in the harmonic approximation, for the irreducible set of sites that constitute the nanocontact domain. The nanocontact observables are numerically calculated for different cases of elastic hardening and softening, to investigate how the local dynamics can respond to changes in the microscopic environment on the domain. We have also calculated the phonon scattering and coherent conductance at the nanocontact, derived in a Landauer-Buettiker matrix approach. The analysis of the spectra, of the densities of vibration states, and of the phonon conductance, identifies characteristic features and demonstrates the central role of a core subset of sites in the nanocontact domain

  19. Influence of titanium-substrate roughness on Ca–P–O thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ananda Sagari, A.R., E-mail: arsagari@gmail.com [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland); Malm, Jari [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Laitinen, Mikko [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland); Rahkila, Paavo [Department of Biology of Physical Activity, P.O. Box 35, FIN-40014 University of Jyväskylä (Finland); Hongqiang, Ma [Department of Health Sciences, P.O. Box 35 (L), FIN-40014 University of Jyväskylä (Finland); Putkonen, Matti [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Beneq Oy, P.O. Box 262, FI-01511 Vantaa (Finland); Karppinen, Maarit [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Whitlow, Harry J.; Sajavaara, Timo [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland)

    2013-03-01

    Amorphous Ca–P–O films were deposited on titanium substrates using atomic layer deposition, while maintaining a uniform Ca/P pulsing ratio of 6/1 with varying number of atomic layer deposition cycles starting from 10 up to 208. Prior to film deposition the titanium substrates were mechanically abraded using SiC abrasive paper of 600, 1200, 2000 grit size and polished with 3 μm diamond paste to obtain surface roughness R{sub rms} values of 0.31 μm, 0.26 μm, 0.16 μm, and 0.10 μm, respectively. The composition and film thickness of as-deposited amorphous films were studied using Time-Of-Flight Elastic Recoil Detection Analysis. The results showed that uniform films could be deposited on rough metal surfaces with a clear dependence of substrate roughness on the Ca/P atomic ratio of thin films. The in vitro cell-culture studies using MC3T3 mouse osteoblast showed a greater coverage of cells on the surface polished with diamond paste in comparison to rougher surfaces after 24 h culture. No statistically significant difference was observed between Ca–P–O coated and un-coated Ti surfaces for the measured roughness value. The deposited 50 nm thick films did not dissolve during the cell culture experiment. - Highlights: ► Atomic layer deposition of Ca–P–O films on abraded Ti substrate ► Surface analysis using Time-Of-Flight Elastic Recoil Detection Analysis ► Dependence of substrate roughness on the Ca/P atomic ratio of thin films ► An increase in Ca/P atomic ratio with decreasing roughness ► Mouse osteoblast showed greater coverage of cells in polished surface.

  20. Calculation of quantum-mechanical system energy spectra using path integrals

    International Nuclear Information System (INIS)

    Evseev, A.M.; Dmitriev, V.P.

    1977-01-01

    A solution of the Feynman quantum-mechanical integral connecting a wave function (psi (x, t)) at a moment t+tau (tau → 0) with the wave function at the moment t is provided by complex variable substitution and subsequent path integration. Time dependence of the wave function is calculated by the Monte Carlo method. The Fourier inverse transformation of the wave function by path integration calculated has been applied to determine the energy spectra. Energy spectra are presented of a hydrogen atom derived from wave function psi (x, t) at different x, as well as boson energy spectra of He, Li, and Be atoms obtained from psi (x, t) at X = O

  1. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    Science.gov (United States)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  2. Velocity dependence of transient hyperfine field at Pt ions rapidly recoiling through magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, C.G.; Bolotin, H.H.

    1981-01-01

    The velocity-dependence of the transient hyperfine magnetic field acting at nuclei of 196 Pt ions rapidly recoiling through thin magnetized Fe was investigated at a number of recoil velocities. The state of interest (2 1 + ) was populated by Coulomb excitation using beams of 80- and 120-MeV 32 S and 150- and 220-MeV 58 Ni ions. The 2 1 + →0 1 + γ-ray angular distribution precession measurements were carried out in coincidence with backscattered projectiles. From these results, the strength of the transient field acting on Pt ions recoiling through magnetized Fe with average velocities in the extended range 2.14<=v/vsub(o)<=4.82 (vsub(o) = c/137) was found to be consistent with a linear velocity dependence and to be incompatible with the specific vsup(0.45+-0.18) dependence which has been previously reported to account well for all ions in the mass range from oxygen through samarium. This seemingly singular behaviour for Pt and other ions in the Pt mass vicinity is discussed

  3. Effect of atomic initial phase difference on spontaneous emission of an atom embedded in photonic crystal

    International Nuclear Information System (INIS)

    Bing, Zhang; Xiu-Dong, Sun; Xiang-Qian, Jiang

    2010-01-01

    We investigate the effect of initial phase difference between the two excited states of a V-type three-level atom on its steady state behaviour of spontaneous emission. A modified density of modes is introduced to calculate the spontaneous emission spectra in photonic crystal. Spectra in free space are also shown to compare with that in photonic crystal with different relative positions of the excited levels from upper band-edge frequency. It is found that the initial phase difference plays an important role in the quantum interference property between the two decay channels. For a zero initial phase, destructive property is presented in the spectra. With the increase of initial phase difference, quantum interference between the two decay channels from upper levels to ground level turns to be constructive. Furthermore, we give an interpretation for the property of these spectra. (atomic and molecular physics)

  4. Chemical effect in nuclear decay processes. Applications in in situ studies in hot atom chemistry

    International Nuclear Information System (INIS)

    Urch, D.S.

    1993-01-01

    In certain cases, secondary processes, such as X-ray or electron emission initiated by the primary event, do show effects which can be correlated with the chemical state of the emitting atom. The most well known is Moessbauer recoil-less γ-emission, but this talk will concentrate on other, more widespread processes that follow either γ-ray internal conversion (γIC) or electron capture (EC). The former leads to electron emission and the latter to X-ray and Auger electron emission. Such emissions have been extensively studied in non-radioactive situations. These studies have shown that changes in photo- or Auger-electron energy can be readily correlated with valency and that the energies, peak shapes and peak intensities of X-rays that are generated by valence-core transitions show chemically related perturbations. γIC has been applied to the determination of changes of 3p and 3d binding energies as a function of technetium valency. The results are comparable with those from conventional X-ray photoelectron spectroscopy. In X-ray emission spectroscopy (XES) it is the Kα and Kβ X-rays from chromium ( 51 Cr) that have been most extensively studied. Studies in non-radioactive systems for chromium and related first row transition elements seem to indicate that the Kβ/Kα intensity ratio increases with valency. This may be rationalized as due to a greater response by 3p than 2p electrons to a reduction in the number of 3d electrons: 3p becomes more contracted and so the 3p → 1s transition probability is enhanced leading to the relative increase in Kβ intensity. Once 'chemical effects' in γIC and EC:XES have been established for a range of recoil elements they may be used to determine the chemical state of a recoil atom in a solid state matrix without recourse to dissolution. Such a non-invasive procedure will yield invalunable data on the primary hot atom chemistry processes. (author)

  5. Infrared spectra of jennite and tobermorite from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Vidmer, Alexandre, E-mail: alexandre@vidmer.com; Sclauzero, Gabriele; Pasquarello, Alfredo

    2014-06-01

    The infrared absorption spectra of jennite, tobermorite 14 Å, anomalous tobermorite 11 Å, and normal tobermorite 11 Å are simulated within a density-functional-theory scheme. The atomic coordinates and the cell parameters are optimized resulting in structures which agree with previous studies. The vibrational frequencies and modes are obtained for each mineral. The vibrational density of states is analyzed through extensive projections on silicon tetrahedra, oxygen atoms, OH groups, and water molecules. The coupling with the electric field is achieved through the use of density functional perturbation theory, which yields Born effective charges and dielectric constants. The simulated absorption spectra reproduce well the experimental spectra, thereby allowing for a detailed interpretation of the spectral features in terms of the underlying vibrational modes. In the far-infrared part of the absorption spectra, the interplay between Ca and Si related vibrations leads to differences which are sensitive to the calcium/silicon ratio of the mineral.

  6. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  7. Recent Developments in the NIST Atomic Databases

    Science.gov (United States)

    Kramida, Alexander

    2011-05-01

    New versions of the NIST Atomic Spectra Database (ASD, v. 4.0) and three bibliographic databases (Atomic Energy Levels and Spectra, v. 2.0, Atomic Transition Probabilities, v. 9.0, and Atomic Line Broadening and Shapes, v. 3.0) have recently been released. In this contribution I will describe the main changes in the way users get the data through the Web. The contents of ASD have been significantly extended. In particular, the data on highly ionized tungsten (W III-LXXIV) have been added from a recently published NIST compilation. The tables for Fe I and Fe II have been replaced with newer, much more extensive lists (10000 lines for Fe I). The other updated or new spectra include H, D, T, He I-II, Li I-III, Be I-IV, B I-V, C I-II, N I-II, O I-II, Na I-X, K I-XIX, and Hg I. The new version of ASD now incorporates data on isotopes of several elements. I will describe some of the issues the NIST ASD Team faces when updating the data.

  8. Recent Developments in the NIST Atomic Databases

    International Nuclear Information System (INIS)

    Kramida, Alexander

    2011-01-01

    New versions of the NIST Atomic Spectra Database (ASD, v. 4.0) and three bibliographic databases (Atomic Energy Levels and Spectra, v. 2.0, Atomic Transition Probabilities, v. 9.0, and Atomic Line Broadening and Shapes, v. 3.0) have recently been released. In this contribution I will describe the main changes in the way users get the data through the Web. The contents of ASD have been significantly extended. In particular, the data on highly ionized tungsten (W III-LXXIV) have been added from a recently published NIST compilation. The tables for Fe I and Fe II have been replaced with newer, much more extensive lists (10000 lines for Fe I). The other updated or new spectra include H, D, T, He I-II, Li I-III, Be I-IV, B I-V, C I-II, N I-II, O I-II, Na I-X, K I-XIX, and Hg I. The new version of ASD now incorporates data on isotopes of several elements. I will describe some of the issues the NIST ASD Team faces when updating the data.

  9. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  10. Lamb shift and fine structure at n =2 in a hydrogenlike muonic atom with the nuclear spin I =0

    Science.gov (United States)

    Korzinin, Evgeny Yu.; Shelyuto, Valery A.; Ivanov, Vladimir G.; Karshenboim, Savely G.

    2018-01-01

    The paper is devoted to the Lamb shift and fine structure in a hydrogenlike muonic atom with a spinless nucleus up to the order α5m with all the recoil corrections included. Enhanced contributions of a higher order are also considered. We present the results on the pure QED contribution and on the finite-nuclear-size contribution, proportional to RN2, with the higher-order corrections included. We also consider the consistency of the pure QED theory and the evaluation of the nuclear-structure effects. Most of the QED theory is the same as the theory for the case of the nuclear spin 1/2. Additional nuclear-spin-dependent terms are considered in detail. The issue of the difference for the theories with a spinor nucleus and a scalar one is discussed for the recoil contributions in the order (Zα ) 4m ,α (Zα ) 4m , and (Zα ) 5m . The numerical results are presented for the muonic atoms with two lightest scalar nuclei, helium-4 and beryllium-10. We compare the theory of those muonic atoms with theory for the muonic hydrogen. Some higher-order finite-nuclear-size corrections for the Lamb shift in muonic hydrogen are revisited.

  11. Fabrication and testing of the recoil mass spectrometer at Bombay ...

    Indian Academy of Sciences (India)

    A recoil mass spectrometer (RMS) has been designed, fabricated and installed ... first order and only mass dispersion is obtained at the focal plane of the ... more details, like, the specifications and a typical beam profile through the ... Further experiments are now in progress to characterize the spectrometer, i.e., to measure.

  12. Simulation of nucleation and growth of atomic layer deposition phosphorus for doping of advanced FinFETs

    International Nuclear Information System (INIS)

    Seidel, Thomas E.; Goldberg, Alexander; Halls, Mat D.; Current, Michael I.

    2016-01-01

    Simulations for the nucleation and growth of phosphorus films were carried out using density functional theory. The surface was represented by a Si 9 H 12 truncated cluster surface model with 2 × 1-reconstructured (100) Si-OH terminations for the initial reaction sites. Chemistries included phosphorous halides (PF 3 , PCl 3 , and PBr 3 ) and disilane (Si 2 H 6 ). Atomic layer deposition (ALD) reaction sequences were illustrated with three-dimensional molecular models using sequential PF 3 and Si 2 H 6 reactions and featuring SiFH 3 as a byproduct. Exothermic reaction pathways were developed for both nucleation and growth for a Si-OH surface. Energetically favorable reactions for the deposition of four phosphorus atoms including lateral P–P bonding were simulated. This paper suggests energetically favorable thermodynamic reactions for the growth of elemental phosphorus on (100) silicon. Phosphorus layers made by ALD are an option for doping advanced fin field-effect transistors (FinFETs). Phosphorus may be thermally diffused into the silicon or recoil knocked in; simulations of the recoil profile of phosphorus into a FinFET surface are illustrated

  13. Atomic and molecular data for optical stellar spectroscopy

    International Nuclear Information System (INIS)

    Heiter, U; Lind, K; Barklem, P S; Asplund, M; Bergemann, M; Magrini, L; Masseron, T; Mikolaitis, Š; Pickering, J C; Ruffoni, M P

    2015-01-01

    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way Galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2–10 m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available data is facilitated by databases and electronic infrastructures such as the NIST Atomic Spectra Database, the VALD database, or the Virtual Atomic and Molecular Data Centre. We illustrate the current status of atomic data for optical stellar spectra with the example of the Gaia-ESO Public Spectroscopic Survey. Data sources for 35 chemical elements were reviewed in an effort to construct a line list for a homogeneous abundance analysis of up to 10 5 stars. (paper)

  14. Atomic and molecular data for optical stellar spectroscopy

    Science.gov (United States)

    Heiter, U.; Lind, K.; Asplund, M.; Barklem, P. S.; Bergemann, M.; Magrini, L.; Masseron, T.; Mikolaitis, Š.; Pickering, J. C.; Ruffoni, M. P.

    2015-05-01

    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way Galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2-10 m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available data is facilitated by databases and electronic infrastructures such as the NIST Atomic Spectra Database, the VALD database, or the Virtual Atomic and Molecular Data Centre. We illustrate the current status of atomic data for optical stellar spectra with the example of the Gaia-ESO Public Spectroscopic Survey. Data sources for 35 chemical elements were reviewed in an effort to construct a line list for a homogeneous abundance analysis of up to 105 stars.

  15. 35Cl, sup(79,81)Br NQR spectra of chalcogenide molybdenum (5) complexes

    International Nuclear Information System (INIS)

    Fokina, Z.A.; Kuznetsov, S.I.; Timoshchenko, N.I.; Kolesnichenko, V.L.; Bryukhova, E.V.; Semin, G.K.

    1984-01-01

    The NQR spectra of molybdenum thioselenohalogenides MoS 2 SeX 5 (X=Cl, Br) are studied. A high-frequency doublet and a low-frequency triplet are observed in both spectra, one of the lines in the latter being noticeably higher by frequency than two others. The NKR spectra structure, with accoUnt of data on thermography and IR-spectroscopy, points to the MoS 2 X 3 xSeX 2 strrcture where two halide atoms are bound with a chalcogen atom and three others with Mo, one of the three chalcogen atoms being in trans-position to SeX 2 . Essential splittings in low-frequency triplet take place at the expense of intrasphere effect of coordinated S 2 -2 and SeX 2 groups

  16. Modeling and Measurement of 39Ar Recoil Loss From Biotite as a Function of Grain Dimensions

    Science.gov (United States)

    Paine, J. H.; Nomade, S.; Renne, P. R.

    2004-12-01

    The call for age measurements with less than 1 per mil error puts a demand upon geochronologists to be aware of and quantify a number of problems which were previously negligible. One such factor is 39Ar recoil loss during sample irradiation, a phenomenon which is widely assumed to affect only unusually small crystals having exceptionally high surface/volume ratios. This phenomenon has important implications for thermochronologic studies seeking to exploit a range of closure temperatures arising from variable diffusion radii. Our study focuses on biotite, in which spatial isotope distributions cannot be reliably recovered by stepwise heating and which therefore lack recoil-diagnostic age spectrum behavior. Previous work by Renne et al. [Application of a deuteron-deuteron (D-D) neutron generator to 40Ar/39Ar geochronology, Applied Radiation and Isotopes, in press] used the SRIM code to calculate a ˜20% 39Ar recoil loss from the outermost 0.25 μ m of an infinite slab of phyllosillicate. This result is applied to measured grains of the biotite standard GA1550, a hypabyssal granite from the Mount Dromedary Complex, Australia. We measure the thickness and surface area of 166 grains and approximate the shape of each grain as a cylinder. Grain thickness ranges from 3 to 210 μ m, with an average grain radius of 350 μ m. We predict the amount of 39Ar recoil loss from each grain, finding an expected age error >0.1 % for grains thinner than 150 μ m, a >1% error for grain less than 10 μ m thick, and up to a 3% error for grains less than 3 μ m thick. These modeling results will be tested by analysis of the measured grains after irradiation in the Oregon State University TRIGA reactor. It is important to either account for 39Ar loss in thin biotite grains, or use sufficiently thick ones so that recoil loss is negligible. Our results indicate that only biotite grains thicker than 150 μ m should be used for neutron fluence monitoring in order to avoid bias greater than the

  17. The morphology of collision cascades as a function of recoil energy

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Singh, B.N.

    1989-09-01

    An analytical method based on defect densities has been devised to determine the threshold energies for subcascade formation in computer simulated collision cascades. Cascades generated with the binary collision code MARLOWE in Al, Cu, Ag, Au, Fe, Mo and W were analyzed to determine the threshold energy for subcascade formation, the number of subcascades per recoil per unit energy and the average spacing of subcascades. Compared on the basis of reduced damage energy, metals of the same crystal structure have subcascade thresholds at the same reduced energy. The number of subcascades per unit reduced damage energy is about the same for metals of the same crystal structure, and the average spacing of subcascades is about the same in units of lattice parameters. Comparisons between subcascade threshold energies and average recoil energies in fission and fusion neutron environments show the spectral sensitivity of the formation of subcascades

  18. Development of a digital trigger system to identify recoil protons at COMPASS-II

    Energy Technology Data Exchange (ETDEWEB)

    Buechele, Maximilian; Fischer, Horst; Gorzellik, Matthias; Grussenmeyer, Tobias; Herrmann, Florian; Joerg, Philipp; Koenigsmann, Kay; Kremser, Paul; Schopferer, Sebastian [Albert-Ludwigs-Universitaet Freiburg (Germany)

    2014-07-01

    The GANDALF framework has been developed to deliver a high precision, high performance detector readout and trigger system for particle physics experiments such as the COMPASS-II experiment at CERN. Combining the high performance pulse digitization and feature extraction capabilities of twelve GANDALF modules, each comprising a Virtex-5 SX95T, with the strong computation power of a Virtex-6 SX315T FGPA operated on the TIGER module, we present a digital trigger system for a recoil proton detector. The trigger system was setup and commissioned successfully during a data taking period in 2012. It was mainly used for the calibration of the recoil proton detector and in tagging mode to identify proton tracks online.

  19. A comparative study of MP2, B3LYP, RHF and SCC-DFTB force fields in predicting the vibrational spectra of N-acetyl-L-alanine-N'-methyl amide: VA and VCD spectra

    DEFF Research Database (Denmark)

    Bohr, Henrik; Jalkanen, Karl J.; Elstner, M.

    1999-01-01

    dichroism (VCD) spectra of NALANMA. We have utilised MP2/6-31G*, B3LYP/6-31G*, RHF/6-31G* and SCC-DFTB level theory to determine the geometries and Hessians, atomic polar tensors (APT) and atomic axial tensors (AAT) which are required for simulating the VA and VCD spectra. We have also calculated the AAT...

  20. AtomDB: Expanding an Accessible and Accurate Atomic Database for X-ray Astronomy

    Science.gov (United States)

    Smith, Randall

    Since its inception in 2001, the AtomDB has become the standard repository of accurate and accessible atomic data for the X-ray astrophysics community, including laboratory astrophysicists, observers, and modelers. Modern calculations of collisional excitation rates now exist - and are in AtomDB - for all abundant ions in a hot plasma. AtomDB has expanded beyond providing just a collisional model, and now also contains photoionization data from XSTAR as well as a charge exchange model, amongst others. However, building and maintaining an accurate and complete database that can fully exploit the diagnostic potential of high-resolution X-ray spectra requires further work. The Hitomi results, sadly limited as they were, demonstrated the urgent need for the best possible wavelength and rate data, not merely for the strongest lines but for the diagnostic features that may have 1% or less of the flux of the strong lines. In particular, incorporation of weak but powerfully diagnostic satellite lines will be crucial to understanding the spectra expected from upcoming deep observations with Chandra and XMM-Newton, as well as the XARM and Athena satellites. Beyond incorporating this new data, a number of groups, both experimental and theoretical, have begun to produce data with errors and/or sensitivity estimates. We plan to use this to create statistically meaningful spectral errors on collisional plasmas, providing practical uncertainties together with model spectra. We propose to continue to (1) engage the X-ray astrophysics community regarding their issues and needs, notably by a critical comparison with other related databases and tools, (2) enhance AtomDB to incorporate a large number of satellite lines as well as updated wavelengths with error estimates, (3) continue to update the AtomDB with the latest calculations and laboratory measurements, in particular velocity-dependent charge exchange rates, and (4) enhance existing tools, and create new ones as needed to

  1. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    International Nuclear Information System (INIS)

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume

  2. The HERMES recoil detector. Particle identification and determination of detector efficiency of the scintillating fiber tracker

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xianguo

    2009-11-15

    HERMES is a fixed target experiment using the HERA 27.6 GeV polarized electron/positron beams. With the polarized beams and its gas targets, which can be highly polarized, HERMES is dedicated to study the nucleon spin structure. One of its current physics programs is to measure deeply virtual Compton scattering (DVCS). In order to detect the recoiling proton the Recoil Detector was installed in the target region in the winter of 2005, taking data until the HERA-shutdown in the summer of 2007. The Recoil Detector measured energy loss of the traversing particles with its sub-detectors, including the silicon strip detector and the scintillating fiber tracker. This enables particle identification for protons and pions. In this work a systematic particle identification procedure is developed, whose performance is quantified. Another aspect of this work is the determination of the detector efficiency of the scintillating fiber tracker. (orig.)

  3. First β-ν correlation measurement from the recoil-energy spectrum of Penning trapped Ar35 ions

    Science.gov (United States)

    Van Gorp, S.; Breitenfeldt, M.; Tandecki, M.; Beck, M.; Finlay, P.; Friedag, P.; Glück, F.; Herlert, A.; Kozlov, V.; Porobic, T.; Soti, G.; Traykov, E.; Wauters, F.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2014-08-01

    We demonstrate a novel method to search for physics beyond the standard model by determining the β-ν angular correlation from the recoil-ion energy distribution after β decay of ions stored in a Penning trap. This recoil-ion energy distribution is measured with a retardation spectrometer. The unique combination of the spectrometer with a Penning trap provides a number of advantages, e.g., a high recoil-ion count rate and low sensitivity to the initial position and velocity distribution of the ions and completely different sources of systematic errors compared to other state-of-the-art experiments. Results of a first measurement with the isotope Ar35 are presented. Although currently at limited precision, we show that a statistical precision of about 0.5% is achievable with this unique method, thereby opening up the possibility of contributing to state-of-the-art searches for exotic currents in weak interactions.

  4. Origin of open recoil curves in L1_0-A1 FePt exchange coupled nanocomposite thin film

    International Nuclear Information System (INIS)

    Goyal, Rajan; Kapoor, Akanksha; Lamba, S.; Annapoorni, S.

    2016-01-01

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1_0–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1_0-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1_0) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.

  5. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    Berry, G.; Cowan, P.; Gemmell, D.

    1994-08-01

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba + ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  6. Enhancement of surface properties of SAE 1020 by chromium plasma immersion recoil implantation

    International Nuclear Information System (INIS)

    Ueda, M.; Mello, C.B.; Beloto, A.F.; Rossi, J.O.; Reuther, H.

    2007-01-01

    SAE 1020 steel is commonly used as concrete reinforcement and small machine parts, but despite its good mechanical properties, as ductility, hardness and wear resistance, it is susceptible to severe corrosion. It is well known that chromium content above 12% in Fe alloys increases their corrosion resistance. In order to obtain this improvement, we studied the introduction of chromium atoms into the matrix of SAE 1020 steel by recoil implantation process using a plasma immersion ion implantation (PIII) system. Potentiodynamic scans showed that the presence of Cr film leads to a gain in the corrosion potential, from -650 mV to -400 mV. After PIII treatment, the corrosion potential increased further to -340 mV, but the corrosion current density presented no significant change. Vickers microhardness tests showed surface hardness increase of up to about 27% for the treated samples. Auger electron spectroscopy showed that, for a 30 nm film, Cr was introduced for about 20 nm into the steel matrix. Tribology tests, of pin-on-disk type, showed that friction coefficient of treated samples was reduced by about 50% and a change in wear mechanism, from adhesive to abrasive mode, occurred

  7. Fast neutron spectroscopy with tensioned metastable fluid detectors

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, T.F.; Taleyarkhan, R.P., E-mail: rusi@purdue.edu

    2016-09-11

    This paper describes research into development of a rapid-turnaround, neutron-spectroscopy capable (gamma-beta blind), high intrinsic efficiency sensor system utilizing the tensioned metastable fluid detector (TMFD) architecture. The inability of prevailing theoretical models (developed successfully for the classical bubble chamber) to adequately predict detection thresholds for tensioned metastable fluid conditions is described. Techniques are presented to overcome these inherent shortcomings, leading thereafter, to allow successful neutron spectroscopy using TMFDs – via the newly developed Single Atom Spectroscopy (SAS) approach. SAS also allows for a unique means for rapidly determining neutron energy thresholds with TMFDs. This is accomplished by simplifying the problem of determining Cavitation Detection Events (CDEs) arising from neutron interactions with one in which several recoiling atom species contribute to CDEs, to one in which only one dominant recoil atom need be considered. The chosen fluid is Heptane (C{sub 7}H{sub 16}) for which only recoiling C atoms contribute to CDEs. Using the SAS approach, the threshold curve for Heptane was derived using isotope neutron source data, and then validated against experiments with mono-energetic (2.45/14 MeV) neutrons from D-D and D-T accelerators. Thereafter the threshold curves were used to produce the response matrix for various geometries. The response matrices were in turn combined with experimental data to recover the continuous spectra of fission (Cf-252) and (α,n) Pu–Be isotopic neutron sources via an unfolding algorithm. A generalized algorithm is also presented for performing neutron spectroscopy using any other TMFD fluid that meets the SAS approach assumptions.

  8. A study of etching model of alpha-recoil tracks in biotite

    International Nuclear Information System (INIS)

    Dong Jinquan; Yuan Wanming; Wang Shicheng; Fan Qicheng

    2005-01-01

    Like fission-track dating, alpha-recoil track (ART) dating is based on the accumulation of nuclear particles that the released from natural radioactivity and produce etchable tracks in solids. ARTs are formed during the alpha-decay of uranium and thorium as well as of their daughter nuclei. When emitting an alpha-particle, the heavy remaining nucleus recoils 30-40 nm, leaving behind a trail of radiation damage. Through etching the ART tracks become visible with the aid of an interference phase-contrast microscope. Under the presupposition that all tracks are preserved since the formation of a sample their total number is a measure of the sample's age. The research for etching model is to accurately determine ART volume density, i.e., the number of ARTs per unit volume. The volume density of many dots in many layers may be determined on a sample using this etching model, and as decreasing the error and increasing the accuracy. (authors)

  9. Neutron electric form factor via recoil polarimetry

    International Nuclear Information System (INIS)

    Richard Madey; Andrei Semenov; Simon Taylor; Aram Aghalaryan; Erick Crouse; Glen MacLachlan; Bradley Plaster; Shigeyuki Tajima; William Tireman; Chenyu Yan; Abdellah Ahmidouch; Brian Anderson; Razmik Asaturyan; O. Baker; Alan Baldwin; Herbert Breuer; Roger Carlini; Michael Christy; Steve Churchwell; Leon Cole; Samuel Danagoulian; Donal Day; Mostafa Elaasar; Rolf Ent; Manouchehr Farkhondeh; Howard Fenker; John Finn; Liping Gan; Kenneth Garrow; Paul Gueye; Calvin Howell; Bitao Hu; Mark Jones; James Kelly; Cynthia Keppel; Mahbubul Khandaker; Wooyoung Kim; Stanley Kowalski; Allison Lung; David Mack; D. Manley; Pete Markowitz; Joseph Mitchell; Hamlet Mkrtchyan; Allena Opper; Charles Perdrisat; Vina Punjabi; Brian Raue; Tilmann Reichelt; Joerg Reinhold; Julie Roche; Yoshinori Sato; Wonick Seo; Neven Simicevic; Gregory Smith; Samuel Stepanyan; Vardan Tadevosyan; Liguang Tang; Paul Ulmer; William Vulcan; John Watson; Steven Wells; Frank Wesselmann; Stephen Wood; Chen Yan; Seunghoon Yang; Lulin Yuan; Wei-Ming Zhang; Hong Guo Zhu; Xiaofeng Zhu

    2003-01-01

    The ratio of the electric to the magnetic form factor of the neutron, G En /G Mn , was measured via recoil polarimetry from the quasielastic d((pol-e),e(prime)(pol-n)p) reaction at three values of Q 2 [viz., 0.45, 1.15 and 1.47 (GeV/c) 2 ] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G En follows the Galster parameterization up to Q 2 = 1.15 (GeV/c) 2 and appears to rise above the Galster parameterization at Q 2 = 1.47 (GeV/c) 2

  10. Measurement and interpretation of plutonium spectra

    International Nuclear Information System (INIS)

    Blaise, J.; Fred, M.S.; Carnall, W.T.; Crosswhite, H.M.; Crosswhite, H.

    1982-01-01

    The atomic spectroscopic data available for plutonium are among the rickest of any in the periodic system. They include high-resolution grating and Fourier-transform spectra as well as extensive Zeeman and isotope-shift studies. We summarize the present status of the term analysis and cite the configurations that have been identified. A least-squares adjustment of a parametric Hamiltonian for configurations of both Pu I and Pu II has shown that almost all of the expected low levels are now known. The use of a model Hamiltonian applicable to both lanthanide and actinide atomic species has been applied to the low configurations of Pu I and Pu II making use of trends predicted by ab initio calculations. This same model has been used to describe the energy levels of Pu 3+ in LaCl 3 , and an extension has permitted preliminary calculations of the spectra of other valence states

  11. Recoil distance method lifetime measurements at TRIUMF-ISAC using the TIGRESS Integrated Plunger

    Science.gov (United States)

    Chester, A.; Ball, G. C.; Bernier, N.; Cross, D. S.; Domingo, T.; Drake, T. E.; Evitts, L. J.; Garcia, F. H.; Garnsworthy, A. B.; Hackman, G.; Hallam, S.; Henderson, J.; Henderson, R.; Krücken, R.; MacConnachie, E.; Moukaddam, M.; Padilla-Rodal, E.; Paetkau, O.; Pore, J. L.; Rizwan, U.; Ruotsalainen, P.; Shoults, J.; Smallcombe, J.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Van Wieren, K.; Williams, J.; Williams, M.

    2018-02-01

    The TIGRESS Integrated Plunger device (TIP) has been developed for recoil distance method (RDM) lifetime measurements using the TIGRESS array of HPGe γ-ray detectors at TRIUMF's ISAC-II facility. A commissioning experiment was conducted utilizing a 250 MeV 84Kr beam at ≈ 2 × 108 particles per second. The 84Kr beam was Coulomb excited to the 21+ state on a movable 27Al target. A thin Cu foil fixed downstream from the target was used as a degrader. Excited nuclei emerged from the target and decayed by γ-ray emission at a distance determined by their velocity and the lifetime of the 21+ state. The ratio of decays which occur between the target and degrader to those occurring after traversing the degrader changes as a function of the target-degrader separation distance. Gamma-ray spectra at 13 target-degrader separation distances were measured and compared to simulated lineshapes to extract the lifetime. The result of τ = 5 . 541 ± 0 . 013(stat.) ± 0 . 063(sys.) ps is shorter than the literature value of 5 . 84 ± 0 . 18 ps with a reduction in uncertainty by a factor of approximately two. The TIP plunger device, experimental technique, analysis tools, and result are discussed.

  12. Mixing of phosphorus and antimony ions in silicon by recoil implantation

    International Nuclear Information System (INIS)

    Kwok, H.L.; Lam, Y.W.; Wong, S.P.; Poon, M.C.

    1986-01-01

    The effects of mixing phosphorus and antimony ions in silicon by recoil implantation were examined. The electrical properties after ion mixing were investigated, and the results were compared with those obtained using other techniques. Different degrees of activation were also studied, by investigating the annealing behaviour. (U.K.)

  13. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  14. The measurement of neutron and neutron induced photon spectra in fusion reactor related assemblies

    CERN Document Server

    Unholzer, S; Klein, H; Seidel, K

    2002-01-01

    The spectral neutron and photon fluence (or flux) measured outside and inside of assemblies related to fusion reactor constructions are basic quantities of fusion neutronics. The comparison of measured spectra with the results of MCNP neutron and photon transport calculations allows a crucial test of evaluated nuclear data as generally used in fusion applications to be carried out. The experiments concern mixed neutron/photon fields with about the same intensity of the two components. An NE-213 scintillation spectrometer, well described by response matrices for both neutrons and photons, is used as proton-recoil and Compton spectrometer. The experiments described here in more detail address the background problematic of two applications, an iron benchmark experiment with an ns-pulsed neutron source and a deep penetration mock-up experiment for the investigation of the ITER in-board shield system. The measured spectral neutron and photon fluences are compared with spectra calculated with the MCNP code on the b...

  15. High-resolution measurements of x rays from ion-atom collisions

    International Nuclear Information System (INIS)

    Knudson, A.R.

    1974-01-01

    High resolution measurements of K x-ray spectra produced by ion-atom collisions at MeV energies are presented. These measurements indicate that a distribution of L-shell vacancies accompanies K-shell excitation. The variation of these spectra as a function of incident ion energy and atomic number is discussed. Difficulties in the analysis of these spectra due to rearrangement of vacancies between the time of the collision and the time of x-ray emission are considered. The use of high resolution x-ray measurements to obtain information on projectile ion vacancy configurations is demonstrated by data for Ar ions in KCl. X-ray spectra from Al projectiles in a variety of targets were measured and the effect of target composition on these spectra is discussed

  16. Kinematic separation and mass analysis of heavy recoiling nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Eremin, A.V.; Belozerov, A.V.

    2002-01-01

    Within the past twelve years, the recoil separator VASSILISSA has been used for investigation of evaporation residues produced in heavy-ion induced complete-fusion reactions. In the course of the experimental work in the region of the elements with 92 ≤ Z ≤ 94, fourteen new isotopes have been identified by the parent-daughter correlations. The study of the decay properties and formation cross sections of the isotopes of elements 110, 112, and 114 was performed with the use of the high intensity 48 Ca beams; 232 Th, 238 U and 242 Pu targets were used in the experiments. At the beam energies corresponding to the calculated cross-section maxima of the 3n evaporation channels, the isotopes 277 110, 283 112, and 287 114 were produced and identified. For further experiments aimed at the synthesis of the superheavy element isotopes (Z ≥ 110) with the intensive 48 Ca extracted beams, the improvements in the ion optical system of the separator and of the focal plane detector system have been made. As a result, for heavy recoiling nuclei with masses A ∼ 250, the mass resolution of about 2.5 % was achieved with a good energy and position resolutions of the focal plane detectors

  17. Utilization of ion source 'SUPERSHYPIE' in the study of low energy ion-atom and ion-molecule collisions

    International Nuclear Information System (INIS)

    Bazin, V.; Boduch, P.; Chesnel, J.Y.; Fremont, F.; Lecler, D.; Pacquet, J. Y.; Gaubert, G.; Leroy, R.

    1999-01-01

    Modifications in the ECR 4M ion source are described, which conducted to realization of the advanced source 'SUPERSHYPIE'. The Ar 8+ ion collision with Cs(6s,6p) were studied by photon spectroscopy at low energy, where the process is dominated by simple electron capture. Results obtained with 'SUPERSHYPIE' source are presented. The source was utilized also in ion-molecule collisions (CO, H 2 ) to study the spectra of recoil ions and Auger electron spectra in the Ar 17+ He collisions. The excellent performances of 'SUPERSHYPIE' in high charge production and concerning its accurate and fine control and stability are illustrated and underlined as compared with those of ECR 4M source

  18. Origin of open recoil curves in L1{sub 0}-A1 FePt exchange coupled nanocomposite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Rajan [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kapoor, Akanksha [M. Tech Nanoscience and Nanotechnology, University of Delhi, Delhi 110007 (India); Lamba, S. [School of Sciences, Indira Gandhi National Open University, New Delhi 110068 (India); Annapoorni, S., E-mail: annapoornis@yahoo.co.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-11-15

    Mixed phase FePt systems with intergranular coupling may be looked upon as natural exchange spring systems. The coupling strength between the soft and hard phase in these systems can be analyzed using recoil curves. However, the origin of open recoil curves depicting the breakdown of exchange coupling or anisotropy variation in hard phase is still an ambiguity and requires an in-depth analysis. In order to investigate this, an analysis of the recoil curves for L1{sub 0}–A1 FePt nanocomposite thin films of varying thickness have been performed. The switching field distribution reveals that the maximum of openness of recoil curve is directly proportional to the amount of uncoupled soft phase present in the system. The coupling between the hard and soft phase is also found to increase with the thickness of the film. Monte Carlo simulations on a model three dimensional array of interacting nanomagnetic grains provide further insight into the effect of inter granular exchange interactions between the soft and hard phases. - Highlights: • L1{sub 0}-A1 FePt nanocomposites thin films of different thickness have been fabricated by DC sputtering. • Hysteresis curve measurements exhibit perfect single phase (L1{sub 0}) like behavior for thicker films. • SFD reveals that the openness of recoil curves is directly linked with the amount of uncoupled soft (A1) phase. • Monte Carlo simulation predicts that the extent of exchange interaction increases with thickness of the film.

  19. Range calculations for spallation recoils in ThF4 by use of the computer code 'Marlowe'

    International Nuclear Information System (INIS)

    Westmeier, W.; Roessler, K.

    1978-12-01

    The determination of cross sections of spallation reactions requires a knowledge of the target thickness since only the products recoiling from the target are measured and their yield depends on the range. The effective target thickness is a function of the projectile's Z, A and spallation recoil energy and, thus, varies for the individual products. The computer code MARLOWE was used to evaluate energy vs. range curves in the binary collisions approximation. The program was extended to the high energy regime taking into account the stripping of electrons from the projectile and the concomitant changes in the interaction potentials especially for the inelastic part of the collisions. A complementary computer program LATTIC was developed for the parameterization of the lattice description. This code enables the application of MARLOWE to target materials with complicated crystallographic structure. Test calculations for a series of projectile/target combinations showed a reasonable agreement with experimental recoil ranges of Pd, Ag, Os and Ir isotopes from proton induced spallation in Ag, In and Pb targets, respectively. MARLOWE was then applied to calculate product ranges of the 232 Th(p,spall)X-reaction in the ployatomic system ThF 4 . The calculated energy vs. range curves enabled the evaluation of the mean spallation recoil ranges for all possible products, e.g. 170.8 μg/cm 2 for 192 Tl, 115.2 μg/cm 2 for 208 At and 37.1 μg/cm 2 for 223 Ac. (orig.)

  20. Detection of low momentum protons with the new HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Vilardi, Ignazio

    2008-10-15

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the {delta}{sup +} background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  1. Detection of low momentum protons with the new HERMES recoil detector

    International Nuclear Information System (INIS)

    Vilardi, Ignazio

    2008-10-01

    In this theis the recoil detector for the HERMES experiment at HERA is described. It consists of a silicon strip detector, a scintillating fiber tracker, and a photon detector for the Δ + background rejection, all surrounded by a superconducting 1 Tesla solenoid. Results of cosmic ray tests are presented. (HSI)

  2. Recoil corrected bag model calculations for semileptonic weak decays

    International Nuclear Information System (INIS)

    Lie-Svendsen, Oe.; Hoegaasen, H.

    1987-02-01

    Recoil corrections to various model results for strangeness changing weak decay amplitudes have been developed. It is shown that the spurious reference frame dependence of earlier calculations is reduced. The second class currents are generally less important than obtained by calculations in the static approximation. Theoretical results are compared to observations. The agreement is quite good, although the values for the Cabibbo angle obtained by fits to the decay rates are somewhat to large

  3. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1979-01-01

    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  4. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  5. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  6. Emanation of /sup 232/U daughter products from submicrometer particles of uranium oxide and thorium dioxide by nuclear recoil and inert gas diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M.A.; Cuddihy, R.G. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (USA). Inhalation Toxicology Research Inst.)

    1983-01-01

    Emanation of /sup 232/U daughter products by nuclear recoil and inert gas diffusion from spherical, submicrometer particles of uranium oxide and thorium dioxide was studied. Monodisperse samples of particles containing 1% /sup 232/U and having physical diameters between 0.1 and 1 ..mu..m were used for the emanation measurements. Thorium-228 ions recoiling from the particles after alpha-decay of /sup 232/U were collected electrostatically on a recoil cathode. Radon-220 diffusing from the particles was swept by an airstream into a 4 l. chamber where the /sup 220/Rn daughters were collected on a second cathode. Mathematical models of radionuclide emanation from spherical particles were used to calculate the recoil range of /sup 228/Th and the diffusion coefficient of /sup 220/Rn in the particle matrix. A /sup 228/Th recoil range of 0.02 ..mu..m and a /sup 220/Rn diffusion coefficient of 3 x 10/sup -14/ cm/sup 2//sec were obtained in both uranium oxide and thorium dioxide particles.

  7. Chaotic spectra: How to extract dynamic information

    International Nuclear Information System (INIS)

    Taylor, H.S.; Gomez Llorente, J.M.; Zakrzewski, J.; Kulander, K.C.

    1988-10-01

    Nonlinear dynamics is applied to chaotic unassignable atomic and molecular spectra with the aim of extracting detailed information about regular dynamic motions that exist over short intervals of time. It is shown how this motion can be extracted from high resolution spectra by doing low resolution studies or by Fourier transforming limited regions of the spectrum. These motions mimic those of periodic orbits (PO) and are inserts into the dominant chaotic motion. Considering these inserts and the PO as a dynamically decoupled region of space, resonant scattering theory and stabilization methods enable us to compute ladders of resonant states which interact with the chaotic quasi-continuum computed in principle from basis sets placed off the PO. The interaction of the resonances with the quasicontinuum explains the low resolution spectra seen in such experiments. It also allows one to associate low resolution features with a particular PO. The motion on the PO thereby supplies the molecular movements whose quantization causes the low resolution spectra. Characteristic properties of the periodic orbit based resonances are discussed. The method is illustrated on the photoabsorption spectrum of the hydrogen atom in a strong magnetic field and on the photodissociation spectrum of H 3 + . Other molecular systems which are currently under investigation using this formalism are also mentioned. 53 refs., 10 figs., 2 tabs

  8. Effect of inelastic energy losses on development of atom-atom collision cascades

    International Nuclear Information System (INIS)

    Marinyuk, V.V.; Remizovich, V.S.

    2001-01-01

    The problem of influence of inelastic energy losses (ionization braking) of particles on the development of atom-atom collision cascades in infinite medium was studied theoretically. Main attention was paid to study of angular and energy distributions of primary ions and cascade atoms in the presence of braking. Analytical calculations were made in the assumption that single scattering of particles occurs by solid balls law, while the value of electron braking ability of a medium is determined by the Lindhard formula. It is shown that account of braking (directly when solving the Boltzmann transport equation) changes in principle the previously obtained angular and energy spectra of ions and cascade atoms. Moreover, it is the braking that is the determining factor responsible for anisotropy of angular distributions of low-energy primary ions and cascade atoms [ru

  9. Atomic and Molecular Data Activities at NIFS in 2009 - 2011

    International Nuclear Information System (INIS)

    Murakami, I.

    2011-01-01

    We open and maintain the NIFS atomic and molecular numerical databases. Numbers of data records increase to 476,048 in total (as of Aug. 23, 2011) and mainly new data are added for AMDIS (electron impact ionization, excitation, and recombination cross sections and rate coefficients) and CHART (charge transfer of atom - ion collisions cross sections) during last two years. A collaboration group has started for research on atomic and molecular processes in plasma using the Large Helical Device and we measure visible and extreme ultraviolet spectra of W and rare earth elements. We also organize a collaboration group with atomic physicists from Japanese universities for research on W to study atomic data, spectra and collisional-radiative models for W ions. (author)

  10. Many-body effects on the x-ray spectra of metals

    International Nuclear Information System (INIS)

    Satpathy, S.S.

    1982-01-01

    The effects of band structure, of a solid surface, of temperature, and of disorder on the many-electron x-ray spectra of metals are evaluated in a change-of-mean-field approximation using a one-dimensional nearest-neighbor tight-binding model of a metal. The x-ray spectral shapes are determined by both the band structure and the final-state interactions. The effect of the band being non-free-electron-like is not felt at the x-ray threshold, but away from it such effects are noticeable. When the core hole is created at the surface, the spectra at the edge exhibit a Nozieres-de Dominicis-type singularity with the appropriate surface phase-shifts. At energies away from the edge, the one-particle effects are prominent with the x-ray emission and absorption spectra closely reflecting the local one-electron density of states. The recoil spectrum of a Fermi sea at a non-zero temperature has less asymmetry than the zero-temperature case. It was found that at ordinary temperatures the reduction of the asymmetry due to the thermal distribution of one-electron states is not very significant. Finally, using a one-dimensional Anderson model, the effect of lattice disorder on the x-ray absorption spectra is studied for the first time. There are two effects: (1) the strong infrared divergence peak is gradually quenched as disorder is increased, and (2) the threshold is broadened because the threshold energies for absorption at different sites in the crystal depend on the varying local lattice environment. It is proposed that the x-ray spectra may be useful as a tool for studying the degree of electron localization in disordered many-electron systems

  11. Properties enhancement and recoil loop characteristics for hot deformed nanocrystalline NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Liu, Z. W.; Huang, Y. L.; Hu, S. L.; Zhong, X. C.; Yu, H. Y.; Gao, X. X.

    2013-01-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) and SPS followed by HD using melt spun ribbons as the starting materials. The microstructure of SPSed and HDed magnets were analyzed. The effects of process including temperature and compression ratio on the microstructure and properties were investigated. High magnetic properties were obtained in anisotropic HDed magnets. The combination of Zn and Dy additions was successfully employed to improve the coercivity and thermal stability of the SPSed magnets. Open recoil loops were found in these magnets with Nd-rich composition and without soft magnetic phase for the first time. The relationship between the recoil loops and microstructure for SPS and HD NdFeB magnets were investigated. The investigations showed that the magnetic properties of SPS+HDed magnets are related to the extent of the aggregation of Nd-rich phase, which was formed during HD due to existence of porosity in SPSed precursor. Large local demagnetization fields induced by the Nd-rich phase aggregation leads to the open loops and significantly reduced the coercivity. By reducing the recoil loop openness, the magnetic properties of HDed NdFeB magnets were successfully improved. (author)

  12. Spectroscopy of two-electron atoms

    International Nuclear Information System (INIS)

    Desesquelles, J.

    1988-01-01

    Spectroscopy of heliumlike ions is discussed putting emphasis on mid and high Z atoms. Experimental aspects of ion charge, excitation production, clean spectra, and precise wavelength measurement are detailed. Recent results obtained at several laboratories including Lyon, Argonne, Notre-Dame, Oxford, Berkeley, Darmstadt, Paris, are used to test the QED contributions and higher order relativistic corrections to two-electron atom energies. (orig.)

  13. Energy Reduction Multipath Routing Protocol for MANET Using Recoil Technique

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Sahu

    2018-04-01

    Full Text Available In Mobile Ad-hoc networks (MANET, power conservation and utilization is an acute problem and has received significant attention from academics and industry in recent years. Nodes in MANET function on battery power, which is a rare and limited energy resource. Hence, its conservation and utilization should be done judiciously for the effective functioning of the network. In this paper, a novel protocol namely Energy Reduction Multipath Routing Protocol for MANET using Recoil Technique (AOMDV-ER is proposed, which conserves the energy along with optimal network lifetime, routing overhead, packet delivery ratio and throughput. It performs better than any other AODV based algorithms, as in AOMDV-ER the nodes transmit packets to their destination smartly by using a varying recoil off time technique based on their geographical location. This concept reduces the number of transmissions, which results in the improvement of network lifetime. In addition, the local level route maintenance reduces the additional routing overhead. Lastly, the prediction based link lifetime of each node is estimated which helps in reducing the packet loss in the network. This protocol has three subparts: an optimal route discovery algorithm amalgamation with the residual energy and distance mechanism; a coordinated recoiled nodes algorithm which eliminates the number of transmissions in order to reduces the data redundancy, traffic redundant, routing overhead, end to end delay and enhance the network lifetime; and a last link reckoning and route maintenance algorithm to improve the packet delivery ratio and link stability in the network. The experimental results show that the AOMDV-ER protocol save at least 16% energy consumption, 12% reduction in routing overhead, significant achievement in network lifetime and packet delivery ratio than Ad hoc on demand multipath distance vector routing protocol (AOMDV, Ad hoc on demand multipath distance vector routing protocol life

  14. Spectroscopic modeling for tungsten EUV spectra

    International Nuclear Information System (INIS)

    Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Suzuki, Chihiro; Morita, Shigeru; Goto, Motoshi; Sasaki, Akira; Nakamura, Nobuyuki; Yamamoto, Norimasa; Koike, Fumihiro

    2014-01-01

    We have constructed an atomic model for tungsten extreme ultraviolet (EUV) spectra to reconstruct characteristic spectral feature of unresolved transition array (UTA) observed at 4-7 nm for tungsten ions. In the tungsten atomic modeling, we considered fine-structure levels with the quantum principal number n up to 6 as the atomic structure and calculated the electron-impact collision cross sections by relativistic distorted-wave method, using HULLAC atomic code. We measured tungsten EUV spectra in Large Helical Device (LHD) and Compact Electron Beam Ion Trap device (CoBIT) and compared them with the model calculation. The model successfully explain series of emission peaks at 1.5-3.5 nm as n=5-4 and 6-4 transitions of W"2"4"+ - W"3"2"+ measured in CoBIT and LHD and the charge state distributions were estimated for LHD plasma. The UTA feature observed at 4-7 nm was also successfully reconstructed with our model. The peak at ∼5 nm is produced mainly by many 4f-4d transition of W"2"2"+ - W"3"5"+ ions, and the second peak at ∼6 nm is produced by 4f-4d transition of W"2"5"+ - W"2"8"+ ions, and 4d-4p inner-shell transitions, 4p"54d"n"+"1 - 4p"64d"n, of W"2"9"+ - W"3"5"+ ions. These 4d-4p inner-shell transitions become strong since we included higher excited states such as 4p"54d"n4f state, which ADAS atomic data set does not include for spectroscopic modeling with fine structure levels. (author)

  15. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  16. High-energy elastic recoil detection heavy ions for light element analysis

    International Nuclear Information System (INIS)

    Goppelt-Langer, P.; Yamamoto, S.; Takeshita, H.; Aoki, Y.; Naramoto, H.

    1994-01-01

    The detection of light and medium heavy elements in not homogeneous solids is a severe problem in ion beam analysis. Heavy elements can be detected by the well established Rutherford backscattering technique (RBS). In a homogeneous host material most impurities can be easily analyzed by secondary ion mass spectroscopy (SIMS). Some isotopes ( 3 He, 6 Li, 10 B) can be measured by nuclear reaction analysis (NRA) using thermal neutrons inducing (n, p) or (n, α) reactions. Others can be detected by energetic ion beams by nuclear reactions (e.g. 15 N( 1 H, αγ) 12 C for analysis of hydrogen). A high content of H, D or T can be also determined by elastic recoil detection using an energetic He beam. The latter technique has been developed to a universal method for detection of light and heavy elements in any target, using a high energetic heavy ion beam and a detector system, which is able to identify the recoils and delivers energy and position of the particles. (author)

  17. Black hole radiation in the brane world and the recoil effect

    International Nuclear Information System (INIS)

    Frolov, Valeri; Stojkovic, Dejan

    2002-01-01

    A black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We study this effect. We consider black holes which have a size much smaller than the characteristic size of extra dimensions. Such a black hole can be effectively described as a massive particle with internal degrees of freedom. We consider an interaction of such particles with a scalar massless field and prove that for a special choice of the coupling constant describing the transition of the particle to a state with smaller mass the probability of massless quanta emission takes the form identical to the probability of the black hole emission. Using this model we calculate the probability for a black hole to leave the brane and study its properties. The discussed recoil effect implies that, for black holes which might be created in the interaction of high energy particles in colliders, the thermal emission of the formed black hole could be terminated and the energy nonconservation can be observed in brane experiments

  18. Laser resonant ionization spectroscopy and laser-induced resonant fluorescence spectra of samarium atom

    International Nuclear Information System (INIS)

    Jin, Changtai

    1995-01-01

    We have measured new high-lying levels of Sm atom by two-colour resonant photoionisation spectroscopy; we have observed the isotope shifts of Sm atom by laser-induced resonant fluorescence spectroscopy; the lifetime of eight low-lying levels of Sm atom were measured by using pulsed laser-Boxcar technique in atomic beam.

  19. Distribution of radiation lifetime and oscillator strengths in atomic and ion spectra

    Energy Technology Data Exchange (ETDEWEB)

    Shabanova, L.N.; Gruzdev, P.F.; Verolajnen, Ya.F. (Leningradskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Fizicheskij Inst.)

    1984-04-01

    Analysis of present experimental and theoretical data on determination of radiation life time and forces of oscillators for disclosing general regularities inherent in radiation constants inside the atom, homologous atoms inside subgroups of atoms and ions of isoelectronic subsequences is conducted. Another purpose is to chose most reliable values of constants and to obtain extrapolation formulae for their determination on the base of the corresponding statistical processing data and revealed regularities. A hydrogen atom, isoelectronic series NaI-Ni18, isoelectronic series Ne, He, ZnI, CdI are considered. Systematics of radiation life time depending on the basic quantum number is presented. The force of oscillators f is considered on the example of an atomic system with one valent electron outside the locked shell - Li, Na, K, Rb, Cs. Distribution of force density of the oscillator df/dE is considered, here continuous spectrum near the threshold of ionization is regarded simultaneously with discrete spectrum. An interpolation formula for the number f for high members of atom series (n>=10) of alkaline metals is presented. Values of coefficients included in this formula are tabulated.

  20. Atomic charges of sulfur in ionic liquids: experiments and calculations.

    Science.gov (United States)

    Fogarty, Richard M; Rowe, Rebecca; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Smith, Emily F; Bourne, Richard A; Chamberlain, Thomas W; Thompson, Paul B J; Hunt, Patricia A; Lovelock, Kevin R J

    2017-12-14

    Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.

  1. Ion-atom collisions with laser-prepared target: High resolution study of single charge exchange process

    International Nuclear Information System (INIS)

    Leredde, Arnaud

    2012-01-01

    Single charge transfer in low-energy Na"++"8"7Rb(5s,5p) collisions is investigated using magneto-optically trapped Rb atoms and high-resolution recoil-ion momentum spectroscopy. The three-dimensional reconstruction of the recoil-ion momentum provides accurate relative cross-sections for the active channels and the projectile scattering angle distributions. Thanks to the high experimental resolution, scattering structures such as diffraction-like oscillations in angular distributions are clearly observed. The measurements are compared with molecular close-coupling calculations and an excellent agreement is found. To go further in the test of the theory, the target is prepared in an oriented state. It is the first time that such collision experiments with oriented target is performed with such a high resolution. The right-left asymmetry expected for the scattering angle distribution is evidenced. The agreement between MOCC calculations and experiments is very good. Simple models developed for collisions with oriented target are also discussed. (author) [fr

  2. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    International Nuclear Information System (INIS)

    Nikolayev, V.S.; Beysens, D.; Garrabos, Y.

    2004-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis. (authors)

  3. Morphology, surface roughness, electron inelastic and quasi-elastic scattering in elastic peak electron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Lesiak, B.; Kosinski, A.; Nowakowski, R.; Koever, L.; Toth, J.; Varga, D.; Cserny, I.; Sulyok, A.; Gergely, G.

    2006-01-01

    Complete text of publication follows. Elastic peak electron spectroscopy (EPES) deals with the interaction of electrons with atoms of a solid surface, studying the distribution of electrons backscattered elastically. The nearest vicinity of the elastic peak, (low kinetic energy region) reflects both, electron inelastic and quasi-elastic processes. The incident electrons produce surface excitations, inducing surface plasmons with the corresponding loss peaks separated by 1 - 20 eV energy from the elastic peak. Quasi-elastic losses result from the recoil of scattering atoms of different atomic number, Z. The respective energy shift and Doppler broadening of the elastic peak depend on Z, the primary electron energy, E, and the measurement geometry. Quantitative surface analytical application of EPES, such as determination of parameters describing electron transport, requires a comparison of experimental data with corresponding data derived from Monte Carlo (MC) simulation. Several problems occur in EPES studies of polymers. The intensity of elastic peak, considered in quantitative surface analysis, is influenced by both, the inelastic and quasi-elastic scattering processes (especially for hydrogen scattering atoms and primary electron energy above 1000 eV). An additional factor affecting the elastic peak intensity is the surface morphology and roughness. The present work compares the effect of these factors on the elastic peak intensity for selected polymers (polyethylene, polyaniline and polythiophenes). X-ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for deriving the surface atomic composition and the bulk density, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) for determining surface morphology and roughness. According to presented results, the influence of surface morphology and roughness is larger than those of surface excitations or recoil of hydrogen atoms. The component due to recoil of hydrogen atoms can be

  4. Spin-polarized hydrogen Rydberg time-of-flight: Experimental measurement of the velocity-dependent H atom spin-polarization

    International Nuclear Information System (INIS)

    Broderick, Bernadette M.; Lee, Yumin; Doyle, Michael B.; Chernyak, Vladimir Y.; Suits, Arthur G.; Vasyutinskii, Oleg S.

    2014-01-01

    We have developed a new experimental method allowing direct detection of the velocity dependent spin-polarization of hydrogen atoms produced in photodissociation. The technique, which is a variation on the H atom Rydberg time-of-flight method, employs a double-resonance excitation scheme and experimental geometry that yields the two coherent orientation parameters as a function of recoil speed for scattering perpendicular to the laser propagation direction. The approach, apparatus, and optical layout we employ are described here in detail and demonstrated in application to HBr and DBr photolysis at 213 nm. We also discuss the theoretical foundation for the approach, as well as the resolution and sensitivity we achieve

  5. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  6. Laser-cooled atomic ions as probes of molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D. [Schools of Chemistry and Biochemistry, Computational Science and Engineering and Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2015-01-22

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.

  7. D-Brane Recoil Mislays Information

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V

    1998-01-01

    We discuss the scattering of a light closed-string state off a $D$ brane, taking into account quantum recoil effects on the latter, which are described by a pair of logarithmic operators. The light-particle and $D$-brane subsystems may each be described by a world-sheet with an external source due to the interaction between them. This perturbs each subsystem away from criticality, which is compensated by dressing with a Liouville field whose zero mode we interpret as time. The resulting evolution equations for the $D$ brane and the closed string are of Fokker-Planck and modified quantum Liouville type, respectively. The apparent entropy of each subsystem increases as a result of the interaction between them, which we interpret as the loss of information resulting from non-observation of the other entangled subsystem. We speculate on the possible implications of these results for the propagation of closed strings through a dilute gas of virtual $D$ branes.

  8. (e,2e) reactions on atoms and molecules

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1984-01-01

    At high enough incident energy and for high enough momentum transfer an incident electron interacts with a single electron of a target atom or molecule, cleanly removing it and leaving the residual ion in one of its spectrum of quantum states. Under these conditions the dynamics of the reaction simply involves a two-electron collision, the target electron having a momentum given by the structure of the target and ion, and equal and opposite to the recoil momentum of the ion. Since two-electron collisions are well understood (Mott scattering) the reaction is the basis of the understanding of the energy and momentum structure of the target and ion known as electron momentum spectroscopy

  9. Photoelectron spectra and electronic structure of some spiroborate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vovna, V.I.; Tikhonov, S.A.; Lvov, I.B., E-mail: lvov.ib@dvfu.ru; Osmushko, I.S.; Svistunova, I.V.; Shcheka, O.L.

    2014-12-15

    Highlights: • The electronic structure of three spiroborate complexes—boron 1,2-dioxyphenylene β-diketonates has been investigated. • UV and X-ray photoelectron spectra have been interpreted. • DFT calculations have been used for interpretation of spectral bands. • The binding energy of nonequivalent carbon and oxygen atoms were measured. • The structure of X-ray photoelectron spectra of the valence electrons is in good agreement with the energies and composition of Kohn–Sham orbitals. - Abstract: The electronic structure of the valence and core levels of three spiroborate complexes – boron 1,2-dioxyphenylene β-diketonates – has been investigated by methods of UV and X-ray photoelectron spectroscopy and quantum chemical density functional theory. The ionization energy of π- and n-orbitals of the dioxyphenylene fragment and β-diketonate ligand were measured from UV photoelectron spectra. This made it possible to determine the effect of substitution of one or two methyl groups by the phenyl in diketone on the electronic structure of complexes. The binding energy of nonequivalent carbon and oxygen atoms were measured from X-ray photoelectron spectra. The results of calculations of the energy of the valence orbitals of complexes allowed us to refer bands observed in the spectra of the valence electrons to the 2s-type levels of carbon and oxygen.

  10. Penetration of HEPA filters by alpha recoil aerosols

    International Nuclear Information System (INIS)

    McDowell, W.J.; Seeley, F.G.; Ryan, M.T.

    1976-01-01

    Tests at Oak Ridge National Laboratory confirmed that alpha-emitting particulate matter does penetrate high-efficiency filter medium, identical to that used in HEPA filters, much more effectively than do non-radioactive or beta-gamma active aerosols. Filter retention efficiencies drastically lower than the 99.97 percent quoted for ordinary particulate matter have been observed with 212 Pb, 253 Es, and 238 Pu sources, indicating that the phenomenon is common to all of these and probably to all alpha-emitting materials of appropriate half-life. Results with controlled air-flow through filters in series are consistent with the picture of small particles dislodged from the ''massive'' surface of an alpha-active material, and then repeatedly dislodged from positions on the filter fibers, by the alpha recoils. The process shows only a small dependence on the physical form of the source material. Oxide dust, nitrate salt, and plated metal all seem to generate the recoil particles effectively. The amount penetrating a series of filters depends on the total amount of activity in the source material, its specific activity, and the length of time of air flow. Dependence on the air flow velocity is slight. It appears that this phenomenon has not been observed in previous experiments with alpha-active aerosols because the tests did not continue for a sufficiently long time. A theoretical model of the process has been developed, amenable to computer handling, that should allow calculation of the rate constants associated with the transfer through and release of radioactive material from a filter system by this process

  11. Cu 4s → 4p atomic like excitations in the Ne matrix.

    Science.gov (United States)

    Hatano, Yasuyo; Tatewaki, Hiroshi; Yamamoto, Shigeyoshi

    2013-06-07

    The lowest three or four excited states (the triplet or quartet states) of the Cu atom in a neon (Ne) matrix have been studied experimentally, and have been presumed to have the electronic configuration of Cu 4p(1). The origins of the triplet and the quartet are not yet fully clear, although many models have been proposed. It has been argued, for example, that the existence of different trapping sites would give rise to two partly overlapping triplets, leading to spectra having three or four lines or more. Below, the electronic structures of the ground state and lowest excited states of the Cu atom in the neon matrix are clarified by means of ab initio molecular orbital calculations, using the cluster model. It was found that a rather large vacancy (hollow) with residual Ne atoms is vital for explaining the observed spectra having three or more lines; the Cu atom occupies the center of the substitutional site of a face-centered cubic (fcc)-like cluster comprising 66 Ne atoms, in which the first shell composed of 12 Ne atoms is empty. The presence of the residual Ne atoms in the first shell gives rise to more than three excited states, explaining the experimental spectra. Electron-electron interaction (including the crystal field) and spin-orbit interaction are both important in explaining the experimental spectra.

  12. ENERGY RELAXATION OF HELIUM ATOMS IN ASTROPHYSICAL GASES

    International Nuclear Information System (INIS)

    Lewkow, N. R.; Kharchenko, V.; Zhang, P.

    2012-01-01

    We report accurate parameters describing energy relaxation of He atoms in atomic gases, important for astrophysics and atmospheric science. Collisional energy exchange between helium atoms and atomic constituents of the interstellar gas, heliosphere, and upper planetary atmosphere has been investigated. Energy transfer rates, number of collisions required for thermalization, energy distributions of recoil atoms, and other major parameters of energy relaxation for fast He atoms in thermal H, He, and O gases have been computed in a broad interval of energies from 10 meV to 10 keV. This energy interval is important for astrophysical applications involving the energy deposition of energetic atoms and ions into atmospheres of planets and exoplanets, atmospheric evolution, and analysis of non-equilibrium processes in the interstellar gas and heliosphere. Angular- and energy-dependent cross sections, required for an accurate description of the momentum-energy transfer, are obtained using ab initio interaction potentials and quantum mechanical calculations for scattering processes. Calculation methods used include partial wave analysis for collisional energies below 2 keV and the eikonal approximation at energies higher than 100 eV, keeping a significant energy region of overlap, 0.1-2 keV, between these two methods for their mutual verification. The partial wave method and the eikonal approximation excellently match results obtained with each other as well as experimental data, providing reliable cross sections in the astrophysically important interval of energies from 10 meV to 10 keV. Analytical formulae, interpolating obtained energy- and angular-dependent cross sections, are presented to simplify potential applications of the reported database. Thermalization of fast He atoms in the interstellar gas and energy relaxation of hot He and O atoms in the upper atmosphere of Mars are considered as illustrative examples of potential applications of the new database.

  13. Auger transitions in singly and multiply ionized atoms

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    1978-01-01

    Some recent progress in Auger and autoionizing electron spectrometry of free metal atoms and of multiply ionized atoms is reviewed. The differences which arise between the spectra of atoms in the gaseous and the solid state are due to solid state effects. This will be shown for Cd as an example. The super Coster-Kronig transitions 3p-3d 2 (hole notation) and Coster-Kronig transitions 3p-3d 4s have been measured and compared with free-atom calculations for free Zn atoms. The experimental width GAMMA(3p)=(2.1+-0.2)eV found for the free atom agrees with the value obtained for solid Zn but is considerably smaller than the theoretical value for the free atom. Autoionizing spectra of Na following an L-shell excitation or ionization by different particles are compared and discussed. The nonisotropic angular distribution of electrons from the transition 2p 5 3s 2 2 Psub(3/2)→2p 6 +e - is compared with theoretical calculations. Two examples for Auger spectrometry of multiply ionized atoms are given: (1) excitation of neon target atoms by light and heavy ions, and (2) excitation of projectile ions Be + and B + in single gas collisions with CH 4 . A strong alignment of the excited atoms has also been found here

  14. Precision lifetime measurements using the recoil distance method

    International Nuclear Information System (INIS)

    Kruecken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1,000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed

  15. Precision Lifetime Measurements Using the Recoil Distance Method

    Science.gov (United States)

    Krücken, R.

    2000-01-01

    The recoil distance method (RDM) for the measurements of lifetimes of excited nuclear levels in the range from about 1 ps to 1000 ps is reviewed. The New Yale Plunger Device for RDM experiments is introduced and the Differential Decay Curve Method for their analysis is reviewed. Results from recent RDM experiments on SD bands in the mass-190 region, shears bands in the neutron deficient lead isotopes, and ground state bands in the mass-130 region are presented. Perspectives for the use of RDM measurements in the study of neutron-rich nuclei are discussed. PMID:27551587

  16. Production and measurement of dispersion aerosols; application to the transport of deuteron-induced and 84Kr-induced reaction recoils

    International Nuclear Information System (INIS)

    Schmidt-Ott, W.-D.; Dincklage, R.-D. von

    1977-01-01

    Dispersion aerosols were produced from various fluids and mixed with helium, nitrogen, and air. The diameter of the aerosols was estimated from their deflection in a low density micro-jet. These two-phase flows were tested for their transport performance for recoils of deuteron-induced reactions at the Goettingen cyclotron. Transport yields of 70%, 90% and 86% were measured when using n-decane with helium, nitrogen, and air, respectively. In comparison to the earlier use of ethylene the amount of disturbing activity induced on the gases was much smaller. The effect of aerosol formation by condensation is discussed. The system was applied in electron- and γ-ray spectroscopy of deuteron-induced reaction recoils. The mixture of n-decane and helium was used for the transport of 84 Kr-induced reaction recoils at the Darmstadt UNILAC. (Auth.)

  17. Electronic structure and UV spectra of N-arylthio-1,4-benzoquinone imines

    International Nuclear Information System (INIS)

    Pirozhenko, V.V.; Boldeskul, I.E.; Kolesnikov, V.T.; Vid, L.V.; Kuz'menko, L.O.

    1986-01-01

    The electronic structure of N-arylthio-1,4-benzoquinone imines (II) was studied by quantum-chemical methods (CNDO/2). It was shown that the special characteristics of the reactivity of the compounds in reaction with chlorine compared with sulfenylketimines R 2 C=N-S-Ar not containing a quinonoid ring may be due to the different nature of the lowest unoccupied molecular orbitals (LUMO). The UV spectra of compounds (II) were investigated. In the visible region the spectra of all the compounds contain strong absorption (R 1 = R 2 = R 3 = R 4 = R 5 = H, λ/sub m/ = 433 nm, epsilon/sub m/ = 2.12 x 10 4 liters/mole x cm), due to intramolecular charge transfer from the sulfur atom to the quinonoid fragment of the molecule. It was established that there is a linear relation between the energy of the transition and the σ + constants of the substituents in the aryl fragment. The assignment of the transitions was confirmed by calculations of the UV spectra of N-arylthio-1,4-benzoquinone imines by the PPP method. Comparison of the UV spectra of these compounds with the UV spectra of N-arylsulfonyl-1,4-benzoquinone imines makes it possible to conclude that the sulfur atom of the SO 2 group, unlike the divalent sulfur atom, is not capable of transmitting the electronic effects of the substituents from one part of the molecule to the other

  18. On the influence of atomic mixing on the evolution of ion-implantation profiles

    International Nuclear Information System (INIS)

    Gras-Marti, A.; Jimenez-Rodriguez, J.J.; Peon-Fernandez, J.; Rodriguez-Vidal, M.

    1982-01-01

    Various processes contributing to the evolution of high-fluence implantation profiles in solids are considered within a general scheme. In particular the influence of atomic mixing is analysed. A Green function is derived which contains all the information on the instantaneous profile. In the Gaussian approximation, simple expressions for parameters which describe the ion-induced relocation effects on the depth profile are found. The contributions of recoil and cascade mixing are discussed. The relative significance of diffusive and collisional processes on the profiles can also be assessed. (author)

  19. Initial state dependence of low-energy electron emission in fast ion atom collisions

    International Nuclear Information System (INIS)

    Moshammer, R.; Schmitt, W.; Kollmus, H.; Ullrich, J.; Fainstein, P.D.; Hagmann, S.

    1999-06-01

    Single and multiple ionization of Neon and Argon atoms by 3.6 MeV/u Au 53+ impact has been explored in kinematically complete experiments. Doubly differential cross sections for low-energy electron emission have been obtained for defined charge state of the recoiling target ion and the receding projectile. Observed target specific structures in the electron continuum are attributable to the nodal structure of the initial bound state momentum distribution. The experimental data are in excellent accord with CDW-EIS single ionization calculations if multiple ionization is considered appropriately. (orig.)

  20. Core Level Spectra of Organic Molecules Adsorbed on Graphene

    Directory of Open Access Journals (Sweden)

    Abhilash Ravikumar

    2018-03-01

    Full Text Available We perform first principle calculations based on density functional theory to investigate the effect of the adsorption of core-excited organic molecules on graphene. We simulate Near Edge X-ray absorption Fine Structure (NEXAFS and X-ray Photoemission Spectroscopy (XPS at the N and C edges for two moieties: pyridine and the pyridine radical on graphene, which exemplify two different adsorption characters. The modifications of molecular and graphene energy levels due to their interplay with the core-level excitation are discussed. We find that upon physisorption of pyridine, the binding energies of graphene close to the adsorption site reduce mildly, and the NEXAFS spectra of the molecule and graphene resemble those of gas phase pyridine and pristine graphene, respectively. However, the chemisorption of the pyridine radical is found to significantly alter these core excited spectra. The C 1s binding energy of the C atom of graphene participating in chemisorption increases by ∼1 eV, and the C atoms of graphene alternate to the adsorption site show a reduction in the binding energy. Analogously, these C atoms also show strong modifications in the NEXAFS spectra. The NEXAFS spectrum of the chemisorbed molecule is also modified as a result of hybridization with and screening by graphene. We eventually explore the electronic properties and magnetism of the system as a core-level excitation is adiabatically switched on.

  1. Determination of the extraction efficiency for {sup 233}U source α-recoil ions from the MLL buffer-gas stopping cell

    Energy Technology Data Exchange (ETDEWEB)

    Wense, Lars v.d.; Seiferle, Benedict; Thirolf, Peter G. [Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Laatiaoui, Mustapha [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz Institut Mainz, Mainz (Germany)

    2015-03-01

    Following the α decay of {sup 233}U, {sup 229}Th recoil ions are shown to be extracted in a significant amount from the MLL buffer-gas stopping cell. The produced recoil ions and subsequent daughter nuclei are mass purified with the help of a customized quadrupole mass spectrometer. The combined extraction and mass purification efficiency for {sup 229}Th{sup 3+} is determined via MCP-based measurements and via the direct detection of the {sup 229}Th α decay. A large value of (10±2)% for the combined extraction and mass purification efficiency of {sup 229}Th{sup 3+} is obtained at a mass resolution of about 1u/e. In addition to {sup 229}Th, also other α-recoil ions of the {sup 233,} {sup 232}U decay chains are addressed. (orig.)

  2. Radiation damage calculations for compound materials

    International Nuclear Information System (INIS)

    Greenwood, L.R.

    1990-01-01

    This paper reports on the SPECOMP computer code, developed to calculate neutron-induced displacement damage cross sections for compound materials such as alloys, insulators, and ceramic tritium breeders for fusion reactors. These new calculations rely on recoil atom energy distributions previously computed with the DISCS computer code, the results of which are stored in SPECTER computer code master libraries. All reaction channels were considered in the DISCS calculations and the neutron cross sections were taken from ENDF/B-V. Compound damage calculations with SPECOMP thus do not need to perform any recoil atom calculations and consequently need no access to ENDF or other neutron data bases. The calculations proceed by determining secondary displacements for each combination of recoil atom and matrix atom using the Lindhard partition of the recoil energy to establish the damage energy

  3. Production and analysis of some atomic emission spectra in the vacuum ultraviolet

    International Nuclear Information System (INIS)

    Meijer, F.G.

    1979-01-01

    The development of technical facilities for spectra analysis are described including the design, construction and adjustment of a grazing incidence spectrograph for the extreme ultraviolet and the improvements in light sources. The investigations of the fifth and fourth spectra of tantalum, the analysis of the sixth spectrum of tungsten, the extension of the analysis of the fourth spectrum of hafnium and a start of the analysis of the seventh spectrum of rhenium are presented. (C.F.)

  4. Case studies in atomic collision physics

    CERN Document Server

    McDaniel, E W

    1974-01-01

    Case Studies in Atomic Physics III focuses on case studies on atomic and molecular physics, including atomic collisions, transport properties of electrons, ions, molecules, and photons, interaction potentials, spectroscopy, and surface phenomena. The selection first discusses detailed balancing in the time-dependent impact parameter method, as well as time-reversal in the impact parameter method and coupled state approximation. The text also examines the mechanisms of electron production in ion. Topics include measurement of doubly differential cross sections and electron spectra, direct Coul

  5. Giant resonances in atoms and in fluorine cage molecules

    International Nuclear Information System (INIS)

    Mansfield, M.W.D.

    1987-01-01

    Giant resonances in the photoabsorption spectra of atoms occur in the extreme ultraviolet region of the electromagnetic spectrum. In order to observe absorption spectra in this region it is necessary to generate columns of atomic vapor which will often by very hot and chemically aggressive, and to contain them without solid windows between two regions of high vacuum, the spectrometer and the light source, usually an electron synchrotron. The technical problems are often formidable so that although it had long been recognized that giant resonances in solid lanthanides were essentially atomic phenomena (Fomichev et al. 1967, Dehmer et al. 1971) earlier investigations of giant resonances in atoms were limited to the more manageable elements which precede the transition rows, the inert gases, alkali and alkaline earth elements. In this paper the authors discusses the spectra of transition row atoms in order of decreasing localization (Smith and Kmetko 1983) viz. 4d → f, 5d → f, 3p → d, 4p → d and 5p → d. He tends to avoid discussion of the giant resonances themselves because their profiles and interpretation will be discussed comprehensively by other contributors. Instead he concentrates on the detailed analyses which have been attempted of the discrete structure which usually accompanies giant resonances in atoms. Interpretation of this structure can provide accurate determinations of thresholds for inner shell excitation in atoms and can also be used to anticipate structure which may overlie the giant resonances and distort their profiles. 75 references, 21 figures

  6. A=225 implantation for $^{221}$Fr source for TRIUMF atom trap

    CERN Multimedia

    The FrPNC Collaboration is mounting an atom trap for parity violation experiments and precision spectroscopy on francium atoms at TRIUMF's ISAC facility. We would like to use ISOLDE's capability of simultaneously implanting A=225 (while another experiment runs online) to make a long-lived source feeding $^{221}$Fr for tests of the trap. $^{225}$Ra $\\beta$-decays to $^{225}$Ac, which then $\\alpha$-decays, producing 100 keV $^{221}$Fr t$_{1/2}$= 4.8 minute recoils. The implanted A=225 source would be shipped to TRIUMF, where it would be held for several minutes at a time a few mm from the same yttrium foil that normally receives the ISAC beam. SRIM calculations imply that 20% of the $^{221}$Fr will be implanted in a 1 cm diameter spot on the yttrium. Then the yttrium foil is moved to the trap and heated to release the Fr atoms, just as in normal ISAC online operation. A test implantation will be done at 10$^{7}$/sec production for 1 day, testing whether carbon cracking on the implantation foil in the mass separ...

  7. Mexican hat curve for hydrogen and antihydrogen-states in natural atom H

    CERN Document Server

    Van Hooydonk, G

    2004-01-01

    Molecular band spectra as well as atomic line spectra reveal a left-right symmetry for atoms (Van Hooydonk, Spectrochim. Acta A, 2000, 56, 2273 and CERN-Ext-2002-041). We now extract a Mexican hat shaped or double well curve from the line spectrum (Lyman ns1/2 singlets) of natural atom H. An H CSB theory and its oscillator contribution (1-0.5pi/n)esp2/nexp2 lead to unprecedented results for antihydrogen physics, ahead of the CERN AD-project on artificial antihydrogen.

  8. Theoretical studies of atomic and quasiatomic excitations by electron and ion impact

    International Nuclear Information System (INIS)

    Kam, K.F.

    1999-09-01

    Electron emission from ion induced excitations of Ca, Sc, Ti and V metal surfaces and from electron impact on transition metal oxides CoO and TiO 2 has been studied in this thesis. Both the autoionising emission from sputtered atoms and the 3p→3d and 3s→3d excitations in the oxides reveal strong atomic features. The work has involved explaining these spectra in an atomic approach, via the use of atomic structure calculations, cross section studies and empirical/semi-empirical analyses. The other aspect of this work involves extension of current theories of electron-atom scattering in the high electron energy impact regime. Overall it is shown that much can be learned about some solid-state spectra by relating them to atomic phenomena. (author)

  9. Experiments with a magnetic separator for heavy recoil ions

    International Nuclear Information System (INIS)

    Mosler, E.

    1981-01-01

    Using a triple-focusing (position and momentum), crescent-shaped separator for heavy recoil-ions different experiments were performed. The improvement consists in the enhancement of the transmission from 8% to 25% for 500 keV recoil ions from the reaction 238 U(α, 3n)sup(239m)Pu. For sup(237m)Pu the electromagnetic decay of the 1.1 μs shape isomer into the 82 ns shape isomer was searched for. The upper limit for gamma decay is 1.25 +- 1.25% for Esub(γ) = 200 keV and for electron decay 0.29 +- 0.29% in comparison to isomeric fission. The upper limit for interband transitions is 2.5% (2 delta), from which the upper limit of the partial half-life for the electromagnetic decay of the 1.1 μs isomer is calculated to 44 μs. Due to the performed interpretation the spin difference between both isomers extends at least to ΔI = 3. For sup(238m)U the back-decay into the 1. minimum by the EO-transition and the converted 2 + → 0 + transition in the first decay and the decay by alpha articles was looked for both in single measurements as in a coincidence measurement to L-X-ray quanta. The upper limits are GAMMAsub(EO) = 2.0, GAMMAsub(α)/GAMMAsub(F) = 0.4 and GAMMA(back-decay)/GAMMAsub(F) approx. equal to 100. (orig./HSI) [de

  10. The Closed-Orbit Theory for General Rydberg Atoms in External Fields

    International Nuclear Information System (INIS)

    Carboni, R.

    1997-01-01

    The photoabsorption spectra of hydrogen Rydberg atoms, as well of model Rydberg atoms in pure magnetic or electric fields have been successfully calculated using the semiclassical closed-orbit theory. The theory relates the resonances of the spectra to closed classical orbits of the excited electron. The dynamics of multielectron atoms is more complicated than the hydrogenic one; additionally, when the atoms are in the presence of perpendicular magnetic and electric fields becomes more complex than when they are in pure fields, due to the fact that the Hamiltonian is non-separable in three degrees of freedom, instead of two non-separable degrees of freedom. In this work, I present an extension of the closed-orbit theory to three degrees of freedom, considering arbitrary quantum defects, i.e., general atoms. (Author) [es

  11. Velocity dependence of enhanced dynamic hyperfine field for Pd ions swiftly recoiling in magnetized Fe

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Ryan, G.C.; Bolotin, H.H.; Sie, S.H.

    1980-01-01

    The velocity-dependence of the magnitude of the enchanced dynamic hyperfine magnetic field (EDF) manifest at nuclei of 108 Pd ions swiftly recoiling through thin magnetized Fe has been investigated at ion velocities higher than have heretofore been examined for the heavier nuclides (i.e., at initial recoil velocities (v/Zv 0 )=0.090 and 0.160, v 0 =c/137). These results for 108 Pd, when taken in conjunction with those of prior similar measurements for 106 Pd at lower velocities, and fitted to a velocity dependence for the EDF, give for the Pd isotopes over the extended velocity range 1.74 0 )<=7.02, p=0.41+-0.15; a result incompatible with previous attributions of a linear velocity dependence for the field

  12. Physics of atoms and molecules

    International Nuclear Information System (INIS)

    Bransden, B.H.; Joachain, C.J.

    1983-01-01

    This book presents a unified account of the physics of atoms and molecules at a level suitable for second- and third-year undergraduate students of physics and physical chemistry. Following a brief historical introduction to the subject the authors outline the ideas and approximation methods of quantum mechanics to be used later in the book. Six chapters look at the structure of atoms and the interactions between atoms and electromagnetic radiation. The authors then move on to describe the structure of molecules and molecular spectra. Three chapters deal with atomic collisions, the scattering of electrons by atoms and the scattering of atoms by atoms. The concluding chapter considers a few of the many important applications of atomic physics within astrophysics, laser technology, and nuclear fusion. Problems are given at the end of each chapter, with hints at the solutions in an appendix. Other appendices include various special topics and derivations together with useful tables of units. (author)

  13. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  14. Commissioning of the recoil silicon detector for the HERMES experiment

    International Nuclear Information System (INIS)

    Pickert, N.C.

    2008-02-01

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  15. Commissioning of the recoil silicon detector for the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pickert, N C

    2008-02-15

    The reconstruction of the missing mass is limited by the position and momentum resolution of the HERMES spectrometer. In order to reach a higher accuracy in the measurements the backscattered nucleon must also be detected. A detector suited for this must give the possibility, to determine the momentum of the particles over a very large range: from minimally ionizing particles up to protons, which are stopped in the detector. The detector must also be able to discriminate hadrons and mesons as well as cover the complete spatial region around the target. In the winter 2005-2006 such a recoil detector was installed in the HERMES experiment. The detector sonsists of three partial detectors, a silicon counter within the scattering chamber, a sintillating-fiber detector and a photon detector. Before the installation of the detector the silicon modules were tested in a bench test and checked together with the other particle detectors in a test experiment. A large part of this dissertation is dedicated to the planning and performance of these tests as well to the evaluation of them. It could be show, that the modules worked accordly to their specifications, however because of unexpectedly high noise a signal correction became necessary. Different models for the correction were developed and tested in the framework of these thesis. In spite of the high noise cosmic muons could be detected and their energy deposition measured with a signal-to-noise ratio of 2:1. In the winter break 2005-2006 the recoil detector was installed into the HERMES experiment. First diagnosis and analysis software was developed. The silicon detector measured successfully energy depositions of minimally ionizing particles up to protons stopped in the sensor. Minimally ionizing particles could be detected with a signal-to-noise ratio of 5:1. By means of track information of the scintillating-fiber detector protons could be discriminated from pions and other mesons by the silicon detector. The HERMES

  16. Mass and energy dispersive recoil spectrometry of GaAs structures

    International Nuclear Information System (INIS)

    Hult, M.

    1994-01-01

    Mass and energy dispersive Recoil Spectrometry (RS) using heavy ions at energies of about 0.2Α-0.8Α MeV has attracted much interest recently due to its potential for separately and unambiguously generating information on isotopic depth distributions. The principal advantages of mass and energy dispersive RS are that both light and heavy elements can be separately studied simultaneously and problems caused by chemical matrix effects are avoided since the technique is based on high energy nucleus-nucleus scattering. In order to elucidate reactions taking place in various GaAs structures, Time of flight-Energy (ToF-E) RS was developed to allow Ga and As to be studied separately down to depths of about 500-800 nm with a depth resolution of about 16 nm at the surface. This was shown in a study of an Al x Ga 1-x As quantum-well structure. The benefits of using ToF-E RS on GaAs structures were further demonstrated in studies of Co/GaAs and CoSi 2 /GaAs reactions, as well as in a study of the composition of MOCVD grown Al x Ga 1-x As. Most recoil measurements employed 127 I at energies of about 50-90 MeV as projectiles. The recoil detector telescope consisted of a silicon energy detector and two carbon foil time pick-off detectors separated by a variable flight length of 213.5-961 mm. The reactions taking place between various thin films and GaAs were also studied using complementary techniques such as XRD, XPS and SEM. Co was found to react extensively with GaAs, already at about 300 degrees C, making it unsuitable as a contact material. Thin films of Co and Si were found to react extensively with each other and to form CoSi 2 at 500 degrees C and above. CoSi 2 , a low resistivity silicide, turned out to be stable on GaAs, at least up to 700 degrees C. Considerable grain growth could cause problems, however, in the use of CoSi 2 -contacts. 112 refs, figs, tabs

  17. Proton-recoil proportional counter tests at TREAT

    International Nuclear Information System (INIS)

    Fink, C.L.; Eichholz, J.J.; Burrows, D.R.; DeVolpi, A.

    1979-01-01

    A methane filled proton-recoil proportional counter will be used as a fission neutron detector in the fast-neutron hodoscope. To provide meaningful fuel-motion information the proportional counter should have: a linear response over a wide range of reactor powers background ratio (the number of high energy neutrons detected must be maximized relative to low energy neutrons, and gamma ray sensitivity must be kept small); and a detector efficiency for fission neutrons above 1 MeV of approximately 1%. In addition, it is desirable that the detector and the associated amplifier/discriminator be capable of operating at counting rates in excess of 500 kHz. This paper reports on tests that were conducted on several proportional counters at the TREAT reactor

  18. Atomic Data for Stellar Astrophysics: from the UV to the IR

    Science.gov (United States)

    Wahlgren, Glenn M.

    2011-01-01

    The study of stars and stellar evolution relies heavily on the analysis of stellar spectra. The need for atomic line data from the ultraviolet (UV) to the infrared (lR) regions is greater now than ever. In the past twenty years, the time since the launch of the Hubble Space Telescope, great progress has been made in acquiring atomic data for UV transitions. The optical wavelength region, now expanded by progress in detector technology, continues to provide motivation for new atomic data. In addition, investments in new instrumentation for ground-based and space observatories has lead to the availability of high-quality spectra at IR wavelengths, where the need for atomic data is most critical. In this review, examples are provided of the progress made in generating atomic data for stellar studies, with a look to the future for addressing the accuracy and completeness of atomic data for anticipated needs.

  19. ANTICOOL: Simulating positron cooling and annihilation in atomic gases

    Science.gov (United States)

    Green, D. G.

    2018-03-01

    The Fortran program ANTICOOL, developed to simulate positron cooling and annihilation in atomic gases for positron energies below the positronium-formation threshold, is presented. Given positron-atom elastic scattering phase shifts, normalised annihilation rates Zeff, and γ spectra as a function of momentum k, ANTICOOL enables the calculation of the positron momentum distribution f(k , t) as a function of time t, the time-varying normalised annihilation rate Z¯eff(t) , the lifetime spectrum and time-varying annihilation γ spectra. The capability and functionality of the program is demonstrated via a tutorial-style example for positron cooling and annihilation in room temperature helium gas, using accurate scattering and annihilation cross sections and γ spectra calculated using many-body theory as input.

  20. Investigations on the production of labelled organic compounds by recoil labelling with gamma,n-produced 11-C-atoms

    International Nuclear Information System (INIS)

    Wagenbach, U.

    1981-01-01

    ''Hot'' 11 C atoms are produced from 12 C(γ,n) 11 C nuclear reactions by bremsstrahlung at the 65 MeV electron linear accelerator in Giessen. The relative retention in various C-atoms of the amino acid, methionine, is determined by splitting of the terminal C-atoms of the molecule and by independent determination of the content of 11 C in the isolated and derived fragments. The terminal groups (thiomethyl or carboxyl groups) each carry approx. 25% of the total retained radioactivity, the remaining 50% being spread over the three inner carbon atoms. The activation of alkylamines, crystallised as hydrochlorides, hydrofluorides, oxalates and sulphates, leads to similar yields of direct labelling from 5 to 15%. Amines activated in the liquid state show a retention of less than 5%. The yields for labelled synthetic products are between 10 and 15% for amino acids and are often higher for crystallised amines. Amines activated in the liquid state produced greater yields of synthesis products but at the same time an increase in the product range. The labelled synthesis products can be separated faster by suitable methods such as preparative HPLC and are then available for carrier-free studies in the life sciences. (orig./EF) [de